PJ CAREY (CONTRACTORS) LTD

Phase 1a Section 5 Graven Hill, Bicester

Land Contamination Verification Report for Earthworks Fill (to assist with discharging original Planning Condition No 58)

Date of Report: 7th May 2019

AA Environmental Limited 4-8 Cholswell Court

Shippon Abingdon OX136HX T 01235 536042 F 01235 523849 info@aae-Ilp.com www.aae-Ilp.com

Job No: 173044

Report Ref: 173044/VR/005

Document Control

Report for

PJ Carey (Contractors) Ltd Careys House Great Central Way Wembley Middlesex HA9 0HR Phase 1a Section 5 Graven Hill Bicester

Prepared by

J N Taylor BSc (Hons) PIEMA

Reviewed by

M J M Lawman MSc BSc (Hons)

Issue Date

7th May 2019

Draft

Issue

Document Reference

173044/VR/005

AA Environmental Limited

4-8 Cholswell Court Shippon Abingdon OX13 6HX

- T 01235 536042
- **F** 01235 523849
- E info@aae-llp.com
- W www.aae-llp.com

Registered Office (England and Wales) as above Company No. 8474322

Table of Revisions

Draft 07/05/19	For client review and comment		

Contents

Page No.

1.0	INTRODUCTION	1
2.0	VERIFICATION OF EARTHWORKS FILL	3
3.0	REMEDIATION OF NON-CONFORMING AREAS	4
FIGURES		
Figure 1	Site Remediation Strategy Plan Sections (3252-PJC/AAe-00S00)	
Figure 2	Earthworks Fill Verification Plan – Section 5	
APPENDICES		
Appendix A	Remedial Method Statement for Non-Conforming Works	
Appendix B	Photo Plates - Verification Trial Pits	
Appendix C	Certificates of Analysis - Verification Trial Pits & Stockpile Testing	
Appendix D	Consolidated Results - Section 5 Fill	

Appendix E Soil Guidance Values

1.0 INTRODUCTION

Overview of project

- 1.1 AA Environmental Limited (AAe) has been appointed by PJ Carey (Contractors) Limited (hereafter referred to as Careys) to assist with the management of the environmental aspects associated with the redevelopment of land at Graven Hill, London Road, Bicester OX26 6HF.
- 1.2 The site comprises a former Ministry of Defence (MOD) logistics and freight terminal located south of the A41 in Bicester. The site is currently being redeveloped for residential purposes, including associated infrastructure works and leisure/community facilities.
- 1.3 The following reports have been produced for the site by Waterman Infrastructure & Environment Limited (Waterman) and submitted for approval by the local authority to satisfy the associated planning conditions:
 - 'Environmental Interpretative Report for Land Transfer Area 1' September 2015 (Report reference: WIB13983-104-R-1-1-7-GH).
 - 'Remediation Options Appraisal and Remedial Strategy Report Land Transfer Area 1' January 2016 (Report reference: WIB13983-104-R-2-2-3-MA-MACF).
- 1.4 The site is being developed in different sections, as presented on Figure 1 (Careys drawing 3252-PJC/AAe-00S00).

Scope of report

- 1.5 AAe was instructed by Careys to verify chemical compliance of subsoil within areas of earthworks fill against the specification presented in the Waterman Remediation Strategy.
- 1.6 This Verification Report is one a series of documents that verify the land quality of the areas of soft landscaping. This plan specifically covers earthworks completed by Careys within Section 5, as presented on Figure 2.
- 1.7 The agreed Remedial Options Appraisal and Remedial Strategy report was developed following a series of site investigations and contamination assessments. The investigation identified that the majority of the site was uncontaminated and suitable for residential development. As part of the verification regime, Careys as the enabling and earthworks contractor had to test the excavated and imported materials to demonstrate that the material was of a suitable quality. The required quality standards were set out by Waterman¹.
- 1.8 The earthworks cut and fill plans have been provided by Careys. An inspection and testing regime has been undertaken by AAe within areas of earthworks fill to determine compliance against the site specification. Where non-conformances were recorded, corrective actions have been completed by Careys under the supervision of AAe in accordance with the 'Remedial Method Statement for Non-Conforming Works (RMS)' presented at Appendix A.
- 1.9 This report has been prepared to assist in discharging Planning Condition No 58 of 'new' outline consent 18/00325/OUT. In accordance with Planning Condition No 58 this report shall be submitted by Careys to the Local Planning Authority, and their approval in writing obtained. Planning Condition No. 58 states:

"58 The development of Graven Hill shall not be occupied until:

(a) In respect of Phase 0, Phase 1a and Phase 1b as shown on Drawing No: 1982-A-L-572-I, the remedial works have been carried out in accordance with the approved:

¹ Subsequent to the derivation of the standards, Waterman have advised Careys that asbestos chrysotile fibres are permitted at a level 0.001%.

- Remediation Options Appraisal and Remediation Strategy Report for Land Transfer Area 1 (ref: WIB13983-104-R-2-2-3-MA-MACF dated January 2016) prepared by Waterman Infrastructure & Environment Ltd.
- A verification report that demonstrates the effectiveness of the remediation carried out must be submitted to and approved in writing by the Local Planning Authority.

(b) In respect of all subsequent phases, if remedial works have been identified in condition 52, the remedial works have been carried out in accordance with the scheme approved under condition 52. A verification report that demonstrates the effectiveness of the remediation carried out must be submitted to and approved in writing by the Local Planning Authority."

Limitations and assumptions

- 1.10 All testing has been completed in line with quality control procedures. All information provided in this report is based on the ground encountered during the investigations. It should be recognised that during any investigation the conditions identified may not be fully representative of the wider conditions.
- 1.11 The purpose of this report is to verify chemical compliance of subsoil within areas of earthworks fill completed by Careys. Inspection and testing by AAe is therefore limited to the specified areas of earthworks fill. A reliance is placed on the provided cut and fill plans to accurately represent the earthworks undertaken by Careys. This report does not verify soil quality in areas of earthworks cut.
- 1.12 This report does not verify geotechnical suitability of materials used as earthworks fill.
- 1.13 It is understood that Careys are contracted to complete the enabling earthworks (including provision of subsoil) to 150 mm below finished level. This report does not verify works completed by third-party contractors or self-builders following handover by Careys. Where follow on contractors/self-builders have operated and/or imported materials this report cannot be relied upon to demonstrate the final land quality.

2.0 VERIFICATION OF EARTHWORKS FILL

Fieldwork

- 2.1 The section has been sub-divided into areas of cut and fill, as presented on Figure 2. To verify the chemical quality of subsoil, trial pits were constructed at locations made available by Careys to be representative of earthworks fill. The trial pits were marked out by the Careys Site Engineer and the ground levels recorded.
- 2.2 Table 2.1 presents the calculated fill volume for the soft landscaping in each sub-area and the required number of tests against the frequency specified within the approved remedial strategy (1 test per 250 m³ site-won fill).

Table 2.1 Section 5 Sub-Areas			
Sub-Area	Fill Volume (calculated by Careys) m ³	Minimum number of tests required to achieve 1 per 250 m ³ of fill.	
5-1	2360	10	
5-2	N/A Cut	N/A	

- 2.3 Trial pits were completed on 26th March 2019. The location of the trial pits is presented on Figure 2.
- 2.4 AAe inspected the trial pits for any visual or olfactory evidence of contamination and collected representative samples of the subsoil for laboratory testing analysis in accordance with quality control requirements.
- 2.5 Photo plates of the trial pits are presented in Appendix B.
- 2.6 Careys advised that earthworks fill from Stockpile 0008 (SPHTP311/312) was also placed within area 5-1. This stockpile was tested on 25th June 2018.

Chemical Results

2.7 Table 2.2 presents a summary of the scheduled environmental testing within the verification trial pits in fill areas.

Table 2.2 Summary of environmental testing				
Type of Test	Number	Laboratory Report		
Full Environmental Suite (incl. metals, TPHs,	13	18-18546		
PAHs and asbestos screen)		19-11460		

2.8 The results of the environmental laboratory testing are presented in Appendix C.

Assessment of Chemical Results

- 2.9 The soil results have been consolidated and compared against the specification provided in the Waterman Remediation Strategy. The consolidated data is presented in Appendix D. Where the testing suite includes determinants for which limiting values for the protection of human health are not included in the Waterman Remediation Strategy, the Soil Guidance Values (SGVs) presented in Appendix E have been adopted.
- 2.10 The results comply to the site specification. No corrective measures were required within the specified areas of earthworks fill.

3.0 REMEDIATION OF NON-CONFORMING AREAS

[NOT REQUIRED]

FIGURES

Approximate Section Boundary

E458000 N220000 GL 73.726 2 B

PJC Sample location

Rev	/ Details		Drawn	Date		
1.00.		-	Jetano		Chkd.	Dute
Pro 17 G	^{oject} 73044 raven	Hill, Bic	ester			
\subseteq						
Tit	e					
	0					
E	arthwo	orks Fill	Verifica	tion P l an	 Section 	on 5
						J
Environmental Consultants AAAe AAEnvironmental Ltd Units 4-8 Cholswell Court Shippon Abingdon Oxon OX13 6HX T:(01235) 538042 F:(01235) 523849 info@aae-Ilp.com www.aae-Ilp.com						
Sc	ale	Date Ar	or'19	Drg. No.		Rev.
1:5	00(A3)	Drawn RH	Chkd.	Figure 2		A

APPENDIX A Remedial Method Statement for Non-Conforming Works

REMEDIAL METHOD STATEMENT FOR NON-CONFORMING EARTHWORKS

Graven Hill (Land Transfer Area 1) Bicester. Oxfordshire.

PJ Carey (Contractors) Limited Carey House Great Central Way Wembley London HA9 0HR

Report ref 173044/RMS/001(REV A)

September 2018 (REV A)

1. OVERVIEW

AA Environmental Limited (AAe) were instructed by PJ Carey (Contractors) Limited (Careys) to verify chemical compliance of the top 450 mm of soils within areas of completed soft landscaping against the specification presented in the Waterman Infrastructure & Environment Limited (Waterman) 'Remediation Options Appraisal and Remedial Strategy Report - Land Transfer Area 1'.

This RMS sets out the corrective measures to be adopted to remediate areas of soft landscaping where nonconformances have been identified.

2. REMEDIAL STRATEGY AND CORRECTIVE MEASURES

2.1 Removal of impacted soils from non-conforming areas

Within the specified areas, soils must be fully excavated to 450 mm below finished formation level. The nonconforming soils should be transferred to the designated materials management area and placed in a standalone quarantine stockpile on impermeable sheeting.

The stockpile will be subject to further assessment/testing to determine the suitability for re-use elsewhere on the site and/or for off-site transfer.

The volume of soil transferred and quarantine stockpile location will be recorded by the Careys Site Engineer in accordance with the Careys Materials Management Plan.

2.2 Inspection of excavated areas

Careys Site Engineer will survey the reduced level to verify that soils have been fully removed to 450 mm below finished formation level.

AAe will undertake a visual inspection of the excavated areas to verify than the non-conforming soils have been removed. Photographs of the inspections will be maintained.

In the event any suspected significant contamination is observed within the residual soils below 450 mm, then further testing will be undertaken to determine any additional controls that may be required within the affected area.

2.3 Placement of geotextile marker layer

A permeable geotextile marker layer will be placed over the residual soils. The geotextile should fully cover all residual soils and be installed up the sides of the batters/excavations.

The Careys Site Engineer should maintain photographs of the geotextile placement within each area.

2.4 Reinstatement of soils

The specified areas will be reinstated with acceptable soils (topsoil and/or subsoil) from pre-approved stockpiles only. Stockpiles of site-won or imported soil will be tested in accordance with the Waterman Remediation Strategy. All soils placed within the top 450 mm of soft landscaping areas should comply with the chemical specification presented in Appendix A.

2.5 Inspection of remediated areas

AAe will undertake a final inspection of the areas to verify that the reinstated soil has been constructed to a minimum depth of 450 mm above the geotextile marker layer. Photographs of the completed areas will be maintained.

3. VERIFICATION REQUIREMENTS

The following information and data should be maintained for inclusion within the final verification report:

- Plans showing areas of chemical non-conformance and supporting test results;
- Plans showing areas that have been subject to corrective works and remediation;
- Inspection reports from AAe presenting observations/photographs of the remedial works and any additional testing;
- Survey levels, material tracking forms and photographs of the geotextile placement from Careys; and
- Details of the stockpiles/soils used to reinstate the areas and associated certificates of analysis.

4. HEALTH AND SAFETY

Careys should undertake a health and safety risk assessment in accordance with their standard procedures to ensure that the remedial works do not pose a risk to site operatives and surrounding receptors from the recorded contaminants. Appropriate working controls (such as damping down, dust suppression), respiratory protective equipment (RPE), personal protective equipment (PPE) and quantitative air/dust monitoring should be implemented as necessary.

 Author:
 Matthew Lawman MSc BSc (Hons)

 Director
 Director

 Reviewer:
 Jack Taylor BSc (Hons)

Jack Taylor BSC (Hons Principal Consultant

Date:

2nd September 2018 (REV A)

Report produced by: AA Environmental Limited

Registered Office: Units 4 to 8 Cholswell Court Shippon Abingdon Oxon OX13 6HX

T: 01235 536042 E: info@aae-llp.com

Appendix A Remedial Criteria Extract from Watermans Remedial Plan

able b1. Import Chiena i	or marustanding and Landscap	ing / Private Garden Solis	
Determinant	Hardstanding Criteria, mg/kg	Landscaping and Residential Garden Soils Criteria, mg/kg	Source of Value
Arsenic	640	37	DEFRA C4SLs
Beryillium	12	1.7	LQM S4ULs 2015
Cadmium	410	22	DEFRA C4SLs
Chromium (Total)	8,600	910	LQM S4ULs 2015
Copper	68,000	2,400	LQM S4ULs 2015
Lead	2,330	200	LQM S4ULs 2015
Mercury	58	1.2	LQM S4ULs 2015
Nickel	980	180	LQM S4ULs 2015
Selenium	12,000	250	LQM S4ULs 2015
Zinc	730,000	3,700	LQM S4ULs 2015
Free Cyanide	16,000	26	Waterman GAC- CLEA v1.06
Aliphatic EC5-EC6	5,900	78	LQM S4ULs 2015
Aliphatic EC6-EC8	17,000	230	LQM S4ULs 2015
Aliphatic EC8-EC10	4,800	230	LQM S4ULs 2015
Aliphatic EC10-EC12	23,000	330	LQM S4ULs 2015
Aliphatic EC12-EC16	8,200	2,400	LQM S4ULs 2015
Aliphatic EC16-EC35	1,000,000	92,000	LQM S4ULs 2015
Aromatic EC5-EC7	46,000	140	LQM S4ULs 2015
Aromatic EC7-EC8 (Toluene)	110,000	290	LQM S4ULs 2015
Aromatic EC8-EC10	8,100	83	LQM S4ULs 2015
Aromatic EC10-EC12	28,000	180	LQM S4ULs 2015
Aromatic EC12-EC16	37,000	330	LQM S4ULs 2015
Aromatic EC16-EC21	28,000	540	LQM S4ULs 2015
Aromatic EC21-EC35	28,000	1500	LQM S4ULs 2015
Benzene	47	0.17	LQM S4ULs 2015
Benzo (a) pyrene	35	2.7	LQM S4ULs 2015
Benzo(b)fluoranthene	44	3.3	LQM S4ULs 2015
Benzo(a)anthracene	170	11	LQM S4ULs 2015
Di-benzo(a.h.)anthracene	0.28	3.6	LQM S4ULs 2015
Asbestos	No visible asbestos containing materials (ACMs) and <0.001% fibres	No visible ACM and <0.001% fibres	

APPENDIX B Photo Plates - Verification Trial Pits

Comment

Strata comprises:

0.00-0.30m

Dark greyish brown sandy gravelly CLAY. Gravel is subangular fine of brick, concrete and hardcore. (MADE GROUND)

0.30-0.45m: Dark blackish brown silty CLAY. (PETERBROROUGH MEMBER)
 Project

 173044

 Reference

 5 Plot 118

 Date

 25/03/19

Originator Richard Heath

<image/>	<image/>	
Comment	Project 173044	
	5 Plot 118 arisings	
	Date	
	Originator	
	Richard Heath	AA Environmental Limited
		Units 4-8 Cholswell Court
	AAe	OX13 6HX
		T: (01235) 536042 F: (01235) 523849
	Environmental Consultants	info@aae-llp.com

Comment

Strata comprises:

0.00-0.45m: Dark greyish brown silty CLAY. (PETERBROROUGH MEMBER)
 Project

 173044

 Reference

 5 Plot 119

 Date

25/03/19 Originator Richard Heath

<image/>	<image/>
Comment	Project 173044 Reference
	5 Plot 119 arisings Date
	26/03/19 Originator
	Richard Heath
	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultants F: (01235) 523849 info@aae-Ilp.com www.aae-Ilp.com

Comment

Strata comprises:

0.00-0.45m: Dark greyish brown silty CLAY. (PETERBROROUGH MEMBER) Project 173044 Reference 5 Plot 120 Date

25/03/19 Originator Richard Heath

<image/>	<image/>	<image/>
Comment	Project 173044	
	Reference 5 Plot 120 arisings	
	Date 26/03/19	
	Originator Richard Heath	
	AAe	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultants	F: (01235) 523849 info@aae-llp.com <u>www.aae-llp.com</u>

Comment

Strata comprises:

0.00-0.45m: Dark greyish brown silty CLAY. (PETERBROROUGH MEMBER)
 Project

 173044

 Reference

 5 Plot 121 N

 Date

 25/03/19

Originator Richard Heath

<image/>	<image/>
Comment	Project 173044
	Reference 5 Plot 121 N arisings
	Date 26/03/19
	Originator Richard Heath
	AA Environmental Limited Units 4-8 Cholswell Court Shippon, Abingdon OX13 6HX T: (01235) 536042
	Environmental Consultants F: (01235) 523849 info@aae-llp.com www.aae-llp.com

Comment

Strata comprises:

0.00-0.45m: Dark greyish brown silty CLAY. (PETERBROROUGH MEMBER) Project 173044 Reference 5 Plot 121 S Date 25/03/19

Originator Richard Heath

	<image/>	
Comment	Project	
	Reference	
	5 Plot 121 S arisings	
	Date	
	Originator	
	Richard Heath	
		AA Environmental Limited
		Shippon, Abingdon
		OX13 6HX T· (01235) 536042
		F: (01235) 523849
	environmental consultants	info@aae-llp.com
		www.aae-np.com

Comment

Strata comprises:

0.00-0.30m

Dark greyish brown sandy gravelly CLAY. Gravel is subangular fine of brick, concrete and hardcore. (MADE GROUND)

0.30-0.45m: Dark blackish brown silty CLAY. (PETERBROROUGH MEMBER)
 Project

 173044

 Reference

 5 Plot 130

 Date

 25/03/19

Originator Richard Heath

<image/>	<image/>	
Comment	Project 173044 Reference	
	5 Plot 130 arisings	
	26/03/19 Originator	
	Richard Heath	
		AA Environmental Limited Units 4-8 Cholswell Court
	AAe	Shippon, Abingdon OX13 6HX
		T: (01235) 536042 F: (01235) 523849
	Environmental Consultants	info@aae-llp.com
		www.aae-iip.com

APPENDIX C

Certificates of Analysis - Verification Trial Pits & Stockpile Testing

Details:

Amended Ro	eport	
------------	-------	--

Report No.:	18-18546-3		
Initial Date of Issue:	30-Jun-2018	Date of Re-Issue:	07-May-2019
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Carrie Lorton Ed Brown Henry Austin Jack Taylor John McCusker Mark Anderson Matthew Lawman Richard Heath Sam Muir		
Project	173044 - Careys Graven Hill		
Quotation No.:		Date Received:	27-Jun-2018
Order No.:	173044	Date Instructed:	27-Jun-2018
No. of Samples:	7		
Turnaround (Wkdays):	7	Results Due:	05-Jul-2018
Date Approved:	03-Jul-2018		
Approved By:			

Martin Dyer, Laboratory Manager

The right chemistry to deliver results Project: 173044 - Careys Graven Hill

Results - Soil

Client: AA Environmental Ltd		Chemtest Job No.:		18-18546	18-18546	18-18546	18-18546	18-18546	18-18546	18-18546	
Quotation No.:	(Chemtest Sample ID.:		645215	645216	645217	645218	645219	645220	645221	
		Cli	ent Sam	ple ID.:	SPHTP311	SPHTP311	SPHTP311	SPHTP312	SPHTP312	SPHTP312	SPHTP312
			Sampl	е Туре:	SOIL						
			Top Depth (m):		0.00	1.00	2.00	0.00	0.75	1.50	2.25
		Bottom Depth (m):		1.00	2.00	3.00	0.75	1.50	2.25	3.50	
		Date Sam		ampled:	25-Jun-2018						
			Asbest	os Lab:	COVENTRY						
Determinand	Accred.	SOP	Units	LOD							
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos						
Moieture	N	2020	0/	0.020	Delected	17	Delected		10	Delected	Delected
	IN NI	2030	-70	0.020	Brown	Brown	20 Brown	Brown	Brown	Brown	20 Brown
Other Material	N	2040		N/A	Stones						
Soil Texture	N	2040			Clay	Clay	Clay	Clay	Clay	Clay	Sand
pH	M	2040		N/A	8.4	7 9	8 0	77	7.8	77	7.8
Boron (Hot Water Soluble)	M	2120	ma/ka	0.40	1.6	1.5	1.5	1.7	1.0	1.7	1.5
Sulphate (2:1 Water Soluble) as SO4	M	2120	a/l	0.40	0.65	0.59	0.66	0.67	0.74	0.68	0.85
Cvanide (Total)	M	2300	ma/ka	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Fasily Liberatable)	N	2325	ma/ka	0.50	4.7	7.3	5.2	3.5	19	9.5	6.7
Arsenic	M	2450	ma/ka	1.0	27	24	26	23	19	21	23
Bervllium	U	2450	ma/ka	1.0	1.3	1.2	1.3	1.3	1.7	1.3	1.4
Cadmium	М	2450	ma/ka	0.10	0.39	0.36	0.37	0.35	0.35	0.31	0.35
Chromium	М	2450	mg/kg	1.0	40	39	48	42	42	40	42
Copper	М	2450	mg/kg	0.50	28	25	30	25	28	24	27
Mercury	М	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	М	2450	mg/kg	0.50	37	35	41	35	34	33	35
Lead	М	2450	mg/kg	0.50	37	30	29	27	24	25	28
Selenium	М	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.29	0.57	0.47	0.45
Vanadium	U	2450	mg/kg	5.0	54	50	64	48	44	44	47
Zinc	М	2450	mg/kg	0.50	96	110	94	85	78	80	85
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20	1.5	1.7	1.5	1.4	1.2	1.4	1.2
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0	13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I otal Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	13	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Chemtest The right chemistry to deliver results Project: 173044 - Careys Graven Hill

Results - Soil

Client: AA Environmental Ltd		Che	mtest Jo	ob No.:	18-18546	18-18546	18-18546	18-18546	18-18546	18-18546	18-18546
Quotation No.:	(Chemte	est Sam	ple ID.:	645215	645216	645217	645218	645219	645220	645221
		Cli	ent Sam	ple ID.:	SPHTP311	SPHTP311	SPHTP311	SPHTP312	SPHTP312	SPHTP312	SPHTP312
		Sample Type:			SOIL						
			Top Dep	oth (m):	0.00	1.00	2.00	0.00	0.75	1.50	2.25
		Bot	ttom Dep	oth (m):	1.00	2.00	3.00	0.75	1.50	2.25	3.50
			Date Sa	ampled:	25-Jun-2018						
			Asbest	os Lab:	COVENTRY						
Determinand	Accred.	SOP	Units	LOD							
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	6.5	3.4	< 1.0	< 1.0	< 1.0	< 1.0	2.9
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	20	9.2	< 1.0	< 1.0	< 1.0	< 1.0	11
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	28	13	< 5.0	< 5.0	< 5.0	< 5.0	14
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	40	13	< 10	< 10	< 10	< 10	14
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	1.6	1.1	< 0.10	1.4	1.0	1.6	1.9
Anthracene	М	2700	mg/kg	0.10	0.65	0.42	< 0.10	0.71	0.44	0.58	0.79
Fluoranthene	М	2700	mg/kg	0.10	4.0	2.7	1.9	2.4	1.3	2.6	4.1
Pyrene	М	2700	mg/kg	0.10	2.7	1.8	1.5	1.6	0.76	1.5	2.5
Benzo[a]anthracene	М	2700	mg/kg	0.10	1.7	1.2	< 0.10	< 0.10	< 0.10	0.84	2.0
Chrysene	М	2700	mg/kg	0.10	2.7	2.3	< 0.10	< 0.10	< 0.10	1.6	2.7
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	2.4	1.7	< 0.10	< 0.10	< 0.10	< 0.10	2.7
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	1.9	1.1	< 0.10	< 0.10	< 0.10	< 0.10	1.8
Benzo[a]pyrene	М	2700	mg/kg	0.10	1.9	1.2	< 0.10	< 0.10	< 0.10	< 0.10	2.2
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	20	14	3.4	6.1	3.5	8.7	21
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Amended Report

Report No.:	19-11460-3		
Initial Date of Issue:	05-Apr-2019	Date of Re-Issue:	17-Apr-2019
Client	AA Environmental Ltd		
Client Address:	Units 4 to 8 Cholswell Court Shippon Abingdon Oxfordshire OX136HX		
Contact(s):	Ed Brown Henry Austin Ioannis Markidis Jack Taylor John McCusker Mark Anderson Matthew Lawman Richard Heath Sam Muir Tomos Eaves		
Project	173044 - Graven Hill		
Quotation No.:		Date Received:	03-Apr-2019
Order No.:	173044	Date Instructed:	03-Apr-2019
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	09-Apr-2019
Date Approved:	09-Apr-2019		
Approved By:			
Details:	Giynn Harvey, Laboratory Manager		

The right chemistry to deliver results Project: 173044 - Graven Hill

Results - Soil

Client: AA Environmental Ltd		Che	mtest J	ob No.:	19-11460	19-11460	19-11460	19-11460	19-11460	19-11460
Quotation No.:	(Chemte	est Sam	ple ID.:	804247	804248	804249	804250	804251	804252
		Cli	ent Sam	ple ID.:	P118	P119	P120	P121S	P121N	P130
		Sa	ample Lo	ocation:	S5	S5	S5	S5	S5	S5
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-	-	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-
Moisture	Ν	2030	%	0.020	22	21	19	19	23	22
рН	U	2010		N/A	7.9	7.9	7.8	8.0	8.0	8.2
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.4	1.1	1.6	1.2	1.2	1.5
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.38	0.59	0.83	0.63	0.30	0.16
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	Ν	2325	mg/kg	0.50	5.5	2.4	4.3	3.0	3.7	5.3
Arsenic	U	2450	mg/kg	1.0	25	27	20	22	19	16
Beryllium	U	2450	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2
Cadmium	U	2450	mg/kg	0.10	0.32	< 0.10	0.16	< 0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	40	37	41	30	46	48
Copper	U	2450	mg/kg	0.50	26	19	27	18	20	26
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	43	45	43	36	48	52
Lead	U	2450	mg/kg	0.50	37	20	23	19	23	23
Selenium	U	2450	mg/kg	0.20	0.32	< 0.20	< 0.20	< 0.20	< 0.20	0.21
Vanadium	U	2450	mg/kg	5.0	48	46	44	36	50	44
Zinc	U	2450	mg/kg	0.50	100	70	85	130	77	89
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	2.0	0.63	0.87	0.58	1.0	0.69
Florisil Cleanup	Ν		-	N/A	Done	Done	Done	Done	Done	Done
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

The right chemistry to deliver results Project: 173044 - Graven Hill

Results - Soil

Client: AA Environmental Ltd		Che	ntest Jo	ob No.:	19-11460	19-11460	19-11460	19-11460	19-11460	19-11460
Quotation No.:	(Chemte	st Sam	ple ID.:	804247	804248	804249	804250	804251	804252
		Clie	ent Sam	ple ID.:	P118	P119	P120	P121S	P121N	P130
		Sa	ample Lo	ocation:	S5	S5	S5	S5	S5	S5
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	0.60	0.12	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	0.17	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	1.2	0.22	0.36	0.10	< 0.10	0.15
Pyrene	U	2700	mg/kg	0.10	1.2	0.17	0.34	0.11	< 0.10	0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.87	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	1.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	0.94	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.43	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	0.51	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	0.64	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.15	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.47	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	8.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

APPENDIX D Consolidated Results - Section 5 Fill

AA Environmental Limited 173044

AAe

Consolidated Results - Soil

Project: 173044 - Careys Graven Hill - PHASE 1 Section 5

				Oh.		lah Ma i	10 100 10	10.100.00											
				Che	emtest J	IOD NO.:	18-18546	18-18546	18-18546	18-18546	18-18546	18-18546	18-18546	19-11460	19-11460	19-11460	19-11460	19-11460	19-11460
				Chemt	test Sam	nple ID.:	645215	645216	645217	645218	645219	645220	645221	804247	804248	804249	804250	804251	804252
				Clie	ent Samp	ple Ref.:	SPHTP311	SPHTP311	SPHTP311	SPHTP312	SPHTP312	SPHTP312	SPHTP312	P118	P119	P120	P121S	P121N	P130
						Section	5	5	5	5	5	5	5	5	5	5	5	5	5
					Samp	le Type:		•		•									
	Waterman				Top De	epth (m):	0.00	1.00	2.00	0.00	0.75	1.50	2.25						
	Landscaping and	Tier 1 Residential		Bo	ottom De	epth (m):	1.00	2.00	3.00	0.75	1.50	2.25	3.50						
	Residential	with homegrown			Date S	ampled:	25-Jun-2018	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019	26-Mar-2019						
	Gardens Criteria	produce SGV			Date e	Strata	20 0011 2010	20 0011 2010	20 0011 2010	20 0011 2010	20 0011 2010	20 0011 2010	20 0011 2010	20 Mai 2013	20 1001 2010	20 1401 2010	20 1001 2010	20 1001 2010	201001 2010
Determinand	ma/ka	ma/ka	Accred	SOB	Unite														
Determinant	iiig/kg	iiig/kg	Accieu.	. 30F	Units	LOD													
				2102		NI/A													
Acivi Type			0	2192	-	IN/A			-		-		-			-	-	-	
				-								N. A. I			N A 1				
Asbestos Identification	INO VISIDIE, <0.001%		U	2192	%	0.001	NO ASDESTOS	NO ASDESTOS											
	_						Detected	Detected											
Asbestos by Gravimetry	_		U	2192	2 %	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Asbestos			N	2192	2 %	0.001	-	-	-	-	-	-	-	-	-	-	-	-	-
Moisture		NR	N	2030) %	0.020	19	17	20	19	19	19	20	22	21	19	19	23	22
pН		NR	M	2010)	N/A	8.4	7.9	8.0	7.7	7.8	7.7	7.8	7.9	7.9	7.8	8.0	8.0	8.2
Boron (Hot Water Soluble)		290	M	2120) mg/kg	0.40	1.6	1.5	1.5	1.5	1.3	1.3	1.5	1.4	1.1	1.6	1.2	1.2	1.5
Sulphate (2:1 Water Soluble) as SO4		NR	M	2120) g/l	0.010	0.65	0.59	0.66	0.67	0.74	0.68	0.85	0.38	0.59	0.83	0.63	0.30	0.16
Cyanide (Total)	26		М	2300) mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)		NR	Ν	2325	mg/kg	0.50	4.7	7.3	5.2	3.5	19	9.5	6.7	5.5	2.4	4.3	3.0	3.7	5.3
Arsenic	37		М	2450) mg/kg	1.0	27	24	26	23	19	21	23	25	27	20	22	19	16
Beryllium	1.7													< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2
Cadmium	22		М	2450) ma/ka	0.10	0.39	0.36	0.37	0.35	0.35	0.31	0.35	0.32	< 0.10	0.16	< 0.10	< 0.10	< 0.10
Chromium	910	1	M	2450) ma/ka	10	40	39	48	42	42	40	42	40	37	41	30	46	48
Copper	2400		M	2450) ma/ka	0.50	28	25	30	25	28	24	27	26	19	27	18	20	26
Mercury	12		M	2450) ma/ka	0.00	< 0.10	< 0.10	< 0.10	2010	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Niekol	1.2		M	2450	ma/ka	0.10	27	25	41	25	24	22	25	< 0.10 42	45	42	26	40	52
	200		IVI M	2450	/ mg/kg	0.50	37	30	41	33	34	33		43	40	43	30	40	32
Calasium	200		IVI	2450	/ mg/kg	0.50	37	30	29	21	24	20	20	37	20	23	19	23	23
Selenium	250		M	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.29	0.57	0.47	0.45	0.32	< 0.20	< 0.20	< 0.20	< 0.20	0.21
Vanadium			U	2450) mg/kg	5.0	54	50	64	48	44	44	4/	48	46	44	36	50	44
Zinc	3700		M	2450) mg/kg	0.50	96	110	94	85	/8	80	85	100	70	85	130	//	89
Chromium (Hexavalent)		6	N	2490) mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon			M	2625	5 %	0.20	1.5	1.7	1.5	1.4	1.2	1.4	1.2	2.0	0.63	0.87	0.58	1.0	0.69
Aliphatic TPH >C5-C6	78		N	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	230		N	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	230		M	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	330		М	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	2400		М	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	92000		М	2680) mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	92000		М	2680) ma/ka	1.0	13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44		92000	N	2680) ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons		NR	N	2680) ma/ka	5.0	13	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	140		N	2680) ma/ka	1.0	<10	< 1.0	<10	< 1.0	< 1.0	< 1.0	<10	<10	< 1.0	< 1.0	<10	<10	< 1.0
Aromatic TPH >C7-C8	200		N	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C9 C10	230		M	2000	ma/ka	1.0	< 1.0	< 1.0	<1.0	<1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	< 1.0
Aromatic TPH - C10 C12	190		IVI M	2000	/ mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH - C12 C16	220		IVI M	2000	/ mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	530		M	2680	ma/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	340		0	2000	/ mg/kg	1.0	6.0	3.4	< 1.0	< 1.0	< 1.0	< 1.0	2.9	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >021-035	1000	4500	M	2680	mg/kg	1.0	20	9.2	< 1.0	< 1.0	< 1.0	< 1.0	11	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	+	1500	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I otal Aromatic Hydrocarbons		NR	N	2680	mg/kg	5.0	28	13	< 5.0	< 5.0	< 5.0	< 5.0	14	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
I otal Petroleum Hydrocarbons		NR	N	2680) mg/kg	10.0	40	13	< 10	< 10	< 10	< 10	14	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene		5.6	М	2700) mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		420	M	2700) mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		510	M	2700) mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		400	М	2700) mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		220	M	2700) mg/kg	0.10	1.6	1.1	< 0.10	1.4	1.0	1.6	1.9	0.60	0.12	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene		5400	М	2700) mg/kg	0.10	0.65	0.42	< 0.10	0.71	0.44	0.58	0.79	0.17	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		560	М	2700) mg/kg	0.10	4.0	2.7	1.9	2.4	1.3	2.6	4.1	1.2	0.22	0.36	0.10	< 0.10	0.15
Pyrene		1200	М	2700) mg/kg	0.10	2.7	1.8	1.5	1.6	0.76	1.5	2.5	1.2	0.17	0.34	0.11	< 0.10	0.10
Benzo[a]anthracene	11		М	2700) ma/ka	0.10	1.7	1.2	< 0.10	< 0.10	< 0.10	0.84	2.0	0.87	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		22	M	2700) ma/ka	0.10	2.7	2.3	< 0.10	< 0.10	< 0.10	1.6	2.7	1.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzolblfluoranthene	3.3		M	2700) ma/ka	0.10	2.4	17	< 0.10	< 0.10	< 0.10	< 0.10	27	0.94	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		93	M	2700) ma/ka	0.10	19	11	< 0.10	< 0.10	< 0.10	< 0.10	1.8	0.43	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzolalovrene	27		M	2700) ma/ka	0.10	1.0	12	< 0.10	< 0.10	< 0.10	< 0.10	22	0.51	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1.2.3-c.d)Pyrene	L.1	36	M	2700	ma/ka	0.10	- 0 10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.2	0.01	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	0.29	50	IVI NA	2700	/ mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.04	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	0.20	240	IVI M	2700	/ mg/Kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.15	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Denzolg,n,ijperviene	-	34U	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.4/	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total OF 16 PAH'S	0.47	NK	M	2700	mg/kg	2.0	20	14	3.4	6.1	3.5	8.7	21	8.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	0.17		M	2701	mg/kg	1.0								< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene		130	М	2702	2 mg/kg	1.1			ļ		ļ		ļ	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene		47	М	2703	8 mg/kg	1.2								< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene		56	M	2704	mg/kg	1.3								< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene		60	М	2705	mg/kg	1.4								< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols		550	М	2920) ma/ka	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

APPENDIX E Soil Guidance Values

Graven Hill, Bicester

Soil Guidance Values for Landscaping and Residential Gardens

The following table presents the adopted combined Soil Guidance Values (SGVs) based on limiting values presented within the Waterman Remedial Strategy and LQM/CIEH Suitable 2 Use Levels (S4UL) for Human Health Assessment (unless stated otherwise).

Determinant	Waterman Landscaping and Residential Gardens Criteria	Tier 1 Residential with Homegrown Produce	Source
Arsenic	37		
Boron		290	LQM S4UL 2015
Beryillium	1.7		
Cadmium	22		
Chromium (Hexavalent)		6	LQM S4UL 2015
Chromium	910		
Copper	2400		
Lead	200		
Elemental Mercury	1.2		
Nickel	180		
Selenium	250		
Vanadium		410	LQM S4UL 2015
Zinc	3700		
Asbestos	No visible and <0.001% fibres		
Cyanide	26		
Phenol (Total)		550	LQM S4UL 2015
Aliphatic (5-6)	78		
Aliphatic (6-8)	230		
Aliphatic (8-10)	230		
Aliphatic (10-12)	330		
Aliphatic (12-16)	2400		
Aliphatic (16-35)	92000		
Aliphatic (35-44)		92000	LQM S4UL 2015
Aromatic (5-7)	140		
Aromatic (7-8 toluene)	290		
Aromatic (8-10)	83		
Aromatic (10-12)	180		
Aromatic (12-16)	330		
Aromatic (16-21)	540		
Aromatic (21-35)	1500		
Aromatic (35-44)		1500	LQM S4UL 2015
Benzene	0.17		
Toluene		290	LQM S4UL 2015
Ethylbenzene		110	LQM S4UL 2015
m-Xylene		140	LQM S4UL 2015
p-Xylene		130	LQM S4UL 2015
o-Xylene		140	LQM S4UL 2015

All values in mg/kg unless stated otherwise. Based on 2.5% SOM.

Graven Hill, Bicester

Soil Guidance Values for Landscaping and Residential Gardens (cont.)

Determinant	Waterman Landscaping and Residential Gardens Criteria (1)	Tier 1 Residential with Homegrown Produce (2)	Source
Naphthalene		5.6	LQM S4UL 2015
Acenaphthene		510	LQM S4UL 2015
Acenapthylene		420	LQM S4UL 2015
Fluorene		400	LQM S4UL 2015
Anthracene		5400	LQM S4UL 2015
Fluoranthene		560	LQM S4UL 2015
Phenanthrene		220	LQM S4UL 2015
Pyrene		1200	LQM S4UL 2015
Benzo(a)anthracene	11		
Chrysene		22	LQM S4UL 2015
Benzo(b)fluoranthene	3.3		
Benzo(k)fluoranthene		93	LQM S4UL 2015
Benzo(ghi)perylene		340	LQM S4UL 2015
Benzo(a)pyrene	2.7		
Dibenzo(ah)anthracene	0.28		
Indeno(123-cd)pyrene		36	LQM S4UL 2015

All values in mg/kg unless stated otherwise Based on 2.5% SOM.

References

(1) Waterman Remediation Options Appraisal and Remedial Strategy Report - Land Transfer Area 1' January 2016 (Report reference: WIB13983-104-R-2-2-3-MA-MACF).

(2) LQM/CIEH Suitable 2 Use Levels (S4UL) for Human Health Assessment – Land Quality Management Limited (LQM) and Chartered Institute of Environmental Health (CIEH) Land Quality Press (2015)