

22.06.18 – Black floating product observed on pooled water within excavation.

APPENDIX B

Laboratory Analysis Reports

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Two samples were received for analysis on 7th June, 2018 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Phil Sommerton BSc Project Manager

Client Name: Reference: Location: Contact: Smith Grant LLP R1742B Heyford Dorchester Scott Miller

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	18/8828						_		
J E Sample No.	1-2	3-4							
Sample ID	TP1-S1- PRODUCT	TP2-S1							
Depth		0.80-1.60					Please se	e attached r	notes for all
COC No / misc								ations and a	
Containers	٧J	VJ							
Sample Date		07/06/2018							
Sample Type	Product	Clayey Sand							
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	07/06/2018	07/06/2018							No.
PAH MS									
Naphthalene	<0.40 _{AA}	-					<0.04	mg/kg	TM4/PM6
Acenaphthylene	3.87 _{AA}	-					<0.03	mg/kg	TM4/PM6
Acenaphthene	4.88 _{AA}	-					<0.05	mg/kg	TM4/PM6
Fluorene	13.86 _{AA}	-					<0.04	mg/kg	TM4/PM6
Phenanthrene	30.99 _{AA}	-					<0.03	mg/kg	TM4/PM6
Anthracene	7.59 _{AA}	-					<0.04	mg/kg	TM4/PM6 TM4/PM6
Fluoranthene	16.17 _{AA}	-					<0.03	mg/kg	TM4/PM6 TM4/PM6
Pyrene Benzo(a)anthracene	42.92 _{AA}	-					<0.03 <0.06	mg/kg mg/kg	TM4/PM6
Chrysene	10.51 _{AA} 8.07 _{AA}	-					<0.00	mg/kg	TM4/PM6
Benzo(bk)fluoranthene	9.04 _{AA}	-					<0.02	mg/kg	TM4/PM6
Benzo(a)pyrene	7.32 _{AA}	-					<0.04	mg/kg	TM4/PM6
Indeno(123cd)pyrene	3.78 _{AA}	-					<0.04	mg/kg	TM4/PM6
Dibenzo(ah)anthracene	1.12 _{AA}	-					<0.04	mg/kg	TM4/PM6
Benzo(ghi)perylene	15.45 _{AA}	-					<0.04	mg/kg	TM4/PM6
PAH 16 Total	175.6 _{AA}	-					<0.6	mg/kg	TM4/PM6
Benzo(b)fluoranthene	6.51 _{AA}	-					<0.05	mg/kg	TM4/PM6
Benzo(k)fluoranthene	2.53 _{AA}	-					<0.02	mg/kg	TM4/PM6
TPH CWG									
Aliphatics									
>C5-C6 #M	-	0.2 ^{SV}					<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	3.4 ^{sv}					<0.1	mg/kg	TM36/PM12
>C8-C10	-	17.7 ^{SV}					<0.1	mg/kg	TM36/PM12
>C10-C12 #M	-	953.5					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 ^{#M}	-	923					<4	mg/kg	TM5/PM8/PM16
>C16-C21 ^{#M} >C21-C35 ^{#M}	-	637 17557					<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C21-C35	-	20092					<7 <19	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics		20032					10	ing/itg	
>C5-EC7 [#]	-	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	-	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	-	0.4 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	262.9					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	-	376					<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	-	619					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	-	6020					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	-	7278					<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	27370					<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE [#]	-	<5 ^{SV}					<5	ug/kg	TM31/PM12
Benzene [#]	-	<5 ^{SV}					<5	ug/kg	TM31/PM12
Toluene [#]	-	<5 ^{\$V}					<5	ug/kg	TM31/PM12

Client Name: Reference: Location: Contact: JE Job No.: Smith Grant LLP R1742B Heyford Dorchester Scott Miller 18/8828

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	18/8828										
J E Sample No.	1-2	3-4									
Sample ID	TP1-S1- PRODUCT	TP2-S1									
Depth		0.80-1.60									
COC No / misc		0.00 1.00						e attached n ations and a			
Containers		٧J									
Sample Date											
Sample Type		Clayey Sand									
Batch Number	1	1									
							LOD/LOR	Units	Method No.		
Date of Receipt	-	117 ^{SV}					<5	ug/kg	TM31/PM12		
m/p-Xylene *	-	239 ^{SV}					<5	ug/kg	TM31/PM12		
o-Xylene [#]	-	<5 ^{SV}					<5	ug/kg	TM31/PM12		
0-Xylene		<0					10	ug/ng			
SEM	443369	-					<110	mg/kg	TM7/PM6		
Saturates (Aliphatics)	27.02	-					<0.01	%	TM13/PM6		
Aromatics	29.29	-					<0.01	%	TM13/PM6		
Resins (Heterocyclics)	23.30	-					<0.01	%	TM13/PM6		
Asphaltenes	20.39	-					<0.01	%	TM13/PM6		
Natural Moisture Content	10.9	22.1					<0.1	%	PM4/PM0		
Triterpanes 191m/z	Present	-						None	TM16/PM6		
Triaromatic Steranes 231m/z	Present	-						None	TM16/PM6		
Coal Tar	<0.1	-					<0.1	%	TM16/PM6		
Sample Type	-	Clayey Sand						None	PM13/PM0		
Sample Colour	-	Dark Brown						None	PM13/PM0		
Other Items	-	stones						None	PM13/PM0		
									1		

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford Dorchester
Contact:	Scott Miller
JE Job No.:	18/8828

Report : Product

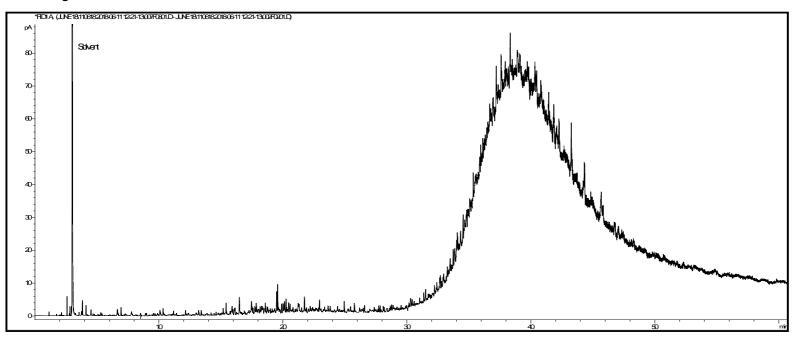
 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

				2 4/		- 5			
J E Sample No.	1-2								
Sample ID	TP1-S1- PRODUCT								
Depth							Please se	e attached no	otes for all
COC No / misc							abbrevi	ations and ac	ronyms
Containers	VJ								
Sample Date	07/06/2018								
Sample Type	Product								
Batch Number	1						LOD/LOR	Units	Method
Date of Receipt									No.
Whole Oil Trace	See Attached							None	TM1/PM0

Exova Jones Enviro Client Name: Reference:	Smith Grant L R1742B	LP			SVOC Re	port :	Product			
Location:	Heyford Dorch	hester								
Contact:	Scott Miller									
JE Job No.:	18/8828									
	10/0020									
J E Sample No.	1-2									
Sample ID	TP1-S1- PRODUCT									
Depth								Please se	e attached n	otes for all
COC No / misc								abbrevia	ations and ad	cronyms
Containers	VJ									
Sample Date	07/06/2018									
Sample Type	Product									
Batch Number	1							LOD/LOR	Units	Method
Date of Receipt	07/06/2018							LOD/LOR	Units	No.
SVOC MS										
Phenols										
2-Chlorophenol	<0.01							<0.01	%	TM16/PM0
2-Methylphenol	<0.01							<0.01	%	TM16/PM0
2-Nitrophenol	<0.01							<0.01	%	TM16/PM0
2,4-Dichlorophenol	<0.01							<0.01	%	TM16/PM0
2,4-Dimethylphenol	<0.01							<0.01	%	TM16/PM0
2,4,5-Trichlorophenol	<0.01							<0.01	%	TM16/PM0
2,4,6-Trichlorophenol	<0.01							<0.01	%	TM16/PM0
4-Chloro-3-methylphenol	<0.01							<0.01	%	TM16/PM0
4-Methylphenol	<0.01							<0.01	%	TM16/PM0
4-Nitrophenol	<0.01							<0.01	%	TM16/PM0
Pentachlorophenol	<0.01							<0.01	%	TM16/PM0
Phenol	<0.01							<0.01	%	TM16/PM0
PAHs										
2-Chloronaphthalene	<0.01							<0.01	%	TM16/PM0
2-Methylnaphthalene	<0.01							<0.01	%	TM16/PM0
Naphthalene	<0.01							<0.01	%	TM16/PM0
Acenaphthylene	<0.01							<0.01	%	TM16/PM0
Acenaphthene	<0.01							<0.01	%	TM16/PM0
Fluorene	<0.01							<0.01	%	TM16/PM0
Phenanthrene	0.01							<0.01	%	TM16/PM0
Anthracene	<0.01							<0.01	%	TM16/PM0
Fluoranthene	0.02							<0.01	%	TM16/PM0
Pyrene	0.02							<0.01	%	TM16/PM0
Benzo(a)anthracene	<0.01							<0.01	%	TM16/PM0
Chrysene	<0.01							<0.01	%	TM16/PM0
Benzo(bk)fluoranthene	0.01							<0.01	%	TM16/PM0
Benzo(a)pyrene	0.01							<0.01	%	TM16/PM0
Indeno(123cd)pyrene	0.07							<0.01	%	TM16/PM0
Dibenzo(ah)anthracene	0.07							<0.01	%	TM16/PM0
Benzo(ghi)perylene	0.01							<0.01	%	TM16/PM0
Phthalates										
Bis(2-ethylhexyl) phthalate	<0.01							<0.01	%	TM16/PM0
Butylbenzyl phthalate	<0.01							<0.01	%	TM16/PM0
Di-n-butyl phthalate	0.02							<0.01	%	TM16/PM0
Di-n-Octyl phthalate	<0.01							<0.01	%	TM16/PM0
Diethyl phthalate	<0.01							<0.01	%	TM16/PM0
Dimethyl phthalate	<0.01							<0.01	%	TM16/PM0

Exova Jones Enviro	Smith Gran				SVOC Re	port :	Product			
	Heyford D									
	Scott Mille	ſ								
JE Job No.:	18/8828									
J E Sample No.	1-2									
Sample ID	TP1-S1- PRODUCT									
Depth								Please se	e attached n	otes for all
COC No / misc								abbrevia	ations and a	cronyms
Containers	VJ									
Sample Date	07/06/2018									
Sample Type	Product									
Batch Number	1							LOD/LOR	Units	Method
Date of Receipt	07/06/2018									No.
SVOC MS										
Other SVOCs										
1,2-Dichlorobenzene	<0.01							<0.01	%	TM16/PM0
1,2,4-Trichlorobenzene	<0.01							<0.01	%	TM16/PM0
1,3-Dichlorobenzene	<0.01							<0.01	%	TM16/PM0
1,4-Dichlorobenzene	<0.01			 				 <0.01	%	TM16/PM0
2-Nitroaniline	< 0.01							<0.01	%	TM16/PM0
2,4-Dinitrotoluene 2,6-Dinitrotoluene	<0.01 <0.01							<0.01	%	TM16/PM0 TM16/PM0
2,6-Dinitrotoluene 3-Nitroaniline	<0.01						-	<0.01 <0.01	%	TM16/PM0 TM16/PM0
3-Nitroaniline 4-Bromophenylphenylether	<0.01							<0.01	%	TM16/PM0 TM16/PM0
4-Chloroaniline	<0.01							<0.01	%	TM16/PM0
4-Chlorophenylphenylether	<0.01							<0.01	%	TM16/PM0
4-Nitroaniline	<0.01							<0.01	%	TM16/PM0
Azobenzene	<0.01							<0.01	%	TM16/PM0
Bis(2-chloroethoxy)methane	<0.01							<0.01	%	TM16/PM0
Bis(2-chloroethyl)ether	<0.01							<0.01	%	TM16/PM0
Carbazole	<0.01							<0.01	%	TM16/PM0
Dibenzofuran	<0.01							<0.01	%	TM16/PM0
Hexachlorobenzene	<0.01							<0.01	%	TM16/PM0
Hexachlorobutadiene	<0.01							<0.01	%	TM16/PM0
Hexachlorocyclopentadiene	<0.01							<0.01	%	TM16/PM0
Hexachloroethane	<0.01							<0.01	%	TM16/PM0
Isophorone	<0.01							<0.01	%	TM16/PM0
N-nitrosodi-n-propylamine	<0.01							<0.01	%	TM16/PM0
Nitrobenzene	<0.01							<0.01	%	TM16/PM0
										-
										ĺ
										İ
										1
										1
										İ
										ł

Client Name: Reference:	Smith Gran R1742B				VOC Rep	ort :	Product			
Location:	Heyford Do									
Contact:	Scott Mille	r								
JE Job No.:	18/8828									
J E Sample No.	1-2									
Sample ID	TP1-S1- PRODUCT									
Depth									e attached n	
COC No / misc								abbrevi	ations and a	cronyms
Containers	V J									
Sample Date	07/06/2018									
Sample Type Batch Number	Product 1									Method
Date of Receipt	07/06/2018							LOD/LOR	Units	No.
VOC MS										
Dichlorodifluoromethane	<0.01							<0.01	%	TM124/PM0
Methyl Tertiary Butyl Ether	<0.05							<0.05	%	TM124/PM0
Chloromethane	<0.01							<0.01	%	TM124/PM0
Vinyl Chloride	<0.01							<0.01	%	TM124/PM0
Bromomethane Chloroethane	<0.01 <0.01							<0.01	%	TM124/PM0 TM124/PM0
Trichlorofluoromethane	<0.01							<0.01 <0.01	%	TM124/PM0
1,1-Dichloroethene (1,1 DCE)	<0.01							<0.01	%	TM124/PM0
Dichloromethane (DCM)	<0.01							<0.01	%	TM124/PM0
trans-1-2-Dichloroethene	<0.01							<0.01	%	TM124/PM0
1,1-Dichloroethane	<0.01							<0.01	%	TM124/PM0
cis-1-2-Dichloroethene	< 0.01							<0.01	%	TM124/PM0
2,2-Dichloropropane	<0.01							<0.01	%	TM124/PM0
Bromochloromethane Chloroform	<0.01 <0.01							<0.01 <0.01	%	TM124/PM0 TM124/PM0
1,1,1-Trichloroethane	<0.01							<0.01	%	TM124/PM0
1,1-Dichloropropene	<0.01							<0.01	%	TM124/PM0
Carbon tetrachloride	<0.01							<0.01	%	TM124/PM0
1,2-Dichloroethane	<0.01							<0.01	%	TM124/PM0
Benzene	<0.01							<0.01	%	TM124/PM0
Trichloroethene (TCE)	<0.01							<0.01	%	TM124/PM0
1,2-Dichloropropane	<0.01							<0.01	%	TM124/PM0 TM124/PM0
Dibromomethane Bromodichloromethane	<0.01 <0.01							<0.01 <0.01	%	TM124/PM0
cis-1-3-Dichloropropene	<0.01							<0.01	%	TM124/PM0
Toluene	<0.01							<0.01	%	TM124/PM0
trans-1-3-Dichloropropene	<0.01							<0.01	%	TM124/PM0
1,1,2-Trichloroethane	<0.01							<0.01	%	TM124/PM0
Tetrachloroethene (PCE)	<0.01							<0.01	%	TM124/PM0
1,3-Dichloropropane	<0.01							<0.01	%	TM124/PM0
Dibromochloromethane 1,2-Dibromoethane	<0.01 <0.01							<0.01 <0.01	%	TM124/PM0 TM124/PM0
Chlorobenzene	<0.01							<0.01	%	TM124/PM0
1,1,1,2-Tetrachloroethane	<0.01							<0.01	%	TM124/PM0
Ethylbenzene	<0.01							<0.01	%	TM124/PM0
p/m-Xylene	<0.01							<0.01	%	TM124/PM0
o-Xylene	<0.01							<0.01	%	TM124/PM0
Styrene	<0.01							<0.01	%	TM124/PM0
Bromoform	<0.01							<0.01	%	TM124/PM0
Isopropylbenzene 1,1,2,2-Tetrachloroethane	<0.01 <0.01							<0.01 <0.01	%	TM124/PM0 TM124/PM0
Bromobenzene	<0.01							<0.01	%	TM124/PM0 TM124/PM0
1,2,3-Trichloropropane	<0.01							<0.01	%	TM124/PM0
Propylbenzene	<0.01							<0.01	%	TM124/PM0
2-Chlorotoluene	<0.01							<0.01	%	TM124/PM0
1,3,5-Trimethylbenzene	<0.01							<0.01	%	TM124/PM0
4-Chlorotoluene	<0.01							<0.01	%	TM124/PM0
tert-Butylbenzene	<0.01							<0.01	%	TM124/PM0
1,2,4-Trimethylbenzene sec-Butylbenzene	0.02 <0.01							<0.01 <0.01	%	TM124/PM0 TM124/PM0
4-Isopropyltoluene	<0.01							<0.01	%	TM124/PM0 TM124/PM0
1,3-Dichlorobenzene	<0.01							<0.01	%	TM124/PM0
1,4-Dichlorobenzene	<0.01							<0.01	%	TM124/PM0
n-Butylbenzene	<0.01			 				 <0.01	%	TM124/PM0
1,2-Dichlorobenzene	<0.01							<0.01	%	TM124/PM0
1,2-Dibromo-3-chloropropane	<0.01							<0.01	%	TM124/PM0
1,2,4-Trichlorobenzene Hexachlorobutadiene	<0.01							<0.01	%	TM124/PM0
Naphthalene	<0.01 <0.01							<0.01 <0.01	%	TM124/PM0 TM124/PM0
1,2,3-Trichlorobenzene	<0.01							<0.01	%	TM124/PM0
	•									


Whole Oil

Exova Jones Environmental

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford Dorchester
Contact:	Scott Miller
Description:	Black Viscous Tar
Carbon Range:	5-40+
Boiling Point Range (°C):	36-525+
Pristane/Phytane Ratio:	N/A
nC ₁₇ /Pristane Ratio:	N/A
Age of Diesel (+/- 2 years)*:	N/A
Interpretation:	Possible Bitumen

JE Job No.: 18/8828 JE Sample No.: 1 Sample Identity: TP1-S1-PRODUCT Depth:

Chromatogram:

*The age of release estimated in this report is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996). Age estimation should be treated with caution as it can be influenced by site specific factors that the laboratory are not aware of.

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford Dorchester
Contact:	Scott Miller

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 18/8828	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/8828

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS Ref No. 4225) accredited - UK.
ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to an Exova Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range
x10 Dilution

Method Code Appendix

JE Job No: 18/8828

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM1	Modified USEPA 8015B method for the determination of carbon banding in oil and product samples by GC-FID.	PM0	No preparation is required.			AR	
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM6	Samples are extracted using Soxtec apparatus and solvent.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM7	Modified USEPA 3540 and 9071 for oily wastes. In house method for the gravimetric determination of a sample following solvent extraction.	PM6	Samples are extracted using Soxtec apparatus and solvent.			AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM13	Determination of Saturates, Aromatics, Resins and Asphaltenes by Thin Layer Chromatography with Flame Ionisation Detection.	PM6	Samples are extracted using Soxtec apparatus and solvent.			AR	Yes

Method Code Appendix

JE Job No: 18/8828

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM0	No preparation is required.			AR	
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM6	Samples are extracted using Soxtec apparatus and solvent.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM6	Samples are extracted using Soxtec apparatus and solvent.			AR	
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM124	Modified USEPA 8260. Semi- Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM0	No preparation is required.			AR	

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Scott Miller Attention : Date : 25th June, 2018 Your reference : R1742B Test Report 18/9273 Batch 1 Our reference : Location : Upper Heyford (Dorchester) Date samples received : 14th June, 2018 Status : Final report Issue : 1

Twelve samples were received for analysis on 14th June, 2018 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie Project Co-ordinator

Client Name:					
Reference:					
Location:					
Contact:					
JE Job No.:					

R1742B Upper Heyford (Dorchester) Scott Miller

18/9273

Smith Grant LLP

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	10/3210									 _		
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	19-20	21-22	23-24			
Sample ID	PH5-HS-SS1	PH5-HS-SS2	PH5-HS-SS3	PH5-HS-SS4	PH5-HS-SS5	PH5-HS-SS6	PH5-HS-S1	PH5-HS-S2	PH5-HS-S3			
Depth	2.00-2.60	2.00-2.60	2.00-2.60	2.00-2.60	2.00-2.60	2.00-2.60				Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	٧J	٧J	VJ	VJ	VJ	VJ	VJ	VJ	VJ			
Sample Date			13/06/2018		13/06/2018			14/06/2018				
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Sand	Clay	Clayey Sand		1	1
Batch Number	1	1	1	1	1	1	1	1	1	 LOD/LOR	Units	Method
Date of Receipt	14/06/2018	14/06/2018	14/06/2018	14/06/2018	14/06/2018	14/06/2018	14/06/2018	14/06/2018	14/06/2018			No.
TPH CWG												
Aliphatics												
>C5-C6 ^{#M}	0.5	<0.1	<0.1	<0.1	6.5	0.4	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 ^{#M}	1.6	0.2	0.6	2.6	34.5	1.6	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	3.1	0.7	5.2	29.7	23.5	2.6	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 ^{#M} >C12-C16 ^{#M}	88.8 164	<0.2 <4	315.9 326	216.2 266	110.7 53	114.2 122	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C12-C16 >C16-C21 #M	384	<7	326	53	53	34	17	<7	<7	<7	mg/kg mg/kg	TM5/PM8/PM16
>C21-C35 #M	7248	133	239	721	1220	398	120	65	62	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	7890	134	921	1289	1499	673	137	65	62	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics											0.0	
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	46.2	<0.2	48.5	29.9	136.6	27.6	0.6	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	126	<4	79	48	59	32	13	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	361	<7	27	42	89	26	81	37	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 [#]	3358	92	152	313	630	188	469	174	103	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 [#] Total aliphatics and aromatics(C5-35)	ME ME	92 226	307 1228	433 1722	917 2416	274 947	564 701	211 276	103 165	<19 <38	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM16 TM5/TM38/PM8/PM12/PM16
		220	1220	1722	2410	547	701	270	105	<30	ilig/kg	
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	728	24	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	29	<5	36	<5	1622	49	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	66	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	29.8	24.1	23.2	22.2	27.2	22.1	6.5	11.3	9.2	<0.1	%	PM4/PM0
Sample Type	Clay	Clay	Clay	Clay	Clay	Clay	Sand	Clay	Clayey Sand		None	PM13/PM0
Sample Colour	Medium Brown		-	-	-		Medium Brown	-			None	PM13/PM0
Other Items	stones	sand, stone	vegetation, stones	roots, stones, slate	stones, carbon, roots	sand, stones	stones, carbon	sand, stones, carbon	stones, roots		None	PM13/PM0
			1		1	1	1	1	1			

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Upper Heyford (Dorchester)
Contact:	Scott Miller

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason				
	No deviating sample report results for job 18/9273									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/9273

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

JE Job No: 18/9273

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Scott Miller
Date :	26th June, 2018
Your reference :	R17426
Our reference :	Test Report 18/9818 Batch 1
Location :	Heycord (Dorchester)
Date samples received :	22nd June, 2018
Status :	Final report
Issue :	1

Two samples were received for analysis on 22nd June, 2018 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Exova Jones Environmental Smith Grant LLP Client Name: Report : Solid R17426 Reference: Heycord (Dorchester) Location: Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub Contact: Scott Miller JE Job No.: 18/9818 J E Sample No. 1-2 Sample ID PH5-H5-S4 Depth Please see attached notes for all abbreviations and acronyms COC No / misc Containers V.I

Containers											
Sample Date	22/06/2018										
Sample Type	Soil										
Batch Number	1										Method
Date of Receipt									LOD/LOR	Units	No.
Natural Moisture Content	36.7								<0.1	%	PM4/PM0
	00.1								-0.1	70	1 101-071 1010
Sample Type	NDP									None	PM13/PM0
Sample Colour	NDP									None	PM13/PM0
Other Items	NDP									None	PM13/PM0
	I		I	I	1	I	1				L I

Client Name:	Smith Grant LLP
Reference:	R17426
Location:	Heycord (Dorchester)
Contact:	Scott Miller

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/9818	1	PH5-H5-S4		2	26/06/2018	General Description (Bulk Analysis)	Soil/Stones
					26/06/2018	Asbestos Fibres	Fibre Bundles
					26/06/2018	Asbestos Fibres (2)	NAD
					26/06/2018	Asbestos ACM	NAD
					26/06/2018	Asbestos ACM (2)	NAD
					26/06/2018	Asbestos Type	NAD
					26/06/2018	Asbestos Type (2)	NAD
					26/06/2018	Asbestos Level Screen	NAD
18/9818	1	PH5-ASB-S1		3	26/06/2018	General Description (Bulk Analysis)	Asbestos cement
					26/06/2018	Asbestos Fibres	Fibre Bundles
					26/06/2018	Asbestos ACM	Asbestos Cement
					26/06/2018	Asbestos Type	Chrysotile
					26/06/2018	Asbestos Level Screen	Asbestos level cannot be determined from Screen. Quantification required.

Client Name:	Smith Grant LLP
Reference:	R17426
Location:	Heycord (Dorchester)
Contact:	Scott Miller

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason
18/9818	1	PH5-H5-S4		1-2	Asbestos detected in sample

NDP Reason Report

Matrix : Solid

Client Name:	Smith Grant LLP						
Reference:	R17426						
Location:	Heycord (Dorchester)						
Contact:	Scott Miller						

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason						
	No deviating sample report results for job 18/9818											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/9818

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

S Ref No. 4225) accredited - UK.
AS Def No TOZOO) approximate a Courte Africa
AS Ref No.T0729) accredited - South Africa.
found in associated method blank.
lited.
tected.
usually refers to VOC and/SVOC TICs).
n Possible
st a single substance
ery outside performance criteria. This may be due to a matrix effect.
ed on as received basis.
reditation has been removed from this result, if appropriate, see 'Note' on previous page.
alibration range, results should be considered as indicative only and are not accredited.
tracted to an Exova Jones Environmental approved laboratory.
ed at 35°C ±5°C
over
n (Limit of Reporting) in line with ISO 17025 and MCERTS
ted
le
on Range

Method Code Appendix

JE Job No: 18/9818

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.		Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Scott Miller
Date :	10th July, 2018
Your reference :	R1742B
Our reference :	Test Report 18/10066 Batch 1
Location :	Heyford
Date samples received :	27th June, 2018
Status :	Final report
Issue :	1

Ten samples were received for analysis on 27th June, 2018 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie Project Co-ordinator

Client Name: Reference: Location: Contact: JE Job No.:

Smith Grant LLP R1742B Heyford Scott Miller 18/10066

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	10/10000													
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20				
Sample ID	Ph5-HS-SS7	Ph5-HS-SS8	Ph5-HS-SS9	Ph5-HS-SS10	Ph5-HS-SS11	Ph5-HS-SS12	Ph5-HS-SS13	Ph5-HS-SS14	Ph5-HS-SS15	Ph5-HS-S5				
Depth	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50		Please se	Please see attached notes fo		
COC No / misc												cronyms		
Containers	VJ													
Sample Date														
Sample Type														
									Clay	Clay				
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.	
Date of Receipt	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018	27/06/2018			110.	
TPH CWG														
Aliphatics	.0.1	.0.1	.0.1	.0.1	.0.1	.0.1	.0.1	.0.1	.0.4	.0.1	.0.4		TM00/DM40	
>C5-C6 ^{#M} >C6-C8 ^{#M}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12	
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C10-C12 ^{#M}	<0.2	<0.2	<0.2	60.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16	
>C12-C16 ^{#M}	<4	<4	<4	80	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16	
>C16-C21 #M	<7	<7	<7	43	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>C21-C35 #M	<7	60	<7	663	<7	<7	<7	171	<7	24	<7	mg/kg	TM5/PM8/PM16	
Total aliphatics C5-35	<19	60	<19	846	<19	<19	<19	171	<19	24	<19	mg/kg	TM5/TM38/PM8/PM12/PM16	
Aromatics														
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16	
>EC10-EC12 [#] >EC12-EC16 [#]	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	mg/kg mg/kg	TM5/PM8/PM16	
>EC12-EC18	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>EC21-EC35 [#]	<7	<7	<7	150	<7	<7	<7	<7	<7	66	<7	mg/kg	TM5/PM8/PM16	
Total aromatics C5-35 #	<19	<19	<19	150	<19	<19	<19	<19	<19	66	<19	mg/kg	TM5/TM38/PM8/PM12/PM16	
Total aliphatics and aromatics(C5-35)	<38	60	<38	996	<38	<38	<38	171	<38	90	<38	mg/kg	TM5/TM36/PM8/PM12/PM16	
MTBE #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12	
Natural Moisture Content	18.3	13.5	16.2	17.2	16.1	16.9	17.4	21.8	16.3	13.7	<0.1	%	PM4/PM0	
Sample Type	Clayey Sand	Clay	Clay		None	PM13/PM0								
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0	
Other Items	stones	sand, stones	stones, clinker,		None	PM13/PM0								

Client Name:Smith Grant LLPReference:R1742BLocation:HeyfordContact:Scott Miller

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/10066	1	Ph5-HS-SS7	2.50	1-2	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS8	2.50	3-4	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS9	2.50	5-6	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS10	2.50	7-8	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS11	2.50	9-10	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS12	2.50	11-12	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS13	2.50	13-14	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS14	2.50	15-16	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-SS15	2.50	17-18	GRO	Solid Samples were received at a temperature above 9°C.
18/10066	1	Ph5-HS-S5		19-20	GRO	Solid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/10066

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

JE Job No: 18/10066

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Ben Thomas
Date :	12th July, 2018
Your reference :	R1742B
Our reference :	Test Report 18/10241 Batch 1
Location :	Heyford
Date samples received :	29th June, 2018
Status :	Final report
Issue :	1

Twenty nine samples were received for analysis on 29th June, 2018 of which twenty nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name: Reference: Location: Contact: JE Job No.:

Smith Grant LLP R1742B Heyford Ben Thomas 18/10241

Report : Solid

JE JOD NO	10/10241										L		
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	PH5-HS-S6	PH5-HS-S7	PH5-HS-S8	PH5-HS-S9	PH5-HS-S10	PH5-HS-S11	PH5-HS-S12	PH5-HS-S13	PH5-HS-S14	PH5-HS-S15			
Depth											Diagon on	e attached n	atao far all
COC No / misc												ations and a	
Containers	٧J	٧J	٧J	٧J	VJ	٧J	٧J	٧J	٧J	٧J			
Sample Date			28/06/2018			28/06/2018		28/06/2018					
										29/06/2018			
Sample Type	Clay	Clay	Clay	Clay	Clayey Sand	Clay	Clayey Sand		Clay	Clay			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018			140.
TPH CWG													
Aliphatics	SV	-0.4	-0.4	.0.4	SV	-0.4	SV	-0.4	.0.4	.0.1	.0.1		TM00/DM40
>C5-C6 ^{#M} >C6-C8 ^{#M}	<0.1 ^{SV} <0.1 ^{SV}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 ^{SV}	<0.1 0.6	<0.1 ^{SV} 0.2 ^{SV}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12
>C8-C10	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	0.9	0.2 0.2 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.9	<0.2	<0.1	<0.1	<0.1	<0.1	mg/kg	TM50/TW12 TM5/PM8/PM16
>C12-C16 #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 #M	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 #M	<7	61	<7	<7	9	<7	52	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	61	<19	<19	<19	<19	52	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics													
>C5-EC7#	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#] >EC16-EC21 [#]	<4 <7	7 31	<4 <7	<4 <7	<4 56	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 [#]	37	135	<7	<7	154	<7	37	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 [#]	37	173	<19	<19	210	<19	37	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	234	<38	<38	210	<38	89	<38	<38	<38	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE [#]	<5 ^{\$V}	<5	<5	<5	<5 ^{\$V}	<5	<5 ^{\$V}	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	<5	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene [#]	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	<5	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene #	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	12	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	12	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5 SV	<5	<5	<5	<5 ^{SV}	<5	<5 ^{SV}	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	20.7	19.3	23.5	21.4	18.1	22.9	53.1	29.0	20.7	24.9	<0.1	%	PM4/PM0
a 1.7													
Sample Type	Clay Medium Brown	Clay Medium Brown	Clay Medium Brown	Clay Medium Brown	Clayey Sand Dark Brown	Clay	Clayey Sand Dark Brown	Clay Medium Brown	Clay Medium Brown	Clay Medium Brown		None	PM13/PM0 PM13/PM0
Sample Colour Other Items	stones, carbon	carbon, stones		stones, roots		stones	stones	stones	stones	stones		None None	PM13/PM0 PM13/PM0
Other items	stones, carbon	carbon, stones	stories, carbon, cincker	siones, roois	stones, carbon	siones	siones	siones	stones	siones		NOTE	PIVIT3/PIVIU

Smith Grant LLP

R1742B

Heyford

18/10241

Ben Thomas

Client Name: Reference: Location: Contact: JE Job No.:

Report : Solid

	10/10241												
J E Sample No.	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-36	37-38	39-40			
Sample ID	PH5-HS-S16	PH5-HS-SS16	PH5-HS-SS17	PH5-HS-SS18	PH5-HS-SS19	PH5-HS-SS20	PH5-HS-SS21	PH5-HS-SS22	PH5-HS-SS23	PH5-HS-SS24			
Depth		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	٧J	٧J	٧J	٧J	٧J	VJ	VJ	VJ	٧J	٧J			
Sample Date										28/06/2018			
Sample Type	Clay	Clay	Clay	Clay	Clayey Sand	Clayey Sand	Clay	Clay	Clayey Sand	Clayey Sand			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018			No.
TPH CWG													
Aliphatics													
>C5-C6 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 #M >C8-C10	<0.1 0.7	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	mg/kg	TM36/PM12 TM36/PM12
>C8-C10 >C10-C12 ^{#M}	129.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C12	129.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C16-C21 #M	34	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 #M	319	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	676	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM18
Aromatics													
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	15.7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	39	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	16 143	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 [#] Total aromatics C5-35 [#]	214	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg mg/kg	TMS/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	890	<38	<38	<38	<38	<38	<38	<38	<38	<38	<38	mg/kg	TM5/TM38/PM8/PM12/PM18
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	17.2	18.8	17.1	21.3	19.3	25.9	22.7	9.7	18.0	14.7	<0.1	%	PM4/PM0
								-			-		
Sample Type	Clay	Clay	Clay	Clay	Clayey Sand	Clayey Sand	Clay	Clay	Clayey Sand	Clayey Sand		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	brick fragment, stones, roots	chalk, stones	sand, stone	stones, carbon	STONES	stones, chalk	vegetation, stones, sand	sand, stones	stones	stones		None	PM13/PM0

Client Name: Reference: Location: Contact: JE Job No.:

Smith Grant LLP R1742B Heyford Ben Thomas 18/10241

Report : Solid

										 •		
J E Sample No.	41-42	43-44	45-46	47-48	49-50	51-52	53-54	55-56	57-58			
Sample ID	PH5-HS-SS25	PH5-HS-SS26	PH5-HS-SS27	PH5-HS-SS28	PH5-HS-SS29	PH5-HS-SS30	PH5-HS-SS31	PH5-HS-SS32	PH5-HS-SS33			
Depth	4.0	4.0	4.0	4.0	4.0	4.0	3.0	3.0	3.0	Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J			
Sample Date	28/06/2018	28/06/2018	28/06/2018	28/06/2018	28/06/2018	28/06/2018	29/06/2018	29/06/2018	29/06/2018			
Sample Type	Clavev Sand	Clavev Sand	Sand	Clayey Sand	Clay	Clay	Clay	Clay	Clay			
Batch Number	1	1	1	1	1	1	1	1	1			
									29/06/2018	LOD/LOR	Units	Method No.
Date of Receipt	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018	29/06/2018			
Aliphatics												
>C5-C6 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	0.6 ^{SV}	0.3 ^{sv}	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	6.4	6.5 ^{SV}	4.2 ^{SV}	<0.1	mg/kg	TM36/PM12
>C10-C12 #M	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	342.6	178.0	173.8	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	<4	<4	<4	<4	<4	<4	479	204	173	<4	mg/kg	TM5/PM8/PM16
>C16-C21 ^{#M} >C21-C35 ^{#M}	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	<7 <7	239 4612	302 6501	186 4650	<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	5679	7192	5187	<19	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM18
Aromatics	110	110	110	110	110	110	0010	1102	0.01	110		
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 ^{SV}	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	26.1	57.7	42.0	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#] >EC16-EC21 [#]	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	98 165	93 225	51 105	<4 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC16-EC21	<7	<7	<7	<7	<7	<7	1611	2151	1789	<7	mg/kg mg/kg	TM5/PM8/PM16
Total aromatics C5-35 [#]	<19	<19	<19	<19	<19	<19	1900	2527	1987	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38	<38	<38	7579	9719	7174	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	ug/kg	TM31/PM12
Toluene [#] Ethylbenzene [#]	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 ^{\$V} 42 ^{\$V}	<5 ^{\$V} 38 ^{\$V}	<5 <5	ug/kg ug/kg	TM31/PM12 TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	42 86 ^{SV}	38 45 ^{SV}	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5 ^{SV}	<5 ^{SV}	<5	ug/kg	TM31/PM12
Natural Moisture Content	20.5	16.3	17.7	14.7	23.0	26.9	22.4	22.2	14.4	<0.1	%	PM4/PM0
Sample Type	Clayey Sand	Clayey Sand	Sand	Clayey Sand	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones	stones	stones	stones	carbon, stones	chalk, stones	stones	stones	stones, sand		None	PM13/PM0

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford
Contact:	Ben Thomas

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason				
	No deviating sample report results for job 18/10241									
				c.						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/10241

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

JE Job No: 18/10241

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Scott Miller
Date :	16th July, 2018
Your reference :	R1742B
Our reference :	Test Report 18/10441 Batch 1
Location :	Heyford (Dorchester)
Date samples received :	3rd July, 2018
Status :	Final report
Issue :	1

Thirteen samples were received for analysis on 3rd July, 2018 of which thirteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie Project Co-ordinator

Client Name: Reference: Location: Contact: JE Job No.:

R1742B Heyford (Dorchester) Scott Miller 18/10441

Smith Grant LLP

Report : Solid

Date of Recipit 0307/2018 0301 0301 03		10/10441												
Image: biologic	J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
CCC No /mise V <t< th=""><th>Sample ID</th><th>PH5-HS-SS34</th><th>PH5-HS-SS35</th><th>PH5-HS-SS36</th><th>PH5-HS-SS37</th><th>PH5-HS-SS38</th><th>PH5-HS-SS39</th><th>PH5-HS-SS40</th><th>PH5-HS-SS41</th><th>PH5-HS-SS42</th><th>PH5-HS-SS43</th><th></th><th></th><th></th></t<>	Sample ID	PH5-HS-SS34	PH5-HS-SS35	PH5-HS-SS36	PH5-HS-SS37	PH5-HS-SS38	PH5-HS-SS39	PH5-HS-SS40	PH5-HS-SS41	PH5-HS-SS42	PH5-HS-SS43			
COC No / mice Vi	Depth	1.5-2.5	2.5	1.5-2.5	2.5	1.2-2.5	1-2.5	1-2.5	1-2.5	1-2.5	1.5-2.5	Please se	e attached n	otes for all
Sample Map Sample	COC No / misc													
Sample Type Clay	Containers	٧J	VJ	VJ	٧J	VJ	VJ	٧J	VJ	VJ	٧J			
Sample Type Clay	Sample Date	02/07/2018												
Batch Number 1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>														
Date of Receips 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018 3037/2018									-					
Date of Receipt GROT/ZOTE GGC/COT 1.387 GOL 1.587 GOL												LOD/LOR	Units	Method No
Miphatics v		03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018			
SCC-CG ^M cd.1 vd.1														
ScGc SM 0.2 SV c.0.1 1.5 V 1.7 2.4 SV c.0.1 c.0.1 c.0.1 c.0.1 mays TM36P SCG C10 1.3 V c.0.1 7.5 V 4.5 V c.0.1 c.0.1 c.0.1 c.0.1 c.0.1 mays TM36P SCID-C12 4.3 3.2 14.4 483 67 c.0.2 0.3	-	SV	.0.4	SV	0.4	SV	-0.4	.0.4	.0.1	-0.4	.0.1	-0.1		TM00/DM40
Schern 1.3 ^{SV} 2.0.1 7.6 4.5 ^{SV} -0.1 -0.1 <th></th> <th></th> <th></th> <th><0.1 SV</th> <th></th>				<0.1 SV										
C10-C12 ^M 29.5 14.9 133.7 45.3 65.6 -0.2 -0.2 9.3 30.3 -0.2 -0.2 mgkg Torestate C12-C16 ^M 43 3.2 142 48 67 -44 -44 22 -44 -48 -74 mgkg Torestate C12-C3 M 108 4.3 171 15 233 56 101 2.3 444 18 -77 mgkg Torestate C21-C3 M 2016 4768 888 8185 1596 201 722 701 661 -19 mgkg Torestate C4C7 C1 -0.1 ^{SV} -0.1 -0.1 ^{SV} -0.1 -0.1 ^{SV} -0.1 -0.1 -0.1 -0.1 mgkg Torestate SC5-EC7 ⁴ -0.1 ^{SV} -0.1 -0.1 -0.1 -0.1 -0.1 mgkg Torestate SC5-EC7 ⁴ -0.1 ^{SV} -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1				1.5 7 0 SV										TM36/PM12
Sch2ech6 ^M 43 32 142 48 67 e4 e4 22 e4 e4 ead mgkg Tusewar Sch2ieC21 ^M 108 43 171 155 293 56 100 233 444 18 e7 mgkg Tusewar Sch2ieC3 ^M 2587 900 4312 770 7752 1540 191 668 627 643 e7 mgkg Tusewar Total alphates C5:35 2587 900 4768 888 818 e7 rus e7 mgkg Tusewar Acomatics - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>TM50/TW12 TM5/PM8/PM16</th>														TM50/TW12 TM5/PM8/PM16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														TM5/PM8/PM16
Sc21-C35 ^M 2587 900 4312 770 7752 1540 191 668 627 643 <77					15			10			18			TM5/PM8/PM16
Aromatics Image: Solution of the solut	>C21-C35 #M	2587	900	4312	770	7752	1540	191	668	627	643	<7	mg/kg	TM5/PM8/PM16
$c_{5}E_{5}E_{7}$ $c_{0.1}^{SV}$ c	Total aliphatics C5-35	2769	990	4768	888	8185	1596	201	722	701	661	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
SEC7-EC8* $<0.1^{SV}$ <0.1 $<0.1^{SV}$ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Aromatics													
SEG8-EC10 ^{*M} c.0.1 v 0.1 v v 0.1 v	>C5-EC7 #	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
SEC10-EC12* 166 5.2 46.8 <0.2	>EC7-EC8#	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
SEC12-EC16* 33 17 66 <4		<0.1 SV	<0.1	0.1 ^{SV}	1.0	0.1 ^{SV}	<0.1		<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
SEC16-EC21* 92 34 132 <7														TM5/PM8/PM16
SEC21-EC35 ⁴ 996 310 1439 271 2824 642 98 317 288 412 <7														TM5/PM8/PM16
Total aromatics C5-35 # 1138 366 1684 272 3178 716 98 331 305 412 <19														
Total aliphatics and aromatics(C5-35) 3907 1356 6452 1160 11363 2312 299 1053 1006 1073 <38														TM5/PM8/PM16 TM5/TM38/PM8/PM12/PM16
MTBE " c.5 ^{SV} c.5 c														TM5/TM38/PM8/PM12/PM16
Benzene** $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $< < 5^{SV}$ $<$														
Benzene # -	MTBE #	<5 ^{\$V}	<5	<5 ^{\$V}	<5	<5 ^{\$V}	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene " </th <th>Benzene[#]</th> <th><5^{\$V}</th> <th><5</th> <th><5^{\$V}</th> <th><5</th> <th></th> <th><5</th> <th><5</th> <th><5</th> <th><5</th> <th><5</th> <th><5</th> <th>ug/kg</th> <th>TM31/PM12</th>	Benzene [#]	<5 ^{\$V}	<5	<5 ^{\$V}	<5		<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene # 13 ^{SV} <5	Toluene #	<5 ^{\$V}	<5		<5		<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene ** <58v <5 <5v 57 75 ⁸ v <5 <5 <5 <5 <5 ug/kg TM31/PI Natural Moisture Content 20.4 2.8 23.7 109.8 19.7 10.7 7.3 9.9 11.7 13.2 <0.1 % PM4/PI Sample Type Clay Clay Sand Clay	Ethylbenzene #	<5 ^{\$V}	<5		40		<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content 20.4 2.8 2.3.7 109.8 19.7 10.7 7.3 9.9 11.7 13.2 <0.1		13 ^{SV}	<5	89 ^{sv}	866		<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Sample Type Clay Clay Clay Sand Clay Clay Claye Sand Clay Claye Sand Clay Clayer Sand Clay Clayer Sand Clay Clayer Sand Clay Clayer Sand Clay Clayer Sand Clay Clayer Sand Clay Sand Clay Sand Clay Sand Clayer Sand Clayer Sand Clayer Sand Clayer Sand Sand Sand Sand Sand Sand Sand Sand	o-Xylene [#]	<5 ^{SV}	<5	<5 ^{SV}	57	75 ^{SV}	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
	Natural Moisture Content	20.4	2.8	23.7	109.8	19.7	10.7	7.3	9.9	11.7	13.2	<0.1	%	PM4/PM0
	Sample Type	Clay	Clay	Clay	Sand	Clay	Clay	Clayey Sand	Clay	Clayey Sand	Clay		None	PM13/PM0
						-	•		-		-			PM13/PM0
Other Items stones stones stones stones, wet stones sand, stones stones, chalk and carbon areas stones, sand None PM13/P	Other Items	stones	stones	stones	stones, wet	stones	sand, stones	stones, chalk	sand, carbon, stones, roots	stones	stones, sand		None	PM13/PM0

Client Name: Reference: Location: Contact: JE Job No.:

R1742B Heyford (Dorchester) Scott Miller 18/10441

Smith Grant LLP

Report : Solid

JE Job No.:	18/10441								_		
J E Sample No.	21-22	23-24	25-26								
Sample ID	PH5-HS-SS44	PH5-HS-SS45	PH5-HS-S17								
Depth	1.5-2.5	1.5-2.5							Please see attached notes for abbreviations and acronyms		
COC No / misc											
Containers	٧J	٧J	VJ								
Sample Date											
Sample Type	Clayey Sand	Clay	Clay								
Batch Number	1	1	1						LOD/LOR	Units	Method
Date of Receipt	03/07/2018	03/07/2018	03/07/2018								No.
TPH CWG											
Aliphatics											
>C5-C6 #M	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>C10-C12 ^{#M}	1.2	<0.2	<0.2						<0.2	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C12-C16 ^{#M} >C16-C21 ^{#M}	80 106	<4 8	<4 <7						<4 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C21-C35 #M	2123	267	<7						<7	mg/kg mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	2310	275	<19						<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics											
>C5-EC7 #	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>EC7-EC8*	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1						<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2						<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	32	<4	<4						<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	74	<7	<7						<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 [#]	815	109	<7						<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 [#] Total aliphatics and aromatics(C5-35)	921 3231	109 384	<19 <38						<19 <38	mg/kg mg/kg	TM5/TM38/PM8/PM12/PM16
Total alphatics and aromatics(C3-33)	3231	304	<30						<30	iiig/kg	
MTBE #	<5	<5	<5						<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5						<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5						<5	ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5						<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5	<5	<5						<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5						<5	ug/kg	TM31/PM12
Natural Moisture Content	1.4	0.9	18.6						<0.1	%	PM4/PM0
Sample Type	Clayey Sand	Clay	Clay							None	PM13/PM0
Sample Colour			Medium Brown							None	PM13/PM0
Other Items	stones, carbon	stones	stones, carbon							None	PM13/PM0

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford (Dorchester)
Contact:	Scott Miller

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason						
	No deviating sample report results for job 18/10441											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/10441

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

S Ref No. 4225) accredited - UK.
AS Def No TOZOO) approximate a Courte Africa
AS Ref No.T0729) accredited - South Africa.
found in associated method blank.
lited.
tected.
usually refers to VOC and/SVOC TICs).
n Possible
st a single substance
ery outside performance criteria. This may be due to a matrix effect.
ed on as received basis.
reditation has been removed from this result, if appropriate, see 'Note' on previous page.
alibration range, results should be considered as indicative only and are not accredited.
tracted to an Exova Jones Environmental approved laboratory.
ed at 35°C ±5°C
over
n (Limit of Reporting) in line with ISO 17025 and MCERTS
ted
le
on Range

Method Code Appendix

JE Job No: 18/10441

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes