

FLOOD RISK ASSESSMENT Fewcott Road, Fritwell

> Prepared for: CALA Homes (Chiltern) Ltd Issue 2: 22 March 2019 Ref: CV8180850/SMcN/004

Document History

Issue	Date	Description	Prepared By	Checked By
1	19 Mar 19	First Re-Issue	S McNair	K Rayner
2	22 Mar 19	Issued for Planning	S McNair	K Rayner

Glanville

Glanville Consultants is a multi-disciplinary engineering, design and surveying consultancy with the following expertise:

- Structural Engineering
- Civil Engineering
- Transport & Highways
- Geomatics (Land Surveying)

01235 515550

01235 817799

- Building Surveying
- BIM

Telephone:

Fax:

For further advice contact:

Cornerstone House 62 Foxhall Road Didcot

Oxfordshire OX11 7AD

Offices also at: 3 Grovelands Business Centre

Boundary Way Hemel Hempstead Hertfordshire HP2 7TE

Telephone: 01442 835999 Fax: 01442 258924

postbox@glanvillegroup.com www.glanvillegroup.com

This report contains confidential information intended solely for the recipient. No part of this report may be copied, reproduced or stored electronically without prior written permission from Glanville Consultants Ltd. This report has been prepared in accordance with the commissioning brief and is for the client's exclusive use unless otherwise agreed in writing. Glanville Consultants Ltd does not accept liability for any use of this report, other than for the purposes for which it is was originally prepared and provided. Third parties should not use or rely on the contents of this report without written permission from Glanville Consultants Ltd.

 $[\]ensuremath{\text{@}}$ Glanville Consultants Ltd. All rights reserved.

Contents

1.0	Introduction	1
2.0	Site Description and Proposed Development	2
3.0	Planning Policy and Guidance	5
4.0	Flood Risk Assessment	6
5.0	Flood Risk Assessment	8
6.0	Surface Water Drainage Strategy	9
7.0	Summary and Conclusions	. 12

Appendices

Appendix A: Site Location Plan

Appendix B: Topographical Survey

Appendix C: Anglian Water Sewer Records

Appendix D: Proposed Site Layout

Appendix E: Environment Agency Fluvial Flood Mapping

Appendix F: Proposed Outline Surface Water Drainage Strategy

Appendix G: MicroDrainage Calculations

1.0 Introduction

- 1.1 This Flood Risk Assessment has been prepared by Glanville Consultants on behalf of CALA Homes (Chiltern) Ltd in support of an outline planning application to develop land off Fewcott Road, Fritwell to provide 38 new homes.
- 1.2 The purpose of this document is to assess the existing level of flood risk to the site and its surroundings within the context of the development proposals and to demonstrate a suitable drainage strategy for the disposal of surface water from the site.
- 1.3 This report has been prepared in accordance with the National Planning Policy Framework (NPPF), dated July 2018, and the Planning Practice Guidance (PPG) to the NPPF, dated March 2014.
- 1.4 This assessment was undertaken with reference to information provided and/or published by the following bodies:
 - Ordnance Survey;
 - British Geological Society;
 - Cherwell District Council; and
 - Environmental Agency.
- 1.5 This report concludes that the site is not at risk of flooding and can be developed safely without increasing flood risk elsewhere, and that the development proposals comply with relevant planning policy concerning flood risk. The report demonstrates that suitable provision for the disposal of surface water from the proposed development is capable of being provided.

2.0 Site Description and Proposed Development

Site Description

- 2.1 The site is located in the village of Fritwell, approximately 7km north-west of Bicester. The approximate centre of the site is located at Ordnance Survey National Grid reference SP 52957 29070 and a nearby postcode is OX27 7QP. A site location plan is included as Appendix A.
- 2.2 The site is roughly rectangular in shape and extends to approximately 1.57ha in area. The vast majority of the land on-site was previously used as agricultural fields, with a residential dwelling and an out building located close to the sites eastern corner. The site is almost entirely lined by a combination of trees and hedgerows, with breaks for the sites access points from Fritwell Road.
- 2.3 The site is bound by Fritwell Road/Fewcott Road on the sites north-eastern boundary, residential dwellings to the north-west and agricultural fields to the south-west. A Private unmetalled track leading to Lodge Farm and a drainage ditch forms the sites south-eastern boundary. Access to the site is proposed to be gained by widening one of the sites existing access points on the north-eastern boundary.

Topographical Survey

2.4 A copy of the detailed topographical survey of the site by Groundsurveys Ltd, drawing numbers 6028-01 and 6028-02 are included as Appendix B. The survey indicates that the site generally falls towards south of the site with levels ranging from approximately 128.20m AOD to 125.20m AOD.

Existing Watercourses

2.5 There is a large pond located approximately 140m to the south west of the site. The closest watercourse designated by the Environment Agency (EA) as a main river is the River Cherwell and is located 3.4km to the west of the site. Existing drainage ditches are located along the sites eastern boundaries, as indicated on the topographical survey.

Geological Characteristics

- 2.6 An intrusive site investigation was undertaken by The Brownfield Consultancy in November 2015 (Report ref: BC195 L001/JT). The site investigation comprised excavating fourteen trial pits across the site.
- 2.7 Made Ground was encountered in five trial pits excavated close to the sites south-western boundary, where it is believed ground levels have been previously raised. The Made Ground was proven in all trial pits to depths of between 0.80m and 1.80m below ground level (bgl). In the remaining nine trial pits, a layer of topsoil was found to superpose the bedrock geology. The bedrock geology on-site consisted of soils associated with the Great Oolite Group, and was encountered in all trial pits below either the Made Ground or topsoil. The Great Oolite soils were found to the base of all the trial pits, with no superficial deposits indicated.

2.8 Groundwater was encountered on-site in TP12 only. The groundwater strike occurred at a depth of 2.35m bgl, which saw moderate ingress into the granular Great Oolite. The water level rose to 2.30m bgl after half an hour.

Hydrological and Hydrogeological Context

- 2.9 There are no major artificial water bodies on or located in the vicinity of the site.
- 2.10 The EA defines Source Protection Zones (SPZs) for groundwater sources such as wells, boreholes and springs used for public drinking water supply. These zones show the risk of contamination from any activities that might cause pollution in the area. The SPZs mapping indicates that the site is not located within an SPZ.
- 2.11 A Nitrate Vulnerable Zone (NVZ) is a conservative designation for areas of land that drain to nitrate polluted waters or waters which could become polluted by nitrates. The NVZs mapping indicates that the site is located within an NVZ.
- 2.12 The EA defines Drinking Water Safeguard Zones (SgZs) and Drinking Water Protected Areas (DWPAs) for water sources used for public drinking water supply. SgZs define areas where additional pollution control measures are needed to avoid deterioration in water quality. DWPAs are areas where water sources need to be protected to prevent pollution. The site is not located within an SgZ or a DWPA.
- 2.13 The bedrock Aquifer Designation map published by the EA indicates that the bedrock underlying the proposed development is classed as a Principal Aquifer. Principal Aquifers indicate regions where the geology exhibits high permeability and/or provides a high level of water storage. They may also be capable of supporting water supply and may provide a source of base flow to rivers on a strategic scale.
- 2.14 The Groundwater Vulnerability map published by the EA indicates that the site is above a highly permeable major aquifer of high leaching potential.
- 2.15 Although the site is not located within an SPZ, SgZ or DWPA, given the Aquifer and Groundwater Vulnerability designations by the EA, careful consideration will be given to the surface water drainage strategy for the site. This is discussed in further detail in section 6 of this report.

Existing Surface Water Drainage

- 2.16 Drainage records obtained from Anglian Water are included in Appendix C. The records indicate a 300mm diameter surface water sewer passing through the site, which is understood to drain surface water run-off from the neighbouring properties in the Hodgson Close. The pipe runs in a south easterly direction to an outfall with a drainage ditch close to the sites south-eastern boundary. The headwall showing this outfall, as well a manhole from this sewer can be seen on the Topographical survey.
- 2.17 The records show only those sewers that are known to be maintained by Anglian Water, other privately owned sewers may be present in the vicinity of the site that are not shown on public records.

Proposed Development

- 2.18 The proposals are for the demolition of the existing buildings on the site and the erection of 38 residential units with associated access, car parking, refuse/recycling storage, infrastructure and landscaping.
- 2.19 A copy of the proposed site layout is provided in Appendix D.

3.0 Planning Policy and Guidance

3.1 Set out below is a summary of the national and local planning policy and guidance relating to flood risk and surface water management that are relevant to the development proposals.

National

- 3.2 At a national level, the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF ensure flood risk is taken into account at all stages of the planning process, to avoid inappropriate development in areas at risk of flooding and to direct development towards areas at lowest flood risk. The NPPF retains a risk-based approach to the planning process and defines four Flood Zones to be used as the basis for applying the sequential test, as well as Flood Risk Vulnerability Classifications, which define the type of development that is considered appropriate within each zone.
- 3.3 The NPPF establishes the Flood Zones as the starting point for assessment with the overarching aim to steer new development to areas with the lowest probability of flooding. The Flood Zones are defined as follows:
 - Flood Zone 1 (Low Probability) comprises land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%).
 - Flood Zone 2 (Medium Probability) comprises land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% – 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% – 0.1%) in any year.
 - Flood Zone 3a (High Probability) comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Flood Zone 3b (The Functional Floodplain) comprises land where water has to flow or be stored in times of flood.

Local Policy and Guidance

Cherwell District Council (CDC) Strategic Flood Risk Assessment (SFRA), May 2017

- 3.4 This SFRA was produced by CDC to inform the planning process. The SFRA included flood maps covering the entire district and summarises the flood risk from each source of flooding in the district. The site is identified in the accompanying mapping as a Level 1 SFRA site (Reference: SRFA102 & SFRA69).
- 3.5 The SFRA provides a reference and policy document to advise and inform developers of their obligations under the NPPF. The maps and accompanying report provide a sound framework enabling consistent and sustainable decisions to be made when asking future planning decisions.

4.0 Flood Risk Assessment

4.1 Flood risk to the site is considered from all likely sources of flooding, as defined in the NPPF and the PPG to the NPPF. These include fluvial, tidal, reservoir, groundwater, sewer and surface water. The following paragraphs consider flood risk to the site from all of these sources.

<u>Fluvial</u>

- 4.2 The Environment Agency (EA) publishes flood zone mapping on the GOV.UK website which shows the modelled extents of fluvial flooding. The flood zone mapping indicates that the site is entirely located within Flood Zone 1, at the lowest risk of fluvial flooding. An extract from the EA mapping is included in Appendix E.
- 4.3 Table 1 of the PPG to the NPPF defines land located within Flood Zone 1 as areas which are outside the floodplain and have little or no chance of flooding.

Tidal

4.4 Given that there are no tidally influenced watercourses on or within the vicinity of the site it is considered that tidal flooding is not an issue that would prevent the development of the site for its intended end use and the risk posed to the site from this source of flooding is considered to be negligible.

Reservoir

4.5 The EA publishes indicative mapping on its website which shows the maximum extent of reservoir flooding in the unlikely event that a reservoir should fail. The mapping indicates the site is not at risk of reservoir flooding.

Groundwater

4.6 The Level 1 SFRA includes mapping published by the EA showing areas within the district that are at an increased risk of groundwater flooding. The mapping is a strategic-scale map showing flood areas on a 1km square grid, with areas highlighted showing the proportion of the 1km grid square where geological and hydrogeological conditions indicate the possibility of groundwater emergence. The site is indicated to be in a square where less than 25% of the area within the square is at risk of flooding and so therefore is considered at low risk to flooding from this source.

<u>Sewer</u>

4.7 The SFRA includes data from the Thames Water DG5 sewer flooding register. This register provides information on the number of recorded sewer flooding incidents on a postcode basis. There are between 10-15 recorded incidents of sewer flooding occurring in the postcode area associated with the site for the relevant time period, however these records do not necessarily represent the current or future sewer flood risk situation as maintenance work or upgrades to the network may have been undertaken since the flooding incidents occurred.

Surface Water

4.8 The Environment Agency publishes a 'Flood Risk from Surface Water' map (FRfSW) on the GOV.UK website which indicates the predicted risk of surface water flooding in the event that rainwater does not drain away through normal drainage systems or soak into the ground. The mapping indicates that the entirety of the site is considered at a very low risk of surface water flooding.

Historic Flooding

4.9 The SFRA includes mapping showing all previous instances of flooding reported to the Lead Local Flood Authority (LLFA), the EA Historic Flood Map and the Canal & River Trust. The mapping shows there are no known flooding incidents on or in the vicinity of the site.

Summary

4.10 In summary, the site is at low risk or very low risk of flooding from all sources. The proposed development of the site is therefore considered appropriate in flood risk terms according to the NPPF.

5.0 Flood Risk Assessment

- 5.1 The NPPF encourages a sequential, risk-based approach to determine the suitability of land for development. This document advises that the development of sites within Flood Zone 1 should be given preference where available.
- 5.2 Table 2 of the Planning Practice Guidance (PPG) to the NPPF categorises different types of development into five flood risk vulnerability classifications:
 - Essential Infrastructure;
 - Highly Vulnerable;
 - More Vulnerable:
 - Less Vulnerable: and
 - Water Compatible Development.
- 5.3 The NPPF classifies the proposed residential use of the site as being 'More Vulnerable'.
- As discussed in Section 4, the site is located entirely within Flood Zone 1. Table 3 of the PPG states that all uses of land are appropriate for Flood Zone 1. Therefore, the proposed development use is compatible with the flood zone of the site and developing the site for its intended purpose is considered appropriate in terms of flood risk. As such, the Sequential Test and Exception Test are not required to be applied to this development.
- 5.5 The site is considered to be at low or very low risk from all other sources of flooding.

Consideration for Flood Risk Mitigation Measures

- 5.6 Given the development is located within Flood Zone 1, flood compensation or resilience measures will not be required to mitigate against the risk of fluvial flooding.
- 5.7 The development is proposed to be accessed from Fritwell Road/Fewcott Road which is located entirely within Flood Zone 1. As such, safe, dry access and egress is capable of being provided to the entirety of the development during times of flooding.

6.0 Surface Water Drainage Strategy

Sustainable Drainage

- 6.1 The PPG recommends that priority should be given to the use of sustainable drainage systems (SuDS) as they are designed to control surface water run-off where it falls and mimic natural drainage as closely as possible. SuDS also provide opportunities for the following:
 - · Reduce the causes and impacts of flooding
 - Remove pollutants from urban run-off at source; and
 - Combine water management with green space with benefits for amenity, recreation and wildlife.
- 6.2 SuDS encompass a wide range of drainage techniques intended to minimise the rate of discharge, volume and environmental impact of run-off. Infiltration based techniques are high up in the hierarchy of techniques available due to the ability for close to source dispersion of surface water. These techniques are considered the closest solution to mimic the natural drainage of undeveloped sites.
- 6.3 The Building Regulations part H3 stipulates that rainwater from roofs and paved areas is carried away from surface to discharge to one of the following, listed in order of priority:
 - a) An adequate soakaway or some other adequate infiltration system; or, where that is not practical;
 - b) A watercourse; or, where that is not practical
 - c) A sewer.

Proposed Surface Water Drainage Strategy

- 6.4 It is proposed to discharge surface water flows generated as a result of the development through a combination of domestic soakaways, permeable paving and restricted discharge to the drainage ditch on the south-eastern boundary of the site.
- 6.5 An intrusive site investigation conducted on-site encountered soils associated with the Great Oolite group and concluded infiltration drainage may be feasible, subject to BRE 365 testing. At the detailed design stage, infiltration testing will be undertaken and infiltration rates for the site will be calculated in accordance with the guidance given in BRE 365. The estimated size of the infiltration devices included in this drainage strategy assumes that the underlying ground conditions will support infiltration at a relatively conservative rate of 2x10⁻⁵ m/s.
- 6.6 The domestic soakaway's will be constructed in accordance with Building Regulations part H, which states soakaway's must be installed at a minimum distance of 5m from building foundations.
- 6.7 Properties where there is insufficient area to maintain the 5.0m stand-off for domestic soakaways will discharge to either neighbouring/shared soakaways or the drainage ditch on the south-eastern boundary. Surface water attenuation will be provided for each property prior to discharge to the ditch within a lined porous sub-base constructed beneath the resident's car parking spaces.

- 6.8 The outline surface water drainage strategy is illustrated on the drawing included in Appendix F. Supporting MicroDrainage calculations are provided in Appendix G. These demonstrate that the attenuation proposed can provide storage up to and including the 1 in 100 year + 40% climate change storm event without flooding from surface water.
- 6.9 The internal highway through the development will be constructed using permeable paving with a deepened sub-base, which will allow this area to drain under its own footprint via infiltration to the underlying geology. In order to size the sub-base of this feature, a 20m long and 4.8m wide section of road has been used in the MicroDrainage Calculations.

Pollution Control

- 6.10 Pollution control measures are designed to minimise the transmittal of any pollutants collected by run-off flowing over hard surfaces to the receiving geology or watercourse.
- 6.11 Run-off from road and driveways will drain via permeable paving, which is effective at removing pollutants such as hydrocarbons. Ciria C753 provides guidance on pollution control measures; run-off from residential roofs is considered to have a low hazard potential. Run-off from the lightly trafficked roads will also drain via permeable paving which is effective at removing pollutants such as hydrocarbons.
- 6.12 An appropriate buffer zone between the base of any infiltration features and groundwater levels will also be provided, affording protection the groundwater. As such, discharging surface water run-off generated by the development via the proposed strategy is considered to provide a suitable level of protection against pollution.

Maintenance

- 6.13 All new surface water infrastructure will be constructed in accordance with Sewers for Adoption, Building Regulations and best practice as appropriate.
- 6.14 The drainage system would remain under private ownership and be maintained by a management company. All drainage located within private areas will be the responsibility of the property owner or will be maintained by a private management company as appropriate.
- 6.15 Suitable maintenance regimes for SuDS, incorporating advice from system manufacturers and installers, will be developed by the site management company and implemented prior to occupation of the development. A summary of typical items is included in Table 1 overleaf.

Table 1: SuDS Maintenance Schedule

Drainage Feature	Inspection and Maintenance	Frequency
	Brushing and vacuuming of surface to remove detrimental materials such as debris, dirt and sediment.	Annually
	Stabilise / mow adjacent verges, and remove weeds from pavement surface.	Occasional (as required)
Permeable pavements	Ensure paving dewaters after rain and between storms: check joints for sedimentation; mechanically clean or jet wash and sweep surface free from silt, etc; refill joints with sealing grit.	As required
	Inspect and repair any rutting and cracked or broken blocks, and replace lost jointing material.	Occasional (as required)
	Rehabilitate surface and upper substructure.	Occasional (every 10-15 years)
Geocellular storage tank*	Ensure inlets and pre-treatment structures are clear and free of debris.	Annually
Hardstanding areas	Sweep regularly to prevent silt being washed off the surface.	Frequently

^{*}Refer to manufacturer's guidance for specific maintenance instructions.

7.0 Summary and Conclusions

- 7.1 This Flood Risk Assessment has been prepared by Glanville Consultants on behalf of CALA Homes (Chiltern) Ltd in support of an outline planning application to develop land off Fewcott Road, Fritwell to provide 38 new homes.
- 7.2 This site-specific Flood Risk Assessment has been prepared in accordance with the requirements of National and Local Planning Policy and concludes that the site is at low risk of flooding from all sources and can be developed safely without increasing flood risk elsewhere. This report has undertaken as assessment considering flood risk from all identifiable sources, including an allowance for climate change.
- 7.3 An intrusive site investigation undertaken on-site encountered a bedrock geology of Great Oolite Group soils. At detailed design stage, further site investigation work will be undertaken, incorporating percolation testing to BRE 365.
- 7.4 The proposed surface water drainage strategy strives to utilise sustainable drainage techniques in accordance with the guidance described in CIRIA C753 and employs soakaways and permeable paving to disperse surface water run-off and to provide attenuation. Where domestic soakaways could not be incorporated into the strategy, properties will discharge to the drainage ditch located adjacent to the south-eastern boundary at a restricted rate.
- 7.5 Infiltration and attenuation features will provide storage up to and including the 1 in 100 year +40% climate change storm event without flooding from surface water.

Conclusion

- 7.6 In conclusion, this report has demonstrated that the proposed residential development:
 - Is in accordance with the National Planning Policy Framework;
 - Will not be at an unacceptable risk from fluvial flooding;
 - Will not increase flood risk elsewhere; and
 - Will employ a surface water drainage strategy based on the principles of sustainable drainage.
- 7.7 On this basis, the proposals are considered to fully comply with National, Regional and Local planning policy.



Appendices

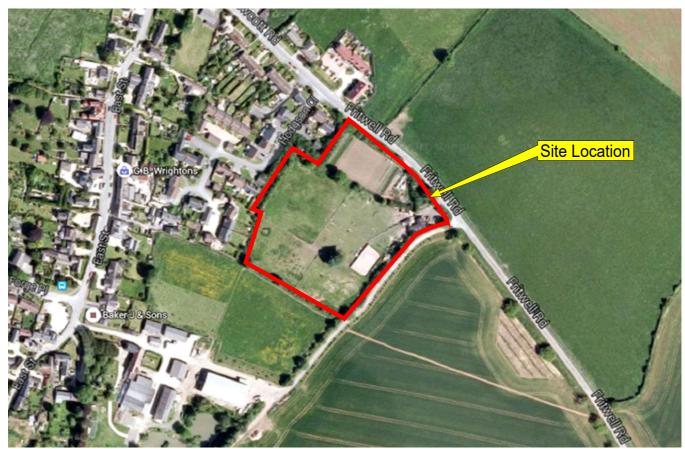
Appendix A

Site Location Plan

NOTES

- This drawing is to be read in conjunction with all relevant documents and specifications.
- 2. Dimensions not to be scaled.

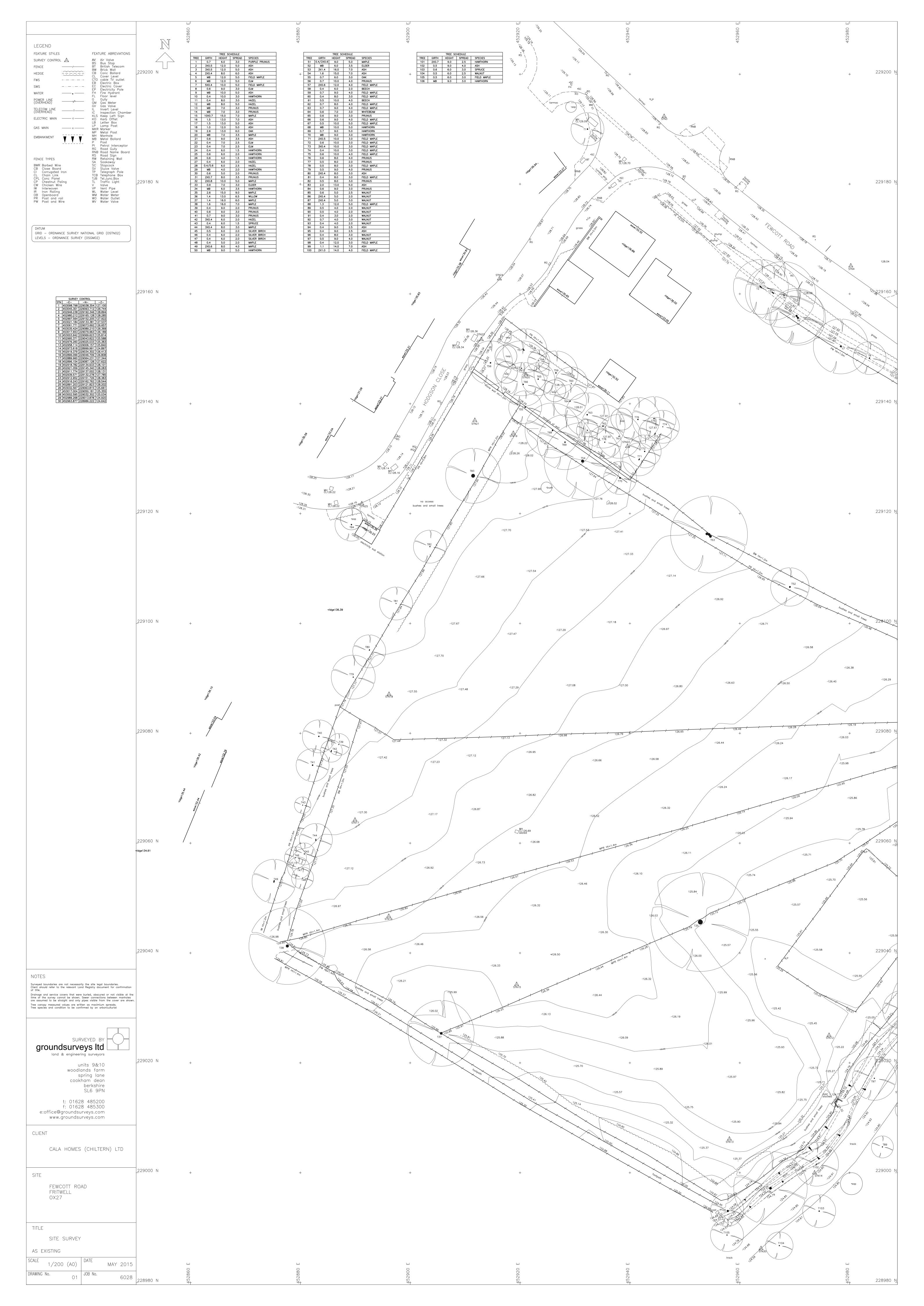
LOCATION

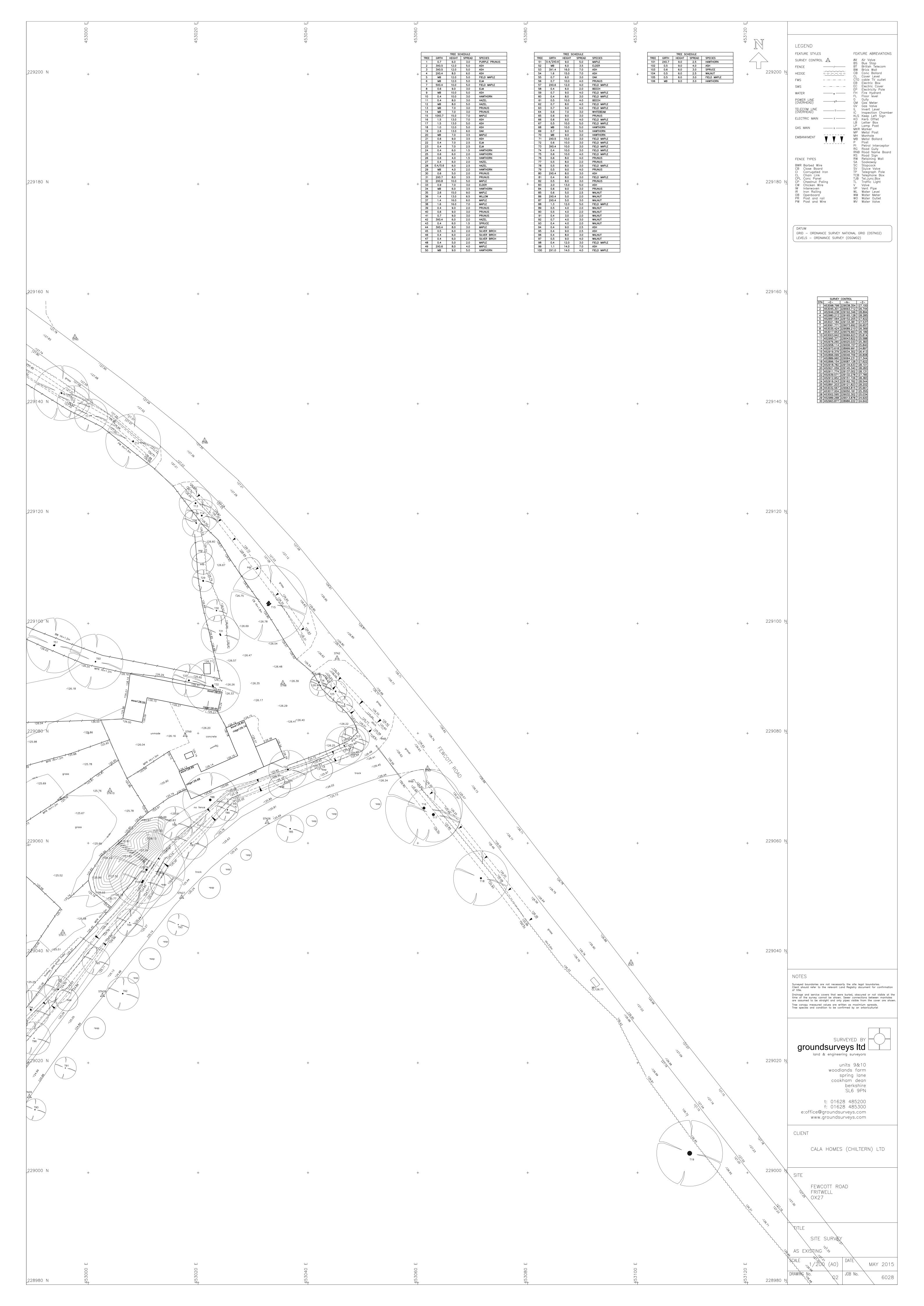

Address:

Fewcott Road Fritwell Oxfordshire OX27 7QA

Grid reference:

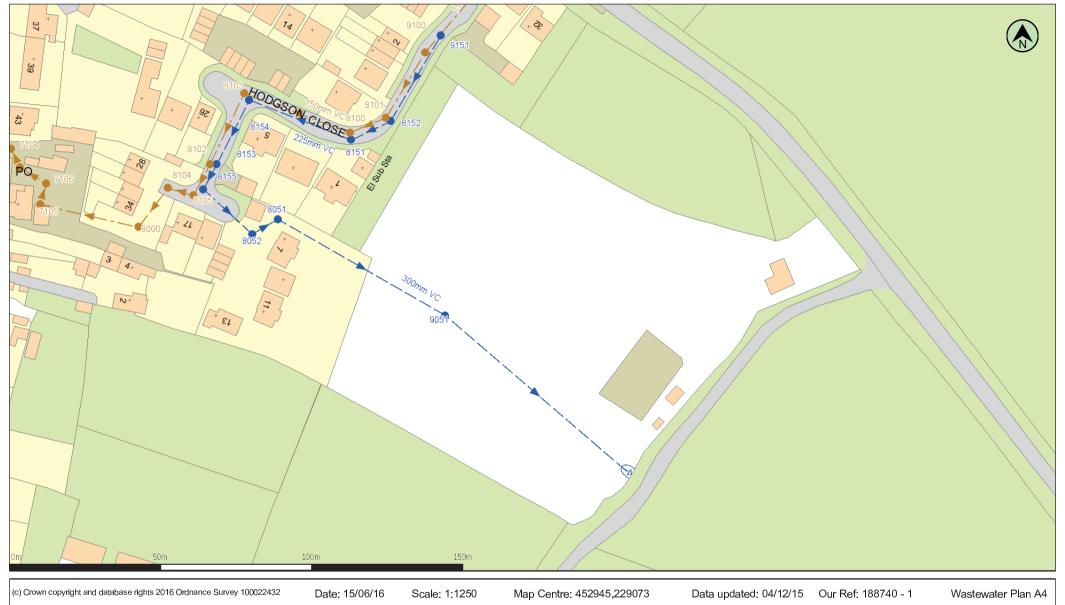
SP 52957 29070




Project: Fewcott Road, Fritwell						
Title :			Site L	ocation Plan		
Project Engineer :	S McNair	Scale :	NTS	Drowing No.	0400050 01/04	Rev_
Project Director :	K Rayner	Date :	March 2019	Drawing No. 8180850-SK		

Appendix B

Topographical Survey



Appendix C

Anglian Water Sewer Records

This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991 sections 198 or 199. It must be used in conjunction with any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, private sewers and drains are generally not shown. Users of this map are strongly advised to commission their own survey of the area shown on the plan before carrying out any works. The actual position of all appartus MUST be established by trial holes. No liability whatscover, including liability for negligence, is a coepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. This plan is produced by Anglian Water Services Limited (c) Crown copyright and database rights 2016 Ordnance Survey 100022432. This map is to be used for the purposes of viewing the location of Anglian Water plant only. Any other uses of the map data or further copies is not permitted. This notice is not intended to exclude or restrict liability for death or personal injury resulting from negligence.

Foul Sewer Surface Sewer Combined Sewer Final Effluent Rising Main (Colour denotes effluent type) Private Sewer (Colour denotes effluent type) Decommissioned Sewer (Colour denotes effluent type)

(Colour denotes effluent type) (Colour denotes effluent type) Manhole (Colour denotes effluent type)

Sewage Treatment Works Pumping Station

dwigston@glanvillegroup.com CV8160423

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
7103	F	127.3	125.035	2.265
7104	F	127.3	124.989	2.311
7105	F	127.81	125.183	2.627
7106	F	127.77	125.129	2.641
8000	F	128.2	125.454	2.746
8100	F	128.3	126.325	1.975
8101	F	128.2	126.445	1.755
8102	F	128.2	125.766	2.434
8103	F	128.6	125.94	2.66
8104	F	128.36	126.586	1.774
8105	F	128.1	126.652	1.448
9100	F	128.4	126.7	1.7
8051	S	128	125.701	2.299
8052	S	128.15	125.784	2.366
8151	S	128.3	126.625	1.675
8152	S	128.2	126.75	1.45
8153	S	128.2	125.065	3.135
8154	S	128.6	126.24	2.36
8155	S	128.1	126.025	2.075
9051	S	126.7	125.195	1.505
9151	S	128.5	127	1.5

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Appendix D

Proposed Site Layout

Appendix E

Environment Agency Fluvial Flood Mapping

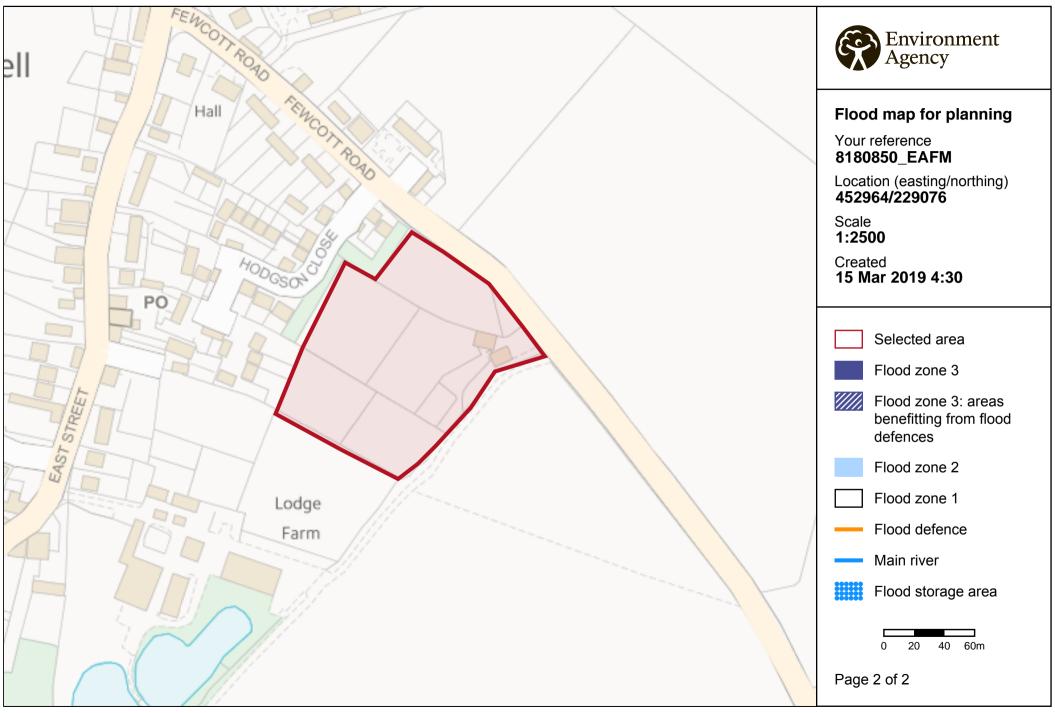
Flood map for planning

Your reference Location (easting/northing) Created

8180850_EAFM 452964/229076 15 Mar 2019 4:30

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:


- you don't need to do a flood risk assessment if your development is smaller than 1
 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1
 hectare or affected by other sources of flooding or in an area with critical drainage
 problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Appendix F

Proposed Outline Surface Water Drainage Strategy

Appendix G

MicroDrainage Calculations

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:08	Designed by SMcNair	Drainage
File Soakaway1.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 504 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	98.834	0.334	0.1	3.6	O K
30	min	Summer	98.932	0.432	0.1	4.6	O K
60	min	Summer	99.026	0.526	0.1	5.6	O K
120	min	Summer	99.105	0.605	0.1	6.5	O K
180	min	Summer	99.137	0.637	0.1	6.8	O K
240	min	Summer	99.150	0.650	0.1	6.9	O K
360	min	Summer	99.150	0.650	0.1	7.0	O K
480	min	Summer	99.145	0.645	0.1	6.9	O K
600	min	Summer	99.137	0.637	0.1	6.8	O K
720	min	Summer	99.128	0.628	0.1	6.7	O K
960	min	Summer	99.108	0.608	0.1	6.5	O K
1440	min	Summer	99.065	0.565	0.1	6.0	O K
2160	min	Summer	99.005	0.505	0.1	5.4	O K
2880	min	Summer	98.954	0.454	0.1	4.9	O K
4320	min	Summer	98.869	0.369	0.1	3.9	O K
5760	min	Summer	98.803	0.303	0.1	3.2	O K
7200	min	Summer	98.749	0.249	0.1	2.7	O K
8640	min	Summer	98.706	0.206	0.1	2.2	O K
10080	min	Summer	98.669	0.169	0.1	1.8	O K
15	min	Winter	98.875	0.375	0.1	4.0	O K

Storm			Rain	${\tt Flooded}$	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	184
240	min	Summer	19.934	0.0	242
360	min	Summer	14.444	0.0	342
480	min	Summer	11.493	0.0	396
600	min	Summer	9.620	0.0	458
720	min	Summer	8.314	0.0	522
960	min	Summer	6.600	0.0	658
1440	min	Summer	4.760	0.0	938
2160	min	Summer	3.427	0.0	1344
2880	min	Summer	2.712	0.0	1756
4320	min	Summer	1.948	0.0	2512
5760	min	Summer	1.538	0.0	3288
7200	min	Summer	1.281	0.0	4032
8640	min	Summer	1.102	0.0	4752
10080	min	Summer	0.970	0.0	5448
15	min	Winter	139.350	0.0	22

©1982-2018 Innovyze

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:08	Designed by SMcNair	Drainage
File Soakaway1.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	98.985	0.485	0.1	5.2	ОК
60	min	Winter	99.091	0.591	0.1	6.3	ОК
120	min	Winter	99.183	0.683	0.2	7.3	ОК
180	min	Winter	99.222	0.722	0.2	7.7	O K
240	min	Winter	99.239	0.739	0.2	7.9	ОК
360	min	Winter	99.245	0.745	0.2	8.0	ОК
480	min	Winter	99.237	0.737	0.2	7.9	ОК
600	min	Winter	99.227	0.727	0.2	7.8	ОК
720	min	Winter	99.216	0.716	0.2	7.6	O K
960	min	Winter	99.189	0.689	0.2	7.4	ОК
1440	min	Winter	99.128	0.628	0.1	6.7	ОК
2160	min	Winter	99.043	0.543	0.1	5.8	O K
2880	min	Winter	98.971	0.471	0.1	5.0	O K
4320	min	Winter	98.856	0.356	0.1	3.8	O K
5760	min	Winter	98.769	0.269	0.1	2.9	ОК
7200	min	Winter	98.702	0.202	0.1	2.2	ОК
8640	min	Winter	98.649	0.149	0.1	1.6	O K
10080	min	Winter	98.607	0.107	0.1	1.1	ОК

Storm		Rain	Flooded	Time-Peak		
		Even	t	(mm/hr)	Volume	(mins)
					(m³)	
	30	min	Winter	91.106	0.0	36
	60	min	Winter	56.713	0.0	66
	120	min	Winter	34.106	0.0	122
	180	min	Winter	24.997	0.0	180
	240	min	Winter	19.934	0.0	236
	360	min	Winter	14.444	0.0	346
	480	min	Winter	11.493	0.0	444
	600	min	Winter	9.620	0.0	476
	720	min	Winter	8.314	0.0	554
	960	min	Winter	6.600	0.0	708
	1440	min	Winter	4.760	0.0	1010
	2160	min	Winter	3.427	0.0	1448
	2880	min	Winter	2.712	0.0	1872
	4320	min	Winter	1.948	0.0	2680
	5760	min	Winter	1.538	0.0	3456
	7200	min	Winter	1.281	0.0	4184
	8640	min	Winter	1.102	0.0	4920
	10080	min	Winter	0.970	0.0	5552

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:08	Designed by SMcNair	Drainage
File Soakaway1.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.014

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.007	4	0	0 007
Ü	4	0.007	4	8	0.007

Glanville Consultants	Page 4	
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:08	Designed by SMcNair	Drainage
File Soakaway1.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Model Details

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (m) Area	(m ²) Inf. Area	(m ²) Depth (m)	Area (m²)	Inf. Area (m ²)
		11.3 0.900	0.0	22.5

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:07	Designed by SMcNair	Drainage
File Soakaway2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 431 minutes.

Storm			Max	Max	Max	Max	Status
Event			Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
			98.829		0.1	3.1	
30	min	Summer	98.925	0.425	0.1	3.9	O K
60	min	Summer	99.016	0.516	0.1	4.8	O K
120	min	Summer	99.089	0.589	0.1	5.5	O K
180	min	Summer	99.116	0.616	0.1	5.7	O K
240	min	Summer	99.124	0.624	0.1	5.8	O K
360	min	Summer	99.120	0.620	0.1	5.7	O K
480	min	Summer	99.114	0.614	0.1	5.7	O K
600	min	Summer	99.105	0.605	0.1	5.6	O K
720	min	Summer	99.095	0.595	0.1	5.5	O K
960	min	Summer	99.073	0.573	0.1	5.3	O K
1440	min	Summer	99.026	0.526	0.1	4.9	ОК
2160	min	Summer	98.965	0.465	0.1	4.3	ОК
2880	min	Summer	98.913	0.413	0.1	3.8	ОК
4320	min	Summer	98.831	0.331	0.1	3.1	O K
5760	min	Summer	98.768	0.268	0.1	2.5	O K
7200	min	Summer	98.719	0.219	0.1	2.0	ОК
			98.679		0.1	1.7	
			98.647		0.1	1.4	
			98.869		0.1	3.4	O K
10			30.003	0.000	0.1	٥. ١	J 10

Storm Event			Rain (mm/hr)		Time-Peak (mins)
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	182
240	min	Summer	19.934	0.0	240
360	min	Summer	14.444	0.0	308
480	min	Summer	11.493	0.0	370
600	min	Summer	9.620	0.0	434
720	min	Summer	8.314	0.0	502
960	min	Summer	6.600	0.0	640
1440	min	Summer	4.760	0.0	914
2160	min	Summer	3.427	0.0	1320
2880	min	Summer	2.712	0.0	1728
4320	min	Summer	1.948	0.0	2472
5760	min	Summer	1.538	0.0	3232
7200	min	Summer	1.281	0.0	3968
8640	min	Summer	1.102	0.0	4672
10080	min	Summer	0.970	0.0	5440
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:07	Designed by SMcNair	Drainage
File Soakaway2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	98.978	0.478	0.1	4.4	O K
60	min	Winter	99.080	0.580	0.1	5.4	O K
120	min	Winter	99.166	0.666	0.2	6.2	O K
180	min	Winter	99.199	0.699	0.2	6.5	O K
240	min	Winter	99.210	0.710	0.2	6.6	O K
360	min	Winter	99.208	0.708	0.2	6.6	O K
480	min	Winter	99.198	0.698	0.2	6.5	O K
600	min	Winter	99.187	0.687	0.2	6.4	O K
720	min	Winter	99.173	0.673	0.2	6.2	O K
960	min	Winter	99.141	0.641	0.2	5.9	O K
1440	min	Winter	99.076	0.576	0.1	5.3	O K
2160	min	Winter	98.989	0.489	0.1	4.5	O K
2880	min	Winter	98.918	0.418	0.1	3.9	O K
4320	min	Winter	98.809	0.309	0.1	2.9	O K
5760	min	Winter	98.730	0.230	0.1	2.1	O K
7200	min	Winter	98.670	0.170	0.1	1.6	O K
8640	min	Winter	98.624	0.124	0.1	1.2	O K
10080	min	Winter	98.589	0.089	0.1	0.8	O K

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	91.106	0.0	36
60	min	Winter	56.713	0.0	64
120	min	Winter	34.106	0.0	122
180	min	Winter	24.997	0.0	178
240	min	Winter	19.934	0.0	234
360	min	Winter	14.444	0.0	340
480	min	Winter	11.493	0.0	384
600	min	Winter	9.620	0.0	460
720	min	Winter	8.314	0.0	536
960	min	Winter	6.600	0.0	690
1440	min	Winter	4.760	0.0	984
2160	min	Winter	3.427	0.0	1408
2880	min	Winter	2.712	0.0	1820
4320	min	Winter	1.948	0.0	2600
5760	min	Winter	1.538	0.0	3352
7200	min	Winter	1.281	0.0	4104
8640	min	Winter	1.102	0.0	4840
10080	min	Winter	0.970	0.0	5544

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:07	Designed by SMcNair	Drainage
File Soakaway2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

	(mins)					
From:	To:	(ha)	From:	To:	(ha)	
0	4	0.006	4	8	0.006	

Glanville Consultants					
Cornerstone House					
62 Foxhall Road					
Didcot OX11 7AD		Micro			
Date 18/03/2019 13:07	Designed by SMcNair	Drainage			
File Soakaway2.SRCX	Checked by	Dialilade			
Innovyze	Source Control 2018.1.1				

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (n	n) 1	Area	(m²)	Inf.	Area	(m²)	Dept	h	(m)	Area	(m²)	Inf.	Area	(m²)
0.00	0 0		9.8			9.8		0.	900		0.0			22.6
0.80	0.0		9.8			22.6								

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway3.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 362 minutes.

Storm			Max	Max	Max	Status
Event		Level	Depth	Infiltration	Volume	
		(m)	(m)	(1/s)	(m³)	
	_	00 100	0 100	0.1		
						O K
						O K
min	Summer	99.310	0.310	0.1	2.4	O K
min	Summer	99.351	0.351	0.1	2.7	O K
min	Summer	99.363	0.363	0.1	2.8	O K
min	Summer	99.364	0.364	0.1	2.8	O K
min	Summer	99.359	0.359	0.1	2.7	O K
min	Summer	99.353	0.353	0.1	2.7	O K
min	Summer	99.345	0.345	0.1	2.6	O K
min	Summer	99.337	0.337	0.1	2.6	ОК
min	Summer	99.319	0.319	0.1	2.4	ОК
min	Summer	99.286	0.286	0.1	2.2	ОК
min	Summer	99.242	0.242	0.1	1.8	O K
min	Summer	99.206	0.206	0.1	1.6	O K
min	Summer	99.149	0.149	0.1	1.1	O K
min	Summer	99.109	0.109	0.1	0.8	O K
min	Summer	99.080	0.080	0.0	0.6	O K
min	Summer	99.060	0.060	0.0	0.5	O K
min	Summer	99.050	0.050	0.0	0.4	ОК
min	Winter	99.224	0.224	0.1	1.7	O K
	min	min Summer	Event Level (m) min Summer 99.199 min Summer 99.257 min Summer 99.310 min Summer 99.351 min Summer 99.363 min Summer 99.364 min Summer 99.359 min Summer 99.353 min Summer 99.337 min Summer 99.337 min Summer 99.286 min Summer 99.226 min Summer 99.226 min Summer 99.206 min Summer 99.149 min Summer 99.109 min Summer 99.080 min Summer 99.080 min Summer 99.080 min Summer 99.080 min Summer 99.080	Event Level (m) Depth (m) min Summer (m) 99.199 0.199 min Summer (p) 99.257 0.257 min Summer (p) 99.310 0.310 min Summer (p) 99.351 0.351 min Summer (p) 99.364 0.364 min Summer (p) 99.359 0.359 min Summer (p) 99.345 0.345 min Summer (p) 99.345 0.246 min Summer (p) 99.246 0.226 min Summer (p) 99.242 0.242 min Summer (p) 99.149 0.149	Event Level (m) Depth (m) Infiltration (1/s) min Summer summer 99.199 0.199 0.1 min Summer summer 99.257 0.257 0.1 min Summer 99.310 0.310 0.1 min Summer 99.351 0.351 0.1 min Summer 99.364 0.364 0.1 min Summer 99.359 0.359 0.1 min Summer 99.345 0.345 0.1 min Summer 99.337 0.337 0.1 min Summer 99.337 0.337 0.1 min Summer 99.286 0.286 0.1 min Summer 99.242 0.242 0.1 min Summer 99.206 0.206 0.1 min Summer 99.149 0.149 0.1 min Summer 99.080 0.080 0.0 min Summer 99.080 0.080 0.0 min Summer 99.080 0.060 0.0	Event Level (m) Depth (m) Infiltration (1/s) Volume (m³) min Summer Summer 99.199 0.199 0.1 1.5 min Summer 99.257 0.257 0.1 2.0 min Summer 99.310 0.310 0.1 2.4 min Summer 99.351 0.351 0.1 2.7 min Summer 99.363 0.363 0.1 2.8 min Summer 99.364 0.364 0.1 2.8 min Summer 99.355 0.359 0.1 2.7 min Summer 99.355 0.359 0.1 2.7 min Summer 99.345 0.359 0.1 2.7 min Summer 99.345 0.345 0.1 2.6 min Summer 99.319 0.337 0.1 2.6 min Summer 99.286 0.286 0.1 2.2 min Summer 99.206 0.242 0.1 1.8 min Summer 99.149 0.149 0.1

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	182
240	min	Summer	19.934	0.0	236
360	min	Summer	14.444	0.0	290
480	min	Summer	11.493	0.0	354
600	min	Summer	9.620	0.0	422
720	min	Summer	8.314	0.0	490
960	min	Summer	6.600	0.0	628
1440	min	Summer	4.760	0.0	900
2160	min	Summer	3.427	0.0	1300
2880	min	Summer	2.712	0.0	1680
4320	min	Summer	1.948	0.0	2424
5760	min	Summer	1.538	0.0	3120
7200	min	Summer	1.281	0.0	3824
8640	min	Summer	1.102	0.0	4496
10080	min	Summer	0.970	0.0	5144
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway3.SRCX	Checked by	namade
Innovyze	Source Control 2018.1.1	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min Winte	er 99.289	0.289	0.1	2.2	O K
60	min Winte	er 99.349	0.349	0.1	2.7	O K
120	min Winte	er 99.397	0.397	0.1	3.0	O K
180	min Winte	er 99.417	0.417	0.1	3.1	O K
240	min Winte	er 99.422	0.422	0.1	3.2	O K
360	min Winte	er 99.412	0.412	0.1	3.1	O K
480	min Winte	er 99.402	0.402	0.1	3.1	O K
600	min Winte	er 99.391	0.391	0.1	3.0	O K
720	min Winte	er 99.380	0.380	0.1	2.9	O K
960	min Winte	er 99.355	0.355	0.1	2.7	O K
1440	min Winte	er 99.306	0.306	0.1	2.3	O K
2160	min Winte	er 99.244	0.244	0.1	1.9	O K
2880	min Winte	er 99.194	0.194	0.1	1.5	O K
4320	min Winte	er 99.120	0.120	0.1	0.9	O K
5760	min Winte	er 99.072	0.072	0.0	0.5	O K
7200	min Winte	er 99.049	0.049	0.0	0.4	O K
8640	min Winte	er 99.042	0.042	0.0	0.3	O K
10080	min Winte	er 99.037	0.037	0.0	0.3	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	91.106	0.0	36
60	min	Winter	56.713	0.0	64
120	min	Winter	34.106	0.0	122
180	min	Winter	24.997	0.0	178
240	min	Winter	19.934	0.0	234
360	min	Winter	14.444	0.0	330
480	min	Winter	11.493	0.0	374
600	min	Winter	9.620	0.0	452
720	min	Winter	8.314	0.0	528
960	min	Winter	6.600	0.0	678
1440	min	Winter	4.760	0.0	970
2160	min	Winter	3.427	0.0	1384
2880	min	Winter	2.712	0.0	1784
4320	min	Winter	1.948	0.0	2512
5760	min	Winter	1.538	0.0	3176
7200	min	Winter	1.281	0.0	3696
8640	min	Winter	1.102	0.0	4488
10080	min	Winter	0.970	0.0	5136

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway3.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0		0.003			0.003

Glanville Consultants		Page 4
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway3.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 99.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (m)	Area (m²) I	nf. Area (m	m²) Depth	(m) Area	(m²)	Inf. Area	(m²)
0.000	8.0	8	3.0	.500	0.0		12.8
0.400	8.0	12	2.8				

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway4.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 354 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Status
15	min	Summer	99.182	0.182	0.1	1.5	O K
30	min	Summer	99.234	0.234	0.1	1.9	O K
60	min	Summer	99.283	0.283	0.1	2.4	O K
120	min	Summer	99.320	0.320	0.1	2.7	O K
180	min	Summer	99.331	0.331	0.1	2.8	O K
240	min	Summer	99.332	0.332	0.1	2.8	O K
360	min	Summer	99.327	0.327	0.1	2.7	O K
480	min	Summer	99.321	0.321	0.1	2.7	O K
600	min	Summer	99.314	0.314	0.1	2.6	O K
720	min	Summer	99.306	0.306	0.1	2.5	O K
960	min	Summer	99.289	0.289	0.1	2.4	O K
1440	min	Summer	99.258	0.258	0.1	2.1	O K
2160	min	Summer	99.216	0.216	0.1	1.8	O K
2880	min	Summer	99.182	0.182	0.1	1.5	O K
4320	min	Summer	99.129	0.129	0.1	1.1	O K
5760	min	Summer	99.092	0.092	0.1	0.8	O K
7200	min	Summer	99.067	0.067	0.1	0.6	O K
8640	min	Summer	99.052	0.052	0.0	0.4	O K
10080	min	Summer	99.046	0.046	0.0	0.4	O K
15	min	Winter	99.204	0.204	0.1	1.7	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	36
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	182
240	min	Summer	19.934	0.0	236
360	min	Summer	14.444	0.0	290
480	min	Summer	11.493	0.0	354
600	min	Summer	9.620	0.0	422
720	min	Summer	8.314	0.0	490
960	min	Summer	6.600	0.0	628
1440	min	Summer	4.760	0.0	900
2160	min	Summer	3.427	0.0	1300
2880	min	Summer	2.712	0.0	1676
4320	min	Summer	1.948	0.0	2420
5760	min	Summer	1.538	0.0	3112
7200	min	Summer	1.281	0.0	3816
8640	min	Summer	1.102	0.0	4416
10080	min	Summer	0.970	0.0	5144
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway4.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	'

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	99.264	0.264	0.1	2.2	ОК
60	min	Winter	99.319	0.319	0.1	2.7	ОК
120	min	Winter	99.363	0.363	0.1	3.0	ОК
180	min	Winter	99.378	0.378	0.1	3.1	O K
240	min	Winter	99.381	0.381	0.1	3.2	ОК
360	min	Winter	99.374	0.374	0.1	3.1	O K
480	min	Winter	99.366	0.366	0.1	3.0	O K
600	min	Winter	99.356	0.356	0.1	3.0	O K
720	min	Winter	99.345	0.345	0.1	2.9	O K
960	min	Winter	99.321	0.321	0.1	2.7	O K
1440	min	Winter	99.276	0.276	0.1	2.3	O K
2160	min	Winter	99.217	0.217	0.1	1.8	O K
2880	min	Winter	99.169	0.169	0.1	1.4	O K
4320	min	Winter	99.100	0.100	0.1	0.8	O K
5760	min	Winter	99.058	0.058	0.1	0.5	O K
7200	min	Winter	99.045	0.045	0.0	0.4	O K
8640	min	Winter	99.039	0.039	0.0	0.3	O K
10080	min	Winter	99.034	0.034	0.0	0.3	O K

Storm			Rain	Flooded	Time-Peak
	Event			Volume	(mins)
				(m³)	
30	min	Winter	91.106	0.0	36
60	min	Winter	56.713	0.0	64
120	min	Winter	34.106	0.0	122
180	min	Winter	24.997	0.0	178
240	min	Winter	19.934	0.0	232
360	min	Winter	14.444	0.0	330
480	min	Winter	11.493	0.0	374
600	min	Winter	9.620	0.0	452
720	min	Winter	8.314	0.0	528
960	min	Winter	6.600	0.0	678
1440	min	Winter	4.760	0.0	970
2160	min	Winter	3.427	0.0	1384
2880	min	Winter	2.712	0.0	1764
4320	min	Winter	1.948	0.0	2508
5760	min	Winter	1.538	0.0	3112
7200	min	Winter	1.281	0.0	3744
8640	min	Winter	1.102	0.0	4416
10080	min	Winter	0.970	0.0	5144

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway4.SRCX	Checked by	Dialilage
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0		0.003			0.003
U	4	0.003	4	8	0.003

Glanville Consultants		Page 4
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:06	Designed by SMcNair	Drainage
File Soakaway4.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 99.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (r	m)	Area	(m²)	Inf.	Area	(m²)	Dept	h	(m)	Area	(m²)	Inf.	Area	(m²)
0.00	00		8.	8			8.8		0.	500		0.0			13.6
0.40	00		8.	8			13.6								

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway5.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 437 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	99.174	0.174	0.2	5.6	O K
30	min	Summer	99.224	0.224	0.2	7.2	O K
60	min	Summer	99.272	0.272	0.2	8.7	O K
120	min	Summer	99.311	0.311	0.2	10.0	O K
180	min	Summer	99.325	0.325	0.2	10.4	O K
240	min	Summer	99.329	0.329	0.2	10.6	O K
360	min	Summer	99.326	0.326	0.2	10.4	O K
480	min	Summer	99.320	0.320	0.2	10.3	O K
600	min	Summer	99.314	0.314	0.2	10.1	O K
720	min	Summer	99.307	0.307	0.2	9.8	O K
960	min	Summer	99.292	0.292	0.2	9.4	O K
1440	min	Summer	99.263	0.263	0.2	8.4	O K
2160	min	Summer	99.224	0.224	0.2	7.2	O K
2880	min	Summer	99.189	0.189	0.2	6.1	O K
4320	min	Summer	99.135	0.135	0.2	4.3	O K
5760	min	Summer	99.095	0.095	0.2	3.1	O K
7200	min	Summer	99.068	0.068	0.2	2.2	O K
8640	min	Summer	99.052	0.052	0.2	1.7	O K
10080	min	Summer	99.046	0.046	0.2	1.5	O K
15	min	Winter	99.195	0.195	0.2	6.2	O K

Storm Event			Rain (mm/hr)		Time-Peak (mins)
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	182
240	min	Summer	19.934	0.0	242
360	min	Summer	14.444	0.0	326
480	min	Summer	11.493	0.0	384
600	min	Summer	9.620	0.0	446
720	min	Summer	8.314	0.0	512
960	min	Summer	6.600	0.0	650
1440	min	Summer	4.760	0.0	924
2160	min	Summer	3.427	0.0	1324
2880	min	Summer	2.712	0.0	1708
4320	min	Summer	1.948	0.0	2464
5760	min	Summer	1.538	0.0	3168
7200	min	Summer	1.281	0.0	3816
8640	min	Summer	1.102	0.0	4416
10080	min	Summer	0.970	0.0	5144
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Mirro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway5.SRCX	Checked by	Diamage
Innovvze	Source Control 2018.1.1	·

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	99.252	0.252	0.2	8.1	ОК
60	min	Winter	99.306	0.306	0.2	9.8	O K
120	min	Winter	99.352	0.352	0.3	11.3	ОК
180	min	Winter	99.370	0.370	0.3	11.9	O K
240	min	Winter	99.377	0.377	0.3	12.1	ОК
360	min	Winter	99.376	0.376	0.3	12.1	O K
480	min	Winter	99.367	0.367	0.3	11.8	O K
600	min	Winter	99.359	0.359	0.3	11.5	O K
720	min	Winter	99.350	0.350	0.3	11.2	O K
960	min	Winter	99.330	0.330	0.2	10.6	O K
1440	min	Winter	99.288	0.288	0.2	9.2	O K
2160	min	Winter	99.231	0.231	0.2	7.4	O K
2880	min	Winter	99.182	0.182	0.2	5.8	O K
4320	min	Winter	99.106	0.106	0.2	3.4	O K
5760	min	Winter	99.059	0.059	0.2	1.9	O K
7200	min	Winter	99.045	0.045	0.2	1.4	O K
8640	min	Winter	99.039	0.039	0.1	1.3	O K
10080	min	Winter	99.035	0.035	0.1	1.1	O K

Storm			Rain	Flooded	Time-Peak
	Event			Volume	(mins)
				(m³)	
30	min	Winter	91.106	0.0	36
60	min	Winter	56.713	0.0	64
120	min	Winter	34.106	0.0	122
180	min	Winter	24.997	0.0	180
240	min	Winter	19.934	0.0	236
360	min	Winter	14.444	0.0	346
480	min	Winter	11.493	0.0	440
600	min	Winter	9.620	0.0	474
720	min	Winter	8.314	0.0	550
960	min	Winter	6.600	0.0	704
1440	min	Winter	4.760	0.0	1000
2160	min	Winter	3.427	0.0	1428
2880	min	Winter	2.712	0.0	1820
4320	min	Winter	1.948	0.0	2552
5760	min	Winter	1.538	0.0	3168
7200	min	Winter	1.281	0.0	3744
8640	min	Winter	1.102	0.0	4416
10080	min	Winter	0.970	0.0	5144

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Mirro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway5.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.011	4	8	0.011

Glanville Consultants		Page 4
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway5.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 99.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (m) Ar	ea (m²) Inf	Area (m²)	Depth (m)	Area (m²)	Inf. Area (m ²)
0.000	33.8 33.8	33.8 43.4	0.500	0.0	43.4

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway6.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 442 minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
15	min	Summer	99.189	0.189	0.1	4.0	O K
30	min	Summer	99.245	0.245	0.2	5.2	O K
60	min	Summer	99.297	0.297	0.2	6.3	O K
120	min	Summer	99.340	0.340	0.2	7.3	O K
180	min	Summer	99.355	0.355	0.2	7.6	O K
240	min	Summer	99.360	0.360	0.2	7.7	O K
360	min	Summer	99.356	0.356	0.2	7.6	O K
480	min	Summer	99.351	0.351	0.2	7.5	O K
600	min	Summer	99.344	0.344	0.2	7.3	O K
720	min	Summer	99.337	0.337	0.2	7.2	O K
960	min	Summer	99.321	0.321	0.2	6.9	O K
1440	min	Summer	99.291	0.291	0.2	6.2	O K
2160	min	Summer	99.249	0.249	0.2	5.3	O K
2880	min	Summer	99.213	0.213	0.2	4.6	O K
4320	min	Summer	99.155	0.155	0.1	3.3	O K
5760	min	Summer	99.113	0.113	0.1	2.4	O K
7200	min	Summer	99.081	0.081	0.1	1.7	O K
8640	min	Summer	99.061	0.061	0.1	1.3	O K
10080	min	Summer	99.050	0.050	0.1	1.1	O K
15	min	Winter	99.213	0.213	0.2	4.5	O K

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	124
180	min	Summer	24.997	0.0	182
240	min	Summer	19.934	0.0	242
360	min	Summer	14.444	0.0	326
480	min	Summer	11.493	0.0	384
600	min	Summer	9.620	0.0	446
720	min	Summer	8.314	0.0	512
960	min	Summer	6.600	0.0	650
1440	min	Summer	4.760	0.0	924
2160	min	Summer	3.427	0.0	1324
2880	min	Summer	2.712	0.0	1728
4320	min	Summer	1.948	0.0	2468
5760	min	Summer	1.538	0.0	3176
7200	min	Summer	1.281	0.0	3888
8640	min	Summer	1.102	0.0	4496
10080	min	Summer	0.970	0.0	5144
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway6.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	99.275	0.275	0.2	5.9	ОК
60	min	Winter	99.334	0.334	0.2	7.1	ОК
120	min	Winter	99.385	0.385	0.2	8.2	ОК
180	min	Winter	99.405	0.405	0.2	8.6	O K
240	min	Winter	99.413	0.413	0.2	8.8	ОК
360	min	Winter	99.413	0.413	0.2	8.8	ОК
480	min	Winter	99.402	0.402	0.2	8.6	ОК
600	min	Winter	99.394	0.394	0.2	8.4	ОК
720	min	Winter	99.384	0.384	0.2	8.2	O K
960	min	Winter	99.363	0.363	0.2	7.8	ОК
1440	min	Winter	99.320	0.320	0.2	6.8	ОК
2160	min	Winter	99.259	0.259	0.2	5.5	ОК
2880	min	Winter	99.208	0.208	0.2	4.4	ОК
4320	min	Winter	99.128	0.128	0.1	2.7	O K
5760	min	Winter	99.074	0.074	0.1	1.6	ОК
7200	min	Winter	99.049	0.049	0.1	1.0	ОК
8640	min	Winter	99.042	0.042	0.1	0.9	O K
10080	min	Winter	99.037	0.037	0.1	0.8	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	91.106	0.0	36
60	min	Winter	56.713	0.0	64
120	min	Winter	34.106	0.0	122
180	min	Winter	24.997	0.0	180
240	min	Winter	19.934	0.0	236
360	min	Winter	14.444	0.0	346
480	min	Winter	11.493	0.0	438
600	min	Winter	9.620	0.0	472
720	min	Winter	8.314	0.0	548
960	min	Winter	6.600	0.0	704
1440	min	Winter	4.760	0.0	1000
2160	min	Winter	3.427	0.0	1428
2880	min	Winter	2.712	0.0	1820
4320	min	Winter	1.948	0.0	2560
5760	min	Winter	1.538	0.0	3232
7200	min	Winter	1.281	0.0	3744
8640	min	Winter	1.102	0.0	4416
10080	min	Winter	0.970	0.0	5144

Glanville Consultants	Page 3	
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Mirro
Date 18/03/2019 13:05	Designed by SMcNair	Drainage
File Soakaway6.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

	(mins)				
From:	To:	(ha)	From:	To:	(ha)
0	4	0.008	4	8	0.008

Glanville Consultants			
Cornerstone House			
62 Foxhall Road			
Didcot OX11 7AD		Micro	
Date 18/03/2019 13:05	Designed by SMcNair	Drainage	
File Soakaway6.SRCX	Checked by	Dialilade	
Innovyze	Source Control 2018.1.1		

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 99.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (m) Area	m (m²) Inf	Area (m²)	Depth (m)	Area (m²)	Inf. Area (m ²)
0.000 0.400	22.5 22.5	22.5 30.1	0.500	0.0	30.1

Glanville Consultants		Page 1
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:03	Designed by SMcNair	Drainage
File Soakaway7.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 604 minutes.

Storm		Max	Мах	Max	Max	Status	
	Even	t	Level	-	Infiltration		
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	98.818	0.318	0.2	6.6	ОК
30	min	Summer	98.912	0.412	0.2	8.6	O K
60	min	Summer	99.002	0.502	0.2	10.5	O K
120	min	Summer	99.082	0.582	0.2	12.2	O K
180	min	Summer	99.116	0.616	0.2	12.9	O K
240	min	Summer	99.132	0.632	0.2	13.2	O K
360	min	Summer	99.140	0.640	0.2	13.4	O K
480	min	Summer	99.134	0.634	0.2	13.3	O K
600	min	Summer	99.127	0.627	0.2	13.1	O K
720	min	Summer	99.119	0.619	0.2	12.9	O K
960	min	Summer	99.101	0.601	0.2	12.6	O K
1440	min	Summer	99.062	0.562	0.2	11.8	O K
2160	min	Summer	99.008	0.508	0.2	10.6	O K
2880	min	Summer	98.959	0.459	0.2	9.6	O K
4320	min	Summer	98.877	0.377	0.2	7.9	O K
5760	min	Summer	98.810	0.310	0.2	6.5	O K
7200	min	Summer	98.754	0.254	0.2	5.3	O K
8640	min	Summer	98.709	0.209	0.1	4.4	O K
10080	min	Summer	98.670	0.170	0.1	3.6	O K
15	min	Winter	98.856	0.356	0.2	7.4	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	139.350	0.0	22
30	min	Summer	91.106	0.0	37
60	min	Summer	56.713	0.0	66
120	min	Summer	34.106	0.0	126
180	min	Summer	24.997	0.0	184
240	min	Summer	19.934	0.0	242
360	min	Summer	14.444	0.0	360
480	min	Summer	11.493	0.0	436
600	min	Summer	9.620	0.0	494
720	min	Summer	8.314	0.0	556
960	min	Summer	6.600	0.0	686
1440	min	Summer	4.760	0.0	960
2160	min	Summer	3.427	0.0	1368
2880	min	Summer	2.712	0.0	1784
4320	min	Summer	1.948	0.0	2556
5760	min	Summer	1.538	0.0	3344
7200	min	Summer	1.281	0.0	4040
8640	min	Summer	1.102	0.0	4760
10080	min	Summer	0.970	0.0	5544
15	min	Winter	139.350	0.0	22

Glanville Consultants		Page 2
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:03	Designed by SMcNair	Drainage
File Soakaway7.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
30	min	Winter	98.962	0.462	0.2	9.7	ОК
60	min	Winter	99.065	0.565	0.2	11.8	O K
120	min	Winter	99.157	0.657	0.2	13.7	O K
180	min	Winter	99.198	0.698	0.2	14.6	O K
240	min	Winter	99.218	0.718	0.2	15.0	O K
360	min	Winter	99.232	0.732	0.2	15.3	ОК
480	min	Winter	99.230	0.730	0.2	15.3	O K
600	min	Winter	99.220	0.720	0.2	15.0	O K
720	min	Winter	99.209	0.709	0.2	14.8	O K
960	min	Winter	99.187	0.687	0.2	14.4	O K
1440	min	Winter	99.135	0.635	0.2	13.3	O K
2160	min	Winter	99.057	0.557	0.2	11.6	O K
2880	min	Winter	98.988	0.488	0.2	10.2	O K
4320	min	Winter	98.872	0.372	0.2	7.8	O K
5760	min	Winter	98.782	0.282	0.2	5.9	O K
7200	min	Winter	98.710	0.210	0.1	4.4	O K
8640	min	Winter	98.652	0.152	0.1	3.2	O K
10080	min	Winter	98.606	0.106	0.1	2.2	O K

Storm			m	Rain	Flooded	Time-Peak
		Even	t	(mm/hr)	Volume	(mins)
					(m³)	
	30	min	Winter	91.106	0.0	37
	60	min	Winter	56.713	0.0	66
	120	min	Winter	34.106	0.0	122
	180	min	Winter	24.997	0.0	180
	240	min	Winter	19.934	0.0	238
	360	min	Winter	14.444	0.0	350
	480	min	Winter	11.493	0.0	458
	600	min	Winter	9.620	0.0	556
	720	min	Winter	8.314	0.0	578
	960	min	Winter	6.600	0.0	730
	1440	min	Winter	4.760	0.0	1038
	2160	min	Winter	3.427	0.0	1476
	2880	min	Winter	2.712	0.0	1908
	4320	min	Winter	1.948	0.0	2724
	5760	min	Winter	1.538	0.0	3512
	7200	min	Winter	1.281	0.0	4248
	8640	min	Winter	1.102	0.0	4936
	10080	min	Winter	0.970	0.0	5648

Glanville Consultants		Page 3
Cornerstone House		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 18/03/2019 13:03	Designed by SMcNair	Drainage
File Soakaway7.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.013	4	8	0.013

Glanville Consultants			
Cornerstone House			
62 Foxhall Road			
Didcot OX11 7AD		Micro	
Date 18/03/2019 13:03	Designed by SMcNair	Drainage	
File Soakaway7.SRCX	Checked by	Dialilade	
Innovyze	Source Control 2018.1.1		

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.07200

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	22.0		22.0	0.	.900		0.0			37.2
0.800	22.0		37.2							

Glanville Consultants		Page 1
Cornerstone House	Fewcott Road	
62 Foxhall Road	Fritwell	
Didcot OX11 7AD		Mirro
Date 18/03/2019 13:09	Designed by AH	Drainage
File Road.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Half Drain Time : 36 minutes.

Storm		Max	Max	Max	Max	Status
Event		Level	Depth	Infiltration	Volume	
			(m)	(1/s)	(m³)	
15	min Sumr	mer 125.627	0.177	0.6	1.6	O K
30	min Sumr	mer 125.647	0.197	0.7	2.0	O K
60	min Sumr	mer 125.657	0.207	0.7	2.2	Flood Risk
120	min Sumr	mer 125.655	0.205	0.7	2.2	Flood Risk
180	min Sumr	mer 125.647	0.197	0.7	2.0	O K
240	min Sumr	mer 125.637	0.187	0.7	1.8	O K
360	min Sumr	mer 125.619	0.169	0.6	1.5	O K
480	min Sumr	mer 125.604	0.154	0.5	1.2	O K
600	min Sumr	mer 125.592	0.142	0.5	1.1	O K
720	min Sumr	mer 125.581	0.131	0.5	0.9	O K
960	min Sumr	mer 125.564	0.114	0.4	0.7	O K
1440	min Sumr	mer 125.540	0.090	0.3	0.4	O K
2160	min Sumr	mer 125.519	0.069	0.2	0.3	O K
2880	min Sumr	mer 125.506	0.056	0.2	0.2	O K
4320	min Sumr	mer 125.495	0.045	0.1	0.1	O K
5760	min Sumr	mer 125.490	0.040	0.1	0.1	O K
7200	min Sumr	mer 125.486	0.036	0.1	0.1	O K
8640	min Sumr	mer 125.484	0.034	0.1	0.1	O K
10080	min Sumr	mer 125.482	0.032	0.1	0.1	O K
15	min Wint	ter 125.640	0.190	0.7	1.9	O K

		Stor	m	Rain	Flooded	Time-Peak	
		Even	t	(mm/hr)	Volume	(mins)	
					(m³)		
-	15	min	Summer	130.382	0.0	17	
3	30	min	Summer	84.926	0.0	28	
(50	min	Summer	52.662	0.0	44	
12	20	min	Summer	31.557	0.0	78	
18	30	min	Summer	23.087	0.0	112	
24	40	min	Summer	18.392	0.0	144	
36	60	min	Summer	13.299	0.0	208	
48	30	min	Summer	10.568	0.0	268	
60	0 C	min	Summer	8.836	0.0	330	
72	20	min	Summer	7.631	0.0	390	
96	60	min	Summer	6.050	0.0	510	
144	40	min	Summer	4.356	0.0	750	
216	60	min	Summer	3.131	0.0	1104	
288	30	min	Summer	2.475	0.0	1468	
432	20	min	Summer	1.775	0.0	2196	
576	60	min	Summer	1.401	0.0	2928	
720	0 C	min	Summer	1.165	0.0	3672	
864	40	min	Summer	1.002	0.0	4376	
1008	30	min	Summer	0.882	0.0	5056	
	15	min	Winter	130.382	0.0	17	

Glanville Consultants		Page 2
Cornerstone House	Fewcott Road	
62 Foxhall Road	Fritwell	
Didcot OX11 7AD		Micro
Date 18/03/2019 13:09	Designed by AH	Drainage
File Road.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
30	min	Winter	125.662	0.212	0.7	2.4	Flood Risk	
60	min	Winter	125.670	0.220	0.8	2.5	Flood Risk	
			125.664		0.8		Flood Risk	
180	min	Winter	125.651	0.201	0.7	2.1	Flood Risk	
240	min	Winter	125.637	0.187	0.7	1.8	ОК	
360	min	Winter	125.613	0.163	0.6	1.4	O K	
480	min	Winter	125.593	0.143	0.5	1.1	ОК	
600	min	Winter	125.578	0.128	0.4	0.9	ОК	
720	min	Winter	125.565	0.115	0.4	0.7	O K	
960	min	Winter	125.545	0.095	0.3	0.5	ОК	
1440	min	Winter	125.521	0.071	0.2	0.3	O K	
2160	min	Winter	125.502	0.052	0.2	0.1	O K	
2880	min	Winter	125.495	0.045	0.1	0.1	ОК	
4320	min	Winter	125.488	0.038	0.1	0.1	ОК	
5760	min	Winter	125.484	0.034	0.1	0.1	O K	
7200	min	Winter	125.481	0.031	0.1	0.0	O K	
8640	min	Winter	125.478	0.028	0.1	0.0	O K	
10080	min	Winter	125.477	0.027	0.1	0.0	O K	

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	84.926	0.0	29
60	min	Winter	52.662	0.0	48
120	min	Winter	31.557	0.0	84
180	min	Winter	23.087	0.0	120
240	min	Winter	18.392	0.0	154
360	min	Winter	13.299	0.0	218
480	min	Winter	10.568	0.0	280
600	min	Winter	8.836	0.0	338
720	min	Winter	7.631	0.0	398
960	min	Winter	6.050	0.0	518
1440	min	Winter	4.356	0.0	750
2160	min	Winter	3.131	0.0	1100
2880	min	Winter	2.475	0.0	1464
4320	min	Winter	1.775	0.0	2160
5760	min	Winter	1.401	0.0	2872
7200	min	Winter	1.165	0.0	3672
8640	min	Winter	1.002	0.0	4368
10080	min	Winter	0.882	0.0	5008

Glanville Consultants		Page 3
Cornerstone House	Fewcott Road	
62 Foxhall Road	Fritwell	
Didcot OX11 7AD		Micro
Date 18/03/2019 13:09	Designed by AH	Drainage
File Road.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.419 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.010

Time (mins) Area From: To: (ha) 0.010

Glanville Consultants		Page 4
Cornerstone House	Fewcott Road	
62 Foxhall Road	Fritwell	
Didcot OX11 7AD		Mirro
Date 18/03/2019 13:09	Designed by AH	Drainage
File Road.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Storage is Online Cover Level (m) 125.950

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.07200	Width (m)	4.8
Membrane Percolation (mm/hr)	1000	Length (m)	20.0
Max Percolation (1/s)	26.7	Slope (1:X)	73.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	125.450	Membrane Depth (m)	0

Cornerstone House, 62 Foxhall Road, Didcot, Oxon OX11 7AD

Tel: (01235) 515550 Fax: (01235) 817799

Postbox@glanvillegroup.com www.glanvillegroup.com

- Structural Engineering
- Civil Engineering
- Transport & Highways
- Geomatics (Land Surveying)
- Building Surveying
- BIM