

GROUND CONDITION ASSESSMENT

E P BARRUS, GRAVEN HILL, UNITS D1 AND D4

5005462-RDG-XX-ST-DOC-C-0001

June 2018

Prepared for

E P Barrus Ltd

Glen Way Launton Road Bicester Oxfordshire OX26 4UR

Prepared by

Ridge and Partners LLP Partnership House Moorside Road Winchester Hampshire SO23 7RX

Tel: 01962 834400

WWW.RIDGE.CO.UK

5005462-815 GROUND CONDITION ASSESSMENT

Factual Report		
Prepared by:	Reviewed by:	
Max Smeeth – Senior Geo-Environmental Engineer	Richard Holloway – Associate	
Contaminatio	on Section	
Prepared by:	Reviewed by:	
Max Smeeth – Senior Geo-Environmental Engineer	Richard Holloway – Associate	
Geotechnical Section		
Prepared by:	Reviewed by:	
Richard Holloway – Associate	Paul Moore – Partner	

VERSION	DATE	DESCRIPTION	CREATED BY	APPROVED BY
1.0	1/06/18	Draft for Review	MS/ RJH	RJH/ PM

1	. INTRODUCTION	7
	1.1. Introduction	7
	1.2. Methodology	7
	1.3. Proposed Use	7
	1.4. Sources of Information	8
	1.5. Report Scope and Limitation	8
2	SITE CONDITIONS	9
	2.1. Site Location and Description	9
	2.2. Surroundings	.10
3	. PHYSICAL SETTING	.11
	3.1. Published Geology	.11
	3.1.1. Artificial Ground	.11
	3.2. Historical Boreholes	.11
	3.3. Hydrogeology and Hydrology	.12
4	. PREVIOUS REPORTS	.13
4	A.1. Desk Top Study	
4		.13
4	4.1. Desk Top Study	. 13 . 13
4	4.1. Desk Top Study	. 13 . 13 . 13
4	4.1. Desk Top Study4.1.1. Receptors4.1.2. Sources	. 13 . 13 . 13 . 13
4	 4.1. Desk Top Study 4.1.1. Receptors 4.1.2. Sources 4.1.3. Contaminants in Soil 	. 13 . 13 . 13 . 14 . 14
4	 4.1. Desk Top Study 4.1.1. Receptors	. 13 . 13 . 13 . 14 . 14 . 14
	 4.1. Desk Top Study 4.1.1. Receptors	. 13 . 13 . 13 . 14 . 14 . 14
	 4.1. Desk Top Study	. 13 . 13 . 13 . 14 . 14 . 14 . 14 . 14
	 4.1. Desk Top Study	.13 .13 .13 .14 .14 .14 .14 .14
	 4.1. Desk Top Study	.13 .13 .13 .14 .14 .14 .14 .14 .14 .16

6. GROUND CONDITIONS ENCOUR	NTERED19	9
6.1. Soil	1!	9
6.1.1. Additional Observations		0
6.2. Groundwater		0
6.3. Visual/Olfactory Evidence of Con	tamination2	1
6.4. Roots		1
7. SOIL CONTAMINATION ASSESS	SMENT2	2
7.1. Assessment Methodology		2
7.2. Soil Results		3
7.2.1. General		3
7.2.2. Asbestos		3
7.2.3. Heavy metals		4
7.2.4. Polycyclic Aromatic Hydrocarbo	ons (PAHs)24	4
7.2.5. Petroleum Hydrocarbons		4
7.2.6. BTEX and MTBE		4
7.2.7. Inorganics		4
7.2.8. Soil Waste Removal		4
8. GROUNDWATER CONTAMINAT	ION ASSESSMENT2	5
8.2. Requirement for Assessment		5
9. GROUND GAS AND SOIL VAPO	UR ASSESSMENT20	6
9.1. Design of Gas Monitoring Progra	m2	6
9.1.1. Generation Potential of Source		7
9.1.2. Monitoring Program		7
9.2. Report Addendum		7
10. GEOTECHNICAL ASSESSMEN	T2	8
10.2. Geotechnical Tests		8

	10.3. Geotechnical and Geological Parameters	. 28
	10.3.1. Made Ground	. 28
	10.4. Concrete	. 29
	10.4.1. Topsoil	. 29
	10.4.2. Peterborough Member	. 29
	10.5. Aggressive Ground Soil Chemistry	32
	10.6. Characteristic Geotechnical Parameters	33
11	. FOUNDATION AND GROUND ENGINEERING	34
	11.1. Introduction	34
	11.2. Shallow Foundations	34
	11.2.1. New Office Building	34
	11.2.2. RUBB	35
	11.3. Other Geotechnical Considerations	35
	11.3.1. CBR Values / Road Modifications	35
	11.3.2. Waste Classification	35
	11.3.3. Further Investigation	. 35
12	2. CONCEPTUAL SITE MODEL	.36
	12.1. Sources	36
	12.2. Pathways	. 36
	12.2.1. Direct	36
	12.3. Receptors	. 36
	12.3.1. Human	36
	12.3.2. Environmental	. 37
13	B. CONTAMINATION RISK ASSESSMENT	.38
	13.1. Risk Assessment Procedure	. 38
	13.2. Pollutant Linkage Assessment	40
	13.2.1. Asbestos in Made Ground	40
	13.2.2. Impacted Made Ground	41

14. CONCLUSIONS AND RECOMMENDATIONS	42
14.1. Contamination	42
14.1.1. Gas Monitoring	42
14.1.2. Knowledge Share	42
14.1.3. Watching Brief	42
14.1.4. Asbestos Specific Mitigation	42
14.1.5. Personal Protective Equipment (PPE)	43
14.2. Geotechnical	43

FIGURE 1 – SITE LOCATION PLAN	44
FIGURE 2 – DEVELOPMENT PLANS	45
FIGURE 3: TEST LOCATION PLAN	46
FIGURE 4: SPT 'N' V DEPTH GRAPH	47

APPENDIX 1 – REPORT CONDITIONS	49
APPENDIX 2 – ENGINEERING LOGS	51
APPENDIX 3 – PHOTOGRAPHS	52
APPENDIX 4 – CHEMICAL TEST CERTIFICATES	53
APPENDIX 5 – GEOTECHNICAL TEST CERTIFICATES	54

1. INTRODUCTION

1.1. Introduction

Ridge and Partners LLP (Ridge) was commissioned by EP Barrus Ltd. in January 2018 to undertake a Ground Condition Assessment in relation to a proposed new office development at Anniversary Avenue, Bicester, OX26 6HF (hereafter referred to as "the site"). A site location plan is included as Figure 1.

The investigation follows the submission of a Desk Top Study (preliminary risk assessment) in May 2018 (Ref: 5005462-RDG-XX-ST-DOC-C-0101), which should be read in conjunction with this report.

Ridge were briefed to undertake a ground investigation to determine ground conditions and likely load capacity in the specific development areas. Intrusive investigative works comprised diamond coring, dynamic sampler boreholes, trial pits, and Dynamic Cone Penetrometer tests for conversion to California Bearing Ratio.

This report provides a detailed assessment of the materials present beneath the development site and present characteristic parameters that should be used in design of geotechnical facets of the proposed development. Following on from the outcomes of the Desk Top Study, and utilising data obtained during intrusive works, a contaminant assessment has been carried out.

This report is prepared in line with the agreed brief and is subject to the report conditions shown in Appendix 1.

1.2. Methodology

The investigation was carried out in accordance with statutory guidance including BS5930:1999 *Code of Practice for Site Investigations (Amendment 3: 2015)* and BS10175:2011+A1:2013 *Investigation of Potentially Contaminated Sites: Code of Practice.*

1.3. Proposed Use

Development proposals indicate the provision of one office building with associated service utilities, access roads, and pedestrian walkways. Further to this, re-use of existing buildings and highway improvement works. It is likely that the development will include limited areas of soft landscaping. Further details are provided within Figure 2.

A commercial end use scenario has been adopted for development of the conceptual site model.

1.4. Sources of Information

The information and documents received and reviewed to provide some background information for the preparation of this report are given below:

British Geological Survey website

1.5. Report Scope and Limitation

This report is based upon a review of the Desk Top Study and the recent site investigation data detailed herein. The report presents an interpretation of boreholes and laboratory data provided by the Ridge site investigation undertaken on 16th and 17th April 2018.

This information has been collated, processed and used to provide an interpretation of the ground conditions.

The recommendations and opinions expressed in this report are based on the strata observed in the exploratory holes, the results of the site and laboratory tests, and information obtained or provided by others. Ridge takes no responsibility for conditions that have not been revealed by the exploratory holes, or which occur between them.

Whilst efforts have been made to interpret the conditions between investigation locations, such information is only indicative and liability cannot be accepted for its accuracy. Information provided from other sources is taken in good faith and Ridge cannot guarantee its accuracy. It should also be acknowledged that the findings of the investigation may be more widespread than identified by the investigation.

The information contained in this report is intended for the use of E P Barrus Ltd. and Ridge can take no responsibility for the use of this information by any other party or for uses other than that described in this report.

2. SITE CONDITIONS

The site measures approximately 7.40ha and is currently used for storage and warehousing of a variety of products as part of a Ministry of Defence (MOD) facility known as Bicester Garrison.

2.1. Site Location and Description

able 2.1. Sile Details		
Site Address	Anniversary Avenue, Bicester, OX26 6HF	
National Grid Reference 459046, 219805		
Site Area	7.40ha	
Site Occupier	Ministry of Defence	
Site Access Anniversary Avenue to the north, via guarded gates to the east		
	North – Anniversary Avenue	
	East – Open boundary	
Site Boundaries	South – Train line	
West – Wooded areas		
Ground Cover	Approximately 60% hardstanding inclusive of building footprint. 40% softstanding	
Site Topography and Elevation	Approximately between 70 and 65mAOD, sloping downhill to the south.	

Table 2.1: Site Details

Two brick and steel clad warehouses (90 x 120m) are located in the northern and western parts of the site. The northern warehouse is known as D1, while the western warehouse is known as D4.

At the time of the walkover, D1 was used to store various materials such as razor wire, helmets, Kevlar body armour, sandbags, and plastic storage containers. Fork lift charging points were also noted. Train wells are situated on the eastern elevation at the northern and southern extents. An above ground fuel storage tank (AST) was noted to the external of the north-eastern elevation. According to information obtained on site, the AST was used for intermittent heating of the warehouse. Munition storage huts were noted approximately 15m east of warehouse.

D4 is used for the storage of ration packs only (approximately one million at the time of the walkover). A train well is situated at the north-eastern elevation. An AST was identified approximately 20m north of the northern elevation, apparently used for warehouse heating.

The remainder of the site primarily comprises hardstanding areas inclusive of pallet storage, grassed softstanding, access roads and relict train lines. The south-eastern portion of the site is made up of a concrete-surfaced storage area measuring approximately 75 x 60m. This area is used to store sea containers and temporary roll-out steel road surface, amongst other items.

2.2. Surroundings

MOD land surrounds the site boundary to the north, east and west. A network rail railway line bounds the site to the immediate south with a solar farm beyond.

The surrounding area is primarily rural comprising a mixture of pastoral and arable farmland. The centre of Bicester is situated approximately 3km north.

3. PHYSICAL SETTING

3.1. Published Geology

The following observations are taken from the British Geological Survey (BGS) Geology of Britain Viewer (2018).

The British Geological Survey (BGS) Geology of Britain Viewer (2018) indicates that the site is directly underlain by Bedrock Geology of the Peterborough Member. There are no records of Superficial Deposits directly below the site, although it should be noted that there is the possibility of Alluvium (Clay, Silt, Sand and Gravel) directly south of the site boundary.

- Alluvium Soft to firm consolidated, compressible silty Clay, but can contain layers of silt, sand, peat and basal gravel. A stronger desiccated surface zone may be present.
- Peterborough Member Brownish grey, fissile, organic-rich (bituminous) mudstones; shelly fauna dominated by crushed aragonitic ammonites and bivalves, including nuculoid and meleagrinella shell beds. Subordinate beds of pale medium grey, blocky mudstone. Several bands of cementstone nodules/ concretions. Basal beds commonly silty, with gryphaea-rich shell beds.

3.1.1. Artificial Ground

According to records the entire site area has been subject to landscaped ground.

3.2. Historical Boreholes

A historical borehole drilled 230m north-east within the Bicester Garrison (Ref: SP52SE72 – 459300, 220100) identified Made Ground comprising topsoil with ash and cinders to 0.10mbgl. Soft orangish brown and greyish brown silty Clay was observed from 0.10 to 2.40mbgl. Soft to firm greyish brown silty Clay with sand, calcareous nodules and occasional fossils was identified from 2.40 to 2.90mbgl. Stiff fissured sometimes friable dark brownish grey silty Clay with some gypsum dust was noted from 2.90mbgl to the maximum drill depth of 3.00mbgl.

Water entry was noted at 2.40mbgl. No further details are provided.

3.3. Hydrogeology and Hydrology

<u>Aquifer within Superficial Deposits (adjacent south)</u>: Secondary (A) – Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

<u>Aquifer within Bedrock Geology:</u> Unproductive – Rock layers or drift deposits with low permeability that have negligible significance for water supply or river base blow.

<u>Groundwater Vulnerability and Soil Leaching Potential:</u> Superficial Deposits to the immediate south are classified as H1 in terms of Soil Vulnerability – soils which readily transmit liquid discharges because they are shallow or susceptible to rapid flow directly to rock, gravel or groundwater.

Source Protection Zones: There are no Source Protection Zones (SPZ) within 500m of the study site.

<u>Surface Water Features:</u> The nearest surface water feature is 35m south, considered to be an agricultural drainage channel. The closest Detailed River Network feature (tertiary) is 300m south-east.

4. PREVIOUS REPORTS

4.1. Desk Top Study

A Desk Top Study (Preliminary Risk Assessment) was issued by Ridge in May 2018 (Ref: 5005462-RDG-XX-ST-DOC-C-0101), which should be read in conjunction with this report. The purpose of the Desk Top Study is to use development information provided in an environmental database search relating to the site, a and walkover survey, to assess and report on the findings with respect to potential ground contamination. This enables the development of a Preliminary Conceptual Site Model (CSM) and risk assessment.

By considering the sources, pathways and receptors (pollutant linkages), an assessment of the human health/ environmental risks is made with reference to the significance and degree of the risk. This assessment is based on consideration of whether the source contamination can reach the receptor and hence whether it is of major or minor significance.

4.1.1. Receptors

The Desk Top Study identified the following receptors:

- Site Operatives (as part of day to day operations)
- Construction Workers (during development)
- Any future Maintenance Workers
- Underlying Secondary (A) Superficial Aquifer
- Surface Water Feature 35m south

4.1.2. Sources

Following site reconnaissance, review of historical maps, and information on public record, potential sources of contamination have been identified as follows:

- Potential petroleum hydrocarbon related contamination associated with on site diesel incident in April 2003 and Above Ground Storage Tank (AST) situated 20m north of the northern elevation of D4 (southern warehouse).
- Potential for petroleum hydrocarbon related contamination associated with on site AST situated adjacent to north-east elevation of D1 (northern warehouse).

Development/ levelling of site and general usage as storage facility inclusive of railway line use.
 Possible contaminants of concern include asbestos heavy metals, solvents, petroleum hydrocarbons and polycyclic aromatic hydrocarbons. Additional potential for ground gas based on in filling of land.

RIDGE

Development and activities associated with surrounding land use, inclusive of railway line 5m south.
 Possible contaminants of concern include asbestos, heavy metals, solvents, petroleum hydrocarbons and polycyclic aromatic hydrocarbons. Additional potential for ground gas based on in filling of land.

4.1.3. Contaminants in Soil

The study identified potential for contaminants within Made Ground and shallow natural soils. Although it is assumed that the development includes limited areas of soft landscaping, it is acknowledged that the majority of the development comprises areas of build footprint, hardstanding, roadways and pavements. Further to this, hardstanding and buildings act as a barrier between soil contamination in the soil and human site end users.

Due to the nature of site preparation and groundworks, there is potential for construction workers to come into contact with exposed shallow soils during development, thereby creating a viable pathway.

4.1.4. Ground Gas and Soil Vapour

Due to the unknown composition of Made Ground fill materials on site, there is some potential for ground gas producing soils. Nevertheless, it is acknowledged that there are no records of landfill or waste treatment site within 500m of the site boundary.

Based on the identification of 2no. ASTs, and an on site diesel incident in 2003, there is some potential for risk from hydrocarbon related sources. It is acknowledged that diesel specific impact to soil is unlikely to produce soil vapours, but lighter -end carbon chain soil impact cannot be ruled out.

4.1.5. Preliminary Risk Rating

Following the compilation of a Conceptual Site Model, the risk of impact to receptors from identified potential sources was considered to be **Very Low** to **Low**.

4.1.6. Recommendations

It was recommended that as part of the commissioned Geotechnical Ground Investigation, a contamination screen of Made Ground and shallow natural soils should be conducted. Screening should involve physical and chemical characterisation of soils within the development area specifically.

The requirement for characterisation of the ground gas and soil vapour regime is dependent on observations made during site works and subsequent laboratory analysis.

Further details of recommendations can be viewed within the issued report. Full details of fieldworks conducted are detailed in Section 5.0 of this report.

5. FIELDWORKS

5.1. Site Management and Preparation

Suitably experienced Ridge staff supervised the investigation which was undertaken on 16th and 17th April 2018. Methods employed during the investigation were carried out in accordance with statutory guidance including BS5930:1999 *Code of Practice for Site Investigations (Amendment 3: 2015)* and BS10175:2011+A1:2013 *Investigation of Potentially Contaminated Sites: Code of Practice*.

An Underground Utility Drawing (Ref: 20338) produced by MK Surveys, was made available prior to works, and intrusive positions were located in cleared areas. As an additional check while on site, manhole covers were lifted and a Cable Avoidance Tool (CAT) was used to check for any underground metallic or electrical services. Furthermore, starter pits were excavated to 1.20mbgl to clear test locations prior to any intrusive works, where possible.

Engineering Logs are presented in Appendix 2. Photographs relating to the Ground Investigation are presented in Appendix 3.

5.2. Rationale and Summary of Scope

The scope and rationale of the ground investigation undertaken is presented below.

- 7no. diamond core positions advanced in areas of hardstanding to allow collection of concrete cores or asphalt, to establish thickness and for testing;
- 16no. Dynamic Cone Penetrometer (DCP) tests to allow subsequent conversion to California Bearing Ratio (CBR) value;
- 8no. windowless sample boreholes (BH02-BH09) advanced with a Competitor 130 rig to a maximum depth of 4.45mbgl;
- 2no. hand advanced trial pits; and
- Collection of disturbed and environmental samples to allow geotechnical and chemical laboratory testing

Table 4 1. Exploratory	y Hole Location Rationale
Table 4.1. Explorator	y hole Location hationale

Location ID	Rationale	Max Depth (mbgl)
T01-DCP	Area to the north-west of D4 proposed as new road/ turning area	0.908
T02-DCP	Area to the north-west of D1 proposed as new road/ turning area 0.906	
T03-DCP	South-west of D1 proposed as new road/ turning area 0.912	
T04-DCP	East of D4 – proposed as turning area	0.959
T05-DCP	East of D4 – proposed as turning area	0.962
T06-DCP	East of D4 – proposed as turning area	0.971
T07-DCP	South-east of D4 – proposed walkway/ pavement	0.926
T08-DCP	Eastern area of site – proposed walkway/ pavement	0.905
T09-DCP	Eastern area of site – proposed walkway/ pavement	0.905
T10-DCP	Eastern area of site – proposed parking	0.605 (refusal)
T11-DCP	Eastern area of site – proposed parking	0.905
C01-DCP		
C02-DCP	02-DCP North-east of D1 – proposed road 0.363	
C03-DCP	3-DCP South-east of D1 – proposed road 0.9	
C04-DCP	North-west of D4 – proposed road/ turning area	0.800 (refusal)
C05-DCP	North-east of D4 - proposed road/ turning area	0.366 (refusal)
BH02	East of D4 – proposed as turning area	4.450
BH03	Centre of site – proposed office	4.450
BH04	Centre of site – proposed office	3.000
BH05	South-east of site – proposed temporary building	4.450
BH06	BH06 East of D1 – proposed roadway/ turning area 4.450	
BH07	7 East of D1 – proposed roadway/ turning area 4.450	
BH08	North-east of site – proposed roadway 4.450	
BH09	West of D1 – proposed road 4.450	
HP01	North of D4 – located to assess Above Ground Storage Tank (AST)	0.550
HP02	North of D1 – located to assess Above Ground Storage Tank (AST)	0.550

BH01 was not completed due to access restrictions. The layout of the exploratory positions is presented in Figure 3.

On completion, three of the boreholes (BH04, BH08 and BH09) were installed as dual purpose gas and groundwater monitoring wells constructed with 50mm internal diameter HDPE plain and slotted pipe. The response zone of the wells was firstly designed to target any groundwater underlying the site, and secondly to target possible Ground Gas producing Made ground.

A filter pack of washed gravel was placed in the well annulus to just above the screen sections, the annulus was sealed to the surface with bentonite. The monitoring wells were finished with flush-to-ground-level traffic-rated steel covers.

All remaining test positions were backfilled with arisings and finished at the surface with concrete.

5.3. Soil Sampling

All intrusive locations were logged and visual or olfactory evidence of contamination noted in accordance with current protocol.

Samples were handled using a fresh pair of nitrile gloves. Equipment was cleaned between use at different test locations and different sampling depths to prevent cross-contamination.

Selected samples were placed in sealable bags, sealed glass jars or plastic tubs (dependent on the exact laboratory requirement and analysis to be undertaken) and stored in a temperature controlled environment before transit.

Analytical test results are discussed in Sections 7.0 and 10.0.

5.4. Gas and Groundwater Monitoring

Gas and groundwater monitoring was not conducted due to access restrictions. Details will be issued under a separate cover.

6. GROUND CONDITIONS ENCOUNTERED

6.1. Soil

Ground conditions encountered during the ground investigation were consistent with those identified in the published literature and in summary comprised Made Ground or topsoil over the Peterborough Member. Superficial Alluvium Deposits were not identified.

A summary of ground conditions and any variations in strata thicknesses are summarised in Table 6.1 below. Engineering logs are presented in Appendix 2.

Table 6.1: Summary of encountered ground conditions

Strata	Depth Encountered (mbgl)		Typical Description/ Details
Ollulu	Тор	Bottom	
Topsoil	0.00	0.20 - 0.30	Identified in the majority of test positions in soft standing, and generally 200 to 300mm thickness. Comprised dark brown grey slightly gravelly silty Clay.
Made Ground	0.00	0.30 - 1.00	Identified in all positions with the exception of BH04. In areas of hardstanding Made Ground comprised Concrete over limestone hardcore sub base.
			In areas of softstanding, Made Ground generally comprised firm to stiff dark yellow brown slightly gravelly silty CLAY with anthropogenic materials such as: brick and charcoal fragments, bitumen and chert. Rare cloth was identified in Made Ground within BH08 only. Wood fragments were noted in BH03. Anthropogenic materials within HP01 comprised glass bottles, asphalt, brick clinker and brick fragments.
Clay	0.30 - 1.00	0.60 - 1.60	Firm to stiff grey yellow brown gravelly Clay was identified in all test locations. Gravel comprised angular and sub angular chert and limestone
Laminated Clay	0.60 - 2.10	4.45 (max. drill depth)	Stiff to very stiff dark grey brown thinly laminated silty Clay. Abundant compressed fossils on bedding surfaces within BH03 and BH05-BH09.

6.1.1. Additional Observations

Made Ground was identified in all test positions with the exception of BH04, thus supporting the fact that the majority of the site was subject to landscape profiling historically (refer to Section 3.1.1).

Weak yellow brown argillaceous fine medium Sandstone was identified within BH09 only, at 2.90-3.00mbgl.

A summary of the cores removed is provided in the table below. Cores were removed by way of a mobile diamond coring unit.

Location ID	Description	Depth Base (mbgl)
	Bituminous Macadam (Wearing Course)	0.045
C1	Bituminous Macadam	0.105
	Concrete – limestone aggregate (no rebar)	0.340
<u> </u>	Bituminous Macadam (Wearing Course)	0.030
C2	Bituminous Macadam	0.220
C3	Bituminous Macadam	0.060
03	Limestone capping material (unbound)	0.290
	Bituminous Macadam (Wearing Course)	0.045
C4	Bituminous Macadam	0.190
	Concrete – limestone aggregate (no rebar)	0.350
C5	Bituminous Macadam	0.090
	Bituminous Macadam	0.070
C6	Concrete – flint chert aggregate (no rebar)	>0.450
	(Unable to prove base of concrete – limit of core barrel)	(no sample)
BH05	Concrete – quartzite aggregate rebar at 0.1m & base, membrane below	0.165
BH09	Concrete – quartzite & limestone aggregate rebar at 0.1m, membrane below	0.165
T10	Concrete – quartzite aggregate rebar at 0.09m & base, membrane below	0.170

Table 6.2: Core Descriptions

6.2. Groundwater

Details of groundwater strikes and subsequent rest water levels observed during the intrusive works are provided in the table below.

Location ID	Water Strike (mbgl)	Water Level after 20 minutes (mbgl)	Comments
BH02	4.00	3.90 (in Clay)	Slow seepage
BH03	2.00	1.00 (Made Ground)	Slow seepage
BH04	2.00	1.20 (Clay)	Moderate flow
BH05	0.20 (in sub base)	0.20 (sub base)	Slow seepage
BH06	DRY	n/a	n/a
BH07	3.00	0.70 (Clay)	Rapid flow
BH08	4.00	3.20 (Clay)	Slow seepage
BH09	3.00	2.30 (Clay)	Moderate flow
HP01	DRY	n/a	n/a
HP02	DRY	n/a	n/a

Table 6.3: Groundwater

With reference to the table above, there is much variation in observed groundwater levels, and this is perhaps indicative of the impermeable nature of identified strata, and the inherent variable nature of Made Ground.

It is recommended that a groundwater monitoring program is completed to determine more reliable equilibrium groundwater levels.

6.3. Visual/Olfactory Evidence of Contamination

Other than the anthropogenic constituents described above, there was no visual or olfactory evidence of contamination identified.

6.4. Roots

Occasional (grass) rootlets were identified in topsoil only.

7. SOIL CONTAMINATION ASSESSMENT

7.1. Assessment Methodology

It was recommended within the Desk Top Study that a contamination screen of Made Ground and shallow natural soils should be conducted.

Screening involved both physical and chemical characterisation of soils within the development area specifically.

Further to this, as an addition to on site logging and inspection, a laboratory screen of common contaminants was carried out on Made Ground fill materials and shallow natural soils.

Ridge have undertaken a screen of the soil laboratory results using generic assessment criteria. Generic assessment criteria (GAC) are conservative contaminant concentration values used for comparison purposes to assess the risk associated with contaminant concentrations found on site and are derived using non-site-specific information.

In order to assess the soil analyses results with regard to potential human health risks, Ridge has adopted published guidance criteria widely referred to by professionals within the industry, which include the following:

- Suitable 4 Use Levels (S4ULs) Generic Assessment Criteria (GAC) developed by the Chartered Institute of Environmental Health (CIEH) in partnership with Land Quality Management Ltd. (LQM);
- Category 4 Screening Levels (C4SL) for lead, produced by CL:AIRE (2014); and
- The UK Soil Guideline Values (SGVs) for selected metals, BTEX and phenols, produced by the EA and Department of Environment, Food and Rural Affairs (2009).

Comparisons have been made against the 'commercial' land use setting based on the continued use of the site. Results were compared to the conservative 1.00% soil organic matter value unless otherwise stated.

With regard to human health, the CLEA model states that, 'the contamination is assumed to be at or within 1m of the surface' (CLR10 pg10). It is considered that at depths greater than 1m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway. Therefore, for the purposes of statistical analysis, data from the top 1.0 to 1.5m is used for assessment of risks to human health via direct contact pathways in accordance with the CLEA model, dependent on proposed future site levels.

7.2. Soil Results

7.2.1. General

Nine soil samples collected during the site investigation were submitted to a UKAS and MCERTS accredited laboratory testing facility. Analytical suites were chosen to represent common contaminants of concern and included; an asbestos screen, heavy metals, and hydrocarbons including speciated Total Petroleum Hydrocarbons (TPH CWH aromatic/ aliphatic split), BTEX, MTBE and speciated Polycyclic Aromatic Hydrocarbons (PAH).

Specific samples were chosen for analysis to provide an indication of typical Made Ground and shallow natural soil conditions. The range of potentially hazardous contaminants present on a site can be wide and varied and the suite has been chosen to reflect commonly found contaminants and others indicated by research to have a significant chance of being present. It is, however, possible that others may exist for which analyses have not been carried out or which were outside the scope of completed exploratory holes.

Chemical Test Certificates are included in Appendix 4.

7.2.2. Asbestos

Off the nine samples tested, asbestos was identified in just one of the samples at HP01-0.40m. The laboratory identified the asbestos as microscopic chrysotile within soil.

Subsequent asbestos quantification (% asbestos by weight) of the sample HP01-0.40m returned 0.013% with a laboratory limit of detection of 0.001%.

Currently, there is no Soil Guideline Value for asbestos, although based on a study performed by the Institute of Occupational Medicine (Ref: TM/88/14 1988), any result over 0.001% is considered a risk. The study utilised the 'dustiness' test, where air is blown through a dried soil, and any fibres are trapped and measured.

7.2.3. Heavy metals

There were no exceedances of the applicable GAC. Furthermore, all results for mercury, selenium and phenols were below the laboratory limit of detection (LOD).

There was some elevation of chromium and lead within the sample collected from BH07 at 0.30m within Made ground. Analysis of a deeper sample within natural soils at 0.50m depth returned results below LOD for these determinands, and the majority of other determinands were also below LOD.

7.2.4. Polycyclic Aromatic Hydrocarbons (PAHs)

All tested determinands were below LOD for all samples with the exception of BH03-0.50-0.75m, BH06-0.40m, HP01-0.40m. Nevertheless, there were no exceedances of the GAC.

7.2.5. Petroleum Hydrocarbons

All tested determinands were below LOD for all samples with the exception of HP01-0.40m. There were slight elevations of aromatic >C16-C35, although there were no exceedances of the GAC.

7.2.6. BTEX and MTBE

All tested determinands were below LOD for all samples. There were no exceedances of the GAC.

7.2.7. Inorganics

The concentrations of free cyanide fell below LOD in both soil samples analysed.

7.2.8. Soil Waste Removal

Based on the results of the laboratory testing the made ground from B08 and natural ground from HP02 would be classified as inert.

Nine core samples of macadam were tested for speciated PAH. All of the samples had Benzo-a-pyrene concentrations <50mg/kg which is the threshold in WM3 above which macadam is classified as hazardous.

8. GROUNDWATER CONTAMINATION ASSESSMENT

8.1. Assessment Methodology

The requirement for assessment of groundwater is dependent on observations made during intrusive site works and subsequent analysis of soil samples.

In the absence of dedicated UK groundwater standards, groundwater analytical results would be screened against the conservative Water Framework Directive (WFD) 2015 Environmental Quality Standards (EQS), UK Drinking Water Standards (DWS) as taken from the Water Supply Regulations (2000), the New Dutch List (Dutch Target and Intervention Values, 2000) and the US EPA Drinking Water Standards (and Health Advisories) 2012.

Where a number of standards are available for a particular compound, the standard selected for screening purposes is based on the most relevant standard for the receptor, in the first instance. Thereafter, statutory standards are prioritised over non-statutory standards.

8.2. Requirement for Assessment

It was concluded that assessment of contamination to groundwater was not required. This conclusion was based on the following:

- The aquifer within Superficial Deposits is classified as Secondary (A) in terms of sensitivity, this is considered Low
- The Bedrock aquifer is classified as Unproductive in terms of sensitivity, this is considered as Very Low
- Risk to surface water is considered to be **Low** based on distance to the nearest feature (35m), an agricultural drainage channel, which is unlikely to be in connection with controlled water resources
- There are no Source Protection Zones (SPZ) within 500m of the study site
- Soil analysis has returned no exceedances of the GAC, and only minor elevations of heavy metals, PAHs and hydrocarbons above background levels. Analysis of natural samples returned results predominantly below laboratory limit of detection. The cohesive nature of natural Clay soils, means it is unlikely that contaminants have impacted underlying groundwater.

9. GROUND GAS AND SOIL VAPOUR ASSESSMENT

9.1. Design of Gas Monitoring Program

In accordance with BS8576:2013 *Guidance on investigations for ground gas – permanent gases and volatile organic compounds*, the extent of monitoring deemed necessary to assess the ground gas and vapour regime is determined by the generation potential of the source, i.e. what is the risk that large volumes of gas can be generated and can plausibly migrate to pose a credible hazard to the identified receptors.

Points detailed in the table below were pertinent in the design of the gas monitoring program. Information detailed in the table has either been taken from the Desk Top Study or interpreted from the intrusive investigation.

Factor	More Monitoring Required	Less Monitoring Required
Landfills and		There are no landfills within 1km, and no waste
Waste Facilities	-	treatment sites within 500m.
Mine Workings		There are no records of Mine Working in the
	-	vicinity of the site.
Artificial Ground	The Groundsure Report used within the Desk Top	
	Study identified landscaped ground across the	
	entire site.	-
	The Ground Investigation identified Made Ground	
	in all locations with the exception of BH04.	
Made Ground	Rare cloth and wood fragments noted in Made	Nevertheless, in general a low content of
Organic Content	Ground during Ground Investigation.	degradable organic material.
		Following laboratory analysis Total Organic
		Carbon (TOC) ranged from 0.35 to 2.67%, with an
		average of 1.72%.
Natural Soils		There was no evidence of degradable organic
Organic Content		material in logged soils.
	-	TOC in natural soils was 1.22%, although it should
		be noted there was only one sample from Natural
		Soils.
Volatiles		Investigation of areas in the immediate vicinity of
		possible hydrocarbon sources (HP01 and HP02)
		confirmed the absence of VOCs.
	-	There was no visual or olfactory evidence of
		hydrocarbons, and subsequent laboratory
		analysis did not return significantly elevated TPH
		results.

Table 9.1: Factors Influencing Design of Gas Monitoring Program

9.1.1. Generation Potential of Source

Based on the information within Table 9.1, the generation potential is considered to be **Very Low**. According to guidance, a **Very Low** potential equates to – 'gas monitoring might not be necessary'

Nevertheless, it is acknowledged that rare wood and rag was noted within Made Ground that was present across much of the site, and therefore a screening is deemed appropriate.

9.1.2. Monitoring Program

Two to three monitoring visits are required to confirm the generation potential level considered above. Mobilisation for gas and soil vapour monitoring is to be combined with groundwater monitoring that is required for geotechnical purposes.

9.2. Report Addendum

Gas and groundwater monitoring was not carried out due to access restrictions. Details will be issued under a separate cover.

10. GEOTECHNICAL ASSESSMENT

10.1. Introduction

This geotechnical assessment and the subsequent foundation design recommendations will use the findings of the ground investigation and the results of the in-situ and laboratory geotechnical testing carried out in the boreholes and on representative samples of the materials encountered across the site.

10.2. Geotechnical Tests

Geotechnical laboratory testing was carried out on representative samples collected from the strata encountered during the ground investigation. Details of the specific procedure used in each case are shown below in Table 10.1 and the geotechnical test certificates are presented in Appendix 5.

Table 10.1: Summary of Geotechnical Testing

Test	Standard (BS1377:1990) unless otherwise indicated	No.
pH value	Part 3, Clause 9.0	6
Sulphate content	Part 3, Clause 5.3	6
Natural Moisture Content	BS 1377 : Part 2 : 3.2	5
Liquid & Plastic Limits	Part 2, Clauses 4.3, 5.3 & 5.4	5
Compressive strength	BS EN 12504-1:2009	1

10.3. Geotechnical and Geological Parameters

This section discusses the key geotechnical characteristics of each encountered stratum as determined from field observations, in-situ and laboratory geotechnical testing. The stratigraphy revealed during the ground investigation comprised Made Ground or Topsoil over the Peterborough Member which forms the basal unit revealed. Each of these strata will be discussed separately in the following Sections.

10.3.1. Made Ground

The Ground Investigation identified Made Ground in seven of the eight boreholes to depths between 0.30m (BH09) and 1.00m (BH03). No Made Ground was present in BH04.

The Made Ground comprised reinforced concrete in each location with 10mm diameter rebar noted.

Concrete was present at ground level in BH05 and BH09. Sub-base 150mm thick was present beneath the slab in each location.

TRL DCP tests were carried out in 16 locations. This test provides a CBR value (%) but is not a CBR test. Results certificates are included as Appendix 2. The test results are varied depending upon depth and test material.

10.4. Concrete

The compressive strength of the concrete core from BH05 0.000-0.165m was 35.5N/mm². The core sample had no reinforcement present on the tested specimen. However the borehole log notes rebar at 0.10m.

10.4.1. Topsoil

Encountered in six of the eight boreholes to depths between 0.20 and 0.30m.

10.4.2. Peterborough Member

The bedrock of Peterborough Member was encountered underlying the Made Ground or Topsoil in each of the boreholes and was proved to a maximum depth of 4.45m.

In - Situ Testing

Standard Penetration Testing was carried out through the Peterborough Member and gave SPT 'N' values of between 7 and 9 at 1.00m and between 7 and 12 at 2.00m depth.

The distribution of SPT N-Values for is shown in Table 10.2. Borehole logs showing the full test results are included in Appendix 2. Graphical representation is included as Figure 4.

Table 10.2: Distribution of Equivalent SPT N Values in the Peterborough Member

BH No.	Depth (mbgl)	SPT N Value	Main Constituent
	1.00	7	CLAY
BLIOD	2.00	7	CLAY
BH02	3.00	10	CLAY
	4.00	16	CLAY
	1.00	8	CLAY
DU00	2.00	10	CLAY
BH03	3.00	13	CLAY
	4.00	31	CLAY

5005462-815 GROUND CONDITION ASSESSMENT

RIDGE

BH No.	Depth (mbgl)	SPT N Value	Main Constituent
	1.00	7	CLAY
BH04	2.00	9	CLAY
	3.00	>50	CLAY
	1.00	9	CLAY
BH05	2.00	8	CLAY
BH05	3.00	14	CLAY
	4.00	16	CLAY
	1.00	9	CLAY
BH06	2.00	9	CLAY
БПОО	3.00	17	CLAY
	4.00	39	CLAY
	1.00	8	CLAY
BH07	2.00	12	CLAY
BHU7	3.00	24	CLAY
	4.00	33	CLAY
	1.00	7	CLAY
BH08	2.00	9	CLAY
BHUO	3.00	9	CLAY
	4.00	24	CLAY
	1.00	9	CLAY
BH09	2.00	9	CLAY
DING	3.00	34	CLAY
	4.00	18	CLAY

Classification Testing

Consistency Limits

Five representative samples of the Peterborough Member underwent Atterberg limits testing to determine the consistency limits.

Location	Depth (mbgl)	Natural Water Content, w (%)	Liquid Limit w _L (%)	Plastic Limit w _P (%)	Plasticity Index I _P (%)	Corrected Plasticity Index (%)
BH02	1.30-1.50	32	70	27	43	43
BH03	1.50-1.70	35	76	29	47	47
BH03	2.80-3.00	35	68	31	37	37
BH04	0.80-1.00	39	76	29	47	47
BH04	1.80-2.00	38	74	31	43	43

Table 10.3: Consistency Limits

NP = non- plastic

The Atterberg limits testing returned plasticity indices in the range 37-47% which are indicative of an intermediate to high plasticity. No correction is required to account for >425 μ m content (all 100% passing 425 μ m sieve). Therefore the tested samples have a medium to high volume change potential.

Undrained shear strengths derived from the results of the standard penetration testing using the recognised empirical relationship:

$$C_{uk} = N \times f_1$$

where f_1 is a correlation factor based on the characteristic plasticity index

Using a correlation factor of 5.5 all the undrained shear strength data ranges from c_{uk} from 38.5-49.5kN/m² at 1m depth to 38.5-66kN/m² at 2.00m.

Drained (Effective) Shear Strength

The widely accepted relationship between drained shear strength and plasticity index for remoulded clays has been used to determine the effective shear strength parameters. In terms of effective stress, the shear strength of a fine-grained soil can be considered as frictional, such that $c'_k = 0$ kN/m².

Taking the characteristic plasticity index of 43% will give a characteristic effective angle of shearing resistance (ϕ_k) of 23°.

Modulus of Deformation (E_K)

Marslland (1975) gives a E_{uk}/c_{uk} ratio of 348 for glacial till giving a E_{uk} of 13.4MN/m² at 1.00mbgl rising to 22.9MN/m² at 17.00mbgl. CIRIA R 143 suggests that the drained modulus (E_{k}) should be taken as 0.75Euk. Therefore an E_{k} of 10MN/m² should be ascribed to the Peterborough Member at 1.00mbgl rising to 17MN/m² at 2.00mbgl

Coefficient of Volume Compressibility

The coefficient of volume compressibility (m_v) has been determined from the empirical relationship with the SPT N and published data for similar materials giving an m_{vk} of 0.06m²/MN which is indicative of a material of low compressibility.

10.5. Aggressive Ground Soil Chemistry

Chemical testing was carried out on eleven samples of the encountered materials in accordance with Box C10, BRE Special Digest 1. The results are summarised in Tables 8.13 and 8.14.

	BH02	BH03	BH04	BH04	BH04	BH05
Test	1.30m	2.80m	0.80m	1.80	2.80	1.80m
	РМ	РМ	РМ	РМ	РМ	РМ
pН	6.88	6.99	6.94	6.87	6.94	7.10
Soluble Sulphate (g/l)	0.4	0.46	0.32	0.54	0.61	0.66

Table 10.4: Summary of the Results of Chemical Testing for Concrete Classification

Based on the maximum determined sulphate content Table C1 of BRE SD1 (natural ground locations) gives a Design Sulphate Classification of DS-2 and an Aggressive Chemical Environment for Concrete (ACEC) Class of AC-2 assuming mobile groundwater conditions.

10.6. Characteristic Geotechnical Parameters

Based on the laboratory test results, in-situ testing and subsequent analysis a range of characteristic geotechnical parameters, which should be used in the subsequent geotechnical and foundation design calculations are presented in Table 7.3.

	Stratum	Parameter		Source	Value
	Made Ground & Topsoil	Not used in foundation desig	gn		
	·	Unit Weight D _k (kN/m ³)		BS8002	18kN/m ³
			c_{uk} (kN/m ²)	Emporiaal relationship	38.5kN/m ² to 66kN/m ²
		Undrained Shear Strength	□ _{uk} (°)	Emperical relationship with SPT	0°
		Drained Shear Strength	<i>c'_k</i> (kN/m²)	Published values for	0kN/m²
			□ 'k (°)	organic Clays	23°
	Peterborough Member	Undrained Modulus of Deformation	E _{uk} (MN/m ²)	Marsland (1975)	13.4MN/m ² to 22.9MN/m ² .
		Drained Modulus of Deformation	E'k (MN/m²)	CIRIA R 143	10MN/m2 to 17MN/m ²
		Coefficient of Volume Compressibility	<i>m_{vk}</i> (m²/MN)	Relationship with Ipk	0.06m²/MN

Table 10.5: Characteristic Geotechnical Parameters

11. FOUNDATION AND GROUND ENGINEERING

11.1. Introduction

The geotechnical assessment below relates to the details of the proposed development. It is understood that a two storey office building is to be located at the site (BH03 & BH04). A RUBB (fabrick building) is to be erected on the existing concrete slab (BH05). At the time of writing no site specific structural loads had been made available; therefore this section of the Report will take a more generic approach.

The ground investigation has shown that the site is underlain by Made Ground or Topsoil which in BH03 extends to 1.00m. The natural strata comprises the Peterborough Member (clay) extending to a maximum investigation depth of 4.45m.

Various groundwater inflows were recorded during the investigatory works. The depths and inflow rates were variable and as noted in Section 6.2.

11.2. Shallow Foundations

11.2.1. New Office Building

The indigenous Clay is considered to be a suitable bearing stratum for traditional foundations for the proposed building. An allowable bearing capacity of 100kPa is considered appropriate for a strip foundations up to 1m wide and for pad foundations up to 2 x 2m in plan for foundations extending into the firm-to-stiff or stiffer Clay.

Foundations will need to extend through the made ground and extend at least 150mm in to the indigenous Clay that has been identified in in all borehole locations. The formation should be inspected by a suitably qualified Geotechnical Engineer to ensure that consistent materials are encountered across the footprint. Hand shear vane tests can be carried out on arisings from foundation excavations to confirm the expected founding materials.

It is recommended that foundations are located in materials with similar engineering properties. Foundations should be nominally reinforced if they cross materials with different engineering properties.

The clay has been found to be of medium and high shrinkage potential. As a conservative approach all of the clay should be assumed to be of high shrinkage potential. Foundation depths, new tree planting and ground floor slab design should take this shrinkage potential into account.

Some groundwater inflow was recorded in BH02 and BH04 and therefore allowance for some minor dewatering should be taken into account for excavations in this part of the site. It should be acknowledged that groundwater levels may vary seasonally.

11.2.2. RUBB

The compressive strength of the concrete sample from BH05 is as expected and 35.5N/mm². The concrete is 165mm thick. The concrete is underlain by a granular sub-base to 0.30m and made ground extending to 0.70m.

Assessment of the suitability of this concrete for the RUBB is subject to exact loadings and structural engineers calculations.

11.3. Other Geotechnical Considerations

11.3.1. CBR Values / Road Modifications

Due to the variation of construction thicknesses and CBR results it is not possible to provide recommendations for all areas. Bespoke designs for the individual areas should be progressed using the various results, taking proposed levels into account.

It may be necessary for in situ CBR tests to be undertaken at formation, following reduction in levels.

11.3.2. Waste Classification

The results of the WAC tests should be provided to hauliers and the associated landfill sites. It would be prudent for Made Ground / Inert materials to be segregated during excavations where possible.

Further testing should be commissioned if variable materials are identified during the course of groundworks.

11.3.3. Further Investigation

No further investigation is considered necessary at this time.

12. CONCEPTUAL SITE MODEL

12.1. Sources

Following interpretation of ground investigation data, potential sources of contamination have been identified:

- Potential Asbestos Containing Materials (ACMs) within Made Ground across the site. Although asbestos was only identified in one soil sample (HP01-0.40m);
- Impacted Made Ground soils across the site, inclusive of heavy metals, PAHs and hydrocarbons.
 Note, there were no exceedances of the GAC; and,
- Currently, unquantified risk from ground gas.

Made Ground was identified to a maximum depth of 1.00mbgl.

12.2. Pathways

The key environmental pathways and exposure routes by which potentially toxic substances can reach the identified potential receptors are considered to be:

12.2.1. Direct

- Inhalation of contaminated dust;
- Ingestion; and,
- Dermal contact.

12.3. Receptors

Receptors that may be affected by the potential contamination are considered to be:

12.3.1. Human

- Future (commercial) site users
- Construction workers

12.3.2. Environmental

• None, based on the justification as laid out in Section 8.2. There is not considered to be a viable source-pathway-receptor pollutant linkage associated with environmental receptors.

13. CONTAMINATION RISK ASSESSMENT

13.1. Risk Assessment Procedure

By considering the sources, pathways and receptors (pollutant linkages), an assessment of the human health/ environmental risks is made with reference to the significance and degree of the risk. This assessment is based on consideration of whether the source contamination can reach a receptor and hence whether it is of major or minor significance.

The risk assessment has been undertaken with reference to BS 10175:2011+A1:2013 and CIRIA Document C552: Contaminated Land Risk assessment 'A Guide to Good Practice'. The risk assessment has been carried out by assessing the severity of the potential consequence, taking into account both the potential magnitude of the hazard and the sensitivity of the target, based on the categories given below.

Table 13.1. Sensitivity of I	
Category	Examples
High	Residential with gardens/Groundwater Source Protection Zone
Medium	Residential without gardens/Principal (Major) Aquifer/sensitive watercourse
Low	Commercial and industrial use/Secondary (Minor) Aquifer
Very Low	Construction and maintenance workers/non-sensitive watercourse

Table 13.1: Sensitivity of receptor

Table 13.2: Magnitude of impact

Category	Examples
Gross Impact	Heavily contaminated gasworks or industrial Site, hazardous waste landfill
Moderate Impact	Major leaks and spills from fuel infrastructure (e.g. petrol stations), domestic waste landfills
Slight Impact	Minor leaks and spills from fuel infrastructure, 'inert' waste landfills

Table 13.3: Level of severity of potential hazard

Magnituda of impost	Sensitivity of receptor							
Magnitude of impact	High	Medium	Low	Very Low				
Gross Impact	Severe	Medium	Mild	Minor				
Moderate Impact	Medium	Mild	Minor	Minor				
Slight Impact	Mild	Minor	Minor	Minor				

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given below.

Т	Table 13.4: Probability of risk definition						
	Category	Examples					
	High likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor					
	Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term					
	Low likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so					
	Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable					

The potential severity of the risk and the probability of the risk occurring have been combined in accordance with the following matrix in order to give a level of risk for each potential hazard.

Table 13.5: Level of risk fo	r potential	hazard definition
------------------------------	-------------	-------------------

Probability of risk	Severe/ High	Medium	Mild/ Low	Minor/ V. Low
High likelihood	Very High	High	Moderate	Low/Moderate
Likely	High	Moderate	Low/Moderate	Low
Low likelihood	Moderate	Low/Moderate	Low	Very Low
Unlikely	Low/Moderate	Low	Very Low	Very Low

The assessment is discussed below in terms of plausible pollutant linkages. A complete assessment of the pollutant linkages is presented in Table 13.6.

A description of these risk classifications and likely action required are given in CIRIA 552 as:

<u>Very high risk</u> – High probability that severe harm could arise to a designated receptor from an identified hazard OR there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in substantial liability. Urgent investigation and remediation are likely to be required.

<u>High risk</u> – Harm is likely to arise to a designated receptor from an identified hazard. This risk, if realised, is likely to result in substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the long term.

<u>Moderate risk</u> – It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation is normally required to clarify risks and to determine potential liability. Some remedial works may be required in the long term.

<u>Low risk</u> – It is possible that harm could arise to a designated receptor from an identified hazard but it is likely that this harm, if realised, would at worst normally be mild.

<u>Very low risk</u> – It is a low possibility that harm could arise to a designated receptor. In the event of such harm being realised it is not likely to be severe.

13.2. Pollutant Linkage Assessment

Table 13.6: Pollutant	linkage assessment

Source	Pathway	Receptor	Severity	Likelihood	Risk Level
Asbestos containing	Inhalation	Future site (commercial) users	Minor	Unlikely	Very Low
materials in soil		Construction workers	Minor	Likely	Low
Heavy metals, PAHs and hydrocarbons within Made Ground	Direct contact Ingestion	Future site (commercial) users	Minor	Unlikely	Very Low
across the site.	Inhalation	Construction workers	Minor	Likely	Low
Possible risk from Ground Gas	Migration through the underlying	Future site (commercial) users	Low	Currently und	-
	geology	Construction workers	Very Low	monitoring required	

13.2.1. Asbestos in Made Ground

It is acknowledged that asbestos was identified in just one of the test positions, although there is potential it is more widespread.

Commercial end users working at the site during day-to-day operations are unlikely to come into contact with Made Ground materials. Interaction with areas of soft landscaping are likely to be recreational (tea breaks, smoking etc.) as opposed to operational.

A veneer of topsoil was identified at the majority of locations above the underlying Made Ground creating a 'protective' layer above potential asbestos containing Made Ground. Much of the site is covered with hardstanding or buildings thus breaking the contaminant pathway.

During site development and in particular groundworks, there is potential to expose asbestos containing Made Ground soils. The risks to development construction workers from asbestos are only likely to be significant if there is very dry weather during the development that results in dust generation from the soil. It is recommended that the risk of asbestos fibres becoming airborne should be managed by the contractor throughout the proposed development. Further details are provided in Section 14.0

13.2.2. Impacted Made Ground

Although impacted soils were localised, due to the variable character of Made Ground, heavy metals, PAHs and hydrocarbons may well be present across the site.

Commercial end users working at the site during day-to-day operations are unlikely to come into contact with Made Ground materials. Interaction with areas of soft landscaping are likely to be recreational (tea breaks, smoking etc.) as opposed to operational. Much of the site is covered with hardstanding or buildings thus breaking the contaminant pathway. Furthermore, a veneer of topsoil was identified at the majority of locations above the underlying Made Ground.

During site development and in particular groundworks, there is some potential to expose impacted Made Ground soils although implementation of simple measures will enable mitigation of risks. Further details are provided in Section 14.0.

14. CONCLUSIONS AND RECOMMENDATIONS

14.1. Contamination

Risks to site end users is currently considered to be Very Low.

Risks to construction workers is currently considered to be **Low**. A number of simple mitigation measures should be implemented during development construction works.

Mitigation measures are detailed below.

14.1.1. Gas Monitoring

Gas monitoring was not carried out due to access restrictions.

As stated in Section 9.0, two to three gas monitoring visits are required to confirm the ground gas regime. Potential risks from ground gas is currently considered to be **Very Low.**

Mobilisation for gas and soil vapour monitoring can be combined with groundwater monitoring that is required for geotechnical purposes.

14.1.2. Knowledge Share

Tool Box Talks and site meetings should be conducted to make all visitors and operators aware of potential risks based on site data collected to date.

14.1.3. Watching Brief

Appraisal of exposed soils during groundworks should be made by the on-site manager or developers nominated person. If any material is noted to show visual and/ or olfactory signs of contamination, this material should be stockpiled separately and tested. A suitably qualified geo-environmental specialist should be contacted to advise what further work is required.

14.1.4. Asbestos Specific Mitigation

To be managed by the contractor but mitigation may include wetting of soil during excavation, and segregation of soils. Adequate wash and mess facilities should be made available.

14.1.5. Personal Protective Equipment (PPE)

Although acknowledged as the last line of defence, PPE should be worn to reduce residual risks. Appropriate equipment may include long-sleeved shirts and nitrile gloves.

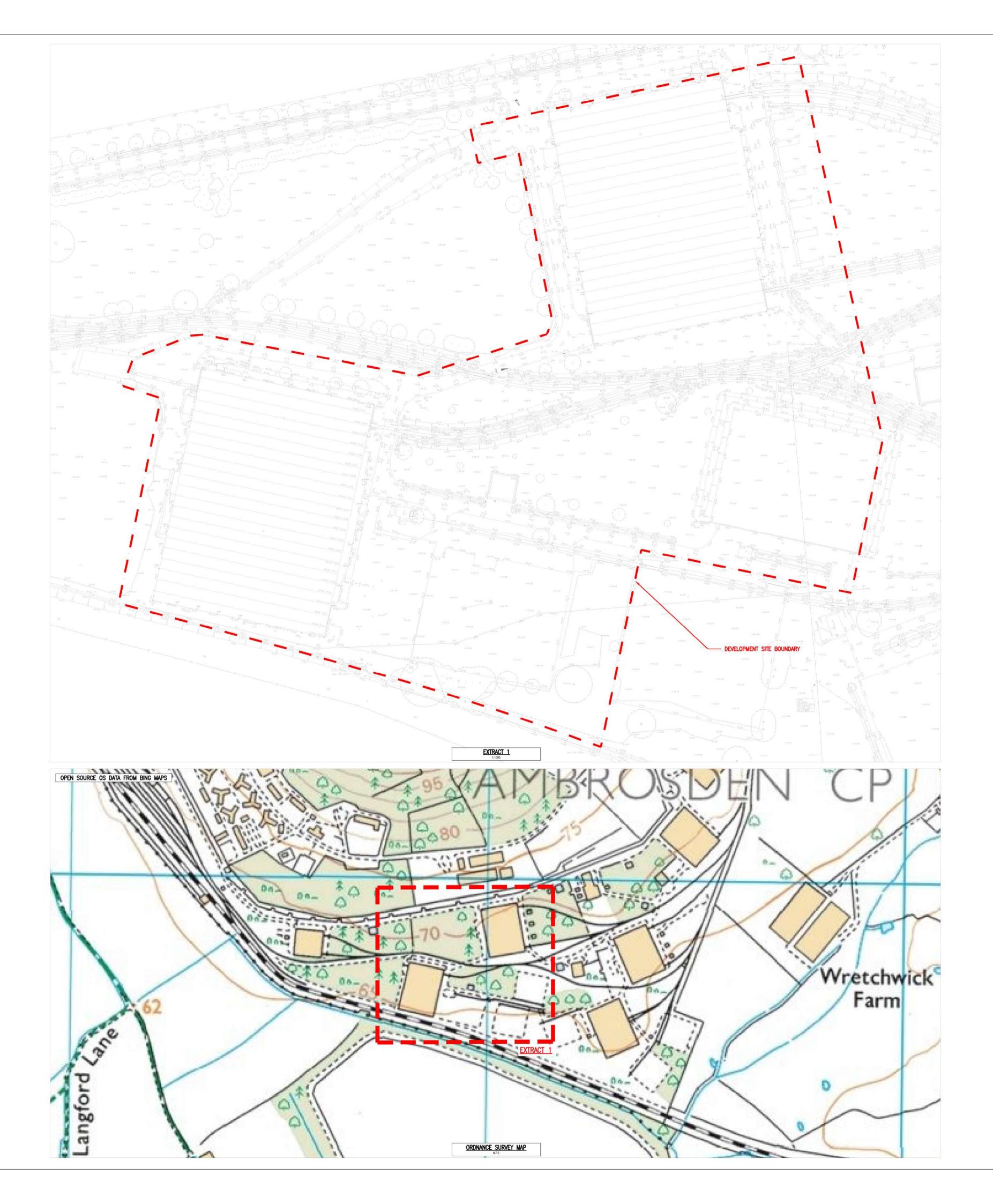
14.2. Geotechnical

The ground investigation revealed Topsoil and / or Made Ground in all borehole locations. The Made Ground was fairly limited in thickness, extending to 1.00m in WS03. Indigenous Clay was found to underlie the Made Ground or Topsoil in all locations and was proved to a maximum depth of 4.45m. The strength of the lcy was found to typically increase with depth.

The indigenous Clay is considered to be a suitable stratum for the use of traditional strip or pad foundations for the proposed two storey building. The clay has been found to be of high shrinkage potential and subsequent foundation and floor slab designs should take this shrinkability into account.

The materials encountered are not considered suitable for the use of soakaway drains for surface water disposal. It is recommended that the existing drainage network is investigated and capacity assessed to establish if surface water from the proposed building can be accommodated.

New road design should take the results of the TRL DCP and core profiles into account.


The existing external concrete slab is considered sufficient to accommodate the new RUBB fabric building, subject to Structural Engineers calculations.

Groundwater was encountered during the ground investigation appropriate mitigation should be allowed during excavations for foundations, drainage etc.

WAC testing has proved both indigenous and Made Ground to be inert. The presence of asbestos in HP01 should be further investigated should materials for disposal off site be generated from this part of the site.

FIGURE 1 – SITE LOCATION PLAN

CONFIDENTIAL • THIS DOCUMENT PRIOR WRITTEN • THIS DOCUMENT		
PRIOR WRITTEN • THIS DOCUMENT	T IS COPYRIGHT OF THE ORIGINATOR AND MUST BE TREATED AS	
	T MUST NOT BE ALTERED, REPRODUCED OR DISTRIBUTED WITH CONSENT OF THE ORIGINATOR	
	T MUST NOT BE ALTERED - THE ORIGINATOR ACCEPTS NO RESPO EPANCIES ARISING AS A RESULT OF THE ORIGINATORS INFORMA	
	NCY MUST BE REPORTED TO THE ORIGINATOR	
	THIS DOCUMENT - USE FIGURED DIMENSIONS ONLY S MUST BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF AN	Y RELAT
THIS DOCUMENT	T MUST BE READ IN CONJUNCTION WITH ALL SUPPORTING DOCU THE ORIGINATOR AND OTHER PROJECT DISCIPLINES	MENTS
INFORMATION PI	R ACCEPTS NO RESPONSIBILITY FOR THE ACCURACY OF BACKG RODUCED BY THIRD PARTIES - THIS MUST BE TREATED AS INDIC.	
	DOCUMENT ARE RESPONSIBLE FOR CHECKING WHICH REVISION	IS
	STATUS "INFORMATION" OR "PRELIMINARY", INDICATES THAT TH	
RESPONSIBILITY	/ FOR THE COMPLETENESS OF INFORMATION UNDER THIS STATU STATUS "RECORD" OR "AS BUILT" HAS BEEN PREPARED, IN PAR	IS
RELIABLE, THE C	TION FURNISHED BY OTHERS. WHILE THIS INFORMATION IS BELIE DRIGINATOR ASSUMES NO RESPONSIBILITY FOR THE ACCURACY	OF THIS
BEEN INCORPOR	AS BUILT" DOCUMENT OR FOR ANY ERRORS OR OMISSIONS THAT RATED INTO IT AS A RESULT OF INCORRECT INFORMATION PROVI R. THOSE RELYING ON THE "RECORD" OR "AS BUILT" DOCUMENT	IDED TO
ADVISED TO OB	TAIN INDEPENDENT VERIFICATION OF ITS ACCURACY	
DRAWING NOTES: CDM REGULATIONS	S 2015	-
ARE IDENTIFIED ON	ON-OBVIOUS RISKS AND RISKS WHICH ARE DIFFICULT TO MANAG N THIS DRAWING USING THE FOLLOWING SYMBOL IDENTIFIED TO RIEF ACCOMPANYING TEXT. FOR FURTHER DETAILS OF THE RISK	1
	SIGNERS, REFERENCE SHOULD BE MADE TO CDM HAZARD	
N		
A 01 0000	2/19 SITE BOUNDARY AMENDED 5/18 PRELIMINARY ISSUE	
A CL 06/02 - CLL 04/05	10 THEEMIN WITTOODE	
- CLL 04/05 REV DRN DAT		CSE IC
- CLL 04/05		CSE IC
- CLL 04/05 REV DRN DAT		CSE IC
- CLL 04/05 REV DRN DAT		CSE IC
- CLL 04/05 REV DRN DAT		CSE IC
- CLL 04/05 REV DRN DAT ORIGINATOR:		CSE IC
- CLL 04/05 REV DRN DAT ORIGINATOR:	RIDGE	CSE IC
- CLL 04/05 REV DRN DAT ORIGINATOR: PARTNERSHIP MOORSIDE ROA	TE DESCRIPTION RIDGE TEL: 0190	
- CLL 04/05 REV DRN DAT ORIGINATOR: PR	TE DESCRIPTION RIDGE TEL: 0190	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PR PARTNERSHIP MOORSIDE ROA WINCHESTER	TE DESCRIPTION RIDGE TOPERTY & CONSTRUCTION CONSULTANTS HOUSE AD	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX	TE DESCRIPTION RIDGE ROPERTY & CONSTRUCTION CONSULTANTS HOUSE AD WWW.RIDG	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PR PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT:	TE DESCRIPTION RIDGE ROPERTY & CONSTRUCTION CONSULTANTS HOUSE AD WWW.RIDG	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PR PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT:	TE DESCRIPTION RIDGE ROPERTY & CONSTRUCTION CONSULTANTS HOUSE AD WWW.RIDG	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PARTNERSHIP H MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR	TE DESCRIPTION READ RE	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PR PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT:	TE DESCRIPTION READ RE	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PARTNERSHIP H MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR	TE DESCRIPTION READ RE	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PARTNERSHIP H MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR	TE DESCRIPTION READ RE	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: PR PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR	TE DESCRIPTION READ RE	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR IN ASSOCIATION W	TE DESCRIPTION READ READ AD AD AD AD AD AD AD AD AD	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR IN ASSOCIATION W	RIDGE TEL: 0194 MOUSE AD RRUS	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR IN ASSOCIATION W	RIDGE TEL: 0194 MOUSE AD RRUS	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: EPBAR IN ASSOCIATION W	RIDGE TEL: 0194 MOUSE AD RRUS	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP I MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE:	TE DESCRIPTION	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP I MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE:	RIDGE TEL: 0194 MOUSE AD RRUS	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP I MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE:	TE DESCRIPTION	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP I MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE:	TE DESCRIPTION	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE: SITE LO	TE DESCRIPTION	62 8344
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE: SITE LO	TE DESCRIPTION	62 8344 E.CO.U
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP I MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE: SITE LO	RIDGE TEL: 0194 POPERTY & CONSTRUCTION CONSULTANTS HOUSE TEL: 0194 RRUS RRUS NHILL N HILL N HILL N HILL SE: ICSE: SCALE: VARIES INITIAL ISSUE: 04.05.2018	62 8344 E.CO.U
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE: SITE LO STATUS: CS	RIDGE TEL: 0194 WWW.RIDG RRUS NHILL N HILL OT & D4 E: ICSE: SCALE: VARIES	62 8344 E.CO.U
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D TITLE: SITE LO	RIDGE TEL: 0194 POPERTY & CONSTRUCTION CONSULTANTS HOUSE TEL: 0194 RRUS RRUS NHILL N HILL N HILL N HILL SE: ICSE: SCALE: VARIES INITIAL ISSUE: 04.05.2018	62 8344 E.CO.U
- CLL 04/05 REV DRN DAT ORIGINATOR: ORIGINATOR: PARTNERSHIP MOORSIDE ROA WINCHESTER SO23 7RX CLIENT: E P BAR IN ASSOCIATION W PROJECT: GRAVEN UNIT S D ITTLE: SITE LO CS STATUS: DRAWING NO: PROJECT: CS	RIDGES TEL: 0194 NOUSE TEL: 0194 NWW.RIDG RRUS NHILL D1 & D4 CATION PLAN SE: ICSE: SCALE: VARIES INITIAL ISSUE: 04.05.2018 PRELIMINARY	62 8344 E.CO.U

1
1

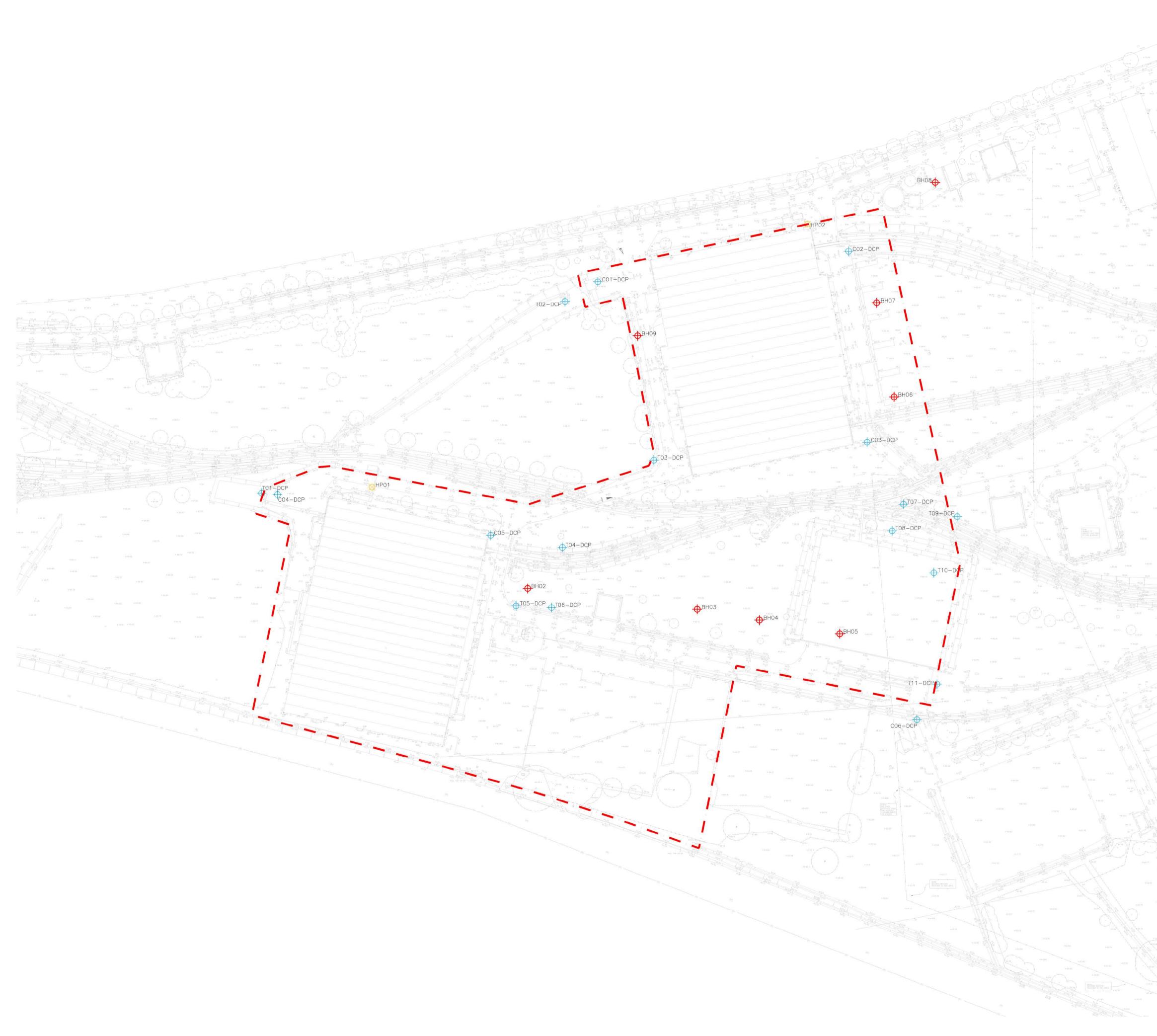
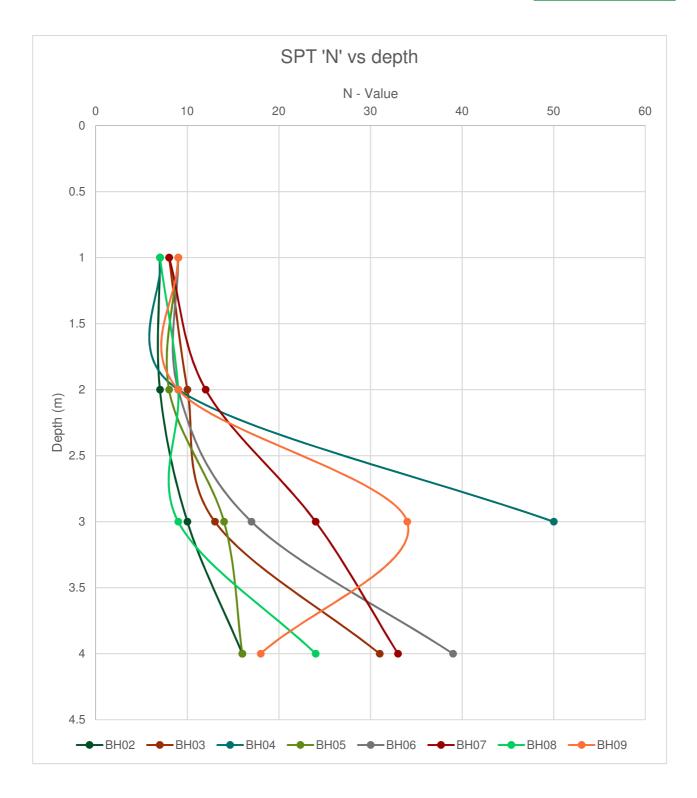


FIGURE 2 – DEVELOPMENT PLANS

FIGURE 3: TEST LOCATION PLAN



	DISCLAIMER NOTES: • THIS DOCUMENT IS COPYRIGHT OF THE ORIGINATOR AND MUST BE TREATED AS
	CONFIDENTIAL
102 o 114 V 104	THIS DOCUMENT MUST NOT BE ALTERED, REPRODUCED OR DISTRIBUTED WITHOUT PRIOR WRITTEN CONSENT OF THE ORIGINATOR
100 +345 () +345 (0)	THIS DOCUMENT MUST NOT BE ALTERED - THE ORIGINATOR ACCEPTS NO RESPONSIBILITY FOR ANY DISCREPANCIES ARISING AS A RESULT OF THE ORIGINATORS INFORMATION
1010 +78.00 2000 1020 1020 101 +78.00 1020 1020 1020 1020 +78.00 1020 1020 1020	BEING ALTERED BY OTHERS • ANY DISCREPANCY MUST BE REPORTED TO THE ORIGINATOR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ADD NOT SCALE THIS DOCUMENT - USE FIGURED DIMENSIONS ONLY ALL DIMENSIONS MUST BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF ANY RELATE
10 10 10 10 10 10 10 10 10 10	WORKS
17 27 29 27 21 21 21 21 21 21 21 21 21 21 21 21 21	THIS DOCUMENT MUST BE READ IN CONJUNCTION WITH ALL SUPPORTING DOCUMENTS PRODUCED BY THE ORIGINATOR AND OTHER PROJECT DISCIPLINES
	 THE ORIGINATOR ACCEPTS NO RESPONSIBILITY FOR THE ACCURACY OF BACKGROUND INFORMATION PRODUCED BY THIRD PARTIES - THIS MUST BE TREATED AS INDICATIVE
6 nn nn nn nn nn nn	ONLY USERS OF THIS DOCUMENT ARE RESPONSIBLE FOR CHECKING WHICH REVISION IS
has a final state of a	CURRENT
4480, 3004	THE DOCUMENT STATUS "INFORMATION" OR "PRELIMINARY", INDICATES THAT THIS DRAWING IS FOR REFERENCE PURPOSES ONLY - THE ORIGINATOR WILL ACCEPT NO
	RESPONSIBILITY FOR THE COMPLETENESS OF INFORMATION UNDER THIS STATUS • THE DOCUMENT STATUS "RECORD" OR "AS BUILT" HAS BEEN PREPARED, IN PART, BASED
	UPON INFORMATION FURNISHED BY OTHERS. WHILE THIS INFORMATION IS BELIEVED TO B
18 12 min min and	RELIABLE, THE ORIGINATOR ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OF THIS "RECORD" OR "AS BUILT" DOCUMENT OR FOR ANY ERRORS OR OMISSIONS THAT MAY HAV
800 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BEEN INCORPORATED INTO IT AS A RESULT OF INCORRECT INFORMATION PROVIDED TO THE ORIGINATOR. THOSE RELYING ON THE "RECORD" OR "AS BUILT" DOCUMENT ARE
and	ADVISED TO OBTAIN INDEPENDENT VERIFICATION OF ITS ACCURACY
	DRAWING NOTES:
And the second s	CDM REGULATIONS 2015 SIGNIFICANT OR NON-OBVIOUS RISKS AND RISKS WHICH ARE DIFFICULT TO MANAGE
enter alle din enter	ARE IDENTIFIED ON THIS DRAWING USING THE FOLLOWING SYMBOL IDENTIFIED TO THE RIGHT WITH BRIEF ACCOMPANYING TEXT, FOR FURTHER DETAILS OF THE RISKS
+ 00.00 + 00.00 + 00.00 + 00.00	IDENTIFIED BY DESIGNERS, REFERENCE SHOULD BE MADE TO CDM HAZARD
	REGISTER.
smm source in source	
- 46.9 - 46.9	
4 60.37 (K.1)	
- 10.0 - 10.0 - 10.0	BOREHOLE HAND-DUG TRIAL PIT
the same and the same and the same	DYNAMIC CONE PENETROMETER (DCP)
	PROPOSED SITE BOUNDARY
and the state of t	
TANK TO THE TANK THE	
and the second man and the	
and the set of a set of the	
and the state of t	
The second secon	
And the second s	
an and an and a set	
and and a set of the set	
and an an and and a fill allow	
the second secon	
and a set of the set o	
the first of the state	
fight for an and share	
+ 1000 + 100 m 10 m 10 m 10 m 10 m 10 m	
rease and the second	
· · · · · · · · · · · · · · · · · · ·	
10 / 10 · · · · · · · · · · · · · · · · · ·	
the standard and	
1957	
4.00,0 * 00.00 * 00.00 * 00.00	
NY ANY AN AN AN	
the man well was puts	
t and the second	A CL 06/02/19 SITE BOUNDARY UPDATED
and have a set and the set of the	- CLL 04/05/18 PRELIMINARY ISSUE REV DRN DATE DESCRIPTION CSE ICS
teres and according to the second sec	ORIGINATOR:
and and and and an art with	
	DIDOD
The second secon	RIDGE
and the second s	NIQUE
with San attended	
The second secon	PROPERTY & CONSTRUCTION CONSULTANTS
A The second sec	PARTNERSHIP HOUSE TEL: 01962 83440
	MOORSIDE ROAD WINCHESTER
	SO23 7RX WWW.RIDGE.CO.UK
	CLIENT:
	E P BARRUS
Vier	
	IN ASSOCIATION WITH:
3	
	PROJECT:
an first for the	GRAVEN HILL
College All	UNITS D1 & D4
a man file f . I have	
and a fight of the second seco	
	TITLE:
and I all the state of the stat	TEST LOCATION PLAN
the second secon	and a second provide the second s
and the second s	
A A A A A A A A A A A A A A A A A A A	
	ENG: CSE: ICSE: SCALE: 1:1000 @ A1
The survey of th	DF INITIAL ISSUE: 04.05.2018
and the state of t	STATUS:
	PRELIMINARY
and the first second of the second	DRAWING No:
	PROJECT: ORG: ZONE: LEVEL: TYPE: ROLE: NUMBER: RE
	5005462 RDG XX ST PL C 0002 A

FIGURE 4: SPT 'N' V DEPTH GRAPH

5005462-815 GROUND CONDITION ASSESSMENT

RIDGE

APPENDIX 1 – REPORT CONDITIONS

This report is produced solely for the benefit of **EP Barrus Ltd.** and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

This report is based on a visual site inspection, study of readily accessible referenced historical records, information supplied by those parties noted in the text and preliminary discussions with local and Statutory Authorities. Some of the opinions are based on unconfirmed data and information and are presented in good faith without exhaustive clarification. Where ground contamination is suspected but no physical site test results are available to confirm this, the report must be regarded as initial advice only, and further assessment should be undertaken prior to detailed activities related to the site. Where test results undertaken by others have been made available these can only be regarded as a limited sample. The possibility of the presence of contaminants, not revealed by this research cannot be discounted.

Whilst confident in the findings detailed within this report because there are no exact UK definitions of these matters, being subject to risk analysis, we are unable to give categoric assurances that they will be accepted by Authorities or Funds etc. without question, as such bodies may have unpublished, often more stringent objectives. This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to Ridge and Partners LLP. In time improved practices or amended legislation may necessitate a re-assessment.

The report is necessarily limited to those aspects of land contamination specifically reported on and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents that may occur. The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous use and abuse of the site and adjacent sites. The report concentrates on the site as defined in the report and provides an opinion on surrounding sites. If migrating pollution or contamination (past or present) exists this can only practically be better assessed following extensive on and off site intrusive investigations and monitoring.

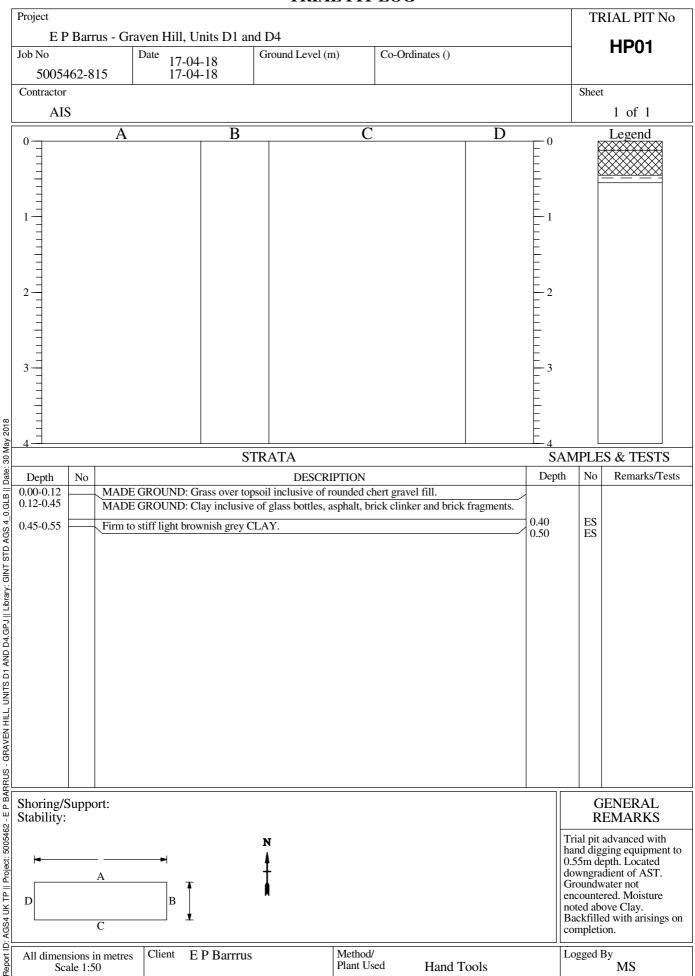
APPENDIX 2 – ENGINEERING LOGS

	Al Te		2010 ED INVES 07970 4	TIGATION SYSTE 60 427	EMS LTD			BOR	EHOLE F	REC	ORD	Borehole
	_	mail: /eb:		s@windowsamplin ndowsampling.com	-			(Wir	ndow Sa	mpli	ng)	Number
i te: arrus, G	Graven Hi	II, Bice	ster		Engineer: Ridge & Partı	ners Ltd	Drilling Equipment: Competitor 130				BH02	
lient:					Elevation m/	AOD: Ea	sting:	Northing:	Start:		Finish:	Scale:
						458	8926.00	219756.00	17/04/2	018	16/04/2018	1:50
GROU	ND WA	1		LING & IN SITU	-	Durth Dur		STR	ATA RECORD)		Sheet 1 of 1
Strike	Well	Depth (m)	Depth/Type (m)	Standard Penetration Testing	Sampler / Recovery	Depth Dep mBGL mAC	DD Key	~~	Turf over TO		Description dark brown grey s	lightly
store			0.5 ES 0.8 ES 1.30 - 1.50 2.80 - 3.00 3.80 - 4.00	N=7 (1,1/2,1,2,2) N=7 (1,2/2,1,2,2) N=10 (2,1/2,2,3,3) N=16 (3,3/3,4,4,5)	Hand dug 101mm WLS: 92mm WLS: 90% 79mm WLS: 100%				slightly grave occasional bi bitumen, bric Firm to stiff y is angular to Stiff light grey Stiff yellow bi is angular to Stiff with lithc laminated fat dusting on so CLAY.	JND: fin Illy silty rick cart k clinke ellow br sub ang y / yellow rown gra sub ang orelic de orre grey ome bec	m to stiff dark yelle CLAY with chert lib ponaceous fragme r. own gravelly silty ular chert & limes w brown mottled C avelly silty sandy (gular chert & limes velopment grading with white powde Iding surfaces (Ja grey brown thinly athered to orange	nestone nts., CLAY. Gravel tone. CLAY. Gravel tone. g to thinly rry patches & rosite?) silty
	5 / Well Ir		tion / Casir	ng Details		1010.	, AGS		S Sample isturbed Sample /ater Sample ulk Sample ndisturbed Sampl	le		WLS Windowless Sampl WS Window Sampler Depth to water strik Standing water dep

P	Al Te		07970 4					BOR	EHO	LE REC	ORD	Borehole	
		mail: ⁄eb:		s@windowsamplin ndowsampling.com	•			(Wir	ndov	v Sampli	ing)	Number	
i te: arrus, G	araven Hi	ill, Bice	ster		Engineer: Ridge & Partners Ltd					BH03			
lient:					Elevation mAOD: Easting: 459005.00			Northing: 219749.00		Start: 17/04/2018	Finish: 16/04/2018	Scale: 1:50	
GROU Strike	ND WA	TER Depth (m)	SAMPI Depth/Type (m)	LING & IN SITU Standard Penetration Testing	-	Depth Dept mBGL mAO		STR		ECORD	Description	Sheet 1 of 1	
Stepage		1.02	0.50 - 0.75 ES 1.2 ES 1.50 - 1.70 2.80 - 3.00 	N=8 (1,2/2,1,2,3) N=10 (2,2/2,2,3,3) N=13 (2,2/3,3,3,4) N=31 (3,4/5,7,9,10)	Hand dug 79mm WLS: 80% 70mm WLS: 90% 70mm WLS:				grave MAD grey chert carbo asph Firm is any Stiff v lamin dustii CLAV	elly silty CLAY. E GROUND: fir variegated cobl limestone (bou onaceous fragm alt, clinker. to stiff yellow bi gular to sub ang with lithorelic de nated fabric grey ng on some bed c. stiff dark grey ti	dark brown grey sl m to stiff dark yello bly gravelly silty CL ilder) occasional br nents iron wood frav rown gravelly silty O gular chert & limest evelopment grading y with white powde dding surfaces (Jar hinly laminated silty ed fossils on beddi	w brown / AY with ick gments CLAY. Gravel tone. to thinly ry patches & rosite?) silty y CLAY with	
	Well Ir		tion / Casi	ng Details		1010.1	AGS		S Sampl Visturbed Vater Sam Valk Samp Indisturbe	Sample nple	١	NLS Windowless Sample NS Window Sampler Depth to water strik Standing water dep Job No. X0212	

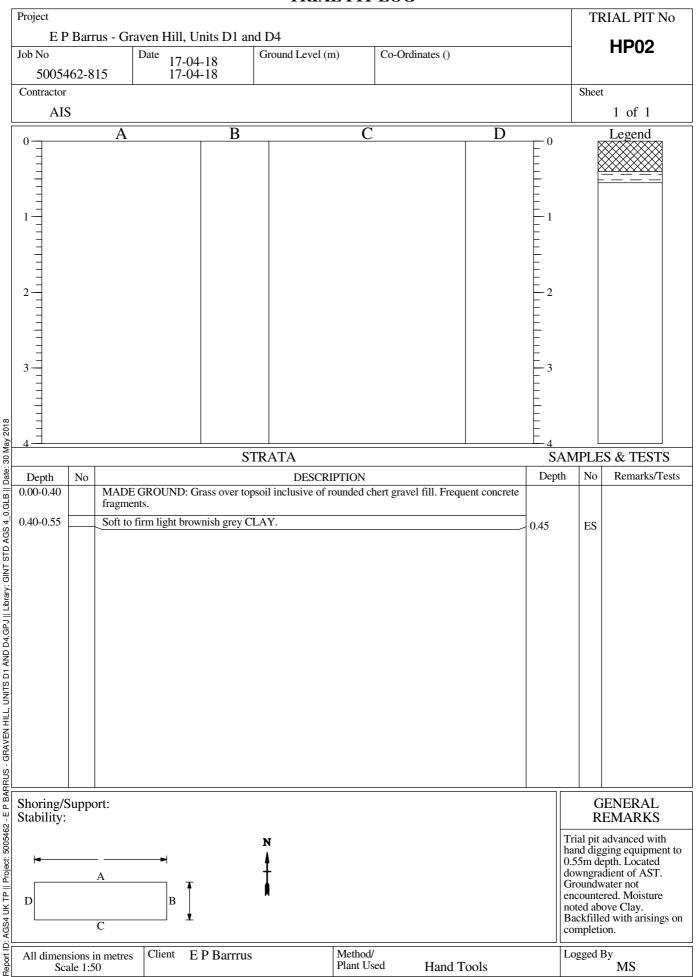
R	Tel:	07970 4					BOREH	Borehole			
AIS	Email: Web:		s@windowsamplin ndowsampling.com				(Windo	w Sampli	ng)	Number	
Site: Barrus, Grav	en Hill Bic	ester		Engineer: Ridge & Partr	ners I td	Drilling Equipment: BH04					
lient:				Elevation mAOD: Easting: Northing: Start:					Finish:	Scale:	
nent:						-	19745.00	3tart: 16/04/2018	16/04/2018	1:50	
GROUND		-	LING & IN SITU				STRATA	RECORD		Sheet 1 of 1	
Strike V	Well Depth (m)	Depth/Type (m)	Standard Penetration Testing	n Sampler / Recovery	Depth Depth mBGL mAOI	Key			Description		
Mpderate Flow		0.4 ES 0.9 1.80 - 1.00 ES 1.80 - 2.00 2.80 - 3.00 	N=7 (1,1/2,1,2,2) N=9 (1,2/2,2,2,3) 0 (20 for 30mm/0 for 0mm)	Hand dug 101mm WLS: 90% 83mm WS: 80%			gra Fin is a Fin Stil loc Stil vit	ivelly silty CLAY. In to stiff yellow br angular to sub ang Im to stiff light grey If dark grey brown ally weathered to If thinly laminated h white powdery of faces (Jarosite?)	dark brown grey sl own gravelly silty (jular chert & limest ' / yellow brown mo thinly laminated si orange brown. grey / dark brown lusting on some be silty CLAY. Sudder	CLAY. Gravel one. bttled CLAY. ilty CLAY variegated edding	
		ation / Casi	ng Details Il screen installed to	3.0m BGL.	99.0 	AGS	W Water S	ed Sample Sample	V 	VLS Windowless Sample VS Window Sampler Depth to water strike Standing water dept	

A	Te	el:	07970 4					BOREH	IOLE RECO	ORD	Borehole
	_	mail: /eb:		s@windowsampli ndowsampling.cor				(Wind	ow Sampli	ng)	Number
Site:					Engineer:				Drilling Equipr	nent:	BH05
arrus, G	Fraven Hi	II, Bice	ester		Ridge & Parti	ners Ltd			Competitor 130		Brite
lient:					Elevation m/	AOD: Eas	sting:	Northing:	Start:	Finish:	Scale:
						459	0088.00	219737.00	17/04/2018	16/04/2018	1:50
GROU	ND WA	TER	SAMPI	LING & IN SITU	TESTING			STRATA	RECORD		Sheet 1 of 1
Strike	Well	Depth (m)	Depth/Type (m)	Standard Penetratio Testing	n Sampler / Recovery	Depth Dept mBGL mAO	h D Key			Description	
si		0.17	(,		150mm core		~~~~~	-	CONCRETE rebar at ase.	0.10m BGL. Men	ibrane at
Seepage		0.20	0.3 ES					S F	ILL: cream limeston	e SUB BASE.	
								8 8	GRAVEL of flint ch	ert limestone brick	clinker.
			0.9 0.80 - 1.00 ES	N=9 (1,2/2,2,2,3)	101mm WLS:	1 1 .0		- S	Seotextile at base. Stiff grey mottled dar	k brown CLAY.	
			0.00 1.00	11-9 (1,2/2,2,2,3)	100%			F d	irm to stiff with lithou isrupted thinly lamin	elic development ated fabric grey w	grading to ith white
								р	owdery patches & d urfaces (Jarosite?) s	usting on some be	edding
										,, o <u>_</u> ,	
			1.80 - 2.00	N=8 (1,2/1,2,2,3)	92mm WLS:	22.0		- <u> </u> S	tiff dark grey brown	thinly laminated s	ilty CLAY
					80%			- la	ocally sandy & weath Occasional lignite fra	nered to orange br	rown.
							×_×_		i ocacional liginio na	9	
							×_×_×	-			
				N=14 (3,3/3,3,4,4)	79mm WLS:	33.0	×				
					100%		<u>×_×</u>		/ery stiff dark grey th	inly laminated silty	CLAY with
							××		bundant compresse		
			_				××				
			3.80 - 4.00	N=16 (2,3/3,4,4,5)	70mm WLS:	4	, <u>×_~</u> _×				
					100%		××				
							××				
						55.0					
						6					
						7)				
						8					
						9					
omarka		hetalla	tion / Casi	na Detaile		10	0				
	with arising			ny Details				-	ample bed Sample		NLS Windowless Sample NS Window Sampler
							168	W Water	Sample	-	Depth to water strike
						L	100		Sample turbed Sample	-	Standing water dept
									•		Job No. X0212


		DVANC el:	2ED INVES 07970 4	TIGATION SYSTE 60 427	EMS LTD				BOR	EHO	LE REC	ORD	Borehol
		mail: /eb:	-	s@windowsamplin idowsampling.com	-				(Wir	ndov	v Sampli	ng)	Numbe
t e: irrus, G	Graven Hi	ill, Bice	ster		Engineer: Ridge & Part	ners Lte	d				Drilling Equipr Competitor 130		BH06
ient:					Elevation m	AOD:	East	ting:	Northing:		Start:	Finish:	Scale:
			[1	4591	116.00	219863.00		17/04/2018	17/04/2018	1:50
ROU		TER		ING & IN SITU				1	STR	ATA RI	ECORD		Sheet 1 of 1
Strike	Well	Depth (m)	Depth/Type (m)	Standard Penetration Testing	a Sampler / Recovery	Depth mBGL	Depth mAOD	Key	~			Description dark brown grey s	
			0.4 ES 0.9 ES 1.20 - 1.40 2.80 - 3.00 	N=9 (2,1/2,2,2,3) N=9 (2,2/2,2,2,3) N=17 (2,2/3,4,5,5) N=39 (4,6/8,9,10,12)	Hand dug 101mm WLS: 90% 92mm WLS: 100%					grave MAD grave chert Firm Grav Stiff lamir dusti CLAY	elly silty CLAY. E GROUND: fin elly silty CLAY. G limestone conc to stiff yellow br el is angular to s with lithorelic de- nated fabric grey ng on some bed Y. stiff dark brown	n to stiff yellow bro Fravel is angular to rete brick & charco own locally gravel sub angular chert of velopment grading with white powde ding surfaces (Jan becoming dark gr with abundant co	own locally o sub angular oal. ly silty CLAY. & limestone. 1 to thinly ry patches & rosite?) silty
	5 / Well Ir Backfilled v		tion / Casiı ings.	ng Details		10	- <u>-10.0</u>	GS		S Sampl Disturbed Vater Sar Bulk Samp Indisturbe	Sample nple	-	WLS Windowless Sampl NS Window Sampler Depth to water strik Standing water dep

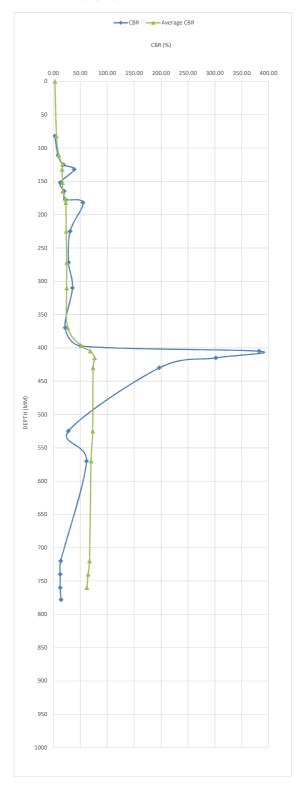
ADVANCED INVESTIGATION SYSTEMS LTD Tel: 07970 460 427									Borehol				
	_	mail: /eb:		s@windowsamplin idowsampling.com	-				(Wir	ndov	v Sampli	ng)	Numbe
i te: arrus, G	Graven Hi	ill, Bice	ster		Engineer: Ridge & Partners Ltd					Drilling Equips		BH07	
ient:					Elevation mAOD: Easting: Northing: 459104.00 219921.00					Start: 17/04/2018	Finish: 17/04/2018	Scale: 1:50	
GROU		TER	SAMPI	-ING & IN SITU	TESTING				STR	ATA R	ECORD		Sheet 1 of 1
Strike	Well	Depth (m)	Depth/Type	Standard Penetration Testing	-	Depth mBGL	Depth mAOE	Key	-			Description	
		(,	(m)			_	_				over TOPSOIL: elly silty CLAY.	dark brown grey sl	ightly
			0.3 0.30 - 0.50 0.5							MAD	E GROUND: fir	m to stiff yellow bro angular to sub and	own gravelly
oid How			U.5 ES			-	_		<u> </u>	limes	stone brick char		·
				N=8 (2,1/2,2,2,2)		1-	 1.0			is an	gular to sub and	jular chert & limest	one.
			1.20 - 1.40			-	_	××		Stiff	with lithorelic de	velopment grading	to thinly
							_	×			ing on some bec	with white powde Iding surfaces (Jar	
										CLA	τ.		
				N=12 (2,3/2,3,3,4)		2	2.0 						
							_						
						-	_						
\sim		0.65 3.00		N=24 (2,3/4,4,7,9)		3-				Verv	stiff dark brown	becoming dark gre	ev thinly
		3.00				-	_	××		lamir		with abundant cor	
							_				5		
							_						
				N=33 (5,6/6,7,9,11)		4	4.0 						
							_	×					
						-	_						
						5 —	_ 5.0						
						-	_						
							_						
						6	6.0						
						-							
						7-	_ 7.0						
							_						
							-						
						8	 8.0 						
						-	_						
						-	-						
						9							
							-						
							-						
						-	-						
marks	/ Well Ir	nstalla [:]	tion / Casiı	ng Details		10 —	-1 0.0						
	with arisin			-						S Samp Disturbed	Sample	٧	VLS Windowless Samp VS Window Sampler
							ļ	IGS		Vater Sai Bulk Sam			Depth to water stri Standing water de
											ed Sample	-	Job No. X02 ²

	ADVANCED INVESTIGATION SYSTEMS LTD Tel: 07970 460 427							BOR	Borehole			
AIS	Ema Web			s@windowsamplir idowsampling.com	-			(Wi	indow	v Sampli	ing)	Number
ite: arrus, Grave	en Hill,	Bice	ster		Engineer: Ridge & Parti	ners Ltd				Drilling Equip		BH08
lient:					Elevation m/		asting: 59134.00	Northing: 219971.00		Start: 17/04/2018	Finish: 17/04/2018	Scale: 1:50
GROUND		Depth	SAMPL Depth/Type	LING & IN SITU Standard Penetration	n Sampler /	Depth De mBGL mA			RATA RE	ECORD	Description	Sheet 1 of 1
Glove Seepage			(m) 0.3 ES 0.5 ES 0.80 - 1.00 S 1.80 - 2.00 2.80 - 3.00 ()	N=7 (1,1/2,1,2,2) N=9 (2,1/2,2,2,3) N=9 (2,1/2,2,3,2) N=24 (4,3/4,5,7,8)	Recovery Hand dug 101mm WLS: 100% 92mm WLS: 100% 70mm WLS: 90%				grave MADI locally CLAY Charc Firm 1 Stiff v thinly patch (Jaros	elly silty CLAY. E GROUND: fir y grey variegative with chert lime oal fragments. to stiff light grey with lithorelic de laminated fabr es & dusting o site?) silty CLA	y / yellow brown m evelopment grading ic grey with white n some bedding su	ow brown y gravelly silty rick cloth ottled CLAY. g to disrupted powdery urfaces silty CLAY
emarks / W				-		101(AGS	Φ Ψ	ES Sample Disturbed Water Sam Bulk Samp Undisturbe	Sample nple ole		WLS Windowless Sampl WS Window Sampler Depth to water strik Standing water dep Job No. X021


	ADVAN Tel: Email:	07970 4	TIGATION SYSTE 60 427 s@windowsamplin							Borehole Number
AIS	Web:		dowsampling.com	-			(Win	dow Sampli		
i ite: arrus, Graven	Hill, Bice	ester						Drilling Equip Competitor 130		
ilient:		1		Elevation m/		-	Northing: 219889.00	Start: 17/04/2018	Finish: 17/04/2018	Scale: 1:50
GROUND V Strike We	Danth	Depth/Type	LING & IN SITU Standard Penetration Testing	-	Depth Dep mBGL mAC	th Key	STRA	TA RECORD	Description	Sheet 1 of 1
<u></u>	(m)	(m)	resung	150mm core Hand dug			· ·	CONCRETE. Membr FILL: grey over crear Firm light grey / yello	m limestone SUB B	ASE
		0.40 - 0.90 0.8 ES	N=9 (2,2/2,2,2,3)	70mm WLS: 100%	11.(Stiff with lithorelic de thinly laminated fabri patches & dusting or (Jarosite?) silty CLA	ic grey with white po n some bedding sur	owdery
Ap denate Flow		1.50 - 1.70	N=9 (2,1/2,2,2,3)	92mm WLS: 90%	2 -2.0					
	2.28 3.00	3.50 - 3.80	N=34 (4,4/5,8,9,12)	79mm WLS: 100%	3			Weak yellow brown a SANDSTONE. Very stiff dark brown laminated silty CLAY fossils on bedding su	becoming dark gre with abundant com	y thinly
	· · · · · · · · · · · · · · · · · · ·		N=18 (3,3/3,4,4,7)	70mm WLS: 90%	4					
					5	0				
					6	ס				
					7	0				
					8	0				
					99.(
emarks / We			-		, ,u - -1 0.	AGS	● □ Dis W Wa ⊕ Bul	Sample turbed Sample ter Sample k Sample disturbed Sample	N	/LS Windowless Sample /S Window Sampler

TRIAL PIT LOG

TRIAL PIT LOG

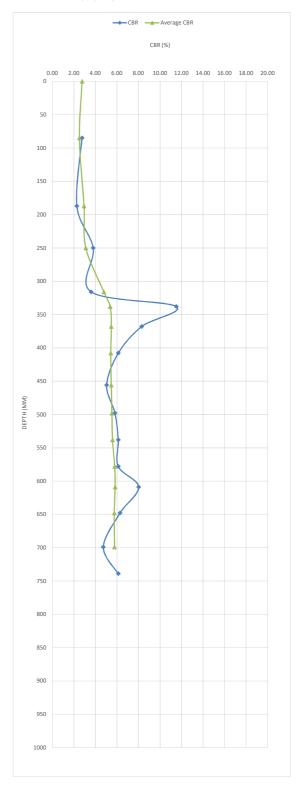


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T01 - DCP
Location	E P Barrus, Graven Hill
	NW of D4
Date	17/04/2018
Material:	Rough softstanding
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero	130		0				
1	1	212		82	82	0.4570988	2.9	2.9
1	2	241		111	29	0.9342453	8.6	5.7
1	3	255 262		125 132	14 7	1.2685427 1.5867314	18.6 38.6	10.0 17.2
1	5	282		152	20	1.1048113	12.7	17.2
1	6	282		165	13	1.3025619	20.1	16.9
1	7	307		105	12	1.3393054	21.8	17.6
1	8	312		182	5	1.7411887	55.1	22.3
5	13	355		225	8.6	1.4922351	31.1	23.3
5	18	402		272	9.4	1.4514039	28.3	23.8
5	23	440		310	7.6	1.54898	35.4	24.8
5	28	500		370	12	1.3393054	21.8	24.6
5	33	527		397	5.4	1.7058598	50.8	26.6
10	43	535		405	0.8	2.5824339	382.3	52.0
10	53	545		415	1	2.48	302.0	68.7
10	63	560		430	1.5	2.2938715	196.7	76.7
10	73	655		525	9.5	1.4465461	28.0	73.8
10	83	700		570	4.5	1.7895544	61.6	73.1
8	91	850		720	18.75	1.1344377	13.6	70.0
1	92	870		740	20	1.1048113	12.7	67.1
1	93	890		760	20	1.1048113	12.7	64.5
1	94	908		778	18	1.153177	14.2	62.3
L		L			L			
L		L			L			
L								
L								
L								
<u> </u>								
<u> </u>								
<u> </u>			-					
Remarks	1	1	1		1	1		I
Netilal K3								
l								

TEST T01 - DCP

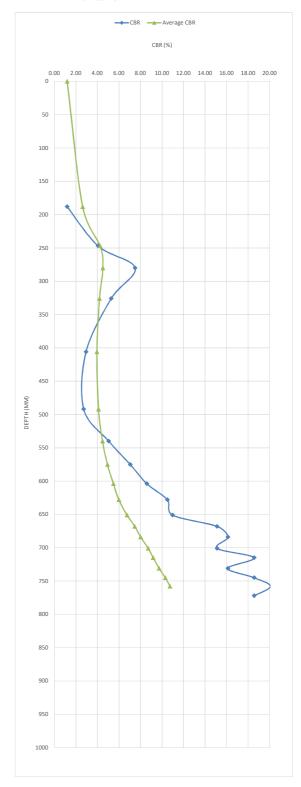


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T02 - DCP
Location	E P Barrus, Graven Hill
	NW of D1
Date	17/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero	167		0				
1	1	252		85	85	0.4406042	2.8	2.8
1	2	354		187	102	0.3569096	2.3	2.5
1	3	417		250	63	0.578097	3.8	2.9
1	4	483		316	66	0.5567421	3.6	3.1
1	5	505		338	22	1.0610592	11.5	4.8
1	6	535		368	30	0.9186828	8.3	5.4
1	7	575		408 456	40 48	0.7866226	6.1	5.5
1	8	623 665		456	48	0.702928 0.7642255	5.0	5.4
1	10	705		538	42	0.7866226	5.8 6.1	5.5 5.5
1	10	745		578	40	0.7866226	6.1	5.6
1	12	776		609	31	0.9036307	8.0	5.8
1	13	815		648	39	0.7982447	6.3	5.8
1	14	866		699	51	0.6750983	4.7	5.7
1	15	906		739	40	0.7866226	6.1	5.8
L								
L								
L								
L								
L								
L								
L				 				
L				 				
L	L	ļ						
L								
L				 				-
L								
L								
Remarks								•
1								

TEST T02 - DCP

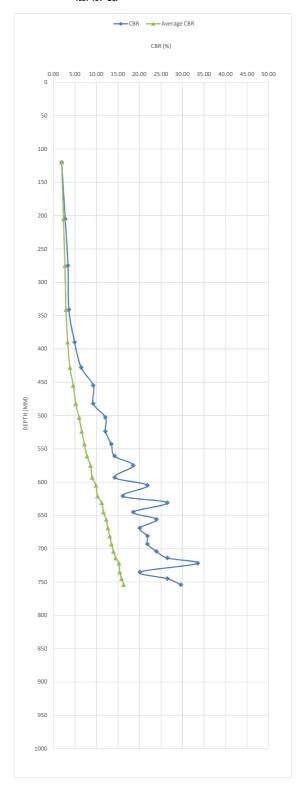


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T03 - DCP
Location	E P Barrus, Graven Hill
	SW of D1
Date	17/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)		Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
	RT POSITION:								
316	zero	140			0				
1	1	328			188	188	0.0762152	1.2	1.2
1	2	387			247	59	0.6082094	4.1	2.6
1	3	420			280	33	0.8749308	7.5	4.2
1	4	466			326	46	0.722465	5.3	4.5
1	5	546 632			406 492	80	0.4684339	2.9 2.7	4.2 3.9
1	7	632			540	86 48	0.4352351 0.702928	5.0	4.1
1	8	715			575	35	0.8479201	7.0	4.5
1	9	744			604	29	0.9342453	8.6	4.9
1	10	768			628	24	1.0211167	10.5	5.5
1	11	791			651	23	1.0406537	11.0	6.0
1	12	808			668	17	1.1794155	15.1	6.7
1	13	824			684	16	1.2072452	16.1	7.5
1	14	841			701	17	1.1794155	15.1	8.0
1	15 16	855 871			715 731	14 16	1.2685427	18.6	8.7 9.2
1	16	871 885			731	16	1.2072452 1.2685427	16.1 18.6	9.2
1	17	898			745	14	1.3025619	20.1	9.7
1	19	912		-	738	13	1.2685427	18.6	10.3
L									
L			ļ	L					
H									
L									
H				-					
L									
L			ļ	L					
<u> </u>									
L									
L									
Remarks									
1									

TEST T03 - DCP

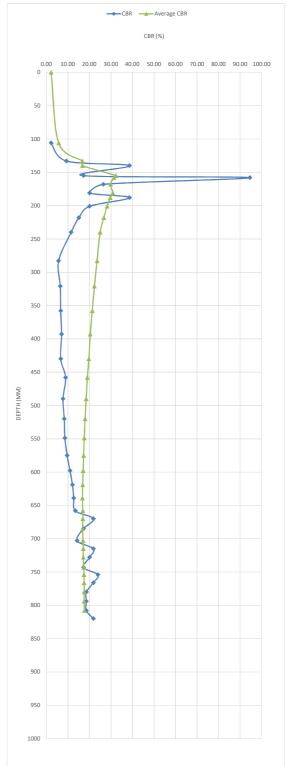


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T04 - DCP
Location	E P Barrus, Graven Hill
	East of D4
Date	16/04/2018
Material:	Grass
Level	GL

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
1 1 270 120 120 0.283054 1.9 1.9 1.9 1 2 355 205 85 0.440042 2.8 2.3 1 3 425 275 70 0.5297314 3.4 2.7 1 4 491 341 66 0.557621 3.6 2.9 1 5 540 390 49 0.693627 4.9 3.3 1 6 578 428 8.001067 6.5 3.8 1 0.40045 2.3 4.65 2.7 0.950485 9.3 4.6 1 1.0 674 524 2.1 1.082142 12.1 6.6 1 1.1 693 575 1.4 1.2685427 1.8.6 8.6 1 1.4 743 593 18 1.15377 14.2 9.0 1 1.1 1.20 7.1 6.61 1.1 3.9<	STAF								
1 2 335 m 205 85 0.4406042 2.8 2.3 1 4 491 341 66 0.5507341 3.6 2.9 1 5 540 390 49 0.6934627 49 33 1 6 578 428 38 0.801657 6.5 3.8 1 7 605 455 27 0.9670485 9.3 46.6 1 8 632 482 27 0.9670485 9.3 45.6 1 10 674 524 21 1.0624142 12.1 66.6 1 11 693 52 575 14 1.1285147 13.4 7.2 1 13 725 575 14 1.2685427 13.6 8.6 1 14 743 593 18 1.153177 14.2 7.8 1 15 775 661 12 1.339004 21.8 19.9 1 16 771 621 16 1.207432 16.1 116 1 17 781 645 14 1.268427 18.6 116 1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						-			
1 4 491 491 341 66 0.5567421 3.6 2.9 1 5 540 390 49 0.694627 4.9 3.3 1 6 578 428 38 0.801687 6.5 3.8 1 7 605 482 27 0.9670485 9.3 4.6 1 8 632 482 27 0.9670485 9.3 5.2 1 9 653 53 21 1.0824142 12.1 6.6 1 10 674 544 121 1.0824142 12.1 6.6 1 11 693 19 1.128374 13.4 7.2 1 12 711 561 18 1.138177 14.2 7.8 1 13 725 605 12 1.289427 15.6 11.6 1 16 771 621 16 1.207452 16.1 10.3 1 15 755 14 1.268427 18.6 11.6 1 19 805 665 14 1.268427 18.6 11.6 1 10 1.33 3025									
1 5 540 1 390 490 0.0834627 4.9 3.3 1 6 578 428 38 0.801687 6.5 3.8 1 8 652 485 27 0.9670485 9.3 5.2 1 9 653 503 21 1.082142 1.2.1 6.6 1 10 674 554 21 1.082142 1.2.1 6.6 1 11 693 563 19 1.128374 1.3.4 7.2 1 12 711 575 14 1.268427 1.8.6 8.6 1 13 725 665 12 1.339074 21.8 9.9 1 15 757 665 14 1.268427 1.8.6 11.1 1 13 761 161 10 1.4339054 21.8 1.1 1 13 831 661 10 1.339054 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1 7 605 455 27 0.9870485 9.3 4.6 1 8 632 482 27 0.9870485 9.3 5.2 1 9 653 503 21 1.0824142 12.1 6.6 1 10 674 524 21 1.0824142 12.1 6.6 1 11 693 543 19 1.128374 13.4 7.2 1 13 775 575 14 1.268427 18.6 8.6 1 14 743 593 13 1.15177 14.2 9.9 1 15 755 14 1.268427 18.6 16.6 16.1 1 15 755 14 1.268427 18.6 16.6 16.1 1 15 755 165 14 1.268427 18.6 11.6 1 15 755 165 14 1.268427 18.6 11.2 1 13 81 661 11 1.393054 21.8 13.1 1 20 831 661 13 1.393054 21.8 13.1 1 21 85		5			390				3.3
1 8 632 422 27 0.9670485 9.3 5.2 1 10 674 534 21 1.082442 121.1 6.6 1 11 693 534 19 1.128357 14.2 7.8 1 12 711 561 18 1.153177 14.2 7.8 1 14 743 593 18 1.153177 14.2 90 1 15 755 605 12 1.339054 21.8 90.3 1 16 771 611 10 1.4232 26.5 11.2 1 18 795 645 14 1.8684 11.4 1.268427 13.8 11.2 1 20 819 668 11 1.302519 20.1 12.7 1 21 831 663 12 1.339054 21.8 13.1 1 23 854 774 10 1.423 26.5 14.5 1 23 855 775 <	1	6	578		428	38	0.8101687	6.5	
1 9 653 503 21 1.082442 21.1 6.0 1 11 693 543 19 1.1082442 12.1 6.6 1 11 693 543 19 1.128374 7.1 7.8 1 12 711 551 18 1.15377 14.2 7.8 1 15 755 605 12 1.339304 2.1.8 9.9 1 16 771 621 16 1.07422 16.1 10.3 1 17 781 661 10 1.42 2.8.9 11.5 1 18 795 665 11 1.379247 2.8.9 11.2 1 18 795 665 11 1.379247 2.8.9 12.3 1 20 819 669 13 1.302549 2.8.9 12.7 1 22 843 693 12 1.339054 2.8.9 14.3 1 26 852 735 13 1.02549		-							
1 10 674 534 21 1.0287442 121 16.6 1 11 693 543 19 1.128374 13.4 77.2 1 12 711 561 18 1.15317 14.2 7.8 1 13 725 575 14 1.2685427 18.6 8.6 1 14 743 593 18 1.15317 14.2 9.0 1 15 755 605 12 1.339054 21.8 9.9 1 16 771 621 16 10.3 1.202427 18.6 11.6 1 19 806 656 11 1.2832054 21.8 13.3 1 20 819 669 13 1.3025619 20.1 12.3 1 21 831 661 11 1.302479 23.9 14.2 1 22 843 674 11 1.3									
1 11 693 543 19 1.128374 13.4 7.2 1 13 725 575 14 1.15317 14.2 7.8 1 13 725 575 14 1.268427 18.6 86 1 14 743 593 18 115317 14.2 90 1 15 755 605 12 1.339054 21.8 99 1 16 771 621 16 1.207252 16.1 103 1 19 806 656 11 1.3792479 23.9 11.3 1 20 819 669 13 1.305519 20.1 12.7 1 21 831 661 12 1.339054 21.8 13.1 1 22 843 793 13 1.305519 20.1 12.7 1 24 864 714 10 1.423 26.5 15.8 1 27 955 745 13 1.305249		-							
1 12 711 561 18 1.153177 14.2 7.8 1 14 743 595 14 1.265427 18.6 8.6 1 14 743 593 18 1.153177 14.2 9.0 1 15 755 605 12 1.339054 21.8 9.0 1 16 771 621 16 1.07142 16.1 10.3 1 17 781 631 10 1.423 26.5 11.2 1 19 806 656 11 1.205427 18.6 11.6 1 20 819 669 13 1.302561 20.1 12.7 1 21 831 681 12 1.339054 21.8 13.5 1 23 854 704 11 1.372479 23.9 14.0 1 23 855 735 13 13.02561 20.6 15.6 1 24 864 744 9 1.473657									
1 13 725 14 1.269427 18.6 8.6 1 14 743 575 605 12 1.339754 21.8 99 1 15 755 605 12 1.339754 21.8 99 1 16 771 621 16 1.07422 16.1 103 1 17 781 661 11 1.379247 28.9 12.3 1 18 795 665 11 1.379247 23.9 12.3 1 20 819 669 13 1.3025619 20.1 12.7 1 21 831 663 12 1.339054 21.8 13.1 1 22 843 693 12 1.339054 21.8 13.1 1 26 85 735 13 1.3025619 20.1 15.2 1 26 85 735 13 1.3025619 20.1 15.2 1 27 895 745 10 1.423									
1 14 743 593 18 1.153177 14.2 90 1 15 755 605 12 1.3390304 21.8 99 1 16 771 621 16 1.207352 16.1 103 1 17 781 631 10 1.423 26.5 11.2 1 18 795 645 14 1.208427 18.6 11.6 1 19 806 656 11 1.3793479 23.9 14.3 1 21 831 681 12 1.339304 21.8 13.3 1 22 843 693 12 1.339304 21.8 13.3 1 23 854 704 11 1.3792479 23.9 140 1 23 864 714 10 1423 26.5 15.5 1 23 864 714 10 1423 26.5 15.5 1 28 943 773 10 1.423 26.									
1 16 771 621 16 1.2072452 16.1 10 1 17 781 663 10 1.423 26.5 11.2 1 18 795 665 11 1.2885427 18.6 11.6 1 20 819 666 11 1.3792479 23.9 12.3 1 21 831 661 12 1.339054 21.8 13.5 1 22 843 693 12 1.339054 21.8 13.5 1 23 854 704 11 1.3792479 23.9 14.0 1 24 864 71.4 10 1.423 26.5 14.5 1 25 872 722 8 1.5254339 31.5 15.2 1 26 885 735 13 1.302567 29.6 16.8 1 29 91.3 763 9 1.4713657 29.6 17.5 1 31 922 7782 9 1.4713657 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1 17 781 631 10 1432 26.5 11.2 1 18 795 645 14 1.268427 18.6 11.6 1 19 806 656 13 1.3025619 20.1 12.3 1 20 819 669 13 1.3025619 20.1 12.3 1 21 831 681 12 1.3339054 21.8 13.3 1 22 843 693 12 1.3339054 21.8 13.5 1 23 854 704 11 1.423 26.5 145 1 25 872 722 8 1.524339 35.5 15.5 1 28 904 754 9 1.4713657 29.6 163 1 30 932 773 10 1.423 26.5 15.4 1 31 932 782 9 1.4713657 29.6<	1	15	755		605	12	1.3393054	21.8	9.9
1 18 795 645 14 1.268427 13.6 11.6 1 19 806 656 13 1.3025619 20.1 12.7 1 21 831 681 12 1.333054 21.8 13.1 1 22 843 693 12 1.333054 21.8 13.1 1 23 854 704 11 1.3792479 23.9 14.0 1 23 854 704 11 1.3792479 23.9 14.3 1 23 854 714 10 1.423 26.5 14.5 1 25 872 772 8 1.524339 33.5 15.5 1 26 885 773 10 1.423 26.5 17.5 1 30 923 773 10 1.423 26.5 17.5 1 31 953 803 10 1.423 26.5 17.5 1 32 943 7793 11 1.3792479	1				÷==				10.3
1 19 806 666 11 1.3792479 23.9 12.3 1 20 819 669 13 1.3025619 20.1 12.7 1 21 831 669 12 1.3333054 21.8 13.1 1 22 843 693 12 1.3333054 21.8 13.5 1 23 854 7144 10 1.423 25.5 14.5 1 25 872 722 8 1.5254339 33.5 15.2 1 26 885 735 13 1.3025619 20.1 15.4 1 27 895 745 10 1.423 26.5 15.8 1 30 923 773 10 1.423 26.5 17.1 1 31 932 7782 9 1.4713657 29.6 17.5 1 32 953 803 10 1.423 26.5 18.0 1 33 953 803 10 1.423								26.5	11.2
1 20 819 669 13 1.3025619 20.1 12.7 1 21 831 681 12 1.333054 21.8 13.1 1 22 843 693 12 1.333054 21.8 13.5 1 23 854 704 11 1.3792479 23.9 14.0 1 24 864 714 10 1.423 26.5 14.5 1 25 872 722 8 1.524339 33.5 15.2 1 26 885 735 13 1.302519 20.1 15.4 1 29 913 763 9 1.471357 29.6 16.8 1 30 923 773 10 1.423 26.5 17.5 1 31 992 782 9 1.471357 29.6 17.5 1 32 943 793 11 1.372479 23.9 17.7 1 33 953 803 10 1.6274941									
1 21 831 681 12 1.3393054 21.8 131.1 1 22 843 693 12 1.3393054 21.8 131.5 1 23 854 704 11 1.3792479 23.9 14.0 1 24 864 714 10 1.423 26.5 145.5 1 25 872 722 8 1.5254339 33.5 152 1 26 885 735 13 1.3025619 20.1 154 1 28 904 754 9 1.4713657 29.6 163 1 30 923 773 10 1.423 26.5 158 1 31 992 782 9 1.4713657 29.6 175 1 32 943 773 11 1.3792479 23.9 177 1 33 953 803 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-					
1 22 843 693 12 1.3393054 21.8 13.5 1 23 854 704 11 1.379279 23.9 14.0 1 24 864 714 10 1.423 26.5 14.5 1 25 872 722 8 1.525439 33.5 152.5 1 26 885 735 13 1.302519 20.1 154.5 1 27 895 745 10 1.423 26.5 158.5 1 28 904 773 9 1.4713657 29.6 168.8 1 30 92.3 773 10 1.423 26.5 17.5 1 31 93.2 773 10 1.423 26.5 18.0 1 33 95.9 803 10 1.423 26.5 18.0 1 34 95.9 80.9 6 1.6574941 45.4 18.8 1 34 95.9 9 9 1.6574941				-					
1 23 854 704 11 1.3792479 23.9 14.0 1 24 864 714 10 1.423 26.5 14.5 1 25 872 722 8 1.524339 33.5 15.2 1 26 885 735 13 1.302661 20.1 15.4 1 27 895 745 10 1.423 26.5 15.8 1 28 904 754 9 1.4713657 29.6 16.8 1 30 92.3 773 10 1.423 26.5 17.1 1 31 932 773 10 1.423 26.5 17.5 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941									
1 24 864 714 10 1.423 26.5 14.5 1 25 872 722 8 1.5254339 33.5 15.2 1 26 885 735 13 1.3026619 20.1 15.4 1 27 895 745 10 1.423 26.5 15.8 1 28 904 753 9 1.4713657 29.6 16.8 1 30 923 773 10 1.423 26.5 17.1 1 31 932 773 10 1.473657 29.6 16.3 1 33 953 803 10 1.473657 29.6 17.5 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 803 10 1.423 26.5 18.0 1 34 959 803 10 1.454 18.									
1 25 872 722 8 1.525439 33.5 15.2 1 26 885 735 13 1.3025619 20.1 15.4 1 27 895 745 10 1.423 26.5 15.8 1 28 904 754 9 1.4713657 29.6 16.8 1 29 913 763 9 1.4713657 29.6 15.8 1 30 923 773 10 1.423 26.5 17.1 1 31 932 773 10 1.423 26.5 17.1 1 32 943 793 11 1.3792479 23.9 17.7 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 18.8 1 1 1 1 1 1 1 1 1 1 1 1 <									
1 27 895 745 10 1.421 26.5 15.8 1 28 904 754 9 1.4713657 29.6 16.8 1 30 923 773 10 1.423 26.5 17.1 1 31 992 782 9 1.4713657 29.6 175 1 32 943 793 11 1.3792479 23.9 17.7 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 -	1	-	872		722	8	1.5254339	33.5	15.2
1 28 904 754 9 1.4713657 29.6 163 1 30 923 773 10 1.423 26.5 17.1 1 31 922 773 10 1.423 26.5 17.1 1 31 922 773 10 1.423 26.5 17.5 1 32 943 793 11 1.3792479 23.9 17.7 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 18.8 1 1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1 1.1<					735				15.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
1 30 923 773 10 1.423 26.5 17.1 1 31 932 782 9 1.471657 29.6 17.5 1 33 953 793 11 1.3792479 23.9 17.7 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 34 959 809 6 1.6574941 45.4 18.8 1						-			
1 31 932 782 9 1.4713657 29.6 17.5 1 32 943 793 11 1.392499 23.9 17.7 1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 1 1 1 1.1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1 33 953 803 10 1.423 26.5 18.0 1 34 959 809 6 1.6574941 45.4 18.8 1 1.674941 45.4 18.0 1.6574941 45.4 18.0 1 1.6774941 45.4 18.0 1.6574941 45.4 18.0 1 1.6774941 45.4 18.0 1.6574941 45.4 18.0 1 1.6774941 45.4 1.6574941 45.4 18.0 1 1.6774941 45.4 1.6574941 45.4 1.6574941 1 1.6774941									
1 34 959 809 6 1.6574941 45.4 18.8 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I									18.0
Image: sector	1	34	959		809	6	1.6574941	45.4	18.8
Image: sector									
Image: Constraint of the second se									
Image: Sector of the sector									
Image: Sector of the sector									
Image: sector of the sector									-
Image: Section of the section of t									
Image: second									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: Section of the section of t									
Image: Constraint of the second se					 				
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Sector of the sector					 				
Image: Constraint of the second se									
Image: sector of the sector									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Sector of the sector									
Image: Section of the section of t									
Image: Section of the section of t									
Image: Constraint of the second sec						1			
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second sec									
Image: Constraint of the second sec									
Remarks									
Remarks					 				
Remarks					 				
	Remarks					•			

TEST T04 - DCP

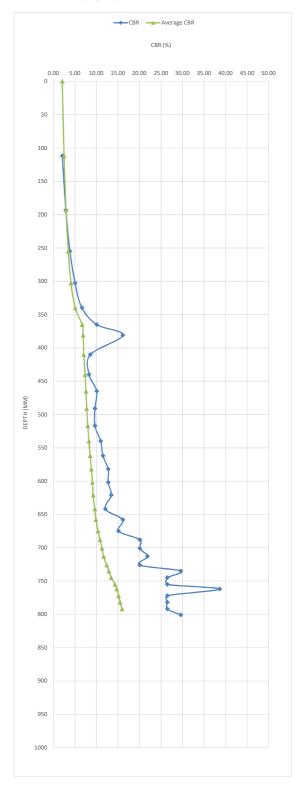


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T05 - DCP
Location	E P Barrus, Graven Hill
	East of D4
Date	16/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (9
STA	RT POSITION:							
	zero	142		0				
1	1	248		106	106	0.3392517	2.2	2.2
1	2	275		133	27	0.9670485	9.3	5.7
1	3	282		140	7	1.5867314	38.6	16.7
1	4	297		155	15	1.2368715	17.3	16.8
1	5	300		158	3	1.9756828	94.6	32.4
1	6	310		168	10	1.423	26.5	31.4
1	7	323		181	13	1.3025619	20.1	29.8
1	8	330		188	7	1.5867314	38.6	30.9
1	9	343		201	13	1.3025619	20.1	29.7
1	10	360		218	17	1.1794155	15.1	28.2
1	11	382		240	22	1.0610592	11.5	26.7
1	12	425		283	43	0.7534238	5.7	25.0
1	13	463		321	38	0.8101687	6.5	23.5
1	14	500		358	37	0.8224108	6.6	22.3
1	15	535		393	35	0.8479201	7.0	21.3
1	16	572		430	37	0.8224108	6.6	20.4
1	17	600		458	28	0.950354	8.9	19.7
1	18	632		490	32	0.8890565	7.7	19.0
1	19	662		520	30	0.9186828	8.3	18.5
1	20	691		549	29	0.9342453	8.6	18.0
1	21	717		575	26	0.9843732	9.6	17.6
1	22	740		598	23	1.0406537	11.0	17.3
1	23	761		619	21	1.0824142	12.1	17.1
1	24	781		639	20	1.1048113	12.7	16.9
1	25	800		658	19	1.1283574	13.4	16.7
1	26	812		670	12	1.3393054	21.8	16.9
1	27	827		685	15	1.2368715	17.3	17.0
1	28	845		703	18	1.153177	14.2	16.9
1	29	857		715	12	1.3393054	21.8	17.0
1	30	870		728	13	1.3025619	20.1	17.1
1	31	885		743	15	1.2368715	17.3	17.1
1	32	896		754	11	1.3792479	23.9	17.3
1	33	908		766	12	1.3393054	21.8	17.5
1	34	922		780	14	1.2685427	18.6	17.5
1	35	936		794	14	1.2685427	18.6	17.5
1	36	950		808	14	1.2685427	18.6	17.6
1	37	962		820	12	1.3393054	21.8	17.7
								İ
								1
								1
								1
								1
								1
								1
				-				<u> </u>
								t
				-				<u> </u>
								t
								<u> </u>
				-				<u> </u>
								t
								ł
				-				
								<u> </u>
			L	 l	l			
								L
emarks								

TEST T05 - DCP

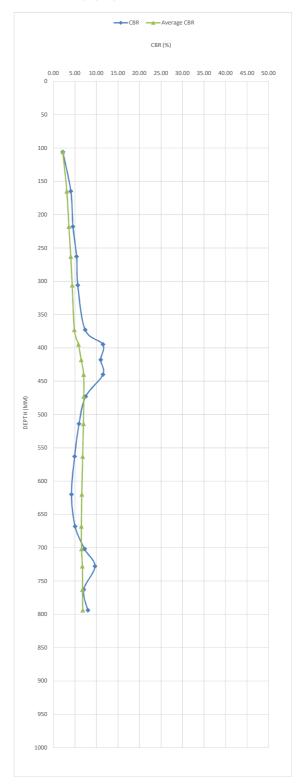


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T06 - DCP
Location	E P Barrus, Graven Hill
	East of D4
Date	16/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero	170		0				
1	1 2	282 363		112 193	112 81	0.3139766	2.1 2.9	2.1 2.5
1	3	425		255	62	0.585442	3.8	2.5
1	4	473		303	48	0.702928	5.0	3.5
1	5	510		340	37	0.8224108	6.6	4.1
1	6	535		365	25	1.0023774	10.1	5.1
1	7	551		381	16	1.2072452	16.1	6.7
1	8	580		410 440	29 30	0.9342453	8.6	6.9 7.1
1	9 10	610 635		440	30	0.9186828 1.0023774	8.3 10.1	7.1
1	10	661		491	26	0.9843732	9.6	7.6
1	12	687		517	26	0.9843732	9.6	7.7
1	13	710		540	23	1.0406537	11.0	8.0
1	14	732		562	22	1.0610592	11.5	8.2
1	15	752		582	20	1.1048113	12.7	8.5
1	16 17	772 791		602 621	20 19	1.1048113 1.1283574	12.7 13.4	8.8 9.1
1	17	812		642	21	1.0824142	13.4	9.1
1	19	828		658	16	1.2072452	16.1	9.6
1	20	845		675	17	1.1794155	15.1	9.9
1	21	858		688	13	1.3025619	20.1	10.4
1	22	871		 701	13	1.3025619	20.1	10.8
1	23	883		713	12	1.3393054	21.8	11.3
1	24 25	896 905		 726	13 9	1.3025619 1.4713657	20.1 29.6	11.7 12.4
1	25	905		 745	10	1.4713657	29.0	12.4
1	27	925		755	10	1.423	26.5	13.4
1	28	932		762	7	1.5867314	38.6	14.3
1	29	942		772	10	1.423	26.5	14.7
1	30	952		782	10	1.423	26.5	15.1
1	31 32	962 971		792 801	10 9	1.423 1.4713657	26.5 29.6	15.5 15.9
1	32	571		801	3	1.4/1303/	29.0	13.5
<u> </u>				 				
					L			
L								
<u> </u>								
<u> </u>				 				
Remarks								
Actual KS								
1								
8								

TEST TO6 - DCP

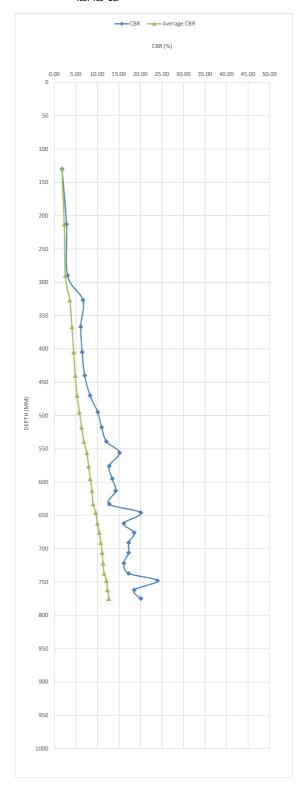


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T07 - DCP
Location	E P Barrus, Graven Hill
	Eastern area of site
Date	16/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero			0				
1	1	238		106	106	0.3392517	2.2	2.2
1	2	297 350		165 218	59 53	0.6082094 0.6574404	4.1 4.5	3.1 3.6
1	4	395		218	45	0.7325544	5.4	4.0
1	5	438		306	43	0.7534238	5.7	4.4
2	7	505		373	33.5	0.8680276	7.4	4.9
1	8	527		395	22	1.0610592	11.5	5.8
1	9	550		418	23	1.0406537	11.0	6.5
1	10	572		 440	22	1.0610592	11.5	7.0
1	11	605		473	33	0.8749308	7.5	7.1
1	12 13	646 695		514 563	41 49	0.7752875 0.6934627	6.0 4.9	7.0
1	13	752		620	57	0.6934627	4.9	6.6
1	15	800		668	48	0.702928	5.0	6.5
1	16	834		702	34	0.8612268	7.3	6.5
1	17	860		728	26	0.9843732	9.6	6.7
1	18	895		763	35	0.8479201	7.0	6.8
1	19	926		794	31	0.9036307	8.0	6.8
L		<u> </u>						
L								ļ
<u> </u>				 				<u> </u>
-								
L								ļ
L								ļ
								-
Remarks			-	-				

TEST T07 - DCP

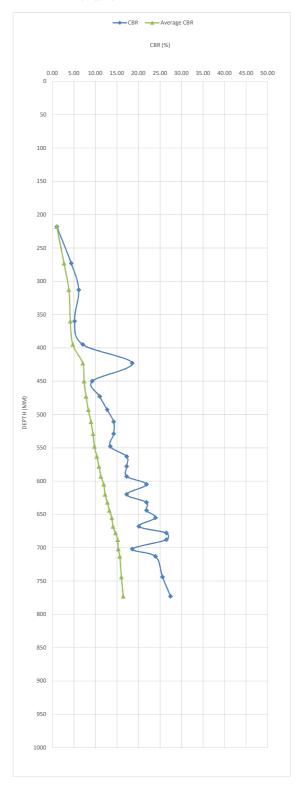


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T08 - DCP
Location	E P Barrus, Graven Hill
	Eastern area of site
Date	16/04/2018
Material:	Grass
Level	GL

1 1 1	RT POSITION: zero							
1								
1		130		0				
1	1	260		130	130	0.2455619	1.8	1.8
	2	343		213	83	0.4515345	2.8	2.3
	3	420		290	77	0.4859793	3.1	2.6
1	4	457		327	37	0.8224108	6.6	3.6
1	5	497		367	40	0.7866226	6.1	4.1
1	6	535 570		405 440	38 35	0.8101687 0.8479201	6.5 7.0	4.5 4.8
1	8	600		440	30	0.9186828	8.3	4.8
1	9	625		495	25	1.0023774	10.1	5.8
1	10	648		518	23	1.0406537	11.0	6.3
1	10	669		539	21	1.0824142	12.1	6.8
1	12	686		556	17	1.1794155	15.1	7.5
1	13	706		576	20	1.1048113	12.7	7.9
1	14	725		595	19	1.1283574	13.4	8.3
1	15	743		613	18	1.153177	14.2	8.7
1	16	763		633	20	1.1048113	12.7	9.0
1	17	776		646	13	1.3025619	20.1	9.6
1	18	792		662	16	1.2072452	16.1	10.0
1	19	806		676	14	1.2685427	18.6	10.4
1	20	821		691	15	1.2368715	17.3	10.8
1	21	836		706	15	1.2368715	17.3	11.1
1	22	852		722	16	1.2072452	16.1	11.3
1	23	867		737	15	1.2368715	17.3	11.6
1	24	878		748	11	1.3792479	23.9	12.1
1	25	892		762	14	1.2685427	18.6	12.3
1	26	905		775	13	1.3025619	20.1	12.6
								ļ
								ļ
								<u> </u>
								<u> </u>
		L						
								<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
								ł
								ł
								-
								<u> </u>
								ł
								ł
								t
								ł
								ł
								<u> </u>
emarks					•			h

TEST T08 - DCP

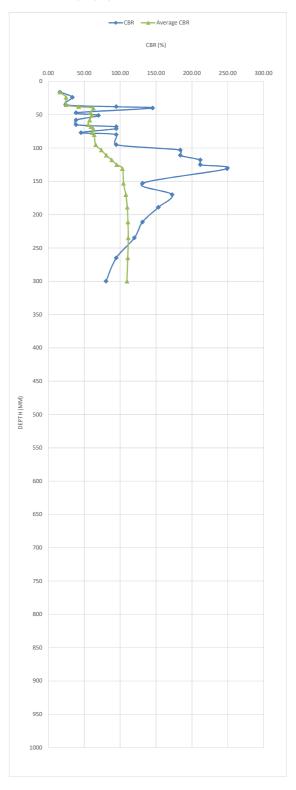


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T09 - DCP
Location	E P Barrus, Graven Hill
	Eastern area of site
Date	16/04/2018
Material:	Grass
Level	GL

STAT FOSITION: 0 0 0 0 0 1 1 330 218 0.002.515 1.0.0 1.0 1 3 445 313 40 0.7865.286 6.1 3.8 1 4 442 360 47 0.712526 5.2 4.2 1 5 557 395 35 0.647901 7.0 4.7 1 5 552 433 1.4 1.28527 1.6 1.3 3.1 1 10 652 473 2.0 1.048113 12.7 8.4 1 11 661 520 1.8 1.13177 1.42 9.4 1 13 660 563 13 1.13177 1.42 9.4 1 14 661 520 15 1.286715 1.7.3 1.03 1 15 7.00 655 13 1.3226715 1.7.3 1.03 <t< th=""><th>Number of Blows</th><th>Total Blows</th><th>Rod 1 Reading (mm)</th><th>Rod 2 Reading (mm)</th><th>Total Depth</th><th>mm/Blow (5)</th><th></th><th>CBR (%)</th><th>Average CBR (%)</th></t<>	Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
1 1 250 218 218 0.0082515 1.0 1.0 1 3 445 313 40 0.766026 6.1 3.8 1 4 492 360 477 0.712926 5.2 4.2 1 5 557 433 14 1.065477 18.6 7.0 1 8 582 450 27 0.870485 9.3 7.4 1 9 605 473 23 1.006537 11.0 7.8 1 10 625 493 20 1.046131 12.7 8.4 1 11 6643 511 1.81 1.51377 14.2 8.9 1 13 660 563 15 1.236715 17.3 10.3 1 16 775 593 15 1.236715 17.3 10.3 1 16 775 593 15 1.236715 17.3 10.3 1 16 775 650 15 1.236715 17.3 10.3 1 17 777 655 11 1.393054 21.8 13.2 1 18 752	STA	RT POSITION:							
1 2 405 273 55 0.640366 4.4 2.7 1 3 445 333 40 0.728926 5.2 4.2 1 5 527 385 387.886226 6.1 3.8 1 4 492 360 47 0.728926 7.0 4.7 2 7 555 423 14 1.288942 18.6 7.0 1 8 582 450 27 0.9570485 9.3 7.4 1 10 655 473 23 1.040653 11.0 7.8 1 10 655 473 23 1.040631 11.7 7.8 1 11 643 511 11.8 1.15177 14.2 9.4 1 14 695 563 15 1.236715 17.3 10.3 1 15 710 578 15 1.236715 17.3 10.8 1 18 752 630 12 1.339054 21.8 13.2 1 18 752 655 11 1.399054 21.8 13.2 1 18 764 652									
1 3 445 313 40 0.7366226 6.1 3.8 1 4 492 360 47 0.729265 5.2 4.2 1 5 527 395 35 0.847201 7.0 4.7 2 7 555 423 14.0 0.870485 9.3 7.4 1 9 605 473 20.1046537 11.0 7.8 1 10 625 493 20 1.046131 12.7 8.4 1 11 643 511 18 1.15177 14.2 8.9 1 13 680 563 15 1.236715 17.3 10.3 1 16 775 593 15 1.236715 17.3 10.3 1 16 775 600 15 1.236715 17.3 10.3 1 17 777 605 12 1.3393054 21.8 11.3 1 18 752 620 15 1.236715 17.3 12.2 1 19 764 632 12 13393054 21.8 13.2 1 20 776 644 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1 4 492 360 47 0.712526 5.2 4.2 1 5 57 35 35 0.847201 7.0 4.7 2 7 555 423 14 1.268542 18.6 7.0 1 8 582 430 27 0.567485 9.3 7.4 1 10 625 493 20 1.1046537 11.0 7.8 1 10 625 493 20 1.1046131 12.7 8.4 1 11 643 511 18 1.15177 14.2 9.4 1 13 660 548 19 1.128574 13.4 9.8 1 14 695 578 15 1.236715 17.3 10.3 1 15 710 578 15 1.236715 17.3 10.3 1 18 752 620 12 1.339054 21.8 11.9 1 19 764 632 12 1.339054 21.8 13.2 1 21 787 665 11 1.392549 21.8 13.2 1 21 830									
1 5 527 395 35 0.84/9201 7.0 4.7 2 7 555 443 14 12.869427 16.6 7.0 1 9 605 473 23 1040537 11.0 7.8 1 10 625 493 20 1040537 11.0 7.8 1 11 643 511 18 11.3117 14.2 8.9 1 14 665 563 15 1.32674 13.4 9.8 1 14 665 563 15 1.32674 13.4 9.8 1 16 725 503 15 1.236715 17.3 10.3 1 17 737 665 16 1.339364 21.8 12.8 1 18 752 630 16 1.339364 21.8 12.2 1 20 776 644 12.339364 21.8 12.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2 7 555 4423 14 1.288427 18.6 7.0 1 8 582 450 27 0.907485 9.3 7.4 1 10 625 493 20 1.1046313 12.7 8.4 1 11 643 511 18 1.153177 14.2 9.4 1 14 695 548 19 1.183574 13.4 9.8 1 14 695 563 115 1.236715 17.3 10.3 1 15 700 578 155 1.236715 17.3 10.3 1 16 725 600 12 1.339054 21.8 11.9 1 19 764 632 12 1.339054 21.8 13.2 1 20 766 644 12 1.339054 21.8 13.2 1 21 797 6655 11 1.379479 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-								
1 8 582 450 27 0.967085 9.3 7.4 1 10 625 493 20 1.040637 1.0 7.8 1 11 643 511 18 1.19317 142 8.9 1 12 661 529 18 1.15317 142 8.9 1 13 680 548 19 1.128374 134 9.8 1 14 695 563 15 1.238715 17.3 10.3 1 15 710 578 15 1.238715 17.3 10.3 1 16 725 603 15 1.238715 17.3 10.2 1 18 752 602 15 1.238715 17.3 10.2 1 20 776 642 12 1.339304 18 13.2 1 21 787 665 11 1.3792479 2.9 18.6 15.3 1 25 834 702 14 1.265									
1 9 605 473 23 1.0406137 11.0 7.8 1 10 643 511 18 1.108413 12.7 8.4 1 12 661 529 18 1.133177 14.2 9.4 1 13 660 563 19 1.123871 13.4 9.8 1 14 695 563 15 1.2368715 17.3 10.8 1 16 775 605 12 1.333054 1.4 9.8 1 16 775 605 12 1.333054 1.8 1.2 1 9 764 652 12 1.333054 1.8 1.2 1 20 776 655 11 1.339264 1.8 1.2 1 21 787 655 11 1.339264 1.8 1.2 1 22 800 668 10 1.423 265 15.2 1 25 834 702 14 1.339264 1.8<									
1 10 625 493 20 1.108.113 12.7 8.4 1 11 661 529 18 1.153177 14.2 8.9 1 13 660 563 15 1.238571 13.4 9.8 1 14 695 563 15 1.238571 17.3 10.3 1 16 725 593 15 1.238571 17.3 10.3 1 16 725 593 15 1.238571 17.3 11.3 1 17 737 605 12 1.339054 21.8 13.2 1 20 776 644 12 1.339054 21.8 12.8 1 22 800 668 10 1.423 26.5 13.6 1 24 820 688 10 1.423 26.5 15.6 1 25 834 702 14 1.268542 16.6 15.3 1 25 836 713 11 1.3792479									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
1 13 680 548 19 1.1238715 13.4 9.8 1 14 695 563 15 1.2368715 17.3 10.3 1 15 710 578 15 1.2368715 17.3 10.3 1 17 737 605 12 1.339054 21.8 11.9 1 18 752 605 12 1.339054 21.8 12.8 1 19 764 652 12 1.339054 21.8 12.8 1 20 776 6655 11 1.3792479 23.9 13.8 1 22 800 668 10 1.423 26.5 14.6 1 23 810 1.423 26.5 15.2 15.2 1 25 845 77.3 11 1.268542 18.6 15.3 1 26 845 77.3 11 1.428542 23.6 15.6 3 29 876 744 10.3331 14.07947 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1 14 695 563 15 12368715 17.3 10.3 1 16 725 593 15 12368715 17.3 11.3 1 16 725 593 15 12368715 17.3 11.3 1 18 752 605 12 1339054 21.8 11.2 1 19 764 632 12 1.3393054 21.8 13.2 1 20 776 644 12 1.3393054 21.8 13.2 1 20 776 644 12 1.3393054 21.8 13.2 1 22 800 668 10 1.423 26.5 15.2 1 24 820 668 10 1.423 26.5 15.2 1 25 834 702 14 1.2389179 23.9 15.6 3 29 876 774 10.3333 1.4079479 25.6 16.0 3 32 905 773 9.666667									
1 15 710 578 15 12368715 17.3 10.8 1 16 725 593 15 12368715 17.3 11.3 1 17 737 605 12 13393054 21.8 11.9 1 18 752 620 15 12368715 17.3 12.2 1 19 764 632 12 1.3393054 21.8 11.2 1 20 776 664 12 1.3393054 21.8 13.2 1 23 810 678 10 1.423 26.5 14.6 1 24 820 668 10 1.423 26.5 15.3 1 26 345 713 11.3 13792479 23.9 15.6 3 32 905 773 9.66667 1.4385625 27.5 16.5 1 14 14.83 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94	1	13	680		548	19	1.1283574	13.4	9.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1				563		1.2368715		10.3
1 17 737 605 12 1.3393054 21.8 11.2 1 19 764 632 12 1.3393054 21.8 12.2 1 20 776 644 12 1.3393054 21.8 13.2 1 21 787 655 11 1.3792479 23.9 13.8 1 22 800 668 13 1.305619 20.1 14.3 1 23 810 678 10 1.423 26.5 14.6 1 24 820 688 10 1.423 26.5 15.3 1 25 834 7702 14 1.2658427 18.6 15.3 3 29 876 744 10.3333 14.079479 25.6 16.0 3 32 905 773 9.66667 1.488525 27.5 16.5 1 1 13.992479 25.6 16.0 14.6 14.6 14.6 1 1 1 1.3792479 25.6	1								10.8
1 18 752 620 15 12368715 17.3 12.2 1 19 764 632 12 1.3393054 21.8 13.2 1 20 776 6644 12 1.3393054 21.8 13.2 1 21 787 655 11 1.3792479 23.9 13.8 1 22 800 668 13 1.3025619 20.1 14.1 1 23 810 678 10 1.423 26.5 15.2 1 25 834 702 14 12689427 18.6 15.3 1 26 845 713 11 12392479 23.9 15.6 3 29 876 774 10.33331 14.073479 25.6 16.0 3 32 905 773 9.66667 14.385625 27.5 16.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
1 24 820 688 10 1.433 26.5 15.2 1 25 834 702 14 1.2868217 18.6 15.3 1 26 845 713 11 1.3792479 23.9 15.6 3 29 876 744 10.3333 1.4079479 25.6 16.0 3 32 905 773 9.666667 1.4385625 27.5 16.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		23						20.5	
1 26 845 713 11 13792479 23.9 15.6 3 29 876 744 10.3333 1.4079479 25.6 16.0 3 32 905 773 9.666667 1.4385625 27.5 16.5								18.6	15.2
3 29 876 744 10.3333 1.4079479 25.6 16.0 3 32 905 773 9.66667 1.4385625 27.5 16.5 - - - - - - - - 1.4385625 27.5 16.5 -									
3 32 905 773 9.666667 1.4385625 27.5 16.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Image: Section of the section of t									
New York	-								
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image:									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image:									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se		L			ļ				
Image: Constraint of the second se									
Image: Constraint of the second se					 				
Image: Constraint of the second se									
Image: Constraint of the second se									
Image: Constraint of the second se									
A Constraint of the second sec									1
Remarks									1
Remarks									İ
A Constraint of the second sec									
Remarks									
Remarks									
Remarks									
Remarks									
	Remarks				 				

TEST T09 - DCP

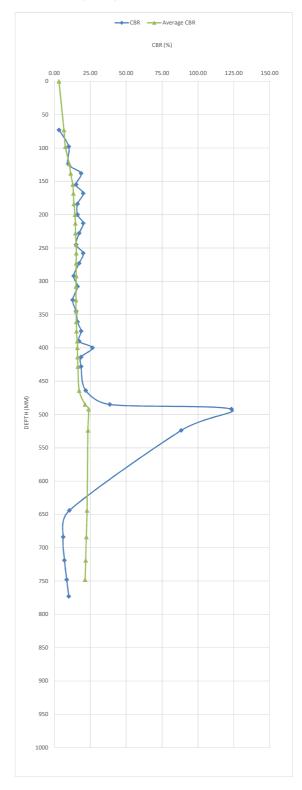


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T10 - DCP
Location	E P Barrus, Graven Hill
	SE corner of site, compound
Date	16/04/2018
Material:	Type 1
Level	GL

5TA	RT POSITION: zero							
1	zero							
1		305		0				
	1	321		16	16	1.2072452	16.1	16.1
1	2	329		24	8	1.5254339	33.5	24.8
	3	340		35	11	1.3792479	23.9	24.5
1	4	343		38	3	1.9756828	94.6	42.0
1	5	345		40	2	2.1618113	145.1	62.7
1	6	352		47	7	1.5867314	38.6	58.7
1	7	356		51	4	1.8436226	69.8	60.2
1	8	363		58	7	1.5867314	38.6	57.5
1	9	370		65	7	1.5867314	38.6	55.4
1	10	373		68	3	1.9756828	94.6	59.3
1	11	376		71	3	1.9756828	94.6	62.5
1	12	382		 77	6	1.6574941	45.4	61.1
1	13	385		80	3	1.9756828	94.6	63.7
5	18	400		95	3	1.9756828	94.6	65.9
5	23	408		 103	1.6	2.2642452	183.8	73.8
5	28	416		 111	1.6	2.2642452	183.8	80.6
5 5	33 38	423 430		118 125	1.4 1.4	2.3255427	211.6	88.3
5	38 43	430		125	1.4	2.3255427	211.6 249.1	95.2 103.3
10	43	436		131	2.2	2.3963054 2.1180592	131.2	103.3
10	63	458		153	1.7	2.1180592	131.2	104.7
10	63 73	475	-	170	1.7	2.2364155 2.1853574	172.4	107.9
10	73 83	494 516	-	189 211	2.2	2.1853574 2.1180592	153.2	110.0
10	93	516		235	2.2	2.0781167	131.2	110.9
10	103	570		265	3	1.9756828	94.6	111.5
10	103	605		 300	3.5	1.9049201	80.3	10.0
10	115	005		500	3.5	1.9049201	60.5	109.4
								ł
								ł
								ł
								-
								-
								ł
								ł
								ł
Remarks								
Refusal at ba	ase							

TEST T10 - DCP



Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	T11 - DCP
Location	E P Barrus, Graven Hill
	SE corner of site, compound
Date	17/04/2018
Material:	Grass
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero	132		0				
1	1	205		 73	73	0.5104677	3.2	3.2
1	2	230		98 124	25	1.0023774	10.1 9.6	6.6
1	3 4	256 270		124	26 14	0.9843732 1.2685427	9.6	7.6 10.4
1	5	270		 155	14	1.1794155	15.1	10.4
1	6	300		168	13	1.3025619	20.1	12.8
1	7	316		184	16	1.2072452	16.1	13.3
1	8	332		200	16	1.2072452	16.1	13.6
1	9	345		213	13	1.3025619	20.1	14.3
1	10	360		228	15	1.2368715	17.3	14.6
1	11	377		245	17	1.1794155	15.1	14.7
1	12	390		258	13	1.3025619	20.1	15.1
1	13	405		 273	15	1.2368715	17.3	15.3
1	14	424		292	19	1.1283574	13.4	15.2
1	15 16	440 460		 308 328	16 20	1.2072452 1.1048113	16.1 12.7	15.2 15.1
1	10	400		345	17	1.1048115	12.7	15.1
1	17	477		 361	17	1.2072452	16.1	15.1
1	18	507		 375	10	1.2685427	18.6	15.3
1	20	522		390	15	1.2368715	17.3	15.4
1	21	532		400	10	1.423	26.5	15.9
1	22	546		414	14	1.2685427	18.6	16.0
1	23	560		428	14	1.2685427	18.6	16.2
3	26	596		464	12	1.3393054	21.8	16.4
3	29	617		485	7	1.5867314	38.6	17.3
3	32	624		492	2.333333	2.0910485	123.3	21.4
10	42	656		524	3.2	1.9460565	88.3	23.8
5	47	776		 644	24	1.0211167	10.5	23.4
1	48	816 851		684 719	40 35	0.7866226	6.1	22.8
1	49 50	880		719	29	0.9342453	8.6	22.2
1	51	905		748	25	1.0023774	10.1	21.0
-		505		115	25	1.0020771	10.1	21.1
								
								i l
L								
								
L								
L								
Remarks	1							

TEST T11 - DCP

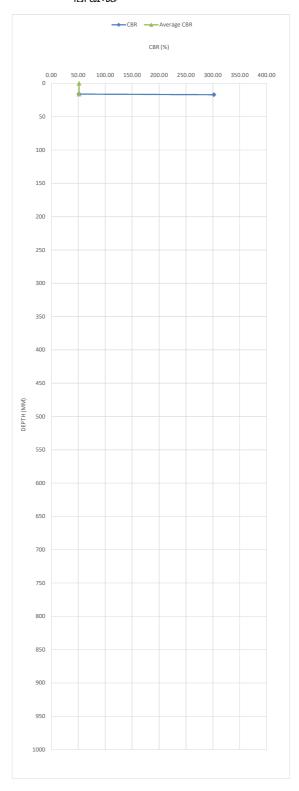
Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	CO1 - DCP
Location	E P Barrus, Graven Hill
	NW of D1
Date	17/04/2018
Material:	Туре 1
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)		Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:								
	zero	450			0				
1	1	492			42	42	0.7642255	5.8	5.8
1	2	505			55	13	1.3025619	20.1	12.9
1	3	514			64	9	1.4713657	29.6	18.5
1	4	523			73	9	1.4713657	29.6	21.3
1	5	531			81	8	1.5254339	33.5	23.7
1	6	539			89	8	1.5254339	33.5	25.4
1	7	550			100	11	1.3792479	23.9	25.2
1	8	564			114	14	1.2685427	18.6	24.3
1	9	576			126	12	1.3393054	21.8	24.1
1	10	592			142	16	1.2072452	16.1	23.3
1	11	605			155	13	1.3025619	20.1	23.0
1	12	615			165	10	1.423	26.5	23.3
1	13	625			175	10	1.423	26.5	23.5
1	14	631			181	6	1.6574941	45.4	25.1
1	15	636			186	5	1.7411887	55.1	27.1
1	16	642			192	6	1.6574941	45.4	28.2
3	19	652			202	3.333333	1.9273172	84.6	31.5
3	22	677			227		1.5066946	32.1	31.6
3	25	706			256	9.666667	1.4385625	27.5	31.4
3	28	731			281	8.333333	1.5066946	32.1	31.4
3	31	746			296	5	1.7411887	55.1	32.5
3	34	772			322	8.666667	1.4886903	30.8	32.4
3	37	915			465		0.706127	5.1	31.3
									1
									ļ
		L	L	L	L	L			
									1
									1
									1
									1
									1
									1
									ł
		-	-	-	-				<u> </u>
		1	l	1			1		I
Remarks	.10m below g	and the t							

CBR (%) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 0 DEPTH (MM)

TEST CO1 - DCP

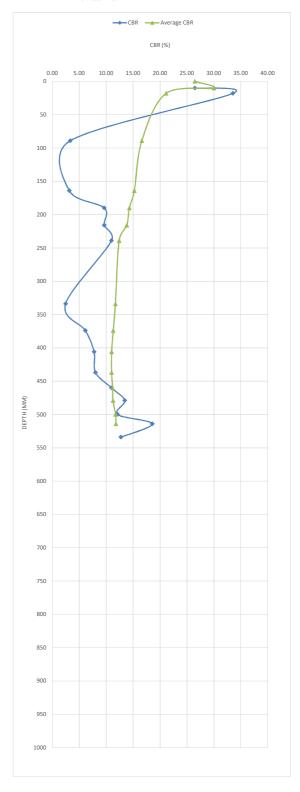


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	C02 - DCP
Location	E P Barrus, Graven Hill
	East of D1
Date	17/04/2018
Material:	Туре 1
Level	GL

Number of Blows	Total blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STAR	T POSITION:	25-		 				
	zero	337		0	5 000000	4 7445633	54.5	54.5
3	3	353		 16		1.7115623	51.5	51.5
10	13	363		17	1	2.48	302.0	51.5
								-
				 				-
Remarks Refusal, possil	bly on second	d concrete la	/er					
Refusal, possil	bly on second	d concrete lay	/er					

TEST CO2 - DCP

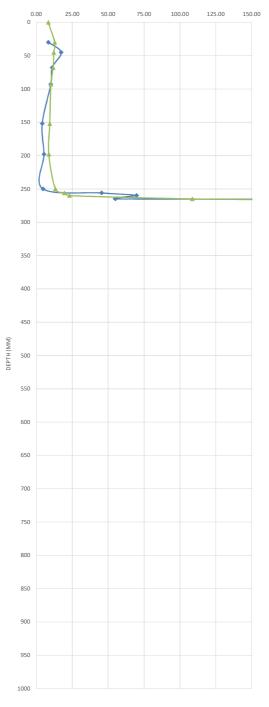


Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	C03 - DCP
Location	E P Barrus, Graven Hill
	SE of D1
Date	17/04/2018
Material:	Туре 1
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:							
	zero	386		0				
1	1	396		10	10	1.423	26.5	26.5
1	2	404		18	8	1.5254339	33.5	30.0
1	3	475		89	71	0.5232199	3.3	21.1
1	4	550		164	75	0.4980602	3.1	16.6
1	5	576		190	26	0.9843732	9.6	15.2
1	6	602		216	26	0.9843732	9.6	14.3
1	7	625		239	23	1.0406537	11.0	13.8
1	8	720 760		334 374	95 40	0.3895461 0.7866226	2.5	12.4
1	10	780		406	32	0.8890565	6.1 7.7	11.7 11.3
1	10	823		400	31	0.9036307	8.0	11.0
1	12	846		460	23	1.0406537	11.0	11.0
1	13	865		479	19	1.1283574	13.4	11.0
1	14	886		500	21	1.0824142	12.1	11.3
1	15	900		514	14	1.2685427	18.6	11.7
1	16	920		534	20	1.1048113	12.7	11.8
L								
L								
L				 				
L								
L								
<u> </u>								
L								
L								
L				 				
L								
L								
<u> </u>								
L								
Remarks								

TEST CO3 - DCP

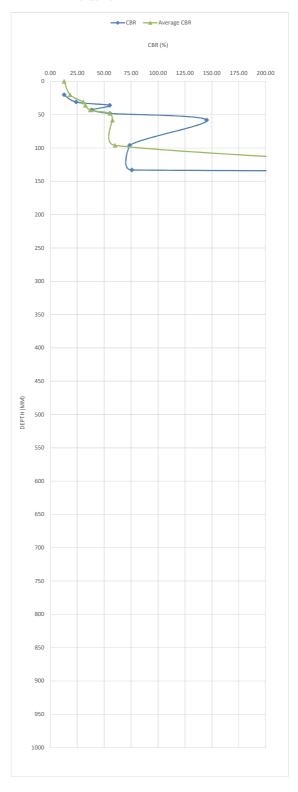

Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	CO4 - DCP
Location	E P Barrus, Graven Hill
	NW of D4
Date	17/04/2018
Material:	Туре 1
Level	GL

START POSITION: Image: start position is a second start posite positical positical positical posite positical positi	Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)	Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	STA								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	598		68	23	1.0406537	11.0	12.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								10.1	
1 7 780 250 52 0.6661845 4.6 8.7 1 8 786 256 6 1.6574941 45.4 13.2 1 9 790 260 4 1.842626 69.8 19.5 1 10 795 265 5 1.7411887 55.1 23.1 3 13 796 266 0.333333 2.9843172 964.5 108.7					152			4.1	10.1
1 8 786 256 6 1.6574941 45.4 13.2 1 9 790 260 4 1.8436226 69.8 19.5 1 10 795 265 5 1.7411887 55.1 23.1 3 13 796 266 0.33333 2.9843172 964.5 108.7									
1 9 790 260 4 1.8436226 69.8 19.5 1 10 795 265 5 1.7411887 55.1 23.1 3 13 796 266 0.33333 2.9843172 964.5 108.7									
1 10 795 265 5 1.7411887 55.1 23.1 3 13 796 266 0.333333 2.9843172 964.5 108.7									
3 13 796 266 0.33333 2.9843172 964.5 108.7									
10 23 800 270 0.4 200625 7355 165.9 10 23 800 270 0.4 200626 7355 165.9 10 10 10 10 10 10 10 10 105.9 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
No No No No No No No No </td <td></td> <td></td> <td>800</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			800						
Image: sector of the sector	10	20	000		2/0	0.1	2.5000220	755.5	105.5
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: state in the state i									
Image: Section of the section of t									
Image: Section of the section of t									
Image: Section of the section of t									
Image: Section of the section of t									
Image: series of the series									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: second									
Image: sector of the sector									
Image: sector of the									
Image: sector of the secto									
Image: state of the state o									
Image: series of the series									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Image: state of the state o									
Image: state									
Image: state									
							L		
							-		
				-	-		-		
Remarks Refusal									

CBR Average CBR CBR (%)

TEST CO4 - DCP



Determination of Penetration Value of Unbound Soil using Dynamic Cone Penetrometer (DCP)

Test Ref.	C05 - DCP
Location	E P Barrus, Graven Hill
	NE of D4
Date	17/04/2018
Material:	Type 1
Level	GL

Number of Blows	Total Blows	Rod 1 Reading (mm)	Rod 2 Reading (mm)		Total Depth	mm/Blow (5)		CBR (%)	Average CBR (%)
STA	RT POSITION:								
	zero	232			0				
1	1	252			20	20	1.1048113	12.7	12.7
1	2	263			31	11	1.3792479	23.9	18.3
1	3	268			36	5	1.7411887	55.1	30.6
1	4	275			43	7	1.5867314	38.6	32.6
1	5	280			48	5	1.7411887	55.1	37.1
5	10	290			58	2	2.1618113	145.1	55.1
10	20	328			96	3.8	1.8671687	73.6	57.8
10	30	365			133	3.7	1.8794108	75.8	60.0
10	40	366			134	0.1	3.537	3443.5	436.0
				L	L	L			
				L	L	L			
				L	L	L			
Remarks Refusal									

TEST CO5 - DCP

Hole ID	Depth (base) m BGL	Description
C1	0.045 0.105 0.340	Bituminous Macadam (Wearing Course) Bituminous Macadam Concrete – limestone aggregate (no rebar)
C2	0.030 0.220	Bituminous Macadam (Wearing Course) Bituminous Macadam
C3	0.060 0.290	Bituminous Macadam Limestone capping material (unbound)
C4	0.045 0.190 0.350	Bituminous Macadam (Wearing Course) Bituminous Macadam Concrete – limestone aggregate (no rebar)
C5	0.090	Bituminous Macadam
C6	0.070 >0.45 (No sample)	Bituminous Macadam Concrete – flint chert aggregate (no rebar) (Unable to prove base of concrete – limit of core barrel)
BH05 (Core)	0.165	Concrete – quartzite aggregate rebar at 0.1m & base, membrane below
BH09 (Core)	0.165	Concrete – quartzite & limestone aggregate rebar at 0.1m, membrane below
T10 (Core)	0.170	Concrete – quartzite aggregate rebar at 0.09m & base, membrane below

GRAVEN HILL BICESTER – CORE SUMMARY

AIS Job No. X0212

APPENDIX 3 – PHOTOGRAPHS

Plate 1. Location of BH02

Plate 2. BH02 arisings

Plate 3. BH02 arisings

Plate 4. BH05 arisings

Plate 5. BH05 arisings - 3.50m

Plate 6. Location of HP01

Plate 7. Location of HP01

Plate 8. HP01

RIDGE

SITE INVESTIGATION PHOTOGRAPHS - 5005462

Plate 9. Location of HP02

Plate 10. HP02 arisings

Plate 11. HP02

Plate 12. BH06 arisings

Plate 13. BH06 arisings

Plate 14. Arisings from BH06

Plate 15. BH06 arisings

Plate 16. BH06 arisings

Plate 17. Location of BH06

Plate 18. Location of BH07

Plate 19. BH07 arisings

Plate 20. BH07 arisings

Plate 21. Location of BH08

Plate 22. BH08 arisings

Plate 23. BH08 arisings

Plate 24. Reinstatement at BH05

Plate 25. BH08 installation

Plate 26. BH08 installation

RIDGE

Plate 27. BH09 installation

Plate 28. BH09 installation

APPENDIX 4 – CHEMICAL TEST CERTIFICATES

Max Smeeth Ridge Partnership House Moorside Road Winchester SO23 7RX

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410 russell.jarvis@qtsenvironmental.com

DETS Report No: 18-73985

Site Reference: Bicester

Project / Job Ref: 5005462

Order No: 5005462-815

Sample Receipt Date: 19/04/2018

Sample Scheduled Date: 19/04/2018

Report Issue Number: 1

Reporting Date: 25/04/2018

Authorised by:

Russell Jarvis Associate Director of Client Services Authorised by:

Dave Ashworth Deputy Quality Manager

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate						
DETS Report No: 18-73985	Date Sampled	16/04/18	16/04/18	16/04/18	17/04/18	17/04/18
Ridge	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bicester	TP / BH No	BH02	BH03	BH05	BH06	BH07
Project / Job Ref: 5005462	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: 5005462-815	Depth (m)	0.50	0.50 - 0.75	0.30	0.40	0.30
Reporting Date: 25/04/2018	QTSE Sample No	329166	329167	329168	329169	329170

Determinand	Unit	RL	Accreditation			(n)		
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	8.0	8.0	11.2	8.3	7.8
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Organic Matter	%	< 0.1	MCERTS	2.1	3.7	0.6	3.8	4.6
Arsenic (As)	mg/kg	< 2	MCERTS	13	10	7	8	10
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.5	0.4	< 0.2	0.4	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	31	29	14	29	186
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	11.9
Copper (Cu)	mg/kg	< 4	MCERTS	29	26	16	23	18
Lead (Pb)	mg/kg	< 3	MCERTS	19	27	9	25	701
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	43	34	9	35	25
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	117	121	27	109	96
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than $30^{\circ}C$

Subcontracted analysis (S) (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

.

.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate					
DETS Report No: 18-73985	Date Sampled	17/04/18	17/04/18	17/04/18	
Ridge	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Bicester	TP / BH No	BH08	BH09	HP01	
Project / Job Ref: 5005462	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 5005462-815	Depth (m)	0.50	0.80	0.40	
Reporting Date: 25/04/2018	QTSE Sample No	329172	329173	329174	

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE			Microscopic bitumen in soil	
Asbestos Type (S)	PLM Result	N/a	ISO17025			Chrysotile	
pH	pH Units	N/a	MCERTS	8.1	7.6	8.1	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Organic Matter	%	< 0.1	MCERTS	1.9	2.9	3.4	
Arsenic (As)	mg/kg	< 2	MCERTS	9	4	10	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.3	0.3	
Chromium (Cr)	mg/kg	< 2	MCERTS	32	26	28	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	16	22	37	
Lead (Pb)	mg/kg	< 3	MCERTS	19	12	37	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	31	31	34	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	81	79	118	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs												
DETS Report No: 18-7398	85		Date Sampled	16/04/18	16/04/18	16/04/18	17/04/18	17/04/18				
Ridge			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Site Reference: Bicester			TP / BH No	BH02	BH03	BH05	BH06	BH07				
Project / Job Ref: 500546	52	1	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Order No: 5005462-815			Depth (m)	0.50	0.50 - 0.75	0.30	0.40	0.30				
Reporting Date: 25/04/2	018	Q	TSE Sample No	329166	329167	329168	329169	329170				
Determinand	Unit	RL	Accreditation			(n)						
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	< 0.1	0.22	< 0.1				
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.18	< 0.1				
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Chrysene	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Dibenz(a,h)anthracene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- Speciated PAHs						
DETS Report No: 18-7398	35		Date Sampled	17/04/18	17/04/18	17/04/18	
Ridge			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Bicester			TP / BH No	BH08	BH09	HP01	
Project / Job Ref: 50054	62		Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 5005462-815			Depth (m)	0.50	0.80	0.40	
Reporting Date: 25/04/2	018	Q	TSE Sample No	329172	329173	329174	
Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.70	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.39	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.31	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	4.95	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.78	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	9.68	
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	8.07	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	2.99	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	3.53	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	3.90	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.23	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	2.64	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.53	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.23	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.31	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	42.2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded												
DETS Report No: 18-739	85		Date Sampled	16/04/18	16/04/18	16/04/18	17/04/18	17/04/18				
Ridge			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Site Reference: Bicester			TP / BH No	BH02	BH03	BH05	BH06	BH07				
Project / Job Ref: 50054	62	4	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Order No: 5005462-815			Depth (m)	0.50	0.50 - 0.75	0.30	0.40	0.30				
Reporting Date: 25/04/2	018	Q	TSE Sample No	329166	329167	329168	329169	329170				
Determinand		RL	Accreditation			(n)						
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3				
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3				
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10				
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21				
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3				
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10				
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21				
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	< 42				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- TPH CWG Banded	1					
DETS Report No: 18-7398	35		Date Sampled	17/04/18	17/04/18	17/04/18	
Ridge			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Bicester			TP / BH No	BH08	BH09	HP01	
Project / Job Ref: 500546	2	ļ	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 5005462-815			Depth (m)	0.50	0.80	0.40	
Reporting Date: 25/04/20)18	Q	ISE Sample No	329172	329173	329174	
Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	mg/kg		NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05		< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	30	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	50	
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	80	
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	80	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 18-73985	Date Sampled	16/04/18	16/04/18	16/04/18	17/04/18	17/04/18
Ridge	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Bicester	TP / BH No	BH02	BH03	BH05	BH06	BH07
Project / Job Ref: 5005462	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: 5005462-815	Depth (m)	0.50	0.50 - 0.75	0.30	0.40	0.30
Reporting Date: 25/04/2018	QTSE Sample No	329166	329167	329168	329169	329170

Determinand	Unit	RL	Accreditation			(n)		
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - BTEX / MTBE					
DETS Report No: 18-73985	Date Sampled	17/04/18	17/04/18	17/04/18	
Ridge	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Bicester	TP / BH No	BH08	BH09	HP01	
Project / Job Ref: 5005462	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 5005462-815	Depth (m)	0.50	0.80	0.40	
Reporting Date: 25/04/2018	QTSE Sample No	329172	329173	329174	

Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

DETS Report No: 18-73985		Date Sampled	17/04/18		Landfill Was	te Acceptance (Criteria Limit
Ridge		Time Sampled	None Supplied				
Site Reference: Bicester		TP / BH No	BH08		Stable Non-		
Project / Job Ref: 5005462 Additional F Order No: 5005462-815 Depth (m)			None Supplied		Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardou Waste
			0.30		Lunarin	hazardous Landfill	Landfill
Reporting Date: 25/04/2018	QTSE Sample No	329171					
Determinand	Unit	MDL					
FOC ^{MU}	%	< 0.1	1.1		3%	5%	6%
Loss on Ignition	%	< 0.01	4.50				10%
3TEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10		500		
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7		100		
pH ^{MU}	pH Units	N/a	8.5			>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	2			To be evaluated	To be evaluated
			10:1	Cumulativ	E Limit values	for compliance	leaching te
Eluate Analysis			10.1	10:1	using BS I	EN 12457-3 at l	./S 10 l/kg
			mg/l	mg/kg		(mg/kg)	
Arsenic ^u			< 0.01	< 0.1	0.5	2	25
Barium ^u			< 0.02	< 0.2	20	100	300
Cadmium ^u			< 0.0005	< 0.005	0.04	1	5
Chromium ^U			< 0.005	< 0.05	0.5	10	70
Copper ^u			< 0.01	< 0.1	2	50	100
Mercury ^U			< 0.0005	< 0.01	0.01	0.2	2
Molybdenum ^U			0.002	0.02	0.5	10	30
Nickel ^U	_		< 0.007	< 0.07	0.4	10	40
Lead ^U			< 0.005	< 0.05	0.5	10	50
Antimony ^U	_		< 0.005	< 0.05	0.06	0.7	5
Selenium ^U			< 0.005	< 0.05	0.1	0.5	7
Zinc ^U	-		< 0.005	< 0.05	4	50	200
Chloride ^U	-1		< 1	< 10	800	15000	25000
Fluoride ^U			0.5	5	10	15000	500
Sulphate ^U			2	20	1000	20000	50000
TDS	-1		86	860	4000	60000	100000
Phenol Index	-1		< 0.01	< 0.1	1	-	-
DOC	-1		5.1	50.8	500	800	1000
Leach Test Information	1		J.1	0.0	500	000	1000
Leach Test Information				1 1	-		
					-1		
	1				1		
					-		
Sample Mass (kg)			0.11				
Dry Matter (%)			82.5				
Moisture (%)			21.2		7		
Stage 1				1	1		
Volume Eluate L10 (litres)			0.88		1		
				1	1		
				1	1		
				I			

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Report No: 18-73985		Date Sampled	17/04/18		Landfill Was	te Acceptance (Criteria Limi
Ridge		Time Sampled	None Supplied				
Site Reference: Bicester		TP / BH No	HP02			Stable Non-	
Project / Job Ref: 5005462	Additional Refs	None Supplied		Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardou Waste	
Order No: 5005462-815 Depth (m)			0.45		Lanum	hazardous Landfill	Landfill
Reporting Date: 25/04/2018	QTSE Sample No	329175					
Determinand	Unit	MDL					
FOC ^{MU}	%	< 0.1	1.7		3%	5%	6%
Loss on Ignition	%	< 0.01	4.90				10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10		500		
Total PAH ^{MU}	mg/kg	< 1.7	9.1		100		
pH ^{MU}	pH Units	N/a	8.0			>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	2.1			To be evaluated	To be evaluated
			10:1	Cumulative	e Limit values		
Eluate Analysis				10:1	using BS	EN 12457-3 at l	L/S 10 l/kg
			mg/l	mg/kg		(mg/kg)	
Arsenic ^u			< 0.01	< 0.1	0.5	2	25
Barium ^u			< 0.02	< 0.2	20	100	300
Cadmium ^u			< 0.0005	< 0.005	0.04	1	5
Chromium ^u			< 0.005	< 0.05	0.5	10	70
Copper ^u			< 0.01	< 0.1	2	50	100
Mercury ^U			< 0.0005	< 0.01	0.01	0.2	2
Molybdenum ^U			0.002	0.02	0.5	10	30
Nickel ^u			< 0.007	< 0.07	0.4	10	40
Lead ^U			< 0.005	< 0.05	0.5	10	50
Antimony ^U			< 0.005	< 0.05	0.06	0.7	5
Selenium ^U			< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			< 0.005	< 0.05	4	50	200
Chloride ^U	1		< 1	< 10	800	15000	25000
Fluoride ^U	1		0.8	8	10	150	500
Sulphate ^U	-1		27	266	1000	20000	50000
TDS			115	1149	4000	60000	100000
Phenol Index	-1		< 0.01	< 0.1	1	-	-
DOC	-1		7.1	70.7	500	800	1000
Leach Test Information	4			,	500		1000
					-		
	1				1		
	1						
				+ +	-		
Sample Mass (kg)			0.11		7		
Dry Matter (%)			80.7		7		
Moisture (%)			24	1	1		
Stage 1				1	1		
Volume Eluate L10 (litres)			0.88		1		
					1		
					1		

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 18-73985	
Ridge	
Site Reference: Bicester	
Project / Job Ref: 5005462	
Order No: 5005462-815	
Reporting Date: 25/04/2018	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
329166	BH02	None Supplied	0.50	17.4	Brown sandy clay
329167	BH03	None Supplied	0.50 - 0.75	21.4	Brown sandy clay
329168	BH05	None Supplied	0.30	2.9	Brown concrete
329169	BH06	None Supplied	0.40	21.8	Brown sandy clay with vegetation
329170	BH07	None Supplied	0.30	26.2	Brown sandy clay with vegetation
329171	BH08	None Supplied	0.30	17.5	Brown sandy clay
329172	BH08	None Supplied	0.50	18.1	Brown sandy clay with vegetation
329173	BH09	None Supplied	0.80	19.3	Brown sandy clay
329174	HP01	None Supplied	0.40	21.5	Brown sandy clay
329175	HP02	None Supplied	0.45	19.3	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Max Smeeth Ridge Partnership House Moorside Road Winchester SO23 7RX

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410 russell.jarvis@qtsenvironmental.com

DETS Report No: 18-74358

Site Reference: Bicester

Project / Job Ref: 5005462

Order No: 5005462-815

Sample Receipt Date: 19/04/2018

Sample Scheduled Date: 26/04/2018

Report Issue Number: 1

Reporting Date: 02/05/2018

Authorised by:

Russell Jarvis Associate Director of Client Services Authorised by:

Dave Ashworth Deputy Quality Manager

Soil Analysis Certificate				
DETS Report No: 18-74358	Date Sampled	17/04/18		
Ridge	Time Sampled	None Supplied		
Site Reference: Bicester	TP / BH No	BH07		
Project / Job Ref: 5005462	Additional Refs	None Supplied		
Order No: 5005462-815	Depth (m)	0.50		
Reporting Date: 02/05/2018	QTSE Sample No	330498		

Determinand	Unit	RL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		
pH	pH Units	N/a	MCERTS	8.2		
Total Cyanide	mg/kg	< 2	NONE	< 2		
Organic Matter	%	< 0.1	MCERTS	2.1		
Arsenic (As)	mg/kg	< 2	MCERTS	10		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	38		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	18		
Lead (Pb)	mg/kg	< 3	MCERTS	14		
Mercury (Hg)	mg/kg	< 1	NONE	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	37		
Selenium (Se)	mg/kg	< 3	NONE	< 3		
Zinc (Zn)	mg/kg	< 3	MCERTS	72		
Total Phenols (monohydric)	ma/ka	< 2	NONE	< 2		

 I otal Pnenois (monohydric)
 mg/kg
 < 2</th>
 NON

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C
 Subcontracted analysis (S)

Soil Analysis Certificate - Spe DETS Report No: 18-74358			Date Sampled	17/04/18		[
Ridge			Time Sampled	None Supplied		1
Site Reference: Bicester			TP / BH No	BH07		
Project / Job Ref: 5005462		1	Additional Refs	None Supplied		
Order No: 5005462-815			Depth (m)	0.50		
Reporting Date: 02/05/2018		Q	FSE Sample No	330498		
Determinand	Unit	RL	Accreditation			
Naphthalene		< 0.1	MCERTS	< 0.1		1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg ·	< 0.1	MCERTS	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene		< 0.1	MCERTS	< 0.1		
Pyrene	mg/kg ·	< 0.1	MCERTS	< 0.1		
Benzo(a)anthracene	mg/kg ·	< 0.1	MCERTS	< 0.1		
Chrysene	5, 5	< 0.1	MCERTS	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(k)fluoranthene	mg/kg ·	< 0.1	MCERTS	< 0.1		
Benzo(a)pyrene	5, 5	< 0.1	MCERTS	< 0.1		
Indeno(1,2,3-cd)pyrene	5, 5	< 0.1	MCERTS	< 0.1		
Dibenz(a,h)anthracene	5, 5	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	21 3	< 0.1	MCERTS	< 0.1		
Total EPA-16 PAHs	mg/kg ·	< 1.6	MCERTS	< 1.6		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C

Soil Analysis Certificate	Soil Analysis Certificate - TPH CWG Banded									
DETS Report No: 18-743	58		Date Sampled	17/04/18						
Ridge			Time Sampled	None Supplied						
Site Reference: Bicester			TP / BH No	BH07						
Project / Job Ref: 500546	52	1	Additional Refs	None Supplied						
Order No: 5005462-815			Depth (m)	0.50						
Reporting Date: 02/05/2	018	Q	TSE Sample No	330498						
Determinand	Unit	RL	Accreditation							
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01						
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05						
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2						
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2						
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3						
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3						
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10						
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21						
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01						
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05						
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2						
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2						
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2						
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3						
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10						
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21						
Total >C5 - C35	mg/kg	< 42	NONE	< 42						

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 18-7435	58		Date Sampled	17/04/18		
Ridge			Time Sampled	None Supplied		
Site Reference: Bicester			TP / BH No	BH07		
Project / Job Ref: 500540	52	4	Additional Refs	None Supplied		
Order No: 5005462-815			Depth (m)	0.50		
Reporting Date: 02/05/2	018	Q	FSE Sample No	330498		
Determinand	Unit	RL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5		

TOILLETIE	ug/kg	7	FICERIS	< J		
Ethylbenzene	ug/kg	< 2	MCERTS	< 2		
p & m-xylene	ug/kg	< 2	MCERTS	< 2		
o-xylene	ug/kg	< 2	MCERTS	< 2		
MTBE	ug/kg	< 5	MCERTS	< 5		
						_

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descri	ptions		
DETS Report No: 18-74358			
Ridge			
Site Reference: Bicester			
Project / Job Ref: 5005462			
Order No: 5005462-815			
Reporting Date: 02/05/2018			
		1	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
330498	BH07	None Supplied	0.50	13.7	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 18-74358
Ridge
Site Reference: Bicester
Project / Job Ref: 5005462
Order No: 5005462-815
Reporting Date: 02/05/2018

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
			Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E002
Cail	AR	Maistura Contant	cartridge	E003
Soil Soil	D AR		Moisture content; determined gravimetrically Determination of nitrate by extraction with water & analysed by ion chromatography	E003 E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total supplur by extraction with agua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TFM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E011
		TPH CWG (ali: C5- C6, C6-C8, C8-C10,	iron (II) sulphate	
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

Max Smeeth Ridge Partnership House Moorside Road Winchester SO23 7RX

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

DETS Report No: 18-75087

Site Reference:	Bicester
Project / Job Ref:	5005462
Order No:	5005462-815
Sample Receipt Date:	19/04/2018
Sample Scheduled Date:	11/05/2018
Report Issue Number:	1
Reporting Date:	16/05/2018

Authorised by:

Russell Jarvis Associate Director of Client Services

Dave Ashworth Deputy Quality Manager

Date Sampled	17/04/18			
Time Sampled	None Supplied			
TP / BH No	HP01			
Additional Refs	None Supplied			
Depth (m)	0.40			
QTSE Sample No	333428			
	Time Sampled TP / BH No Additional Refs Depth (m)	Time SampledNone SuppliedTP / BH NoHP01Additional RefsNone SuppliedDepth (m)0.40	Time Sampled None Supplied TP / BH No HP01 Additional Refs None Supplied Depth (m) 0.40	Time Sampled None Supplied TP / BH No HP01 Additional Refs None Supplied Depth (m) 0.40

	Determinand	Unit	RL	Accreditation			
Asbestos Quantification (*) % < 0.001 ISO17025 0.013	Achectos ()uantitication (*)	%		ISO17025	0.013		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 18-75087	
Ridge	
Site Reference: Bicester	
Project / Job Ref: 5005462	
Order No: 5005462-815	
Reporting Date: 16/05/2018	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR		Determination of thiorde by extraction with water & analysed by for chromatography Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
			1,5 diphenyicarbazide followed by colorined y	
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
Soil	D		Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E023
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
501			Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	

D Dried AR As Received

Max Smeeth Ridge Partnership House Moorside Road Winchester SO23 7RX

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

DETS Report No: 18-74272

Site Reference:	Bicester
Project / Job Ref:	5005462
Order No:	5005462-815
Sample Receipt Date:	25/04/2018
Sample Scheduled Date:	25/04/2018
Report Issue Number:	1
Reporting Date:	30/04/2018

Authorised by:

Russell Jarvis Associate Director of Client Services

Authorised by:

Dave Ashworth Deputy Quality Manager

Core Analysis Certificate - Speciated PAHs									
DETS Report No: 18-7427	272 Date Sampled			16/04/18	16/04/18	16/04/18	16/04/18	16/04/18	
Ridge	dge Time Sampled			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Bicester		TP / BH No		C1	C1	C2	C2	C3	
Project / Job Ref: 500546	52	ļ	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 5005462-815			Depth (m)	GL - 0.045	0.045 - 0.105	GL - 0.03	0.03 - 0.22	GL - 0.06	
Reporting Date: 30/04/20	018	Q	TSE Sample No	330163	330164	330165	330166	330167	
Determinand	Unit	RL	Accreditation	(n)	(n)	(n)	(n)	(n)	
Naphthalene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	< 1	
Acenaphthylene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	< 1	
Acenaphthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	< 1	
Fluorene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	< 1	
Phenanthrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	8.07	
Anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	3.05	
Fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	56.70	
Pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	47.40	
Benzo(a)anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	31.30	
Chrysene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	27.90	
Benzo(b)fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	39.50	
Benzo(k)fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	11.60	
Benzo(a)pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	24.50	
Indeno(1,2,3-cd)pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	18.10	
Dibenz(a,h)anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	2.43	
Benzo(ghi)perylene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1	12.90	
Coronene	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1	
Total Oily Waste PAHs	mg/kg	< 10	ISO17025	< 10	< 10	< 10	< 10	155	
Total Dutch 10 PAHs	mg/kg	< 10	ISO17025	< 10	< 10	< 10	< 10	194	
Total EPA-16 PAHs	mg/kg	< 16	ISO17025	< 16	< 16	< 16	< 16	283	
Total WAC-17 PAHs	mg/kg	< 17	NONE	< 17	< 17	< 17	< 17	283	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Core Analysis Certificate - Speciated PAHs									
DETS Report No: 18-7427	No: 18-74272 Date Sampled			16/04/18	16/04/18	16/04/18	16/04/18		
Ridge	Time Sampled			None Supplied	None Supplied	None Supplied	None Supplied		
Site Reference: Bicester			TP / BH No	C4	C4	C5	C6		
Project / Job Ref: 500546	62	, A	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied		
Order No: 5005462-815			Depth (m)	GL - 0.045	0.045 - 0.19	GL - 0.09	GL - 0.07		
Reporting Date: 30/04/2	018	Q	FSE Sample No	330168	330169	330170	330171		
Determinand	Unit	RL		(n)	(n)	(n)	(n)		
Naphthalene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Acenaphthylene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Acenaphthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Fluorene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Phenanthrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Benzo(a)anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Chrysene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Benzo(b)fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Benzo(k)fluoranthene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Benzo(a)pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Dibenz(a,h)anthracene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Benzo(ghi)perylene	mg/kg	< 1	ISO17025	< 1	< 1	< 1	< 1		
Coronene	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1		
Total Oily Waste PAHs	mg/kg	< 10	ISO17025	< 10	< 10	< 10	< 10		
Total Dutch 10 PAHs	mg/kg	< 10	ISO17025	< 10	< 10	< 10	< 10		
Total EPA-16 PAHs	mg/kg	< 16	ISO17025	< 16	< 16	< 16	< 16		
Total WAC-17 PAHs	mg/kg	< 17	NONE	< 17	< 17	< 17	< 17		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 18-74272	
Ridge	
Site Reference: Bicester	
Project / Job Ref: 5005462	
Order No: 5005462-815	
Reporting Date: 30/04/2018	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
& 330163	C1	None Supplied	GL - 0.045	0.1	Black tar
& 330164	C1	None Supplied	0.045 - 0.105	0.8	Black tar
& 330165	C2	None Supplied	GL - 0.03	0.4	Black tar
& 330166	C2	None Supplied	0.03 - 0.22	1.4	Black tar
& 330167	C3	None Supplied	GL - 0.06	< 0.1	Black tar
& 330168	C4	None Supplied	GL - 0.045	< 0.1	Black tar
& 330169	C4	None Supplied	0.045 - 0.19	0.3	Black tar
& 330170	C5	None Supplied	GL - 0.09	0.3	Black tar
& 330171	C6	None Supplied	GL - 0.07	0.3	Black tar

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{I/S}

& samples received in inappropriate containers for hydrocarbon analysis

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 18-74272	
Ridge	
Site Reference: Bicester	
Project / Job Ref: 5005462	
Order No: 5005462-815	
Reporting Date: 30/04/2018	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR		Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	· · · · · · · · · · · · · · · · · · ·	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
Soil	D		Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR		Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006
Soil	AR	I hiocyanate (as SCN)	addition of terric hitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

il Analysis Certificate - Methodology & Miscellaneous Information
TS Report No: 18-73985
dge
e Reference: Bicester
oject / Job Ref: 5005462
der No: 5005462-815
porting Date: 25/04/2018

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013 E009
Soil Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009 E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E014 E018
Soil	D AR		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018 E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024
Soil	AR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of formin nitrate followed by calculation	E017
Soil	D		addition of ferric nitrate followed by colorimetry Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Gravimetrically determined through extraction with toluene Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
		TPH CWG (ali: C5- C6, C6-C8, C8-C10,		
			Datarmination of havana/acatana avtractable hydrocarbane by CC EID fractionating with CDE	
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E004
		aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	cartridge for C8 to C35. C5 to C8 by headspace GC-MS	
		C12 C10, C10-C21, C21-C33)		
		TPH LQM (ali: C5-C6, C6-C8, C8-C10,		
C '1	45		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	F004
Soil	AR		cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
		C12-C16, C16-C21, C21-C35, C35-C44)		
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001 E001
5011		viii (co-co & co-ciu)	been induction of hydrocarbons co-co by neadspace dc-mis & co-cro by dc-mb	LUUI

D Dried

APPENDIX 5 – GEOTECHNICAL TEST CERTIFICATES

Qty

5

5

6

6

1

1

Contract Number: 38990

Client Ref: 5005462 Client PO:

Report Date: 09-05-2018

Client Advanced Investigation Systems Ltd Stout Hill Cottage, Stout hill Henley Langport Somerset TA10 9BJ

Contract Title: Barrus, Graven Hill, Bicester For the attention of: Paul Kings

Date Received: 24-04-2018 Date Commenced: 24-04-2018 Date Completed: 09-05-2018

Test Description

Moisture Content

BS 1377 : Part 2 : 3.2 - * UKAS

4 Point Liquid & Plastic Limit (LL/PL) BS 1377 Part 2 : 4.3 & 5.3 - * UKAS

Water Soluble Sulphate 2:1 extract

1377 : 1990 Part 3 : 5 - @ Non Accredited Test

pH Value of Soil.

1377 : 1990 Part 3 : 9 - @ Non Accredited Test

Cored specimens

- testing in compression BS EN 12504-1:2009 BS EN 12504-1:2009 - * UKAS

Disposal of Samples on Project

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Quality Assistant) Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
38990	
Barrus, Graven Hill, Bicester	
	(BS 1377:Part 2:1990 Method 5) DESCRIPTIONS 38990

Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
BH02	1	D	1.30	-	1.50	Brown silty CLAY.
BH03	1	D	1.50	-	1.70	Brown silty CLAY.
BH03	2	D	2.80	-	3.00	Brown silty CLAY.
BH04	1	D	0.80	-	1.00	Brown silty CLAY.
BH04	2	D	1.80	-	2.00	Brown silty CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

	Operators	Checked	08-05-18	Emma Sharp	_ GG (→∢
	RO/MH	Approved	09-05-18	Paul Evans	
1					 2788

CCTI
GOIL

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

	(B 5 1577 : 1 at 2 : 1350 Method 5)	
Contract Number	38990	
Site Name	Barrus, Graven Hill, Bicester	

Hole Reference	Sample Number	Sample Type	D	epth (n	ו)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
BH02	1	D	1.30	-	1.50	32	70	27	43	100	CH/V High/HighPlasticity
BH03	1	D	1.50	-	1.70	35	76	29	47	100	CV Very High Plasticity
BH03	2	D	2.80	-	3.00	35	68	31	37	100	CH High Plasticity
BH04	2	D	0.80	-	1.00	39	76	29	47	100	CV Very High Plasticity
BH04	2	D	1.80	-	2.00	38	74	31	43	100	CV Very High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				- 1							
				-							
				-							
				-							
nbols: NP : Nor	n Plastic	# : Liquid Li	imit and Pla	-	nit Wet Sie	ved					
mbols: NP : Nor	n Plastic	# : Liquid Li		- - stic Lin	IART FO	ved R CASAGR 30:1999+A		ASSIFICA	TION		
90	n Plastic		PLASTIC	- - stic Lin	IART FO	R CASAGR	2:2010	ASSIFICA	TION	CE	
			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A CH	2:2010		TION	CE	
90 80 70 60 50 40			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A	2:2010		TION	CE	
90 80 70 60 50			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A CH	2:2010		TION	CE	
90 80 70 60 50 40 30			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A CH	2:2010		TION	CE	
90 80 70 60 50 40			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A CH	2:2010		TION	CE	
90 80 70 60 50 40 30			PLASTIC	- Istic Lin	IART FO	R CASAGR 30:1999+A CH	2:2010		TION	CE	

Liquid Limit (%)

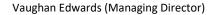
Operators	Checked	08-05-18	Emma Sharp	
DB	Approved	09-05-18	Paul Evans	
				2788

CCTI	Certificate of Chemical Analysis	Contract Number	38990
GOIL	onsuling	Client Reference	5005462
Client	Advanced Investigation System	Date Received	
Site Name	Barrus, Graven Hill, Bicester	Date Started	01-05-18
		Date Completed	09-05-18
		No. of Samples	6

BH021BH032BH041BH042BH043BH052BH052Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport1Comport2Comport2Redox Mv1	D D D D D	1.30 2.80 0.80 1.80		1.50 3.00	Sulphate	Sulphate	Chloride		Content	Chloride	Ignition
BH041BH042BH043BH052BH052III <thi< th="">I<thi< th=""></thi<></thi<>	D D D	0.80 1.80	-	3.00		0.40		6.88			
BH042BH043BH052II <td>D D</td> <td>1.80</td> <td></td> <td></td> <td></td> <td>0.46</td> <td></td> <td>6.99</td> <td></td> <td></td> <td></td>	D D	1.80				0.46		6.99			
BH04 3 BH05 2 Image: Sector of the sector	D			1.00		0.32		6.94			
BH05 2 I I I		0.00	-	2.00		0.54		6.87			
Image: Sector of the sector	D	2.80	-	3.00		0.61		6.94			
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic		1.80	-	2.00		0.66		7.10			
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic			-								
Acid Soluble Sulphate Aqueous Extract Sulphate 2/1 Chloride PH Value Organic	Report	ted As	_	Claus	e		Rem	arks		l	
Aqueous Extract Sulphate 2/1 Chloride PH Value Organic				Clause 5.2		Remarks NCP = No Chloride Present					
2/1 Chloride PH Value Organic	g/l S			Clause 5.3							
PH Value Organic				Clause							
Organic		25°		Clause							
		6	1	Clause							
Redox Mv		1∨		Clause							
LOI		6		Clause							
Test Operator										1	
Darren Bourne	Chookor	d and Autho		5-18	Ben S	Sharp					

Test Report:Testing concrete in structures. Cored specimens.Taking, examining and testing in compressionBS EN 12504-1:2009 & BS EN 12390-3: 2009

Client:	AIS
Location:	Barrus, Graven Hill, Bicester
Client Ref:	5005462
Contract Number:	38990


Core Description Estimated Maximum aggregate Size (mm) Date of Coring Date of Receipt Date of Test Method used for Preparation Condition On Test * * Surface Wet, Dry Measurement Dimensions: BS EN 12390-1: 2012 Size of sample Received in Lab (mm) Diameter Size of sample Received in Lab (mm) Diameter Size of sample Received in Lab (mm) Length Cut Length of specimen tested (mm)	BH05@0.00-0.165 16 unknown 23-04-18 08-05-18 Cutting Surface Wet 141.1 136 136.7	Vertical re-bar From Centre (mm) na Horizontal Rebar From Centre (mm) na From Centre (mm) na Re-bar Diameter (mm) na RE-BAR NOT PRESENT
Length Diameter ratio of prepared specimen: Density (kg/m ³) Compression: BS EN 12390-3:2009 Compressive Strength N/mm ² Estimated in-situ cube strength N/mm ²	1.01 2176 35.5 35.5	Тор
Appearance of concrete and Type of Fracture Compaction of concrete, classification of void %	Satisfactory 0.5	
Any Deviations from the standard Method of Testing $^{(1)}$	n/a	Bottom

Remarks:

 $^{(1)}$ All the testing was carried out in accordance with BS EN 12390-3: 2009 except as detailed

Technician Responsible Matthew Havard

For and behalf of GEO Site & Testing Services Ltd

Date Checked and Approved:

9.5.18

23-08-12

Unit 4, Heol Aur, Dafen, Llanelli SA14 8QN

