Hydrock

Heyford Park, Upper Heyford, Oxfordshire Flood Risk Assessment and Drainage Strategy

For Dorchester Living

Date: 3 July 2020 Doc ref: HPH-HYD-XX-XX-RP-D-5001

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited Over Court Barns Over Lane Almondsbury Bristol BS32 4DF	Tel: 01454 619533 Fax: 01454 614125 www.hydrock.com	
Client	Dorchester Living		
Project name	Heyford Park, Upper Heyford, Oxfordshire		
Title	Flood Risk Assessment and Drainage Strategy		
Doc ref	HPH-HYD-XX-XX-RP-D-5001		
Project no.	C-04583		
Status	S2		
Date	03/07/2020		

Document Production Record				
Issue Number	Р5	Name		
Flood Risk Prepared by		Simon Mirams BSc, C.WEM, CSci		
Drainage Prepared by		Sean Mitchinson BEng		
Flood Risk Checked by		David Lloyd BSc PhD		
Drainage Checked by		David Lloyd BSc PhD		
Approved by		David Lloyd BSc PhD		

Document Revision Record				
Issue Number	Status	Date	Revision Details	
P2	Draft	10 th April 2018	P2-S2	
P3	Final	4 th March 2020	P3 S2	
P4	Final	10 th March 2020	P4-S2 updated to take on review comments	
P5	Final	3 rd July 2020	P5-S2 Updated following OCC comments	

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1.	INTRODUCTION	1
2.	SITE INFORMATION	2
2.1	Existing Situation	2
3.	ASSESSMENT OF FLOOD RISK	5
3.1	Fluvial and Tidal Flooding	5
3.2	Surface Water Flooding	5
3.3	Groundwater Flooding	6
3.4	Infrastructure Failure Flooding	7
3.5	Flooding from Artificial Sources	7
3.6	Emergency Access Requirements	7
3.7	Summary	7
4.	NPPF REQUIREMENTS	8
4.1	Planning Policy Requirements	8
4.2	Exception Test	8
5.	SURFACE WATER MANAGEMENT	9
5.1	Existing Surface Water Drainage	9
5.2	Proposed Surface Water Drainage	9
5.3	Catchment & Discharge Locations	12
5.4	Exceedance Flow Routes	12
5.5	Water Quality	13
5.6	Amenity	13
5.7	Biodiversity	13
5.8	On Parcel Source Control Opportunities	13
5.9	Surface Water & SuDs Maintenance	14
6.	FOUL WATER MANAGEMENT	16
6.1	Existing Foul Water	16
6.2	Proposed Foul Water	16
7.	CONCLUSIONS	18

Tables

Table 1: Site Referencing Information	2
Table 2: Parcel Attenuation Requirements	
Table 3: Attenuation Half Drain Times	
Table 4: Pollution hazard level (taken from table 26.2 CIRIA SuDS Manual	
Table 5: Pollution Hazard Mitigation Table	13
Table 6: Maintenance requirements for various SuDS features	

Figures

Figure 1: Environment Agency Fluvial Flood Risk Map	5
Figure 2: Environment Agency Surface Water Flood Risk Map	
Figure 3: Cranfield University Soilscape Mapping	9
Figure 4: Discharge Location Plan	

Appendices

- Appendix A Greenfield Run Off Calculations
- Appendix B Attenuation Volume Calculations
- Appendix C Surface Water Drainage Strategy
- Appendix D Exceedance Flow Routes
- Appendix E Foul Drainage Strategy

1. INTRODUCTION

This report has been prepared by Hydrock Consultants Limited (Hydrock) on behalf of our client, Dorchester Living, in support of a Planning Application to be submitted to Cherwell District Council for a proposed mixed use development at Heyford Park, Upper Heyford, Oxfordshire.

This Flood Risk Assessment report has been prepared to address the requirements of the National Planning Policy Framework (NPPF), through:

- Assessing whether the site is likely to be affected by flooding.
- Assessing whether the proposed development is appropriate in the suggested location.
- Presenting any flood risk mitigation measures necessary to ensure that the proposed development and occupants will be safe, whilst ensuring flood risk is not increased elsewhere.

The report considers the requirements for undertaking a Flood Risk Assessment as detailed in NPPF guidance.

2. SITE INFORMATION

2.1 Existing Situation

2.1.1 Location

Table 1 provides the summary site location details.

Table 1: Site Referencing Information

Address	Former RAF Upper Heyford, Oxfordshire, OX25 5HA
Grid Reference	451497, 226743 SP514267
Easting, Northing	451497, 226743

2.1.2 Existing Land Use

The Masterplan Area covers an area of around 449ha around the former RAF Upper Heyford the total development area included within this application is 43.5ha across 12 separate parcels. For the purpose of this report the Application Site to referred to as Heyford Park.

Heyford Park comprises an unused flying field (runway, taxi areas, control tower etc.) with a large portion of the remaining site area currently developed with former personnel living quarters, administrative office buildings, aircraft hangers, storage facilities, and areas of hardstanding working yards. Many of the former buildings are currently to commercial and industrial uses and these are currently accessed via internal site roads linked to main site entrance off Camp Road which runs through the middle of the site. There has already been some residential development on the site. The remainder of the site is undeveloped and is predominantly grassed.

Heyford Park has the B430 to the east and the B4030 to the south, with another B class road, Camp Road, running through the approximate centre of the site. The A43 is approximately 1.6km to the east of the site. Upper Heyford village is located to the west of the site and beyond Station Road. The next nearest urban centre is Bicester which is around 5.8km to the south east of the site.

2.1.3 Topography

A detailed topographical survey has been provided for the areas to the south of the flying field and existing runway areas. Where topographical information isn't available for the flying field and area to the north, Ordnance Survey contour mapping has been used to inform the general topography and falls. The flying field is shown as being the local high point within the wider area with ground the levels falling away in all directions.

This survey shows that there are a number of different falls through the site but, in general, there is a ridge that runs through the approximate centre of the site with site levels falling away from this. The level of the ridge varies but is generally around 125m AOD though levels do rise to around 130mAOD locally. Ground levels fall in a generally westerly direction with levels dropping along Camp Road to around 108m AOD at the junction with Somerton Road. The topographical survey also shows that site levels to the west of the ridge fall in a southerly direction with levels falling from Camp Road to a surveyed low of around 115.50m AOD, whilst levels rise to the northwest to a high within the site (within parcel 26) at around 138mAOD.

Levels to the east of the of the high point are shown to generally fall from a level of around 126m AOD on the south eastern apron of the runway to around 118.50m AOD at the southern limit of the survey.

2.1.4 Proposed Development

Planning permission is being sought for a hybrid planning application consisting of:

- demolition of buildings and structures as listed in Schedule 1;
- outline planning permission for up to:
 - > 1,175 new dwellings (Class C3);
 - > 60 close care dwellings (Class C2/C3);
 - > 929 m² of retail (Class A1);
 - > 670 m² comprising a new medical centre (Class D1);
 - > 35,175 m² of new employment buildings, (comprising up to 6,330 m² Class B1a, 13,635 m² B1b/c, 9,250 m² Class B2, and 5,960 m² B8);
 - > 2,415 m² of new school building on 2.4 ha site for a new school (Class D1);
 - 925 m² of community use buildings (Class D2); and 515 m² of indoor sports, if provided on-site (Class D2);
 - > 30m in height observation tower with zip-wire with ancillary visitor facilities of up of 100 m² (Class D1/A1/A3);
 - > 1,000 m² energy facility/infrastructure with a stack height of up to 24m (sui generis);
 - > 2,520 m² additional education facilities (buildings and associated external infrastructure) at Buildings 73, 74 and 583 for education use (Class D1);
 - > creation of areas of Open Space, Sports Facilities, Public Park and other green infrastructure.
- the change of use of the following buildings and areas:
 - > Buildings 3036, 3037, 3038, 3039, 3040, 3041, and 3042 for employment use (Class B1b/c, B2, B8);

- > Buildings 217, 3052, 3053, 3054, 3055, 3102, and 3136 for employment use (Class B8);
- Buildings 2010 and 3009 for filming and heritage activities (Sui Generis/Class D1);
- > Buildings 73 and 2004 (Class D1);
- > Buildings 391, 1368, 1443, 2005, 2006, 2007, 2008 and 2009 (Class D1/D2 with ancillary A1-A5 use);
- > Building 340 (Class D1, D2, A3);
- > 20.3ha of hardstanding for car processing (Sui Generis); and
- > 76.6ha for filming activities, including 2.1 ha for filming set construction and event parking (Sui Generis);
- the continuation of use of areas, buildings and structures already benefiting from previous planning permissions, as specified in Schedule 2.
- associated infrastructure works, including surface water attenuation provision and upgrading Chilgrove Drive and the junction with Camp Road.

Hydrock

3. ASSESSMENT OF FLOOD RISK

3.1 Fluvial and Tidal Flooding

The Environment Agency's (EA's) Flood Zone Mapping shows that the site is entirely within Flood Zone 1 which comprises land assessed as having a less than 1 in 1,000 annual probability of fluvial or tidal flooding (<0.1%) in any year.

Being categorised as Flood Zone 1, it is therefore concluded that the site is suitably elevated above all surrounding watercourses to be above the extreme 1 in 1,000 year flood level. As such, the site is concluded as being at low risk from fluvial flooding. The closest watercourse to the site is the Gallos Brook which is a tributary of the larger River Cherwell.

Figure 1: Environment Agency Fluvial Flood Risk Map

Owing to the location and elevation of the site it is also concluded to be at negligible risk from tidal flooding.

3.2 Surface Water Flooding

The EA's flooding from surface water mapping shows that the site is predominantly classified as being at 'very low' risk from this source of flooding.

Whilst the site has been shown as being predominantly at low risk, some areas are classified as being at slightly higher risk with two potential surface flow routes within the site identified. One of these flows in an easterly direction along the northern site boundary and away from the site and poses little risk to the site.

The second flow route starts within the existing buildings at the south eastern corner of the site and drains across the site in a southerly direction with depths typically being below 300mm and only

Hydrock

impacts a small area of the site. As such, the area immediately affected could be at an increased risk from this source.

In addition to the two identified surface flow routes there are a number of sections within the site shown to be at an increased risk. These areas are not shown to have connectivity (i.e. act as a flow route) with the wider area and are therefore only representative of locally lower sections within the site.

Figure 2: Environment Agency Surface Water Flood Risk Map

Apart from two localised areas where two flow routes have been identified the site is concluded as being at low risk from this source of flooding.

3.3 Groundwater Flooding

British Geological Survey mapping shows the site to be underlain by the White Limestone Formation.

Noting the potentially permeable nature of the underlying geology, and as detailed within the Oxfordshire County Council Strategic Flood Risk Assessment, groundwater has been known to result in localised issues but these are restricted to locally lower lying areas. For the purpose of this assessment, the Flood Zone 3 extent is considered representative of the 'worst case' groundwater flood risk.

As the site has been confirmed as being within Flood Zone 1, the site is concluded as being sufficiently elevated above the worst case groundwater risk and to therefore conducted to be at low risk from this source.

3.4 Infrastructure Failure Flooding

Owing to the generally developed nature of the site there is considered to be an existing sewer network (both surface and foul drainage systems). In the event of the surcharging of any of this network, overland flows will likely be conveyed by topography and contained within the existing road network and directed away from/around the site and not pose any significant risk to the site.

The site is therefore concluded to be at low risk from sewer flooding.

3.5 Flooding from Artificial Sources

A review of the EA's Flooding from Reservoirs map indicates that the site is not within the maximum extent of flooding in the event of a failure of any artificial source. There are also no raised large waterbodies identified in the near vicinity of the site (the closest being the Oxford Canal to the west which is at significantly lower elevation to the site).

The site is therefore concluded to be at negligible risk of flooding from artificial sources.

3.6 Emergency Access Requirements

In terms of emergency access and egress, all of the local external main highway and pedestrian routes serving the site are elevated well above any fluvial floodplain. The routing of the main access route in to and out of the development site is also located outside of any fluvial floodplain and therefore any restriction of access from flood risk is deemed negligible and no specific mitigation measures are required.

3.7 Summary

EA data for the area indicates that the entirety of the site is at low risk of flooding from fluvial and tidal sources and entirely within Flood Zone 1.

The site has also been concluded as being at low or negligible risk from all other assessed sources of potential flooding.

4. NPPF REQUIREMENTS

4.1 Planning Policy Requirements

The proposed development has been confirmed as being located within Flood Zone 1.

Residential development is considered 'more vulnerable' in terms of flood risk and all other forms of the proposed development are considered as 'less vulnerable' in terms of flood risk.

The NPPF Flood Risk Vulnerability and Flood Zone Compatibility matrix (Table 3) indicates that 'more vulnerable' and 'less vulnerable' development is appropriate in Flood Zone 1 and accordingly the proposed development is concluded to meet the requirements of the Sequential Test.

4.2 Exception Test

Whilst the site is demonstrated to pass the Sequential Test, the following section details potential measures necessary to mitigate any residual flood risks, to ensure that the proposed development and occupants will be safe, and that flood risk will not be increased elsewhere within the design life of the proposed development, akin to the requirements of the second section of the Exception Test.

4.2.1 Resistance and Resilience of Site

No specific measures are considered necessary to protect the proposed development from flooding (as no significant sources of potential flood risk have been identified).

4.2.2 Safe Access and Egress

Safe / dry access is demonstrated to be possible via all directions onto Camp Road.

Hydrock

5. SURFACE WATER MANAGEMENT

5.1 Existing Surface Water Drainage

The existing site consists of approximately 455.5ha formed from the former RAF Upper Heyford airfield. The site comprises an unused flying field, personnel living quarters, administrative buildings, aircraft hangers and areas of hardstanding. The site is served by an extensive site wide private surface water drainage network with thirteen individual discharge locations to the surrounding water courses. The surrounding watercourses include the Gallos Brook and other unnamed brooks in the south, which are tributaries of the River Cherwell. In the north east there is the Padbury Brook. The current catchment for the site is roughly split in to five separate catchment zones due to the natural topography of the land. The majority of the area discharges in a southerly direction to the Gallos Brook and unnamed watercourses, with the north-eastern area draining in an easterly direction to the Padbury Brook.

An initial investigation in to the underlying bedrock shows predominantly White Limestone formation. This suggests that surface water discharge via infiltration may be a possibility though this will be subject to confirmation through site specific/plot specific infiltration testing at a later stage.

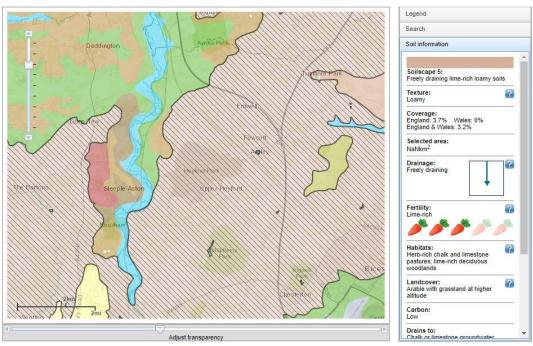


Figure 3: Cranfield University Soilscape Mapping

Infiltration solutions will therefore need to be confirmed via a full ground investigation and infiltration testing in accordance with BRE 365 to determine infiltration rates and groundwater levels but in the absence of such confirmation a solution that utilises attenuation is proposed to confirm a suitable strategy is deliverable for the site.

5.2 Proposed Surface Water Drainage

The proposed development consists of individual parcels located within the greater 455.5ha redline boundary. Figure 4 indicates the location of each of the parcels covered in this drainage strategy. The existing site is served by a traditional gravity surface water network discharging to local watercourses. However, the underlying soils suggests that surface water may be able to discharge via infiltration, where ground water levels would allow. In the absence of infiltration information and confirmation of

any possible contamination requiring the potential for remediation it is therefore proposed to demonstrate that surface water runoff can be reduced to the existing QBAR greenfield rates. The surface water discharge from the individual parcels will be connected to a swale and attenuation basin network with a restricted flow to the adjacent water courses.

The surface water discharge rate will be restricted to the Mean Annual Flood (QBAR) rate. The greenfield run off rate for the site has been calculated to be 4.31/s/ha. Greenfield run off calculations are provided in Appendix A. Attenuation for each parcel will be in the form of surface features including detention basins and swales or, where this is not practicable, underground tanks. Table 2 below summarises the required attenuation volumes and discharge rates for each of the proposed parcels. A 65% rate of development has been assumed for each parcel unless otherwise stated to calculate the allowable QBAR greenfield run off rate.

A 10% allowance for urban creep has also been applied to the residential parcel impermeable areas with the net storage volumes adjusted to suit.

A factor of 40% allowance for climate change has been included for the 1 in 100-year event to determine the maximum storage volumes required in each attenuation basin.

Phase	Gross Area (Ha)	Impermeable Area & 65% (Ha)	Area Including Urban Creep (Ha)	Discharge Rate (4.31/s/ha)	Attenuation Volume (m³)
10	4.6	2.99	3.289	12.8	2616
11, 12 & 21	6.90	4.48	4.92	19.2	3912
13	0.50	0.325	0.357	2.0	260
16	7.8	5.07	5.577	21.80	4432
17	2.6	1.69	1.86	7.2	1481
19	0.9	0.58	0.64	2.5	1017
20	0.5	0.5	0.5	2.15	386
21	4.4	2.86	3.146	12.30	2500
23	14.40	9.36	10.296	40.25	8180
39	0.4	0.26	0.286	2.0	197

Table 2: Parcel Attenuation Requirements

40	0.50	0.325	0.357	2.0	260
----	------	-------	-------	-----	-----

Table 3: Attenuation Half Drain Times

Parcel No.	Attenuation Max Volume (m³)	Half Drain Time (Hrs)	Critical Duration (1 in 100 year +40% event) (mins)
10	2582	28	960
11, 12 & 21	6928	50	1440
13	277	19	720
16	4768	30	1440
17	1580	30	1440
19	505	28	960
20	417	26	960
23	6631	22	960
39	202	14	600
40	272	18	720

Table 3 identifies the maximum storage volume present in each attenuation basin based on the critical duration and the time required for half of this volume to drain away to ensure there is attenuation volume available in the event a second storm event happens within a 24-hour period.

There are two non-residential parcels, 19 and parcel 20, which consists of 60 extra care units and a medical centre respectively. Due to limited space it is proposed that these are served by below ground attenuation tanks in the form of either a geocellular storage system or oversized plastic pipes. To deliver adequate treatment and mitigate pollution downstream, additional treatment trains will be proposed such as a tanked permeable paving system on any parking areas. The SuDS manual sets the requirements for acceptable pollution mitigation measures based on the land use classification.

It is recommended that a ground investigation is carried out and that this includes infiltration testing in accordance with BRE 365 to confirm that surface water discharge via infiltration is a possibility. If infiltration is viable, soakaway structures may compliment any attenuation.

Where areas of the site are to operate under their current use or remain undeveloped the existing drainage routes and discharge points will need to be maintained. It may be necessary for elements of exiting surface water drainage network passing through the proposed residential developments to be diverted to maintain a positive connection. Any surface water treatment elements such as petrol interceptors will also need to be maintained and/or relocated. Where proposed residential developments are to utilise existing networks the incoming discharge to this network will be significantly reduced as all redeveloped area will be restricted to greenfield run-off rate. The current surface water run-off from impermeable areas is discharged unrestricted to the existing system.

5.3 Catchment & Discharge Locations

Figure 4: Discharge Location Plan

Figure 4 above identifies the boundaries of the development parcels covered by the drainage strategy described in this report and also identifies the discharge location and watercourse that each parcel and catchment discharges to.

5.4 Exceedance Flow Routes

In order to reduce risk to downstream catchments and to residential plots within each parcel it will be necessary to provide areas to contain surface water run-off in the event of exceedance flows. Exceedance flows will be directed to the open space areas via the internal estate roads or swale network. Depressions within the open space areas will prevent the exceedance flows from leaving the site boundary. Drawing HPH-HYD-XX-XX-DR-C-2204 in Appendix D shows the potential exceedance flow routes and indicative sacrificial areas. The internal layout of residential parcels will need to ensure exceedance flows can be directed to open space areas.

5.5 Water Quality

The proposed scheme will be designed to satisfy the guidance given in the CIRIA SuDS Manual 2015 and to comply with advice from the LLFA and to do so it is recommended that measures are put in place to improve water discharge quality. Such measures would include the provision of swales alongside proposed highway networks for carriageway run-off to convey water to attenuation storage features, rather than traditional gully systems. In addition to this permeable paving on private drives and tree-pits can be used. Forebay areas can also be included in to attenuation basins to contain accumulating sediments. Consideration will also need to be given to the future maintenance and adoption of any green SuDS features proposed. In accordance with table 26.2 of the SuDS Manual the site has a low pollution hazard. The pollution hazard indices for the site are:

Table 4: Pollution hazard level (taken from table 26.2 CIRIA SuDS Manual

	Total suspended solids	Metals	Hydro-carbons
Individual driveways, residential car parks, roads	0.5	0.4	0.4
Residential Roofs	0.2	0.2	0.05

In accordance with Table 26.3, the proposed SuDS within the site offer mitigation indices of:

	Total suspended solids	Metal	Hydro-carbons
Attenuation Basin	0.5	0.5	0.6
Swale	0.5	0.6	0.6
Permeable Paving	0.7	0.6	0.7

5.6 Amenity

The green spaces used by the proposed attenuation basins will be able to double up as recreation areas as well as allowing for a space for landscaping to help support flora and fauna.

5.7 Biodiversity

The swale and attenuation basin network will be part of an enhanced site wide landscape strategy and will provide opportunities to support local habitats and species.

5.8 On Parcel Source Control Opportunities

5.8.1 Permeable Paving

Permeable paving allows infiltration through the surface and filter layers and in to a sub base or void structure below, which may be a clean stone layer or in the from of plastic crates. The surface water is then allowed to infiltrate in to the subsoil below. Where infiltration is not possible the run off the surface water is attenuated within the clean stone layer before being discharged to a surface water outfall.

5.8.2 Swales and Filter Drains

Swales and filter drains are designed to convey surface water run off at surface level to a point of discharge or to an attenuation/infiltration system. Swales could be used within the development plots alongside highways to convey runoff downstream to attenuation features.

5.8.3 Infiltration Techniques

Although localised infiltration testing has not been carried out, there is the potential to utilise private soakaways in rear gardens where space allows. This will be dependent on local groundwater levels and the presence of contamination, although these techniques could be used to reduce the size of downstream attenuation/infiltration basins.

5.8.4 Green/Blue Roofs

Green roofs are living vegetation installed on the top of buildings to reduce the volume of surface water run-off, a blue roof is a roof designed explicitly to store water to be either used as grey water recycling or attenuated and released in to a surface water discharge point. Although it is not suitable to use green roofs on private residencies there is potential to utilise green or blue roof on the Creative City area of the development, part of the future development.

5.9 Surface Water & SuDs Maintenance

The CIRIA SuDS Manual (CIRIA C753) highlights the various aspects of maintenance requirements for different sustainable drainage elements. The table below gives an overview of the potential maintenance processes for each individual form of surface water management system. The frequency to which these processes will need to be carried out is dependent on various factors, such as the size of the catchment area the system serves, the size of the feature itself, and the environment in which the feature is situated.

Operation and maintenance activity	Swale	Attenuation Basin	Permeable Paving
Regular Maintenance			
Inspection	\checkmark	\checkmark	\checkmark
Litter and debris removal	\checkmark	\checkmark	
Sediment removal	\checkmark	\checkmark	
Grass cutting	\checkmark	\checkmark	
Inspect inlets/outlets	\checkmark		\checkmark
Brushing & Vacuuming			\checkmark
Occasional Maintenance			
Sediment Management	\checkmark		
Removal of weeds	\checkmark	\checkmark	\checkmark
Remove or control tree	\checkmark		
roots			

Table 6: Maintenance requirements for various SuDS features

Repair inlets, outlets		\checkmark	
Stabilise and mow			\checkmark
contributing and adjacent			
areas			
Remedial Maintenance			
Repair erosion by re-turfing	\checkmark		
Relevel uneven surfaces	\checkmark	\checkmark	
Remediate any landscaping		\checkmark	
Rehabilitation of surface			\checkmark
and upper sub-structure			

It is proposed that any SuDS features be adopted and maintained by a private management company. The surface water drainage network could be offered to Thames Water under a Section 104 legal agreement.

6. FOUL WATER MANAGEMENT

6.1 Existing Foul Water

The site is currently served by an existing foul water system, which consists of pumping stations and a foul treatment plant in the south-east corner of the site. The existing foul network and sewerage treatment plant are all currently under private ownership. There is no record of any other foul sewers within the site boundary or adjacent to the site.

6.2 Proposed Foul Water

Currently all foul drainage from the site discharges to the existing sewerage treatment plant in the south-east corner of the site where the sewerage is treated and discharged to the Gallos Brook. Various elements of the sewerage treatment plant are to be refurbished to address issues of capacity, reliability and monitoring following the redevelopment of the site.

The table below shows the estimated foul discharge rates based on 4000litres/dwelling/day for each of the parcels.

Phase	Plots	Foul Discharge (I/s)
10	130	6.0
11	80	3.70
12	123	5.7
13	6	0.27
16	178	8.24
17	62	2.8
19	60	2.7
20	670m ² Medical Centre	0.033
21	122	5.6
23	430	19.90
39	13	0.60

Table 4: Parcel Foul Discharge Rates

Hydrock

40	27	1.25

The site is currently served by various existing pumping stations. To achieve connections to the existing foul treatment plant from the proposed developments it will be necessary to use some pumped solutions due to the topography of the site. A new pumping station is proposed for parcel 23 which will be pumped to high ground within the creative city. A new gravity sewer will then serve parcels 11, 12 & 21 as well as 23 and connect to an existing pumping station located to the south of parcel 12 with a peak flow rate of 34.90l/s. It is likely that this pumping station will need to be upgraded to receive these proposed flows. A survey of the existing pump rate and overall condition of the pumping station will need to be carried out.

An additional pumping station will be required in the south west corner of parcel 16 to serve both parcel 10 & 16. This will potentially be pumped to a proposed pumping station within the redeveloped site to the east of parcel 16. The peak flow rate from parcel 10 and 16 would be approximately 14.24l/s. Parcels 13, 17, 19, 20 and the changing facilities are proposed to discharge to the treatment plant via gravity. Where possible the existing foul network can be utilised, dependent on the condition and capacity of the existing pipework.

A full CCTV assessment of the existing network is recommended if not already carried out to confirm existing connectivity, condition, and capacities.

An overall strategy plan for the proposed foul drainage is provided in Appendix E.

It is proposed that it may be possible for the new foul network, pumping stations and existing treatment plant to be adopted an appropriate water authority further down the line via a Section 104 Legal Agreement.

7. CONCLUSIONS

This report has considered the flood risk posed to the site from a variety of sources of flooding, as defined by the NPPF.

EA data for the area indicates that the entirety of the site is at low risk of flooding from fluvial and tidal sources and entirely within Flood Zone 1.

The site has also been concluded as being at low or negligible risk from all other assessed sources of potential flooding and is therefore considered suitable for all forms of development.

The proposals are therefore concluded to meet the requirements of the Sequential Test.

Owing to the fact that no significant sources of flood risk were identified, no specific mitigation measures are considered necessary to address any flood risk to the development.

This report therefore demonstrates that - provided a suitable sustainable drainage system is employed – in line with the strategies outlined above, the proposed scheme:

- Is suitable in the location proposed.
- Will be adequately flood resistant and resilient.
- Will not place additional persons at risk of flooding, and will offer a safe means of access and egress.
- Will not increase flood risk elsewhere as a result of the proposed development through the loss of floodplain storage or impedance of flood flows.
- Will put in place measures to ensure surface and foul water is appropriately managed.
- Will include suitable surface water treatment trains in the form of highway swales, permeable paving, tree pits and forebay areas to attenuation basins to be considered.
- Ensure confirmation that improvement works to the treatment plant has taken place and provides enough capacity for the development outlined above.

As such, the Application is concluded to meet the flood risk requirements of the NPPF.

Hydrock Consultants Limited

Appendix A – Greenfield Run Off Calculations

Reference

Title

04583-HYD-INF-XX-C-CA-0001

Greenfield Run-Off Calculations

HEYFORD PARK GREENFIELD	
RUN OFF	
04583-HYD-INF-XX-C-	Mirro
CA-0001	Drainage
Designed by SM Checked by	Diamaye
Source Control 2018.1.1	
	RUN OFF 04583-HYD-INF-XX-C- CA-0001 Designed by SM Checked by

ICP SUDS Mean Annual Flood

Input

Return Period (years)100Soil0.450Area (ha)1.000Urban0.000SAAR (mm)694RegionNumberRegion5

Results 1/s

QBAR Rural 4.3 QBAR Urban 4.3 Q100 years 15.5 Q1 year 3.8 Q30 years 10.4 Q100 years 15.5

Appendix B – Attenuation Volume Calculations

Reference

Title

04583-HYD-INF-XX-C-CA-0002

Attenuation Volume Calculations

Hydrock Consultants Ltd		Page 1
•	PARCEL 10	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 10.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	124.500	0.500	12.7	839.4	ОК
30	min	Summer	124.635	0.635	12.7	1098.0	ОК
60	min	Summer	124.766	0.766	12.7	1361.6	ОК
120	min	Summer	124.887	0.887	12.7	1618.0	ОК
180	min	Summer	124.948	0.948	12.7	1753.7	ОК
240	min	Summer	124.986	0.986	12.7	1838.0	ΟK
360	min	Summer	125.032	1.032	12.7	1942.3	ΟK
480	min	Summer	125.059	1.059	12.7	2004.0	ОК
600	min	Summer	125.074	1.074	12.7	2039.5	ОК
720	min	Summer	125.082	1.082	12.7	2058.1	ОК
960	min	Summer	125.084	1.084	12.7	2063.3	ОК
1440	min	Summer	125.061	1.061	12.7	2009.3	ОК
2160	min	Summer	125.020	1.020	12.7	1914.3	ОК
2880	min	Summer	124.978	0.978	12.7	1820.5	ΟK
4320	min	Summer	124.897	0.897	12.7	1640.0	ΟK
5760	min	Summer	124.814	0.814	12.7	1462.4	ΟK
7200	min	Summer	124.721	0.721	12.7	1269.4	ΟK
8640	min	Summer	124.637	0.637	12.7	1101.2	ОК
10080	min	Summer	124.561	0.561	12.7	953.5	ΟK
15	min	Winter	124.555	0.555	12.7	941.8	ΟK
30	min	Winter	124.703	0.703	12.7	1232.5	ΟK
60	min	Winter	124.846	0.846	12.7	1529.7	ΟK
120	min	Winter	124.977	0.977	12.7	1818.6	ΟK
180	min	Winter	125.046	1.046	12.7	1973.8	ΟK
240	min	Winter	125.088	1.088	12.7	2071.5	ΟK

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	138.634	0.0	780.9	30
30	min	Summer	90.866	0.0	986.4	45
60	min	Summer	56.713	0.0	1360.0	74
120	min	Summer	34.190	0.0	1628.9	134
180	min	Summer	25.088	0.0	1777.6	192
240	min	Summer	20.020	0.0	1871.2	252
360	min	Summer	14.528	0.0	1969.6	370
480	min	Summer	11.570	0.0	1979.4	488
600	min	Summer	9.690	0.0	1962.3	606
720	min	Summer	8.380	0.0	1942.5	726
960	min	Summer	6.658	0.0	1902.1	962
1440	min	Summer	4.807	0.0	1823.6	1316
2160	min	Summer	3.465	0.0	3039.8	1672
2880	min	Summer	2.744	0.0	3196.0	2056
4320	min	Summer	1.973	0.0	3316.3	2900
5760	min	Summer	1.559	0.0	3682.3	3704
7200	min	Summer	1.298	0.0	3832.2	4472
8640	min	Summer	1.118	0.0	3954.9	5192
10080	min	Summer	0.985	0.0	4053.4	5952
15	min	Winter	138.634	0.0	867.8	30
30	min	Winter	90.866	0.0	1046.9	45
60	min	Winter	56.713	0.0	1518.9	74
120	min	Winter	34.190	0.0	1806.6	132
180	min	Winter	25.088	0.0	1946.6	190
240	min	Winter	20.020	0.0	2004.7	248

Hydrock Consultants Ltd		Page 2
•	PARCEL 10	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	Drainage
File Parcel 10.SRCX	Checked by SM	Diamage
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status	
360	min	Winter	125.140	1.140	12.7	2195.3	ОК
480	min	Winter	125.172	1.172	12.7	2271.5	0 K
600	min	Winter	125.191	1.191	12.7	2318.3	0 K
720	min	Winter	125.203	1.203	12.8	2346.1	Flood Risk
960	min	Winter	125.211	1.211	12.8	2365.9	Flood Risk
1440	min	Winter	125.195	1.195	12.8	2328.5	0 K
2160	min	Winter	125.144	1.144	12.7	2203.2	0 K
2880	min	Winter	125.094	1.094	12.7	2085.2	O K
4320	min	Winter	124.985	0.985	12.7	1834.4	0 K
5760	min	Winter	124.869	0.869	12.7	1580.1	0 K
7200	min	Winter	124.731	0.731	12.7	1289.3	O K
8640	min	Winter	124.600	0.600	12.7	1030.1	O K
10080	min	Winter	124.487	0.487	12.7	815.4	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	2004.7	364
480	min	Winter	11.570	0.0	1987.9	480
600	min	Winter	9.690	0.0	1971.3	596
720	min	Winter	8.380	0.0	1955.8	710
960	min	Winter	6.658	0.0	1927.1	936
1440	min	Winter	4.807	0.0	1877.2	1374
2160	min	Winter	3.465	0.0	3394.2	1752
2880	min	Winter	2.744	0.0	3552.0	2200
4320	min	Winter	1.973	0.0	3461.3	3124
5760	min	Winter	1.559	0.0	4124.4	4040
7200	min	Winter	1.298	0.0	4292.7	4832
8640	min	Winter	1.118	0.0	4431.7	5536
10080	min	Winter	0.985	0.0	4544.6	6248

Hydrock Consultants Ltd		Page 3
	PARCEL 10	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	Drainage
File Parcel 10.SRCX	Checked by SM	Diamaye
Innovyze	Source Control 2018.1.1	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 3.289

							(mins) To:				
0	4	0.823	4	8	0.822	8	12	0.822	12	16	0.822

ydrock Con	sultants	Ltd						I	Page 4
				PARCEL	10				
. SURFACE WATER									
. 04583-HYD-INF-XX-X-CA-							0002		Micco
ate 25/03/2	2020			Design	ed by RFS	S			
ile Parcel	10.SRCX			Checke	d by SM				Drainag
nnovyze				Source	Control	2018.1.	1		
				Model 1	<u>Details</u>				
			Storage is	Online Co	ver Level	(m) 125.50	0		
			Tai	nk or Por	nd Struct	ure			
			I	nvert Level	(m) 124.0	00			
Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	1500.0	0.600	1940.2	1.200	2436.9	1.800			3599.9
0.100						1.900	3087.8 3187.1	2.500	3707.0
0.200			2099.4			2.000	3187.1		
0.300			2181.4				3287.9		
0.400			2265.0 2350.1				3390.4 3494.4		
		, Ц	idro-Brol	ro@ Ontim	num Outfl	ou Contr		1	
		<u>11</u>	yulo-blai	<u>les optim</u>		Ow COILL	01		
			1	Unit Refere	ence MD-SHE	-0160-1280			
				esign Head			1.200		
			Des	ign Flow (1			12.8		
				Flush-F			Calculated		
				-	cive Minim	ise upstre	-		
				Applicat Sump Availa			Surface Yes		
				Diameter (160		
			Tn	vert Level	. ,		124.000		
		Minimum Ou		Diameter (. ,		225		
		Suggeste	ed Manhole	Diameter ((mm)		1200		
	Control P	oints	Head (m)	Flow (l/s)	Cont	rol Points	Head	d (m) Flow	(1/s)
Desig	n Point (C	Calculated)	1.200	12.8		Kicl	k-Flo® (0.793	10.5
		Flush-Flo™	0.363	12.7	Mean Flow	over Head	Range	-	11.0
The hydrolog as specified storage rout	l. Should	another typ	pe of conti	col device		2	-	-	-
Depth (m) Fl	low (1/s)	Depth (m) E	[low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s	;) Depth (n	n) Flow (l/s
0.100	5.7	0.800	10.6	2.000	16.3	4.000) 22.	7 7.00	. 29.
				· · · •					

0.100	5.7	0.800	10.6	2.000	16.3	4.000	22.7	7.000	29.7
0.200	12.0	1.000	11.7	2.200	17.0	4.500	24.0	7.500	30.7
0.300	12.7	1.200	12.8	2.400	17.8	5.000	25.2	8.000	31.7
0.400	12.7	1.400	13.8	2.600	18.5	5.500	26.4	8.500	32.6
0.500	12.5	1.600	14.7	3.000	19.8	6.000	27.6	9.000	33.5
0.600	12.2	1.800	15.5	3.500	21.3	6.500	28.6	9.500	34.4

Hydrock Consultants Ltd		Page 1
•	PARCEL 11, 12 & 21	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 04/03/2020	Designed by RFS	Drainage
File Parcel 11, 12 & 21.SRCX	Checked by SM	Diginarie
Innovyze	Source Control 2018.1.1	,

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	119.593	0.493	31.6	2060.8	ОК
30	min	Summer	119.733	0.633	31.6	2695.0	ОК
60	min	Summer	119.870	0.770	31.6	3341.8	ОК
120	min	Summer	120.000	0.900	31.6	3976.2	ОК
180	min	Summer	120.068	0.968	31.6	4315.4	ОК
240	min	Summer	120.109	1.009	31.6	4527.1	ОК
360	min	Summer	120.161	1.061	31.6	4792.0	ОК
480	min	Summer	120.192	1.092	31.6	4951.6	ОК
600	min	Summer	120.210	1.110	31.6	5046.3	ОК
720	min	Summer	120.220	1.120	31.6	5099.0	ОК
960	min	Summer	120.225	1.125	31.6	5124.2	ОК
1440	min	Summer	120.205	1.105	31.6	5018.2	ОК
2160	min	Summer	120.166	1.066	31.6	4819.4	ОК
2880	min	Summer	120.125	1.025	31.6	4608.9	ΟK
4320	min	Summer	120.040	0.940	31.6	4176.2	ОК
5760	min	Summer	119.949	0.849	31.6	3724.5	ΟK
7200	min	Summer	119.855	0.755	31.6	3270.9	ΟK
8640	min	Summer	119.771	0.671	31.6	2875.1	ΟK
10080	min	Summer	119.695	0.595	31.6	2520.6	ΟK
15	min	Winter	119.649	0.549	31.6	2311.8	ΟK
30	min	Winter	119.803	0.703	31.6	3024.3	ΟK
60	min	Winter	119.955	0.855	31.6	3753.7	ΟK
120	min	Winter	120.098	0.998	31.6	4467.7	ΟK
180	min	Winter	120.173	1.073	31.6	4852.5	ΟK
240	min	Winter	120.219	1.119	31.6	5095.6	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
1 -		0	120 624	0 0	1705 6	20
			138.634	0.0	1795.6	30
		Summer	90.866	0.0	2300.4	45
			56.713	0.0	3252.8	74
			34.190	0.0	3896.1	134
180	min	Summer		0.0	4251.4	192
240	min	Summer	20.020	0.0	4480.3	252
360	min	Summer	14.528	0.0	4760.1	370
480	min	Summer	11.570	0.0	4884.1	488
600	min	Summer	9.690	0.0	4885.1	606
720	min	Summer	8.380	0.0	4833.4	726
960	min	Summer	6.658	0.0	4718.0	962
1440	min	Summer	4.807	0.0	4483.9	1288
2160	min	Summer	3.465	0.0	7371.7	1652
2880	min	Summer	2.744	0.0	7732.5	2048
4320	min	Summer	1.973	0.0	8027.5	2864
5760	min	Summer	1.559	0.0	9002.6	3696
7200	min	Summer	1.298	0.0	9365.7	4464
8640	min	Summer	1.118	0.0	9656.8	5192
10080	min	Summer	0.985	0.0	9877.3	5944
15	min	Winter	138.634	0.0	2003.6	30
30	min	Winter	90.866	0.0	2497.7	45
60	min	Winter	56.713	0.0	3634.5	74
			34.190	0.0	4323.3	132
			25.088	0.0	4678.7	190
		Winter		0.0	4877.2	248
_ 10				2.10		_ 10

©1982-2018 Innovyze

Hydrock Consultants Ltd		Page 2
•	PARCEL 11, 12 & 21	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 04/03/2020	Designed by RFS	Drainage
File Parcel 11, 12 & 21.SRCX	Checked by SM	Diamage
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	120.278	1.178	31.6	5405.9	0 K
480	min	Winter	120.314	1.214	31.8	5598.7	Flood Risk
600	min	Winter	120.337	1.237	32.0	5719.0	Flood Risk
720	min	Winter	120.350	1.250	32.2	5792.5	Flood Risk
960	min	Winter	120.361	1.261	32.4	5850.9	Flood Risk
1440	min	Winter	120.347	1.247	32.2	5776.2	Flood Risk
2160	min	Winter	120.296	1.196	31.6	5502.2	0 K
2880	min	Winter	120.245	1.145	31.6	5231.7	0 K
4320	min	Winter	120.130	1.030	31.6	4631.7	0 K
5760	min	Winter	120.005	0.905	31.6	4004.2	O K
7200	min	Winter	119.861	0.761	31.6	3298.1	0 K
8640	min	Winter	119.732	0.632	31.6	2693.6	O K
10080	min	Winter	119.620	0.520	31.6	2180.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	5014.4	364
480	min	Winter	11.570	0.0	4981.1	480
600	min	Winter	9.690	0.0	4934.9	596
720	min	Winter	8.380	0.0	4888.1	710
960	min	Winter	6.658	0.0	4797.2	936
1440	min	Winter	4.807	0.0	4623.1	1370
2160	min	Winter	3.465	0.0	8225.8	1732
2880	min	Winter	2.744	0.0	8590.0	2192
4320	min	Winter	1.973	0.0	8490.2	3116
5760	min	Winter	1.559	0.0	10084.6	4032
7200	min	Winter	1.298	0.0	10493.7	4768
8640	min	Winter	1.118	0.0	10826.0	5536
10080	min	Winter	0.985	0.0	11082.9	6168

Hydrock Consultants Ltd		Page 3
•	PARCEL 11, 12 & 21	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 04/03/2020	Designed by RFS	
File Parcel 11, 12 & 21.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 8.066

							(mins) To:				
0	4	2.017	4	8	2.017	8	12	2.016	12	16	2.016

	sultants	Ltd							Page 4
				PARCEL	11, 12	& 21			
				SURFAC	E WATER				
				04583-	HYD-INF-2	XX-X-CA-	0002		Micco
te 04/03/2	2020			Design	ed by RF:	S			Micro
le Parcel	11, 12 8	21.SRCX		Checke	d by SM				Drainad
novyze				Source	Control	2018.1.	1		
				Model	Details				
			Storage is	Online Co	ver Level	(m) 120.600)		
			<u>Tar</u>	<u>nk or Pon</u>	<u>d Struct</u>	ure			
			Ir	nvert Level	(m) 119.1	00			
Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	3900.0	0.600	4592.4	1.200	5341.4	1.800	6146.9	2.400	7008.9
0.100	4011.5		4713.3					2.500	7158.1
0.200	4124.5		4835.8						
0.300	4239.1		4959.8				6570.8		
0.400	4355.3						6715.3		
0.500	4473.1	1.100	5212.6	1.700	6008.7	2.300	6861.3		
		Hy	dro-Brał	ke® Optim	um Outfl	<u>ow Contr</u>	<u>ol</u>		
			τ	Jnit Refere	nce MD-SHE	-0240-3160	-1200-3160		
				esign Head			1.200		
				ign Flow (l			31.6		
				- Flush-F	lom		Calculated		
				Object	ive Minim	ise upstre	am storage		
				Applicat	ion		Surface		
			<u> </u>	Sump Availa	ble		Yes		
				Diameter (,		240		
				vert Level	. ,		119.100		
			-	Diameter (300		
		Suggeste	d Manhole	Diameter (mm)		1800		
	Control Po	oints	Head (m)	Flow (l/s)	Cont	rol Points	Head	l (m) Flow	(l/s)
Desig		alculated) Flush-Flo™	1.200	31.6 31.6	Mean Flow			.863	27.0 26.6
		r tusn-f'lom	0.410	31.6	Priedii FIOW	over Head	кануе	-	20.0
The hydrolog	ical calcu	lations hav	e heen had	sed on the	Head/Disch	arge relat	ionshin for	the Hydr	D-Brake® Ont
									lised then t
					- JIICL CIIUII		operme		
-	ing calcul	ations will	be invali	ldated					
storage rout	ing calcul	ations will	be invali	Idated					

0.100	7.9	0.800	28.7	2.000	40.4	4.000	56.4	7.000	74.0
0.200	24.3	1.000	29.0	2.200	42.3	4.500	59.7	7.500	76.6
0.300	31.1	1.200	31.6	2.400	44.1	5.000	62.9	8.000	79.0
0.400	31.6	1.400	34.0	2.600	45.8	5.500	65.9	8.500	81.4
0.500	31.4	1.600	36.3	3.000	49.1	6.000	68.7	9.000	83.7
0.600	30.9	1.800	38.4	3.500	52.9	6.500	71.4	9.500	85.9

Hydrock Consultants Ltd		Page 1
	PARCEL 13	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 13.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	1

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	117.836	0.586	1.8	90.5	ОК
30	min	Summer	117.952	0.702	1.8	118.2	ΟK
60	min	Summer	118.054	0.804	1.8	145.8	ОК
120	min	Summer	118.140	0.890	1.8	171.4	ОК
180	min	Summer	118.180	0.930	1.8	184.2	ОК
240	min	Summer	118.202	0.952	1.8	191.3	ОК
360	min	Summer	118.225	0.975	1.8	198.9	ОК
480	min	Summer	118.233	0.983	1.8	201.9	ΟK
600	min	Summer	118.234	0.984	1.8	202.2	ΟK
720	min	Summer	118.230	0.980	1.8	200.7	ΟK
960	min	Summer	118.214	0.964	1.8	195.3	ОК
1440	min	Summer	118.182	0.932	1.8	184.7	ΟK
2160	min	Summer	118.138	0.888	1.8	170.8	ΟK
2880	min	Summer	118.097	0.847	1.8	158.5	ΟK
4320	min	Summer	118.019	0.769	1.8	136.0	ΟK
5760	min	Summer	117.941	0.691	1.8	115.4	ΟK
7200	min	Summer	117.858	0.608	1.8	95.5	ΟK
8640	min	Summer	117.751	0.501	1.8	72.5	ΟK
10080	min	Summer	117.660	0.410	1.8	55.3	ΟK
15	min	Winter	117.884	0.634	1.8	101.6	ΟK
30	min	Winter	118.007	0.757	1.8	132.8	ΟK
60	min	Winter	118.116	0.866	1.8	164.0	ΟK
120	min	Winter	118.208	0.958	1.8	193.5	ΟK
180	min	Winter	118.253	1.003	1.8	208.5	ΟK
240	min	Winter	118.278	1.028	1.9	217.3	ΟK

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	92.2	30
30	min	Summer	90.866	0.0	120.3	45
60	min	Summer	56.713	0.0	151.6	74
120	min	Summer	34.190	0.0	182.8	132
180	min	Summer	25.088	0.0	201.1	192
240	min	Summer	20.020	0.0	214.0	250
360	min	Summer	14.528	0.0	232.8	368
480	min	Summer	11.570	0.0	247.0	486
600	min	Summer	9.690	0.0	258.3	604
720	min	Summer	8.380	0.0	267.5	722
960	min	Summer	6.658	0.0	278.7	880
1440	min	Summer	4.807	0.0	271.3	1118
2160	min	Summer	3.465	0.0	333.8	1512
2880	min	Summer	2.744	0.0	352.5	1928
4320	min	Summer	1.973	0.0	379.9	2736
5760	min	Summer	1.559	0.0	400.7	3568
7200	min	Summer	1.298	0.0	417.1	4336
8640	min	Summer	1.118	0.0	430.9	5024
10080	min	Summer	0.985	0.0	442.6	5656
15	min	Winter	138.634	0.0	103.2	30
30	min	Winter	90.866	0.0	133.2	44
60	min	Winter	56.713	0.0	169.8	74
120	min	Winter	34.190	0.0	204.7	130
180	min	Winter	25.088	0.0	225.2	188
240	min	Winter	20.020	0.0	239.5	246

Hydrock Consultants Ltd		Page 2
	PARCEL 13	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 13.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status	
360	min	Winter	118.305	1.055	1.9	227.2	ОК
480	min	Winter	118.318	1.068	1.9	232.0	ΟK
600	min	Winter	118.323	1.073	1.9	233.7	ΟK
720	min	Winter	118.322	1.072	1.9	233.4	ΟK
960	min	Winter	118.312	1.062	1.9	229.5	ΟK
1440	min	Winter	118.274	1.024	1.9	215.9	ΟK
2160	min	Winter	118.221	0.971	1.8	197.8	ΟK
2880	min	Winter	118.168	0.918	1.8	180.2	ΟK
4320	min	Winter	118.058	0.808	1.8	146.8	ΟK
5760	min	Winter	117.942	0.692	1.8	115.7	ΟK
7200	min	Winter	117.791	0.541	1.8	80.9	ΟK
8640	min	Winter	117.632	0.382	1.8	50.4	ΟK
10080	min	Winter	117.514	0.264	1.8	31.6	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	260.3	362
480	min	Winter	11.570	0.0	275.6	476
600	min	Winter	9.690	0.0	285.2	590
720	min	Winter	8.380	0.0	286.7	702
960	min	Winter	6.658	0.0	284.2	920
1440	min	Winter	4.807	0.0	277.3	1176
2160	min	Winter	3.465	0.0	373.9	1628
2880	min	Winter	2.744	0.0	394.8	2084
4320	min	Winter	1.973	0.0	425.4	2984
5760	min	Winter	1.559	0.0	448.8	3856
7200	min	Winter	1.298	0.0	467.2	4616
8640	min	Winter	1.118	0.0	482.6	5184
10080	min	Winter	0.985	0.0	495.8	5744

Hydrock Consultants Ltd					
•	PARCEL 13				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 13.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1				

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.357

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.090	4	8	0.089	8	12	0.089	12	16	0.089

	sultants	Ltd						P	age 4
				PARCEL	13				
				SURFACE WATER					
				04583-н	YD-INF-X	XX-X-CA-	0002		Micco
ate 25/03/2	2020				d by RFS				Micro
le Parcel				Checked	-	5			Drainag
	IJ. SILCA				_	2018.1.	1		,
novyze				SOUICE	CONCLOI	2010.1.	L		
				<u>Model D</u>	<u>etails</u>				
		S	torage is	Online Cov	er Level ((m) 118.75	C		
			Tanl	k or Pond	l Struct	ure			
				vert Level					
Depth (m)	Area (m²)	Depth (m)					Area (m²)	Depth (m)	Area (m²)
0.000 0.100	95.0 113.1	0.600	226.9 254.4	1.200 1.300	415.4 452.3			2.400 2.500	
0.200			203 5	1 400	100 0	2 000	754.7	2.300	1017.0
0.300		0.900	283.5 314.1	1.400	530.9	2.100	804.2		
0.400	176.7		346.3	1.600	572.5	2.200			
0.500	201.0	1.100	380.1	1.700	615.7	2.300	907.8		
			Des	nit Referen sign Head (gn Flow (l/ Flush-Fl	m) s)		-1200-2000 1.200 2.0 Calculated		
				Applicati mp Availab	on	ise upstre	am storage Surface Yes		
			Ι	Applicati ump Availab Diameter (m	on Dle m)	ise upstre	Surface Yes 64		
		Minimum Ou	I Inve	Applicati amp Availab Diameter (m ert Level (on ple m) m)	ise upstre	Surface Yes		
		Minimum Ou Suggeste	I Inve	Applicati ump Availab Diameter (m ert Level (Diameter (m	on Dle m) m) m)	ise upstre	Surface Yes 64 117.250		
	Control Po	Suggeste	I Inve tlet Pipe I	Applicati ump Availab Diameter (m ert Level (Diameter (m Diameter (m	.on le m) m) m)	ise upstre rol Points	Surface Yes 64 117.250 100 1200	. (m) Flow	(1/s)
Desig	Control Po n Point (C	Suggeste	I Inve tlet Pipe I d Manhole I Head (m) F 1.200	Applicati mp Availab Diameter (m ert Level (Diameter (m Diameter (m low (1/s) 2.0	on ble m) m) m) Cont	rol Points Kicl	Surface Yes 64 117.250 100 1200 Head	.573	1.4
Desig	n Point (C	Suggeste	I Inve tlet Pipe I d Manhole I Head (m) F	Applicati mp Availab Diameter (m ert Level (Diameter (m Diameter (m low (1/s) 2.0	on ble m) m) m) Cont	rol Points	Surface Yes 64 117.250 100 1200 Head		
Desig The hydrolog as specified storage rout	n Point (C ical calcu . Should	Suggeste pints alculated) Flush-Flo™ lations hav another typ	Inve Inve tlet Pipe I d Manhole I Head (m) F 1.200 0.282 e been base e of contro	Applicati imp Availab Diameter (m ert Level (Diameter (m Diameter (m low (1/s) 2.0 1.8 ed on the H bl device o	oon Dle mm) mm) mm) Cont Mean Flow eead/Discha	rol Points Kicl over Head arge relat.	Surface Yes 64 117.250 100 1200 Head <-Flo® C Range	.573 _ the Hydro	1.4 1.6 -Brake® Opti
The hydrolog as specified storage rout	n Point (C ical calcu . Should ing calcul	Suggeste pints alculated) Flush-Flo™ lations hav another typ ations will	Inve Inve tlet Pipe I d Manhole I Head (m) F 1.200 0.282 e been base e of contro be invalio	Applicati mp Availab Diameter (n ert Level (Diameter (n Diameter (n low (1/s) 2.0 1.8 ed on the H bl device of dated	on ble mn) mn) mn) Cont Mean Flow Gead/Discha ther than	rol Points Kicl over Head arge relat. a Hydro-B	Surface Yes 64 117.250 100 1200 Head <-Flo® C Range ionship for rake Optimu	.573 - the Hydro m® be util	1.4 1.6 -Brake® Opti ised then th
The hydrolog as specified storage rout Depth (m) Fl 0.100	n Point (C ical calcu . Should ing calcul .ow (l/s) I 1.5	Suggeste pints alculated) Flush-Flo™ lations have another type ations will Depth (m) F: 0.800	I Inve tlet Pipe I d Manhole I Head (m) F 1.200 0.282 e been base e of contro be invalid Low (1/s) [1.7]	Applicati imp Availab Diameter (n ert Level (Diameter (n Diameter (n Diameter (n low (1/s) 2.0 1.8 ed on the H Di device of dated Depth (m) F 2.000	oon ble mm) mm) mm) Cont Mean Flow Gead/Discha ther than Flow (1/s) 2.5	rol Points Kicl over Head arge relat. a Hydro-B Depth (m) 4.000	Surface Yes 64 117.250 100 1200 Head c-Flo® C Range ionship for rake Optimu Flow (1/s 3.	.573 - the Hydro m® be util) Depth (m 5 7.00	1.4 1.6 -Brake® Opti ised then th) Flow (1/s) 0 4.9
The hydrolog as specified storage rout Depth (m) Fl 0.100 0.200	n Point (C ical calcu . Should ing calcul .ow (l/s) [I 1.5 1.7	Suggeste pints alculated) Flush-Flo™ lations hav another typ ations will Depth (m) F: 0.800 1.000	Inve Inve tlet Pipe I d Manhole I Head (m) F 1.200 0.282 e been base e of contro be invalid Low (1/s) I 1.7 1.8	Applicati imp Availab Diameter (n ert Level (Diameter (n Diameter (n Diameter (n low (1/s) 2.0 1.8 ed on the H Di device of dated Depth (m) H 2.000 2.200	oon ble mm) mm) mm) Cont Mean Flow Gead/Discha ther than Flow (1/s) 2.5 2.6	rol Points Kicl over Head arge relat. a Hydro-B Depth (m) 4.000 4.500	Surface Yes 64 117.250 100 1200 Head <-Flo® C Range ionship for rake Optimu Flow (1/s) 3. 3.	.573 - the Hydro m® be util) Depth (m 5 7.00 7 7.50	1.4 1.6 -Brake® Opti ised then th) Flow (1/s) 0 4.9 0 4.9
The hydrolog as specified storage rout Depth (m) Fl 0.100 0.200 0.300	n Point (C ical calcu . Should ing calcul .ow (l/s) I 1.5 1.7 1.8	Suggeste pints alculated) Flush-Flo™ lations have another type ations will Depth (m) F: 0.800 1.000 1.200	Investigation of the second se	Applicati imp Availab Diameter (n ert Level (Diameter (n Diameter (n low (1/s) 2.0 1.8 ed on the H Di device of dated Depth (m) F 2.000 2.200 2.400	oon ble mm) mm) mm) Cont Mean Flow Gead/Discha ther than Flow (1/s) 2.5 2.6 2.7	rol Points Kicl over Head arge relat. a Hydro-B Depth (m) 4.000 4.500 5.000	Surface Yes 64 117.250 100 1200 Head <-Flo® C Range ionship for rake Optimu Flow (1/s) 3.) 3.	.573 - the Hydro m® be util) Depth (m 5 7.00 7 9 8.00	1.4 1.6 -Brake® Opti ised then th) Flow (1/s) 0 4.9 0 4.9 0 4.9
The hydrolog as specified storage rout Depth (m) Fl 0.100 0.200	n Point (C ical calcu . Should ing calcul .ow (l/s) [I 1.5 1.7	Suggeste pints alculated) Flush-Flo™ lations hav another typ ations will Depth (m) F: 0.800 1.000	Inve Inve tlet Pipe I d Manhole I Head (m) F 1.200 0.282 e been base e of contro be invalid Low (1/s) I 1.7 1.8	Applicati imp Availab Diameter (n ert Level (Diameter (n Diameter (n Diameter (n low (1/s) 2.0 1.8 ed on the H Di device of dated Depth (m) H 2.000 2.200	oon ble mm) mm) mm) Cont Mean Flow Gead/Discha ther than Flow (1/s) 2.5 2.6	rol Points Kicl over Head arge relat. a Hydro-B Depth (m) 4.000 4.500 5.000 5.500	Surface Yes 64 117.250 100 1200 Head c-Flo® C Range ionship for rake Optimu Flow (1/s) 3.) 3.) 3.	.573 - the Hydro m® be util) Depth (m 5 7.00 7 7.50 9 8.00 0 8.50	1.4 1.6 -Brake® Opti ised then th) Flow (1/s) 0 4.5 0 4.5 0 4.6 0 5.0

Hydrock Consultants Ltd	Page 1	
•	PARCEL 16	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 16.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	I

		Storm Max Event Level (m)		Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	120.281	0.581	21.8	1423.3	ОК
30	min	Summer	120.438	0.738	21.8	1861.7	ОК
60	min	Summer	120.591	0.891	21.8	2307.8	ОК
120	min	Summer	120.733	1.033	21.8	2744.1	ΟK
180	min	Summer	120.806	1.106	21.8	2976.3	ΟK
240	min	Summer	120.850	1.150	21.8	3120.7	ΟK
360	min	Summer	120.905	1.205	21.8	3300.2	ΟK
480	min	Summer	120.937	1.237	21.8	3407.4	ОК
600	min	Summer	120.956	1.256	21.8	3470.1	ΟK
720	min	Summer	120.966	1.266	21.8	3504.1	ΟK
960	min	Summer	120.970	1.270	21.8	3517.4	ΟK
1440	min	Summer	120.944	1.244	21.8	3430.8	ΟK
2160	min	Summer	120.895	1.195	21.8	3268.9	ΟK
2880	min	Summer	120.847	1.147	21.8	3108.1	0 K
4320	min	Summer	120.748	1.048	21.8	2793.1	0 K
5760	min	Summer	120.640	0.940	21.8	2456.7	ΟK
7200	min	Summer	120.535	0.835	21.8	2141.0	0 K
8640	min	Summer	120.440	0.740	21.8	1864.9	0 K
10080	min	Summer	120.352	0.652	21.8	1617.6	0 K
15	min	Winter	120.344	0.644	21.8	1597.0	0 K
30	min	Winter	120.517	0.817	21.8	2089.6	ΟK
60	min	Winter	120.684	0.984	21.8	2593.3	ΟK
120	min	Winter	120.839	1.139	21.8	3085.2	ΟK
180	min	Winter	120.920	1.220	21.8	3349.7	ΟK
240	min	Winter	120.970	1.270	21.8	3516.5	ΟK

Storm			Rain		Discharge	
	Even	t	(mm/hr)		Volume	(mins)
				(m³)	(m³)	
15	min	Summer	138.634	0.0	1314.3	30
30	min	Summer	90.866	0.0	1666.4	45
60	min	Summer	56.713	0.0	2300.3	74
120	min	Summer	34.190	0.0	2755.9	134
180	min	Summer	25.088	0.0	3007.3	192
240	min	Summer	20.020	0.0	3166.4	252
360	min	Summer	14.528	0.0	3338.7	370
480	min	Summer	11.570	0.0	3362.8	488
600	min	Summer	9.690	0.0	3330.5	608
720	min	Summer	8.380	0.0	3292.8	726
960	min	Summer	6.658	0.0	3216.1	964
1440	min	Summer	4.807	0.0	3069.5	1344
2160	min	Summer	3.465	0.0	5147.1	1692
2880	min	Summer	2.744	0.0	5409.3	2080
4320	min	Summer	1.973	0.0	5629.5	2904
5760	min	Summer	1.559	0.0	6242.1	3696
7200	min	Summer	1.298	0.0	6495.8	4464
8640	min	Summer	1.118	0.0	6702.9	5192
10080	min	Summer	0.985	0.0	6868.1	5944
15	min	Winter	138.634	0.0	1461.8	30
30	min	Winter	90.866	0.0	1782.6	45
60	min	Winter	56.713	0.0	2569.8	74
120	min	Winter	34.190	0.0	3056.3	132
180	min	Winter	25.088	0.0	3295.1	190
240	min	Winter	20.020	0.0	3399.6	248

Hydrock Consultants Ltd					
•	PARCEL 16				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 16.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1				

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	121.032	1.332	21.8	3728.7	ΟK
480	min	Winter	121.070	1.370	21.8	3860.1	ΟK
600	min	Winter	121.093	1.393	21.8	3941.6	ΟK
720	min	Winter	121.107	1.407	21.8	3990.8	ΟK
960	min	Winter	121.118	1.418	21.8	4028.5	ΟK
1440	min	Winter	121.101	1.401	21.8	3971.8	ΟK
2160	min	Winter	121.041	1.341	21.8	3759.2	ΟK
2880	min	Winter	120.982	1.282	21.8	3558.6	ΟK
4320	min	Winter	120.852	1.152	21.8	3127.4	ΟK
5760	min	Winter	120.709	1.009	21.8	2671.2	ΟK
7200	min	Winter	120.541	0.841	21.8	2159.7	ΟK
8640	min	Winter	120.395	0.695	21.8	1738.1	ΟK
10080	min	Winter	120.266	0.566	21.8	1381.9	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	3401.0	364
480	min	Winter	11.570	0.0	3365.5	480
600	min	Winter	9.690	0.0	3330.6	596
720	min	Winter	8.380	0.0	3298.3	712
960	min	Winter	6.658	0.0	3239.8	938
1440	min	Winter	4.807	0.0	3137.2	1378
2160	min	Winter	3.465	0.0	5744.8	1776
2880	min	Winter	2.744	0.0	6007.2	2216
4320	min	Winter	1.973	0.0	5854.4	3152
5760	min	Winter	1.559	0.0	6991.5	4048
7200	min	Winter	1.298	0.0	7276.7	4824
8640	min	Winter	1.118	0.0	7511.4	5536
10080	min	Winter	0.985	0.0	7701.1	6168

Hydrock Consultants Ltd	Page 3	
•	PARCEL 16	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 16.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 5.577

Time	(mins)	Area									
From:	To:	(ha)									
0	4	1.395	4	8	1.394	8	12	1.394	12	16	1.394

ydrock Con	sultants	s Ltd						I	Page 4
				PARCEL	16				
				SURFACE	WATER				
				04583-н	HYD-INF-2	XX-X-CA-	002		Micco
ate 25/03/	2020				d by RF				Micro
ile Parcel		<u> </u>		Checked	=				Drainag
nnovyze					-	2018.1.3	1		
-									
				<u>Model D</u>	<u>etails</u>				
			Storage is	Online Cov	er Level	(m) 121.500)		
			Tar	nk or Ponc	d Struct	ure			
			II	nvert Level	(m) 119.7	00			
Depth (m)	Area (m²)) Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	2200.	0 0.600	2727.1	1.200	3310.7	1.800	3950.9	2.400	4647.6
0.100	2283.	9 0.700	2820.4	1.300	3413.5	1.900	4063.1	2.500	4769.3
0.200	2369.		2915.3				4176.9		
0.300	2456.		3011.8	1.500	3623.7		4292.2		
0.400					3731.2 3840.3		4409.1 4527.6		
		' 	udro Drol	- Ontime		·	o 1	1	
		<u></u>	уцго-вга	<u>ke® Optimu</u>	III OUCII	<u>ow concr</u>	01		
				Unit Referen		-0199-2180			
				esign Head (1.500		
			Des	ign Flow (1/			21.8		
				Flush-Fl			Calculated		
				Objecti Applicati		ise upstre	am storage Surface		
				Appiicati Sump Availab			Yes		
				Diameter (m			199		
			In	vert Level (,		119.700		
		Minimum O		Diameter (m	. ,		225		
		Suggest	ed Manhole	Diameter (m	nm)		1500		
	Control H	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head	d (m) Flow	(1/s)
Desi	gn Point (Calculated)	1.500	21.8		Kicł	-Flo® (0.988	17.9
		Flush-Flo™	0.450	21.8	Mean Flow	over Head	Range	-	18.8
The hvdrolo	gical calc	ulations hav	ve been bas	sed on the H	lead/Disch	arge relat:	ionship for	the Hvdro	-Brake® Opt:
	d. Should	another typ	pe of conti	col device o					ised then the
Depth (m) F	low (1/s)	Depth (m) H	Flow (l/s)	Depth (m) H	Flow (l/s)	Depth (m)	Flow (l/s	s) Depth (n	n) Flow (l/s
0.100	6.9	0.800	20.6	2.000	25.0	4.000	34.	9 7.00	0 45.
						1			

0.100	6.9	0.800	20.6	2.000	25.0	4.000	34.9	7.000	45.7
0.200	18.8	1.000	18.0	2.200	26.2	4.500	36.9	7.500	47.3
0.300	21.2	1.200	19.6	2.400	27.3	5.000	38.8	8.000	48.8
0.400	21.7	1.400	21.1	2.600	28.4	5.500	40.7	8.500	50.2
0.500	21.8	1.600	22.5	3.000	30.4	6.000	42.4	9.000	51.6
0.600	21.5	1.800	23.8	3.500	32.7	6.500	44.1	9.500	53.0

Hydrock Consultants Ltd					
	PARCEL 17				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 17.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1	1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	113.508	0.508	7.2	474.4	ОК
30	min	Summer	113.639	0.639	7.2	620.7	ОК
60	min	Summer	113.764	0.764	7.2	769.8	ОК
120	min	Summer	113.878	0.878	7.2	913.7	ΟK
180	min	Summer	113.936	0.936	7.2	989.8	ΟK
240	min	Summer	113.971	0.971	7.2	1036.8	ΟK
360	min	Summer	114.013	1.013	7.2	1094.7	ΟK
480	min	Summer	114.037	1.037	7.2	1128.7	ОК
600	min	Summer	114.051	1.051	7.2	1147.9	ОК
720	min	Summer	114.058	1.058	7.2	1157.7	ОК
960	min	Summer	114.059	1.059	7.2	1159.2	ОК
1440	min	Summer	114.035	1.035	7.2	1125.6	ΟK
2160	min	Summer	113.994	0.994	7.2	1067.9	ОК
2880	min	Summer	113.953	0.953	7.2	1013.1	ΟK
4320	min	Summer	113.876	0.876	7.2	911.1	ΟK
5760	min	Summer	113.799	0.799	7.2	812.7	ΟK
7200	min	Summer	113.711	0.711	7.2	704.4	ΟK
8640	min	Summer	113.626	0.626	7.2	605.4	ΟK
10080	min	Summer	113.550	0.550	7.2	520.1	ΟK
15	min	Winter	113.561	0.561	7.2	532.4	ΟK
30	min	Winter	113.704	0.704	7.2	696.9	ΟK
60	min	Winter	113.840	0.840	7.2	864.6	ΟK
120	min	Winter	113.964	0.964	7.2	1027.4	ΟK
180	min	Winter	114.027	1.027	7.2	1114.7	ΟK
240	min	Winter	114.066	1.066	7.2	1169.5	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	454.2	30
30	min	Summer	90.866	0.0	569.4	45
60	min	Summer	56.713	0.0	776.9	74
120	min	Summer	34.190	0.0	931.3	134
180	min	Summer	25.088	0.0	1016.7	192
240	min	Summer	20.020	0.0	1069.2	252
360	min	Summer	14.528	0.0	1112.9	370
480	min	Summer	11.570	0.0	1108.8	488
600	min	Summer	9.690	0.0	1098.9	608
720	min	Summer	8.380	0.0	1088.2	726
960	min	Summer	6.658	0.0	1067.4	962
1440	min	Summer	4.807	0.0	1028.1	1326
2160	min	Summer	3.465	0.0	1726.8	1680
2880	min	Summer	2.744	0.0	1817.6	2072
4320	min	Summer	1.973	0.0	1880.2	2900
5760	min	Summer	1.559	0.0	2084.7	3744
7200	min	Summer	1.298	0.0	2169.8	4480
8640	min	Summer	1.118	0.0	2240.1	5200
10080	min	Summer	0.985	0.0	2298.0	5952
15	min	Winter	138.634	0.0	504.2	30
30	min	Winter	90.866	0.0	590.9	45
60	min	Winter	56.713	0.0	867.9	74
120	min	Winter	34.190	0.0	1032.9	132
180	min	Winter	25.088	0.0	1107.6	190
240	min	Winter	20.020	0.0	1125.3	248

Hydrock Consultants Ltd		Page 2
	PARCEL 17	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 17.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	114.114	1.114	7.2	1238.8	ОК
480	min	Winter	114.143	1.143	7.2	1281.2	ΟK
600	min	Winter	114.161	1.161	7.2	1307.1	ΟK
720	min	Winter	114.171	1.171	7.2	1322.2	ΟK
960	min	Winter	114.178	1.178	7.2	1332.4	ΟK
1440	min	Winter	114.162	1.162	7.2	1309.4	ΟK
2160	min	Winter	114.111	1.111	7.2	1234.6	ΟK
2880	min	Winter	114.064	1.064	7.2	1165.9	ΟK
4320	min	Winter	113.961	0.961	7.2	1023.5	ΟK
5760	min	Winter	113.853	0.853	7.2	881.1	ΟK
7200	min	Winter	113.724	0.724	7.2	720.8	ΟK
8640	min	Winter	113.591	0.591	7.2	565.8	ΟK
10080	min	Winter	113.478	0.478	7.2	442.3	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	1118.8	364
480	min	Winter	11.570	0.0	1109.1	480
600	min	Winter	9.690	0.0	1100.3	596
720	min	Winter	8.380	0.0	1092.5	710
960	min	Winter	6.658	0.0	1079.1	938
1440	min	Winter	4.807	0.0	1060.0	1378
2160	min	Winter	3.465	0.0	1929.2	1764
2880	min	Winter	2.744	0.0	2021.3	2204
4320	min	Winter	1.973	0.0	1953.6	3124
5760	min	Winter	1.559	0.0	2334.9	4040
7200	min	Winter	1.298	0.0	2430.4	4904
8640	min	Winter	1.118	0.0	2509.7	5544
10080	min	Winter	0.985	0.0	2575.5	6256

Hydrock Consultants Ltd					
•	PARCEL 17				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 17.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1				

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 1.860

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.465	4	8	0.465	8	12	0.465	12	16	0.465

					E	Page 4	
	PARCEL 2	17					
	SURFACE	WATER					
	04583-H	YD-INF-2	XX-X-CA-(002		Micco	
ite 25/03/2020	Designed	d by RFS	S			Micro	
le Parcel 17.SRCX	Checked	-				Drain	ag
novyze		_	2018.1.1	_			
-							
	<u>Model De</u>	<u>etails</u>					
Storage i	s Online Cove	er Level	(m) 114.500)			
<u> T</u> a	ank or Pond	Struct	ure				
	Invert Level	(m) 113.0	00				
Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) A	area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m	1²)
0.000 800.0 0.600 1129.	1 1.200	1514.7			2.400	2455	.6
0.100 850.9 0.700 1189.		1584.5	1.900	2036.0 2116.8	2.500	2544	.2
0.200 903.4 0.800 1251.							
0.300 957.5 0.900 1314.			2.100				
0.400 1013.1 1.000 1379. 0.500 1070.3 1.100 1446.		1803.2 1879.2		2283.0 2368.5			
	Unit Referenc		-0122-7200				
	Design Head (r			1.200			
De	sign Flow (1/s			7.2			
	Flush-Flo		ise upstrea	Calculated			
	Applicatio		ise upscie	Surface			
	Sump Availab			Yes			
	Diameter (mr			122			
I	nvert Level (r	n)		113.000			
Minimum Outlet Pipe				150			
Currented Manhal	e Diameter (mr	n)		1200			
Suggested Mannol							
	Flow (l/s)	Cont	rol Points	Head	l (m) Flow	(l/s)	
		Cont			i (m) Flow	5.8	
Control Points Head (m)	7.2			-Flo® C			
Control Points Head (m) Design Point (Calculated) 1.200 Flush-Flo™ 0.350	7.2 7.2	Mean Flow	Kick over Head	-Flo® (Range	.755	5.8 6.3	Opt:
Control Points Head (m) Design Point (Calculated) 1.200 Flush-Flo™ 0.350 The hydrological calculations have been ba as specified. Should another type of cont	7.2 7.2 M ased on the He trol device of	Mean Flow	Kick over Head arge relati	-Flo® C Range onship for).755 - the Hydro	5.8 6.3 -Brake®	
Control Points Head (m) Design Point (Calculated) 1.200	7.2 7.2 M ased on the He trol device of lidated	Mean Flow ead/Discha ther than	Kick over Head arge relati a Hydro-Br	-Flo® (Range Lonship for rake Optimu).755 - the Hydro um® be util	5.8 6.3 -Brake® ised the	en tł

		0.800							
0.200	6.8	1.000	6.6	2.200	9.6	4.500	13.4	7.500	17.2
0.300	7.2	1.200	7.2	2.400	10.0	5.000	14.1	8.000	17.7
0.400	7.2	1.400	7.7	2.600	10.4	5.500	14.8	8.500	18.2
	7.0					6.000			
0.600	6.8	1.800	8.7	3.500	11.9	6.500	16.0	9.500	19.2
			I		I				

Hydrock Consultants Ltd					
	PARCEL 19				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 19.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1	1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	123.127	0.327	2.5	163.3	ОК
30	min	Summer	123.227	0.427	2.5	213.6	ОК
60	min	Summer	123.329	0.529	2.5	264.7	ОК
120	min	Summer	123.429	0.629	2.5	314.6	ΟK
180	min	Summer	123.483	0.683	2.5	341.4	ΟK
240	min	Summer	123.516	0.716	2.5	358.1	ΟK
360	min	Summer	123.558	0.758	2.5	378.8	ΟK
480	min	Summer	123.582	0.782	2.5	391.1	ОК
600	min	Summer	123.597	0.797	2.5	398.4	ОК
720	min	Summer	123.605	0.805	2.5	402.4	ОК
960	min	Summer	123.608	0.808	2.5	404.1	ОК
1440	min	Summer	123.589	0.789	2.5	394.4	ΟK
2160	min	Summer	123.551	0.751	2.5	375.6	ΟK
2880	min	Summer	123.514	0.714	2.5	356.9	ΟK
4320	min	Summer	123.439	0.639	2.5	319.6	ΟK
5760	min	Summer	123.359	0.559	2.5	279.4	ΟK
7200	min	Summer	123.289	0.489	2.5	244.6	ΟK
8640	min	Summer	123.228	0.428	2.5	214.1	ΟK
10080	min	Summer	123.174	0.374	2.5	187.0	ΟK
15	min	Winter	123.166	0.366	2.5	183.2	ΟK
30	min	Winter	123.279	0.479	2.5	239.7	ΟK
60	min	Winter	123.395	0.595	2.5	297.4	ΟK
120	min	Winter	123.508	0.708	2.5	354.0	ΟK
180	min	Winter	123.569	0.769	2.5	384.4	O K
240	min	Winter	123.607	0.807	2.5	403.5	ΟK

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	152.8	30
30	min	Summer	90.866	0.0	192.2	45
60	min	Summer	56.713	0.0	265.6	74
120	min	Summer	34.190	0.0	318.4	134
180	min	Summer	25.088	0.0	347.4	192
240	min	Summer	20.020	0.0	365.4	252
360	min	Summer	14.528	0.0	382.6	370
480	min	Summer	11.570	0.0	384.0	488
600	min	Summer	9.690	0.0	381.2	608
720	min	Summer	8.380	0.0	377.4	726
960	min	Summer	6.658	0.0	368.8	964
1440	min	Summer	4.807	0.0	351.2	1368
2160	min	Summer	3.465	0.0	592.2	1712
2880	min	Summer	2.744	0.0	622.6	2088
4320	min	Summer	1.973	0.0	647.6	2940
5760	min	Summer	1.559	0.0	716.9	3688
7200	min	Summer	1.298	0.0	746.0	4408
8640	min	Summer	1.118	0.0	770.0	5192
10080	min	Summer	0.985	0.0	789.5	5864
15	min	Winter	138.634	0.0	169.6	30
30	min	Winter	90.866	0.0	203.7	45
			56.713	0.0	296.9	74
			34.190	0.0	352.9	132
		Winter	25.088	0.0	379.2	190
240	min	Winter	20.020	0.0	388.5	248

Hydrock Consultants Ltd		Page 2
•	PARCEL 19	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 19.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	L

	Storm Event			Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	123.656	0.856	2.5	427.9	ΟK
480	min	Winter	123.686	0.886	2.5	443.0	ΟK
600	min	Winter	123.705	0.905	2.5	452.4	ΟK
720	min	Winter	123.716	0.916	2.5	458.1	ΟK
960	min	Winter	123.725	0.925	2.5	462.5	ОК
1440	min	Winter	123.713	0.913	2.5	456.3	ΟK
2160	min	Winter	123.664	0.864	2.5	432.0	ОК
2880	min	Winter	123.618	0.818	2.5	409.1	ΟK
4320	min	Winter	123.520	0.720	2.5	359.8	ΟK
5760	min	Winter	123.408	0.608	2.5	304.1	ΟK
7200	min	Winter	123.295	0.495	2.5	247.7	ΟK
8640	min	Winter	123.203	0.403	2.5	201.7	ΟK
10080	min	Winter	123.127	0.327	2.5	163.3	ОК

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	388.8	364
480	min	Winter	11.570	0.0	385.4	480
600	min	Winter	9.690	0.0	381.5	596
720	min	Winter	8.380	0.0	377.7	712
960	min	Winter	6.658	0.0	370.5	938
1440	min	Winter	4.807	0.0	357.4	1380
2160	min	Winter	3.465	0.0	661.1	1792
2880	min	Winter	2.744	0.0	690.8	2224
4320	min	Winter	1.973	0.0	668.8	3160
5760	min	Winter	1.559	0.0	802.9	4040
7200	min	Winter	1.298	0.0	835.7	4768
8640	min	Winter	1.118	0.0	862.8	5528
10080	min	Winter	0.985	0.0	885.0	6168

Hydrock Consultants Ltd		Page 3
•	PARCEL 19	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	
Date 25/03/2020	Designed by RFS	inici e
File Parcel 19.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.640

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.160	4	8	0.160	8	12	0.160	12	16	0.160

drock Consu	ltants	Ltd							I	Page	4
				PARCEL	19						
				SURFAC	SURFACE WATER						
te 25/03/20	120			Design				5002		Mic	ſO
				-	-		0			Dra	inac
Le Parcel 1	Checke			0010 1	-						
novyze				Source	Cont	rol	2018.1.	L			
				Model :	Detai	<u>ls</u>					
			Storage is	Online Co	ver Le	vel (m) 125.00	C			
			Tar	<u>nk or Por</u>	nd Sti	ruct	ure				
			II	nvert Level	. (m) 1	122.8	00				
Depth (m) A	area (m²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)
0.000	500.0	1.200	0.0	2.400		0.0	3.600	0.0	4.800		0.0
0.200	500.0	1.400	0.0	2.600		0.0	3.800	0.0	5.000		0.0
0.400	500.0			2.800		0.0	4.000	0.0			
0.600	500.0					0.0					
0.800	500.0					0.0					
1.000	500.0	2.200	0.0	3.400		0.0	4.600	0.0			
		H	ydro-Bral	ke® Optim	um Ou	utfl	ow Contr	<u>ol</u>			
			τ	Jnit Refere	ence MI	D-SHE·	-0075-2500	-1000-2500			
				esign Head				1.000			
			Des	ign Flow (1				2.5			
				Flush-F				Calculated			
				Object Applicat		41n1m:	ise upstre	am storage Surface			
				Appiicat Sump Availa				Yes			
				Diameter (75			
			In	vert Level	· ·			122.800			
		Minimum O	utlet Pipe	Diameter ((mm)			100			
		Suggest	ed Manhole	Diameter ((mm)			1200			
с	ontrol F	oints	Head (m)	Flow (l/s)		Cont	rol Points	Head	d (m) Flow	(1/s)	
Design	Point (Calculated) Flush-Flo™		2.5 2.5	Mean	Flow	Kicl over Head		0.627 -	2.0 2.2	
The hydrologic	nal calc	ilations has	ve heen had	ed on the	"	liech	arde rolat	ionchin for	the Under	Brok	
as specified. storage routir	Should	another typ	pe of conti	col device			-	-	-		-
epth (m) Flo	w (l/s)	Depth (m) 1	Flow (l/s)	Depth (m)	Flow	(1/s)	Depth (m)	Flow (1/s	s) Depth (n	n) Flo	w (1/:
0.100	2.1	0.800	2.3	2.000		3.4	4.000	4.	7 7.00	0	6.
0.200	2.4	1.000	2.5	2.200		3.6	4.500				6
0.300	2.5	1.200	2.7	2.400		3.7					6.
0 400	2 5	1 400	2 9	2 600		3 0	5 500	5	5 8 50		6

0.400

0.500

0.600

2.5

2.4

2.1

1.400

1.600

1.800

2.9

3.1

3.3

2.600

3.000

3.500

5.500

6.500

3.9

4.1

4.5

8.500 9.000

9.500

6.8

7.0

7.1

5.5

5.7

Hydrock Consultants Ltd					
•	PARCEL 20				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 20.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1	1			

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	123.118	0.318	2.2	127.3	ОК
30	min	Summer	123.216	0.416	2.2	166.4	ΟK
60	min	Summer	123.315	0.515	2.2	206.0	ОК
120	min	Summer	123.411	0.611	2.2	244.3	ОК
180	min	Summer	123.462	0.662	2.2	264.8	ОК
240	min	Summer	123.493	0.693	2.2	277.2	ОК
360	min	Summer	123.530	0.730	2.2	292.2	ОК
480	min	Summer	123.552	0.752	2.2	300.7	ОК
600	min	Summer	123.563	0.763	2.2	305.2	ОК
720	min	Summer	123.568	0.768	2.2	307.2	ΟK
960	min	Summer	123.566	0.766	2.2	306.4	ОК
1440	min	Summer	123.540	0.740	2.2	296.1	ΟK
2160	min	Summer	123.499	0.699	2.2	279.5	ΟK
2880	min	Summer	123.457	0.657	2.2	262.9	ΟK
4320	min	Summer	123.368	0.568	2.2	227.2	ΟK
5760	min	Summer	123.289	0.489	2.2	195.8	ΟK
7200	min	Summer	123.221	0.421	2.2	168.5	ΟK
8640	min	Summer	123.161	0.361	2.2	144.5	ΟK
10080	min	Summer	123.110	0.310	2.2	124.1	ΟK
15	min	Winter	123.157	0.357	2.2	142.9	ΟK
30	min	Winter	123.267	0.467	2.2	186.8	ΟK
60	min	Winter	123.379	0.579	2.2	231.6	ΟK
120	min	Winter	123.488	0.688	2.2	275.2	ΟK
180	min	Winter	123.546	0.746	2.2	298.4	ΟK
240	min	Winter	123.582	0.782	2.2	312.7	ΟK

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	121.8	30
30	min	Summer	90.866	0.0	156.6	45
60	min	Summer	56.713	0.0	208.8	74
120	min	Summer	34.190	0.0	251.2	134
180	min	Summer	25.088	0.0	275.5	192
240	min	Summer	20.020	0.0	291.9	252
360	min	Summer	14.528	0.0	314.2	370
480	min	Summer	11.570	0.0	327.4	488
600	min	Summer	9.690	0.0	332.5	606
720	min	Summer	8.380	0.0	332.1	724
960	min	Summer	6.658	0.0	326.7	962
1440	min	Summer	4.807	0.0	311.0	1264
2160	min	Summer	3.465	0.0	464.5	1644
2880	min	Summer	2.744	0.0	489.6	2048
4320	min	Summer	1.973	0.0	524.7	2816
5760	min	Summer	1.559	0.0	560.3	3576
7200	min	Summer	1.298	0.0	583.1	4328
8640	min	Summer	1.118	0.0	601.9	5096
10080	min	Summer	0.985	0.0	617.3	5760
15	min	Winter	138.634	0.0	135.9	30
30	min	Winter	90.866	0.0	170.7	44
60	min	Winter	56.713	0.0	233.7	74
120	min	Winter	34.190	0.0	280.2	132
180	min	Winter	25.088	0.0	306.0	190
240	min	Winter	20.020	0.0	322.2	248

Hydrock Consultants Ltd		Page 2
•	PARCEL 20	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Mirro
Date 25/03/2020	Designed by RFS	initered
File Parcel 20.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	123.626	0.826	2.2	330.5	ОК
480	min	Winter	123.653	0.853	2.2	341.1	ΟK
600	min	Winter	123.668	0.868	2.2	347.2	ΟK
720	min	Winter	123.676	0.876	2.2	350.5	ΟK
960	min	Winter	123.679	0.879	2.2	351.7	ΟK
1440	min	Winter	123.657	0.857	2.2	342.8	ΟK
2160	min	Winter	123.603	0.803	2.2	321.4	ΟK
2880	min	Winter	123.551	0.751	2.2	300.5	ΟK
4320	min	Winter	123.437	0.637	2.2	254.8	ΟK
5760	min	Winter	123.308	0.508	2.2	203.2	ΟK
7200	min	Winter	123.204	0.404	2.2	161.6	ΟK
8640	min	Winter	123.119	0.319	2.2	127.5	ΟK
10080	min	Winter	123.052	0.252	2.2	100.6	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	337.9	364
480	min	Winter	11.570	0.0	339.5	480
600	min	Winter	9.690	0.0	337.6	594
720	min	Winter	8.380	0.0	334.7	710
960	min	Winter	6.658	0.0	328.0	934
1440	min	Winter	4.807	0.0	314.1	1368
2160	min	Winter	3.465	0.0	519.7	1720
2880	min	Winter	2.744	0.0	547.1	2188
4320	min	Winter	1.973	0.0	577.5	3120
5760	min	Winter	1.559	0.0	627.6	3872
7200	min	Winter	1.298	0.0	653.2	4616
8640	min	Winter	1.118	0.0	674.4	5288
10080	min	Winter	0.985	0.0	691.9	5960

Hydrock Consultants Ltd		Page 3
•	PARCEL 20	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 20.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.500

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.125	4	8	0.125	8	12	0.125	12	16	0.125

drock Consı	ltants	Ltd								Page	4
				PARCEL	20						
				SURFAC	E WATE	R					
							XX-X-CA-	1002			
ate 25/03/2020								0002		Mic	
				_	ed by 1)			Dra	inac
le Parcel 2	20.SRCX				d by SI						-
novyze				Source	Contro	01	2018.1.2	1			
				Model 1	Details	<u>5</u>					
			Storage is	Online Co	ver Leve	el (m) 125.000)			
			Tan	<u>nk or Por</u>	<u>id Stru</u>	icti	ure				
			In	vert Level	(m) 122	2.80	00				
Depth (m) A	area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m	n²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)
0.000	400.0	1.200	0.0	2.400	0	0.0	3.600	0.0	4.800		0.0
0.200	400.0	1.400	0.0	2.600	0	0.0	3.800	0.0	5.000		0.0
0.400	400.0			2.800	0	0.0	4.000	0.0			
0.600	400.0					0.0		0.0			
0.800 1.000	400.0 400.0			3.200 3.400		0.0	4.400 4.600	0.0			
		' 				د ا	Garaka	- 1	I		
		<u>H</u>	ydro-Brak	<u>e® Optim</u>	<u>ium Out</u>	τια	ow Contr	01			
				Jnit Refere		SHE-	-0070-2200				
				esign Head				1.000			
			Desi	.gn Flow (1 Flush-F				z.۷ Calculated			
						nimi		am storage			
				Applicat			rbe appere	Surface			
			S	Sump Availa				Yes			
				Diameter (mm)			70			
				vert Level	· · /			122.800			
			utlet Pipe					100			
		Suggest	ed Manhole	Diameter (mm)			1200			
c	ontrol P	oints	Head (m)	Flow (l/s)	Co	onti	rol Points	Head	d (m) Flow	(l/s)	
Design	Point (Calculated)	1.000	2.2			Kicł	-Flo® (0.625	1.8	3
		Flush-Flo™	0.307	2.2	Mean Fl	OW	over Head	Range	-	1.9)
	_						_				
The hydrologions specified.							-	-	-		-
storage routi			-		other th	lall	а пушто-ы	lake optim	umb be utt.	LISed	unen u
Depth (m) Flo	w (l/s)	Depth (m) 1	Flow (l/s)	Depth (m)	Flow (l,	/s)	Depth (m)	Flow (1/s	s) Depth (1	n) Flc	ow (l∕:
0.100	1.8	0.800	2.0	2.000		3.0	4.000	4.	.2 7.0	00	5.
0.200	2.1	1.000	2.2	2.200		3.2	4.500				5.
0.300	2.2	1.200	2.4	2.400	3	3.3	5.000	4.	.6 8.0	00	5.
0 400	2 2	1 400	2 6	2 600		34	5 500	1	8 8 5	0	5

1.9	1.800	2.9	3.500	3.9	6.500	5.2	

2.600 3.000 3.4

3.6

5.500

6.000

4.8

5.0

8.500

9.000

9.500

5.9

6.1

6.3

2.6

2.7

0.400

0.500

0.600

2.2

2.1

1.400

Hydrock Consultants Ltd		Page 1
	PARCEL 23	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 23.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	1

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	120.311	0.611	34.1	2018.5	ОК
30	min	Summer	120.478	0.778	34.1	2639.4	ОК
60	min	Summer	120.640	0.940	34.1	3270.3	ΟK
120	min	Summer	120.791	1.091	34.1	3883.5	ΟK
180	min	Summer	120.868	1.168	34.1	4206.2	ОК
240	min	Summer	120.914	1.214	34.1	4403.6	ΟK
360	min	Summer	120.969	1.269	34.1	4643.7	ΟK
480	min	Summer	121.001	1.301	34.1	4780.8	ΟK
600	min	Summer	121.017	1.317	34.1	4854.8	ΟK
720	min	Summer	121.025	1.325	34.1	4888.1	ОК
960	min	Summer	121.023	1.323	34.1	4877.9	ΟK
1440	min	Summer	120.989	1.289	34.1	4731.6	ОК
2160	min	Summer	120.935	1.235	34.1	4494.1	ОК
2880	min	Summer	120.879	1.179	34.1	4254.3	ΟK
4320	min	Summer	120.764	1.064	34.1	3772.0	ОК
5760	min	Summer	120.636	0.936	34.1	3255.9	ΟK
7200	min	Summer	120.520	0.820	34.1	2802.1	ΟK
8640	min	Summer	120.416	0.716	34.1	2406.3	ΟK
10080	min	Summer	120.321	0.621	34.1	2058.1	ΟK
15	min	Winter	120.378	0.678	34.1	2265.0	ΟK
30	min	Winter	120.562	0.862	34.1	2962.9	ΟK
60	min	Winter	120.740	1.040	34.1	3675.4	ΟK
120	min	Winter	120.905	1.205	34.1	4366.3	ΟK
180	min	Winter	120.990	1.290	34.1	4734.2	ΟK
240	min	Winter	121.042	1.342	34.1	4963.2	ОК

Storm		Rain		Discharge		
	Even	t	(mm/hr)		Volume	(mins)
				(m³)	(m³)	
15	min	Summer	138.634	0.0	1863.6	30
30	min	Summer	90.866	0.0	2402.1	45
60	min	Summer	56.713	0.0	3263.0	74
120	min	Summer	34.190	0.0	3920.9	134
180	min	Summer	25.088	0.0	4296.3	192
240	min	Summer	20.020	0.0	4548.7	252
360	min	Summer	14.528	0.0	4890.1	370
480	min	Summer	11.570	0.0	5100.5	488
600	min	Summer	9.690	0.0	5201.2	606
720	min	Summer	8.380	0.0	5201.7	724
960	min	Summer	6.658	0.0	5094.1	962
1440	min	Summer	4.807	0.0	4844.4	1240
2160	min	Summer	3.465	0.0	7317.5	1612
2880	min	Summer	2.744	0.0	7704.3	2020
4320	min	Summer	1.973	0.0	8197.2	2856
5760	min	Summer	1.559	0.0	8862.1	3632
7200	min	Summer	1.298	0.0	9220.5	4392
8640	min	Summer	1.118	0.0	9512.2	5104
10080	min	Summer	0.985	0.0	9743.2	5840
15	min	Winter	138.634	0.0	2081.2	30
30	min	Winter	90.866	0.0	2628.8	45
60	min	Winter	56.713	0.0	3650.1	74
120	min	Winter	34.190	0.0	4370.2	132
180	min	Winter	25.088	0.0	4768.0	190
240	min	Winter	20.020	0.0	5019.6	246

Hydrock Consultants Ltd		Page 2
•	PARCEL 23	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 23.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	121.106	1.406	34.1	5248.5	ОК
480	min	Winter	121.143	1.443	34.1	5418.8	ΟK
600	min	Winter	121.165	1.465	34.1	5518.5	ΟK
720	min	Winter	121.177	1.477	34.1	5572.6	ΟK
960	min	Winter	121.182	1.482	34.1	5595.8	ΟK
1440	min	Winter	121.152	1.452	34.1	5461.7	ΟK
2160	min	Winter	121.083	1.383	34.1	5146.9	ΟK
2880	min	Winter	121.012	1.312	34.1	4832.4	ΟK
4320	min	Winter	120.857	1.157	34.1	4160.3	ΟK
5760	min	Winter	120.674	0.974	34.1	3407.3	ΟK
7200	min	Winter	120.493	0.793	34.1	2698.7	ΟK
8640	min	Winter	120.336	0.636	34.1	2112.8	ΟK
10080	min	Winter	120.203	0.503	34.1	1635.6	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	5294.5	362
480	min	Winter	11.570	0.0	5340.3	478
600	min	Winter	9.690	0.0	5299.1	594
720	min	Winter	8.380	0.0	5249.9	708
960	min	Winter	6.658	0.0	5148.5	934
1440	min	Winter	4.807	0.0	4950.4	1362
2160	min	Winter	3.465	0.0	8184.1	1700
2880	min	Winter	2.744	0.0	8603.9	2168
4320	min	Winter	1.973	0.0	8992.6	3080
5760	min	Winter	1.559	0.0	9927.2	3928
7200	min	Winter	1.298	0.0	10331.1	4688
8640	min	Winter	1.118	0.0	10660.8	5368
10080	min	Winter	0.985	0.0	10926.5	6048

Hydrock Consultants Ltd	Page 3	
•	PARCEL 23	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 23.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 7.920

Time	(mins)	Area									
From:	To:	(ha)									
0	4	1.980	4	8	1.980	8	12	1.980	12	16	1.980

	ultants L	td						F	Page 4
				PARCEL 2	23				
				SURFACE WATER					
							000		Micro
ate 25/03/20					04583-HYD-INF-XX-X-CA-0002 Designed by RFS				
	-	=	0			Drainag			
le Parcel 2	23.SRCX			Checked	-	0010 1 1			
novyze				Source	Control	2018.1.1	-		
				Model De	etails				
		St	corage is (Online Cove	er Level (m) 121.500			
			Tank	or Pond	Struct	ure			
			Inv	ert Level	(m) 119.70	00			
Depth (m) 2	Area (m²) [[epth (m) A	rea (m²)	Depth (m) A	area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	3000.0	0.600	3610.8	1.200	4278.1	1.800	5001.9	2.400	5782.3
0.100	3097.9	0.700	3718.1	1.300	4394.8	1.900	5128.1	2.500	5917.9
0.200	3197.3	0.800	3826.9	1.400	4513.1	2.000	5128.1 5255.8		
0.300	3298.3	0.900	3937.3	1.500	4632.9	2.100	5385.1		
0.400	3400.9	1.000	4049.4	1.600	4754.4	2.200	5515.9		
0.500	3505.0	1.100	4162.9	1.700	4877.4	2.300	5648.3		
		<u>Hyc</u>	Un	e® Optimu it Referenc ign Head (r	ce MD-SHE·				
				n Flow (1/s			34.1		
				Flush-Flo	e TM	0	7010010400		
				ELUSII ELC	5	C	Calculated		
						ise upstrea			
					ve Minim:				
			Su	Objectiv	ve Minim: on		am storage		
			E	Objectiv Applicatio mp Availab iameter (mr	ve Minim on le n)		am storage Surface Yes 244		
			D Inve	Objectiv Applicatio mp Availab iameter (mr rt Level (r	ve Minim: on le n) n)		am storage Surface Yes		
	М		D Inve let Pipe D	Objectiv Application mp Availab iameter (mr rt Level (r iameter (mr	ve Minim: on le n) n)		am storage Surface Yes 244 119.700 300		
	М		D Inve let Pipe D	Objectiv Applicatio mp Availab iameter (mr rt Level (r	ve Minim: on le n) n)		am storage Surface Yes 244 119.700		
c	M Control Poir	Suggested	D Inve let Pipe D	Objectiv Applicatio mp Availab iameter (mr rt Level (r iameter (mr iameter (mr	ve Minim: on le n) n) n)		am storage Surface Yes 244 119.700 300 1800	(m) Flow	(1/s)
		Suggested nts H	E Inve let Pipe E Manhole E	Objectiv Applicatio mp Availab iameter (mr rt Level (r iameter (mr iameter (mr	ve Minim: on le n) n) n)	ise upstrea	am storage Surface Yes 244 119.700 300 1800 Head	(m) Flow	28.5
	Control Poi n Point (Cal	Suggested nts H	E Inve let Pipe E Manhole E Mead (m) F	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr	ve Minim on le n) n) n) n) Cont :	ise upstrea	am storage Surface Yes 244 119.700 300 1800 Head		
Design	Control Poir Point (Cal Fl	Suggested nts H .culated) ush-Flo™	E Inve let Pipe E Manhole E Mead (m) F 1.500 0.474	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr Low (1/s) 34.1 34.1	ve Minim: on le n) n) n) Cont: Mean Flow	ise upstrea rol Points Kick over Head	am storage Surface Yes 244 119.700 300 1800 Head -Flo® 1 Range	.032	28.5 29.1
Design The hydrologi as specified.	Control Poin Point (Cal Fl cal calcula Should an	Suggested nts H .culated) .ush-Flo™ .tions have .other type	Inve Inve let Pipe D Manhole D Lead (m) F 1.500 0.474 been base of contro	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr iameter (mr iameter (mr 34.1 34.1 d on the He l device ot	ve Minim on le n) n) n) Cont Mean Flow	ise upstrea rol Points Kick over Head arge relati	am storage Surface Yes 244 119.700 300 1800 Head -Flo® 1 Range	.032 _ the Hydro	28.5 29.1 -Brake® Opt
Design The hydrologi as specified. storage routi	Control Poir Point (Cal Fl cal calcula Should an ng calculat	Suggested nts H culated) ush-Flo™ tions have other type ions will :	Inve Inve let Pipe D Manhole D Lead (m) F 1.500 0.474 been base of contro be invalid	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter of at.1 M d on the He l device of ated	ve Minim on le n) n) n) Cont: Mean Flow ead/Dischat	ise upstrea rol Points Kick over Head arge relati a Hydro-Br	am storage Surface Yes 244 119.700 300 1800 Head -Flo® 1 Range .onship for take Optimu	.032 - the Hydro m® be util	28.5 29.1 -Brake® Optised then th
Design The hydrologi as specified.	Control Poir Point (Cal Fl cal calcula Should an ng calculat	Suggested nts H culated) ush-Flo™ tions have other type ions will :	Inve Inve let Pipe D Manhole D Lead (m) F 1.500 0.474 been base of contro be invalid	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter of at.1 M d on the He l device of ated	ve Minim on le n) n) n) Cont: Mean Flow ead/Dischat	ise upstrea rol Points Kick over Head arge relati a Hydro-Br	am storage Surface Yes 244 119.700 300 1800 Head -Flo® 1 Range .onship for take Optimu	.032 - the Hydro m® be util	28.5 29.1 -Brake® Opt: ised then th
Design The hydrologi as specified. storage routi	Control Poir Point (Cal Fl cal calcula Should an ng calculat	Suggested nts H culated) ush-Flo™ tions have other type ions will :	Inve Inve let Pipe D Manhole D Lead (m) F 1.500 0.474 been base of contro be invalid	Objectiv Applicatio mp Availabi iameter (mr rt Level (r iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter (mr iameter of at.1 M d on the He l device of ated	ve Minim on le n) n) n) Cont: Mean Flow ead/Dischat	ise upstrea rol Points Kick over Head arge relati a Hydro-Br	am storage Surface Yes 244 119.700 300 1800 Head C-Flo® 1 Range Conship for take Optimu Flow (1/s)	.032 - the Hydro m® be util) Depth (m 7 7.00	28.5 29.1 Brake® Opt: ised then th) Flow (1/s

0.100	8.0	0.800	32.6	2.000	39.1	4.000	54.7	7.000	
0.200	24.8	1.000	29.5	2.200	41.0	4.500	57.9	7.500	
0.300	32.9	1.200	30.6	2.400	42.7	5.000	60.9	8.000	
0.400	33.9	1.400	33.0	2.600	44.4	5.500	63.8	8.500	
0.500	34.0	1.600	35.2	3.000	47.6	6.000	66.6	9.000	
0.600	33.8	1.800	37.2	3.500	51.3	6.500	69.2	9.500	
	1		1		1		1		

76.6 78.9 81.1

Hydrock Consultants Ltd					
	PARCEL 39				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 39.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1	1			

	Storm Event			Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	121.347	0.547	2.0	71.7	0 K
30	min	Summer	121.455	0.655	2.0	93.7	ОК
60	min	Summer	121.547	0.747	2.0	115.0	ОК
120	min	Summer	121.622	0.822	2.0	133.9	ОК
180	min	Summer	121.654	0.854	2.0	142.4	ОК
240	min	Summer	121.669	0.869	2.0	146.5	0 K
360	min	Summer	121.679	0.879	2.0	149.3	ОК
480	min	Summer	121.676	0.876	2.0	148.6	O K
600	min	Summer	121.667	0.867	2.0	146.0	O K
720	min	Summer	121.656	0.856	2.0	143.1	O K
960	min	Summer	121.635	0.835	2.0	137.4	O K
1440	min	Summer	121.597	0.797	2.0	127.4	O K
2160	min	Summer	121.543	0.743	2.0	114.0	O K
2880	min	Summer	121.490	0.690	2.0	101.5	O K
4320	min	Summer	121.376	0.576	2.0	77.3	O K
5760	min	Summer	121.239	0.439	2.0	52.6	O K
7200	min	Summer	121.130	0.330	2.0	36.0	O K
8640	min	Summer	121.045	0.245	2.0	24.7	O K
10080	min	Summer	120.984	0.184	1.9	17.6	O K
15	min	Winter	121.393	0.593	2.0	80.7	O K
30	min	Winter	121.507	0.707	2.0	105.3	0 K
60	min	Winter	121.605	0.805	2.0	129.5	0 K
120	min	Winter	121.687	0.887	2.0	151.5	0 K
180	min	Winter	121.723	0.923	2.0	161.9	Flood Risk
240	min	Winter	121.741	0.941	2.0	167.3	Flood Risk

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	74.1	30
30	min	Summer	90.866	0.0	97.1	44
60	min	Summer	56.713	0.0	121.5	74
120	min	Summer	34.190	0.0	146.5	132
180	min	Summer	25.088	0.0	161.3	190
240	min	Summer	20.020	0.0	171.6	248
360	min	Summer	14.528	0.0	186.8	364
480	min	Summer	11.570	0.0	198.3	482
600	min	Summer	9.690	0.0	207.6	584
720	min	Summer	8.380	0.0	215.4	630
960	min	Summer	6.658	0.0	228.2	754
1440	min	Summer	4.807	0.0	247.0	1016
2160	min	Summer	3.465	0.0	267.5	1432
2880	min	Summer	2.744	0.0	282.4	1844
4320	min	Summer	1.973	0.0	304.5	2648
5760	min	Summer	1.559	0.0	321.0	3344
7200	min	Summer	1.298	0.0	334.2	3968
8640	min	Summer	1.118	0.0	345.2	4664
10080	min	Summer	0.985	0.0	354.6	5256
15	min	Winter	138.634	0.0	83.0	30
30	min	Winter	90.866	0.0	108.7	44
60	min	Winter	56.713	0.0	136.1	72
120	min	Winter	34.190	0.0	164.1	130
180	min	Winter	25.088	0.0	180.6	186
240	min	Winter	20.020	0.0	192.2	244

Hydrock Consultants Ltd					
•	PARCEL 39				
	SURFACE WATER				
	04583-HYD-INF-XX-X-CA-0002	Micro			
Date 25/03/2020	Designed by RFS				
File Parcel 39.SRCX	Checked by SM	Drainage			
Innovyze	Source Control 2018.1.1				

Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status	
360	min	Winter	121.756	0.956	2.1	171.9	Flood Risk
480	min	Winter	121.759	0.959	2.1	172.6	Flood Risk
600	min	Winter	121.753	0.953	2.1	171.0	Flood Risk
720	min	Winter	121.744	0.944	2.0	168.1	Flood Risk
960	min	Winter	121.718	0.918	2.0	160.5	Flood Risk
1440	min	Winter	121.672	0.872	2.0	147.4	0 K
2160	min	Winter	121.600	0.800	2.0	128.1	0 K
2880	min	Winter	121.524	0.724	2.0	109.4	0 K
4320	min	Winter	121.339	0.539	2.0	70.2	0 K
5760	min	Winter	121.137	0.337	2.0	36.9	0 K
7200	min	Winter	121.000	0.200	2.0	19.4	0 K
8640	min	Winter	120.927	0.127	1.8	11.5	0 K
10080	min	Winter	120.891	0.091	1.7	8.0	O K

	Storr Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	209.2	358
480	min	Winter	11.570	0.0	222.1	472
600	min	Winter	9.690	0.0	232.5	582
720	min	Winter	8.380	0.0	241.3	688
960	min	Winter	6.658	0.0	255.5	798
1440	min	Winter	4.807	0.0	276.3	1092
2160	min	Winter	3.465	0.0	299.6	1548
2880	min	Winter	2.744	0.0	316.3	1996
4320	min	Winter	1.973	0.0	341.0	2820
5760	min	Winter	1.559	0.0	359.6	3408
7200	min	Winter	1.298	0.0	374.3	3968
8640	min	Winter	1.118	0.0	386.6	4584
10080	min	Winter	0.985	0.0	397.2	5144

Hydrock Consultants Ltd		Page 3
•	PARCEL 39	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Mirro
Date 25/03/2020	Designed by RFS	inicio
File Parcel 39.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.286

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.072	4	8	0.072	8	12	0.071	12	16	0.071

YULUCK CON	sultants	Ltd							Page 4
				PARCEL	39				
				SURFAC	E WATER				
					HYD-INF-X	XX-X-CA-(1002		
ate 25/03/2							0002		Micro
					ed by RFS	0			Drainag
le Parcel	39.SRCX				d by SM				Brainacj
nnovyze				Source	Control	2018.1.2	L		
				<u>Model I</u>	<u>Details</u>				
		\$	Storage is	Online Co [,]	ver Level (m) 122.000)		
			<u>Tan</u>	<u>ık or Pon</u>	d Struct	<u>ure</u>			
			Ir	vert Level	(m) 120.8	00			
Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	80.0	1.200	383.3	2.400	912.9	3.600	1668.6	4.800	2650.5
0.200		1.400	455.9	2.600		3.800	1816.5	5.000	
0.400	156.0	1.600	534.7 619.8	2.800	1139.6	4.000	1970.8		
0.600					1262.5	4.200	2131.3		
0.800			711.2				2298.1		
1.000	317.1	2.200	808.9	3.400	1526.9	4.600	2471.2		
			Desi	Applicat Sump Availa	/s) lo™ ive Minim ion ble		Surface Yes		
				Diameter (vert Level	·		69 120.800		
		Minimum Ou	utlet Pipe		. ,		100		
		Suggeste	ed Manhole	Diameter (mm)		1200		
	Control Po	oints	Head (m) 1	Flow (l/s)	Cont	rol Points	Head	l (m) Flow	(l/s)
Desig	gn Point (C	oints Calculated) Flush-Flo™	Head (m) 1 0.900 0.278	2.0	Cont Mean Flow	Kicł	-Flo® (i (m) Flow .568 -	(1/s) 1.6 1.8
The hydrolog	gn Point (C gical calcu	Calculated) Flush-Flo™ ulations hav	0.900 0.278 7e been bas	2.0 2.0	Mean Flow Head/Discha	Kicł over Head arge relat:	x-Flo® (Range ionship for	.568 - the Hydro	1.6 1.8 p-Brake® Opti
The hydrolog	gn Point (C gical calcu 1. Should	Calculated) Flush-Flo™ ulations hav another typ	0.900 0.278 We been bas be of contr	2.0 2.0 red on the rol device	Mean Flow Head/Discha	Kicł over Head arge relat:	x-Flo® (Range ionship for	.568 - the Hydro	1.6
The hydrolog as specified storage rout	gn Point (C gical calcu d. Should ting calcul	Calculated) Flush-Flo™ alations hav another typ ations will	0.900 0.278 We been bas be of contr be invali	2.0 2.0 red on the rol device dated	Mean Flow Head/Discha other than	Kic} over Head arge relat: a Hydro-B:	r-Flo® (Range ionship for rake Optimu	the Hydro m® be uti	1.6 1.8 D-Brake® Opti lised then th
The hydrolog as specified storage rout Depth (m) F: 0.100	gn Point (C gical calcu d. Should ting calcul low (1/s)	Calculated) Flush-Flo™ alations hav another typ ations will Depth (m) F 0.800	0.900 0.278 We been bas be of contr be invali Clow (1/s) 1.9	2.0 2.0 red on the rol device dated Depth (m) 2.000	Mean Flow Head/Discha other than Flow (1/s) 2.9	Kick over Head arge relat: a Hydro-B: Depth (m) 4.000	-Flo® (Range ionship for cake Optimu Flow (l/s 4.	<pre>0.568 - the Hydro m® be util) Depth (n 0 7.00</pre>	1.6 1.8 D-Brake® Opti lised then th m) Flow (1/s 00 5.3
The hydrolog as specified storage rout Depth (m) F: 0.100 0.200	gn Point (C gical calcu d. Should ting calcul low (l/s) 1 1.7 2.0	Calculated) Flush-Flo™ alations hav another typ ations will Depth (m) F 0.800 1.000	0.900 0.278 We been bas be of contr be invali Clow (1/s) 1.9 2.1	2.0 2.0 eed on the col device dated Depth (m) 2.000 2.200	Mean Flow Head/Discha other than Flow (1/s) 2.9 3.0	Kick over Head arge relat: a Hydro-B: Depth (m) 4.000 4.500	E-Flo® (Range ionship for cake Optimu Flow (l/s 4. 4.	<pre>.568 - the Hydro m® be util) Depth (r 0 7.0 2 7.5 </pre>	1.6 1.8 D-Brake® Opti lised then th m) Flow (1/s) 00 5.3
The hydrolog as specified storage rout Depth (m) F: 0.100 0.200 0.300	gn Point (C gical calcu d. Should ting calcul low (1/s) 1 1.7 2.0 2.0	Calculated) Flush-Flo™ alations hav another typ ations will Depth (m) F 0.800 1.000 1.200	0.900 0.278 We been bas be of contr be invali Clow (1/s) 1.9 2.1 2.3	2.0 2.0 eed on the col device dated Depth (m) 2.000 2.200 2.400	Mean Flow Head/Discha other than Flow (1/s) 2.9 3.0 3.1	Kick over Head arge relat: a Hydro-B: Depth (m) 4.000 4.500 5.000	E-Flo® (Range ionship for cake Optimu Flow (l/s 4. 4. 4.	<pre>.568 - the Hydro m® be util) Depth (r 0 7.00 2 7.50 4 8.00</pre>	1.6 1.8 D-Brake® Opti lised then th m) Flow (1/s) 00 5.1 00 5.1
The hydrolog as specified storage rout Depth (m) F: 0.100 0.200	gn Point (C gical calcu d. Should ting calcul low (l/s) 1 1.7 2.0	Calculated) Flush-Flo™ alations hav another typ ations will Depth (m) F 0.800 1.000	0.900 0.278 We been bas be of contr be invali Clow (1/s) 1.9 2.1	2.0 2.0 eed on the col device dated Depth (m) 2.000 2.200	Mean Flow Head/Discha other than Flow (1/s) 2.9 3.0	Kick over Head arge relat: a Hydro-B: Depth (m) 4.000 4.500 5.000 5.500	-Flo® (Range ionship for cake Optimu Flow (l/s 4. 4. 4. 4.	<pre>.568 - the Hydro m® be uti:) Depth (r 0 7.00 2 7.50 4 8.00 6 8.50</pre>	1.6 1.8 D-Brake® Opti lised then th m) Flow (1/s) 00 5.2 00 5.3 00 5.3

Hydrock Consultants Ltd		Page 1
	PARCEL 40	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 40.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	1

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	124.287	0.487	2.0	90.2	ОК
30	min	Summer	124.393	0.593	2.0	118.0	ΟK
60	min	Summer	124.487	0.687	2.0	145.4	ОК
120	min	Summer	124.566	0.766	2.0	170.7	ОК
180	min	Summer	124.603	0.803	2.0	183.1	ОК
240	min	Summer	124.623	0.823	2.0	189.9	ОК
360	min	Summer	124.642	0.842	2.0	196.7	ОК
480	min	Summer	124.648	0.848	2.0	199.0	ОК
600	min	Summer	124.647	0.847	2.0	198.6	ОК
720	min	Summer	124.642	0.842	2.0	196.6	ОК
960	min	Summer	124.625	0.825	2.0	190.7	ОК
1440	min	Summer	124.593	0.793	2.0	179.7	ОК
2160	min	Summer	124.549	0.749	2.0	165.0	ОК
2880	min	Summer	124.507	0.707	2.0	151.6	ΟK
4320	min	Summer	124.422	0.622	2.0	126.3	ΟK
5760	min	Summer	124.321	0.521	2.0	98.8	ΟK
7200	min	Summer	124.225	0.425	2.0	75.5	ΟK
8640	min	Summer	124.143	0.343	2.0	57.6	ΟK
10080	min	Summer	124.075	0.275	2.0	43.9	ΟK
15	min	Winter	124.331	0.531	2.0	101.3	ΟK
30	min	Winter	124.444	0.644	2.0	132.5	ΟK
60	min	Winter	124.544	0.744	2.0	163.6	ΟK
120	min	Winter	124.631	0.831	2.0	192.7	ΟK
180	min	Winter	124.671	0.871	2.0	207.3	ΟK
240	min	Winter	124.694	0.894	2.0	215.7	ΟK

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.634	0.0	91.9	30
30	min	Summer	90.866	0.0	120.2	45
60	min	Summer	56.713	0.0	151.5	74
120	min	Summer	34.190	0.0	182.6	132
180	min	Summer	25.088	0.0	201.0	192
240	min	Summer	20.020	0.0	213.8	250
360	min	Summer	14.528	0.0	232.6	368
480	min	Summer	11.570	0.0	246.9	484
600	min	Summer	9.690	0.0	258.4	602
720	min	Summer	8.380	0.0	267.9	720
960	min	Summer	6.658	0.0	283.1	840
1440	min	Summer	4.807	0.0	296.3	1090
2160	min	Summer	3.465	0.0	333.7	1492
2880	min	Summer	2.744	0.0	352.4	1908
4320	min	Summer	1.973	0.0	379.8	2732
5760	min	Summer	1.559	0.0	400.7	3472
7200	min	Summer	1.298	0.0	417.1	4184
8640	min	Summer	1.118	0.0	430.8	4848
10080	min	Summer	0.985	0.0	442.5	5544
15	min	Winter	138.634	0.0	102.9	30
30	min	Winter	90.866	0.0	134.2	44
60	min	Winter	56.713	0.0	169.6	72
120	min	Winter	34.190	0.0	204.5	130
180	min	Winter	25.088	0.0	225.0	188
240	min	Winter	20.020	0.0	239.4	246

Hydrock Consultants Ltd		Page 2
•	PARCEL 40	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	Micro
Date 25/03/2020	Designed by RFS	
File Parcel 40.SRCX	Checked by SM	Drainage
Innovyze	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360	min	Winter	124.718	0.918	2.0	224.7	Flood Risk
480	min	Winter	124.728	0.928	2.0	228.7	Flood Risk
600	min	Winter	124.731	0.931	2.0	229.7	Flood Risk
720	min	Winter	124.728	0.928	2.0	228.7	Flood Risk
960	min	Winter	124.715	0.915	2.0	223.5	Flood Risk
1440	min	Winter	124.676	0.876	2.0	209.1	0 K
2160	min	Winter	124.621	0.821	2.0	189.4	0 K
2880	min	Winter	124.564	0.764	2.0	169.9	0 K
4320	min	Winter	124.442	0.642	2.0	132.1	0 K
5760	min	Winter	124.282	0.482	2.0	89.2	O K
7200	min	Winter	124.141	0.341	2.0	57.1	0 K
8640	min	Winter	124.033	0.233	2.0	36.1	O K
10080	min	Winter	123.962	0.162	1.9	23.9	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	14.528	0.0	260.4	360
480	min	Winter	11.570	0.0	276.2	476
600	min	Winter	9.690	0.0	288.7	588
720	min	Winter	8.380	0.0	298.7	700
960	min	Winter	6.658	0.0	310.4	914
1440	min	Winter	4.807	0.0	302.4	1150
2160	min	Winter	3.465	0.0	373.8	1608
2880	min	Winter	2.744	0.0	394.6	2072
4320	min	Winter	1.973	0.0	425.3	2952
5760	min	Winter	1.559	0.0	448.8	3696
7200	min	Winter	1.298	0.0	467.1	4328
8640	min	Winter	1.118	0.0	482.5	4928
10080	min	Winter	0.985	0.0	495.7	5464

Hydrock Consultants Ltd		Page 3
•	PARCEL 40	
	SURFACE WATER	
	04583-HYD-INF-XX-X-CA-0002	
Date 25/03/2020	Designed by RFS	Drainage
File Parcel 40.SRCX	Checked by SM	Diamaye
Innovyze	Source Control 2018.1.1	

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.404	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.357

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.090	4	8	0.089	8	12	0.089	12	16	0.089

Le Parcel 40.SRCX Designed by RFS Novyze Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²) Depth (m) Area (m²) Opeth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Opeth (m) Area (m²) Opeth (m) Area (m²) Depth (m) Area (m²) Opeth (m) Area (m²)	a (m²) 2909.6 3103.9
SURFACE WATER 04583-HYD-INF-XX-X-CA-0002 be Parcel 40.SRCX Designed by RFS Checked by SM Inovyze Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²)	a (m²)
04583-HYD-INF-XX-X-CA-0002 Designed by RFS Checked by SM torvze Source Control 2018.1.1 Model Details Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Fond Structure Invert Level (m) 123.800 Depth (m) Area (m²) Checked 1.3.800 0.000 130.0 1.200 485.6 2.400 1067.4 3.600 1875.4 4.800 0.300 130.0 1.200 485.6 2.400 1067.4 3.600 1875.4 4.800 0.400 223.4 1.600 564.4 2.800 1311.6 4.000 2195.0 4.400 2364.7 5.000 0.400 223.4 1.600 584.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.0 2.0 Level (m) 0.900 2.0 2.0 2.0 2.0 2.0 2.0 <td>a (m²)</td>	a (m²)
Designed by RFS Designed by RFS Ide Parcel 40.SRCX Checked by SM novyze Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²) Depth (m) Design Flow (l/s) 2.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0069-2000-0900-2000 Design Flow (l/s) 2.0 Diameter (mm) Design Flow (l/s) Calculated Deptication SurpAvailable Yes SurpAvailable Yes Diameter (mm) 100 <th< td=""><td>a (m²)</td></th<>	a (m²)
Le Parcel 40.SRCX Checked by SM Modyze Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²) Depth (m²) Acaou (m²) Depth (m²) Acaou (m²) Depth (m²) Acaou (m²) Depth (m²) Acaou (m²) Depth (m²) Dephi (m²)	a (m²) 2909.6
Deriver Deriver Deriver Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²)	a (m²) 2909.6
Model Details Storage is Online Cover Level (m) 125.000 Tank or Pond Structure Invert Level (m) 123.800 Depth (m) Area (m²) Depth (m) Area (m²) <th< td=""><td>2909.6</td></th<>	2909.6
Storage is Online Cover Level (m) 125.000 Data or Fond Structure Invert Level (m) 123.000 Note: (m) Area (n') Pepth (m) Area (n') 4.800 0.000 130.0 1.200 654.4 2.800 1311.6 4.000 2195.0 5.000 0.600 273.5 1.800 748.2 3.000 1433.1 4.200 2364.2 5.000 0.800 341.9 2.000 848.3 3.200 1580.9 4.600 2721.5 1.000 Design Head (m) 0.900 2.00	2909.6
Tark or Pond Structure Invert Level (m) 123.800 Opth (m) Area (m²) Oppth (m) Area (n²) Oppth (n²) Area (n²) Oppth (n²) Area (n²) Disting Head (m) On 000 Disting Head (m) On 000 Diameter (m?) Area (n²) Oppeth (n²) Area (n²) Diameter (n²)<	2909.6
Invert Level (m) 123.800 Pepth (m) Area (n²)	2909.6
Depth (m) Area (m²) Depth (m) Area (m) Depth (m) <th< td=""><td>2909.6</td></th<>	2909.6
0.000 130.0 1.200 485.6 2.400 1067.4 3.600 1875.4 4.800 0.200 173.6 1.400 566.9 2.600 1186.4 3.800 2032.1 5.000 0.400 223.4 1.600 654.4 2.800 1311.6 4.000 2195.0 5.000 0.600 279.5 1.800 748.2 3.000 1443.1 4.200 2364.2 0.800 341.9 2.000 848.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0069-2000-0900-2000 Design Flow (1/s) 2.0 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 120 Control Points Head (m) Flow (1/s)	2909.6
0.200 173.6 1.400 566.9 2.600 1186.4 3.800 2032.1 5.000 0.400 223.4 1.600 654.4 2.800 1311.6 4.000 2195.0 0.600 279.5 1.800 748.2 3.000 1443.1 4.200 2364.2 0.800 341.9 2.000 848.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900<	
0.400 223.4 1.600 654.4 2.800 1311.6 4.000 2195.0 0.600 279.5 1.800 748.2 3.000 1443.1 4.200 2364.2 0.800 341.9 2.000 848.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo** Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 200	3103.9
0.400 223.4 1.600 654.4 2.800 1311.6 4.000 2195.0 0.600 279.5 1.800 748.2 3.000 1443.1 4.200 2364.2 0.800 341.9 2.000 848.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo** Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 200	
0.800 341.9 2.000 848.3 3.200 1580.9 4.400 2539.7 1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
1.000 410.6 2.200 954.7 3.400 1725.0 4.600 2721.5 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0069-2000-0900-2000 Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
Design Head (m) 0.900 Design Flow (1/s) 2.0 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
Design Flow (1/s) 2.0 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200	
Application Surface Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Sump Available Yes Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Diameter (mm) 69 Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Invert Level (m) 123.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)	
Design Point (Calculated) 0.900 2.0 Kick-Flo® 0.568 1)
	6
Flush-Flo™ 0.278 2.0 Mean Flow over Head Range - 1 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Bra	8
as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised storage routing calculations will be invalidated	-
Depth (m) Flow (1/s)	-
0.100 1.7 0.800 1.9 2.000 2.9 4.000 4.0 7.000	then t
0.200 2.0 1.000 2.1 2.200 3.0 4.500 4.2 7.500	then t
0.300 2.0 1.200 2.3 2.400 3.1 5.000 4.4 8.000	then t ow (1/s

0.400

0.500

0.600

1.9

1.8

1.7

1.400

1.600

1.800

2.4

2.6

2.7

2.600

3.000

3.500

5.500

6.500

3.2

3.5

3.7

8.500 9.000

9.500

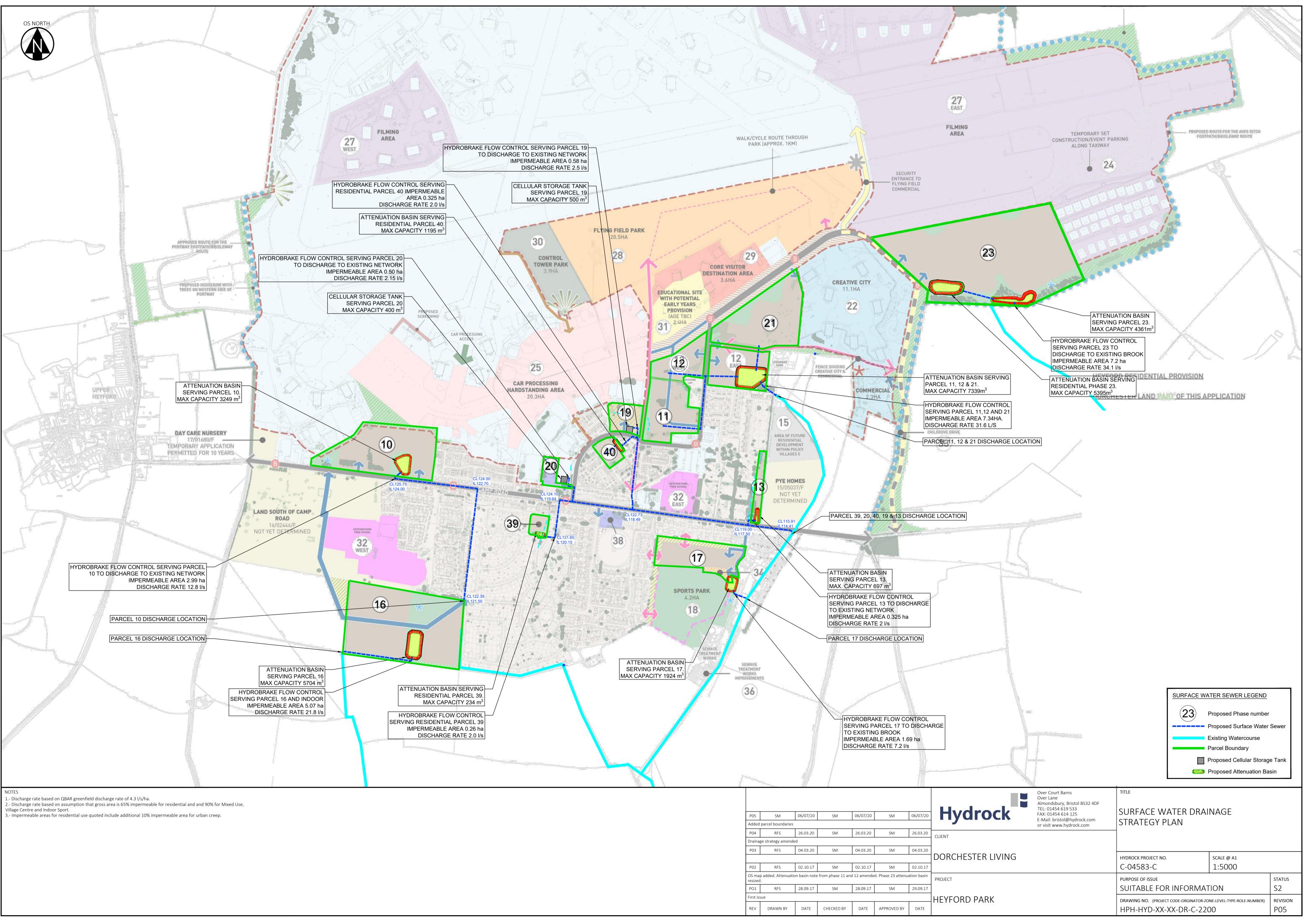
5.7

5.8

6.0

4.6

4.8

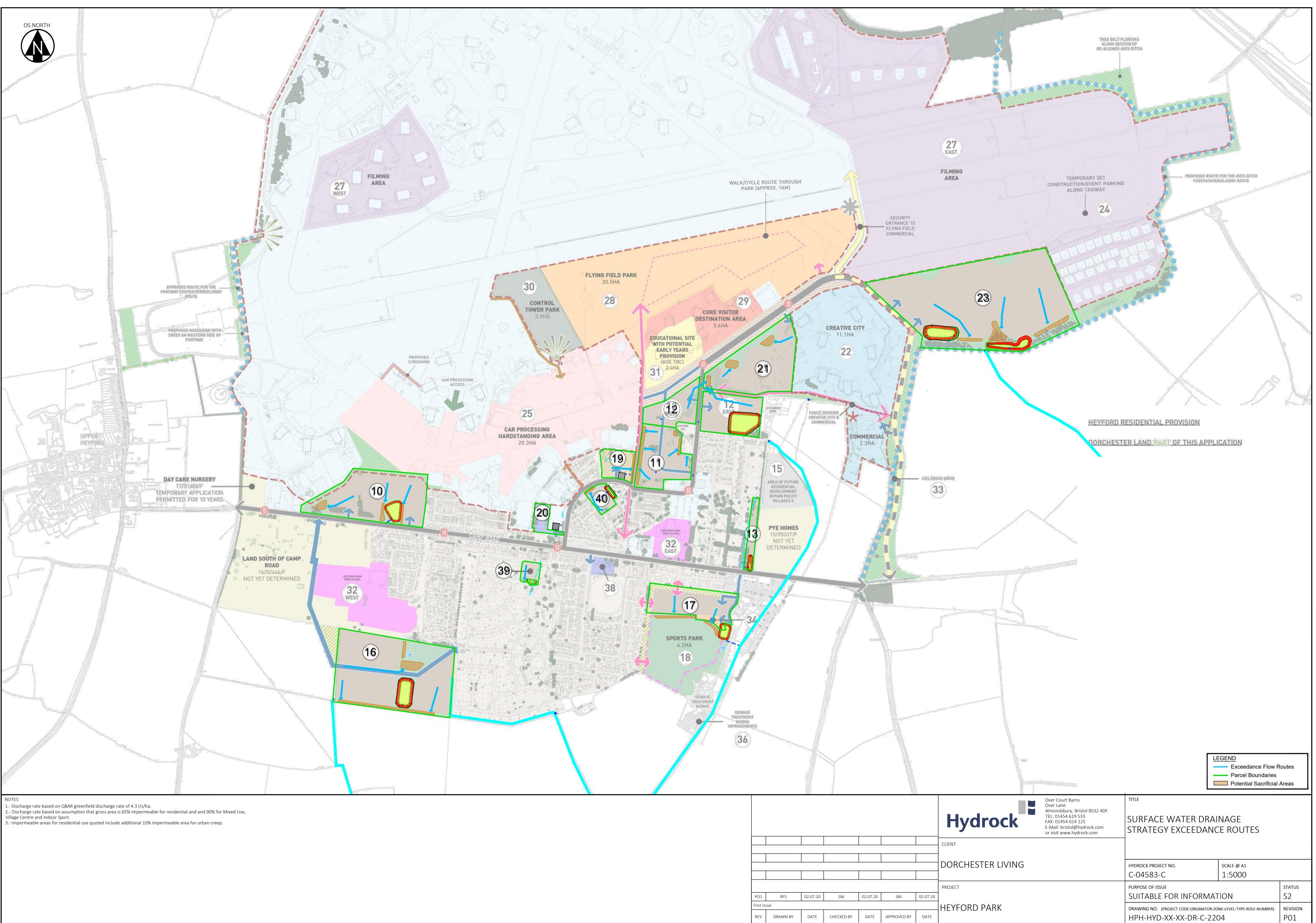

Appendix C – Surface Water Drainage Strategy

Reference

Title

HPH-HYD-XX-XX-DR-C-2200

Surface Water Drainage Strategy


Appendix D – Exceedance Flow Routes

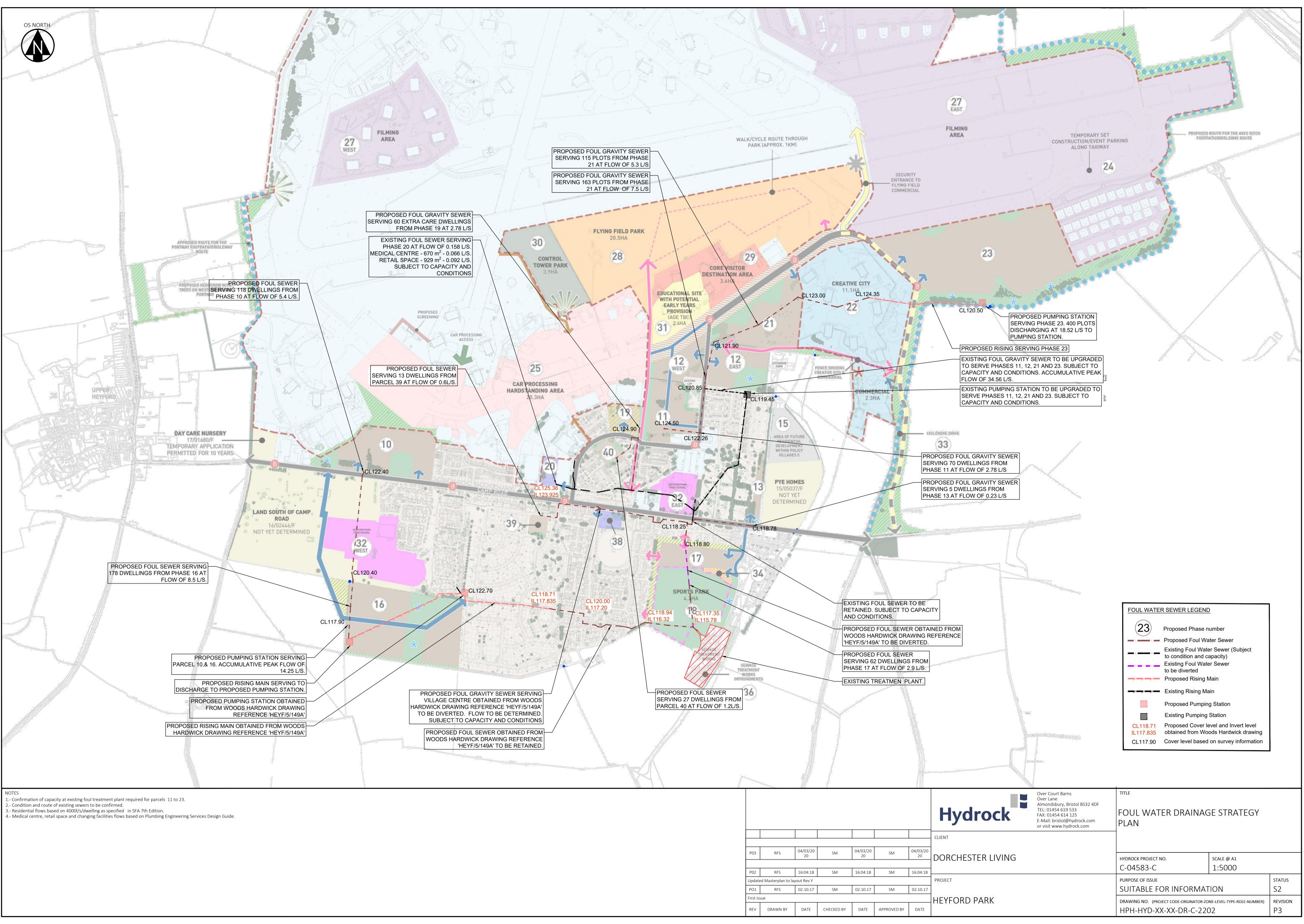
Reference

Title

HPH-HYD-XX-XX-DR-C-2204

Exceedance Flow Routes

Hydro						1	
CLIENT							
DORCHESTER LI							
PROJECT							
	02.07.20	SM	02.07.20	SM	02.07.20	RFS	PO1
HEYFORD PARK						sue	First is
	DATE	APPROVED BY	DATE	CHECKED BY	DATE	DRAWN BY	REV


Appendix E – Foul Drainage Strategy

Reference

Title

HPH-HYD-XX-XX-DR-C-2202

Foul Drainage Strategy

105	1113	20	5101	20	5101	20	DORCHESTER LIV
P02	RFS	16:04:18	SM	16:04:18	SM	16:04:18	
Update	ed Masterplan to lay	/out Rev Y					PROJECT
PO1	RFS	02.10.17	SM	02.10.17	SM	02.10.17	
First is:	sue						HEYFORD PARK
REV	DRAWN BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE	