

Subject:	B430 Station Road / Ardley Road Junction Capacity Testing
Prepared By:	Phil Rawlins
Date:	1 st November 2019
Note No:	028 Rev. A
Job No:	39304
Job Name:	Heyford Park

Item	•							
1.	Introduction							
	This note has been prepared by Peter Brett Associates, now part of Stantec (PBA) on behalf of Dorchester Group to set out a review of the operation of the B430 Station Road / Ardley Road staggered crossroad junction and the impact of the proposed Heyford Park development on the junction.							
	The current junction layout provides for a four arm, priority, staggered crossroads, located in the village of Ardley between the Heyford Park development site and the M40 motorway junction. The B430 Station Road runs north – south and forms the mainline through the junction whilst the Ardley Road forms the minor arms to the east and west. The junction was originally scoped out of the assessment undertaken for the Heyford Park Transport Assessment however, Oxfordshire County Council (OCC) has subsequently requested during the post application process that the junction be modelled to establish the extent of development impact on this part of the local road network.							
	This note sets out the validation of the model and the results of 2018 base year modelling at Section 2 . Section 3 sets out the results of 2031 forecast modelling of the junction with and without the Heyford development. Section 4 sets out potential improvements for the junction and conclusions are presented at Section 5 .							
2.	2018 Base Model							
	The junction has been modelled using TRANSYT 15 in order to represent the complex interaction of the multiple priority elements of the junction. The giveway coefficients have been calculated using the PICADY module of Junctions 9.							
	The geometry for the base model has been taken from a combination of OS mapping and recent aerial photography and measurements were taken in accordance with the PICADY and TRANSYT user guides as necessary.							
	Baseline traffic flows for the junction were surveyed on Thursday 8 th February 2018, between the hours of $07:00 - 10:00$ and $16:00 - 19:00$. As with the rest of the work undertaken in the Transport Assessment supporting the main application (PBA, April 2018) the network peak hours of $07:45 - 08:45$ and $17:00 - 18:00$ have been adopted for the basis of the junction modelling.							
	2018 Base Modelling – Validation							
	The model has been validated against queue surveys that were undertaken at the same time as the turning count survey. The queue surveys recorded the stationary traffic that was queuing in each approach lane to the junction, at the end of each five minute period. A comparison of the queues from the model and surveyed queues have been provided in Table 1 .							

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

		ey Road			DM Dook			
		AM P	eak		PM Peak			
Link	Mode Queue	elled (veh.)	Queue Survey (ave. veh.)	Mode Queue				
B430 (N) Left Slip	0.	0	0.0	0.0)	0.0		
B430 (N) RT	0.	1	0.1	0.0)	0.0		
Ardley Road (E)	0.	7	1.5	0.1	1	1.7		
B430 (S) Left Slip	0.	0	0.0	0.0)	0.0		
B430 (S) RT	0.	1	0.0	0.1	1	0.0		
Ardley Road (W) Left Slip	0.	0	0.0	0.0)	0.0		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod	oth the AM asis to ass scenarios. elled junct	model province of the set of the	oeak hours. Or orecast Referer	n this basis, nce (without	uing to thos it is consid developme	ered that ent) and T		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa	w that the oth the AM asis to ass scenarios. elled junct d junction	model pro and PM p sess the fo	edicts similar le beak hours. Or brecast Referer	vels of queu a this basis, ace (without e 2018 base	uing to thos it is consid developme e scenario	e recorde ered that ent) and T		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod	w that the oth the AM asis to ass scenarios. elled junct d junction	model pro and PM p sess the fo	edicts similar le beak hours. Or brecast Referen ity results for th 018 Base Moo	vels of queu a this basis, ace (without e 2018 base	uing to thos it is consid developme e scenario	e recorde ered that ent) and T at the B4:		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa	w that the oth the AM asis to ass scenarios. elled junct d junction	model pro and PM p sess the fo ion capac	edicts similar le beak hours. Or brecast Referen ity results for th 018 Base Moo	vels of queu a this basis, ace (without e 2018 base	uing to thos it is consid developme e scenario ults	e recorde ered that ent) and T at the B43		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa	ow that the oth the AM asis to ass scenarios. elled junct d junction oad / Ardle	model pro and PM p sess the fo ion capac ey Road 2 AM Pea	edicts similar le beak hours. Or brecast Referen ity results for th 018 Base Moo k Delay	vels of queu n this basis, nce (without e 2018 base lelling Resu	uing to thos it is consid developme e scenario ults PM Peal	e recorde ered that ent) and T at the B4: C Dela (Sec		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) a 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa Table 2: B430 Station Ro Link	ow that the oth the AM asis to ass scenarios. elled junct d junction oad / Ardle	model pro and PM p sess the fo ion capac ey Road 2 AM Pea MMQ	edicts similar le beak hours. Or brecast Referen ity results for th 018 Base Moo lk Delay (Secs)	vels of queu n this basis, nce (without e 2018 base lelling Resu DoS	uing to thos it is consid developme e scenario ults PM Peal MMQ	e recorde ered that ent) and T at the B43 c Dela (Sec 1		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa Table 2: B430 Station Ro Link B430 Station Road (N)	ow that the oth the AM asis to ass scenarios. elled junct d junction oad / Ardle DoS 38%	model province ion capace and PM province ion capace and capace ion capace and capace ion capace and capace ion capace io	edicts similar le beak hours. Or brecast Referen ity results for the 018 Base Moo ik Delay (Secs) 1	vels of queu n this basis, nce (without e 2018 base lelling Resu DoS 20%	uing to thos it is consid developme e scenario ults PM Peal MMQ 0.1	e recorde ered that ent) and T at the B43		
Ardley Road (W) RT The results in Table 1 sho the surveyed periods in bo model provides a robust b Case (with development) = 2018 Base Modelling Table 2 presents the mod Station Road / Ardley Roa Table 2: B430 Station Ro Link B430 Station Road (N) Ardley Road (E)	w that the oth the AM asis to assis to assis scenarios. elled junct d junction oad / Ardle DoS 38% 69%	model province and PM province and PM province and PM province and pro	edicts similar le beak hours. Or precast Referen ity results for th 018 Base Moo ik Delay (Secs) 1 18	vels of queu n this basis, nee (without e 2018 base lelling Resu DoS 20% 27%	uing to thos it is consid developme e scenario ults PM Peal MMQ 0.1 0.1	e recorde ered that ent) and T at the B4: (Sec 1 2		

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

Subject														
2031 Forecast Modell	ing													
Introduction														
Since the TA was subn been undertaken using mitigation for the Local model has been used i Road / Ardley Road jur proposed improvement	OCCs Bices Road Netwo n order to det ction as it wil	ter SATURN rk including ermine the I best repre	N model in or the Middleto impact of the sent any traf	rder to estab on Stoney jur e developme fic reassignn	lish an agree action. The S nt on the B43 nent arising a	d package c ATURN 80 Station								
A number of scenarios purposes of this asses			he SATURN	model. The	key scenaric	os for the								
four junction - B430 Ardley - Middleton S introduction - Hopcrofts H - A4260 / B40 agreed with improvemer model as it i scheme with The results of the mode 2031 Reference Case A summary of the capa	bsals up to the d within this a ng 1 (DS1): T on at Heyford including: d Baynards (s in this com Road / Unnat toney: Comm of a bus gate olt: capacity i 27: inclusion OCC to a 5% ts in this local s considered in this timefra elling underta <u>Modelling</u> city analysis	e 2031 fore assessment he DS1 sce Park and t Green Roun plex. amed Road: itted signali on the wes mprovemer of a rounda contributio tion. The ro that OCC wame. ken with floor results in th	ecast year. T the highway is as the highway is a signalised T adabout: inclu- signalised T sation of the signalised the signalised the signalised the signalised the signalised the signabout layout a solution towards the set of the signal solution towards the signal solution to the sisonal solution to the signal solution to the signal	The Local Pla he RC scena mitigation pro- uding the pot -Junction Middleton S the junction. nalised cross at the junctio e implement s included wit emented this	n allocation a prio but incluc oposed by the ential RIS sc toney junctio road layout in. Dorcheste ation of safet thin the 2031 s improvement is set out belo	at Heyford les the full e Heyford heme for all n and the ar have y forecast nt or a simila								
model outputs are prov				10 13 301 001										
Table 3: B430 Station	Road / Ardle	ey Road 20 AM Peak		e Case Moo	lelling Resul PM Peak	lts								
Link	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)								
B430 Station Road (N) 56%	0.7	2	30%	0.1	1								
Ardley Road (E)	245%	60.4	1295	75%	1.1									
) 61%													
B430 Station Road (S) 61% 0.5 2 38% 0.1 1														
Ardley Road (W)	44%	0.3	2 5	38% 31%	0.1									

part of Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

Subject Item Table 3 shows that the B430 Station Road / Ardley Road Junction is predicted to operate over capacity in the AM peak with a maximum DoS of 245% on the Ardley Road east arm. The junction is predicted to operate within capacity in the PM peak with a maximum DoS of 75% on the Ardley Road east arm. 2031 Test Case Modelling – Do Something 1 A summary of the capacity analysis results in the DS1 scenario is set out within **Table 4**. The full model outputs are provided at Appendix A. Table 4: B430 Station Road / Ardley Road 2031 Do something 1 Modelling Results AM Peak **PM Peak** Link Delay Delay DoS MMQ DoS MMQ (Secs) (Secs) 3 1 B430 Station Road (N) 58% 0.8 28% 0.1 Ardley Road (E) 311% 44.8 1485 9999% 98.5 1800 B430 Station Road (S) 74% 1.0 5 78% 1.4 4 Ardley Road (W) 73% 0.9 16 57% 0.4 8 DoS = Degree of Saturation, MMQ = Maximum Mean Queue Table 4 shows that the B430 Station Road / Ardley Road Junction is predicted to operate over capacity in the DS1 scenario in both the AM and PM peak hours. In the AM peak hour Ardley Road East has a maximum DoS of 311%. In the PM peak hour Ardley Road East has no effective capacity due to the high opposing flow on the B430. **Mitigation Proposals** 4. As the junction is predicted to operate over capacity in both the Reference Case (without the development) and the Test Case (DS1 scenario including development) it is considered that highway improvements should be considered at this location. On this basis a number of options have been considered as set out below: Roundabout: A roundabout layout has been considered, however, due to the current carriageway alignment of Ardley Road, B430 Station Road and also Fewcott Green (the side road to the west), a single standard roundabout would not be achievable within highway land. This is due to the arm spacing of the southern and eastern arms: proximity of the western arm to Fewcott Green and the required SSD on the eastern arm. Due to the limited availability of highway land, the roundabout couldn't be moved south without reducing the size, this is also likely to introduce a similar issue with arm spacing on the northern arms. Signalised Crossroad: A signalised crossroad layout has been considered, however, it is noted that the capacity of the junction will be greater if a staggered crossroad arrangement can be provided because the junction will be able to operate as two separate T-junctions and less stages will be required.

Signalised Staggered Crossroad: For the reasons set out above it is considered that a signalised staggered crossroad arrangement is likely to provide the most achievable highway

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430 Ardley Road Junction Modelling ISSUE.docx

Item			Su	bject						
	improvement option i purposes are set out		ion. More o	details on the	arrangemer	it considered	for testing			
	 The highway improvement layout for the B430 Station Road / Ardley Road junction is illustrated in Drawing 39304/5501/SK50 Rev A. The drawing shows a signalised staggered crossroad arrangement. Give-way left turn slips have been included on the B430 in order to increase the capacity of the junction and ensure that queuing at the internal stop lines is kept to a minimum. It should be noted that due to existing land ownership constraints the Stopping Sight Distance (SSD) to the nearside primary signal head on the Ardley Road east arm will be below standard, with 172m achievable rather than the standard 215m for 60mph. Whilst this represents a reduction in standard it is no worse than the SSD to the give way line under current conditions and the signalisation will provide additional safety benefits. The 60mph limit also reduces to 40mph approximately 70m from the junction which will naturally slow vehicles on their approach to the junction. The proposed mitigation has been modelled using TRANSYT as set out below. A summary of the capacity analysis results for the mitigation in the DS1 scenario is set out within Table 5. The full model outputs are provided at Appendix B. 									
	Table 5: B430 Station Ro	l / Ardley I		-	Something '	1 Modelling	Results			
	Link		AM Peak			PM Peak				
	LIIK	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)			
	B430 Station Road (N)	74%	16.5	12	37%	4.0	6			
	Ardley Road (E)	68%	3.1	53	59%	4.1	35			
	B430 Station Road (S)	93%	12.6	34	88%	22.4	20			
	Ardley Road (W)	92%	9.0	86	62%	4.3	37			
	 DoS = Degree of Saturation, MMQ = Maximum Mean Queue Table 5 shows that the B430 Station Road / Ardley Road Junction is predicted to operate at capacity in the DS1 scenario in the AM peak with a maximum DoS of 93% on the B430 Station Road south arm. The junction is predicted to operate within capacity in the PM peak with a maximum DoS of 88% on the B430 Station Road (S) arm. As the proposed mitigation is shown to work at or within capacity in the DS1 scenario it is considered that this will represent an operational solution for this location and represents a significant betterment in terms of capacity when compared to the Reference Case scenario when the Ardley Road east arm was predicted to operate with a DoS of 245% in the AM peak hour. 									
5.	Conclusion									
	This note has tested the in Road / Ardley Road juncti the Reference Case scen improvements, have been crossroad arrangement as	on. The ju ario and the considere	nction was e Do Some d for the jur	found to be o thing 1 scena nction in the f	perating sigr irio. On this orm of a sigr	nificantly ove basis highwa nalised stagg	r capacity in ay			

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

ltem	Subject
	The highway improvement layout has been demonstrated to operate at or within capacity in the Do Something 1 scenario and the junction is shown to provide betterment over the Reference Case scenario (without development).
	On this basis, the improvement is considered to address impacts arising from planned and committed growth in the local network for the period to 2031 including the Heyford Park Local Plan Allocation.

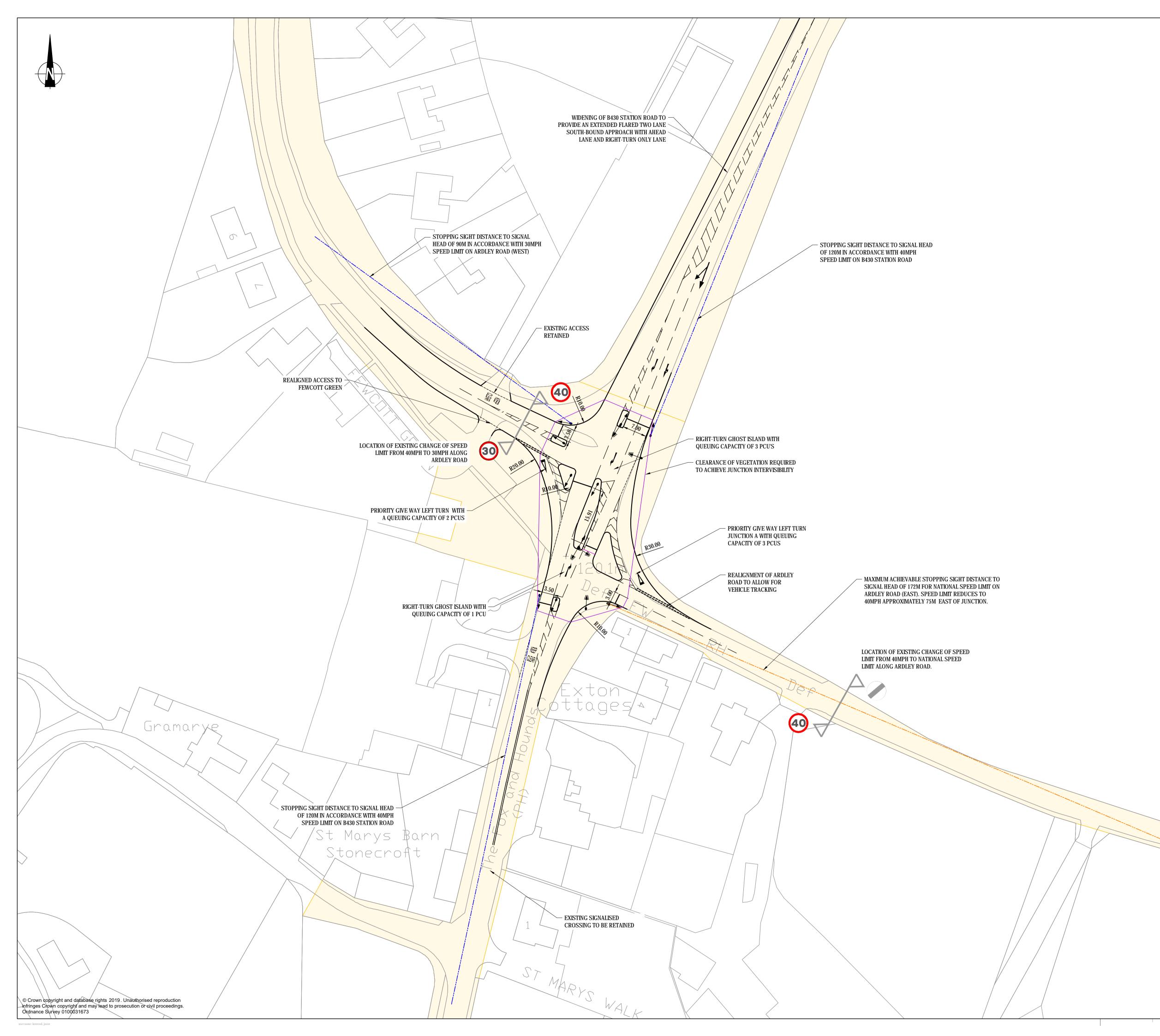
DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)
39304/TN028	-	12.06.19	Phil Rawlins	-	-	Matt Whiston
39304/TN028	A	01.11.19	Phil Rawlins	-	-	Matt Whiston

Peter Brett Associates LLP disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and Peter Brett Associates LLP accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk. © Peter Brett Associates LLP 2019

Peter Brett Associates LLP 10 Queen Square Bristol BS1 4NT

T: +44 (0)117 332 7840 E: bristol@peterbrett.com


J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

DRAWINGS

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

INVESTIC	AYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFI GATIONS RESULTS & EARTHWORKS MODELLING, UTII				
OF LAND	OWNERSHIP; ETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCO				
GUIDAN	CE AND STANDARDS; AYOUT HAS BEEN BASED ON THE APPROPRIATE DES				311
PROPOS					NTS
AND	SE OF THE DRAWING DOES NOT ABSOLVE THE CLIEN				N15;
	SE OF THE DRAWING DOES NOT ABSOLVE THE CLEN OS TO HEALTH & SAFETY AND CDM REGULATIONS;	I FROM THEIR REL	or UNSIBIL		
KEY:	HIGHWAY BOUNDARY INFORMATION RECEIVED FR 09.04.19 AND INTERPRETED BY PBA	OM OXFORD COUN	TY COUNC	CIL ON	
	STOPPING SIGHT DISTANCE TO JUNCTION NEAR-S WITH DMRB FOR RELEVANT SPEED LIMIT ON APPR STOPPING SIGHT DISTANCE (MAXIMUM ACHIEVABI	OACH			
	HEAD WITHIN ADOPTED HIGHWAY LAND JUNCTION INTERVISIBILITY TO DMRB (WORST CAS				
	CROSSROADS ARRANGEMENT)	E SHOWN FOR A S	IAGGERE	D	
•► •►	PRIMARY TRAFFIC SIGNAL HEAD AND POLE SECONDARY TRAFFIC SIGNAL HEAD AND POLE				
A RE	VISED JUNCTION TO INCLUDE GIVEWAY LEFT TU	RNS 31.05.7	19 JHo		
Mark Re	evision	RNS 31.05.1		- Chkd	- Ap
Mark Re SCALING UTILITIES drawing is be present	NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under	utility services, plant of rimplied. Other such rtake their own investi	Drawn or apparatu plant or ap	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis	ANOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under thing sewers, services, plant or apparatus may affect their oper Issue Status	utility services, plant of rimplied. Other such rtake their own investi	Drawn or apparatu plant or ap	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis	NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under ting sewers, services, plant or apparatus may affect their ope	utility services, plant of rimplied. Other such rtake their own investi	Drawn or apparatu plant or ap	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under ting sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK	Utility services, plant of rimplied. Other such rtake their own investiorations.	Drawn or apparatu plant or ap gation when	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under thing sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JU	Date utility services, plant of r implied. Other such rtake their own investi- erations.	Drawn or apparatu plant or ap gation when	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA`	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under ting sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK	Date utility services, plant of r implied. Other such rtake their own investi- erations.	Drawn or apparatu plant or ap gation when	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under titing sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JU OUT OF B430 STATIO DLEY ROAD	Date utility services, plant of r implied. Other such rtake their own investi- erations.	Drawn or apparatu plant or ap gation when	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under thing sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JU YOUT OF B430 STATION DLEY ROAD RCHESTER	Date utility services, plant of r implied. Other such rtake their own investi- erations. UNCTION N ROAD	Drawn or apparatu plant or ap gation when	s shown o paratus m re the pres	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under titing sewers, services, plant or apparatus may affect their ope Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JU OUT OF B430 STATIO DLEY ROAD	Date utility services, plant of r implied. Other such rtake their own investi- erations. UNCTION N ROAD	Drawn prapparatu plant or ap gation when	s shown o paratus m re the pres	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO GR Date of 1st 2	Avision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed of but not shown. The Contractor is therefore advised to underting sewers, services, plant or apparatus may affect their operations were services, plant or apparatus may affect their operating sewers, services, plant or apparatus may affect their operating severs, services, plant or apparatus may affect their operating severs, services, plant or apparatus may affect their operating severs, services, plant or apparatus may affect their operating severs, services, plant or apparatus may affect their operating severage services and services and services and services and services and severage services and services and severage services and	Date utility services, plant of r implied. Other such trake their own investi- erations. UNCTION N ROAD	Drawn or apparatu plant or ap gation when	s shown o paratus m re the pres	on thi hay al sence
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO GR Date of 1st 2: A1 Scale	Avision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, believed to be correct, but no warranty to this is expressed o but not shown. The Contractor is therefore advised to under ting sewers, services, plant or apparatus may affect their oper Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JU OUT OF B430 STATION DLEY ROAD RCHESTER OUP Issue Designed Drawn 4.04.19 P.C P.C Checked Approved 1:500	Date utility services, plant of r implied. Other such trake their own investi- erations. UNCTION N ROAD	Drawn or apparatu plant or ap gation when	s shown o paratus m re the pres	on thi hay al sence

APPENDIX A

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

TRANSYT 15

Version: 15.5.2.7994 © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trisoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 190523 Ardley Crossroads.t15

Path: \\pba.int\BR\\Projects\39304 Heyford Park Tranche 2\Technical\Transport\Junction Assessments\TRANSYT Report generation date: 14/06/2019 12:56:44

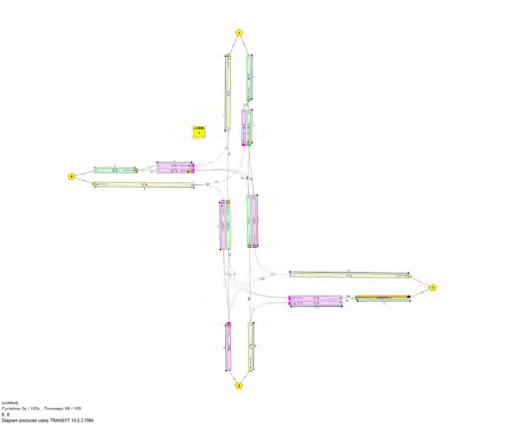
»A1 - 2018 AM : D1 - 2018 AM* : »A2 - 2018 PM : D2 - 2018 PM* : »A3 - 2031 Ref AM : D3 - 2031 Ref AM* : »A4 - 2031 Ref PM : D4 - 2031 Ref PM* : »A7 - 2031 DS1 AM : D7 - 2031 DS1 AM* : »A8 - 2031 DS1 PM : D8 - 2031 DS1 PM* :

File summary

ile description								
File title	(untitled)							
Location								
Site number								
UTCRegion								
Driving side	Left							
Date	14/12/2017							
Version								
Status	(new file)							
Identifier								
Client								
Jobnumber								
Enumerator	PBA\dcollis							
Description								

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red- With- Amber	Display End-Of- Green Amber	
														í –


Units

Cost	Speed	Distance	Fuel economy	Fuel rate	Mass	Traffic units	Traffic units	Flow	Average delay	Total delay	Rate of delay
units	units	units	units	units	units	input	results	units	units	units	units
£	kph	m	mpg	l/h	kg	PCU	PCU	perHour	s	-Hour	

Sorting

Show names instead of IDs	Sorting direction	Sorting type	Ignore prefixes when sorting	Analysis/demand set sorting	Link grouping	Source grouping	Colour Analysis/Demand Sets
	Ascending	Numerical		ID	Normal	Normal	✓

Network Diagrams

A1 - 2018 AM D1 - 2018 AM*

Summary

Data Errors and Warnings

Severity	Area	ltem	Description			
		Advanced				

Run Summary

Analy set us		Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
1	14/06/2019 12:56:15	14/06/2019 12:56:15	08:00	100	18.78	1.32	68.69	13/2	0	0		13/2	13/2	~

Analysis Set Details

Name	Description	Demand set	Include in report	Locked	
2018 AM		D1	~		

Demand Set Details

 Name
 Description
 Composite
 Demand sets
 Start time (HH:mm)
 Locked

 2018 AM
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00
 08:00

Network Options

Network timings

	Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
	100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

 Phase minimum broken penalty (£)
 Phase maximum broken penalty (£)
 Intergreen broken penalty (£)
 Starting Red-with-Amber (s)

 10000.00
 10000.00
 10000.00
 2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient	
Default	35	80	

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	Is signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
	1	(untitled)			18.00							✓	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)			200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				✓	1800		~	Normal	
°	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				~	1800		~	Normal	
10	2	(untitled)			45.00	√	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
40	1	(untitled)			7.50							~	Normal	
13	2	(untitled)			7.50							✓	Normal	
14	1	(untitled)			200.00							~	Normal	
15	1	(untitled)		✓	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
2	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	✓	1945
2	2	1	(untitled)											
2	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	 ✓ 	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
	1	1	(untitled)											
8	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	~	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	✓	1915
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
40	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
•	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
•	1	Flare	100	100	100		0.00		
8	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	744	744
2	1	730	730
2	2	14	14
	1	36	36
3	2	137	137
5	1	173	173
6	1	512	512
7	1	81	81
8	1	76	76
0	2	791	791
10	1	67	67
10	2	476	476
11	1	130	130
12	1	194	194
13	1	51	51
13	2	143	143
14	1	454	454
15	1	842	842

Entry Sources

,			
Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1 2.16		30.00 🗸		Straight	Straight Movement
5	2	1	5/1	3/2	2.16	30.00	\checkmark	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	\checkmark	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	~	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	~	Straight	Straight Movement
Ů	2	1	2/1	8/2	5.40	30.00	\checkmark	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	\checkmark	Straight	Straight Movement
11	1	1	8/1	11/1	24.00	30.00	\checkmark	Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	\checkmark	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00	\checkmark	Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
10	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
•	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
13	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Movement	Destination traffic stream	Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)
		1	10/1	1965	1965	100
14	1	2	10/2	1965	1965	100
		3	11/1	707	707	100

Give Way Data - Movements - Conflicts

Arm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
14		•	44/4		TrafficStream	8/2	100	0.27		0	0
14	1	3	11/1		TrafficStream	8/1	100	0.27		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

			То		
		1	2	3	4
	1	0	21	709	14
From	2	110	0	51	33
	3	366	54	0	34
	4	36	55	82	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	12/1	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	5/1	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	21
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	110
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	709
	4		2	3	12/1, 13/1, 15/1	Normal	51
	5		3	1	14/1, 10/2, 6/1	Normal	366
	6		3	2	14/1, 11/1	Normal	54
1	7		1	4	1/1, 2/2, 7/1	Normal	14
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	33
	9		3	4	14/1, 10/1, 7/1	Normal	34
	10		4	1	5/1, 3/1, 6/1	Normal	36
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	55
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	82

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	38	135	744	1945	100	0.57	0.12	0.34	1.68	0.00	1.68
	2	1	38	140	730	1945	100	0.56	0.11	5.63	1.60	0.00	1.60
	2	2	2	3682	14	588	100	0.07	0.00	0.01	0.00	0.00	0.00
	3	1	5	1714	36	726	100	0.13	0.00	0.04	0.02	0.00	0.02
	3	2	33	170	137	411	100	2.18	0.08	2.77	1.18	0.00	1.18
	5	1	9	912	173	1945	100	0.09	0.00	0.01	0.06	0.00	0.06
	6	1	0	Unrestricted	512	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	81	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	1	10	762	76	728	100	0.29	0.01	0.08	0.09	0.00	0.09
09:00	°	2	41	118	791	1915	100	0.66	0.15	1.86	2.06	0.00	2.06
	10	1	8	1050	67	856	100	0.18	0.00	0.04	0.05	0.00	0.05
	10	2	25	262	476	1915	100	0.31	0.04	0.53	0.58	0.00	0.58
	11	1	0	Unrestricted	130	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	10	779	194	1895	100	0.11	0.01	0.02	0.08	0.00	0.08
	13	1	10	832	51	528	100	0.36	0.01	0.52	0.07	0.00	0.07
	13	2	69	31	143	208	100	18.18	0.72	72.23	10.26	0.00	10.26
	14	1	32	183	454	1430	100	0.59	0.07	0.21	1.05	0.00	1.05
	15	1	0	Unrestricted	842	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	744	744	0		1945	1945	38		135	0.00	100
	2	1	730	730	0		1945	1945	38		140	0.00	100
	_	2	14	14	0		588	588	2		3682	0.00	100
	3	1	36	36	0		726	726	5		1714	0.00	100
	3	2	137	137	0		411	411	33		170	0.00	100
	5	1	173	173	0		1945	1945	9		912	0.00	100
	6	1	512	512	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	81	81	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
08:00-	8	1	76	76	0	ĺ	728	728	10		762	0.00	100
09:00	°	2	791	791	0		1915	1915	41		118	0.00	100
	40	1	67	67	0		856	856	8		1050	0.00	100
	10	2	476	476	0		1915	1915	25		262	0.00	100
	11	1	130	130	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	194	194	0		1895	1895	10		779	0.00	100
	13	1	51	51	0		528	528	10		832	0.00	100
	13	2	143	143	0		208	208	69		31	0.00	100
	14	1	454	454	0		1430	1430	32		183	0.00	100
	15	1	842	842	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.57	0.12	1.68	0.00	0.00	0.00
	2	1	1.44	0.56	0.11	1.60	0.00	0.00	0.00
	2	2	1.44	0.07	0.00	0.00	0.00	0.00	0.00
	3	1	2.16	0.13	0.00	0.02	0.00	0.00	0.00
	3	2	2.16	2.18	0.08	1.18	0.00	0.00	0.00
	5	1	24.00	0.09	0.00	0.06	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
08:00-09:00	8	1	5.40	0.29	0.01	0.09	0.00	0.00	0.00
08:00-09:00	°	2	5.40	0.66	0.15	2.06	0.00	0.00	0.00
	10	1	5.40	0.18	0.00	0.05	0.00	0.00	0.00
	10	2	5.40	0.31	0.04	0.58	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	0.11	0.01	0.08	0.00	0.00	0.00
	13	1	1.00	0.36	0.01	0.07	0.00	0.00	0.00
	13	2	1.00	18.18	0.72	10.26	0.00	0.00	0.00
	14	1	24.00	0.59	0.07	1.05	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.12	34.78	0.34	0.00	0.00	
		1	0.00	0.11	2.00	5.63	0.00	0.00	
	2	2	0.00	0.00	2.00	0.01	0.00	100.00	
	3	1	0.00	0.00	3.00	0.04	0.00	100.00	
	3	2	0.00	0.08	3.00	2.77	0.00	0.00	
	5	1	0.00	0.00	34.78	0.01	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	0.00	
08:00-09:00	8	1	0.00	0.01	7.83	0.08	0.00	0.00	
	°	2	0.00	0.15	7.83	1.86	0.00	0.00	
	40	1	0.00	0.00	7.83	0.04	0.00	0.00	
	10	2	0.00	0.04	7.83	0.53	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.01	34.78	0.02	0.00	0.00	
	13	1	0.00	0.01	1.00	0.52	0.00	100.00	
	13	2	0.00	0.72	1.00	72.23	0.00	0.00	

14	1	0.00	0.07	34.78	0.21	0.00	0.00	
15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.12			1.00	0.00	1.68
	2	1	0.00	0.00	√	0.11			1.00	0.00	1.60
	2	2	0.00	0.00	✓	0.00			1.00	0.00	0.00
	3	1	0.00	0.00	✓	0.00			1.00	0.00	0.02
	3	2	0.00	0.00	✓	0.08			1.00	0.00	1.18
	5	1	0.00	0.00	√	0.00			1.00	0.00	0.06
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
08:00-	8	1	0.00	0.00	✓	0.01			1.00	0.00	0.09
09:00	°	2	0.00	0.00	✓	0.15			1.00	0.00	2.06
	10	1	0.00	0.00	√	0.00			1.00	0.00	0.05
	10	2	0.00	0.00	✓	0.04			1.00	0.00	0.58
	11	1	0.00	0.00	√	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.01			1.00	0.00	0.08
	13	1	0.00	0.00	√	0.01			1.00	0.00	0.07
	13	2	0.00	0.00	✓	0.74			1.00	0.00	10.26
	14	1	0.00	0.00	✓	0.07			1.00	0.00	1.05
	15	1	0.00	0.00	√	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
1	14/06/2019 12:56:15	14/06/2019 12:56:15	08:00	100	18.78	1.32	68.69	13/2	0	0		13/2	13/2	~

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
08:00-09:00	69	31	5651	1800	0.84	18.78	0.00	18.78

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
08:00-09:00	5651	5651	0		69		31	1800

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
08:00-09:00	19.19	0.84	1.32	18.78	0.00	0.00	0.00

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
08:00-09:00	72.23	0.00	300.00

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
08:00-09:00	0.00	0.00	✓	1.00	0.00	0.00	18.78

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	56.3	85.2	50.1
From	2	73.0	0.0	78.0	72.9
	3	54.3	48.6	0.0	54.2
	4	50.4	58.1	87.1	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
1	1	2	21	56.26	21	56.26
2	2	1	110	73.00	110	73.00
3	1	3	709	85.20	709	85.20
4	2	3	51	78.05	51	78.05
5	3	1	366	54.30	366	54.30
6	3	2	54	48.59	54	48.59
7	1	4	14	50.09	14	50.09
8	2	4	33	72.87	33	72.87
9	3	4	34	54.16	34	54.16

10	4	1	36	50.38	36	50.38
11	4	2	55	58.12	55	58.12
12	4	3	82	87.07	82	87.07

Final Prediction Table

Traffic Stream Results

				FLC	ows		PER	FORMANCE		PER	PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		744	1945	100	0.00	38	135	24.57	0.57	0.00	0.12	100	100	0.00	1.68
2	1	(untitled)		730	1945	100	0.00	38	140	2.00	0.56	0.00	0.11	100	100	0.00	1.60
-	2	(untitled)		14	588	100	100.00	2	3682	1.51	0.07	0.00	0.00	100	100	0.00	0.00
3	1	(untitled)		36	726	100	100.00	5	1714	2.29	0.13	0.00	0.00	100	100	0.00	0.02
3	2	(untitled)		137	411	100	0.00	33	170	4.34	2.18	0.00	0.08	100	100	0.00	1.18
5	1	(untitled)		173	1945	100	0.00	9	912	24.09	0.09	0.00	0.00	100	100	0.00	0.06
6	1	(untitled)		512	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		81	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		76	728	100	0.00	10	762	5.69	0.29	0.00	0.01	100	100	0.00	0.09
0	2	(untitled)		791	1915	100	0.00	41	118	6.06	0.66	0.00	0.15	100	100	0.00	2.06
10	1	(untitled)		67	856	100	0.00	8	1050	5.58	0.18	0.00	0.00	100	100	0.00	0.05
10	2	(untitled)		476	1915	100	0.00	25	262	5.71	0.31	0.00	0.04	100	100	0.00	0.58
11	1	(untitled)		130	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		194	1895	100	0.00	10	779	24.11	0.11	0.00	0.01	100	100	0.00	0.08
42	1	(untitled)		51	528	100	100.00	10	832	1.36	0.36	0.00	0.01	100	100	0.00	0.07
13	2	(untitled)		143	208	100	0.00	69	31	19.18	18.18	0.00	0.72	100	100	0.00	10.26
14	1	(untitled)		454	1430	100	0.00	32	183	24.59	0.59	0.00	0.07	100	100	0.00	1.05
15	1	(untitled)		842	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	903.45	31.44	28.73	1.32	18.78	0.00	0.00	18.78
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	903.45	31.44	28.73	1.32	18.78	0.00	0.00	18.78

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0

• P.I. = PERFORMANCE INDEX

A2 - 2018 PM D2 - 2018 PM*

Summary

Data Errors and Warnings

Severity	Area	Item	Description
Info	Optimisation Order	Advanced	Because the optimisation list is blank, no optimisation will occur.

Run Summary

nalysis et used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
2	14/06/2019 12:56:15	14/06/2019 12:56:16	17:00	100	3.73	0.26	32.61	14/1	0	0		14/1	14/1	~

Analysis Set Details

Name	Description	Demand set	Include in report	Locked	
2018 PM		D2	~		

Demand Set Details

 Name
 Description
 Composite
 Demand sets
 Start time (HH:mm)
 Locked

 2018 PM
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00
 17:00

Network Options

Network timings

	Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
	100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

 Phase minimum broken penalty (£)
 Phase maximum broken penalty (£)
 Intergreen broken penalty (£)
 Starting Red-with-Amber (s)

 10000.00
 10000.00
 10000.00
 2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	✓		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
_	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
_	1	(untitled)			18.00							✓	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)			200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				✓	1800		~	Normal	
0	2	(untitled)			45.00	√	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				✓	1800		~	Normal	
10	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
40	1	(untitled)			7.50							×	Normal	
13	2	(untitled)			7.50							~	Normal	
14	1	(untitled)			200.00							~	Normal	
15	1	(untitled)		✓	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
2	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	✓	1945
2	2	1	(untitled)											
2	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	✓	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
	1	1	(untitled)											
8	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	~	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	~	1915
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
40	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
•	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
8	1	Flare	100	100	100		0.00		
•	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	391	391
_	1	314	314
	2	77	77
	1	14	14
3	2	50	50
5	1	64	64
6	1	482	482
7	1	195	195
•	1	66	66
°	2	298	298
40	1	118	118
10	2	468	468
11	1	109	109
12	1	121	121
42	1	37	37
13	2	84	84
14	1	545	545
15	1	335	335

Entry Sources

,			
Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1	2.16	30.00	\checkmark	Straight	Straight Movement
5	2	1	5/1	3/2	2.16	30.00	\checkmark	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	\checkmark	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	\checkmark	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	~	Straight	Straight Movement
Ů	2	1	2/1	8/2	5.40	30.00	\checkmark	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	\checkmark	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	\checkmark	Straight	Straight Movement
11	1	1	8/1	11/1	24.00	30.00	\checkmark	Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	\checkmark	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00 ✓		Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
10	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
•	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
12	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
•		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Stream Movement Destination traffic stream 1 10/1		Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)	
		1	10/1	1965	1965	100	
14	1	2	10/2	1965	1965	100	
		3	11/1	707	707	100	

Give Way Data - Movements - Conflicts

Arm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
	1	•	44/4		TrafficStream	8/2	100	0.27		0	0
14		3	11/1		TrafficStream	8/1	100	0.27		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

			То		
		1	2	3	4
	1	0	42	272	77
From	2	38	0	37	46
	3	430	43	0	72
	4	14	24	26	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	12/1	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	5/1	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	42
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	38
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	272
	4		2	3	12/1, 13/1, 15/1	Normal	37
	5		3	1	14/1, 10/2, 6/1	Normal	430
	6		3	2	14/1, 11/1	Normal	43
1	7		1	4	1/1, 2/2, 7/1	Normal	77
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	46
	9		3	4	14/1, 10/1, 7/1	Normal	72
	10		4	1	5/1, 3/1, 6/1	Normal	14
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	24
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	26

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	20	348	391	1945	100	0.23	0.03	0.07	0.36	0.00	0.36
	_	1	16	457	314	1945	100	0.18	0.02	0.78	0.22	0.00	0.22
	2	2	13	573	77	576	100	0.48	0.01	0.52	0.15	0.00	0.15
	3	1	2	4582	14	728	100	0.05	0.00	0.01	0.00	0.00	0.00
	3	2	11	746	50	470	100	0.46	0.01	0.21	0.09	0.00	0.09
	5	1	3	2635	64	1945	100	0.03	0.00	0.00	0.01	0.00	0.01
	6	1	0	Unrestricted	482	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	195	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	1	9	896	66	731	100	0.24	0.00	0.06	0.06	0.00	0.06
18:00	°	2	16	478	298	1915	100	0.17	0.01	0.18	0.20	0.00	0.20
	4.0	1	14	539	118	838	100	0.35	0.01	0.15	0.16	0.00	0.16
	10	2	24	268	468	1915	100	0.30	0.04	0.50	0.56	0.00	0.56
	11	1	0	Unrestricted	109	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	6	1310	121	1895	100	0.06	0.00	0.01	0.03	0.00	0.03
	13	1	6	1530	37	670	100	0.16	0.00	0.16	0.02	0.00	0.02
	13	2	27	228	84	306	100	2.22	0.05	5.17	0.73	0.00	0.73
	14	1	33	176	545	1671	100	0.52	0.08	0.23	1.12	0.00	1.12
	15	1	0	Unrestricted	335	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	391	391	0		1945	1945	20		348	0.00	100
	2	1	314	314	0		1945	1945	16		457	0.00	100
	_	2	77	77	0		576	576	13		573	0.00	100
	3	1	14	14	0		728	728	2		4582	0.00	100
	3	2	50	50	0		470	470	11		746	0.00	100
	5	1	64	64	0		1945	1945	3		2635	0.00	100
	6	1	482	482	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	195	195	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
17:00-	8	1	66	66	0	ĺ	731	731	9		896	0.00	100
18:00	°	2	298	298	0		1915	1915	16		478	0.00	100
	40	1	118	118	0		838	838	14		539	0.00	100
	10	2	468	468	0		1915	1915	24		268	0.00	100
	11	1	109	109	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	121	121	0		1895	1895	6		1310	0.00	100
	13	1	37	37	0		670	670	6		1530	0.00	100
	13	2	84	84	0		306	306	27		228	0.00	100
	14	1	545	545	0		1671	1671	33		176	0.00	100
	15	1	335	335	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.23	0.03	0.36	0.00	0.00	0.00
	2	1	1.44	0.18	0.02	0.22	0.00	0.00	0.00
	_	2	1.44	0.48	0.01	0.15	0.00	0.00	0.00
	3	1	2.16	0.05	0.00	0.00	0.00	0.00	0.00
	3	2	2.16	0.46	0.01	0.09	0.00	0.00	0.00
	5	1	24.00	0.03	0.00	0.01	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	1	5.40	0.24	0.00	0.06	0.00	0.00	0.00
17:00-16:00	°	2	5.40	0.17	0.01	0.20	0.00	0.00	0.00
	10	1	5.40	0.35	0.01	0.16	0.00	0.00	0.00
	10	2	5.40	0.30	0.04	0.56	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	0.06	0.00	0.03	0.00	0.00	0.00
	13	1	1.00	0.16	0.00	0.02	0.00	0.00	0.00
	13	2	1.00	2.22	0.05	0.73	0.00	0.00	0.00
	14	1	24.00	0.52	0.08	1.12	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.03	34.78	0.07	0.00	0.00	
		1	0.00	0.02	2.00	0.78	0.00	0.00	
	2	2	0.00	0.01	2.00	0.52	0.00	0.00	
	3	1	0.00	0.00	3.00	0.01	0.00	100.00	
	3	2	0.00	0.01	3.00	0.21	0.00	100.00	
	5	1	0.00	0.00	34.78	0.00	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	0.00	
17:00-18:00		1	0.00	0.00	7.83	0.06	0.00	0.00	
	°	2	0.00	0.01	7.83	0.18	0.00	0.00	
	40	1	0.00	0.01	7.83	0.15	0.00	0.00	
	10	2	0.00	0.04	7.83	0.50	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.00	34.78	0.01	0.00	0.00	
	13	1	0.00	0.00	1.00	0.16	0.00	100.00	
	13	2	0.00	0.05	1.00	5.17	0.00	0.00	

14	1	0.00	0.08	34.78	0.23	0.00	0.00	
15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.03			1.00	0.00	0.36
	2	1	0.00	0.00	✓	0.02			1.00	0.00	0.22
	2	2	0.00	0.00	✓	0.01			1.00	0.00	0.15
	3	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	3	2	0.00	0.00	✓	0.01			1.00	0.00	0.09
	5	1	0.00	0.00	√	0.00			1.00	0.00	0.01
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
17:00-	8	1	0.00	0.00	✓	0.00			1.00	0.00	0.06
18:00	°	2	0.00	0.00	✓	0.01			1.00	0.00	0.20
	10	1	0.00	0.00	√	0.01			1.00	0.00	0.16
	10	2	0.00	0.00	✓	0.04			1.00	0.00	0.56
	11	1	0.00	0.00	√	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.00			1.00	0.00	0.03
	13	1	0.00	0.00	√	0.00			1.00	0.00	0.02
	13	2	0.00	0.00	✓	0.05			1.00	0.00	0.73
	14	1	0.00	0.00	~	0.08			1.00	0.00	1.12
	15	1	0.00	0.00	√	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
2	14/06/2019 12:56:15	14/06/2019 12:56:16	17:00	100	3.73	0.26	32.61	14/1	0	0		14/1	14/1	~

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
17:00-18:00	33	176	3768	1800	0.25	3.73	0.00	3.73

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
17:00-18:00	3768	3768	0		33		176	1800

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
17:00-18:00	18.40	0.25	0.26	3.73	0.00	0.00	0.00

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
17:00-18:00	5.17	0.00	300.00

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	3.73

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	55.5	84.0	50.2
From	2	57.0	0.0	77.8	57.0
	3	54.2	48.5	0.0	54.3
	4	50.2	56.3	84.8	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
1	1	2	42	55.50	42	55.50
2	2	1	38	56.98	38	56.98
3	1	3	272	84.00	272	84.00
4	2	3	37	77.80	37	77.80
5	3	1	430	54.22	430	54.22
6	3	2	43	48.52	43	48.52
7	1	4	77	50.15	77	50.15
8	2	4	46	57.03	46	57.03
9	3	4	72	54.27	72	54.27

10	4	1	14	50.24	14	50.24
11	4	2	24	56.29	24	56.29
12	4	3	26	84.80	26	84.80

Final Prediction Table

Traffic Stream Results

				FLC	ows		PER	FORMANCE		PER	PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		391	1945	100	0.00	20	348	24.23	0.23	0.00	0.03	100	100	0.00	0.36
2	1	(untitled)		314	1945	100	0.00	16	457	1.62	0.18	0.00	0.02	100	100	0.00	0.22
2	2	(untitled)		77	576	100	0.00	13	573	1.92	0.48	0.00	0.01	100	100	0.00	0.15
3	1	(untitled)		14	728	100	100.00	2	4582	2.21	0.05	0.00	0.00	100	100	0.00	0.00
3	2	(untitled)		50	470	100	100.00	11	746	2.62	0.46	0.00	0.01	100	100	0.00	0.09
5	1	(untitled)		64	1945	100	0.00	3	2635	24.03	0.03	0.00	0.00	100	100	0.00	0.01
6	1	(untitled)		482	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		195	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		66	731	100	0.00	9	896	5.64	0.24	0.00	0.00	100	100	0.00	0.06
0	2	(untitled)		298	1915	100	0.00	16	478	5.57	0.17	0.00	0.01	100	100	0.00	0.20
10	1	(untitled)		118	838	100	0.00	14	539	5.75	0.35	0.00	0.01	100	100	0.00	0.16
10	2	(untitled)		468	1915	100	0.00	24	268	5.70	0.30	0.00	0.04	100	100	0.00	0.56
11	1	(untitled)		109	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		121	1895	100	0.00	6	1310	24.06	0.06	0.00	0.00	100	100	0.00	0.03
42	1	(untitled)		37	670	100	100.00	6	1530	1.16	0.16	0.00	0.00	100	100	0.00	0.02
13	2	(untitled)		84	306	100	0.00	27	228	3.22	2.22	0.00	0.05	100	100	0.00	0.73
14	1	(untitled)		545	1671	100	0.00	33	176	24.52	0.52	0.00	0.08	100	100	0.00	1.12
15	1	(untitled)		335	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	577.68	19.52	29.59	0.26	3.73	0.00	0.00	3.73
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	577.68	19.52	29.59	0.26	3.73	0.00	0.00	3.73

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0

• P.I. = PERFORMANCE INDEX

A3 - 2031 Ref AM D3 - 2031 Ref AM*

Summary

Data Errors and Warnings

Severity	Area	Area Item Description				
Info	Optimisation Order	Advanced	Because the optimisation list is blank, no optimisation will occur.			

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
3	14/06/2019 12:56:16	14/06/2019 12:56:17	08:00	100	864.61	60.41	245.31	12/1	2	11		12/1	12/1	

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 Ref AM		D3	✓	

Demand Set Details

Na	ame	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031	Ref AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

 Phase minimum broken penalty (£)
 Phase maximum broken penalty (£)
 Intergreen broken penalty (£)
 Starting Red-with-Amber (s)

 10000.00
 10000.00
 10000.00
 2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	✓		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion typ	e Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

Name		Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient		
Bus	1.00	Default	0.94	30	85		

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
_	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
_	1	(untitled)			18.00							✓	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)			200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				\checkmark	1800		~	Normal	
0	2	(untitled)			45.00	√	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				✓	1800		✓	Normal	
10	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
42	1	(untitled)			7.50							✓	Normal	
13	2	(untitled)			7.50							✓	Normal	
14	1	(untitled)			200.00							✓	Normal	
15	1	(untitled)		1	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	1	1	(untitled)		~	N/A	N/A	0	3.30	~	0	99999.00	×	1945
2	2	1	(untitled)											
3	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
•	1	1	(untitled)											
8	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	✓	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	1	1915
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
40	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
8	1	Flare	100	100	100		0.00		
°	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	1080	1080
2	1	1062	1062
2	2	18	18
3	1	38	38
3	2	119	119
5	1	157	157
6	1	790	790
7	1	67	67
8	1	272	272
0	2	909	909
10	1	49	49
10	2	752	752
11	1	375	375
12	1	186	186
13	1	58	58
13	2	128	128
14	1	776	776
15	1	967	967

Entry Sources

,			
Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1	2.16	30.00	\checkmark	Straight	Straight Movement
5	2	1	5/1	3/2	2.16	30.00	\checkmark	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	\checkmark	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	\checkmark	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	~	Straight	Straight Movement
Ů	2	1	2/1	8/2	5.40	30.00	\checkmark	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	\checkmark	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	\checkmark	Straight	Straight Movement
11	1	1	8/1	11/1	24.00	30.00	\checkmark	Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	\checkmark	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00	\checkmark	Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
10	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
•	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
13	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Movement	Destination traffic stream	Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)
		1	10/1	1965	1965	100
14	1	2	10/2	1965	1965	100
		3	11/1	707	707	100

Give Way Data - Movements - Conflicts

Arm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
14		•	44/4		TrafficStream	8/2	100	0.27		0	0
14	1	3	11/1		TrafficStream	8/1	100	0.27		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

	То									
		1	2	3	4					
	1	0	200	862	18					
From	2	114	0	58	14					
	3	638	103	0	35					
	4	38	72	47	0					

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	12/1	11/1	#00FF00
'	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	5/1	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	200
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	114
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	862
	4		2	3	12/1, 13/1, 15/1	Normal	58
	5		3	1	14/1, 10/2, 6/1	Normal	638
	6		3	2	14/1, 11/1	Normal	103
1	7		1	4	1/1, 2/2, 7/1	Normal	18
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	14
	9		3	4	14/1, 10/1, 7/1	Normal	35
	10		4	1	5/1, 3/1, 6/1	Normal	38
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	72
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	47

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	56	62	1080	1945	100	1.15	0.35	0.99	4.91	0.00	4.91
	2	1	55	65	1062	1945	100	1.11	0.33	16.39	4.65	0.00	4.65
	2	2	3	2584	18	537	100	0.12	0.00	0.03	0.01	0.00	0.01
	3	1	6	1452	38	655	100	0.17	0.00	0.06	0.03	0.00	0.03
	3	2	44	106	119	272	100	5.09	0.17	5.61	2.39	0.00	2.39
	5	1	8	1015	157	1945	100	0.08	0.00	0.01	0.05	0.00	0.05
	6	1	0	Unrestricted	722	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	59	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	1	38	136	272	714	100	1.55	0.12	1.50	1.66	0.00	1.66
09:00	°	2	47	90	909	1915	100	0.85	0.21	2.74	3.04	0.00	3.04
	10	1	5	1791	41	855	100	0.11	0.00	0.02	0.02	0.00	0.02
	10	2	36	152	684	1915	100	0.52	0.10	1.27	1.41	0.00	1.41
	11	1	0	Unrestricted	375	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	245	-63	186	1895	100	1073.07	57.17	164.37	787.27	5.60	792.87
	13	1	5	1781	24	494	100	0.18	0.00	0.12	0.02	0.00	0.02
	13	2	100	-10	52	52	100	221.88	3.22	322.41	45.67	1.25	46.92
	14	1	61	48	776	1278	100	2.17	0.47	1.34	6.63	0.00	6.63
	15	1	0	Unrestricted	933	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1080	1080	0		1945	1945	56		62	0.00	100
	2	1	1062	1062	0		1945	1945	55		65	0.00	100
	2 I	2	18	18	0		537	537	3		2584	0.00	100
	3	1	38	38	0		655	655	6		1452	0.00	100
	3	2	119	119	0		272	272	44		106	0.00	100
	5	1	157	157	0		1945	1945	8		1015	0.00	100
	6	1	722	722	68	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	59	59	8	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
08:00-	8	1	272	272	0		714	714	38	İ	136	0.00	100
09:00	8	2	909	909	0		1915	1915	47		90	0.00	100
	10	1	41	41	8	✓	855	855	5		1791	0.00	100
	10	2	684	684	68	✓	1915	1915	36		152	0.00	100
	11	1	375	375	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	186	76	0		1895	76	245	~	-63	0.00	100
	40	1	24	24	34	✓	494	494	5		1781	0.61	100
	13	2	52	52	76	✓	52	52	100	~	-10	0.61	100
	14	1	776	776	0		1278	1278	61		48	0.00	100
	15	1	933	933	34	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	1.15	0.35	4.91	0.00	0.00	0.00
	2	1	1.44	1.11	0.33	4.65	0.00	0.00	0.00
	2	2	1.44	0.12	0.00	0.01	0.00	0.00	0.00
	3	1	2.16	0.17	0.00	0.03	0.00	0.00	0.00
	3	2	2.16	5.09	0.17	2.39	0.00	0.00	0.00
	5	1	24.00	0.08	0.00	0.05	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
08:00-09:00	8	1	5.40	1.55	0.12	1.66	0.00	0.00	0.00
08.00-09.00	0	2	5.40	0.85	0.21	3.04	0.00	0.00	0.00
	10	1	5.40	0.11	0.00	0.02	0.00	0.00	0.00
	10	2	5.40	0.52	0.10	1.41	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	1073.07	55.44	787.27	588.81	446.46	5.60
	13	1	1.00	0.18	0.00	0.02	0.00	0.00	0.00
	13	2	1.00	221.88	3.22	45.67	236.45	123.03	1.25
	14	1	24.00	2.17	0.47	6.63	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
oeginent	1	1	0.00	0.35	34.78	0.99	0.00	0.00	biocking
		1	0.00	0.33	2.00	16.39	0.00	0.00	
	2	2	0.00	0.00	2.00	0.03	0.00	100.00	
	3	1	0.00	0.00	3.00	0.06	0.00	100.00	
	3	2	0.00	0.17	3.00	5.61	0.00	0.00	
	5	1	0.00	0.00	34.78	0.01	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
08:00-09:00	7	1	0.00	0.00	34.78	0.00	0.00	100.00	
	8	1	0.00	0.12	7.83	1.50	0.00	0.00	
	•	2	0.00	0.21	7.83	2.74	0.00	0.00	
	10	1	0.00	0.00	7.83	0.02	0.00	100.00	
	10	2	0.00	0.10	7.83	1.27	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	57.17	34.78	164.37	0.00	100.00	
		1	0.00	0.00	1.00	0.12	0.00	100.00	

13	2	0.00	3.22	1.00	322.41	0.00	12.00	
14	1	0.00	0.47	34.78	1.34	0.00	0.00	
15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.35			1.00	0.00	4.91
	2	1	0.00	0.00	~	0.33			1.00	0.00	4.65
	2	2	0.00	0.00	✓	0.00			1.00	0.00	0.01
	3	1	0.00	0.00	~	0.00			1.00	0.00	0.03
	3	2	0.00	0.00	✓	0.17			1.00	0.00	2.39
	5	1	0.00	0.00	✓	0.00			1.00	0.00	0.05
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
08:00-		1	0.00	0.00	✓	0.12			1.00	0.00	1.66
09:00	8	2	0.00	0.00	✓	0.21			1.00	0.00	3.04
		1	0.00	0.00	✓	0.00			1.00	0.00	0.02
	10	2	0.00	0.00	✓	0.10			1.00	0.00	1.41
	11	1	0.00	0.00	√	0.00			1.00	0.00	0.00
	12	1	0.00	0.00		112.26			1.00	0.00	792.87
	42	1	0.00	0.00		0.00			1.00	0.00	0.02
	13	2	0.00	0.00		4.74			1.00	0.00	46.92
	14	1	0.00	0.00	√	0.47			1.00	0.00	6.63
	15	1	0.00	0.00		0.00			1.00	0.00	0.00

Network Results

Run Summary

nalysis et used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
3	14/06/2019 12:56:16	14/06/2019 12:56:17	08:00	100	864.61	60.41	245.31	12/1	2	11		12/1	12/1	

Network Results: Vehicle summary

Time	Degree of	Practical reserve	Calculated flow	Actual green (s	Mean Delay per	Weighted cost of	Weighted cost of	Performance Index (£ per hr)
Segment	saturation (%)	capacity (%)	entering (PCU/hr)	(per cycle))	Veh (s)	delay (£ per hr)	stops (£ per hr)	
08:00-09:00	245	-63	7507	1800	28.97	857.76	6.85	864.61

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))	
08:00-09:00	7507	7396	296	✓	245	✓	-63	1800	

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
08:00-09:00	18.89	28.97	60.41	857.76	16.23	569.49	6.85

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
08:00-09:00	322.41	0.00	612.00

Network Results: Advanced

	Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
ſ	08:00-09:00	0.00	0.00		1.00	0.00	0.00	864.61

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

		То							
		1	2	3	4				
	1	0.0	58.7	86.5	50.7				
From	2	1349.9	0.0	1150.8	1349.5				
	3	56.1	50.2	0.0	55.7				
	4	50.4	62.3	90.2	0.0				

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
1	1	2	200	58.65	200	58.65
2	2	1	114	1349.87	114	1349.87
3	1	3	862	86.53	862	86.53
4	2	3	58	1150.83	58	1150.83
5	3	1	638	56.09	638	56.09
6	3	2	103	50.17	103	50.17
7	1	4	18	50.71	18	50.71
8	2	4	14	1349.45	14	1349.45

	3	4	35	55.67	35	55.67
1	0 4	1	38	50.41	38	50.41
1	1 4	2	72	62.28	72	62.28
1	2 4	3	47	90.15	47	90.15

Final Prediction Table

Traffic Stream Results

				FLC	ows		PER	FORMANCE		PE	R PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		1080	1945	100	0.00	56	62	25.15	1.15	0.00	0.35	100	100	0.00	4.91
2	1	(untitled)		1062	1945	100	0.00	55	65	2.55	1.11	0.00	0.33	100	100	0.00	4.65
2	2	(untitled)		18	537	100	100.00	3	2584	1.56	0.12	0.00	0.00	100	100	0.00	0.01
3	1	(untitled)		38	655	100	100.00	6	1452	2.33	0.17	0.00	0.00	100	100	0.00	0.03
3	2	(untitled)		119	272	100	0.00	44	106	7.25	5.09	0.00	0.17	100	100	0.00	2.39
5	1	(untitled)		157	1945	100	0.00	8	1015	24.08	0.08	0.00	0.00	100	100	0.00	0.05
6	1	(untitled)		722	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		59	Unrestricted	100	100.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		272	714	100	0.00	38	136	6.95	1.55	0.00	0.12	100	100	0.00	1.66
•	2	(untitled)		909	1915	100	0.00	47	90	6.25	0.85	0.00	0.21	100	100	0.00	3.04
10	1	(untitled)		41	855	100	100.00	5	1791	5.51	0.11	0.00	0.00	100	100	0.00	0.02
10	2	(untitled)		684	1915	100	0.00	36	152	5.92	0.52	0.00	0.10	100	100	0.00	1.41
11	1	(untitled)		375	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		186 <	1895	100	100.00	245	-63	1097.07	1073.07	588.81	57.17 +	100	100	0.00	792.87
13	1	(untitled)		24	494	100	100.00	5	1781	1.18	0.18	0.00	0.00	100	100	0.00	0.02
13	2	(untitled)		52 <	52	100	12.00	100	-10	222.88	221.88	236.45	3.22 +	100	100	0.00	46.92
14	1	(untitled)		776	1278	100	0.00	61	48	26.17	2.17	0.00	0.47	100	100	0.00	6.63
15	1	(untitled)		933	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1181.74	99.80	11.84	60.41	857.76	6.85	0.00	864.61
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1181.74	99.80	11.84	60.41	857.76	6.85	0.00	864.61

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

Homo Greatti - Normali, bus or Tram Stop or Delay Path w
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A4 - 2031 Ref PM D4 - 2031 Ref PM*

Summary

Data Errors and Warnings

Severity	•		Description
Info	Optimisation Order	Advanced	Because the optimisation list is blank, no optimisation will occur.

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
4	14/06/2019 12:56:17	14/06/2019 12:56:17	17:00	100	22.21	1.56	75.31	13/2	0	0		13/2	13/2	~

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 Ref PM		D4	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	
2031 Ref PM				17:00		

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

 Phase minimum broken penalty (£)
 Phase maximum broken penalty (£)
 Intergreen broken penalty (£)
 Starting Red-with-Amber (s)

 10000.00
 10000.00
 10000.00
 2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion typ	e Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
_	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
_	1	(untitled)			18.00							✓	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)			200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				\checkmark	1800		~	Normal	
0	2	(untitled)			45.00	√	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				✓	1800		✓	Normal	
10	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
42	1	(untitled)			7.50							✓	Normal	
13	2	(untitled)			7.50							✓	Normal	
14	1	(untitled)			200.00							✓	Normal	
15	1	(untitled)		1	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	2	1	(untitled)											
3	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
•	1	1	(untitled)											
8	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	✓	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	1	1915
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
40	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
•	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
8	1	Flare	100	100	100		0.00		
•	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	~	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

 Arm
 Traffic Stream
 Dispersion type for Normal Traffic

 (ALL)
 (ALL)
 NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	583	583
2	1	559	559
2 ×	2	24	24
3	1	20	20
3	2	128	128
5	1	148	148
6	1	597	597
7	1	195	195
8	1	90	90
°	2	597	597
10	1	171	171
10	2	577	577
11	1	127	127
12	1	213	213
13	1	72	72
13	2	141	141
14	1	644	644
15	1	669	669

Entry Sources

,			
Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1	2.16	30.00	\checkmark	Straight	Straight Movement
5	2	1	5/1	3/2	2.16	30.00	\checkmark	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	\checkmark	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	~	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	~	Straight	Straight Movement
Ů	2	1	2/1	8/2	5.40	30.00	\checkmark	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	\checkmark	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	\checkmark	Straight	Straight Movement
11	1	1	8/1	11/1	24.00	30.00		Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	\checkmark	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00	\checkmark	Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
10	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
•	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
13	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Movement	Destination traffic stream	Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)
		1	10/1	1965	1965	100
14	1	2	10/2	1965	1965	100
		3	11/1	707	707	100

Give Way Data - Movements - Conflicts

Arm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration	
			2 44/4	44/4		TrafficStream	8/2	100	0.27		0	0
14	14 1 3	3 11/1		TrafficStream	8/1	100	0.27		0	0		

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

		То								
		1	2	3	4					
	1	0	55	504	24					
From	2	91	0	72	50					
	3	486	37	0	121					
	4	20	35	93	0					

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour	
	1	(untitled)	1/1	6/1	#0000FF	
1	2	(untitled)	12/1	11/1	#00FF00	
'	3	(untitled)	14/1	15/1	#FFFF00	
	4	(untitled)	5/1	7/1	#FFFF00	

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	55
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	91
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	504
	4		2	3	12/1, 13/1, 15/1	Normal	72
	5		3	1	14/1, 10/2, 6/1	Normal	486
	6		3	2	14/1, 11/1	Normal	37
1	7		1	4	1/1, 2/2, 7/1	Normal	24
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	50
	9		3	4	14/1, 10/1, 7/1	Normal	121
	10		4	1	5/1, 3/1, 6/1	Normal	20
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	35
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	93

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	30	200	583	1945	100	0.40	0.06	0.18	0.91	0.00	0.91
	_	1	29	213	559	1945	100	0.37	0.06	2.90	0.82	0.00	0.82
	2	2	5	1889	24	530	100	0.16	0.00	0.05	0.02	0.00	0.02
	3	1	3	3012	20	692	100	0.08	0.00	0.01	0.01	0.00	0.01
	3	2	31	187	128	408	100	2.01	0.07	2.38	1.01	0.00	1.01
	5	1	8	1083	148	1945	100	0.08	0.00	0.01	0.04	0.00	0.04
	6	1	0	Unrestricted	597	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	195	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	1	12	632	90	732	100	0.34	0.01	0.11	0.12	0.00	0.12
18:00	°	2	31	189	597	1915	100	0.43	0.07	0.90	1.00	0.00	1.00
	4.0	1	20	349	171	853	100	0.53	0.03	0.32	0.36	0.00	0.36
	10	2	30	199	577	1915	100	0.41	0.06	0.83	0.92	0.00	0.92
	11	1	0	Unrestricted	127	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	11	701	213	1895	100	0.12	0.01	0.02	0.10	0.00	0.10
	13	1	12	630	72	584	100	0.43	0.01	0.87	0.12	0.00	0.12
	13	2	75	20	141	187	100	27.19	1.07	106.50	15.12	0.00	15.12
	14	1	38	137	644	1696	100	0.65	0.12	0.33	1.65	0.00	1.65
	15	1	0	Unrestricted	669	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	583	583	0		1945	1945	30		200	0.00	100
	2	1	559	559	0		1945	1945	29		213	0.00	100
	_	2	24	24	0		530	530	5		1889	0.00	100
	3	1	20	20	0		692	692	3		3012	0.00	100
	3	2	128	128	0		408	408	31		187	0.00	100
	5	1	148	148	0		1945	1945	8		1083	0.00	100
	6	1	597	597	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	195	195	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
17:00-	8	1	90	90	0	ĺ	732	732	12		632	0.00	100
18:00	°	2	597	597	0		1915	1915	31		189	0.00	100
	40	1	171	171	0		853	853	20		349	0.00	100
	10	2	577	577	0		1915	1915	30		199	0.00	100
	11	1	127	127	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	213	213	0		1895	1895	11		701	0.00	100
	13	1	72	72	0		584	584	12		630	0.00	100
	13	2	141	141	0		187	187	75		20	0.00	100
	14	1	644	644	0	İ	1696	1696	38		137	0.00	100
	15	1	669	669	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.40	0.06	0.91	0.00	0.00	0.00
	2	1	1.44	0.37	0.06	0.82	0.00	0.00	0.00
	_	2	1.44	0.16	0.00	0.02	0.00	0.00	0.00
	3	1	2.16	0.08	0.00	0.01	0.00	0.00	0.00
	3	2	2.16	2.01	0.07	1.01	0.00	0.00	0.00
	5	1	24.00	0.08	0.00	0.04	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	1	5.40	0.34	0.01	0.12	0.00	0.00	0.00
17.00-18.00	o	2	5.40	0.43	0.07	1.00	0.00	0.00	0.00
	10	1	5.40	0.53	0.03	0.36	0.00	0.00	0.00
	10	2	5.40	0.41	0.06	0.92	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	0.12	0.01	0.10	0.00	0.00	0.00
	13	1	1.00	0.43	0.01	0.12	0.00	0.00	0.00
	13	2	1.00	27.19	1.07	15.12	0.00	0.00	0.00
	14	1	24.00	0.65	0.12	1.65	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.06	34.78	0.18	0.00	0.00	
		1	0.00	0.06	2.00	2.90	0.00	0.00	
	2	2	0.00	0.00	2.00	0.05	0.00	100.00	
	3	1	0.00	0.00	3.00	0.01	0.00	100.00	
	3	2	0.00	0.07	3.00	2.38	0.00	0.00	
	5	1	0.00	0.00	34.78	0.01	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	0.00	
17:00-18:00	8	1	0.00	0.01	7.83	0.11	0.00	0.00	
	°	2	0.00	0.07	7.83	0.90	0.00	0.00	
	40	1	0.00	0.03	7.83	0.32	0.00	0.00	
	10	2	0.00	0.06	7.83	0.83	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.01	34.78	0.02	0.00	100.00	
	13	1	0.00	0.01	1.00	0.87	0.00	0.00	
	1 13	2	0.00	1.07	1.00	106.50	0.00	0.00	

14	1	0.00	0.12	34.78	0.33	0.00	0.00	
15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.06			1.00	0.00	0.91
	2	1	0.00	0.00	✓	0.06			1.00	0.00	0.82
	2	2	0.00	0.00	✓	0.00			1.00	0.00	0.02
	3	1	0.00	0.00	✓	0.00			1.00	0.00	0.01
	3	2	0.00	0.00	✓	0.07			1.00	0.00	1.01
	5	1	0.00	0.00	√	0.00			1.00	0.00	0.04
	6	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
17:00-	8	1	0.00	0.00	✓	0.01			1.00	0.00	0.12
18:00	°	2	0.00	0.00	✓	0.07			1.00	0.00	1.00
	10	1	0.00	0.00	√	0.03			1.00	0.00	0.36
	10	2	0.00	0.00	✓	0.06			1.00	0.00	0.92
	11	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.01			1.00	0.00	0.10
	13	1	0.00	0.00	√	0.01			1.00	0.00	0.12
	13	2	0.00	0.00	✓	1.10			1.00	0.00	15.12
	14	1	0.00	0.00	~	0.12			1.00	0.00	1.65
	15	1	0.00	0.00	√	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
4	14/06/2019 12:56:17	14/06/2019 12:56:17	17:00	100	22.21	1.56	75.31	13/2	0	0		13/2	13/2	~

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
17:00-18:00	75	20	5555	1800	1.01	22.21	0.00	22.21

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
17:00-18:00	5555	5555	0		75		20	1800

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
17:00-18:00	18.81	1.01	1.56	22.21	0.00	0.00	0.00

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
17:00-18:00	106.50	0.00	300.00

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	22.21

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	56.0	84.6	50.0
From	2	82.1	0.0	78.1	82.2
	3	54.5	48.6	0.0	54.6
	4	50.3	58.0	86.6	0.0

Path Journey Time

Pa	ath	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
	1	1	2	55	55.95	55	55.95
:	2	2	1	91	82.12	91	82.12
	3	1	3	504	84.61	504	84.61
4	4	2	3	72	78.13	72	78.13
	5	3	1	486	54.45	486	54.45
	6	3	2	37	48.65	37	48.65
	7	1	4	24	50.00	24	50.00
1	B	2	4	50	82.24	50	82.24
1	9	3	4	121	54.58	121	54.58

10	4	1	20	50.31	20	50.31
11	4	2	35	57.99	35	57.99
12	4	3	93	86.64	93	86.64

Final Prediction Table

Traffic Stream Results

			FLO	ows		PER	FORMANCE		PER	PCU		QUEUES	WEIC	GHTS	PENALTIES	P.I.	
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		583	1945	100	0.00	30	200	24.40	0.40	0.00	0.06	100	100	0.00	0.91
2	1	(untitled)		559	1945	100	0.00	29	213	1.81	0.37	0.00	0.06	100	100	0.00	0.82
	2	(untitled)		24	530	100	100.00	5	1889	1.60	0.16	0.00	0.00	100	100	0.00	0.02
3	1	(untitled)		20	692	100	100.00	3	3012	2.24	0.08	0.00	0.00	100	100	0.00	0.01
3	2	(untitled)		128	408	100	0.00	31	187	4.17	2.01	0.00	0.07	100	100	0.00	1.01
5	1	(untitled)		148	1945	100	0.00	8	1083	24.08	0.08	0.00	0.00	100	100	0.00	0.04
6	1	(untitled)		597	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		195	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		90	732	100	0.00	12	632	5.74	0.34	0.00	0.01	100	100	0.00	0.12
°	2	(untitled)		597	1915	100	0.00	31	189	5.83	0.43	0.00	0.07	100	100	0.00	1.00
10	1	(untitled)		171	853	100	0.00	20	349	5.93	0.53	0.00	0.03	100	100	0.00	0.36
10	2	(untitled)		577	1915	100	0.00	30	199	5.81	0.41	0.00	0.06	100	100	0.00	0.92
11	1	(untitled)		127	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		213	1895	100	100.00	11	701	24.12	0.12	0.00	0.01	100	100	0.00	0.10
13	1	(untitled)		72	584	100	0.00	12	630	1.43	0.43	0.00	0.01	100	100	0.00	0.12
13	2	(untitled)		141 <	187	100	0.00	75	20	28.19	27.19	0.00	1.07 +	100	100	0.00	15.12
14	1	(untitled)		644	1696	100	0.00	38	137	24.65	0.65	0.00	0.12	100	100	0.00	1.65
15	1	(untitled)		669	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	870.34	30.58	28.46	1.56	22.21	0.00	0.00	22.21
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	870.34	30.58	28.46	1.56	22.21	0.00	0.00	22.21

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0

• P.I. = PERFORMANCE INDEX

A7 - 2031 DS1 AM D7 - 2031 DS1 AM*

Summary

Data Errors and Warnings

Severity			Description
Info	Optimisation Order	Advanced	Because the optimisation list is blank, no optimisation will occur.

Run Summary

Analysi set use		Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	ltem with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
7	14/06/2019 12:56:19	14/06/2019 12:56:19	08:00	100	674.06	47.16	310.74	12/1	2	11		12/1	12/1	

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 AM		D7	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)
10000.00	10000.00	10000.00	2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion typ	e Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		✓				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
2	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
_	1	(untitled)			18.00							✓	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)		ĺ	200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				~	1800		 ✓ 	Normal	
0	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				~	1800		✓	Normal	
10	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
40	1	(untitled)			7.50							×	Normal	
13	2	(untitled)			7.50							~	Normal	
14	1	(untitled)			200.00			1				✓	Normal	
15	1	(untitled)		✓	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	1	1	(untitled)		~	N/A	N/A	0	3.30	~	0	99999.00	×	1945
2	2	1	(untitled)											
3	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
8	1	1	(untitled)											
•	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	✓	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	1	1915
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
13	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
•	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
8	1	Flare	100	100	100		0.00		
•	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	~	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic				
(ALL)	(ALL)	NetworkDefault				

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)		
1	1	1135	1135		
2	1	1118	1118		
2	2	17	17		
3	1	39	39		
3	2	215	215		
5	1	254	254		
6	1	683	683		
7	1	84	84		
8	1	328	328		
Ů	2	1005	1005		
10	1	67	67		
10	2	644	644		
11	1	479	479		
12	1	121	121		
13	1	10	10		
13	2	111	111		
14	1	751	751		
15	1	1015	1015		

Entry Sources

,			
Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1	2.16	30.00	✓	Straight	Straight Movement
3	2	1	5/1	3/2	2.16	30.00	✓	Straight	Straight Movement
6	1	1	10/2	6/1	24.00 30.00		✓	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	✓	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	✓	Straight	Straight Movement
0	2	1	2/1	8/2	5.40	30.00	✓	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	1	8/1	11/1	24.00 30.00		✓	Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	✓	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00	✓	Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
•	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
13	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Movement	Destination traffic stream	Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)
		1	10/1	1965	1965	100
14	1	2	10/2	1965	1965	100
		3	11/1	707	707	100

Give Way Data - Movements - Conflicts

Arm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
		3 11/1	44/4		TrafficStream	8/2	100	0.27		0	0
14	14 1		11/1		TrafficStream	8/1	100	0.27		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

		То									
		1	2	3	4						
	1	0	139	979	17						
From	2	94	0	10	17						
	3	550	151	0	50						
	4	39	189	26	0						

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	12/1	11/1	#00FF00
'	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	5/1	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	139
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	94
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	979
	4		2	3	12/1, 13/1, 15/1	Normal	10
	5		3	1	14/1, 10/2, 6/1	Normal	550
	6		3	2	14/1, 11/1	Normal	151
1	7		1	4	1/1, 2/2, 7/1	Normal	17
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	17
	9		3	4	14/1, 10/1, 7/1	Normal	50
	10		4	1	5/1, 3/1, 6/1	Normal	39
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	189
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	26

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	58	54	1135	1945	100	1.29	0.41	1.17	5.79	0.00	5.79
	2	1	57	57	1118	1945	100	1.25	0.39	19.38	5.50	0.00	5.50
	2	2	3	2876	17	562	100	0.10	0.00	0.02	0.01	0.00	0.01
	3	1	6	1493	39	690	100	0.16	0.00	0.06	0.02	0.00	0.02
	3	2	73	24	215	295	100	15.65	0.93	31.15	13.27	0.00	13.27
	5	1	13	589	254	1945	100	0.14	0.01	0.03	0.14	0.00	0.14
	6	1	0	Unrestricted	619	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	72	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	1	47	92	328	700	100	2.26	0.21	2.63	2.92	0.00	2.92
09:00	°	2	52	71	1005	1915	100	1.04	0.29	3.70	4.11	0.00	4.11
	10	1	6	1287	55	855	100	0.15	0.00	0.03	0.03	0.00	0.03
	10	2	30	197	580	1915	100	0.41	0.07	0.84	0.93	0.00	0.93
	11	1	0	Unrestricted	479	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	311	-71	121	1895	100	1227.98	42.20	121.33	586.09	3.52	589.60
	13	1	1	12955	3	467	100	0.03	0.00	0.00	0.00	0.00	0.00
	13	2	100	-10	36	36	100	257.31	2.56	255.86	36.24	0.86	37.09
	14	1	74	22	751	1017	100	4.94	1.03	2.96	14.63	0.00	14.63
	15	1	0	Unrestricted	1008	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

	Calculated Calculated Flow Adjusted Calculated Degree of DOS Practica												1
Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1135	1135	0		1945	1945	58		54	0.00	100
	2	1	1118	1118	0		1945	1945	57		57	0.00	100
	2 I	2	17	17	0		562	562	3		2876	0.00	100
	3	1	39	39	0		690	690	6		1493	0.00	100
	3	2	215	215	0		295	295	73		24	0.00	100
	5	1	254	254	0		1945	1945	13		589	0.00	100
	6	1	619	619	64	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	72	72	12	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
08:00-	8	1	328	328	0		700	700	47	Ì	92	0.00	100
09:00	8	2	1005	1005	0		1915	1915	52		71	0.00	100
	40	1	55	55	12	✓	855	855	6		1287	0.00	100
	10	2	580	580	64	✓	1915	1915	30		197	0.00	100
	11	1	479	479	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	121	39	0		1895	39	311	✓	-71	0.00	100
	40	1	3	3	7	✓	467	467	1		12955	0.71	100
	13	2	36	36	75	✓	36	36	100	~	-10	0.71	100
	14	1	751	751	0		1017	1017	74		22	0.00	100
	15	1	1008	1008	7	✓	Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	1.29	0.41	5.79	0.00	0.00	0.00
	2	1	1.44	1.25	0.39	5.50	0.00	0.00	0.00
	2 i	2	1.44	0.10	0.00	0.01	0.00	0.00	0.00
	3	1	2.16	0.16	0.00	0.02	0.00	0.00	0.00
	3	2	2.16	15.65	0.93	13.27	0.00	0.00	0.00
	5	1	24.00	0.14	0.01	0.14	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
08:00-09:00	8	1	5.40	2.26	0.21	2.92	0.00	0.00	0.00
08.00-09.00	°	2	5.40	1.04	0.29	4.11	0.00	0.00	0.00
	10	1	5.40	0.15	0.00	0.03	0.00	0.00	0.00
	10	2	5.40	0.41	0.07	0.93	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	1227.98	41.27	586.09	720.49	280.41	3.52
	13	1	1.00	0.03	0.00	0.00	0.00	0.00	0.00
	13	2	1.00	257.31	2.55	36.24	235.92	84.37	0.86
	14	1	24.00	4.94	1.03	14.63	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.41	34.78	1.17	0.00	0.00	
	2	1	0.00	0.39	2.00	19.38	0.00	0.00	
	2 [2	0.00	0.00	2.00	0.02	0.00	100.00	
	3	1	0.00	0.00	3.00	0.06	0.00	100.00	
	³	2	0.00	0.93	3.00	31.15	0.00	0.00	
	5	1	0.00	0.01	34.78	0.03	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
08:00-09:00	7	1	0.00	0.00	34.78	0.00	0.00	0.00	
	8	1	0.00	0.21	7.83	2.63	0.00	0.00	
	•	2	0.00	0.29	7.83	3.70	0.00	0.00	
	10	1	0.00	0.00	7.83	0.03	0.00	100.00	
	10	2	0.00	0.07	7.83	0.84	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	42.20	34.78	121.33	0.00	100.00	
		1	0.00	0.00	1.00	0.00	0.00	100.00	

	13	2	0.00	2.56	1.00	255.86	0.00	20.00	[
[14	1	0.00	1.03	34.78	2.96	0.00	0.00	
	15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.41			1.00	0.00	5.79
	2	1	0.00	0.00	~	0.39			1.00	0.00	5.50
	2	2	0.00	0.00	✓	0.00			1.00	0.00	0.01
	3	1	0.00	0.00	~	0.00			1.00	0.00	0.02
	3	2	0.00	0.00	✓	0.95			1.00	0.00	13.27
	5	1	0.00	0.00	✓	0.01			1.00	0.00	0.14
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
08:00-		1	0.00	0.00	✓	0.21			1.00	0.00	2.92
09:00	8	2	0.00	0.00	✓	0.29			1.00	0.00	4.11
	4.0	1	0.00	0.00	✓	0.00			1.00	0.00	0.03
	10	2	0.00	0.00	✓	0.07			1.00	0.00	0.93
	11	1	0.00	0.00	√	0.00			1.00	0.00	0.00
	12	1	0.00	0.00		83.24			1.00	0.00	589.60
	13	1	0.00	0.00		0.00			1.00	0.00	0.00
	13	2	0.00	0.00		3.76			1.00	0.00	37.09
	14	1	0.00	0.00	√	1.04			1.00	0.00	14.63
	15	1	0.00	0.00		0.00			1.00	0.00	0.00

Network Results

Run Summary

nalysis et used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
7	14/06/2019 12:56:19	14/06/2019 12:56:19	08:00	100	674.06	47.16	310.74	12/1	2	11		12/1	12/1	

Network Results: Vehicle summary

Time	Degree of	Practical reserve	Calculated flow	Actual green (s	Mean Delay per	Weighted cost of	Weighted cost of	Performance Index (£ per hr)
Segment	saturation (%)	capacity (%)	entering (PCU/hr)	(per cycle))	Veh (s)	delay (£ per hr)	stops (£ per hr)	
08:00-09:00	311	-71	7837	1800	21.66	669.69	4.37	674.06

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))	
08:00-09:00	7837	7755	239	✓	311	✓	-71	1800	

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
08:00-09:00	18.91	21.66	47.16	669.69	12.20	364.79	4.37

Network Results: Queues and blocking

[Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
ſ	08:00-09:00	255.86	0.00	520.00

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
08:00-09:00	0.00	0.00		1.00	0.00	0.00	674.06

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То)	
		1	2	3	4
	1	0.0	59.6	87.0	50.8
From	2	1540.1	0.0	1305.6	1539.8
	3	58.7	52.9	0.0	58.5
	4	50.5	73.6	101.0	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
1	1	2	139	59.64	139	59.64
2	2	1	94	1540.09	94	1540.09
3	1	3	979	86.99	979	86.99
4	2	3	10	1305.58	10	1305.58
5	3	1	550	58.75	550	58.75
6	3	2	151	52.94	151	52.94
7	1	4	17	50.83	17	50.83
8	2	4	17	1539.83	17	1539.83

9	3	4	50	58.49	50	58.49	
10	4	1	39	50.46	39	50.46	
11	4	2	189	73.61	189	73.61	
12	4	3	26	100.96	26	100.96	

Final Prediction Table

Traffic Stream Results

				FLC	ows		PER	FORMANCE		PE	R PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		1135	1945	100	0.00	58	54	25.29	1.29	0.00	0.41	100	100	0.00	5.79
2	1	(untitled)		1118	1945	100	0.00	57	57	2.69	1.25	0.00	0.39	100	100	0.00	5.50
2	2	(untitled)		17	562	100	100.00	3	2876	1.54	0.10	0.00	0.00	100	100	0.00	0.01
3	1	(untitled)		39	690	100	100.00	6	1493	2.32	0.16	0.00	0.00	100	100	0.00	0.02
3	2	(untitled)		215	295	100	0.00	73	24	17.81	15.65	0.00	0.93	100	100	0.00	13.27
5	1	(untitled)		254	1945	100	0.00	13	589	24.14	0.14	0.00	0.01	100	100	0.00	0.14
6	1	(untitled)		619	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		72	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		328	700	100	0.00	47	92	7.66	2.26	0.00	0.21	100	100	0.00	2.92
•	2	(untitled)		1005	1915	100	0.00	52	71	6.44	1.04	0.00	0.29	100	100	0.00	4.11
10	1	(untitled)		55	855	100	100.00	6	1287	5.55	0.15	0.00	0.00	100	100	0.00	0.03
10	2	(untitled)		580	1915	100	0.00	30	197	5.81	0.41	0.00	0.07	100	100	0.00	0.93
11	1	(untitled)		479	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		121 <	1895	100	100.00	311	-71	1251.98	1227.98	720.49	42.20 +	100	100	0.00	589.60
13	1	(untitled)		3	467	100	100.00	1	12955	1.03	0.03	0.00	0.00	100	100	0.00	0.00
13	2	(untitled)		36 <	36	100	20.00	100	-10	258.31	257.31	235.92	2.56 +	100	100	0.00	37.09
14	1	(untitled)		751	1017	100	0.00	74	22	28.94	4.94	0.00	1.03	100	100	0.00	14.63
15	1	(untitled)		1008	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey Total delay speed (kph) (PCU-hr/hr)		Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1235.17	88.33	13.98	47.16	669.69	4.37	0.00	674.06
Bus	0.00	0.00	0.00 0.00		0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1235.17	88.33	13.98	47.16	669.69	4.37	0.00	674.06

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

Homo Greatti - Normali, bus or Tram Stop or Delay Path w
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A8 - 2031 DS1 PM D8 - 2031 DS1 PM*

Summary

Data Errors and Warnings

Severity	Area	Item	Description
Info	Optimisation Order	Advanced	Because the optimisation list is blank, no optimisation will occur.

Run Summary

Analysis set used		Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	ltem with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
8	14/06/2019 12:56:19	14/06/2019 12:56:20	17:00	100	1429.29	100.65	99999900.00	12/1	1	6		12/1	12/1	

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 PM		D8	~	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 PM				17:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
100		60	1	60

Signals options

Start displacement (s) End displacement (s)

Advanced

 Phase minimum broken penalty (£)
 Phase maximum broken penalty (£)
 Intergreen broken penalty (£)
 Starting Red-with-Amber (s)

 10000.00
 10000.00
 10000.00
 2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data	
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~	

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient	
Default	35	80	

Normal Traffic Types

NamePCU FactorNormal1.00

Bus parameters

N	lame	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
	Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓	✓	Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		✓				Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

 Arm
 Name
 Description
 Traffic node

 (ALL)
 (untitled)

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1945					Normal	
2	1	(untitled)			12.00	✓	Sum of lanes	1945					Normal	
2	2	(untitled)			12.00							~	Normal	
<u> </u>	1	(untitled)			18.00							 ✓ 	Normal	
3	2	(untitled)			18.00							✓	Normal	
5	1	(untitled)			200.00	√	Sum of lanes	1945					Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	1	(untitled)			45.00				✓	1800		~	Normal	
°	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
10	1	(untitled)			45.00				~	1800		✓	Normal	
10	2	(untitled)			45.00	✓	Sum of lanes	1915		1915			Normal	
11	1	(untitled)			200.00								Normal	
12	1	(untitled)			200.00	✓	Sum of lanes	1895					Normal	
40	1	(untitled)			7.50							✓	Normal	
13	2	(untitled)			7.50							~	Normal	
14	1	(untitled)			200.00							✓	Normal	
15	1	(untitled)		1	438.13								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		✓	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	×	1945
2	2	1	(untitled)											
3	1	1	(untitled)											
3	2	1	(untitled)											
5	1	1	(untitled)		~	N/A	N/A	0	3.30	✓	0	99999.00	~	1945
6	1	1	(untitled)											
7	1	1	(untitled)											
8	1	1	(untitled)											
•	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	✓	1915
	1	1	(untitled)											
10	2	1	(untitled)		✓	N/A	N/A	0	3.00	✓	0	99999.00	1	1915
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	2.80	✓	0	99999.00	~	1895
13	1	1	(untitled)											
13	2	1	(untitled)											
14	1	1	(untitled)											
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00		
2	1	Flare	100	100	100		0.00		
2	2	Flare	100	100	100		0.00		
	1	Flare	100	100	100		0.00		
3	2	Flare	100	100	100		0.00		
5	1	NetworkDefault	100	100	100		0.00		
6	1	NetworkDefault	100	100	100		0.00		
7	1	NetworkDefault	100	100	100		0.00		
8	1	Flare	100	100	100		0.00		
°	2	CTM	100	100	100		0.00		
10	1	Flare	100	100	100		0.00		
10	2	CTM	100	100	100		0.00		
11	1	NetworkDefault	100	100	100		0.00		
12	1	NetworkDefault	100	100	100		0.00		
13	1	Flare	100	100	100		0.00		
13	2	Flare	100	100	100		0.00		
14	1	NetworkDefault	100	100	100		0.00		
15	1	NetworkDefault	100	100	100		0.00		

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	~	100

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	541	541
2	1	514	514
4	2	27	27
	1	23	23
3	2	177	177
5	1	200	200
6	1	1018	1018
7	1	160	160
8	1	105	105
°	2	586	586
10	1	133	133
10	2	995	995
11	1	241	241
12	1	197	197
13	1	88	88
13	2	109	109
14	1	1155	1155
15	1	674	674

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	1	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	1.44	30.00	✓	Straight	Straight Movement
2	2	1	1/1	2/2	1.44	30.00	✓	Straight	Straight Movement
3	1	1	5/1	3/1	2.16	30.00			Straight Movement
3	2	1	5/1	3/2	2.16	30.00	✓	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	1	2/2	7/1	24.00	30.00	✓	Straight	Straight Movement
8	1	1	2/1	8/1	5.40	30.00	✓	Straight	Straight Movement
0	2	1	2/1	8/2	5.40	30.00	✓	Straight	Straight Movement
10	1	1	13/2	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	1	13/2	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	1	8/1	11/1	24.00	30.00	✓	Straight	Straight Movement
13	1	1	12/1	13/1	1.00	30.00	✓	Straight	Straight Movement
13	2	1	12/1	13/2	1.00	30.00	✓	Straight	Straight Movement
15	1	1	13/1	15/1	52.58	30.00	✓	Nearside	80.02
6	1	2	3/1	6/1	24.00	30.00	✓	Straight	Straight Movement
7	1	2	10/1	7/1	24.00	30.00	✓	Nearside	70.86
8	1	2	3/2	8/1	5.40	30.00	✓	Offside	99.89
•	2	2	3/2	8/2	5.40	30.00	✓	Offside	99.89
	1	2	14/1	10/1	5.40	30.00	✓	Straight	Straight Movement
10	2	2	14/1	10/2	5.40	30.00	✓	Straight	Straight Movement
11	1	2	14/1	11/1	24.00	30.00	✓	Straight	Straight Movement
15	1	2	8/2	15/1	52.58	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
2	2	AllTraffic		
	1	AllTraffic		
3	2	AllTraffic		
8	1	AllTraffic		
10	1	AllTraffic		
13	1	AllTraffic		
13	2	AllTraffic		

14 1 Movement

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Controlling from traffic stream	Controlling to traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	10/2			100	0.28		0	0
2		TrafficStream	10/1			100	0.28		0	0
1		TrafficStream	10/2			100	0.34		0	0
		TrafficStream	10/2			100	0.33		0	0
2		TrafficStream	2/1			100	0.21		0	0
		TrafficStream	2/2			100	0.47		0	0
		TrafficStreamMovement		14/1	11/1	100	0.29		0	0
1		TrafficStream	2/2			100	0.28		0	0
		TrafficStream	8/2			100	0.29		0	0
2		TrafficStream	8/2			100	0.27		0	0
2		TrafficStream	14/1			100	0.39		0	0

Give Way Data - Movements

Arm	Traffic Stream	Movement	Destination traffic stream	Max Flow (Opposed) (PCU/hr)	Max Flow (Unopposed) (PCU/hr)	Percentage opposed (%)
		1	10/1	1965	1965	100
14	1	2	10/2	1965	1965	100
		3	11/1	707	707	100

Give Way Data - Movements - Conflicts

A	rm	Traffic Stream	Movement	Destination traffic stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
		4	•	44/4		TrafficStream	8/2	100	0.27		0	0
1	4	1	3	11/1		TrafficStream	8/1	100	0.27		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matri	x Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			✓	1.25		

Normal Input Flows (PCU/hr)

			То		
		1	2	3	4
	1	0	55	459	27
From	2	89	0	88	20
	3	906	136	0	113
	4	23	50	127	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	12/1	11/1	#00FF00
	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	5/1	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	1		1	2	1/1, 2/1, 8/1, 11/1	Normal	55
	2		2	1	12/1, 13/2, 10/2, 6/1	Normal	89
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	459
	4		2	3	12/1, 13/1, 15/1	Normal	88
	5		3	1	14/1, 10/2, 6/1	Normal	906
	6		3	2	14/1, 11/1	Normal	136
1	7		1	4	1/1, 2/2, 7/1	Normal	27
	8		2	4	12/1, 13/2, 10/1, 7/1	Normal	20
	9		3	4	14/1, 10/1, 7/1	Normal	113
	10		4	1	5/1, 3/1, 6/1	Normal	23
	11		4	2	5/1, 3/2, 8/1, 11/1	Normal	50
	12		4	3	5/1, 3/2, 8/2, 15/1	Normal	127

Signal Timings

Network Default: 100s cycle time; 100 steps

No Controller Streams present.

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	28	224	541	1945	100	0.36	0.05	0.15	0.76	0.00	0.76
	2	1	26	241	514	1945	100	0.33	0.05	2.37	0.67	0.00	0.67
	2	2	6	1412	27	454	100	0.25	0.00	0.09	0.03	0.00	0.03
	3	1	4	2172	23	581	100	0.13	0.00	0.03	0.01	0.00	0.01
	3	2	57	57	177	308	100	7.76	0.38	12.71	5.42	0.00	5.42
	5	1	10	775	200	1945	100	0.11	0.01	0.02	0.08	0.00	0.08
	6	1	0	Unrestricted	929	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	140	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	1	15	504	105	704	100	0.45	0.01	0.17	0.19	0.00	0.19
18:00	°	2	31	194	586	1915	100	0.41	0.07	0.86	0.96	0.00	0.96
	40	1	13	579	113	852	100	0.32	0.01	0.13	0.14	0.00	0.14
	10	2	47	90	906	1915	100	0.84	0.21	2.71	3.01	0.00	3.01
	11	1	0	Unrestricted	241	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	99999900	-100	197	1895	100	1800.00	98.50	283.19	1398.70	0.00	1398.70
	13	1	0	Unrestricted	0	587	100	0.00	0.00	0.00	0.00	0.00	0.00
	13	2	0	-100	0	0	100	0.00	0.00	0.00	0.00	0.00	0.00
	14	1	78	15	1155	1482	100	4.24	1.36	3.91	19.32	0.00	19.32
	15	1	0	Unrestricted	586	Unrestricted	100	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering	Calculated flow out	Flow discrepancy	Adjusted flow	Calculated sat flow (PCU/hr)	Calculated capacity	Degree of saturation	DOS Threshold	Practical reserve	Mean modulus	Actual green (s (per
Segment		Stream	(PCU/hr)	(PCU/hr)	(PCU/hr)	warning	now (PCO/nr)	(PCU/hr)	(%)	exceeded	capacity (%)	of error	cycle))
	1	1	541	541	0		1945	1945	28		224	0.00	100
	2	1	514	514	0		1945	1945	26		241	0.00	100
	_	2	27	27	0		454	454	6		1412	0.00	100
	3	1	23	23	0		581	581	4		2172	0.00	100
		2	177	177	0		308	308	57		57	0.00	100
	5	1	200	200	0		1945	1945	10		775	0.00	100
	6	1	929	929	89	~	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	7	1	140	140	20	~	Unrestricted	Unrestricted	0		Unrestricted	0.00	100
17:00-	8	1	105	105	0	İ	704	704	15		504	0.00	100
18:00	°	2	586	586	0		1915	1915	31		194	0.00	100
	10	1	113	113	20	~	852	852	13		579	0.00	100
	10	2	906	906	89	~	1915	1915	47		90	0.00	100
	11	1	241	241	0		Unrestricted	Unrestricted	0		Unrestricted	0.00	100
	12	1	197	0	0		1895	0	99999900	✓	-100	0.00	100
	42	1	0	0	88	✓	587	587	0		Unrestricted	1.92	100
	13	2	0	0	109	✓	0	0	0		-100	1.92	100
	14	1	1155	1155	0		1482	1482	78		15	0.00	100
	15	1	586	586	88	~	Unrestricted	Unrestricted	0		Unrestricted	0.00	100

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.36	0.05	0.76	0.00	0.00	0.00
	2	1	1.44	0.33	0.05	0.67	0.00	0.00	0.00
	2	2	1.44	0.25	0.00	0.03	0.00	0.00	0.00
	3	1	2.16	0.13	0.00	0.01	0.00	0.00	0.00
	3	2	2.16	7.76	0.38	5.42	0.00	0.00	0.00
	5	1	24.00	0.11	0.01	0.08	0.00	0.00	0.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	1	5.40	0.45	0.01	0.19	0.00	0.00	0.00
17.00-18.00	0	2	5.40	0.41	0.07	0.96	0.00	0.00	0.00
	10	1	5.40	0.32	0.01	0.14	0.00	0.00	0.00
	10	2	5.40	0.84	0.21	3.01	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	24.00	1800.00	98.50	1398.70	0.00	0.00	0.00
	13	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	13	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	14	1	24.00	4.24	1.36	19.32	0.00	0.00	0.00
	15	1	52.58	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.05	34.78	0.15	0.00	0.00	
	2	1	0.00	0.05	2.00	2.37	0.00	0.00	
	2 [2	0.00	0.00	2.00	0.09	0.00	100.00	
	3	1	0.00	0.00	3.00	0.03	0.00	100.00	
	3	2	0.00	0.38	3.00	12.71	0.00	0.00	
	5	1	0.00	0.01	34.78	0.02	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
17:00-18:00	7	1	0.00	0.00	34.78	0.00	0.00	0.00	
	8	1	0.00	0.01	7.83	0.17	0.00	0.00	
	°	2	0.00	0.07	7.83	0.86	0.00	0.00	
	10	1	0.00	0.01	7.83	0.13	0.00	0.00	
	10	2	0.00	0.21	7.83	2.71	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	98.50	34.78	283.19	0.00	100.00	
		1	0.00	0.00	1.00	0.00	0.00	100.00	

13	2	0.00	0.00	1.00	0.00	0.00	100.00	
14	1	0.00	1.36	34.78	3.91	0.00	0.00	
15	1	0.00	0.00	76.20	0.00	0.00	0.00	

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	~	0.05			1.00	0.00	0.76
	2	1	0.00	0.00	~	0.05			1.00	0.00	0.67
	2	2	0.00	0.00	~	0.00			1.00	0.00	0.03
	3	1	0.00	0.00	~	0.00			1.00	0.00	0.01
	l s	2	0.00	0.00	~	0.38			1.00	0.00	5.42
	5	1	0.00	0.00	~	0.01			1.00	0.00	0.08
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	~	0.00			1.00	0.00	0.00
17:00-		1	0.00	0.00	~	0.01			1.00	0.00	0.19
18:00	8	2	0.00	0.00	~	0.07			1.00	0.00	0.96
	40	1	0.00	0.00	~	0.01			1.00	0.00	0.14
	10	2	0.00	0.00	✓	0.21			1.00	0.00	3.01
	11	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	~	197.00			1.00	0.00	1398.70
	40	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	13	2	0.00	0.00	~	0.00			1.00	0.00	0.00
	14	1	0.00	0.00	~	1.37			1.00	0.00	19.32
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	ltem with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
8	14/06/2019 12:56:19	14/06/2019 12:56:20	17:00	100	1429.29	100.65	99999900.00	12/1	1	6		12/1	12/1	

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
17:00-18:00	99999900	-100	6440	1800	56.27	1429.29	0.00	1429.29

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
17:00-18:00	6440	6243	503	✓	99999900	✓	-100	1800

Network Results: Stops and delays

Time Segment	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
17:00-18:00	19.09	56.27	100.65	1429.29	0.00	0.00	0.00

Network Results: Queues and blocking

 Time Segment
 Utilised storage (%)
 Excess queue penalty (£ per hr)
 Wasted time total (s (per cycle))

 17:00-18:00
 283.19
 0.00
 500.00

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	1429.29

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

		То								
		1	2	3	4					
	1	0.0	56.0	84.5	50.0					
From	2	1824.0	0.0	1876.6	1824.0					
	3	58.5	52.2	0.0	58.0					
	4	50.4	63.9	92.4	0.0					

Path Journey Time

Pa	th	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
	1	1	2	55	55.98	55	55.98
1	2	2	1	89	1824.00	89	1824.00
:	3	1	3	459	84.52	459	84.52
4	1	2	3	88	1876.58	88	1876.58
	5	3	1	906	58.48	906	58.48
	3	3	2	136	52.24	136	52.24
	7	1	4	27	50.05	27	50.05

8	2	4	20	1824.00	20	1824.00
9	3	4	113	57.96	113	57.96
10	4	1	23	50.39	23	50.39
11	4	2	50	63.87	50	63.87
12	4	3	127	92.41	127	92.41

Final Prediction Table

Traffic Stream Results

	FLOWS			PER	FORMANCE		PEI	R PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.			
Arm	Traffic Stream	Name	Traffic node	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)		541	1945	100	0.00	28	224	24.36	0.36	0.00	0.05	100	100	0.00	0.76
2	1	(untitled)		514	1945	100	0.00	26	241	1.77	0.33	0.00	0.05	100	100	0.00	0.67
2 ×	2	(untitled)		27	454	100	100.00	6	1412	1.69	0.25	0.00	0.00	100	100	0.00	0.03
3	1	(untitled)		23	581	100	100.00	4	2172	2.29	0.13	0.00	0.00	100	100	0.00	0.01
3	2	(untitled)		177	308	100	0.00	57	57	9.92	7.76	0.00	0.38	100	100	0.00	5.42
5	1	(untitled)		200	1945	100	0.00	10	775	24.11	0.11	0.00	0.01	100	100	0.00	0.08
6	1	(untitled)		929	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)		140	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	1	(untitled)		105	704	100	0.00	15	504	5.85	0.45	0.00	0.01	100	100	0.00	0.19
°	2	(untitled)		586	1915	100	0.00	31	194	5.81	0.41	0.00	0.07	100	100	0.00	0.96
10	1	(untitled)		113	852	100	0.00	13	579	5.72	0.32	0.00	0.01	100	100	0.00	0.14
10	2	(untitled)		906	1915	100	0.00	47	90	6.24	0.84	0.00	0.21	100	100	0.00	3.01
11	1	(untitled)		241	Unrestricted	100	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1	(untitled)		197 <	1895	100	100.00	99999900	-100	1824.00	1800.00	0.00	98.50 +	100	100	0.00	1398.70
13	1	(untitled)		0	587	100	100.00	0	Unrestricted	0.00	0.00	0.00	0.00	100	100	0.00	0.00
13	2	(untitled)		0	0	100	100.00	0	-100	0.00	0.00	0.00	0.00	100	100	0.00	0.00
14	1	(untitled)		1155	1482	100	0.00	78	15	28.24	4.24	0.00	1.36	100	100	0.00	19.32
15	1	(untitled)		586	Unrestricted	100	0.00	0	Unrestricted	52.58	0.00	0.00	0.00	100	100	0.00	0.00

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1024.39	134.80	7.60	100.65	1429.29	0.00	0.00	1429.29
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1024.39	134.80	7.60	100.65	1429.29	0.00	0.00	1429.29

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

*= Trainic stream - Normal, bus of training or being regiming the score of a state only which the training of the score of the state of the score of

• P.I. = PERFORMANCE INDEX

APPENDIX B

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN028 Rev A B430_Ardley Road Junction Modelling_ISSUE.docx

Filename: 190606 Ardley Crossroads Signalised 2 lanes gw.t15 Path: \\pba.int\BR\\Projects\39304 Heyford Park Tranche 2\Technical\Transport\Junction Assessments\TRANSYT Report generation date: 14/06/2019 14:02:20

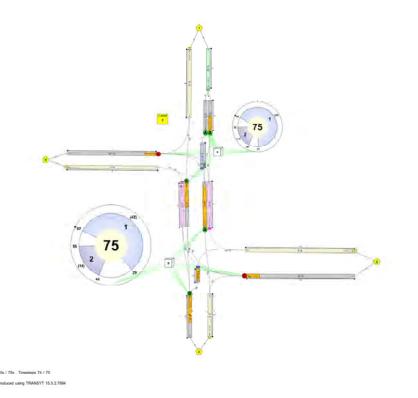
»A7 - 2031 DS1 AM : D7 - 2031 DS1 AM* : »A8 - 2031 DS1 PM : D8 - 2031 DS1 PM* :

File summary

ł	File descripti	on
	File title	(untitled)
	Location	
	Site number	
	UTCRegion	
	Driving side	Left
	Date	14/12/2017
	Version	
	Status	(new file)
	Identifier	
	Client	
	Jobnumber	
	Enumerator	PBA\dcollis
	Description	

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red-With- Amber	Display End-Of- Green Amber


Units

Cost units	Speed units	Distance units	Fuel economy units	Fuel rate units	Mass units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
£	kph	m	mpg	l/h	kg	PCU	PCU	perHour	s	-Hour	perHour

Sorting

Show names instead of IDs	Sorting direction	Sorting type	Ignore prefixes when sorting	Analysis/demand set sorting	Link grouping	Source grouping	Colour Analysis/Demand Sets	
	Ascending	Numerical		ID	Normal	Normal	 ✓ 	

Network Diagrams

A7 - 2031 DS1 AM D7 - 2031 DS1 AM*

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
7	14/06/2019 14:01:57	14/06/2019 14:01:58	08:00	75	361.67	22.37	93.00	14/1	2	12	14/1	1/1	14/1		1

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 AM		D7	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)	
75		60	1	60	

Signals options

Start displacement (s) End displacement (s)

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)
10000.00	10000.00	10000.00	2

Traffic options

Vehicle flow scaling factor (%) Pedestrian flow scaling factor (%) Cruise times or speeds
100 100 Cruise Speeds Traffic model Platoon Dispersion (PDM) 100 Cruise Speeds

Advanced

R	esolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle- in-Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
	1	90	100	~	✓		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

 Name
 PCU Factor

 Normal
 1.00

Bus parameters

 Name
 PCU Factor
 Dispersion type
 Acceleration (ms^[-2])
 Stationary time coefficient
 Cruise time coefficient

 Bus
 1.00
 Default
 0.94
 30
 85
 Bus 1.00

Tram parameters

 Name
 PCU Factor
 Dispersion type
 Acceleration (ms^[-2])
 Stationary time coefficient
 Cruise time coefficient

 Tram
 1.00
 Default
 0.94
 100
 100
 Tram 1.00

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation Auto redistribute Optimisation level Enable OUT Profile accuracy

Offsets Only

Advanced

Optimisation type	Hill climb	OUTProfile	Shotgun	Random	Use enhanced	Auto optimisation	Optimisation	Master	Offsets relative to	Master controller
	increments	accuracy	number of runs	seed	optimisation	order	order	controller	master controller	offset after each run
Shotgun Hill Climb (Medium)	15, 40, 15, 40, 15, 1, 1	50, 50, 5, 5, 0.5, 0.05, 0.05	10	1		✓	1, 2			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr) Vehicle Monetary Value Of Stops (£ per 100 stops) Pedestrian monetary value of delay (£ per Ped-hr) 14.20 14.20 2.60

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	Is signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	✓	Sum of lanes	1965					Normal	
2	2	(untitled)			45.00	✓	Sum of lanes	2105		2105	~		Normal	
2	3				45.00	✓	Sum of lanes	2105		2105	√		Normal	
3	2	(untitled)			200.00	✓	Sum of lanes	1717			√		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00				✓	1800		 ✓ 	Normal	
•	3				37.00	✓	Sum of lanes	2105		2105	✓		Normal	
10	2	(untitled)			20.00							×	Normal	
10	3				32.00	✓	Sum of lanes	2105		2105	√		Normal	
11	1	(untitled)			200.00								Normal	
12	1				17.00	✓	Sum of lanes	2105				 ✓ 	Normal	
13	2	(untitled)			200.00	✓	Sum of lanes	1665			✓		Normal	
14	1	(untitled)			200.00	✓	Sum of lanes	1965			√		Normal	
15	1	(untitled)		✓	429.39								Normal	
16	1				9.00	✓	Sum of lanes	1915				×	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	~	1965
2	2	1	(untitled)		~	N/A	N/A	0	3.50	√	0	99999.00		2105
2	3	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)											
•	3	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
10	2	1	(untitled)											
10	3	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00		2105
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	3.50		0	10.00		2105
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	1	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	1	1965
15	1	1	(untitled)											
16	1	1	(untitled)		~	N/A	N/A	0	3.00		0	10.00	1	1915

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
2	3	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	Flare	100	100	100		0.00				
°	3	CTM	100	100	100		0.00				
10	2	Flare	100	100	100		0.00				
	3	Flare	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	✓	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	1	1.00	500.00	

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	75

Normal traffic - Modelling

 Arm
 Traffic Stream
 Stop weighting (%)
 Delay weighting (%)

 (ALL)
 (ALL)
 100
 100

Normal traffic - Advanced

Arm Traffic Stream Dispersion type for Normal Traffic (ALL) (ALL) NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	1135	1135
2	2	1118	1118
2	3	17	17
3	2	254	254
6	1	683	683
7	1	84	84
8	2	328	328
0	3	1005	1005
10	2	67	67
10	3	644	644
11	1	479	479
12	1	17	17
13	2	121	121
14	1	751	751
15	1	1015	1015
16	1	151	151

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	2	1	A	
2	3	1	A	
3	2	1	С	
8	3	2	A	
10	3	1	В	
13	2	2	С	
14	1	2	В	

Entry Sources

 Arm
 Traffic Stream
 Cruise time for Normal Traffic (s)
 Cruise speed for Normal Traffic (kph)

 (ALL)
 (ALL)
 24.00
 30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	2	1	1/1	2/2	5.40	30.00	1	Straight	Straight Movement
2	3	1	1/1	2/3	5.40	30.00	1	Straight	Straight Movement
6	1	1	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	✓	Nearside	69.87
8	2	1	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
•	3	1	3/2	8/3	4.44	30.00	✓	Straight	Straight Movement
10	2	1	13/2	10/2	2.40	30.00	✓	Straight	Straight Movement
10	3	1	14/1	10/3	3.84	30.00	✓	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/3	12/1	2.04	30.00	✓	Straight	Straight Movement
15	1	1	13/2	15/1	51.53	30.00	✓	Nearside	80.02
16	1	1	14/1	16/1	1.08	30.00	1	Straight	Straight Movement
6	1	2	10/3	6/1	24.00	30.00	1	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	1	Offside	6.00
8	2	2	2/2	8/2	4.44	30.00	~	Straight	Straight Movement
•	3	2	2/2	8/3	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	2.40	30.00	√	Straight	Straight Movement
	3	2	13/2	10/3	3.84	30.00	✓	Straight	Straight Movement
11	1	2	8/2	11/1	24.00	30.00	~	Straight	Straight Movement
15	1	2	8/3	15/1	51.53	30.00	✓	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted	
(ALL)	(ALL)	AllTraffic			

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	16/1	100	0.29		0	0
2		TrafficStream	12/1	100	0.28		0	0
		TrafficStream	10/2	100	1.09		0	0
1		TrafficStream	8/2	100	1.09		0	0
		TrafficStream	8/3	100	1.09		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			✓			~	1.25		

Normal Input Flows (PCU/hr)

		То						
		1	2	3	4			
	1	0	139	979	17			
From	2	94	0	10	17			
	3	550	151	0	50			
	4	39	189	26	0			

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
	2	(untitled)	13/2	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	10		4	1	3/2, 6/1	Normal	39
	11		4	2	3/2, 8/2, 11/1	Normal	189
	12		1	3	1/1, 2/2, 8/3, 15/1	Normal	979
	13		3	1	14/1, 10/3, 6/1	Normal	550
	15		2	4	13/2, 10/2, 7/1	Normal	17
1	16		3	4	14/1, 10/2, 7/1	Normal	50
1	17		3	2	14/1, 16/1, 11/1	Normal	151
	19		2	3	13/2, 15/1	Normal	10
	20		4	3	3/2, 8/3, 15/1	Normal	26
	21		1	4	1/1, 2/3, 12/1, 7/1	Normal	17
	22		2	1	13/2, 10/3, 6/1	Normal	94
	23		1	2	1/1, 2/2, 8/2, 11/1	Normal	139

Signal Timings

Network Default: 75s cycle time; 75 steps

Controller Stream 1

[Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
	1	(untitled)		1	NetworkDefault	75

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

[Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
	1	✓	✓	Offsets Only		

Phases

Controller Stream	n Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1	(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	A, B	1
1	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
1	1	Losing	A	1	2	1

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2	20, 37

Intergreen Matrix for Controller Stream 1

	То				
		Α	в	С	
From	Α			5	
From	в			6	
	С	6	5		

Banned Stage transitions for Controller Stream 1

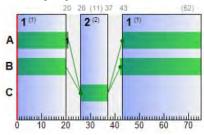
Interstage Matrix for Controller Stream 1

	То			
		1	2	
From	1	0	6	
	2	6	0	

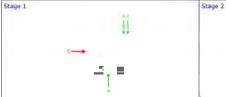
Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	43	20	52	1	6
'	2	✓	2	С	26	37	11	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	1	43	21	53

4	в	1	✓	42	20	53
•	С	1	✓	26	37	11


Traffic Stream Green Times

	Arm	Traffic Stream	Traffic Nodo	Controller Stream	Phase	Gr	een Pe	eriod 1
	Ann	marine otream	Traine Houe	Sontroller Stream	1 11430	Start	End	Duration
	2	2		1	A	43	21	53
	2	3		1	A	43	21	53
	3	2		1	С	26	37	11
	10	3		1	В	42	20	53

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Controller Stream 2

 Controller Stream
 Name
 Description
 Use sequence
 Cycle time source
 Cycle time (s)

 2
 (untitled)
 1
 NetworkDefault
 75

Controller Stream 2 - Properties

 Controller Stream
 Manufacturer name
 Type
 Model number
 (Telephone) Line Number
 Site number
 Grid reference
 Gaining delay type

 2
 Unspecified
 Absolute
 Absolute
 Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	✓	Offsets Only		

Phases

 Controller Stream
 Phase
 Name
 Minimum green (s)
 Maximum green (s)
 Relative start displacement (s)
 Relative end displacement (s)
 Type

 2
 (ALL)
 (untitled)
 7
 300
 0
 0
 Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	A, B	1
2	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
2	1	Losing	В	1	2	7

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
2	1	(untitled)	Single	1, 2	10, 30

Intergreen Matrix for Controller Stream 2

		То				
		Α	в	С		
From	Α			6		
From	в			6		
	С	6	6			

Banned Stage transitions for Controller Stream 2

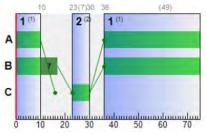
			•		
	То				
		1	2		
From	1				
	2				

Interstage Matrix for Controller Stream 2

		То	
		1	2
From	1	0	13
	2	6	0

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)	
•	1	1	1	A,B	36	10	49	1	7	
2	2	~	2	С	23	30	7	1	7	


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	36	10	49
2	В	1	1	36	17	56
	С	1	✓	23	30	7

Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Dhase	Green Period 1			
Ann	Traffic Stream	Trainc Node	Controller Stream	Flase	Start	End	Duration	
8	3		2	A	36	10	49	
13	2		2	С	23	30	7	
14	1		2	В	36	17	56	

Phase Timings Diagram for Controller Stream 2

Stage Sequence Diagram for Controller Stream 2

Resultant penalties

Time Segment	Controller stream	Phase min max penalty (£ per hr)	Intergreen broken penalty (£ per hr)	Stage constraint broken penalty (£ per hr)	Cost of controller stream penalties (£ per hr)
08:00-09:00	(ALL)	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	67	35	1135	1965	75	3.60	8.24	23.69	16.12	4.03	20.16
	2	2	74	22	1118	2105	53	8.18	8.27	105.73	36.07	4.97	41.04
	_	3	1	7924	17	2105	53	3.09	0.10	1.27	0.21	0.06	0.27
	3	2	92	-3	254	1717	11	85.99	9.03	25.95	86.16	5.00	91.16
	6	1	0	Unrestricted	683	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	84	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	8	2	47	92	328	700	75	4.75	3.12	48.53	6.15	1.13	7.28
08:00-	°	3	72	26	1005	2105	49	7.50	5.52	85.74	29.75	3.32	33.06
09:00	10	2	8	1048	67	855	75	0.18	0.00	0.11	0.05	0.00	0.05
	10	3	43	112	644	2105	53	4.03	4.46	80.08	10.24	2.68	12.92
	11	1	0	Unrestricted	479	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1	7131	17	1366	75	0.02	0.00	0.00	0.00	0.00	0.00
	13	2	68	32	121	1665	7	52.95	3.11	8.95	25.27	1.82	27.09
	14	1	93	-3	751	1965	56	33.59	12.60	36.23	99.50	11.14	110.64
	15	1	0	Unrestricted	1015	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	33	173	151	458	75	13.61	1.08	108.08	8.11	1.48	17.99

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1135	1135	0		1965	1696	67		35	0.00	75
	2	2	1118	1118	0		2105	1516	74		22	0.23	53
	2	3	17	17	0		2105	1516	1		7924	0.23	53
	3	2	254	254	0		1717	275	92	~	-3	0.00	11
	6	1	683	683	0		Unrestricted	Unrestricted	0		Unrestricted	0.52	75
	7	1	84	84	0		Unrestricted	Unrestricted	0		Unrestricted	0.27	75
	8	2	328	328	0		700	700	47		92	0.84	75
08:00-	°	3	1005	1005	0		2105	1403	72		26	0.53	49
09:00	10	2	67	67	0		855	855	8		1048	0.73	75
	10	3	644	644	0		2105	1516	43		112	0.83	53
	11	1	479	479	0		Unrestricted	Unrestricted	0		Unrestricted	0.33	75
	12	1	17	17	0		1366	1366	1		7131	0.73	75
	13	2	121	121	0		1665	178	68		32	0.00	7
	14	1	751	751	0		1965	808	93	√	-3	0.00	56
	15	1	1015	1015	0		Unrestricted	Unrestricted	0		Unrestricted	0.36	75
	16	1	151	151	0		458	458	33		173	0.93	75

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	3.60	1.14	16.12	28.33	321.57	4.03
	2	2	5.40	8.18	2.54	36.07	35.48	396.62	4.97
	-								

		3	5.40	3.09	0.01	0.21	28.02	4.76	0.06
	3	2	24.00	85.99	6.07	86.16	157.01	398.81	5.00
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	8	2	4.44	4.75	0.43	6.15	27.56	90.40	1.13
	0	3	4.44	7.50	2.09	29.75	26.31	264.39	3.32
08:00-09:00	40	2	2.40	0.18	0.00	0.05	0.00	0.00	0.00
08:00-09:00	:00 10	3	3.84	4.03	0.72	10.24	33.17	213.66	2.68
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2.04	0.02	0.00	0.00	0.00	0.00	0.00
	13	2	24.00	52.95	1.78	25.27	119.93	145.12	1.82
	14	1	24.00	33.59	7.01	99.50	118.28	888.67	11.14
	15	1	51.53	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	1.08	13.61	0.57	8.11	78.12	118.02	1.48

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	8.24	34.78	23.69	0.00	10.25	
	2	2	0.00	8.27	7.83	105.73	0.00	0.00	
	2	3	0.00	0.10	7.83	1.27	0.00	53.00	
	3	2	0.00	9.03	34.78	25.95	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	15.00	
	8	2	0.00	3.12	6.43	48.53	0.00	4.00	
08:00-09:00	° (3	0.00	5.52	6.43	85.74	0.00	3.00	
08:00-09:00	10	2	0.00	0.00	3.00	0.11	0.00	35.00	
		3	0.00	4.46	5.57	80.08	0.00	16.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.00	3.00	0.00	0.00	73.00	
	13	2	0.00	3.11	34.78	8.95	0.00	0.00	
	14	1	0.00	12.60	34.78	36.23	0.00	26.43	
	15	1	0.00	0.00	74.68	0.00	0.00	0.00	
	16	1	0.00	1.08	1.00	108.08	8.40	17.00	

Traffic Stream Results: Flare

 Time Segment
 Arm
 Traffic Stream
 Flare present
 Flare components
 Degree of saturation (%)
 Mean max queue (PCU)
 Calculated capacity (PCU/hrv)
 Practical reserve capacity (%)

 08:00-09:00
 1
 1
 ✓
 CTM flare: 1/1,2/2,2/3
 74
 16.61
 1526
 21

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	8.24			1.00	0.00	20.16
		2	0.00	0.00	✓	8.28	1.03	8.26	1.00	0.00	41.04
	2	3	0.00	0.00	~	0.10	0.00	0.10	1.00	0.00	0.27
	3	2	0.00	0.00	✓	9.64	4.49	8.94	1.00	0.00	91.16
	6	1	0.00	0.00		0.00			1.00	0.00	0.00
	7	1	0.00	0.00		0.00			1.00	0.00	0.00
	8	2	0.00	0.00	✓	3.12			1.00	0.00	7.28
08:00-09:00	0	3	0.00	0.00	✓	5.52	0.90	5.42	1.00	0.00	33.06
00.00-03.00	10	2	0.00	0.00		0.00			1.00	0.00	0.05
	10	3	0.00	0.00		4.46	0.16	4.10	1.00	0.00	12.92
	11	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	1	0.00			1.00	0.00	0.00
	13	2	0.00	0.00	✓	3.13	0.71	2.96	1.00	0.00	27.09
	14	1	0.00	0.00		13.05	5.68	9.44	1.00	0.00	110.64
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	16	1	0.00	0.00		1.08			1.00	8.40	17.99

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
7	14/06/2019 14:01:57	14/06/2019 14:01:58	08:00	75	361.67	22.37	93.00	14/1	2	12	14/1	1/1	14/1	

Network Results: Vehicle summary

Tim Segm		Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
08:00-0	9:00	93	-3	7870	957	10.23	317.63	35.63	361.67

Network Results: Flows and signals

Time	Calculated flow entering	Calculated flow out	Flow discrepancy	Adjusted flow	Degree of saturation	DOS Threshold	Practical reserve	Actual green (s (per
Segment	(PCU/hr)	(PCU/hr)	(PCU/hr)	warning	(%)	exceeded	capacity (%)	cycle))
08:00-09:00	7870	7870	-1		93	✓	-3	

Network Results: Stops and delays

Time	Mean Cruise Time per Veh	Mean Delay per Veh	Total delay (PCU-	Weighted cost of delay (£ per	Mean stops per Veh	Total stops (Stops per	Weighted cost of stops (£ per
Segment	(s)	(s)	hr/hr)	hr)	(%)	hr)	hr)
08:00-09:00	19.23	10.23	22.37	317.63	36.11	2842.02	

Network Results: Queues and blocking

 Time Segment
 Utilised storage (%)
 Excess queue penalty (£ per hr)
 Wasted time total (s (per cycle))

 08:00-09:00
 108.08
 8.40
 252.68

Network Results: Advanced

	Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
ſ								

08:00-09:00 0.00 0.00 1.00 8.40 0.00 361.67

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			10		
		1	2	3	4
	1	0.0	72.1	104.6	62.2
From	2	120.6	0.0	128.5	103.5
	3	87.4	96.3	0.0	84.2
	4	134.0	144.9	177.0	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
10	4	1	39	133.99	39	133.99
11	4	2	189	144.89	189	144.89
12	1	3	979	104.56	979	104.56
13	3	1	550	87.45	550	87.45
15	2	4	17	103.53	17	103.53
16	3	4	50	84.17	50	84.17
17	3	2	151	96.28	151	96.28
19	2	3	10	128.48	10	128.48
20	4	3	26	177.03	26	177.03
21	1	4	17	62.15	17	62.15
22	2	1	94	120.59	94	120.59
23	1	2	139	72.06	139	72.06

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)				1135	1965	75	10.25	67	35	27.60	3.60	28.33	8.24	100	100	0.00	20.16
2	2	(untitled)		1	A	1118 <	2105	53	0.00	74	22	13.58	8.18	35.48	8.27 +	100	100	0.00	41.04
2	3			1	A	17	2105	53	53.00	1	7924	8.49	3.09	28.02	0.10	100	100	0.00	0.27
3	2	(untitled)		1	С	254	1717	11	0.00	92	-3	109.99	85.99	157.01	9.03	100	100	0.00	91.16
6	1	(untitled)				683	Unrestricted	75	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)				84	Unrestricted	75	15.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
8	2	(untitled)				328	700	75	4.00	47	92	9.19	4.75	27.56	3.12	100	100	0.00	7.28
8	3			2	A	1005	2105	49	3.00	72	26	11.94	7.50	26.31	5.52	100	100	0.00	33.06
10	2	(untitled)				67	855	75	35.00	8	1048	2.58	0.18	0.00	0.00	100	100	0.00	0.05
10	3			1	В	644	2105	53	16.00	43	112	7.87	4.03	33.17	4.46	100	100	0.00	12.92
11	1	(untitled)				479	Unrestricted	75	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1					17	1366	75	73.00	1	7131	2.06	0.02	0.00	0.00	100	100	0.00	0.00
13	2	(untitled)		2	С	121	1665	7	0.00	68	32	76.95	52.95	119.93	3.11	100	100	0.00	27.09
14	1	(untitled)		2	В	751	1965	56	26.43	93	-3	57.59	33.59	118.28	12.60	100	100	0.00	110.64
15	1	(untitled)				1015	Unrestricted	75	0.00	0	Unrestricted	51.53	0.00	0.00	0.00	100	100	0.00	0.00
16	1					151 <	458	75	17.00	33	173	14.69	13.61	78.12	1.08 +	100	100	8.40	17.99

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU- hr/hr)	Mean journey speed (kph)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1261.30	64.41	19.58	22.37	317.63	35.63	8.40	361.67
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1261.30	64.41	19.58	22.37	317.63	35.63	8.40	361.67

< = adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A8 - 2031 DS1 PM D8 - 2031 DS1 PM*

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
8	14/06/2019 14:01:58	14/06/2019 14:01:58	17:00	75	227.18	14.11	88.17	14/1	0	0	14/1	1/1	14/1	1	

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 PM		D8	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 PM				17:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)	
75		60	1	60	

Signals options

Start displacement (s) End displacement (s)

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)
10000.00	10000.00	10000.00	2

Traffic options

 Vehicle flow scaling factor (%)
 Pedestrian flow scaling factor (%)
 Cruise times or speeds

 100
 100
 Cruise Speeds
 Traffic model Platoon Dispersion (PDM)

Advanced

R	esolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle- in-Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
	1	90	100	~	✓		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

 Name
 PCU Factor

 Normal
 1.00

Bus parameters

 Name
 PCU Factor
 Dispersion type
 Acceleration (ms^[-2])
 Stationary time coefficient
 Cruise time coefficient

 Bus
 1.00
 Default
 0.94
 30
 85
 Bus 1.00

Tram parameters

 Name
 PCU Factor
 Dispersion type
 Acceleration (ms^[-2])
 Stationary time coefficient
 Cruise time coefficient

 Tram
 1.00
 Default
 0.94
 100
 100
 Tram 1.00

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation Auto redistribute Optimisation level Enable OUT Profile accuracy

Offsets Only

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run	
Hill Climb (Fast)	15, 40, 15, 40, 15, 1, 1	50, 50, 5, 5, 0.5, 0.05, 0.05		✓	1, 2			Do nothing	

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr) Vehicle Monetary Value Of Stops (£ per 100 stops) Pedestrian monetary value of delay (£ per Ped-hr) 14.20 14.20 2.60

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto-calculate cell saturation flow	Cell saturation flow (PCU/hr)	Is signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	2	(untitled)			45.00	~	Sum of lanes	2105		2105	√		Normal	
2	3				45.00	✓	Sum of lanes	2105		2105	√		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			√		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00				~	1800		 ✓ 	Normal	
•	3				37.00	✓	Sum of lanes	2105		2105	✓		Normal	
10	2	(untitled)			20.00							~	Normal	
10	3				32.00	1	Sum of lanes	2105		2105	√		Normal	
11	1	(untitled)			200.00								Normal	
12	1				17.00	~	Sum of lanes	1830				 ✓ 	Normal	
13	2	(untitled)			200.00	✓	Sum of lanes	1665			√		Normal	
14	1	(untitled)			200.00	✓	Sum of lanes	1965			√		Normal	
15	1	(untitled)		✓	429.39								Normal	
16	1				9.00	~	Sum of lanes	1665				~	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside lane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		~	N/A	N/A	0	3.50	√	0	99999.00		2105
2	3	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)											
•	3	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
10	2	1	(untitled)											
10	3	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00		2105
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	3.50		100	10.00		1830
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	1	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	1	0	99999.00	1	1965
15	1	1	(untitled)											
16	1	1	(untitled)		✓	N/A	N/A	0	3.00		100	10.00	~	1665

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
	3	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	Flare	100	100	100		0.00				
°	3	CTM	100	100	100		0.00				
10	2	Flare	100	100	100		0.00				
	3	Flare	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	1	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	✓	1.00	500.00	

Modelling - Advanced

Arm	Traffic Stream	Initial queue (PCU)	Type of Vehicle-in-Service	Vehicle-in-Service	Type of random parameter	Random parameter	Auto cycle time	Cycle time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	75

Normal traffic - Modelling

 Arm
 Traffic Stream
 Stop weighting (%)
 Delay weighting (%)

 (ALL)
 (ALL)
 100
 100

Normal traffic - Advanced

Arm Traffic Stream Dispersion type for Normal Traffic (ALL) (ALL) NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	541	541
2	2	514	514
2	3	27	27
3	2	200	200
6	1	1018	1018
7	1	160	160
8	2	105	105
0	3	586	586
10	2	133	133
10	3	995	995
11	1	241	241
12	1	27	27
13	2	197	197
14	1	1155	1155
15	1	674	674
16	1	136	136

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	2	1	A	
2	3	1	A	
3	2	1	С	
8	3	2	A	
10	3	1	В	
13	2	2	С	
14	1	2	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL) (ALL)	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
2	3	1	1/1	2/3	5.40	30.00	1	Straight	Straight Movement
6	1	1	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	~	Nearside	69.87
8	2	1	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
°	3	1	3/2	8/3	4.44	30.00	~	Straight	Straight Movement
10	2	1	13/2	10/2	2.40	30.00	~	Straight	Straight Movement
10	3	1	14/1	10/3	3.84	30.00	~	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/3	12/1	2.04	30.00	~	Straight	Straight Movement
15	1	1	13/2	15/1	51.53	30.00	~	Nearside	80.02
16	1	1	14/1	16/1	1.08	30.00	1	Straight	Straight Movement
6	1	2	10/3	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	1	Offside	6.00
8	2	2	2/2	8/2	4.44	30.00	~	Straight	Straight Movement
° (3	2	2/2	8/3	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	2.40	30.00	~	Straight	Straight Movement
.0	3	2	13/2	10/3	3.84	30.00	~	Straight	Straight Movement
11	1	2	8/2	11/1	24.00	30.00	~	Straight	Straight Movement
15	1	2	8/3	15/1	51.53	30.00	1	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
(ALL)	(ALL)	AllTraffic		

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
2		TrafficStream	16/1	100	0.29		0	0
2		TrafficStream	12/1	100	0.28		0	0
		TrafficStream	10/2	100	1.09		0	0
1		TrafficStream	8/2	100	1.09		0	0
		TrafficStream	8/3	100	1.09		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	✓	~	Path Equalisation			✓			~	1.25		

Normal Input Flows (PCU/hr)

			То		
		1	2	3	4
	1	0	55	459	27
From	2	89	0	88	20
	3	906	136	0	113
	4	23	50	127	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
	2	(untitled)	13/2	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	10		4	1	3/2, 6/1	Normal	23
	11		4	2	3/2, 8/2, 11/1	Normal	50
	12		1	3	1/1, 2/2, 8/3, 15/1	Normal	459
	13		3	1	14/1, 10/3, 6/1	Normal	906
	15		2	4	13/2, 10/2, 7/1	Normal	20
1	16		3	4	14/1, 10/2, 7/1	Normal	113
1	17		3	2	14/1, 16/1, 11/1	Normal	136
	19		2	3	13/2, 15/1	Normal	88
	20		4	3	3/2, 8/3, 15/1	Normal	127
	21		1	4	1/1, 2/3, 12/1, 7/1	Normal	27
	22		2	1	13/2, 10/3, 6/1	Normal	89
	23		1	2	1/1, 2/2, 8/2, 11/1	Normal	55

Signal Timings

Network Default: 75s cycle time; 75 steps

Controller Stream 1

[Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
	1	(untitled)		1	NetworkDefault	75

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

[Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
	1	✓	✓	Offsets Only		

Phases

Controller Stream	n Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1	(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	A, B	1
1	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
1	1	Losing	A	1	2	1

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2	37, 56

Intergreen Matrix for Controller Stream 1

	То						
		Α	в	С			
From	Α			5			
From	в			6			
	С	6	5				

Banned Stage transitions for Controller Stream 1

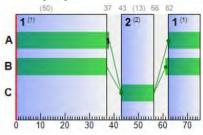
Interstage Matrix for Controller Stream 1

	То			
		1	2	
From	1	0	6	
	2	6	0	

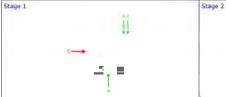
Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
4	1	√	1	A,B	62	37	50	1	6
1	2	✓	2	С	43	56	13	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	62	38	51

1	в	1	✓	61	37	51
1	С	1	✓	43	56	13


Traffic Stream Green Times

Arm	Traffic Stream	Traffic Node	Controller Stream	Phase	Green Period 1		
AIIII	Traine Otream	manie noue	Controller Stream		Start	End	Duration
2	2		1	A	62	38	51
2	3		1	A	62	38	51
3	2		1	С	43	56	13
10	3		1	В	61	37	51

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Controller Stream 2

 Controller Stream
 Name
 Description
 Use sequence
 Cycle time source
 Cycle time (s)

 2
 (untilted)
 1
 NetworkDefault
 75

Controller Stream 2 - Properties

 Controller Stream
 Manufacturer name
 Type
 Model number
 (Telephone) Line Number
 Site number
 Grid reference
 Gaining delay type

 2
 Unspecified
 Absolute
 Absolute
 Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	✓	Offsets Only		

Phases

 Controller Stream
 Phase
 Name
 Minimum green (s)
 Maximum green (s)
 Relative start displacement (s)
 Relative end displacement (s)
 Type

 2
 (ALL)
 (untitled)
 7
 300
 0
 0
 Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	A, B	1
2	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
2	1	Losing	В	1	2	7

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
2	1	(untitled)	Single	1, 2	29, 56

Intergreen Matrix for Controller Stream 2

		т	0	
		Α	в	С
From	Α			6
From	в			6
	С	6	6	

Banned Stage transitions for Controller Stream 2

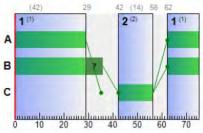
		То	
		1	2
From	1		
	2		

Interstage Matrix for Controller Stream 2

		То	
		1	2
From	1	0	13
	2	6	0

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
2	1	~	1	A,B	62	29	42	1	7
2	2	~	2	С	42	56	14	1	7


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	62	29	42
2	В	1	1	62	36	49
	С	1	✓	42	56	14

Traffic Stream Green Times

Arm	Traffic Stream Traffic Node Controller		Controllor Stream	Phase	Gr	een Po	eriod 1
Ann	Traffic Stream	Trainc Node	Controller Stream	Flase		End	Duration
8	3		2	A	62	29	42
13	2		2	С	42	56	14
14	1		2	В	62	36	49

Phase Timings Diagram for Controller Stream 2

Stage Sequence Diagram for Controller Stream 2

Resultant penalties

Time Segment	Controller stream	Phase min max penalty (£ per hr)	Intergreen broken penalty (£ per hr)	Stage constraint broken penalty (£ per hr)	Cost of controller stream penalties (£ per hr)
17:00-18:00	(ALL)	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	28	227	541	1965	75	0.35	0.05	0.15	0.74	0.00	0.74
	2	2	37	143	514	2105	51	6.14	3.96	50.66	12.46	3.08	15.54
	_	3	2	4765	27	2105	51	3.70	0.17	2.21	0.39	0.10	0.50
	3	2	62	44	200	1717	13	37.23	4.34	12.48	29.37	2.54	31.91
	6	1	0	Unrestricted	1018	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	160	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
		2	15	504	105	704	75	0.45	0.01	0.20	0.19	0.00	0.19
17:00-	8	3	49	85	586	2105	42	8.86	5.69	88.44	20.47	3.40	23.87
18:00	10	2	16	477	133	852	75	0.39	0.01	0.48	0.20	0.00	0.20
	10	3	68	32	995	2105	51	4.40	3.08	55.40	17.26	1.85	19.12
	11	1	0	Unrestricted	241	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2	4213	27	1294	75	0.03	0.00	0.01	0.00	0.00	0.00
	13	2	59	52	197	1665	14	34.94	4.14	11.91	27.15	2.42	29.57
	14	1	88	2	1155	1965	49	19.85	22.37	64.32	90.41	12.74	103.16
	15	1	0	Unrestricted	674	Unrestricted	75	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	16	480	136	877	75	3.27	0.89	89.46	1.76	0.64	2.39

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	541	541	0		1965	1965	28		227	0.00	75
	2	2	514	514	0		2105	1385	37		143	0.00	51
	2	3	27	27	0		2105	1459	2		4765	0.00	51
	3	2	200	200	0		1717	321	62		44	0.00	13
	6	1	1018	1018	0		Unrestricted	Unrestricted	0		Unrestricted	0.44	75
	7	1	160	160	0		Unrestricted	Unrestricted	0		Unrestricted	0.28	75
	8	2	105	105	0		704	704	15		504	0.87	75
17:00-	o	3	586	586	0		2105	1207	49		85	0.61	42
18:00	10	2	133	133	0		852	852	16		477	0.44	75
	10	3	995	995	0		2105	1459	68		32	0.52	51
	11	1	241	241	0		Unrestricted	Unrestricted	0		Unrestricted	0.39	75
	12	1	27	27	0		1294	1294	2		4213	0.60	75
	13	2	197	197	0		1665	333	59		52	0.00	14
	14	1	1155	1155	0		1965	1310	88		2	0.00	49
	15	1	674	674	0		Unrestricted	Unrestricted	0		Unrestricted	0.42	75
	16	1	136	136	0		877	877	16		480	0.66	75

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.35	0.05	0.74	0.00	0.00	0.00
	2	2	5.40	6.14	0.88	12.46	47.76	245.49	3.08
	1 1								

		3	5.40	3.70	0.03	0.39	30.70	8.29	0.10
	3	2	24.00	37.23	2.07	29.37	101.15	202.30	2.54
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	8	2	4.44	0.45	0.01	0.19	0.00	0.00	0.00
	L°.	3	4.44	8.86	1.44	20.47	46.29	271.27	3.40
17:00-18:00	10	2	2.40	0.39	0.01	0.20	0.00	0.00	0.00
17:00-18:00	10	3	3.84	4.40	1.22	17.26	14.84	147.70	1.85
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2.04	0.03	0.00	0.00	0.00	0.00	0.00
	13	2	24.00	34.94	1.91	27.15	98.05	193.17	2.42
	14	1	24.00	19.85	6.37	90.41	88.00	1016.46	12.74
	15	1	51.53	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	1.08	3.27	0.12	1.76	37.27	50.69	0.64

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.05	34.78	0.15	0.00	0.00	
	2	2	0.00	3.96	7.83	50.66	0.00	2.64	
	2	3	0.00	0.17	7.83	2.21	0.00	51.00	
	3	2	0.00	4.34	34.78	12.48	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	4.00	
	8	2	0.00	0.01	6.43	0.20	0.00	56.00	
17:00-18:00	°	3	0.00	5.69	6.43	88.44	0.00	0.00	
17.00-18.00	10 -	2	0.00	0.01	3.00	0.48	0.00	16.00	
		3	0.00	3.08	5.57	55.40	0.00	0.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.00	3.00	0.01	0.00	72.00	
	13	2	0.00	4.14	34.78	11.91	0.00	0.00	
	14	1	0.00	22.37	34.78	64.32	0.00	0.00	
	15	1	0.00	0.00	74.68	0.00	0.00	0.00	
	16	1	0.00	0.89	1.00	89.46	0.00	25.00	

Traffic Stream Results: Flare

 Time Segment
 Arm
 Traffic Stream
 Flare present
 Flare components
 Degree of saturation (%)
 Mean max queue (PCU)
 Calculated capacity (PCU/hr)
 Practical reserve capacity (%)

 17:00-18:00
 1
 1
 ✓
 CTM flare: 1/1,2/2,2/3
 39
 4.19
 1397
 132

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	1	0.05			1.00	0.00	0.74
	2	2	0.00	0.00	~	3.96	0.11	3.68	1.00	0.00	15.54
	2	3	0.00	0.00	1	0.17	0.00	0.17	1.00	0.00	0.50
	3	2	0.00	0.00	~	4.35	0.51	3.90	1.00	0.00	31.91
	6	1	0.00	0.00	1	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	1	0.00			1.00	0.00	0.00
	8	2	0.00	0.00	~	0.01			1.00	0.00	0.19
47.00 40.00	8	3	0.00	0.00	1	5.69	0.23	4.53	1.00	0.00	23.87
17:00-18:00	10	2	0.00	0.00	1	0.01			1.00	0.00	0.20
	10	3	0.00	0.00	1	3.09	0.73	3.09	1.00	0.00	19.12
	11	1	0.00	0.00	1	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	13	2	0.00	0.00	1	4.15	0.43	3.71	1.00	0.00	29.57
	14	1	0.00	0.00	~	22.45	3.20	11.22	1.00	0.00	103.16
	15	1	0.00	0.00	1	0.00			1.00	0.00	0.00
	16	1	0.00	0.00	1	0.89			1.00	0.00	2.39

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
8	14/06/2019 14:01:58	14/06/2019 14:01:58	17:00	75	227.18	14.11	88.17	14/1	0	0	14/1	1/1	14/1	~

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
17:00-18:00	88	2	6709	946	7.57	200.41	26.77	227.18

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)			Adjusted flow Degree of saturation warning (%)		Practical reserve capacity (%)	Actual green (s (per cycle))
17:00-18:00	6709	6709	0		88		2	946

Network Results: Stops and delays

Time	Mean Cruise Time per Veh	Mean Delay per Veh	Total delay (PCU-	Weighted cost of delay (£ per	Mean stops per Veh	Total stops (Stops per	Weighted cost of stops (£ per
Segment	(s)	(s)	hr/hr)	hr)	(%)	hr)	hr)
17:00-18:00	19.28	7.57	14.11	200.41	31.83	2135.36	

Network Results: Queues and blocking

 Time Segment
 Utilised storage (%)
 Excess queue penalty (£ per hr)
 Wasted time total (s (per cycle))

 17:00-18:00
 89.46
 0.00
 226.64

Network Results: Advanced

Time Degree of saturation penalty (£ per Ped gap accepting penalty (£ per Warmed PCU

Segment	hr)	hr)	up	Factor	hr)	hr)	hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	227.18

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	64.8	98.5	59.5
From	2	103.1	0.0	110.5	85.7
	3	74.9	72.2	0.0	70.6
	4	85.2	90.1	134.1	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
10	4	1	23	85.23	23	85.23
11	4	2	50	90.12	50	90.12
12	1	3	459	98.49	459	98.49
13	3	1	906	74.91	906	74.91
15	2	4	20	85.73	20	85.73
16	3	4	113	70.64	113	70.64
17	3	2	136	72.20	136	72.20
19	2	3	88	110.46	88	110.46
20	4	3	127	134.11	127	134.11
21	1	4	27	59.52	27	59.52
22	2	1	89	103.11	89	103.11
23	1	2	55	64.78	55	64.78

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PER	PCU		QUEUES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (£ per hr)	P.I.
1	1	(untitled)				541	1965	75	0.00	28	227	24.35	0.35	0.00	0.05	100	100	0.00	0.74
2	2	(untitled)		1	A	514	2105	51	2.64	37	143	11.54	6.14	47.76	3.96	100	100	0.00	15.54
2	3			1	A	27	2105	51	51.00	2	4765	9.10	3.70	30.70	0.17	100	100	0.00	0.50
3	2	(untitled)		1	С	200	1717	13	0.00	62	44	61.23	37.23	101.15	4.34	100	100	0.00	31.91
6	1	(untitled)				1018	Unrestricted	75	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
7	1	(untitled)				160	Unrestricted	75	4.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
	2	(untitled)				105	704	75	56.00	15	504	4.89	0.45	0.00	0.01	100	100	0.00	0.19
8	3			2	A	586	2105	42	0.00	49	85	13.30	8.86	46.29	5.69	100	100	0.00	23.87
10	2	(untitled)				133	852	75	16.00	16	477	2.79	0.39	0.00	0.01	100	100	0.00	0.20
10	3			1	В	995	2105	51	0.00	68	32	8.24	4.40	14.84	3.08	100	100	0.00	19.12
11	1	(untitled)				241	Unrestricted	75	0.00	0	Unrestricted	24.00	0.00	0.00	0.00	100	100	0.00	0.00
12	1					27	1294	75	72.00	2	4213	2.07	0.03	0.00	0.00	100	100	0.00	0.00
13	2	(untitled)		2	С	197	1665	14	0.00	59	52	58.94	34.94	98.05	4.14	100	100	0.00	29.57
14	1	(untitled)		2	В	1155	1965	49	0.00	88	2	43.85	19.85	88.00	22.37	100	100	0.00	103.16
15	1	(untitled)				674	Unrestricted	75	0.00	0	Unrestricted	51.53	0.00	0.00	0.00	100	100	0.00	0.00
16	1					136	877	75	25.00	16	480	4.35	3.27	37.27	0.89	100	100	0.00	2.39

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU- hr/hr)	Mean journey speed (kph)	Total delay (PCU- hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1077.90	50.04	21.54	14.11	200.41	26.77	0.00	227.18
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00 0.0		0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1077.90	50.04	21.54	14.11	200.41	26.77	0.00	227.18

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 * Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

Appendix C Technical Note 033

Subject:	B4030 Station Road / Ardley Road Junction Options and Capacity Testing
Prepared By:	Rachel Kirkwood / Phil Rawlins
Date:	2 nd March 2020
Note No:	TN033
Job No:	39304
Job Name:	Heyford Park

Item	Subject
1.	Introduction
	This note has been prepared by Stantec on behalf of Dorchester Group to set out a review of potential options for improvements at the B4030 Station Road / Ardley Road junction.
	This follows Technical Note 028 Rev. A (TN028A) which was prepared by Stantec in November 2019 and set out a review of the operation of the B430 / Ardley Road junction. It was identified that the existing priority layout was predicted to operate significantly over capacity in the 2031 scenarios both with and without the Heyford development traffic. On this basis mitigation was proposed in the form of a signalised junction design.
	Oxfordshire County Council (OCC) have reviewed the proposed mitigation scheme and have requested that an alternative option for the junction be considered that could provide a smaller-scale junction, more suited to a village environment whilst still providing operational capacity and safety benefits at the junction.
	Section 2 of this note presents a summary of the modelling and mitigation proposals put forward within TN028A. Section 3 sets out a number of different design iterations for the junction and associated capacity testing for each. Section 4 sets out Stantec's preferred solution for the junction.
2.	2031 Forecast Modelling
	The forecast modelling undertaken within TN028A is summarised below.
	2031 Reference Case (RC)
	Table 1 shows the junction capacity assessment results for the existing junction layout and traffic flows including background growth and committed development up to the 2031 forecast year but excluding the Local Plan allocation at Heyford Park. For further details of this modelling, refer to TN028A.
	Table 1 demonstrates that in the 2031 RC scenario the Ardley Road East arm of the junction is predicted to operate significantly over capacity in the AM peak hour in this scenario. In the PM peak hour, the junction is predicted to operate within capacity.

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

			Subject				
Table 1: B430 Statio	on Road / A	Ardley Roa	ad 2031 Ref	erence Cas	e Modellin	g Results	
		AM P	eak		PM F	Peak	
Link	DoS	MM	Q Dela (Secs		S MN		elay ecs)
B430 Station Road	(N) 56%	0.7	2	30%	6 0.	1	1
Ardley Road (E)	245%	60.4	4 1295	5 75%	6 1.	1 2	27
B430 Station Road	(S) 61%	0.5	2	38%	6 0.	1	1
Ardley Road (W)	44%	0.2	2 5	31%	6 0.	1	2
2031 Test Case - Do	Something				·	·	
Link		AM Peak			Case – DS1 Modelling Results PM Peak		
Link							
	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)	
B430 Station Road (N)		ММQ 0.8		DoS 28%	ММQ 0.1		
			(Secs)			(Secs)	
(N)	58% 311%	0.8	(Secs) 3	28%	0.1	(Secs) 1	_
(N) Ardley Road (E) B430 Station Road (S) Ardley Road (W)	58% 311% 74% 73%	0.8 44.8 1.0 0.9	(Secs) 3 1485 5 16	28% 99999% 78% 57%	0.1 98.5 1.4 0.4	(Secs) 1 1800 4 8	
(N) Ardley Road (E) B430 Station Road (S)	58% 311% 74% 73% s that with fley Road E nd PM peak o Something with mitiga tion layout f a double ju 9304/5501/3	0.8 44.8 1.0 0.9 the existing ast arm of a hours. a 1 (DS1) v tion scenar is the prop unction arra SK50 Rev	(Secs) 3 1485 5 16 g priority laye the junction with mitigation with mitigation with mitigation rio uses the osed mitigat angement w A.	28% 9999% 78% 57% out and the is predicted on same flows ion set out v ith give-way	0.1 98.5 1.4 0.4 Heyford Pa I to operate as in the Te vithin TN02 r left turn sli	(Secs) 1 1800 4 8 rk developn significantly est Case DS 8A. This ps on the B	y ove §1 430 a

Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

n	Subject						
	Table 3: B430 Station R Modelling Results	oad / Ard	ley Road 2	031 Test Ca	ise – DS1 w	ith mitigatio	on
			AM Peak			PM Peak	
	Link	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)
	B430 Station Road (N)	81%	18.9	20	40%	5.0	26
	Ardley Road (E)	68%	3.1	53	68%	4.5	42
	B430 Station Road (S)	86%	10.5	33	85%	20.8	19
	Ardley Road (W)	85%	7.3	61	58%	4.1	34
3.	Table 3 demonstrates that and PM peak hours. Alternative Mitigation O	-	tion is pred	icted to oper	ate within ca	ipacity in bol	h the AM
	Option 1: Simplified Signa	10560 .000					
	This option would provide arrangement and the pro- also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t provided at Appendix A .	e a junction posed miti would ope roposed as rated in Dr he results	n reduced i gation sche rate as a si s part of the awing 393 are set out	eme set out v ingle junction e mitigation s 02/5501/SK within Table	within TN028 n. The layou cheme set o 59. The junc 34 and the r	BA. The junc t does not proton to t within TN to capacity	ction has rovide the 028A. The y of Optior
	arrangement and the pro also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t	e a junction posed miti would ope roposed as rated in Dr he results	n reduced i gation sche rate as a si s part of the awing 393 are set out alised Lay	eme set out v ingle junction e mitigation s 02/5501/SK t within Table rout Modelli	within TN028 n. The layou cheme set o 59. The junc 34 and the r	BA. The junc t does not product within TN stion capacity nodelling our	ction has rovide the 028A. The y of Optior
	arrangement and the pro also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t provided at Appendix A .	e a junction posed miti would ope roposed as rated in Dr he results	n reduced i gation sche rate as a si s part of the awing 393 are set out	eme set out v ingle junction e mitigation s 02/5501/SK t within Table rout Modelli	within TN028 n. The layou cheme set o 59. The junc 34 and the r	BA. The junc t does not proton to t within TN to capacity	tion has rovide the 028A. The of Optior tput report Delay
	arrangement and the pro also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t provided at Appendix A . Table 4: Option 1 Simpl	e a junction posed miti would ope roposed as rated in Dr he results ified Sign	n reduced i gation sche rate as a si s part of the awing 393 are set out alised Lay AM Peak	eme set out v ingle junction e mitigation s 02/5501/SK within Table rout Modellin Delay	within TN028 n. The layou cheme set o 59. The junc e 4 and the r ng Results	BA. The junc t does not pro- but within TN stion capacity nodelling our PM Peak	tion has rovide the 028A. Th of Optior tput report Delay
	arrangement and the pro also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t provided at Appendix A . Table 4: Option 1 Simpl Link	e a junction posed miti would ope roposed as rated in Dr he results ified Sign DoS	n reduced i gation sche rate as a si s part of the awing 393 are set out alised Lay AM Peak	eme set out v ingle junction e mitigation s 02/5501/SK t within Table rout Modellin Delay (Secs)	within TN028 n. The layou cheme set o 59. The junc e 4 and the r ng Results DoS	BA. The junc t does not product within TN stion capacity nodelling our PM Peak MMQ	tion has rovide the 028A. The of Optior tput report Delay (Secs)
	arrangement and the pro also been simplified and left-turn slips that were pr junction proposal is illustr has been assessed and t provided at Appendix A . Table 4: Option 1 Simpl Link B430 Station Road (N)	e a junction posed miti would ope roposed as rated in Dr he results ified Sign DoS 84%	n reduced i gation sche rate as a si s part of the awing 393 are set out alised Lay AM Peak MMQ 30.4	eme set out v ingle junction e mitigation s 02/5501/SK within Table rout Modellin Delay (Secs) 23	vithin TN028 n. The layou cheme set o 59. The junc a 4 and the r ng Results DoS 44%	A. The junc t does not product within TN stion capacity nodelling our PM Peak MMQ 9.3	tion has rovide the 028A. Th of Optior tput report Delay (Secs)

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

Subject						
these vehicles is very limited and therefore these block the northbound ahead movement causing capacity issues on this arm.						
Because of the capacity constraints on the B430 it is not considered that this would form a practicable option.						
Option 2: Simplified Sign	alised June	ction, Bann	ed South to	East Right T	urn	
This option would provide except the south to east the right turn would provi Movements wishing to tu U-Turn at the Ardley Rou Ardley Road. The junction within Table 5 and the m	right turn n de more ca rn right cou indabout ju on capacity	novement h apacity at th uld travel no inction to th of Option 2	as been bar ne junction, e orthbound th ne north befo 2 has been a	ned. It is co especially on rough the ju re returning assessed and	onsidered that the souther nction and un and turning l d the results	at banning n arm. ndertake a left into
Table 5: Option 2 Simpl Modelling results	lified Sign	alised Jun	ction, Bann	ed South to	East Right	Turn
		AM Peak			PM Peak	
Link	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)
B430 Station Road (N)	99%	58.3	67	50%	11.0	12
Ardley Road (E)	109%	11.7	291	158%	41.0	709
B430 Station Road (S)	57%	13.7	12	89%	34.8	24
Ardley Road (W)	197%	67.4	923	155%	40.7	692
Table 5 demonstrates that		vanneu ng	ni iunn ine ju	1101101115 5111	n of the B43	operate

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

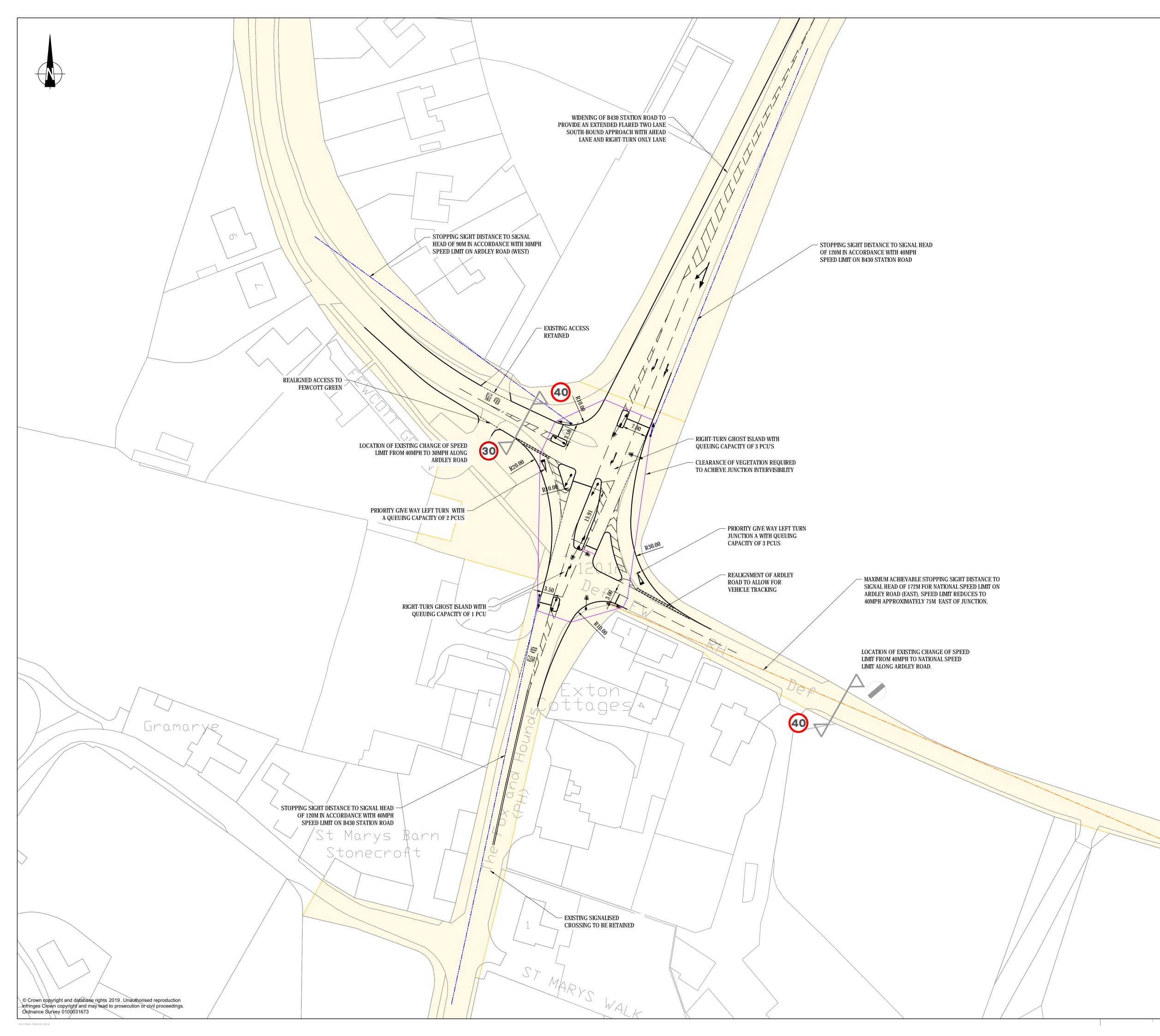
ltem	Subject						
	Table 6: Option 3 Reduce Banned South to East F				ned South	to East Rigl	nt Turn,
	Banned South to East Right Turn Modelling results AM Peak PM Peak						
	Link	DoS	MMQ	Delay (Secs)	DoS	MMQ	Delay (Secs)
	B430 Station Road (N)	86%	35.1	23	44%	6.8	7
	Ardley Road (E)	73%	4.8	79	68%	6.8	59
	B430 Station Road (S)	59%	14.6	12	80%	26.3	15
	Ardley Road (W)	85%	10.2	77	87%	9.0	95
	This note has reviewed ju Station Road / Ardley Road The existing priority layout scenarios both with and we within TN028A was predit however OCC requested scale junction more suite Three options for alternat simplified signalised junct peak hours and is not con with banned south to eas and PM peak hours and it	ad junction ut was pre- vithout He cted to op considera d to a villa tive schem tion, was p nsidered a t right turn	n and asses dicted to op yford devel erate within tion of optio ge environn nes were the predicted to practicable n, was still p	erate signific opment traffi capacity in l ons for a solu- ment. erefore consi operate ove e option. Opti redicted to o	ditional miti cantly over c c. The mition both the AM ution that co idered and a r capacity in ion 2, a simp perate over	agation desig capacity in th gation schem and PM pea uld provide a assessed. Op both the AN plified signali capacity in b	n options. e 2031 he proposed ak hours, a smaller otion 1, a 1 and PM sed junction poth the AM
	double junction with bann both the AM and PM pea solution providing a reduc the reference case withou capacity to the mitigation Further technical discuss junction location.	ned south k hours ar ced scale ut develop scheme p	to east right and is therefo junction wh ment. Option proposed with	t turn, was propertion of turn, was proper considered ilst providing on 3 is seen thin TN028A	redicted to c ed to offer an operational to operate v	operate within n alternative and safety b with a similar	n capacity in mitigation penefits over level of

) Stantec

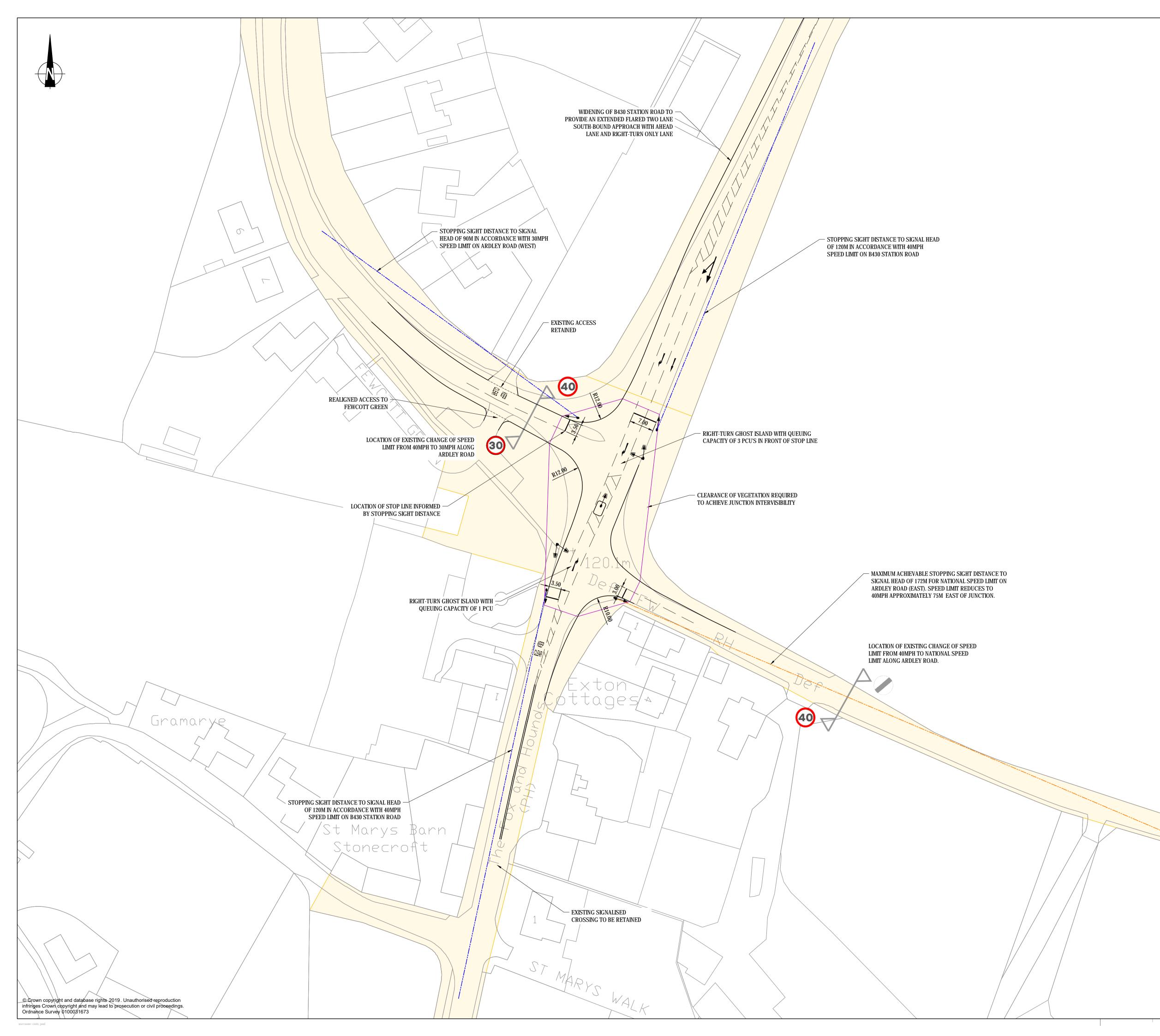
DOCUMENT ISSUE RECORD

BOCOMENTICODE RECORD							
Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)	
39304/5501/TN033	-	09.03.2020	RK	PR	PR	MW	

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report. Stantec 10 Queen Square Bristol BS1 4NT


T: +44 (0)117 332 7840

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx



DRAWINGS

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

	AYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFETY . GATIONS RESULTS & EARTHWORKS MODELLING, UTILITIE				
OF LANI	O OWNERSHIP; DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORD				
GUIDAN	CE AND STANDARDS; AYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN (
PROPOS					NTS
AND	ISE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT F				nıs,
	DS TO HEALTH & SAFETY AND CDM REGULATIONS;		JUSIDIL		
KEY:					
	HIGHWAY BOUNDARY INFORMATION RECEIVED FROM (09.04.19 AND INTERPRETED BY PBA	OXFORD COUNTY	COUNC	CIL ON	
	STOPPING SIGHT DISTANCE TO JUNCTION NEAR-SIDE S WITH DMRB FOR RELEVANT SPEED LIMIT ON APPROAC		CCORD	ANCE	
	STOPPING SIGHT DISTANCE (MAXIMUM ACHIEVABLE) T HEAD WITHIN ADOPTED HIGHWAY LAND	O JUNCTION NEA	R-SIDE S	SIGNAL	
	- JUNCTION INTERVISIBILITY TO DMRB (WORST CASE SI CROSSROADS ARRANGEMENT)	HOWN FOR A STA	GGEREI)	
	PRIMARY TRAFFIC SIGNAL HEAD AND POLE				
••	SECONDARY TRAFFIC SIGNAL HEAD AND POLE				
A RE	EVISED JUNCTION TO INCLUDE GIVEWAY LEFT TURNS	31.05.19	JHo		
	EVISED JUNCTION TO INCLUDE GIVEWAY LEFT TURNS	31.05.19 Date	JHo Drawn	- Chkd	Ap
Mark Re SCALING UTILITIES	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility	Date y services, plant or a	Drawn	s shown o	
Mark Re SCALING UTILITIES drawing is be present	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask.	y services, plant or a blied. Other such pla their own investigat	Drawn pparatus nt or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status	y services, plant or a blied. Other such pla their own investigat	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operatio	y services, plant or a blied. Other such pla their own investigat	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status	y services, plant or a blied. Other such pla their own investigat	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT	y services, plant or a lied. Other such pla their own investigat	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or implet but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN	Date y services, plant or a blied. Other such pla their own investigations.	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN YOUT OF B430 STATION	Date y services, plant or a blied. Other such pla their own investigations.	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or implet but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN	Date y services, plant or a blied. Other such pla their own investigations.	Drawn opparatus int or app	s shown o paratus m	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN YOUT OF B430 STATION DLEY ROAD	Date y services, plant or a blied. Other such pla their own investigations.	Drawn apparatus nt or app ion where	s shown o paratus m e the pre:	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO	evision NOTE: Do <u>not</u> scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN YOUT OF B430 STATION	Date y services, plant or a blied. Other such plant their own investigations. SCTION ROAD /	Drawn	s shown o paratus m e the pre:	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility, believed to be correct, but no warranty to this is expressed or implet but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation as the string sewers services, plant or apparatus may affect their operation as the string sewers are services. The Contractor is therefore advised to undertake string sewers, services, plant or apparatus may affect their operation as the string sewers and the contractor is therefore advised to undertake string sewers, services, plant or apparatus may affect their operation as the string sewers and the contractor is therefore advised to undertake string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers, services, plant or apparatus may affect their operation as the string sewers and services as the string sewers as the string severs, services, plant or apparatus may affect their operation as the string severs as the string severes as the string severs as the string severs as the string severs a	Date y services, plant or a blied. Other such plant their own investigations. UCTION ROAD /	Drawn pparatus nt or app on where	s shown o paratus m e the pre:	on thi
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing Drawing HE` CO LA` ARI Client DO GR	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no warranty to this is expressed or impleted to be correct, but no apparatus may affect their operation of any exiting between the correct. It is to be be be been been been been been been	Date y services, plant or a blied. Other such pla their own investigations.	Drawn pparatus nt or app ion where on where t of	s shown o paratus m e the pre:	on thi hay a sence
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO GR Date of 1st 2 A1 Scale	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or imp t but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation Issue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN YOUT OF B430 STATION DLEY ROAD RCHESTER OUP t Issue Designed P.C P.C Checked Approved	Date y services, plant or a blied. Other such plant their own investigations. UCTION ROAD /	Drawn pparatus nt or app ion where on where t of	s shown o paratus m e the pre:	on thi hay a sence
Mark Re SCALING UTILITIES drawing is be present of any exis Drawing HE` CO LA` ARI Client DO GR Date of 1st 2 A1 Scale	evision NOTE: Do not scale from this drawing. If in doubt, ask. NOTE: The position of any existing public or private sewers, utility believed to be correct, but no warranty to this is expressed or implet but not shown. The Contractor is therefore advised to undertake sting sewers, services, plant or apparatus may affect their operation of assue Status DRAFT YFORD PARK NCEPT SIGNALISED JUN YOUT OF B430 STATION DLEY ROAD RCHESTER OUP tlssue Designed 4.04.19 P.C P.C P.C 1:500 -	Date y services, plant or a blied. Other such pla their own investigations.	Drawn pparatus int or app ion where or where t of com	s shown o paratus m e the pres	on thi hay a sence

ige scheme.dw	File Location: j:\39304 heyford park	
ige scheme	File Location: j:\39304 heyford park	

GROUP				Stantec
Date of 1st Issue 20.02.20	Designed P.C	Drawn P.C		stantec.com/uk
A1 Scale 1:500	Checked -	Approved -		Copyright reserved The copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorised by Stantec is forbidden.
Drawing Number 39304/550	1/SK59	9	Revision –	BRISTOL Tel: 01173 327 840

stantec.com/uk	

Client DORCHESTER

Drawing Issue Status

ARDLEY ROAD

HEYFORD PARK CONCEPT SIGNALISED JUNCTION

LAYOUT OF B430 STATION ROAD /

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

SCALING NOTE: <u>Do not</u> scale this drawing - any errors or omissions shall be reported to Stantec without delay.

Date Drawn Chkd Appd Mark Revision

DRAFT

JUNCTION INTERVISIBILITY TO DMRB (WORST CASE SHOWN FOR A STAGGERED CROSSROADS ARRANGEMENT) • PRIMARY TRAFFIC SIGNAL HEAD AND POLE

WITH DMRB FOR RELEVANT SPEED LIMIT ON APPROACH

HEAD WITHIN ADOPTED HIGHWAY LAND

09.04.19 AND INTERPRETED BY STANTEC

← → SECONDARY TRAFFIC SIGNAL HEAD AND POLE

NOTES:

KEY:

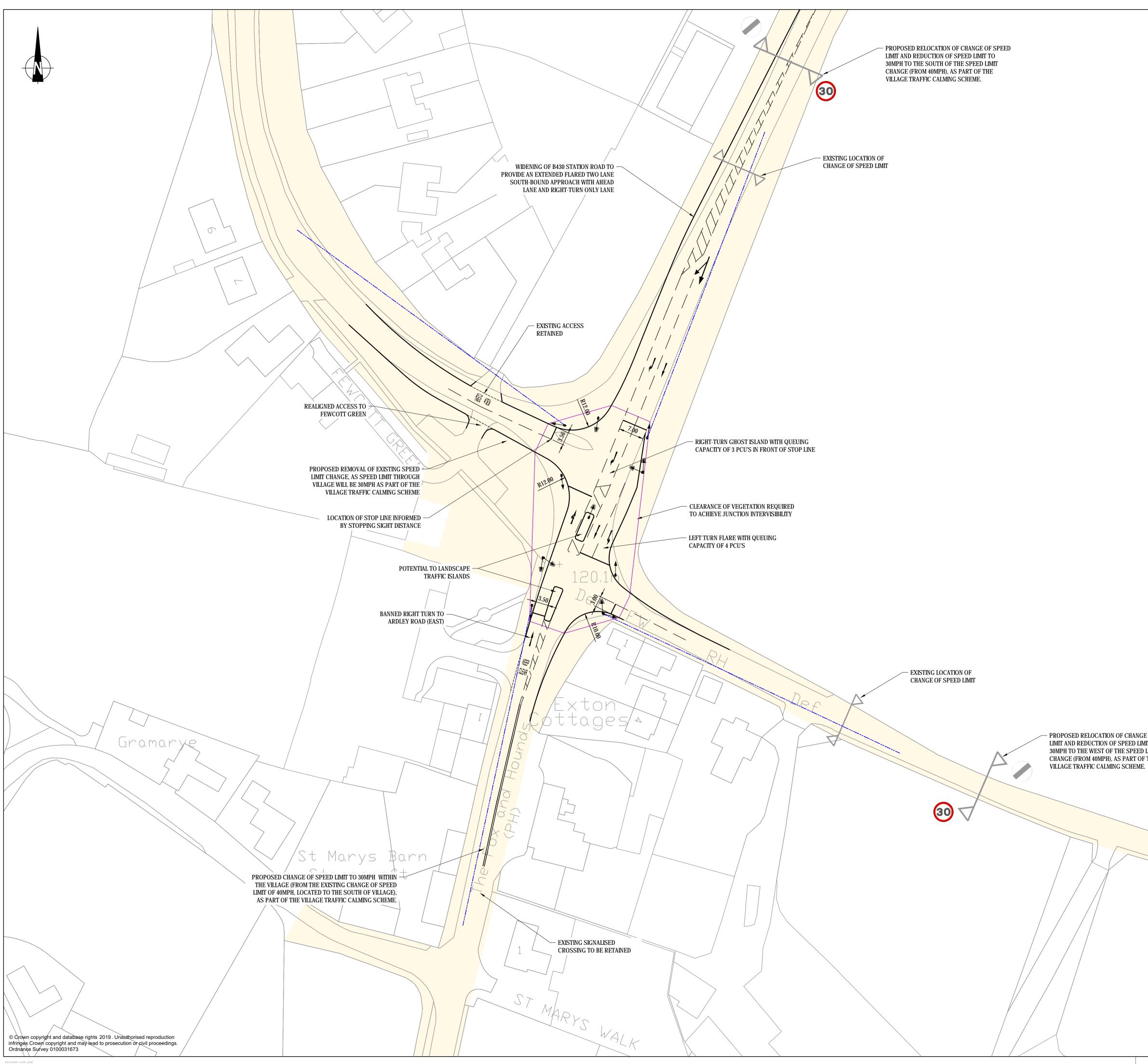
TES.
HE LAYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFETY AUDIT, CAPACITY TESTING, GROUND
ESTIGATIONS RESULTS & EARTHWORKS MODELLING, UTILITIES & SERVICES AND CONFIRMATION

OF LAND OWNERSHIP; 2. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORDANCE WITH ALL RELEVANT DESIGN GUIDANCE AND STANDARDS;

3. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN SPEED FOR OUR CURRENT

PROPOSALS; 4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT ASSOCIATED DOCUMENTS;

AND 5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FROM THEIR RESPONSIBILITIES IN


REGARDS TO HEALTH & SAFETY AND CDM REGULATIONS;

HIGHWAY BOUNDARY INFORMATION RECEIVED FROM OXFORD COUNTY COUNCIL ON

STOPPING SIGHT DISTANCE TO JUNCTION NEAR-SIDE SIGNAL HEAD IN ACCORDANCE

STOPPING SIGHT DISTANCE (MAXIMUM ACHIEVABLE) TO JUNCTION NEAR-SIDE SIGNAL

1. TH INVE

iser name: coote, paul

		E LAYOUT IS SUI			ROAD SAFETY AUDIT,				
	OF LA	ND OWNERSHIP	D ,		LLING, UTILITIES & SE				
		E DETAILED DES ANCE AND STAN		LL BE DESIGN	ED IN ACCORDANCE V	VITH ALL 1	RELEVAN	IT DESIC	GN
		E LAYOUT HAS B OSALS;	BEEN BASED ON	THE APPROP	RIATE DESIGN SPEED	FOR OUR	CURREN	ΝT	
	4. THE AND	S DRAWING SHO	OULD BE READ I	N CONJUNCTI	ON WITH ALL RELEVA	NT ASSOC	CIATED D	OCUMEI	NTS;
		E USE OF THE D RDS TO HEALTH			THE CLIENT FROM TH ATIONS;	IEIR RESP	ONSIBILI	TIES IN	
	KEY:								
	KE1.		BOUNDARY INFO ND INTERPRETE		CEIVED FROM OXFOR	D COUNT	Y COUNC	L ON	
					HE PROPOSED SPEED CE WITH DMRB CD123		30MPH, 7	ГО	
			INTERVISIBILITY ADS ARRANGEM		ORST CASE SHOWN F	OR A STA	GGERED)	
	•••		TRAFFIC SIGNAL	·	DLE				
	•	SECONDAF	RY TRAFFIC SIG	NAL HEAD ANI	D POLE				
SPEED									
	Mark	Revision				Date	Drawn	Chkd	Аррс
	UTILITI	ES NOTE: The po	sition of any exist	ng public or priv	omissions shall be repor vate sewers, utility service	es, plant or	apparatus	shown c	
	be pres	ent but not shown	. The Contractor i	s therefore advi	expressed or implied. Ot sed to undertake their ow fect their operations.				
	Drawi	ng Issue Statu	IS	ΠP	AFT				
	_								
		EYFOR							
								.1	
			RUAD	- DAN				N	
	Client								
	· - · ·		JILN						
	GF	ROUP				Sta	ant	te	C
	GF	ROUP	JILI			Sta	ant	te	С
		1st Issue 20.02.20	Designed P.C	Drawn P.C		Sta		te	C
		1st Issue 20.02.20	Designed		st	antec.co Copyright res gns and drawii	m/uk erved ngs are the pr	roperty of St	
	Date of A1 Scale Drawing	1st Issue 20.02.20 e	Designed P.C Checked P.R	P.C Approved - Revision	Sta The copyrights to all desi Reproduction o authori	antec.co Copyright res gns and drawii	m/uk erved ngs are the pr urpose other i s forbidden.	roperty of St than that	

File Location: j:\39304 heyford park tranche 2\cad\brief 5501\sketches\39304-5501-sk65 ardley rd_station rd junction_brt.dwg

APPENDIX A

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

TRANSYT 15 Version: 15.5.2.7994 © Copyright TRL Limited, 2018 For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 200221 Ardley Crossroads Signalised.t15 Path: \\Bri-vfps-001.pba.int\bri\Projects\39304 Heyford Park Tranche 2\Technical\Transport\Junction Assessments\TRANSYT Report generation date: 09/03/2020 10:57:49

»A7 - 2031 DS1 AM : D7 - 2031 DS1 AM* : »A8 - 2031 DS1 PM : D8 - 2031 DS1 PM* :

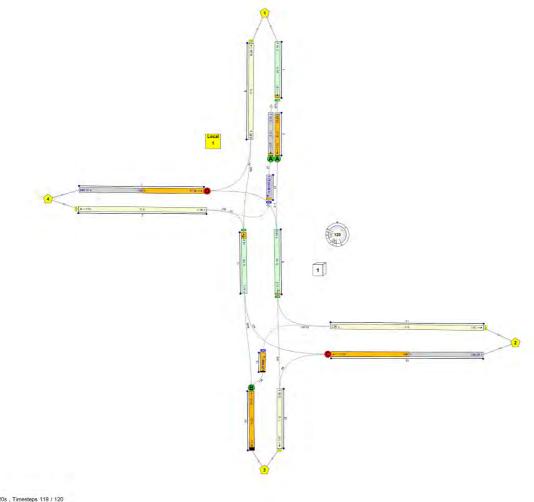
File summary

File descript	ion
File title	(untitled)
Location	
Site number	
UTCRegion	
Driving side	Left
Date	14/12/2017
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	PBA\dcollis
Description	
Jobnumber Enumerator	PBA\dcollis

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red- With- Amber	Display End-Of- Green Amber

Units


Cost	Speed	Distance	Fuel economy	Fuel rate	Mass	Traffic units	Traffic units	Flow	Average delay	Total delay	Rate of delay
units	units	units	units	units	units	input	results	units	units	units	units
£	kph	m	mpg	l/h	kg	PCU	PCU	perHour	s	-Hour	perHour

Sorting

Show names instead	Sorting direction	Sorting	Ignore prefixes when	Analysis/demand set	Link	Source	Colour Analysis/Demand
of IDs		type	sorting	sorting	grouping	grouping	Sets
	Ascending	Numerical		ID	Normal	Normal	✓

Network Diagrams

(untitled) Cycletime 0s / 120s , Timesteps 119 / 120 8, 8 Diagram produced using TRANSYT 15.5.2.7994

2

A7 - 2031 DS1 AM D7 - 2031 DS1 AM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	with	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	ltem with worst unsignalised PRC	Ite wit wor over PR
7	09/03/2020 10:56:34	09/03/2020 10:56:34	08:00	120	3968.94	275.51	200.31	14/1	3	21	14/1	1/1	14/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 AM		D7	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)
2	3

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)
10000.00	10000.00	10000.00	2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

Name	PCU Factor
Normal	1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy	
✓		Offsets And Green Splits	✓	

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run	
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~	1			Do nothing	

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	1	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	2	(untitled)			45.00	~	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00	~	Sum of lanes	1762		1762			Normal	
10	2	(untitled)			32.00	~	Sum of lanes	1762		1762			Normal	
11	1	(untitled)			200.00								Normal	
12	1				13.00	~	Sum of lanes	2105				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	~	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	434.71								Normal	
16	1				9.00	~	Sum of lanes	1915				~	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)		~	N/A	N/A	0	3.50		100	13.00	✓	1762
10	2	1	(untitled)		<	N/A	N/A	0	3.50		100	13.00	✓	1762
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	3.50		0	10.00		2105
13	2	1	(untitled)		✓	N/A	N/A	0	3.00		100	10.00	~	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
15	1	1	(untitled)											
16	1	1	(untitled)		✓	N/A	N/A	0	3.00		0	10.00	✓	1915

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	1	Flare	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	СТМ	100	100	100		0.00				
10	2	СТМ	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	~	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	✓	1.00	500.00	

Modelling - Advanced

Arm	Traffic	Initial queue	Type of Vehicle-in-	Vehicle-in-	Type of random	Random	Auto cycle	Cycle
	Stream	(PCU)	Service	Service	parameter	parameter	time	time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	~	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)	
(ALL)	(ALL)	100	100	

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	1135	1135
2	1	1118	1118
2	2	17	17
3	2	254	254
6	1	683	683
7	1	84	84
8	2	1333	1333
10	2	711	711
11	1	479	479
12	1	17	17
13	2	121	121
14	1	751	751
15	1	1015	1015
16	1	151	151

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	1	1	А	
2	2	1	A	
3	2	1	D	
13	2	1	С	
14	1	1	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)		
(ALL)	(ALL)	24.00	30.00		

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	5.40	30.00	~	Straight	Straight Movement
2	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	~	Nearside	69.54
8	2	1	2/1	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	1	13/2	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/2	12/1	1.56	30.00	~	Straight	Straight Movement
15	1	1	8/2	15/1	52.16	30.00	~	Straight	Straight Movement
16	1	1	14/1	16/1	1.08	30.00	~	Straight	Straight Movement
6	1	2	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	~	Offside	30.85
8	2	2	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	10/2 3.84 30.00 ✓ St		Straight	Straight Movement	
11	1	2	8/2	11/1	24.00	30.00	~	Nearside	99.52
15	1	2	13/2	15/1	52.16	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Number of storage spaces	Use connector turning radius	Radius of turn (m)	Visibility restricted
12	1	AllTraffic	\checkmark	2		13.00	
16	1	AllTraffic	√	2		10.00	

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Upstream signals visible	Conflict shift	Conflict duration
		TrafficStream	10/2	100		2	2
1		TrafficStream	8/2	100		2	2

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

		То						
		1	2	3	4			
	1	0	139	979	17			
From	2	94	0	10	17			
	3	550	151	0	50			
	4	39	189	26	0			

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	13/2	11/1	#00FF00
	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	979
	5		3	1	14/1, 10/2, 6/1	Normal	550
	9		1	4	1/1, 2/2, 12/1, 7/1	Normal	17
	10		4	1	3/2, 6/1	Normal	39
	11		4	2	3/2, 8/2, 11/1	Normal	189
1	12		4	3	3/2, 8/2, 15/1	Normal	26
1	14		2	1	13/2, 10/2, 6/1	Normal	94
	15		2	4	13/2, 10/2, 7/1	Normal	17
	16		3	4	14/1, 10/2, 7/1	Normal	50
	17		3	2	14/1, 16/1, 11/1	Normal	151
	18		1	2	1/1, 2/1, 8/2, 11/1	Normal	139
	19		2	3	13/2, 15/1	Normal	10

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
1	(untitled)		1	NetworkDefault	120

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1	✓	√	Offsets And Green Splits		

Phases

Controller Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1	(ALL)	(untitled)	7	300	0	0	Unknown

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	А, В	1
1	2	С	1
	3	D	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay	Absolute delay
	1	Losing	А	2	2	1	
	2	Losing	А	1	2	1	
4	3	Losing	В	1	2	5	
1	4	Losing	А	1	3	4	
	5	Gaining	A	2	1	0	0
	6	Gaining	В	2	1	0	0

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 3, 2	51, 68, 84

Intergreen Matrix for Controller Stream 1

		То						
		Α	в	С	D			
	Α			9	5			
From	в			5	9			
	С	5	5		9			
	D	5	5	9				

Banned Stage transitions for Controller Stream 1

		То				
From		1	2	3		
	1					
	2					
	3					

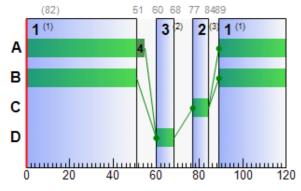
Interstage Matrix for Controller Stream 1

	То					
From		1	2	3		
	1	0	10	9		
	2	5	0	9		
	3	5	9	0		

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	89	51	82	1	7
1	2	~	3	D	60	68	8	1	7
	3	✓	2	С	77	84	7	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	89	55	86
1	В	1	✓	89	51	82
1	С	1	✓	77	84	7
	D	1	~	60	68	8

Traffic Stream Green Times

Arm	Troffic Stroom	Traffia Nada	Controller Stream	Phase	Green Period 1			
Ann	Trainc Stream	Traffic Node	Controller Stream	Fliase	Start	End	Duration	
2	1		1	А	89	55	86	
2	2		1	A	89	55	86	
3	2		1	D	60	68	8	
13	2		1	С	77	84	7	
14	1		1	В	89	51	82	

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Stage 1	Stage 3	Stage 2
₩ ₩	≪ ₩	≪
D→	□→	□→
←c		
← C		← C
↑ œ	t œ	t and the second

Resultant penalties

Time	Controller	Phase min max penalty (£ per hr)	Intergreen broken penalty (£	Stage constraint broken penalty	Cost of controller stream
Segment	stream		per hr)	(£ per hr)	penalties (£ per hr)
08:00-09:00	1	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	75	21	1135	1965	120	9.41	20.95	60.22	42.13	7.33	49.46
	2	1	84	7	1118	1965	86	13.45	9.42	120.40	59.32	3.53	62.85
	2	2	1	7979	17	2105	86	4.25	0.11	1.41	0.29	0.04	0.33
	3	2	197	-54	254	1717	8	922.68	67.37	193.69	924.42	7.83	932.25
	6	1	0	Unrestricted	381	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	58	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	2	70	29	1227	1762	120	2.33	0.79	12.34	11.28	0.00	11.28
09:00	10	2	23	295	401	1762	120	0.30	0.03	0.60	0.48	0.00	0.48
	11	1	0	Unrestricted	310	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1	6448	17	1237	120	0.25	0.07	2.29	0.02	0.02	0.04
	13	2	109	-17	121	1665	7	291.45	11.74	33.75	139.10	3.31	142.41
	14	1	200	-55	751	1965	82	920.04	196.14	563.90	2725.42	23.10	2748.51
	15	1	0	Unrestricted	1001	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	22	312	75	345	120	32.89	1.05	105.13	9.78	0.76	21.34

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1135	1135	0		1965	1522	75		21	0.00	120
		1	1118	1118	0		1965	1328	84		7	0.36	86
	2	2	17	17	0		2105	1526	1		7979	0.36	86
	3	2	254	129	0		1717	129	197	✓	-54	0.00	8
	6	1	381	381	302	~	Unrestricted	Unrestricted	0		Unrestricted	0.80	120
	7	1	58	58	26	~	Unrestricted	Unrestricted	0		Unrestricted	0.64	120
08:00-	8	2	1227	1227	106	✓	1762	1762	70		29	0.44	120
09:00	10	2	401	401	310	~	1762	1762	23		295	1.35	120
	11	1	310	310	169	~	Unrestricted	Unrestricted	0		Unrestricted	0.39	120
	12	1	17	17	0		1237	1237	1		6448	0.69	120
	13	2	121	111	0		1665	111	109	~	-17	0.00	7
	14	1	751	375	0		1965	375	200	~	-55	0.00	82
	15	1	1001	1001	14	~	Unrestricted	Unrestricted	0		Unrestricted	0.37	120
	16	1	75	75	76	✓	345	345	22		312	1.45	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	9.41	2.97	42.13	51.53	584.86	7.33
		1	5.40	13.45	4.18	59.32	25.20	281.73	3.53
	2	2	5.40	4.25	0.02	0.29	19.46	3.31	0.04
	3	2	24.00	922.68	65.10	924.42	485.00	624.55	7.83
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
08:00-09:00	8	2	4.44	2.33	0.79	11.28	0.00	0.00	0.00
08:00-09:00	10	2	3.84	0.30	0.03	0.48	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1.56	0.25	0.00	0.02	9.47	1.61	0.02
	13	2	24.00	291.45	9.80	139.10	237.84	264.00	3.31
	14	1	24.00	920.04	191.93	2725.42	491.35	1842.14	23.10
	15	1	52.16	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	1.08	32.89	0.69	9.78	80.69	60.83	0.76

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	20.95	34.78	60.22	0.00	27.07	
		1	0.00	9.42	7.83	120.40	0.00	5.89	
	2	2	0.00	0.11	7.83	1.41	0.00	86.00	
	3	2	0.00	67.37	34.78	193.69	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	31.00	
	7	1	0.00	0.00	34.78	0.00	0.00	76.00	
00.00 00.00	8	2	0.00	0.79	6.43	12.34	0.00	24.00	
08:00-09:00	10	2	0.00	0.03	5.57	0.60	0.00	81.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.07	3.00	2.29	0.00	117.00	
	13	2	0.00	11.74	34.78	33.75	0.00	0.00	
	14	1	0.00	196.14	34.78	563.90	0.00	60.10	
	15	1	0.00	0.00	75.60	0.00	0.00	0.00	
	16	1	0.00	1.05	1.00	105.13	10.80	25.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
08:00-09:00	1	1	~	CTM flare: 1/1,2/1,2/2	85	30.48	1335	6

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	20.95			1.00	0.00	49.46
	2	1	0.00	0.00	✓	9.45	2.21	9.45	1.00	0.00	62.85
	2	2	0.00	0.00	✓	0.11	0.00	0.11	1.00	0.00	0.33
	3	2	0.00	0.00	✓	129.99	125.73	129.70	1.00	0.00	932.25
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	~	0.00			1.00	0.00	0.00
08:00-	8	2	0.00	0.00	✓	0.80			1.00	0.00	11.28
09:00	10	2	0.00	0.00	✓	0.03			1.00	0.00	0.48
	11	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.07			1.00	0.00	0.04
	13	2	0.00	0.00	✓	17.43	13.76	17.22	1.00	0.00	142.41
	14	1	0.00	0.00	~	384.18	378.91	382.76	1.00	0.00	2748.51
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	16	1	0.00	0.00	✓	1.05			1.00	10.80	21.34

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	lte wit wor over PR
7	09/03/2020 10:56:34	09/03/2020 10:56:34	08:00	120	3968.94	275.51	200.31	14/1	3	21	14/1	1/1	14/

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
08:00- 09:00	200	-55	6866	1349	144.45	3912.22	45.93	3968.94

Network Results: Flows and signals

Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
08:00-09:00	6866	6355	1003	~	200	~	-55	1349

Network Results: Stops and delays

Time	Mean Cruise Time	Mean Delay per	Total delay	Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops
Segment	per Veh (s)	Veh (s)	(PCU-hr/hr)	(£ per hr)	Veh (%)	per hr)	(£ per hr)
08:00-09:00	20.05	144.45	275.51	3912.22	89.45	3663.03	45.93

Network Results: Queues and blocking

	Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
ſ	08:00-09:00	563.90	10.80	533.06

Network Results: Advanced

Time	Degree of saturation	Ped gap accepting	Warmed	PCU	Cost of traffic	Controller stream	Performance Index
Segment	penalty (£ per hr)	penalty (£ per hr)	up	Factor	penalties (£ per hr)	penalties (£ per hr)	(£ per hr)
08:00-09:00	0.00	0.00	✓	1.00	10.80	0.00	3968.94

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	83.0	111.2	68.9
From	2	343.6	0.0	367.6	343.6
	3	972.2	1002.0	0.0	972.2
	4	970.7	977.4	1005.6	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
3	1	3	979	111.20	979	111.20
5	3	1	550	972.18	550	972.18
9	1	4	17	68.87	17	68.87
10	4	1	39	970.68	39	970.68
11	4	2	189	977.45	189	977.45
12	4	3	26	1005.61	26	1005.61
14	2	1	94	343.59	94	343.59
15	2	4	17	343.59	17	343.59
16	3	4	50	972.18	50	972.18
17	3	2	151	1002.01	151	1002.01
18	1	2	139	83.03	139	83.03
19	2	3	10	367.61	10	367.61

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PEF	FORMANCE		PER	R PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				1135	1965	120	27.07	75	21	33.41	9.41	51.53	20.95
2	1	(untitled)		1	А	1118 <	1965	86	5.89	84	7	18.85	13.45	25.20	9.42 +
2	2	(untitled)		1	А	17	2105	86	86.00	1	7979	9.65	4.25	19.46	0.11
3	2	(untitled)		1	D	254 <	1717	8	0.00	197	-54	946.68	922.68	485.00	67.37 +
6	1	(untitled)				381	Unrestricted	120	31.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				58	Unrestricted	120	76.00	0	Unrestricted	24.00	0.00	0.00	0.00
8	2	(untitled)				1227	1762	120	24.00	70	29	6.77	2.33	0.00	0.79
10	2	(untitled)				401	1762	120	81.00	23	295	4.14	0.30	0.00	0.03
11	1	(untitled)				310	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					17	1237	120	117.00	1	6448	1.81	0.25	9.47	0.07
13	2	(untitled)		1	С	121	1665	7	0.00	109	-17	315.45	291.45	237.84	11.74
14	1	(untitled)		1	В	751 <	1965	82	60.10	200	-55	944.04	920.04	491.35	196.14 +
15	1	(untitled)				1001	Unrestricted	120	0.00	0	Unrestricted	52.16	0.00	0.00	0.00
16	1					75 <	345	120	25.00	22	312	33.97	32.89	80.69	1.05 +

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1147.38	313.75	3.66	275.51	3912.22	45.93	10.80	3968.94
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1147.38	313.75	3.66	275.51	3912.22	45.93	10.80	3968.94

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)

1 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 += average link/traffic stream excess queue is greater than 0

1 P.I. = PERFORMANCE INDEX

A8 - 2031 DS1 PM D8 - 2031 DS1 PM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analys set usec	Run start	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	ltem with worst unsignalised PRC	Ite wit wor over PR
8	09/03/2020 10:56:38	09/03/2020 10:56:38	17:00	120	828.22	55.87	109.22	13/2	3	21	13/2	10/2	13/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 PM		D8	✓	

Demand Set Details

Γ	Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
ſ	2031 DS1 PM				17:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)	
2	3	

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)	
10000.00 10000.00		10000.00	2	

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion type Dispersion coefficient	
Default	35	80

Normal Traffic Types

Name	PCU Factor
Normal	1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓		Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~	1			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	1	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	2	(untitled)			45.00	~	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00	~	Sum of lanes	1762		1762			Normal	
10	2	(untitled)			32.00	~	Sum of lanes	1762		1762			Normal	
11	1	(untitled)			200.00								Normal	
12	1				13.00	~	Sum of lanes	1830				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	~	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	434.71								Normal	
16	1				9.00	~	Sum of lanes	1665				~	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		~	N/A	N/A	0	3.50	√	0	99999.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)		~	N/A	N/A	0	3.50		100	13.00	✓	1762
10	2	1	(untitled)		<	N/A	N/A	0	3.50		100	13.00	✓	1762
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	3.50		100	10.00		1830
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	~	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
15	1	1	(untitled)											
16	1	1	(untitled)		✓	N/A	N/A	0	3.00		100	10.00	✓	1665

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	1	Flare	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	СТМ	100	100	100		0.00				
10	2	СТМ	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	~	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	✓	1.00	500.00	

Modelling - Advanced

Arm	Traffic	Initial queue	Type of Vehicle-in-	Vehicle-in-	Type of random	Random	Auto cycle	Cycle
	Stream	(PCU)	Service	Service	parameter	parameter	time	time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	541	541
2	1	514	514
2	2	27	27
3	2	200	200
6	1	1018	1018
7	1	160	160
8	2	691	691
10	2	1128	1128
11	1	241	241
12	1	27	27
13	2	197	197
14	1	1155	1155
15	1	674	674
16	1	136	136

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	1	1	А	
2	2	1	A	
3	2	1	D	
13	2	1	С	
14	1	1	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	(ALL)	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	5.40	30.00	~	Straight	Straight Movement
2	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	~	Nearside	69.54
8	2	1	2/1	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	1	13/2	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/2	12/1	1.56	30.00	~	Straight	Straight Movement
15	1	1	8/2	15/1	52.16	30.00	~	Straight	Straight Movement
16	1	1	14/1	16/1	1.08	30.00	~	Straight	Straight Movement
6	1	2	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	~	Offside	30.85
8	2	2	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	2	8/2	11/1	24.00	30.00	~	Nearside	99.52
15	1	2	13/2	15/1	52.16	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Number of storage spaces	Use connector turning radius	Radius of turn (m)	Visibility restricted
12	1	AllTraffic	\checkmark	2		13.00	
16	1	AllTraffic	√	2		10.00	

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Upstream signals visible	Conflict shift	Conflict duration
		TrafficStream	10/2	100		2	2
1		TrafficStream	8/2	100		2	2

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

		То						
		1	2	3	4			
	1	0	55	459	27			
From	2	89	0	88	20			
	3	906	136	0	113			
	4	23	50	127	0			

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	13/2	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	459
	5		3	1	14/1, 10/2, 6/1	Normal	906
	9		1	4	1/1, 2/2, 12/1, 7/1	Normal	27
	10		4	1	3/2, 6/1	Normal	23
	11		4	2	3/2, 8/2, 11/1	Normal	50
1	12		4	3	3/2, 8/2, 15/1	Normal	127
1	14		2	1	13/2, 10/2, 6/1	Normal	89
	15		2	4	13/2, 10/2, 7/1	Normal	20
	16		3	4	14/1, 10/2, 7/1	Normal	113
	17		3	2	14/1, 16/1, 11/1	Normal	136
	18		1	2	1/1, 2/1, 8/2, 11/1	Normal	55
	19		2	3	13/2, 15/1	Normal	88

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
1	(untitled)		1	NetworkDefault	120

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1	✓	√	Offsets And Green Splits		

Phases

Controller Stream	n Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1	(ALL)	(untitled)	7	300	0	0	Unknown

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	А, В	1
1	2	С	1
	3	D	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
	1	Losing	А	2	2	1
1	2	Losing	А	1	2	1
	3	Losing	В	1	2	5
	4	Losing	А	1	3	4

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2, 3	52, 74, 95

Intergreen Matrix for Controller Stream 1

	То						
		Α	в	С	D		
	Α			9	5		
From	в			5	9		
	С	5	5		9		
	D	5	5	9			

Banned Stage transitions for Controller Stream 1

		т	o	
		1	2	3
_	1			
From	2			
	3			

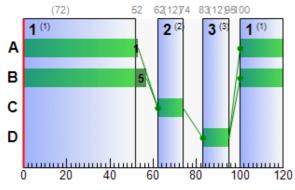
Interstage Matrix for Controller Stream 1

		Т	o	
		1	2	3
Farm	1	0	10	9
From	2	5	0	9
	3	5	9	0

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	100	52	72	1	6
1	2	✓	2	С	62	74	12	1	7
	3	~	3	D	83	95	12	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	100	53	73
1	В	1	✓	100	57	77
1	С	1	✓	62	74	12
	D	1	✓	83	95	12

Traffic Stream Green Times

Arm	Troffic Stroom	Troffia Nodo	Controllor Stroom	Phase	Green Period 1			
Ann	Trainc Stream	Traffic Node	raffic Node Controller Stream		Start	End	Duration	
2	1		1	А	100	53	73	
2	2		1	A	100	53	73	
3	2		1	D	83	95	12	
13	2		1	С	62	74	12	
14	1		1	В	100	57	77	

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Stage 1	Stage 2	Stage 3
₩ ₩	≪ #	≪
D→→	□+	□→
← C	←c	←_C
∞	t œ	† ∞

Resultant penalties

Time	Controller	Phase min max penalty (£ per hr)	Intergreen broken penalty (£	Stage constraint broken penalty	Cost of controller stream
Segment	stream		per hr)	(£ per hr)	penalties (£ per hr)
17:00-18:00	1	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	30	202	541	1965	120	0.78	1.87	5.37	1.67	0.56	2.23
	2	1	44	107	514	1965	73	13.26	7.41	94.70	26.88	2.79	29.66
	2	2	2	4227	27	2105	73	9.04	0.35	4.41	0.96	0.13	1.09
	3	2	108	-16	200	1717	12	246.10	17.06	49.04	194.14	5.13	199.28
	6	1	0	Unrestricted	1006	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	158	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	2	39	134	679	1762	120	0.64	0.12	1.87	1.71	0.00	1.71
18:00	10	2	63	42	1116	1762	120	1.76	0.54	9.78	7.73	0.00	7.73
	11	1	0	Unrestricted	237	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	6	1422	27	457	120	10.62	0.26	8.66	1.13	0.18	1.31
	13	2	109	-18	197	1665	12	265.20	17.79	51.16	206.08	5.20	211.27
	14	1	100	-10	1155	1965	77	77.00	55.52	159.62	350.78	19.91	370.69
	15	1	0	Unrestricted	658	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	19	365	136	701	120	4.20	1.02	102.32	2.24	0.48	3.24

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	541	541	0		1965	1817	30		202	0.00	120
	_	1	514	514	0		1965	1181	44		107	0.10	73
	2	2	27	27	0		2105	1298	2		4227	0.10	73
	3	2	200	186	0		1717	186	108	✓	-16	0.00	12
	6	1	1006	1006	12	~	Unrestricted	Unrestricted	0		Unrestricted	0.42	120
	7	1	158	158	2	~	Unrestricted	Unrestricted	0		Unrestricted	0.29	120
17:00-	8	2	679	679	12	~	1762	1762	39		134	0.77	120
18:00	10	2	1116	1116	12	~	1762	1762	63		42	0.65	120
	11	1	237	237	4	~	Unrestricted	Unrestricted	0		Unrestricted	0.41	120
	12	1	27	27	0		457	457	6		1422	0.85	120
	13	2	197	180	0		1665	180	109	√	-18	0.00	12
	14	1	1155	1151	0		1965	1151	100	~	-10	0.00	77
	15	1	658	658	16	~	Unrestricted	Unrestricted	0		Unrestricted	0.30	120
	16	1	136	136	0		701	701	19		365	0.81	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.78	0.12	1.67	8.25	44.65	0.56
		1	5.40	13.26	1.89	26.88	43.25	222.32	2.79
	2	2	5.40	9.04	0.07	0.96	38.36	10.36	0.13
	3	2	24.00	246.10	13.67	194.14	220.15	409.49	5.13
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	2	4.44	0.64	0.12	1.71	0.00	0.00	0.00
17:00-16:00	10	2	3.84	1.76	0.54	7.73	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1.56	10.62	0.08	1.13	52.60	14.20	0.18
	13	2	24.00	265.20	14.51	206.08	229.71	414.33	5.20
	14	1	24.00	77.00	24.70	350.78	137.93	1587.99	19.91
	15	1	52.16	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	1.08	4.20	0.16	2.24	28.02	37.99	0.48

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	1.87	34.78	5.37	0.00	9.02	
	2	1	0.00	7.41	7.83	94.70	0.00	1.86	
	2	2	0.00	0.35	7.83	4.41	0.00	71.00	
	3	2	0.00	17.06	34.78	49.04	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	16.00	
17:00-18:00	8	2	0.00	0.12	6.43	1.87	0.00	33.00	
17:00-18:00	10	2	0.00	0.54	5.57	9.78	0.00	35.00	
	11	1	0.00	0.00	34.78	0.00	0.00	17.00	
	12	1	0.00	0.26	3.00	8.66	0.00	41.00	
	13	2	0.00	17.79	34.78	51.16	0.00	0.00	
	14	1	0.00	55.52	34.78	159.62	0.00	7.69	
	15	1	0.00	0.00	75.60	0.00	0.00	0.00	
	16	1	0.00	1.02	1.00	102.32	0.52	42.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
17:00-18:00	1	1	✓	CTM flare: 1/1,2/1,2/2	45	9.62	1195	99

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	1.87			1.00	0.00	2.23
	2	1	0.00	0.00	✓	7.41	0.17	7.31	1.00	0.00	29.66
	2	2	0.00	0.00	✓	0.35	0.00	0.35	1.00	0.00	1.09
	3	2	0.00	0.00	✓	24.86	18.71	24.24	1.00	0.00	199.28
	6	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	~	0.00			1.00	0.00	0.00
17:00-	8	2	0.00	0.00	✓	0.12			1.00	0.00	1.71
18:00	10	2	0.00	0.00	✓	0.55			1.00	0.00	7.73
	11	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.26			1.00	0.00	1.31
	13	2	0.00	0.00	✓	26.73	20.77	26.13	1.00	0.00	211.27
	14	1	0.00	0.00	~	63.54	25.48	38.91	1.00	0.00	370.69
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	16	1	0.00	0.00	✓	1.02			1.00	0.52	3.24

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	oversaturated	Percentage of oversaturated items (%)	ltem with worst signalised PRC	ltem with worst unsignalised PRC	Ite wit wor over PR
8	09/03/2020 10:56:38	09/03/2020 10:56:38	17:00	120	828.22	55.87	109.22	13/2	3	21	13/2	10/2	13/

Network Results: Vehicle summary

Time	Degree of saturation (%)	Practical reserve	Calculated flow	Actual green	Mean Delay	Weighted cost of	Weighted cost of	Performance Index
Segment		capacity (%)	entering (PCU/hr)	(s (per cycle))	per Veh (s)	delay (£ per hr)	stops (£ per hr)	(£ per hr)
17:00- 18:00	109	-18	6649	1327	30.25	793.33	34.37	828.22

Network Results: Flows and signals

Time	Calculated flow	Calculated flow	Flow discrepancy	Adjusted flow	Degree of saturation (%)	DOS Threshold	Practical reserve	Actual green
Segment	entering (PCU/hr)	out (PCU/hr)	(PCU/hr)	warning		exceeded	capacity (%)	(s (per cycle))
17:00-18:00	6649	6615	60	~	109	~	-18	1327

Network Results: Stops and delays

Time			Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops	
Segment			(£ per hr)	Veh (%)	per hr)	(£ per hr)	
17:00-18:00	19.34	30.25	55.87	793.33	42.34	2741.33	34.37

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
17:00-18:00	159.62	0.52	273.58

Network Results: Advanced

Time	Degree of saturation	Ped gap accepting	Warmed	PCU	Cost of traffic	Controller stream	Performance Index
Segment	penalty (£ per hr)	penalty (£ per hr)	up	Factor	penalties (£ per hr)	penalties (£ per hr)	(£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.52	0.00	828.22

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	72.5	100.7	75.4
From	2	318.8	0.0	341.4	318.8
	3	130.6	130.3	0.0	130.6
	4	294.1	299.2	327.3	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
3	1	3	459	100.68	459	100.68
5	3	1	906	130.59	906	130.59
9	1	4	27	75.40	27	75.40
10	4	1	23	294.10	23	294.10
11	4	2	50	299.18	50	299.18
12	4	3	127	327.34	127	327.34
14	2	1	89	318.80	89	318.80
15	2	4	20	318.80	20	318.80
16	3	4	113	130.59	113	130.59
17	3	2	136	130.27	136	130.27
18	1	2	55	72.52	55	72.52
19	2	3	88	341.37	88	341.37

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PEF	FORMANCE		PEF	R PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				541	1965	120	9.02	30	202	24.78	0.78	8.25	1.87
2	1	(untitled)		1	А	514	1965	73	1.86	44	107	18.66	13.26	43.25	7.41
2	2	(untitled)		1	А	27	2105	73	71.00	2	4227	14.44	9.04	38.36	0.35
3	2	(untitled)		1	D	200	1717	12	0.00	108	-16	270.10	246.10	220.15	17.06
6	1	(untitled)				1006	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				158	Unrestricted	120	16.00	0	Unrestricted	24.00	0.00	0.00	0.00
8	2	(untitled)				679	1762	120	33.00	39	134	5.08	0.64	0.00	0.12
10	2	(untitled)				1116	1762	120	35.00	63	42	5.60	1.76	0.00	0.54
11	1	(untitled)				237	Unrestricted	120	17.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					27	457	120	41.00	6	1422	12.18	10.62	52.60	0.26
13	2	(untitled)		1	С	197	1665	12	0.00	109	-18	289.20	265.20	229.71	17.79
14	1	(untitled)		1	В	1155 <	1965	77	7.69	100	-10	101.00	77.00	137.93	55.52 +
15	1	(untitled)				658	Unrestricted	120	0.00	0	Unrestricted	52.16	0.00	0.00	0.00
16	1					136 <	701	120	42.00	19	365	5.28	4.20	28.02	1.02 +

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1071.42	91.58	11.70	55.87	793.33	34.37	0.52	828.22
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1071.42	91.58	11.70	55.87	793.33	34.37	0.52	828.22

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)

1 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 += average link/traffic stream excess queue is greater than 0

1 P.I. = PERFORMANCE INDEX

TECHNICAL NOTE

APPENDIX B

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

TRANSYT 15
Version: 15.5.2.7994 © Copyright TRL Limited, 2018
For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 200221 Ardley Crossroads Signalised.t15

Path: \\Bri-vfps-001.pba.int\bri\Projects\39304 Heyford Park Tranche 2\Technical\Transport\Junction Assessments\TRANSYT Report generation date: 09/03/2020 10:54:39

»A9 - 2031 DS1 Banned NB GW AM : D9 - 2031 DS1 Banned NB GW AM* : »A10 - 2031 DS1 Banned NB GW PM : D10 - 2031 DS1 Banned NB GW PM* :

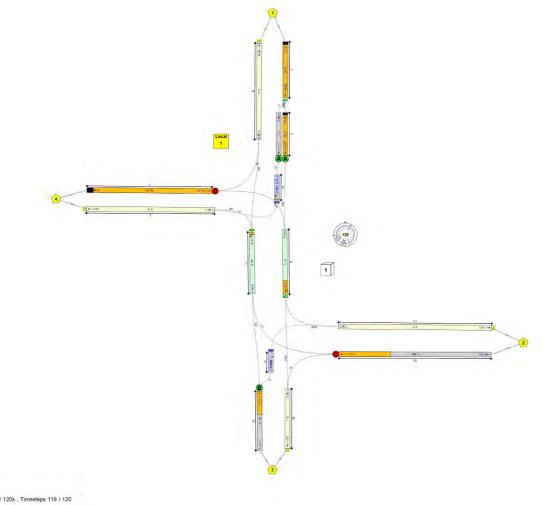
File summary

File descript	ion
File title	(untitled)
Location	
Site number	
UTCRegion	
Driving side	Left
Date	14/12/2017
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	PBA\dcollis
Description	

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red- With- Amber	Display End-Of- Green Amber

Units


Cost	Speed	Distance	Fuel economy	Fuel rate	Mass	Traffic units	Traffic units	Flow	Average delay	Total delay	Rate of delay
units	units	units	units	units	units	input	results	units	units	units	units
£	kph	m	mpg	l/h	kg	PCU	PCU	perHour	s	-Hour	perHour

Sorting

Show names instead	Sorting direction	Sorting	Ignore prefixes when	Analysis/demand set	Link	Source	Colour Analysis/Demand
of IDs		type	sorting	sorting	grouping	grouping	Sets
	Ascending	Numerical		ID	Normal	Normal	✓

Network Diagrams

(untitled) Cycletime 0s / 120s , Timesteps 119 / 120 9, 9 Diagram produced using TRANSYT 15.5.2.7994

A9 - 2031 DS1 Banned NB GW AM D9 - 2031 DS1 Banned NB GW AM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS		Percentage of oversaturated items (%)	woret	ltem with worst unsignalised PRC	lte wit wor over PR
9	09/03/2020 10:54:30	09/03/2020 10:54:30	08:00	120	1494.08	102.63	197.24	3/2	3	21	3/2	1/1	3/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 Banned NB GW AM		D9	~	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 Banned NB GW AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)
2	3

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)
10000.00	10000.00	10000.00	2

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

Name	PCU Factor
Normal	1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Tram	1.00	Default	0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓		Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~	1			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	1	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	2	(untitled)			45.00	~	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00	~	Sum of lanes	1762		1762			Normal	
10	2	(untitled)			32.00	~	Sum of lanes	1762		1762			Normal	
11	1	(untitled)			200.00								Normal	
12	1				13.00	~	Sum of lanes	2105				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	~	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	434.71								Normal	
16	1				9.00	✓	Sum of lanes	1915				~	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	1	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)		~	N/A	N/A	0	3.50		100	13.00	✓	1762
10	2	1	(untitled)		✓	N/A	N/A	0	3.50		100	13.00	✓	1762
11	1	1	(untitled)											
12	1	1	(untitled)		~	N/A	N/A	0	3.50		0	10.00		2105
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	~	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
15	1	1	(untitled)											
16	1	1	(untitled)		~	N/A	N/A	0	3.00		0	10.00	✓	1915

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	1	Flare	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	СТМ	100	100	100		0.00				
10	2	СТМ	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	✓	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	✓	1.00	500.00	

Modelling - Advanced

Arm	Traffic	Initial queue	Type of Vehicle-in-	Vehicle-in-	Type of random	Random	Auto cycle	Cycle
	Stream	(PCU)	Service	Service	parameter	parameter	time	time
(ALL)	L) (ALL) 0.00		NetworkDefault	Not-Included	NetworkDefault	0.50	✓	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)		
(ALL)	(ALL)	100	100		

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	1286	1286
2	1	1269	1269
2	2	17	17
3	2	254	254
6	1	834	834
7	1	84	84
8	2	1484	1484
10	2	862	862
11	1	479	479
12	1	17	17
13	2	121	121
14	1	751	751
15	1	1015	1015
16	1	0	0

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	1	1	А	
2	2	1	А	
3	2	1	D	
13	2	1	С	
14	1	1	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)		
(ALL)	(ALL)	24.00	30.00		

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	5.40	30.00	~	Straight	Straight Movement
2	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	~	Nearside	69.54
8	2	1	2/1	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	1	13/2	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/2	12/1	1.56	30.00	~	Straight	Straight Movement
15	1	1	8/2	15/1	52.16	30.00	~	Straight	Straight Movement
16	1	1	14/1	16/1	1.08	30.00	~	Straight	Straight Movement
6	1	2	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	~	Offside	30.85
8	2	2	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	2	8/2	11/1	24.00	30.00	~	Nearside	99.52
15	1	2	13/2	15/1	52.16	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Number of storage spaces	Use connector turning radius	Radius of turn (m)	Visibility restricted
12	1	AllTraffic	\checkmark	2		13.00	
16	1	AllTraffic	√	2		10.00	

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Upstream signals visible	Conflict shift	Conflict duration
		TrafficStream	10/2	100		2	2
1		TrafficStream	8/2	100		2	2

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	✓	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

		То							
		1	2	3	4				
	1	0	290	979	17				
From	2	94	0	10	17				
	3	701	0	0	50				
	4	39	189	26	0				

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
1	1	(untitled)	1/1	6/1	#0000FF
	2	(untitled)	13/2	11/1	#00FF00
	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	979
	5		3	1	14/1, 10/2, 6/1	Normal	701
	9		1	4	1/1, 2/2, 12/1, 7/1	Normal	17
	10		4	1	3/2, 6/1	Normal	39
	11		4	2	3/2, 8/2, 11/1	Normal	189
1	12		4	3	3/2, 8/2, 15/1	Normal	26
1	14		2	1	13/2, 10/2, 6/1	Normal	94
	15		2	4	13/2, 10/2, 7/1	Normal	17
	16		3	4	14/1, 10/2, 7/1	Normal	50
	17		3	2	14/1, 16/1, 11/1	Normal	0
	18		1	2	1/1, 2/1, 8/2, 11/1	Normal	290
	19		2	3	13/2, 15/1	Normal	10

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
1	(untitled)		1	NetworkDefault	120

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1	\checkmark	√	Offsets And Green Splits		

Phases

Co	ontroller Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
	1	(ALL)	(untitled)	7	300	0	0	Unknown

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	А, В	1
1	2	С	1
	3	D	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay	Absolute delay
1	1	Losing	А	2	2	1	
	2	Losing	Α	1	2	1	
	3	Losing	В	1	2	5	
	4	Losing	Α	1	3	4	
	5	Gaining	A	2	1	0	0
	6	Gaining	В	2	1	0	0

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 3, 2	51, 68, 84

Intergreen Matrix for Controller Stream 1

		То					
		Α	в	С	D		
	Α			9	5		
From	в			5	9		
	С	5	5		9		
	D	5	5	9			

Banned Stage transitions for Controller Stream 1

		То				
From		1	2	3		
	1					
	2					
	3					

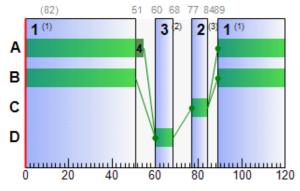
Interstage Matrix for Controller Stream 1

	То					
From		1	2	3		
	1	0	10	9		
	2	5	0	9		
	3	5	9	0		

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	89	51	82	1	7
1	2	~	3	D	60	68	8	1	7
	3	✓	2	С	77	84	7	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	89	55	86
1	В	1	✓	89	51	82
	С	1	✓	77	84	7
	D	1	~	60	68	8

Traffic Stream Green Times

Arm	Troffic Stroom	Traffia Nodo	Controllor Stroom	Phase	Green Period 1			
Ann	Trainc Stream	Stream Traffic Node Controller Stream		Fliase	Start	End	Duration	
2	1		1	А	89	55	86	
2	2		1	A	89	55	86	
3	2		1	D	60	68	8	
13	2		1	С	77	84	7	
14	1		1	В	89	51	82	

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Stage 1	Stage 3	Stage 2
₩ ₩	≪	≪
D→→	□	□→
←c	← c	← C
+c		← c
Ť œ	l and the second s	T and the second s

Resultant penalties

Time	Controller	Phase min max penalty (£ per hr)	Intergreen broken penalty (£	Stage constraint broken penalty	Cost of controller stream
Segment	stream		per hr)	(£ per hr)	penalties (£ per hr)
08:00-09:00	1	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	90	1	1286	1965	120	19.91	36.82	105.87	100.99	12.91	113.90
	2	1	99	-9	1269	1965	86	46.86	21.51	274.86	234.55	7.66	242.21
	2	2	1	7979	17	2105	86	3.98	0.10	1.24	0.27	0.04	0.30
	3	2	197	-54	254	1717	8	922.68	67.37	193.69	924.42	7.83	932.25
	6	1	0	Unrestricted	807	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	83	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	2	78	15	1378	1762	120	3.63	1.39	21.56	19.70	0.00	19.70
09:00	10	2	48	86	853	1762	120	0.96	0.23	4.07	3.22	0.00	3.22
	11	1	0	Unrestricted	386	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	3	3386	17	659	120	2.76	0.13	4.21	0.19	0.06	0.25
	13	2	109	-17	121	1665	7	291.45	11.74	33.75	139.10	3.31	142.41
	14	1	57	57	751	1965	82	11.77	13.73	39.48	34.86	4.97	39.83
	15	1	0	Unrestricted	1001	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	0	Unrestricted	0	295	120	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1286	1286	0		1965	1437	90		1	0.00	120
	<u>,</u>	1	1269	1269	0		1965	1283	99	✓	-9	0.41	86
	2	2	17	17	0		2105	1526	1		7979	0.41	86
	3	2	254	129	0		1717	129	197	✓	-54	0.00	8
	6	1	807	807	27	~	Unrestricted	Unrestricted	0		Unrestricted	0.41	120
	7	1	83	83	1	~	Unrestricted	Unrestricted	0		Unrestricted	0.39	120
08:00-	8	2	1378	1378	106	~	1762	1762	78		15	0.40	120
09:00	10	2	853	853	9	~	1762	1762	48		86	0.59	120
	11	1	386	386	93	✓	Unrestricted	Unrestricted	0		Unrestricted	0.23	120
	12	1	17	17	0		659	659	3		3386	0.69	120
	13	2	121	111	0		1665	111	109	✓	-17	0.00	7
	14	1	751	751	0		1965	1313	57		57	0.00	82
	15	1	1001	1001	14	~	Unrestricted	Unrestricted	0		Unrestricted	0.33	120
	16	1	0	0	0		295	295	0		Unrestricted	0.00	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	19.91	7.11	100.99	80.06	1029.51	12.91
	2	1	5.40	46.86	16.52	234.55	48.16	611.20	7.66
		2	5.40	3.98	0.02	0.27	17.14	2.91	0.04
	3	2	24.00	922.68	65.10	924.42	485.00	624.55	7.83
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
08:00-09:00	8	2	4.44	3.63	1.39	19.70	0.00	0.00	0.00
08:00-09:00	10	2	3.84	0.96	0.23	3.22	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1.56	2.76	0.01	0.19	30.41	5.17	0.06
	13	2	24.00	291.45	9.80	139.10	237.84	264.00	3.31
	14	1	24.00	11.77	2.45	34.86	52.83	396.77	4.97
	15	1	52.16	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	36.82	34.78	105.87	0.00	32.26	
	2	1	0.00	21.51	7.83	274.86	0.00	8.68	
		2	0.00	0.10	7.83	1.24	0.00	86.00	
	3	2	0.00	67.37	34.78	193.69	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	26.00	
08:00-09:00	8	2	0.00	1.39	6.43	21.56	0.00	24.00	
08:00-09:00	10	2	0.00	0.23	5.57	4.07	0.00	29.00	
	11	1	0.00	0.00	34.78	0.00	0.00	0.00	
	12	1	0.00	0.13	3.00	4.21	0.00	93.00	
	13	2	0.00	11.74	34.78	33.75	0.00	0.00	
	14	1	0.00	13.73	34.78	39.48	0.00	2.79	
	15	1	0.00	0.00	75.60	0.00	0.00	0.00	
	16	1	0.00	0.00	1.00	0.00	0.00	120.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
08:00-09:00	1	1	~	CTM flare: 1/1,2/1,2/2	100	58.43	1290	-10

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	~	36.93			1.00	0.00	113.90
	2	1	0.00	0.00	~	26.08	18.83	26.08	1.00	0.00	242.21
	2	2	0.00	0.00	✓	0.10	0.00	0.10	1.00	0.00	0.30
	3	2	0.00	0.00	~	129.99	125.73	129.70	1.00	0.00	932.25
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
08:00-	8	2	0.00	0.00	~	1.40			1.00	0.00	19.70
09:00	10	2	0.00	0.00	✓	0.23			1.00	0.00	3.22
	11	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.13			1.00	0.00	0.25
	13	2	0.00	0.00	~	17.43	13.76	17.22	1.00	0.00	142.41
	14	1	0.00	0.00	~	13.73	0.38	8.10	1.00	0.00	39.83
	15	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	16	1	0.00	0.00	✓	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	Ite wit wor over PR
9	09/03/2020 10:54:30	09/03/2020 10:54:30	08:00	120	1494.08	102.63	197.24	3/2	3	21	3/2	1/1	3/

Network Results: Vehicle summary

Time	Degree of saturation (%)	Practical reserve	Calculated flow	Actual green	Mean Delay	Weighted cost of	Weighted cost of	Performance Index
Segment		capacity (%)	entering (PCU/hr)	(s (per cycle))	per Veh (s)	delay (£ per hr)	stops (£ per hr)	(£ per hr)
08:00- 09:00	197	-54	8223	1349	44.93	1457.29	36.79	1494.08

Network Results: Flows and signals

-	Time gment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
08:0	00-09:00	8223	8087	250	~	197	~	-54	1349

Network Results: Stops and delays

Time	Mean Cruise Time	Mean Delay per	Total delay	Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops
Segment	per Veh (s)	Veh (s)	(PCU-hr/hr)	(£ per hr)	Veh (%)	per hr)	(£ per hr)
08:00-09:00	19.11	44.93	102.63	1457.29	43.36	2934.12	36.79

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
08:00-09:00	274.86	0.00	421.72

Network Results: Advanced

Time	Degree of saturation	Ped gap accepting	Warmed	PCU	Cost of traffic	Controller stream	Performance Index
Segment	penalty (£ per hr)	penalty (£ per hr)	up	Factor	penalties (£ per hr)	penalties (£ per hr)	(£ per hr)
08:00-09:00	0.00	0.00	✓	1.00	0.00	0.00	1494.08

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

		То								
		1	2	3	4					
	1	0.0	128.2	156.4	81.6					
From	2	344.2	0.0	367.6	344.2					
	3	64.6	0.0	0.0	64.6					
	4	970.7	978.7	1006.9	0.0					

Path Journey Time

П

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
3	1	3	979	156.40	979	156.40
5	3	1	701	64.56	701	64.56
9	1	4	17	81.61	17	81.61
10	4	1	39	970.68	39	970.68
11	4	2	189	978.74	189	978.74
12	4	3	26	1006.91	26	1006.91
14	2	1	94	344.24	94	344.24
15	2	4	17	344.24	17	344.24
16	3	4	50	64.56	50	64.56
17	3	2	0	0.00	0	0.00
18	1	2	290	128.23	290	128.23
19	2	3	10	367.61	10	367.61

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				1286 <	1965	120	32.26	90	1	43.91	19.91	80.06	36.82 +
2	1	(untitled)		1	А	1269 <	1965	86	8.68	99	-9	52.26	46.86	48.16	21.51 +
2	2	(untitled)		1	А	17	2105	86	86.00	1	7979	9.38	3.98	17.14	0.10
3	2	(untitled)		1	D	254 <	1717	8	0.00	197	-54	946.68	922.68	485.00	67.37 +
6	1	(untitled)				807	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				83	Unrestricted	120	26.00	0	Unrestricted	24.00	0.00	0.00	0.00
8	2	(untitled)				1378	1762	120	24.00	78	15	8.07	3.63	0.00	1.39
10	2	(untitled)				853	1762	120	29.00	48	86	4.80	0.96	0.00	0.23
11	1	(untitled)				386	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					17	659	120	93.00	3	3386	4.32	2.76	30.41	0.13
13	2	(untitled)		1	С	121	1665	7	0.00	109	-17	315.45	291.45	237.84	11.74
14	1	(untitled)		1	В	751	1965	82	2.79	57	57	35.77	11.77	52.83	13.73
15	1	(untitled)				1001	Unrestricted	120	0.00	0	Unrestricted	52.16	0.00	0.00	0.00
16	1					0	295	120	120.00	0	Unrestricted	0.00	0.00	0.00	0.00

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1309.15	146.26	8.95	102.63	1457.29	36.79	0.00	1494.08
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1309.15	146.26	8.95	102.63	1457.29	36.79	0.00	1494.08

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)

1 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 += average link/traffic stream excess queue is greater than 0

1 P.I. = PERFORMANCE INDEX

A10 - 2031 DS1 Banned NB GW PM D10 - 2031 DS1 Banned NB GW PM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS		Percentage of oversaturated items (%)		Item with worst unsignalised PRC	Ite wit wor over PR
10	09/03/2020 10:54:27	09/03/2020 10:54:27	17:00	120	1284.06	88.36	157.76	13/2	2	14	13/2	10/2	13/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 Banned NB GW PM		D10	✓	

Demand Set Details

Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
2031 DS1 Banned NB GW PM				17:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)	
2	3	

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)	
10000.00	10000.00	10000.00	2	

Traffic options

Traffic model Vehicle flow scaling factor (%)		Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

	Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
ſ	1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		✓

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient	
Default	35	80	

Normal Traffic Types

Name	PCU Factor	
Normal	1.00	

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Nam	PCU Factor	Dispersion type	Acceleration (ms^[-2]) Stationary time coefficient		Cruise time coefficient
Tran	n 1.00 Default		0.94	100	100

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy	
✓		Offsets And Green Splits	✓	

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~	1			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		
16			

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	1	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	2	(untitled)			45.00	~	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	2	(untitled)			37.00	~	Sum of lanes	1762		1762			Normal	
10	2	(untitled)			32.00	~	Sum of lanes	1762		1762			Normal	
11	1	(untitled)			200.00								Normal	
12	1				13.00	~	Sum of lanes	1830				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	~	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	434.71								Normal	
16	1				9.00	~	Sum of lanes	1665				~	Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	1	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		✓	N/A	N/A	0	3.50	√	0	99999.00		2105
3	2	1	(untitled)		✓	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	2	1	(untitled)		✓	N/A	N/A	0	3.50		100	13.00	✓	1762
10	2	1	(untitled)		✓	N/A	N/A	0	3.50		100	13.00	✓	1762
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	3.50		100	10.00		1830
13	2	1	(untitled)		✓	N/A	N/A	0	3.00		100	10.00	✓	1665
14	1	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
15	1	1	(untitled)											
16	1	1	(untitled)		✓	N/A	N/A	0	3.00		100	10.00	✓	1665

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	1	Flare	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	2	СТМ	100	100	100		0.00				
10	2	СТМ	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	~	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				
16	1	Flare	100	100	100		1.00	✓	1.00	500.00	

Modelling - Advanced

Arm	Traffic	Initial queue	Type of Vehicle-in-	Vehicle-in-	Type of random	Random	Auto cycle	Cycle
	Stream	(PCU)	Service	Service	parameter	parameter	time	time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	677	677
2	1	650	650
2	2	27	27
3	2	200	200
6	1	1154	1154
7	1	160	160
8	2	827	827
10	2	1264	1264
11	1	241	241
12	1	27	27
13	2	197	197
14	1	1155	1155
15	1	674	674
16	1	0	0

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	1	1	А	
2	2	1	А	
3	2	1	D	
13	2	1	С	
14	1	1	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	(ALL)	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
2	1	1	1/1	2/1	5.40	30.00	~	Straight	Straight Movement
2	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
6	1	1	10/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	10/2	7/1	24.00	30.00	~	Nearside	69.54
8	2	1	2/1	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	1	13/2	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	1	16/1	11/1	24.00	30.00	~	Offside	82.53
12	1	1	2/2	12/1	1.56	30.00	~	Straight	Straight Movement
15	1	1	8/2	15/1	52.16	30.00	~	Straight	Straight Movement
16	1	1	14/1	16/1	1.08	30.00	~	Straight	Straight Movement
6	1	2	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	12/1	7/1	24.00	30.00	~	Offside	30.85
8	2	2	3/2	8/2	4.44	30.00	~	Straight	Straight Movement
10	2	2	14/1	10/2	3.84	30.00	~	Straight	Straight Movement
11	1	2	8/2	11/1	24.00	30.00	~	Nearside	99.52
15	1	2	13/2	15/1	52.16	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Number of storage spaces	Use connector turning radius	Radius of turn (m)	Visibility restricted
12	1	AllTraffic	\checkmark	2		13.00	
16	1	AllTraffic	√	2		10.00	

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Upstream signals visible	Conflict shift	Conflict duration
		TrafficStream	10/2	100		2	2
1		TrafficStream	8/2	100		2	2

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

		То						
		1	2	3	4			
	1	0	191	459	4 27 20 113			
From	2	89	0	88	20			
	3	1042	0	0	113			
	4	23	50	127	0			

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
1	2	(untitled)	13/2	11/1	#00FF00
	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		1	3	1/1, 2/1, 8/2, 15/1	Normal	459
	5		3	1	14/1, 10/2, 6/1	Normal	1042
	9		1	4	1/1, 2/2, 12/1, 7/1	Normal	27
	10		4	1	3/2, 6/1	Normal	23
	11		4	2	3/2, 8/2, 11/1	Normal	50
1	12		4	3	3/2, 8/2, 15/1	Normal	127
1	14		2	1	13/2, 10/2, 6/1	Normal	89
	15		2	4	13/2, 10/2, 7/1	Normal	20
	16		3	4	14/1, 10/2, 7/1	Normal	113
	17		3	2	14/1, 16/1, 11/1	Normal	0
	18		1	2	1/1, 2/1, 8/2, 11/1	Normal	191
	19		2	3	13/2, 15/1	Normal	88

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
1	(untitled)		1	NetworkDefault	120

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller	Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1		✓	✓	Offsets And Green Splits		

Phases

Controller Stream	n Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1	(ALL)	(untitled)	7	300	0	0	Unknown

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	А, В	1
1	2	С	1
	3	D	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
	1	Losing	А	2	2	1
	2	Losing	А	1	2	1
'	3	Losing	В	1	2	5
	4	Losing	А	1	3	4

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2, 3	56, 74, 91

Intergreen Matrix for Controller Stream 1

		То					
		Α	в	С	D 5		
	Α			9	5		
From	в			5	9		
	С	5	5		9		
	D	5	5	9			

Banned Stage transitions for Controller Stream 1

		т	o	
		1	2	3
-	1			
From	2			
	3			

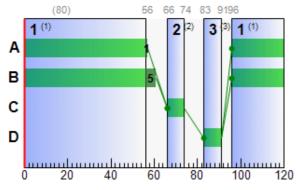
Interstage Matrix for Controller Stream 1

		Т	o	
		1	2	3
-	1	0	10	9
From	2	5	0	9
	3	5	9	0

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	96	56	80	1	6
1	2	√	2	С	66	74	8	1	7
	3	~	3	D	83	91	8	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	96	57	81
	В	1	✓	96	61	85
1	С	1	✓	66	74	8
	D	1	✓	83	91	8

Traffic Stream Green Times

Arm	Troffic Stroom	Troffia Nodo	Controller Stream	Phase	Green Period 1			
Ann	Trainc Stream	Traffic Node	Controller Stream	Fliase	Start	End	Duration	
2	1		1	А	96	57	81	
2	2		1	А	96	57	81	
3	2		1	D	83	91	8	
13	2		1	С	66	74	8	
14	1		1	В	96	61	85	

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Stage 1	Stage 2	Stage 3
₩ ₩	≪ #	≪
D→→	□+	□→
← C	←c	←_C
∞	t œ	† ∞

Resultant penalties

Time	Controller	Phase min max penalty (£ per hr)	Intergreen broken penalty (£	Stage constraint broken penalty	Cost of controller stream
Segment	stream		per hr)	(£ per hr)	penalties (£ per hr)
17:00-18:00	1	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	38	135	677	1965	120	1.40	3.50	10.07	3.74	1.12	4.86
	2	1	50	81	650	1965	81	10.13	7.49	95.74	25.98	2.82	28.80
	2	2	2	4695	27	2105	81	6.20	0.29	3.64	0.66	0.11	0.77
	3	2	155	-42	200	1717	8	692.23	40.73	117.09	546.09	6.30	552.40
	6	1	0	Unrestricted	1113	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	153	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	2	43	108	764	1762	120	0.78	0.17	2.58	2.35	0.00	2.35
18:00	10	2	69	30	1224	1762	120	2.31	0.79	14.13	11.16	0.00	11.16
	11	1	0	Unrestricted	223	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	8	1051	27	345	120	22.85	0.51	17.09	2.43	0.22	2.66
	13	2	158	-43	197	1665	8	709.25	41.01	117.92	551.13	6.21	557.34
	14	1	89	1	1155	1965	85	24.40	34.79	100.01	111.18	12.55	123.74
	15	1	0	Unrestricted	597	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	0	Unrestricted	0	585	120	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	677	677	0		1965	1765	38		135	0.00	120
		1	650	650	0		1965	1306	50		81	0.15	81
	2	2	27	27	0		2105	1438	2		4695	0.15	81
	3	2	200	129	0		1717	129	155	✓	-42	0.00	8
	6	1	1113	1113	41	~	Unrestricted	Unrestricted	0		Unrestricted	0.39	120
	7	1	153	153	7	~	Unrestricted	Unrestricted	0		Unrestricted	0.25	120
17:00-	8	2	764	764	63	~	1762	1762	43		108	0.63	120
18:00	10	2	1224	1224	40	~	1762	1762	69		30	0.47	120
	11	1	223	223	18	~	Unrestricted	Unrestricted	0		Unrestricted	0.45	120
	12	1	27	27	0		345	345	8		1051	0.74	120
	13	2	197	125	0		1665	125	158	√	-43	0.00	8
	14	1	1155	1155	0		1965	1300	89		1	0.00	85
	15	1	597	597	77	~	Unrestricted	Unrestricted	0		Unrestricted	0.27	120
	16	1	0	0	0		585	585	0		Unrestricted	0.00	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	1.40	0.26	3.74	13.18	89.22	1.12
	2	1	5.40	10.13	1.83	25.98	34.58	224.75	2.82
	2	2	5.40	6.20	0.05	0.66	31.69	8.56	0.11
	3	2	24.00	692.23	38.46	546.09	390.47	502.83	6.30
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	2	4.44	0.78	0.17	2.35	0.00	0.00	0.00
17:00-10:00	10	2	3.84	2.31	0.79	11.16	0.00	0.00	0.00
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	1.56	22.85	0.17	2.43	65.94	17.80	0.22
	13	2	24.00	709.25	38.81	551.13	396.49	495.12	6.21
	14	1	24.00	24.40	7.83	111.18	86.68	1001.19	12.55
	15	1	52.16	0.00	0.00	0.00	0.00	0.00	0.00
	16	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	3.50	34.78	10.07	0.00	12.23	
		1	0.00	7.49	7.83	95.74	0.00	2.27	
	2	2	0.00	0.29	7.83	3.64	0.00	76.00	
	3	2	0.00	40.73	34.78	117.09	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	13.00	
47.00 40.00	8	2	0.00	0.17	6.43	2.58	0.00	29.00	
17:00-18:00	10	2	0.00	0.79	5.57	14.13	0.00	25.00	
	11	1	0.00	0.00	34.78	0.00	0.00	17.00	
	12	1	0.00	0.51	3.00	17.09	0.00	38.00	
	13	2	0.00	41.01	34.78	117.92	0.00	0.00	
	14	1	0.00	34.79	34.78	100.01	0.00	6.61	
	15	1	0.00	0.00	75.60	0.00	0.00	0.00	
	16	1	0.00	0.00	1.00	0.00	0.00	120.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
17:00-18:00	1	1	~	CTM flare: 1/1,2/1,2/2	51	11.28	1318	75

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	3.50			1.00	0.00	4.86
	2	1	0.00	0.00	✓	7.49	0.25	7.48	1.00	0.00	28.80
	2	2	0.00	0.00	✓	0.29	0.00	0.29	1.00	0.00	0.77
	3	2	0.00	0.00	✓	76.36	72.11	76.08	1.00	0.00	552.40
	6	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
17:00-	8	2	0.00	0.00	✓	0.17			1.00	0.00	2.35
18:00	10	2	0.00	0.00	✓	0.79			1.00	0.00	11.16
	11	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	✓	0.51			1.00	0.00	2.66
	13	2	0.00	0.00	✓	77.10	72.97	76.82	1.00	0.00	557.34
	14	1	0.00	0.00	~	34.88	3.44	14.34	1.00	0.00	123.74
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	16	1	0.00	0.00	✓	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysi set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	ltem with worst unsignalised PRC	Ite wit wor over PR
10	09/03/2020 10:54:27	09/03/2020 10:54:27	17:00	120	1284.06	88.36	157.76	13/2	2	14	13/2	10/2	13/

Network Results: Vehicle summary

Time	Degree of saturation (%)	Practical reserve	Calculated flow	Actual green	Mean Delay	Weighted cost of	Weighted cost of	Performance Index
Segment		capacity (%)	entering (PCU/hr)	(s (per cycle))	per Veh (s)	delay (£ per hr)	stops (£ per hr)	(£ per hr)
17:00- 18:00	158	-43	7007	1343	45.40	1254.73	29.33	1284.06

Network Results: Flows and signals

	Time Segment	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Actual green (s (per cycle))
1	7:00-18:00	7007	6863	246	~	158	~	-43	1343

Network Results: Stops and delays

Time	Mean Cruise Time	Mean Delay per	Total delay	Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops
Segment	per Veh (s)	Veh (s)	(PCU-hr/hr)	(£ per hr)	Veh (%)	per hr)	(£ per hr)
17:00-18:00	18.86	45.40	88.36	1254.73	41.44	2339.46	29.33

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
17:00-18:00	117.92	0.00	339.12

Network Results: Advanced

Time	Degree of saturation	Ped gap accepting	Warmed	PCU	Cost of traffic	Controller stream	Performance Index
Segment	penalty (£ per hr)	penalty (£ per hr)	up	Factor	penalties (£ per hr)	penalties (£ per hr)	(£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	1284.06

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	70.2	98.3	85.4
From	2	763.4	0.0	785.4	763.4
	3	78.6	0.0	0.0	78.6
	4	740.2	745.4	773.6	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
3	1	3	459	98.32	459	98.32
5	3	1	1042	78.56	1042	78.56
9	1	4	27	85.40	27	85.40
10	4	1	23	740.23	23	740.23
11	4	2	50	745.45	50	745.45
12	4	3	127	773.61	127	773.61
14	2	1	89	763.40	89	763.40
15	2	4	20	763.40	20	763.40
16	3	4	113	78.56	113	78.56
17	3	2	0	0.00	0	0.00
18	1	2	191	70.15	191	70.15
19	2	3	88	785.42	88	785.42

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PER	PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				677	1965	120	12.23	38	135	25.40	1.40	13.18	3.50
2	1	(untitled)		1	А	650	1965	81	2.27	50	81	15.53	10.13	34.58	7.49
2	2	(untitled)		1	А	27	2105	81	76.00	2	4695	11.60	6.20	31.69	0.29
3	2	(untitled)		1	D	200 <	1717	8	0.00	155	-42	716.23	692.23	390.47	40.73 +
6	1	(untitled)				1113	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				153	Unrestricted	120	13.00	0	Unrestricted	24.00	0.00	0.00	0.00
8	2	(untitled)				764	1762	120	29.00	43	108	5.22	0.78	0.00	0.17
10	2	(untitled)				1224	1762	120	25.00	69	30	6.15	2.31	0.00	0.79
11	1	(untitled)				223	Unrestricted	120	17.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					27	345	120	38.00	8	1051	24.41	22.85	65.94	0.51
13	2	(untitled)		1	С	197 <	1665	8	0.00	158	-43	733.25	709.25	396.49	41.01 +
14	1	(untitled)		1	В	1155 <	1965	85	6.61	89	1	48.40	24.40	86.68	34.79 +
15	1	(untitled)				597	Unrestricted	120	0.00	0	Unrestricted	52.16	0.00	0.00	0.00
16	1					0	585	120	120.00	0	Unrestricted	0.00	0.00	0.00	0.00

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1101.20	125.07	8.80	88.36	1254.73	29.33	0.00	1284.06
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1101.20	125.07	8.80	88.36	1254.73	29.33	0.00	1284.06

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)

1 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 + = average link/traffic stream excess queue is greater than 0

1 P.I. = PERFORMANCE INDEX

....

TECHNICAL NOTE

APPENDIX C

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN033 B430_Ardley Road Options Assessment and Modelling Final.docx

Filename: 200304 Ardley Crossroads Signalised lanes internal SL no RT 2 Int.t15 **Path:** \\Bri-vfps-001.pba.int\bri\Projects\39304 Heyford Park Tranche 2\Technical\Transport\Junction Assessments\TRANSYT **Report generation date:** 09/03/2020 09:28:35

»A9 - 2031 DS1 AM : D9 - 2031 DS1 AM* : »A10 - 2031 DS1 PM : D10 - 2031 DS1 PM* :

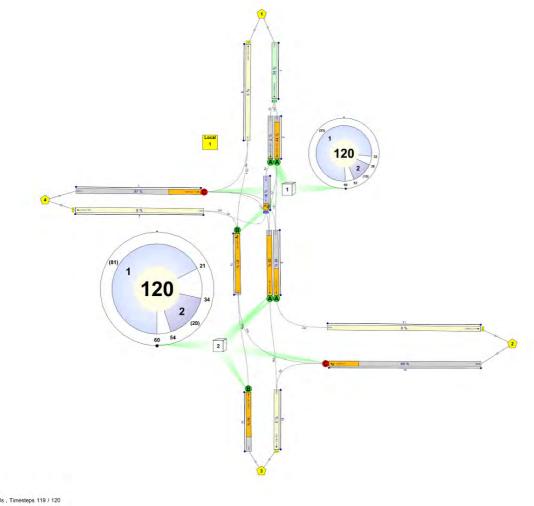
File summary

File descript	ion
File title	(untitled)
Location	
Site number	
UTCRegion	
Driving side	Left
Date	14/12/2017
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	PBA\dcollis
Description	

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red- With- Amber	Display End-Of- Green Amber

Units


Cost	Speed	Distance	Fuel economy	Fuel rate	Mass	Traffic units	Traffic units	Flow	Average delay	Total delay	Rate of delay
units	units	units	units	units	units	input	results	units	units	units	units
£	kph	m	mpg	l/h	kg	PCU	PCU	perHour	s	-Hour	perHour

Sorting

Show names instead	Sorting direction	Sorting	Ignore prefixes when	Analysis/demand set	Link	Source	Colour Analysis/Demand
of IDs		type	sorting	sorting	grouping	grouping	Sets
	Ascending	Numerical		ID	Normal	Normal	✓

Network Diagrams

(untitled) Cycletime 0s / 120s , Timesteps 119 / 120 10, 10 Diagram produced using TRANSYT 15.5.2.7994

A9 - 2031 DS1 AM D9 - 2031 DS1 AM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analy se use	Run start	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	worst	ltem with worst unsignalised PRC	Ite wit wor over PR
9	09/03/2020 09:28:26	09/03/2020 09:28:26	08:00	120	332.72	21.42	86.11	2/2	0	0	2/2	1/1	2/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 AM		D9	✓	

Demand Set Details

ſ	Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
ſ	2031 DS1 AM				08:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)					
2	3					

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)	
10000.00	10000.00	10000.00	2	

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient			
Default	35	80			

Normal Traffic Types

Name	PCU Factor
Normal	1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Nam	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient	
Tran	1.00	Default	0.94	100	100	

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓		Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Shotgun number of runs	Random seed	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Shotgun Hill Climb (Medium)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05	10	1		~	1, 2			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
	2	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	3				45.00	~	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
8	3				30.00	~	Sum of lanes	1775		1775	~		Normal	
°	4				37.00	~	Sum of lanes	2105		2105	~		Normal	
10	3				32.00	~	Sum of lanes	1965		2105	~		Normal	
11	1	(untitled)			200.00								Normal	
12	1				17.00	~	Sum of lanes	2105				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	~	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	429.39								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	3	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	3	1	(untitled)		~	N/A	N/A	0	3.50		100	14.00	✓	1775
0	4	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
10	3	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00	✓	1965
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	3.50		0	10.00		2105
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	✓	1665
14	1	1	(untitled)		✓	N/A	N/A	0	3.50	✓	0	99999.00	~	1965
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
2	3	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	3	СТМ	100	100	100		0.00				
0	4	СТМ	100	100	100		0.00				
10	3	Flare	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	✓	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				

Modelling - Advanced

Arm	m Traffic Initial queue Stream (PCU)		Type of Vehicle-in- Service			Random parameter	Auto cycle time	Cycle time
(ALL)	ALL) (ALL) 0.00 Netw		NetworkDefault	Not-Included	NetworkDefault	0.50	✓	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)		
(ALL)	(ALL)	100	100		

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	1286	1286
2	2	1269	1269
2	3	17	17
3	2	254	254
6	1	834	834
7	1	84	84
8	3	479	479
°	4	1005	1005
10	3	862	862
11	1	479	479
12	1	17	17
13	2	121	121
14	1	751	751
15	1	1015	1015

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	2	1	А	
2	3	1	А	
3	2	1	С	
8	3	2	А	
•	4	2	А	
10	3	1	В	
13	2	2	С	
14	1	2	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	(ALL)	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
2	3	1	1/1	2/3	5.40	30.00	~	Straight	Straight Movement
6	1	1	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	12/1	7/1	24.00	30.00	~	Offside	6.00
8	3	1	3/2	8/3	3.60	30.00	~	Straight	Straight Movement
0	4	1	3/2	8/4	4.44	30.00	~	Straight	Straight Movement
10	3	1	14/1	10/3	3.84	30.00	~	Straight	Straight Movement
11	1	1	8/3	11/1	24.00	30.00	~	Straight	Straight Movement
12	1	1	2/3	12/1	2.04	30.00	~	Straight	Straight Movement
15	1	1	13/2	15/1	51.53	30.00	~	Nearside	80.02
6	1	2	10/3	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	10/3	7/1	24.00	30.00	~	Nearside	69.87
8	3	2	2/2	8/3	3.60	30.00	~	Straight	Straight Movement
°	4	2	2/2	8/4	4.44	30.00	~	Straight	Straight Movement
10	3	2	13/2	10/3	3.84	30.00	~	Straight	Straight Movement
15	1	2	8/4	15/1	51.53	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
12	1	AllTraffic		

Give Way Data - All Movements - Conflicts

Traffic	Description	Controlling	Controlling traffic	Percentage	Slope	Upstream signals	Conflict	Conflict
Stream		type	stream	opposing (%)	coefficient	visible	shift	duration
1		TrafficStream	10/3	100	1.09		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

	То							
		1	2	3	4			
	1	0	290	979	17			
From	2	94	0	10	17			
	3	701	0	0	50			
	4	39	189	26	0			

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
1	1	(untitled)	1/1	6/1	#0000FF
	2	(untitled)	13/2	11/1	#00FF00
	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	10		4	1	3/2, 6/1	Normal	39
	11		1	2	1/1, 2/2, 8/3, 11/1	Normal	290
	12		4	3	3/2, 8/4, 15/1	Normal	26
	13		3	1	14/1, 10/3, 6/1	Normal	701
	19		2	3	13/2, 15/1	Normal	10
1	21		1	4	1/1, 2/3, 12/1, 7/1	Normal	17
	22		2	1	13/2, 10/3, 6/1	Normal	94
	24		2	4	13/2, 10/3, 7/1	Normal	17
	25		3	4	14/1, 10/3, 7/1	Normal	50
	26		4	2	3/2, 8/3, 11/1	Normal	189
	27		1	3	1/1, 2/2, 8/4, 15/1	Normal	979

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
1	(untitled)		1	NetworkDefault	120

Controller Stream 1 - Properties

C	Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
	1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1	✓	✓	Offsets And Green Splits		

Phases

Controlle	r Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
1		(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
4	1	А, В	1
1	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
1	1	Losing	А	1	2	1

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2	4, 30

Intergreen Matrix for Controller Stream 1

		Т	о	
		Α	в	С
Farm	Α			5
From	в			6
	С	6	5	

Banned Stage transitions for Controller Stream 1

		То	
		1	2
From	1		
	2		

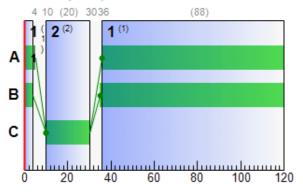
Interstage Matrix for Controller Stream 1

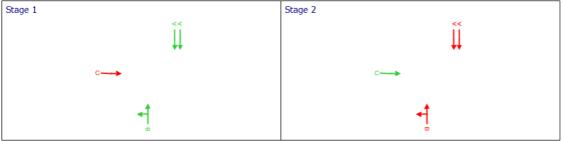
		То	
		1	2
From	1	0	6
	2	6	0

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
1	1	✓	1	A,B	36	4	88	1	6
1	2	~	2	С	10	30	20	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	36	5	89
1	в	1	✓	35	4	89
	С	1	~	10	30	20


Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Phase	Green Period 1			
Ann	Tranic Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	
2	2		1	А	36	5	89	
2	3		1	Α	36	5	89	
3	2		1	С	10	30	20	
10	3		1	В	35	4	89	

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Controller Stream 2

[Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
	2	(untitled)		1	NetworkDefault	120

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

(Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
	2	✓	\checkmark	Offsets And Green Splits		

Phases

Controller Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
2	(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
2	1	А, В	1
2	2	С	1

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
2	1	(untitled)	Single	1, 2	110, 7

Intergreen Matrix for Controller Stream 2

		Т	ō	
		Α	в	С
	Α			6
From	в			6
	С	6	6	

Banned Stage transitions for Controller Stream 2

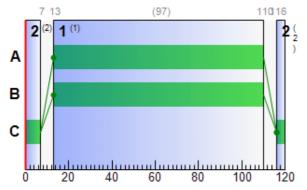
		То	
		1	2
From	1		
	2		

Interstage Matrix for Controller Stream 2

	То		
		1	2
From	1	0	6
	2	6	0

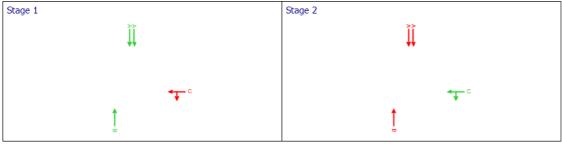
Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	13	110	97	1	7
2	2	✓	2	С	116	7	11	1	7


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	13	110	97
2	В	1	✓	13	110	97
	С	1	✓	116	7	11

Traffic Stream Green Times


A	m Traffic Stream	Troffic Node	Controller Stream	Phase	Green Period 1		
Arm	Trame Stream	Traffic Node	Controller Stream		Start	End	Duration
8	3		2	А	13	110	97
8	4		2	А	13	110	97
13	2		2	С	116	7	11
14	1		2	В	13	110	97

Phase Timings Diagram for Controller Stream 2

Stage Sequence Diagram for Controller Stream 2

Resultant penalties

Time	Controller	Phase min max penalty (£ per hr)	Intergreen broken penalty (£	Stage constraint broken penalty	Cost of controller stream
Segment	stream		per hr)	(£ per hr)	penalties (£ per hr)
08:00-09:00	(ALL)	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	81	11	1286	1965	120	10.93	25.29	72.70	55.43	8.81	64.24
	2	2	86	5	1269	1965	89	11.87	9.83	125.58	59.40	3.68	63.08
	2	3	1	8258	17	2105	89	3.47	0.10	1.24	0.23	0.04	0.27
	3	2	85	6	254	1717	20	77.05	10.24	29.44	77.19	3.76	80.95
	6	1	0	Unrestricted	834	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	84	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
08:00-	8	3	33	172	479	1775	97	2.27	3.32	63.55	4.29	1.02	5.31
09:00	0	4	58	54	1005	2105	97	4.13	5.82	90.47	16.37	2.19	18.56
	10	3	58	54	862	1965	89	5.46	4.76	85.51	18.56	1.79	20.35
	11	1	0	Unrestricted	479	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2	4372	17	845	120	5.68	0.19	6.19	0.38	0.08	0.46
	13	2	73	24	121	1665	11	79.26	4.80	13.80	37.83	1.77	39.60
	14	1	59	52	751	1965	97	11.66	14.61	42.02	34.53	5.35	39.89
	15	1	0	Unrestricted	1015	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	1286	1286	0		1965	1586	81		11	0.00	120
	2	2	1269	1269	0		1965	1474	86		5	0.36	89
	2	3	17	17	0		2105	1579	1		8258	0.36	89
	з	2	254	254	0		1717	300	85		6	0.00	20
	6	1	834	834	0		Unrestricted	Unrestricted	0		Unrestricted	0.45	120
	7	1	84	84	0		Unrestricted	Unrestricted	0		Unrestricted	0.41	120
08:00-	8	3	479	479	0		1775	1450	33		172	0.47	97
09:00	0	4	1005	1005	0		2105	1719	58		54	0.46	97
	10	3	862	862	0		1965	1474	58		54	0.63	89
	11	1	479	479	0		Unrestricted	Unrestricted	0		Unrestricted	0.45	120
	12	1	17	17	0		845	845	2		4372	0.63	120
	13	2	121	121	0		1665	167	73		24	0.00	11
	14	1	751	751	0		1965	1268	59		52	0.00	97
	15	1	1015	1015	0		Unrestricted	Unrestricted	0		Unrestricted	0.31	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	10.93	3.90	55.43	54.63	702.59	8.81
	2	2	5.40	11.87	4.18	59.40	23.14	293.67	3.68
		3	5.40	3.47	0.02	0.23	17.14	2.91	0.04
	3	2	24.00	77.05	5.44	77.19	118.15	300.09	3.76
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
00.00 00.00		3	3.60	2.27	0.30	4.29	16.98	81.36	1.02
08:00-09:00	8	4	4.44	4.13	1.15	16.37	17.38	174.69	2.19
	10	3	3.84	5.46	1.31	18.56	16.56	142.71	1.79
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2.04	5.68	0.03	0.38	36.36	6.18	0.08
	13	2	24.00	79.26	2.66	37.83	116.80	141.33	1.77
	14	1	24.00	11.66	2.43	34.53	56.83	426.77	5.35
	15	1	51.53	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	25.29	34.78	72.70	0.00	23.15	
	2	2	0.00	9.83	7.83	125.58	0.00	0.00	
		3	0.00	0.10	7.83	1.24	0.00	89.00	
	3	2	0.00	10.24	34.78	29.44	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	28.00	
08:00-09:00	8	3	0.00	3.32	5.22	63.55	0.00	5.00	
08:00-09:00	°	4	0.00	5.82	6.43	90.47	0.00	9.00	
	10	3	0.00	4.76	5.57	85.51	0.00	5.00	
	11	1	0.00	0.00	34.78	0.00	0.00	11.00	
	12	1	0.00	0.19	3.00	6.19	0.00	85.00	
	13	2	0.00	4.80	34.78	13.80	0.00	0.00	
	14	1	0.00	14.61	34.78	42.02	0.00	20.59	
	15	1	0.00	0.00	74.68	0.00	0.00	0.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
08:00-09:0	1	1	~	CTM flare: 1/1,2/3,2/2	87	35.21	1481	4

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	25.30			1.00	0.00	64.24
	2	2	0.00	0.00	~	9.87	2.62	9.87	1.00	0.00	63.08
	2	3	0.00	0.00	~	0.10	0.00	0.10	1.00	0.00	0.27
	3	2	0.00	0.00	✓	10.35	2.17	9.15	1.00	0.00	80.95
	6	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
08:00-	8	3	0.00	0.00	✓	3.32	0.08	1.89	1.00	0.00	5.31
09:00	°	4	0.00	0.00	✓	5.82	0.41	5.68	1.00	0.00	18.56
	10	3	0.00	0.00	~	4.76	0.41	4.76	1.00	0.00	20.35
	11	1	0.00	0.00	✓	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	~	0.19			1.00	0.00	0.46
	13	2	0.00	0.00	~	4.83	0.93	4.56	1.00	0.00	39.60
	14	1	0.00	0.00	~	14.62	0.43	5.02	1.00	0.00	39.89
	15	1	0.00	0.00	✓	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	ltem with worst unsignalised PRC	Ite wit wor over PR
9	09/03/2020 09:28:26	09/03/2020 09:28:26	08:00	120	332.72	21.42	86.11	2/2	0	0	2/2	1/1	2/

Network Results: Vehicle summary

Time Segment	Degree of saturation (%)	Practical reserve capacity (%)		Actual green (s (per cycle))	Mean Delay per Veh (s)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
08:00- 09:00	86	5	8473	1309	9.10	304.22	28.49	332.72

Network Results: Flows and signals

Time	Calculated flow	Calculated flow	Flow discrepancy	Adjusted flow	Degree of saturation (%)	DOS Threshold	Practical reserve	Actual green
Segment	entering (PCU/hr)	out (PCU/hr)	(PCU/hr)	warning		exceeded	capacity (%)	(s (per cycle))
08:00-09:00	8473	8473	0		86		5	1309

Network Results: Stops and delays

Time	Mean Cruise Time	Mean Delay per	Total delay	Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops
Segment	per Veh (s)	Veh (s)	(PCU-hr/hr)	(£ per hr)	Veh (%)	per hr)	(£ per hr)
08:00-09:00	18.91	9.10	21.42	304.22	26.82	2272.31	

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
08:00-09:00	125.58	0.00	275.73

Network Results: Advanced

Time Segment	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	PCU Factor	Cost of traffic penalties (£ per hr)	Controller stream penalties (£ per hr)	Performance Index (£ per hr)
08:00-09:00	0.00	0.00	✓	1.00	0.00	0.00	332.72

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

			То		
		1	2	3	4
	1	0.0	82.6	112.3	75.5
From	2	142.0	0.0	154.8	142.0
	3	68.1	0.0	0.0	68.1
	4	125.0	130.1	160.3	0.0

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)	
10	4	1	39	125.05	39	125.05	
11	1	2	290	82.58	290	82.58	
12	4	3	26	160.34	26	160.34	
13	3	1	701	68.15	701	68.15	
19	2	3	10	154.78	10	154.78	
21	1	4	17	75.52	17	75.52	
22	2	1	94	142.02	94	142.02	
24	2	4	17	142.02	17	142.02	
25	3	4	50	68.15	50	68.15	
26	4	2	189	130.13	189	130.13	
27	1	3	979	112.31	979	112.31	

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLO	ows		PER	FORMANCE		PER	PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				1286	1965	120	23.15	81	11	34.93	10.93	54.63	25.29
2	2	(untitled)		1	А	1269 <	1965	89	0.00	86	5	17.27	11.87	23.14	9.83 +
2	3			1	А	17	2105	89	89.00	1	8258	8.87	3.47	17.14	0.10
3	2	(untitled)		1	С	254	1717	20	0.00	85	6	101.05	77.05	118.15	10.24
6	1	(untitled)				834	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				84	Unrestricted	120	28.00	0	Unrestricted	24.00	0.00	0.00	0.00
8	3			2	А	479	1775	97	5.00	33	172	5.87	2.27	16.98	3.32
8	4			2	Α	1005	2105	97	9.00	58	54	8.57	4.13	17.38	5.82
10	3			1	В	862	1965	89	5.00	58	54	9.30	5.46	16.56	4.76
11	1	(untitled)				479	Unrestricted	120	11.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					17	845	120	85.00	2	4372	7.72	5.68	36.36	0.19
13	2	(untitled)		2	С	121	1665	11	0.00	73	24	103.26	79.26	116.80	4.80
14	1	(untitled)		2	В	751	1965	97	20.59	59	52	35.66	11.66	56.83	14.61
15	1	(untitled)				1015	Unrestricted	120	0.00	0	Unrestricted	51.53	0.00	0.00	0.00

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)	
Normal traffic	1334.93	65.92	20.25	21.42	304.22	28.49	0.00	332.72	
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Pedestrians									
TOTAL	1334.93	65.92	20.25	21.42	304.22	28.49	0.00	332.72	

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)</pre>

1 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 + = average link/traffic stream excess queue is greater than 0

P.I. = PERFORMANCE INDEX

A10 - 2031 DS1 PM D10 - 2031 DS1 PM*

Summary

Data Errors and Warnings

No errors or warnings

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS		Percentage of oversaturated items (%)	worst	ltem with worst unsignalised PRC	Ite wit wor over PR
10	09/03/2020 09:28:28	09/03/2020 09:28:28	17:00	120	287.37	18.58	87.36	3/2	0	0	3/2	1/1	3/

Analysis Set Details

Name	Description	Demand set	Include in report	Locked
2031 DS1 PM		D10	✓	

Demand Set Details

	Name	Description	Composite	Demand sets	Start time (HH:mm)	Locked
ſ	2031 DS1 PM				17:00	

Network Options

Network timings

Network cycle time (s)	Restrict to SCOOT cycle times	Time segment length (min)	Number of time segments	Modelled time period (min)
120		60	1	60

Signals options

Start displacement (s)	End displacement (s)						
2	3						

Advanced

Phase minimum broken penalty (£)	Phase maximum broken penalty (£)	Intergreen broken penalty (£)	Starting Red-with-Amber (s)	
10000.00	10000.00	10000.00	2	

Traffic options

Traffic model	Vehicle flow scaling factor (%)	Pedestrian flow scaling factor (%)	Cruise times or speeds
Platoon Dispersion (PDM)	100	100	Cruise Speeds

Advanced

Resolution	DOS Threshold (%)	Cruise scaling factor (%)	Use link stop weightings	Use link delay weightings	Exclude pedestrians from results calculation	Random delay mode	Type of Vehicle-in- Service	Type of random parameter	PCU Length (m)	Calculate results for Path Segments	Generate PDM Profile Data
1	90	100	~	~		Complex	Uniform (TRANSYT)	Uniform (TRANSYT)	5.75		~

Normal Traffic parameters

Dispersion type	Dispersion coefficient	Travel time coefficient
Default	35	80

Normal Traffic Types

Name	PCU Factor
Normal	1.00

Bus parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient
Bus	1.00	Default	0.94	30	85

Tram parameters

Name	PCU Factor	Dispersion type	Acceleration (ms^[-2])	Stationary time coefficient	Cruise time coefficient	
Tram	1.00	Default	0.94	100	100	

Pedestrian parameters

Dispersion type

Default

Optimisation options

Enable optimisation	Auto redistribute	Optimisation level	Enable OUT Profile accuracy
✓		Offsets And Green Splits	✓

Advanced

Optimisation type	Hill climb increments	OUTProfile accuracy	Use enhanced optimisation	Auto optimisation order	Optimisation order	Master controller	Offsets relative to master controller	Master controller offset after each run
Hill Climb (Fast)	15, 40, -1, 15, 40, 1, -1, 1	50, 50, 5, 5, 0.5, 0.5, 0.05, 0.05		~	1, 2			Do nothing

Economics

Vehicle Monetary Value Of Delay (£ per PCU-hr)	Vehicle Monetary Value Of Stops (£ per 100 stops)	Pedestrian monetary value of delay (£ per Ped-hr)
14.20	2.60	14.20

Arms and Traffic Streams

Arms

Arm	Name	Description	Traffic node
1	(untitled)		
2	(untitled)		
3	(untitled)		
6	(untitled)		
7	(untitled)		
8	(untitled)		
10	(untitled)		
11	(untitled)		
12			
13	(untitled)		
14	(untitled)		
15	(untitled)		

Traffic Streams

Arm	Traffic Stream	Name	Description	Auto length	Length (m)	Has Saturation Flow	Saturation flow source	Saturation flow (PCU/hr)	Auto- calculate cell saturation flow	Cell saturation flow (PCU/hr)	ls signal controlled	ls give way	Traffic type	Allow Nearside Turn On Red
1	1	(untitled)			200.00	~	Sum of lanes	1965					Normal	
2	2	(untitled)			45.00	~	Sum of lanes	1965		1965	~		Normal	
2	3				45.00	✓	Sum of lanes	2105		2105	~		Normal	
3	2	(untitled)			200.00	~	Sum of lanes	1717			~		Normal	
6	1	(untitled)			200.00								Normal	
7	1	(untitled)			200.00								Normal	
	3				30.00	~	Sum of lanes	1775		1775	~		Normal	
8	4				37.00	~	Sum of lanes	2105		2105	~		Normal	
10	3				32.00	~	Sum of lanes	1965		2105	~		Normal	
11	1	(untitled)			200.00								Normal	
12	1				17.00	~	Sum of lanes	1830				~	Normal	
13	2	(untitled)			200.00	~	Sum of lanes	1665			~		Normal	
14	1	(untitled)			200.00	✓	Sum of lanes	1965			~		Normal	
15	1	(untitled)		✓	429.39								Normal	

Lanes

Arm	Traffic Stream	Lane	Name	Description	Use RR67	Surface condition	Site quality factor	Gradient (%)	Width (m)	Use connector turning radius	Proportion that turn (%)	Turning radius (m)	Nearside Iane	Saturation flow (PCU/hr)
1	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
2	2	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	~	1965
2	3	1	(untitled)		✓	N/A	N/A	0	3.50		0	100.00		2105
3	2	1	(untitled)		~	N/A	N/A	0	3.60		100	10.00	✓	1717
6	1	1	(untitled)											
7	1	1	(untitled)											
8	3	1	(untitled)		~	N/A	N/A	0	3.50		100	14.00	✓	1775
0	4	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00		2105
10	3	1	(untitled)		~	N/A	N/A	0	3.50		0	100.00	✓	1965
11	1	1	(untitled)											
12	1	1	(untitled)		✓	N/A	N/A	0	3.50		100	10.00		1830
13	2	1	(untitled)		~	N/A	N/A	0	3.00		100	10.00	✓	1665
14	1	1	(untitled)		~	N/A	N/A	0	3.50	✓	0	99999.00	✓	1965
15	1	1	(untitled)											

Modelling

Arm	Traffic Stream	Traffic model	Stop weighting multiplier (%)	Delay weighting multiplier (%)	Assignment Cost Weighting (%)	Exclude from results calculation	Max queue storage (PCU)	Has queue limit	Queue limit (PCU)	Excess queue penalty (£)	Has degree of saturation limit
1	1	NetworkDefault	100	100	100		0.00				
2	2	Flare	100	100	100		0.00				
2	3	Flare	100	100	100		0.00				
3	2	NetworkDefault	100	100	100		0.00				
6	1	NetworkDefault	100	100	100		0.00				
7	1	NetworkDefault	100	100	100		0.00				
8	3	СТМ	100	100	100		0.00				
0	4	СТМ	100	100	100		0.00				
10	3	Flare	100	100	100		0.00				
11	1	NetworkDefault	100	100	100		0.00				
12	1	Flare	100	100	100		3.00	✓	3.00	500.00	
13	2	NetworkDefault	100	100	100		0.00				
14	1	NetworkDefault	100	100	100		0.00				
15	1	NetworkDefault	100	100	100		0.00				

Modelling - Advanced

Arm	Traffic	Initial queue Type of Vehicle-in-		Vehicle-in-	Type of random	Random	Auto cycle	Cycle
	Stream	(PCU) Service		Service	parameter	parameter	time	time
(ALL)	(ALL)	0.00	NetworkDefault	Not-Included	NetworkDefault	0.50	✓	120

Normal traffic - Modelling

Arm	Traffic Stream	Stop weighting (%)	Delay weighting (%)
(ALL)	(ALL)	100	100

Normal traffic - Advanced

Arm	Traffic Stream	Dispersion type for Normal Traffic
(ALL)	(ALL)	NetworkDefault

Flows

Arm	Traffic Stream	Total Flow (PCU/hr)	Normal Flow (PCU/hr)
1	1	677	677
2	2	650	650
2	3	27	27
3	2	200	200
6	1	1154	1154
7	1	160	160
8	3	241	241
°	4	586	586
10	3	1264	1264
11	1	241	241
12	1	27	27
13	2	197	197
14	1	1155	1155
15	1	674	674

Signals

Arm	Traffic Stream	Controller stream	Phase	Second phase enabled
2	2	1	А	
2	3	1	А	
3	2	1	С	
8	3	2	А	
0	4	2	А	
10	3	1	В	
13	2	2	С	
14	1	2	В	

Entry Sources

Arm	Traffic Stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)
(ALL)	(ALL)	24.00	30.00

Sources

Arm	Traffic Stream	Source	Source traffic stream	Destination traffic stream	Cruise time for Normal Traffic (s)	Cruise speed for Normal Traffic (kph)	Auto turning radius	Traffic turn style	Turning radius (m)
	2	1	1/1	2/2	5.40	30.00	~	Straight	Straight Movement
2	3	1	1/1	2/3	5.40	5.40 30.00		Straight	Straight Movement
6	1	1	3/2	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	1	12/1	7/1	24.00	30.00	~	Offside	6.00
8	3	1	3/2	8/3	3.60	30.00	~	Straight	Straight Movement
0	4	1	3/2	8/4	4.44	30.00	~	Straight	Straight Movement
10	3	1	14/1	10/3	3.84	30.00	~	Straight	Straight Movement
11	1	1	8/3	11/1	24.00	30.00	~	Straight	Straight Movement
12	1	1	2/3	12/1	2.04	30.00	~	Straight	Straight Movement
15	1	1	13/2	15/1	51.53	30.00	~	Nearside	80.02
6	1	2	10/3	6/1	24.00	30.00	~	Straight	Straight Movement
7	1	2	10/3	7/1	24.00	30.00	~	Nearside	69.87
8	3	2	2/2	8/3	3.60	30.00	~	Straight	Straight Movement
°	4	2	2/2	8/4	4.44	30.00	~	Straight	Straight Movement
10	3	2	13/2	10/3	3.84	30.00	~	Straight	Straight Movement
15	1	2	8/4	15/1	51.53	30.00	~	Straight	Straight Movement

Give Way Data

Arm	Traffic Stream	Opposed traffic	Use Step-wise Opposed Turn Model	Visibility restricted
12	1	AllTraffic		

Give Way Data - All Movements - Conflicts

Traffic Stream	Description	Controlling type	Controlling traffic stream	Percentage opposing (%)	Slope coefficient	Upstream signals visible	Conflict shift	Conflict duration
1		TrafficStream	10/3	100	1.09		0	0

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit
1	(untitled)	~	~	Path Equalisation			~			~	1.25		

Normal Input Flows (PCU/hr)

		То							
		1	2	3	4				
	1	0	191	459	27				
From	2	89	0	88	20				
	3	1042	0	0	113				
	4	23	50	127	0				

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	1	(untitled)	1/1	6/1	#0000FF
	2	(untitled)	13/2	11/1	#00FF00
1	3	(untitled)	14/1	15/1	#FFFF00
	4	(untitled)	3/2	7/1	#FFFF00

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	10		4	1	3/2, 6/1	Normal	23
	11		1	2	1/1, 2/2, 8/3, 11/1	Normal	191
	12		4	3	3/2, 8/4, 15/1	Normal	127
	13		3	1	14/1, 10/3, 6/1	Normal	1042
	19		2	3	13/2, 15/1	Normal	88
1	21		1	4	1/1, 2/3, 12/1, 7/1	Normal	27
	22		2	1	13/2, 10/3, 6/1	Normal	89
	24		2	4	13/2, 10/3, 7/1	Normal	20
	25		3	4	14/1, 10/3, 7/1	Normal	113
	26		4	2	3/2, 8/3, 11/1	Normal	50
	27		1	3	1/1, 2/2, 8/4, 15/1	Normal	459

Signal Timings

Network Default: 120s cycle time; 120 steps

Controller Stream 1

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	
1	(untitled)		1	NetworkDefault	120	

Controller Stream 1 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
1	Unspecified						Absolute

Controller Stream 1 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
1	✓	✓	Offsets And Green Splits		

Phases

C	Controller Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
	1	(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
4	1	А, В	1
1	2	С	1

Losing / Gaining Phase Delays

Controller Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
1	1	Losing	А	1	2	1

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
1	1	(untitled)	Single	1, 2	32, 53

Intergreen Matrix for Controller Stream 1

		То				
From		Α	в	С		
	Α			5		
	в			6		
	С	6	5			

Banned Stage transitions for Controller Stream 1

		То	
		1	2
From	1		
	2		

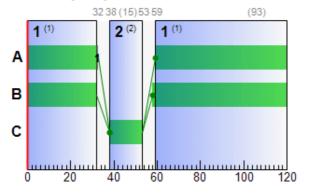
Interstage Matrix for Controller Stream 1

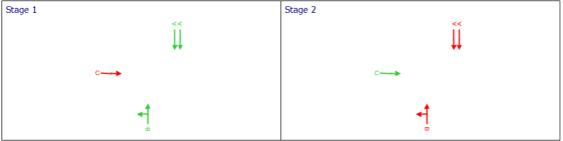
		То	
		1	2
From	1	0	6
	2	6	0

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
4	1	~	1	A,B	59	32	93	1	6
1	2	~	2	С	38	53	15	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	59	33	94
1	В	1	✓	58	32	94
	С	1	✓	38	53	15


Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	affic Node Controller Stream		Green Period 1		
Ann	Trainc Stream Trainc Node Cor	Controller Stream	Phase	Start	End	Duration	
2	2		1	А	59	33	94
2	3		1	А	59	33	94
3	2		1	С	38	53	15
10	3		1	В	58	32	94

Phase Timings Diagram for Controller Stream 1

Stage Sequence Diagram for Controller Stream 1

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)
2	(untitled)		1	NetworkDefault	120

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	√	Offsets And Green Splits		

Phases

Controller Stream	Phase	Name	Minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре
2	(ALL)	(untitled)	7	300	0	0	Traffic

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)
	1	А, В	1
2	2	С	1

Losing / Gaining Phase Delays

Controlle	r Stream	Delay	Туре	Phase	From stage	To stage	Relative delay
2		1	Losing	В	1	2	7
2		2	Losing	А	1	2	7

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends
2	1	(untitled)	Single	1, 2	21, 54

Intergreen Matrix for Controller Stream 2

		Т	о	
From		Α	в	С
	Α			6
	в			6
	С	6	6	

Banned Stage transitions for Controller Stream 2

	То			
		1	2	
From	1			
	2			

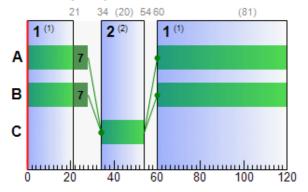
Interstage Matrix for Controller Stream 2

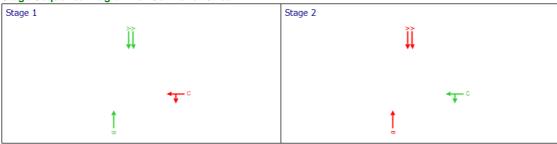
	То				
From		1	2		
	1	0	13		
	2	6	0		

Resultant Stages

Controller Stream	Resultant Stage	ls base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,B	60	21	81	1	1
2	2	✓	2	С	34	54	20	1	7

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	60	28	88
2	В	1	~	60	28	88
	С	1	~	34	54	20


Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Phase	Green Period 1			
Ann	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	
8	3		2	А	60	28	88	
8	4		2	A	60	28	88	
13	2		2	С	34	54	20	
14	1		2	В	60	28	88	

Phase Timings Diagram for Controller Stream 2

Stage Sequence Diagram for Controller Stream 2

Resultant penalties

Time Segment	Controller stream	Phase min max penalty (£ per hr)	Intergreen broken penalty (£ per hr)	Stage constraint broken penalty (£ per hr)	Cost of controller stream penalties (£ per hr)
17:00-18:00	(ALL)	0.00	0.00	0.00	0.00

Traffic Stream Results

Traffic Stream Results: Vehicle summary

Time Segment	Arm	Traffic Stream	Degree of saturation (%)	Practical reserve capacity (%)	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Mean Delay per Veh (s)	Mean max queue (PCU)	Utilised storage (%)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Performance Index (£ per hr)
	1	1	34	161	677	1965	120	0.48	0.09	0.26	1.28	0.00	1.28
	2	2	44	104	650	1965	94	6.39	6.74	86.13	16.38	2.84	19.22
	2	3	2	5455	27	2105	94	2.73	0.19	2.40	0.29	0.07	0.36
	3	2	87	3	200	1717	15	95.22	8.96	25.75	75.12	3.26	78.38
	6	1	0	Unrestricted	1154	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	0	Unrestricted	160	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
17:00-	8	3	18	392	241	1775	88	4.81	2.11	40.48	4.57	0.79	5.37
18:00	0	4	38	140	586	2105	88	6.05	5.90	91.62	13.98	2.22	16.20
	10	3	81	11	1264	1965	94	6.74	5.36	96.39	33.61	2.04	35.64
	11	1	0	Unrestricted	241	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	6	1411	27	453	120	25.44	0.57	18.92	2.71	0.25	2.96
	13	2	68	33	197	1665	20	58.86	6.81	19.59	45.74	2.53	48.26
	14	1	80	12	1155	1965	88	15.41	26.31	75.64	70.19	9.51	79.70
	15	1	0	Unrestricted	674	Unrestricted	120	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Flows and signals

Time Segment	Arm	Traffic Stream	Calculated flow entering (PCU/hr)	Calculated flow out (PCU/hr)	Flow discrepancy (PCU/hr)	Adjusted flow warning	Calculated sat flow (PCU/hr)	Calculated capacity (PCU/hr)	Degree of saturation (%)	DOS Threshold exceeded	Practical reserve capacity (%)	Mean modulus of error	Actual green (s (per cycle))
	1	1	677	677	0		1965	1965	34		161	0.00	120
	2	2	650	650	0		1965	1476	44		104	0.00	94
	2	3	27	27	0		2105	1666	2		5455	0.00	94
	3	2	200	200	0		1717	229	87		3	0.00	15
	6	1	1154	1154	0		Unrestricted	Unrestricted	0		Unrestricted	0.38	120
	7	1	160	160	0		Unrestricted	Unrestricted	0		Unrestricted	0.36	120
17:00-	8	3	241	241	0		1775	1316	18		392	0.49	88
18:00	°	4	586	586	0		2105	1561	38		140	0.50	88
	10	3	1264	1264	0		1965	1556	81		11	0.41	94
	11	1	241	241	0		Unrestricted	Unrestricted	0		Unrestricted	0.59	120
	12	1	27	27	0		453	453	6		1411	0.41	120
	13	2	197	197	0		1665	291	68		33	0.00	20
	14	1	1155	1155	0		1965	1439	80		12	0.00	88
	15	1	674	674	0		Unrestricted	Unrestricted	0		Unrestricted	0.37	120

Traffic Stream Results: Stops and delays

Time Segment	Arm	Traffic Stream	Mean Cruise Time per Veh (s)	Mean Delay per Veh (s)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Mean stops per Veh (%)	Total stops (Stops per hr)	Weighted cost of stops (£ per hr)
	1	1	24.00	0.48	0.09	1.28	0.00	0.00	0.00
	2	2	5.40	6.39	1.15	16.38	34.79	226.14	2.84
	2	3	5.40	2.73	0.02	0.29	20.85	5.63	0.07
	3	2	24.00	95.22	5.29	75.12	130.11	260.22	3.26
	6	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	7	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
17:00-18:00	8	3	3.60	4.81	0.32	4.57	26.29	63.36	0.79
17.00-10.00	°	4	4.44	6.05	0.98	13.98	30.18	176.87	2.22
	10	3	3.84	6.74	2.37	33.61	12.86	162.55	2.04
	11	1	24.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	1	2.04	25.44	0.19	2.71	72.63	19.61	0.25
	13	2	24.00	58.86	3.22	45.74	102.29	201.52	2.53
	14	1	24.00	15.41	4.94	70.19	65.65	758.22	9.51
	15	1	51.53	0.00	0.00	0.00	0.00	0.00	0.00

Traffic Stream Results: Queues and blocking

Time Segment	Arm	Traffic Stream	Initial queue (PCU)	Mean max queue (PCU)	Max queue storage (PCU)	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))	Estimated blocking
	1	1	0.00	0.09	34.78	0.26	0.00	0.00	
		2	0.00	6.74	7.83	86.13	0.00	4.87	
	2	3	0.00	0.19	7.83	2.40	0.00	94.00	
	3	2	0.00	8.96	34.78	25.75	0.00	0.00	
	6	1	0.00	0.00	34.78	0.00	0.00	0.00	
	7	1	0.00	0.00	34.78	0.00	0.00	20.00	
17:00-18:00	8	3	0.00	2.11	5.22	40.48	0.00	2.00	
17:00-16:00	l °	4	0.00	5.90	6.43	91.62	0.00	0.00	
	10	3	0.00	5.36	5.57	96.39	0.00	1.00	
	11	1	0.00	0.00	34.78	0.00	0.00	23.00	
	12	1	0.00	0.57	3.00	18.92	0.00	55.00	
	13	2	0.00	6.81	34.78	19.59	0.00	0.00	
	14	1	0.00	26.31	34.78	75.64	0.00	1.13	
	15	1	0.00	0.00	74.68	0.00	0.00	0.00	

Traffic Stream Results: Flare

Time Segment	Arm	Traffic Stream	Flare present	Flare components	Degree of saturation (%)	Mean max queue (PCU)	Calculated capacity (PCU/hr)	Practical reserve capacity (%)
17:00-18:00	1	1	~	CTM flare: 1/1,2/3,2/2	46	7.02	1485	97

Traffic Stream Results: Advanced

Time Segment	Arm	Traffic Stream	Degree of saturation penalty (£ per hr)	Ped gap accepting penalty (£ per hr)	Warmed up	Mean Max Queue EoTS (PCU)	Max End of Green Queue EoTS (PCU)	Max End of Red Queue EoTS (PCU)	PCU Factor	Cost of traffic penalties (£ per hr)	Performance Index (£ per hr)
	1	1	0.00	0.00	✓	0.09			1.00	0.00	1.28
	2	2	0.00	0.00	~	6.74	0.17	5.23	1.00	0.00	19.22
	2	3	0.00	0.00	✓	0.19	0.00	0.19	1.00	0.00	0.36
	3	2	0.00	0.00	~	9.19	2.69	8.47	1.00	0.00	78.38
	6	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	7	1	0.00	0.00	~	0.00			1.00	0.00	0.00
17:00-	8	3	0.00	0.00	~	2.11	0.02	2.11	1.00	0.00	5.37
18:00	°	4	0.00	0.00	~	5.90	0.11	5.49	1.00	0.00	16.20
	10	3	0.00	0.00	~	5.38	1.75	5.38	1.00	0.00	35.64
	11	1	0.00	0.00	~	0.00			1.00	0.00	0.00
	12	1	0.00	0.00	~	0.57			1.00	0.00	2.96
	13	2	0.00	0.00	~	6.82	0.70	6.11	1.00	0.00	48.26
	14	1	0.00	0.00	~	26.32	1.62	11.56	1.00	0.00	79.70
	15	1	0.00	0.00	~	0.00			1.00	0.00	0.00

Network Results

Run Summary

Analysis set used	Run start time	Run finish time	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (£ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	ltem with worst signalised PRC	Item with worst unsignalised PRC	lte wit wor over PR
10	09/03/2020 09:28:28	09/03/2020 09:28:28	17:00	120	287.37	18.58	87.36	3/2	0	0	3/2	1/1	3/

Network Results: Vehicle summary

Time	Degree of saturation (%)	Practical reserve	Calculated flow	Actual green	Mean Delay	Weighted cost of	Weighted cost of	Performance Index
Segment		capacity (%)	entering (PCU/hr)	(s (per cycle))	per Veh (s)	delay (£ per hr)	stops (£ per hr)	(£ per hr)
17:00- 18:00	87	3	7253	1301	9.22	263.87	23.50	287.37

Network Results: Flows and signals

Time	Calculated flow	Calculated flow	Flow discrepancy	Adjusted flow	Degree of saturation (%)	DOS Threshold	Practical reserve	Actual green
Segment	entering (PCU/hr)	out (PCU/hr)	(PCU/hr)	warning		exceeded	capacity (%)	(s (per cycle))
17:00-18:00	7253	7253	0		87		3	1301

Network Results: Stops and delays

Time	Mean Cruise Time	Mean Delay per	Total delay	Weighted cost of delay	Mean stops per	Total stops (Stops	Weighted cost of stops
Segment	per Veh (s)	Veh (s)	(PCU-hr/hr)	(£ per hr)	Veh (%)	per hr)	(£ per hr)
17:00-18:00	18.97	9.22	18.58	263.87	25.84	1874.12	23.50

Network Results: Queues and blocking

Time Segment	Utilised storage (%)	Excess queue penalty (£ per hr)	Wasted time total (s (per cycle))
17:00-18:00	96.39	0.00	201.00

Network Results: Advanced

Time	Degree of saturation	Ped gap accepting	Warmed	PCU	Cost of traffic	Controller stream	Performance Index
Segment	penalty (£ per hr)	penalty (£ per hr)	up	Factor	penalties (£ per hr)	penalties (£ per hr)	(£ per hr)
17:00-18:00	0.00	0.00	✓	1.00	0.00	0.00	287.37

Point to Point Journey Time

Average Journey Time (s) for Local Matrix: 1

		То							
		1	2	3	4				
	1	0.0	66.1	95.2	84.1				
From	2	132.7	0.0	134.4	132.7				
	3	72.6	0.0	0.0	72.6				
	4	143.2	161.7	192.5	0.0				

Path Journey Time

Path	From Location	To Location	Normal Calculated Flow (PCU/hr)	Normal journey time (s)	Calculated Total Flow (PCU/hr)	Avg journey time (s)
10	4	1	23	143.22	23	143.22
11	1	2	191	66.05	191	66.05
12	4	3	127	192.46	127	192.46
13	3	1	1042	72.55	1042	72.55
19	2	3	88	134.38	88	134.38
21	1	4	27	84.09	27	84.09
22	2	1	89	132.67	89	132.67
24	2	4	20	132.67	20	132.67
25	3	4	113	72.55	113	72.55
26	4	2	50	161.67	50	161.67
27	1	3	459	95.18	459	95.18

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PEF	FORMANCE		PER	PCU		QUEUES
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)
1	1	(untitled)				677	1965	120	0.00	34	161	24.48	0.48	0.00	0.09
2	2	(untitled)		1	А	650	1965	94	4.87	44	104	11.79	6.39	34.79	6.74
2	3			1	А	27	2105	94	94.00	2	5455	8.13	2.73	20.85	0.19
3	2	(untitled)		1	С	200	1717	15	0.00	87	3	119.22	95.22	130.11	8.96
6	1	(untitled)				1154	Unrestricted	120	0.00	0	Unrestricted	24.00	0.00	0.00	0.00
7	1	(untitled)				160	Unrestricted	120	20.00	0	Unrestricted	24.00	0.00	0.00	0.00
•	3			2	А	241	1775	88	2.00	18	392	8.41	4.81	26.29	2.11
8	4			2	Α	586	2105	88	0.00	38	140	10.49	6.05	30.18	5.90
10	3			1	В	1264	1965	94	1.00	81	11	10.58	6.74	12.86	5.36
11	1	(untitled)				241	Unrestricted	120	23.00	0	Unrestricted	24.00	0.00	0.00	0.00
12	1					27	453	120	55.00	6	1411	27.48	25.44	72.63	0.57
13	2	(untitled)		2	С	197	1665	20	0.00	68	33	82.86	58.86	102.29	6.81
14	1	(untitled)		2	В	1155	1965	88	1.13	80	12	39.41	15.41	65.65	26.31
15	1	(untitled)				674	Unrestricted	120	0.00	0	Unrestricted	51.53	0.00	0.00	0.00

Network Results

	Distance travelled (PCU- km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Total delay (PCU-hr/hr)	Weighted cost of delay (£ per hr)	Weighted cost of stops (£ per hr)	Excess queue penalty (£ per hr)	Performance Index (£ per hr)
Normal traffic	1146.49	56.80	20.19	18.58	263.87	23.50	0.00	287.37
Bus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pedestrians								
TOTAL	1146.49	56.80	20.19	18.58	263.87	23.50	0.00	287.37

1 <= adjusted flow warning (upstream links/traffic streams are over-saturated)

1 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%

1 ^ = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

1 += average link/traffic stream excess queue is greater than 0

1 P.I. = PERFORMANCE INDEX

Appendix D Technical Note 031 Rev B

Subject:	Middleton Stoney Mitigation Package
Prepared By:	Phil Rawlins
Date:	5 th March 2020
Note No:	031 Rev B
Job No:	39304
Job Name:	Heyford Park

ltem	Subject
1.	Introduction
	This note has been prepared by Stantec on behalf of Dorchester Group to set out the package of highway improvements proposed to mitigate the impact of the Heyford Park development on Middleton Stoney Village and the B430 / B4030 Junction (Middleton Stoney Junction).
	The note has been prepared following discussions with Oxfordshire County Council (OCC) and it should be read in conjunction with Technical Note 024 Revision D (TN024D) (PBA, March 2020) which sets out the results of modelling the Middleton Stoney junction in a number of scenarios.
	The proposals are subject to consultation with Middleton Stoney Parish Council, however, it is considered that the principle of this package of measures have been agreed with OCC.
2.	Mitigation Package – Highway Improvements
	The proposals set out below are considered to mitigate the impact of the proposed Heyford Park development on Middleton Stoney Village and the Middleton Stoney Junction. An overview of the scheme is set out on Drawing 39304/5501/SK53 Rev A .
	B430 / B4030 Junction (Middleton Stoney Junction)
	There is a previously agreed S278 scheme for the Middleton Stoney junction that was consented as part of the 1,075 dwelling Heyford Park planning application. It is proposed that this scheme is implemented as part of this package of works. The scheme layout is set out in Woods Hardwick Drawing HEYF/5/582 Rev C at Appendix A .
	B4030 Lower Heyford Road Bus Gate
	It is proposed that a bus gate will be provided on the B4030 west of the Middleton Stoney junction. The bus gate will be provided close to the B4030 Lower Heyford Road / Unnamed Road to Camp Road junction and there are two options for the gate restrictions as shown on Drawings 39304/5501/SK51 Rev B and 39304/5501/SK60 .
	The first option is to restrict traffic in a southbound direction only.
	The second option is to restrict traffic in both southbound and northbound directions.
	Both options would restrict the amount of traffic at the Middleton Stoney Junction and therefore provide improved operational performance at the junction which will enable an improved cycling environment and improved environmental amenity in this part of Middleton Stoney Village.
	A review of the predicted reduction in flows on the links between Camp Road and Middleton Stoney has been undertaken. Table 1 below sets out the predicted traffic flows on the B4030

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

South Heyford Road link for each scenario.

ltem	Subject								
	Table 1: Bus Gate Traffic Flow	S							
		AM Flow	PM Flow						
	No Bus Gate	1169	977						
	Southbound only restriction	686	604						
	Two-way restriction	116	89						
	OCC have advised that in order to provide a suitable cycle route using advisory cycle lanes, two way flows on the corridor should not exceed 400 vehicles per hour. Table 1 shows that the two-way restriction option is the only option to reduce traffic flows below this 400 vehicle threshold and therefore this is the preferred bus gate option as it would provide a significantly improved environment for cyclists using this route.								
	in Cherwell. B4030 Lower Heyford Road / Un	named Road to Camp	Road junction						
	D4030 Lower Heylord Road / On	named Road to Camp							
	In line with the implementation of B4030 Lower Heyford Road / Un the bus gate. Two different scher way or two-way restriction) and t out on Drawing 39304/5501/SK two-way bus gate options respect	named Road to Camp mes have been designe he resultant requiremer 51 Rev B and Drawing	Road in order to facilitate t ed to reflect the two bus ga hts of the junction. These p	he operation of ate options (one- proposals are set					
	For a one-way bus gate it is prop south movement with the wester safer environment for the implem For a two-way bus gate, the main	n arm becoming the mi nentation of the bus gate	nor arm. This arrangemen e.	it will provide a					
	southern arm providing access for	or permitted vehicles or	nly.						
	B4030 Bicester Road HGV Rest	<u>iction</u>							
	It is proposed that a HGV restriction is placed on the B4030 east of the Middleton Stoney junction. This restriction will limit the number of HGVs travelling through Middleton Stoney on route to Bicester which will improve the environmental amenity in Middleton Stoney Village and reduce the number of vehicles travelling through the Middleton Stoney Junction.								
	Cycle Improvement – Camp Roa	d to Middleton Stoney							
	It is proposed that the centre line be removed along this section of route and two 1.5m wide advisory cycle lanes be provided on either side of the carriageway along the length of the road. The scheme can be supplemented with a number of build outs at which point vehicles would be required to give-way to on-coming vehicles. It is also proposed to restrict the speed limit to 40mph for this section of route. Additionally, cyclists will benefit from a reduction in number of vehicles along this route due to the proposed bus gate. It is considered that this scheme would reduce vehicle speeds along the length of the road and therefore provide a safer environment for cycling along this route. This scheme is illustrated on Drawing 39304/5501/SK52 Rev A .								
	Cycle Improvement – Middleton	Stoney to Bicester							
	Between Middleton Stoney Villag foot / cycleway will be provided a made to cycle infrastructure prov	long the southern side	of the carriageway. Conne	ection will be					

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

ltem	Subject
	onward connection to Bicester Town Centre. This scheme is illustrated on Drawing 39304/5501/101.
	Camp Road / Chilgrove Drive Junction
	As set out in previous proposals it is intended to signalise the Camp Road / Chilgrove Drive junction to provide site access into Heyford Park via Chilgrove Drive. This scheme is set out on Drawing 39304/5501/SK26 Rev I . It is considered that the signalisation of this junction will allow for control of traffic flows in this location and would complement the bus gate proposals.
	B430 Ardley Road / Unnamed Road
	It is proposed to signalise the B430 / Unnamed Road junction in order to facilitate the additional traffic that would likely re-assign and use this junction as an outcome of the bus gate intervention. The scheme is set out on Drawing 39304/5501/SK58 . It is considered that the signalisation of this junction will allow for control of increased traffic flows in this location and would complement the bus gate proposals.
3.	Wider Mitigation Package
	A number of proposals have been put forward that are likely to contribute over time to the reduction in vehicle trip generation associated with the Heyford Park development and trips between the site and Bicester and these are set out below.
	Travel Plan
	Full Residential and Workplace Travel Plans and associated measures are being prepared by Calibro on behalf of Dorchester. The Travel Plans aim to reduce the overall vehicular trip generation of Heyford Park. The Travel Plans will be submitted as part of an addendum submission and will set out key proposed measures including but not limited to:
	 Provision of Travel Plan welcome packs and leaflets including plans showing walk and cycle routes, and bus service locations. Personalised Travel Planning for residents and employees
	 Provision of a free 3month bus pass for residents and employees Implementation of a bike hire scheme and one free annual membership for residents and employees
	 Adult and child cycle training will be made available Public bike maintenance and bike pump stands will be installed and maintained within the development.
	 A community club will be established offering leisure cycle rides and walks around the development. Setting up and management of a car share club for residents and employees
	 The introduction of an electric car club vehicle Twice annual public travel events
	 Secure and sheltered employee cycle parking A forum of workplace champions will be established to share knowledge, issues and opportunities
	 Where possible the incorporation of showers and drying rooms into commercial buildings Assess with each business the potential to provide car sharer only parking and smart parking. A commitment to undertake bike maintenance sessions at travel plan events and have a
	 monthly mobile bike repair service. The community cycle club will organise biker breakfasts, buddy schemes and encourage cycle champions from the site to encourage work alongside the TPC. Establish a bike miles scheme where employees can earn points in exchange for vouchers Businesses at the site will be able to claim 50% of the cost of installing audio and video conferencing systems at their premises up to £500

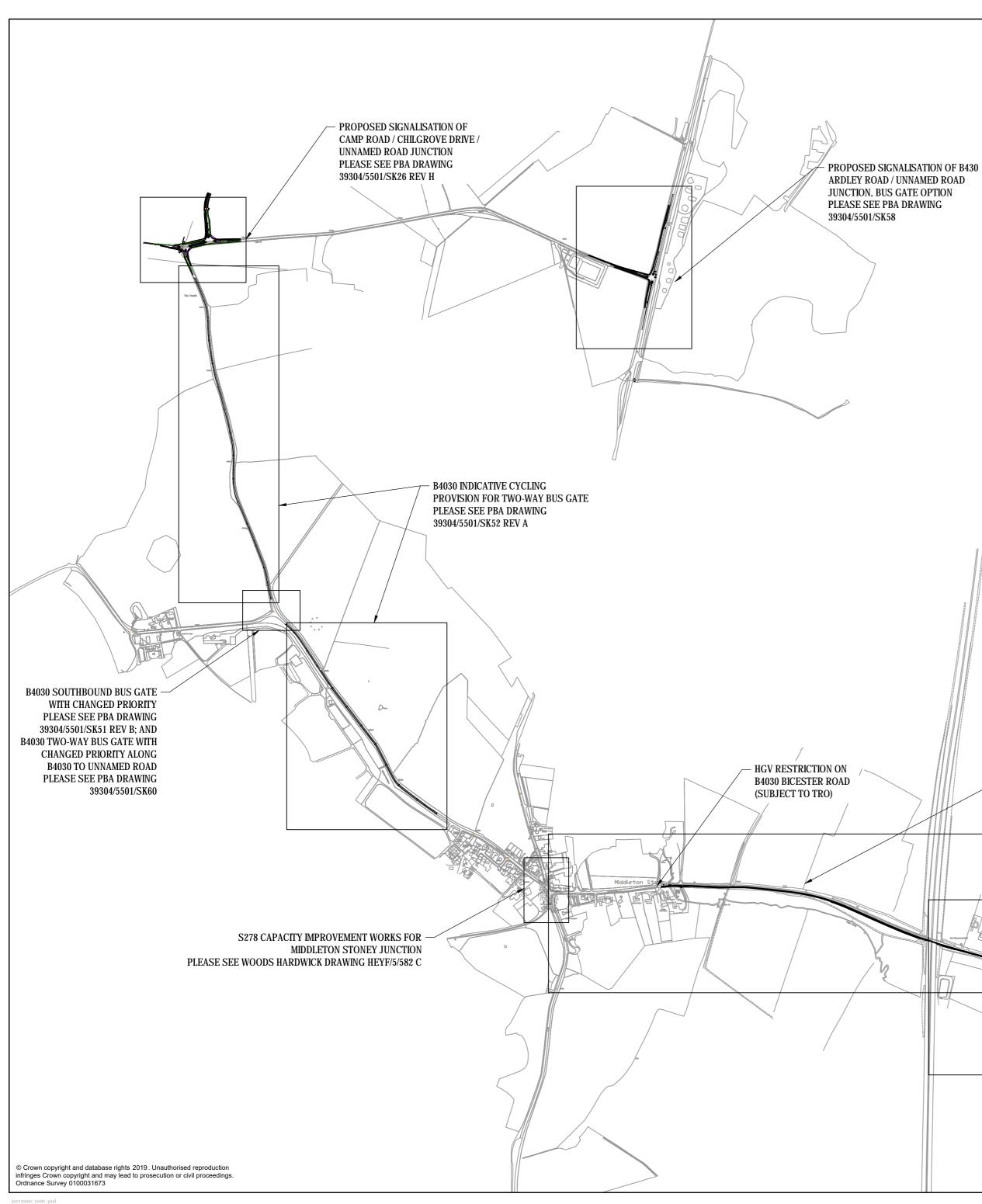
J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

Item	Subject
	 Up to 5 desks with wifi access will be made available within offices on site to create an informal co-working space to provide an alternative to home working without the need to travel.
	Bus Service Improvements
	It is proposed that bus services between the Heyford Park development and Bicester are increased from the existing 1 bus per hour to 4 per hour. The existing service runs between Oxford and Bicester via Heyford Park. It is proposed that the service is split at Heyford Park. This will allow buses to Bicester to run more reliably than at the current time and the provision of the bus gate should also aid with journey time reliability. The buses to Bicester will also serve Bicester Village station providing onward connections to London and Oxford.
4.	Conclusion
	This note has set out the package of highway improvements proposed to mitigate the impact of the Heyford Park development on Middleton Stoney Village and the B430 / B4030 Junction (Middleton Stoney Junction). The package includes:
	 S278 scheme of improvements at the B430 / B4030 junction A bus gate with either one-way or two-way restrictions on the B4030 Lower Heyford Road. A two-way restriction is the preferred option due to the reduction in traffic flows and resultant benefit to cyclists along the corridor between Camp Road and Middleton Stoney Re-prioritisation of the B4030 Lower Heyford Road / Unnamed Road to Camp Road junction HGV restriction on the B4030 Bicester Road Cycle improvements between Camp Road and Bicester via Middleton Stoney Signalisation of the Camp Road / Chilgrove Drive junction Signalisation of the B430 Ardley Road / Unnamed Road junction Site wide Travel Plans Bus Service Improvements
	It is considered that the package will adequately mitigate the impact of the Heyford Park development on Middleton Stoney Village and the Middleton Stoney Junction.

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)
39304/TN031	-	06.08.19	PR	-	-	MW
39304/TN031	Α	30.08.19	PR	-	-	-
39304/TN031	В	05.03.20	RK	PR	PR	MW

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report. Stantec 10 Queen Square Bristol BS1 4NT


T: +44 (0)117 332 7840

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

DRAWINGS

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

5501/SK53	A	Tel: 01173 327 840	
File Location: j	\39304 heyford	park tranche 2\cad\brief 5501\sketches\39304-5501-sk53 ms overview plan.dwg	

Date of 1st Issue	Designed	Dra	awn	
05.08.2019	-		PC	
A2 Scale	Checked	Approved		
N.T.S	PR		PR	
Drawing Number			Revision	
39304/5501	I/SK53	3	А	

DORCHESTER

Client

GROUP

Stante

stantec.com/uk

Copyright reserved The copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorised by Stantec is forbidden.

BRISTOL

OVERVIEW PLAN

MIDDLETON STONEY PACKAGE

HEYFORD PARK, OXFORDSHIRE

PRELIMINARY CONCEPT SKETCH

drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations. Drawing Issue Status

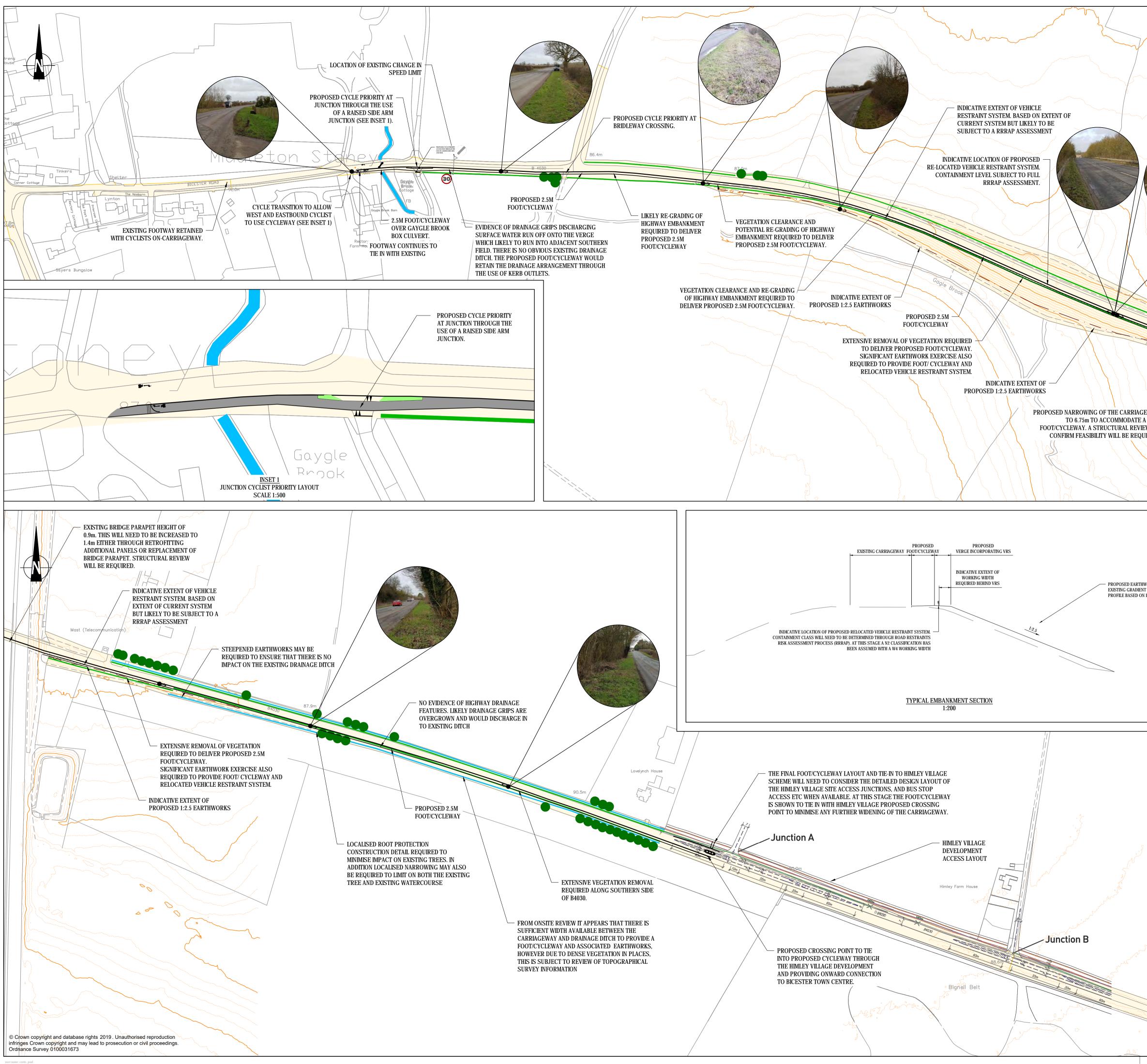
А	UPDATED DRAWING REFS AND INCLUSION OF MS TO HV F/CYCLEWAY	05.03.20	PC	PR						
Mark	Revision	Date	Drawn	Chkd	Appd					
SCALING NOTE: <u>Do not</u> scale this drawing - any errors or omissions shall be reported to Stantec without delay. UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this										

А	UPDATED DRAWING REFS AND INCLUSION OF MS TO HV F/CYCLEWAY	05.03.20	PC	PR	
Mark	Revision	Date	Drawn	Chkd	Appd

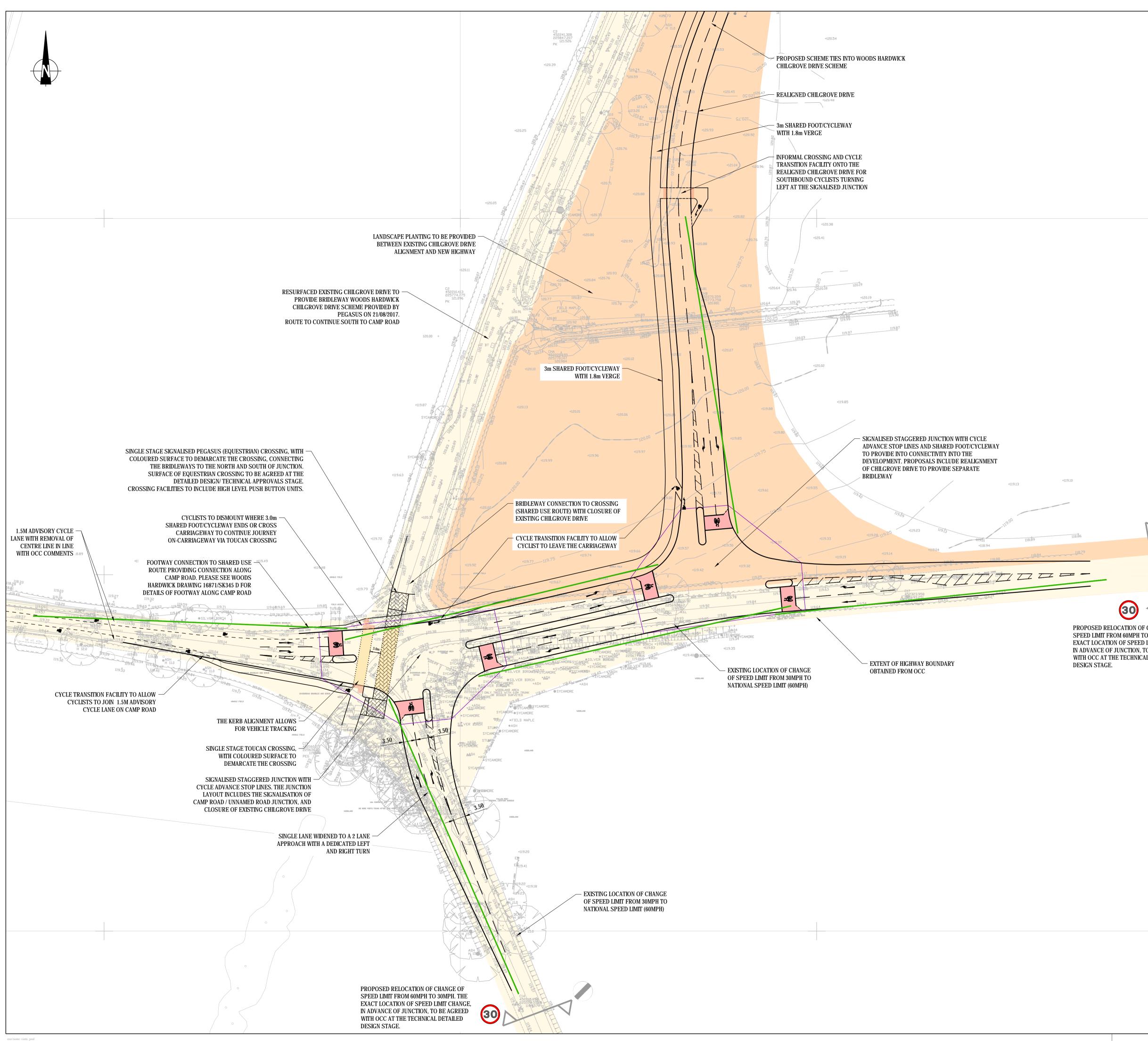
5

B4030 BICESTER ROAD MIDDLETON STONEY

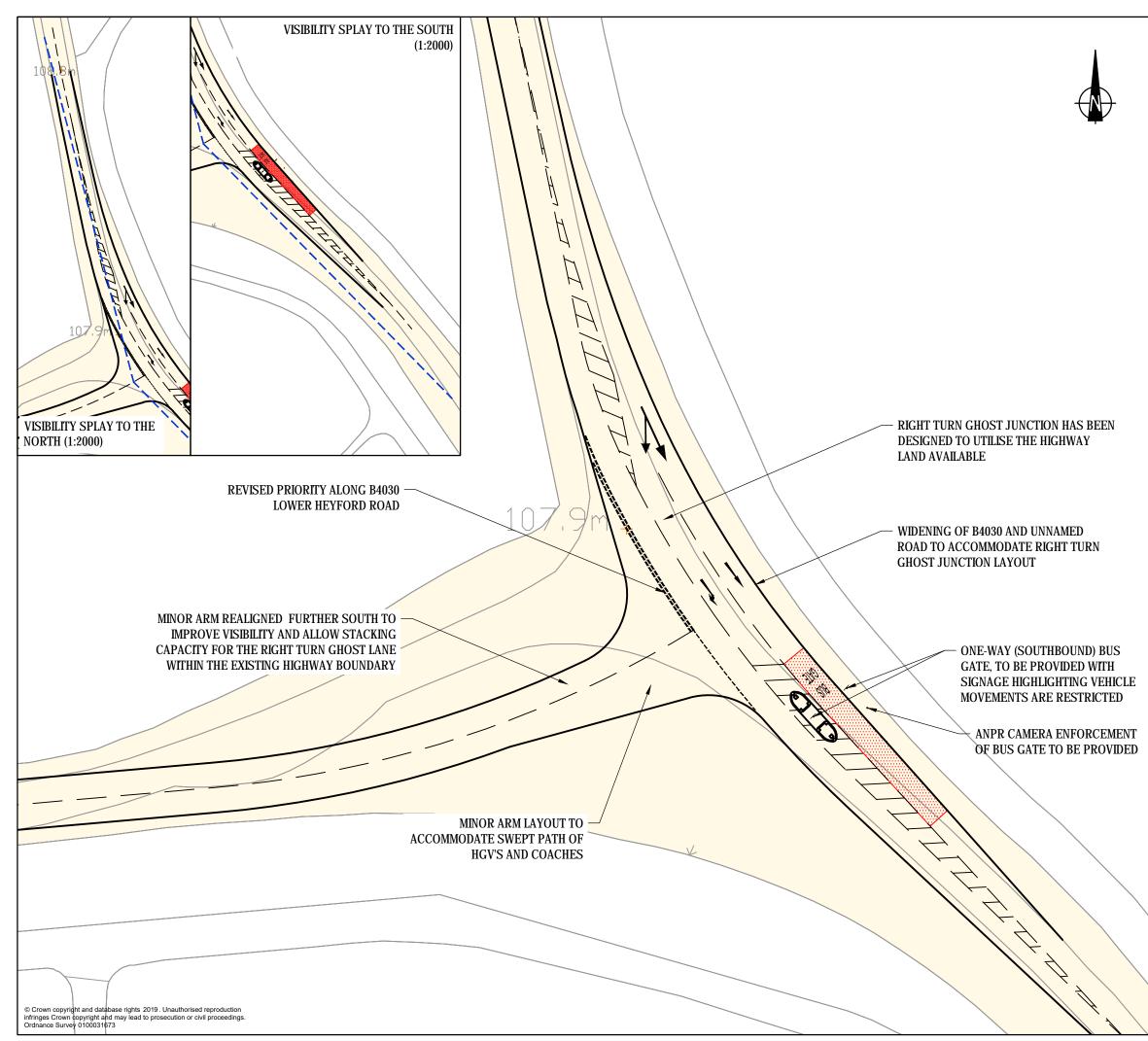
PLEASE SEE PBA DRAWING 39304/5501/101


Signal Sol

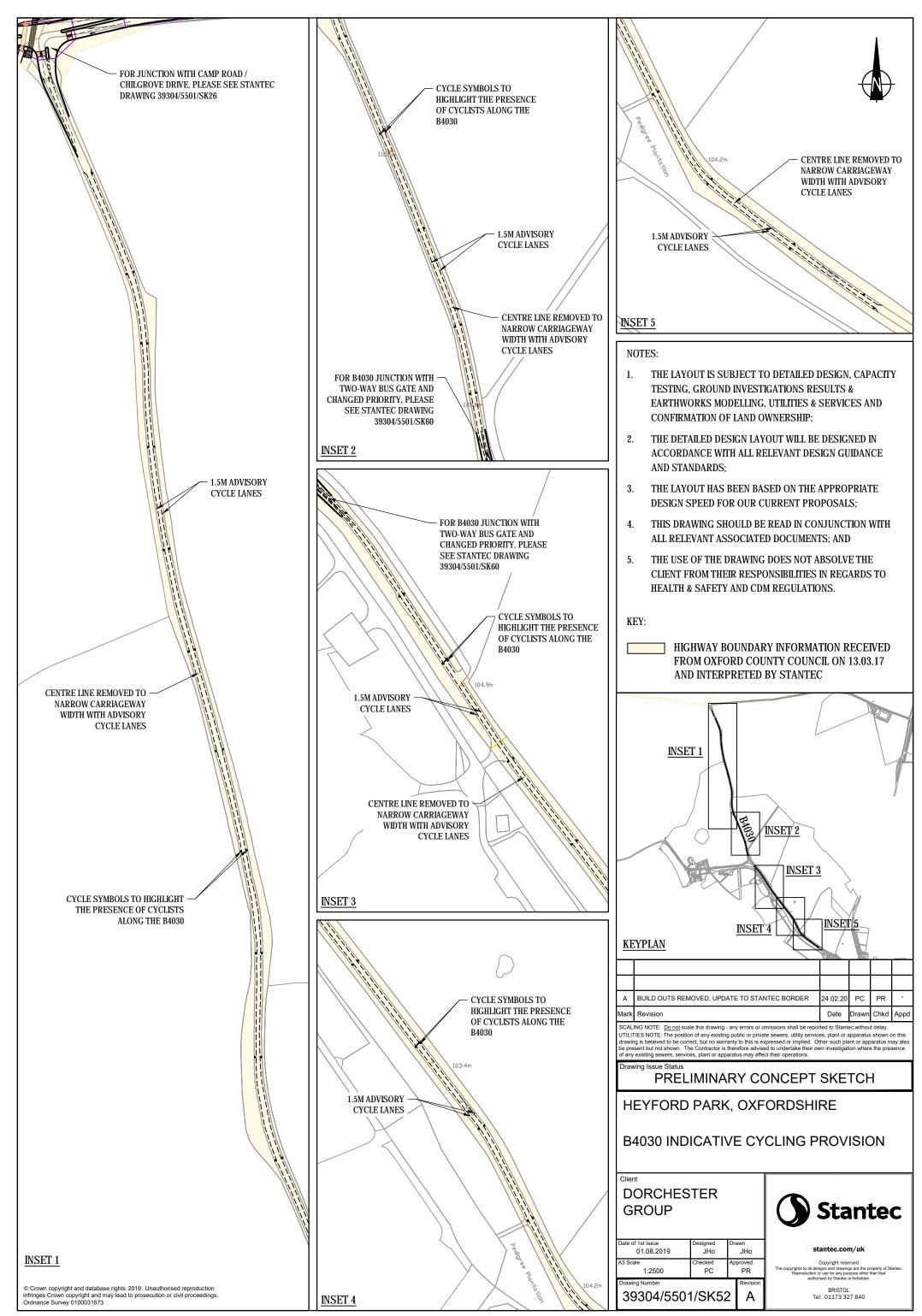
 \square


TO HIMLEY VILLAGE PROPOSED

FOOT/CYCLEWAY LAYOUT


de

\sim		
		م مر
	o hand o	
		1
	EXISTING BRIDGE WIDTH (PARAPET TO	and the second sec
	PARAPET) OF APPROX. 11.0m WITH SOUTHERN FOOTWAY WIDTH OF 2.0m, CARRIAGEWAY WIDTH OF 7.3m AND NORTHERN FOOTWAY WIDTH OF 1.7m.	
	EXISTING BRIDGE PARAPET HEIGHT OF	
	0.9m. THIS WILL NEED TO BE INCREASED TO 1.4m EITHER THROUGH RETROFIITING ADDITIONAL PANELS OR REPLACEMENT OF	
	BRIDGE PARAPET. STRUCTURAL REVIEW WILL BE REQUIRED.	
	INDICATIVE EXTENT OF VEHICLE RESTRAINT SYSTEM. BASED ON	
	EXTENT OF CURRENT SYSTEM BUT LIKELY TO BE SUBJECT TO A RRRAP ASSESSMENT	
	Mast (Telecommunication)	
	have a horizon of the second s	
WAY 2.5m W TO		87.9m
RED.		
	0	
YORKS TO MATCH ASSUMED (1:2.5). EXISTING GROUND EA LIDAR INFORMATION	 THE LAYOUT SUBJECT TO FULL TOPOGRAPHICAL SURVE INVESTIGATIONS RESULTS & EARTHWORKS. MODELING, CONFIRMATION OF LAND OWNERSHIP. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN AC DESIGN GUIDANCE AND STANDARDS; THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DI PROPOSALS; THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH DOCUMENTS; THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLI RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AN KEY: HIGHWAY BOUNDARY INFORMATION REC COUNCIL ON 06.12.19 AND INTERPRETED EXISTING CONTOURS (BASED ON AVAILA INDICATIVE LOCATION OF HEDGEROW / V INDICATIVE LOCATION OF DRAINAGE DITO INDICATIVE LOCATION OF SIGNIFICANT T 	UTILITIES & SERVICES AND CORDANCE WITH ALL RELEVANT ESIGN SPEED FOR OUR CURRENT I ALL RELEVANT ASSOCIATED ENT FROM THEIR ND CDM REGULATIONS. EEIVED FROM OXFORD COUNTY BY STANTEC. BLE LIDAR DATA ALONG B4030). TEGETATION CH / BROOK
	Mark Revision SCALING NOTE: Do not scale this drawing - any errors or omissions shall be UTILITIES NOTE: The position of any existing public or private sewers, utility statements	
	drawing is believed to be correct, but no warranty to this is expressed or implie be present but not shown. The Contractor is therefore advised to undertake the of any existing sewers, services, plant or apparatus may affect their operations	ed. Other such plant or apparatus may also neir own investigation where the presence
	Drawing Issue Status FOR DISCUSSI	NC
	HEYFORD PARK, OXFORDS	HIRE
S. S. S. S. S. S. S. S. S. S. S. S. S. S	B4030 BICESTER ROAD MIDDLETON STONEY TO HI	
and with	PROPOSED FOOT/CYCLEW/	
- Marsh Van St	Client DORCHESTER	
		Stantec
	Date of 1st Issue Designed Drawn 09.03.20 ET ET	stantec.com/uk
A Company of the second s	A1 Scale Checked Approved 1:1000 JMH - The copyrights to Reprod	Copyright reserved o all designs and drawings are the property of Stantec. uction or use for any purpose other than that authorised by Stantec is forbidden.
3230 °	Drawing Number 39304/5501/101 -	BRISTOL Tel: 01173 327 840
	File Location: j:\39304 heyford park tranche 2\cad\brief 5501\dwgs\3930	4-5501-101 b4030 to bicester village cycleway general arrangement.dwg



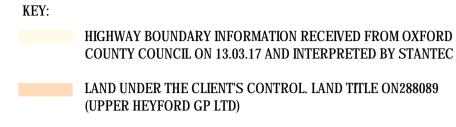
	22						
			NOTES: 1. THE LAYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFETY A TESTING, GROUND INVESTIGATIONS RESULTS & EARTHWORKS M SERVICES AND CONFIRMATION OF LAND OWNERSHIP; 2. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORDA	ODELLING,	UTILITII	ES &	
			RELEVANT DESIGN GUIDANCE AND STANDARDS; 3. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN S	SPEED FOR	2 OUR		
			CURRENT PROPOSALS; 4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL R	ELEVANT A	SSOCIA	TED	
			DOCUMENTS; AND 5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FR RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AND CDM R		NS;		
			KEY:				
P			HIGHWAY BOUNDARY INFORMATION RECEIVED FROM C COUNTY COUNCIL ON 13.03.17 AND INTERPRETED BY S				
			LAND UNDER THE CLIENT'S CONTROL. LAND TITLE ON23 (UPPER HEYFORD GP LTD)	88089			
			90M STOPPING SIGHT DISTANCE TO A PRIMARY SIGNAL ACCORDANCE WITH DMRB FOR A 30MPH ROAD	. HEAD IN			
			JUNCTION INTERVISIBILITY				
F CHANGE OI	F						1
O 30MPH. TH LIMIT CHAN	IE GE,	। Н	UPDATED TO STANTEC BORDER ADDITIONAL UPDATES FOLLOWING OCC COMMENTS	26.02.20 10.10.18		PR	-
FO BE AGREI AL DETAILED		G	COMMENTS FROM OCC INCORPORATED INTO PLAN	02.10.18			-
		F	COMMENTS FROM THE BHS INCORPORATED INTO PLAN	07.06.18	JDS	PR	-
		Е	COLOURED SURFACE PROVIDED ON CROSSING	19.03.18	PC	PR	-
		D	REVISED IN ACCORDANCE WITH OCC COMMENTS 05/03/18	19.03.18	PC	PR	MV
		С	REVISED PEDESTRIAN CYCLE ROUTE ALONG CHILGROVE DRIVE			PC	PF
		B A	ADDED NOTE ON PLANTING AMENDMENTS MADE IN ACCORDANCE WITH OCC COMMENTS	17.01.18		PR PR	-
			Revision		Drawn		App
		UTILIT drawin be pre	ING NOTE: <u>Do not</u> scale this drawing - any errors or omissions shall be report TES NOTE: The position of any existing public or private sewers, utility service ing is believed to be correct, but no warranty to this is expressed or implied. Of sent but not shown. The Contractor is therefore advised to undertake their ov existing sewers, services, plant or apparatus may affect their operations.	ted to Stante es, plant or a ther such pla	ec withou apparatus ant or app	t delay. s shown o paratus m	on this
		Draw	ving Issue Status FOR DISCUSSION	J			
		С	EYFORD PARK, TRANCHE 2 HILGROVE DRIVE OTENTIAL SIGNALISED JUNC	στιοι	N		
	_ 22		ORCHESTER ROUP	Sta	n	te	C
		A1 Sca	ale Checked Approved 1:500 PC PR The copyrights to all des Reproduction o author	r use for any pui ised by Stantec i BRISTOL	erved gs are the pr pose other t is forbidden.	than that	tantec.
I		36	9304/5501/SK26 I Tel File Location: j:\39304 heyford park tranche 2\cad\brief 5501\sk	: 01173 32 etches\39304-5501-		drive signalise	ed junction

NOTES:										
1	1. THE LAYOUT IS SUBJECT TO DETAILED DESIGN, CAPACITY TESTING, GROUND INVESTIGATIONS RESULTS & EARTHWORKS MODELLING, UTILITIES & SERVICES AND CONFIRMATION OF LAND OWNERSHIP;									
2	2. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORDANCE WITH ALL RELEVANT DESIGN GUIDANCE AND STANDARDS;									
3	3. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN SPEED FOR OUR CURRENT PROPOSALS;									
4	4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT ASSOCIATED DOCUMENTS; AND									
5	5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FROM THEIR RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AND CDM REGULATIONS.									
٢	KEY:									
-	PR	OPOSEI) S	SPEED	.ITY SPLAY H LIMIT OF 401 H DMRB CD	MPH IN				
_	HI	GHWAY H	30	UNDA	RY INFORMA	TION I	RECE	IVED)	
L	FR	OM OXF	OI	RD CO	UNTY COUN	CIL ON	13.0	3.17		
В	LAYOUT REVISE	ED TO ACCC	OMO	DDATE T	RACKING	05.03.20	PC	PR		
A	UPDATE TO ST	ANTEC BOR	DE	R		24.02.20	PC	PR	-	
Mark	Revision	ale this drawing	- an	v errors or o	missions shall be repor	Date ted to Stante	Drawn	Chkd	Appd	
UTILI1 drawir	TIES NOTE: The position ing is believed to be cor	on of any existing rect, but no warr	g pu anty	blic or priva to this is ex	te sewers, utility servic pressed or implied. O	es, plant or a ther such pla	apparatus int or app	shown o aratus m	nay also	
	sent but not shown. The existing sewers, service				ed to undertake their ov ct their operations.	vn investigat	ion where	e the pre	sence	
Draw	ving Issue Status PREL	.IMINA	R	YC	DNCEPT	SKE	TCF	ł		
Н	EYFORD	PARK	٢,	OXF	ORDSHI	RE				
B	4030 SOI	JTHBC	DI	JND	BUS GA	TE				
W	ITH CHA	NGED) [PRIO	RITY					
A		SHT TU	JF	RN G	HOST IS	LAN	D			
Clier	nt									
D	ORCHES	TER								
G	ROUP					Sta	ini	te	С	
Date o	f 1st Issue	Designed	Dra	awn	st	antec.coi	n/uk			
A3 Sca		JHo Checked	Ap	JHo		Copyright rese	rved	operty of St	antec	
Drawi	1:500 ng Number	PC		PR Revision	Reproduction o	r use for any pu ised by Stantec	pose other s forbidden.	han that	-	
30	39304/5501/SK51 B BRISTOL Tel: 01173 327 840									

File Location: j:\39304 heyford park tranche 2\cad\brief 5501\sketches\39304-5501-sk51 b4030 bus gate junction.dwg

File Location: j:\39304 heyford park tranche 2\cad\brief 5501\sketches\39304-5501-sk52 b4030 cycling provision.dwg

NOTES:


1. THE LAYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFETY AUDIT, CAPACITY TESTING, GROUND INVESTIGATIONS RESULTS & EARTHWORKS MODELLING, UTILITIES & SERVICES AND CONFIRMATION OF LAND OWNERSHIP;

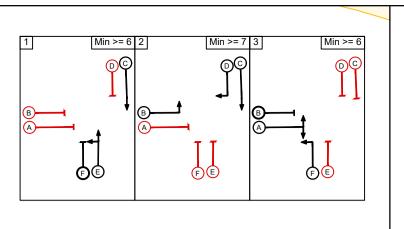
2. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORDANCE WITH ALL RELEVANT DESIGN GUIDANCE AND STANDARDS;

3. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN SPEED FOR OUR CURRENT PROPOSALS;

4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT ASSOCIATED DOCUMENTS; AND

5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FROM THEIR RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AND CDM REGULATIONS;

- **215M STOPPING SIGHT DISTANCE TO JUNCTION GIVE-WAY LINE IN** ACCORDANCE WITH DMRB FOR A 60MPH ROAD
- JUNCTION INTERVISIBILITY IN ACCORDANCE WITH DMRB
- PRIMARY TRAFFIC SIGNAL HEAD AND POLE
- ← ► SECONDARY TRAFFIC SIGNAL HEAD AND POLE


STOPPING SIGHT DISTANCE TO SIGNAL HEAD OF

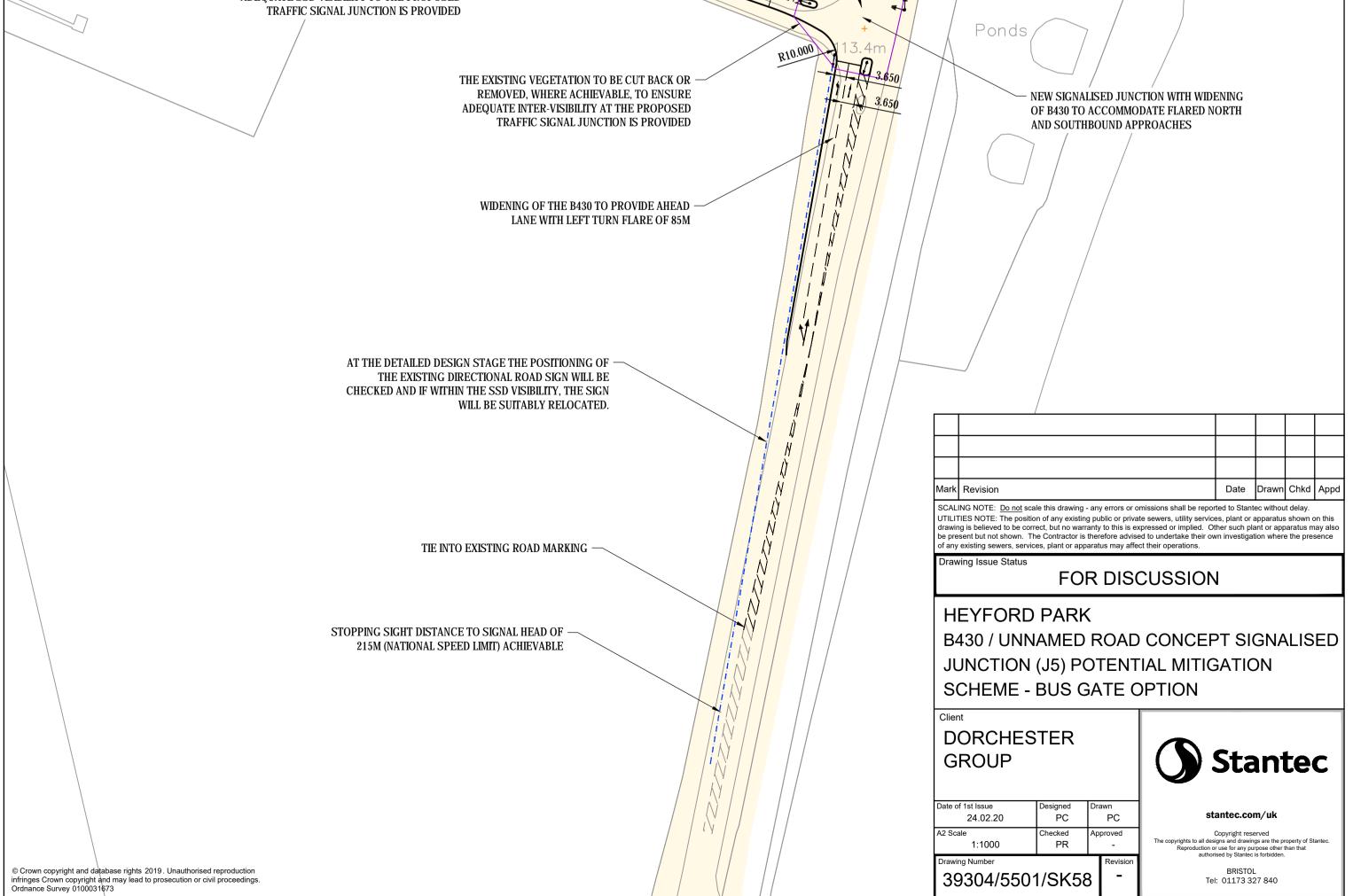
215M (NATIONAL SPEED LIMIT) ACHIEVABLE

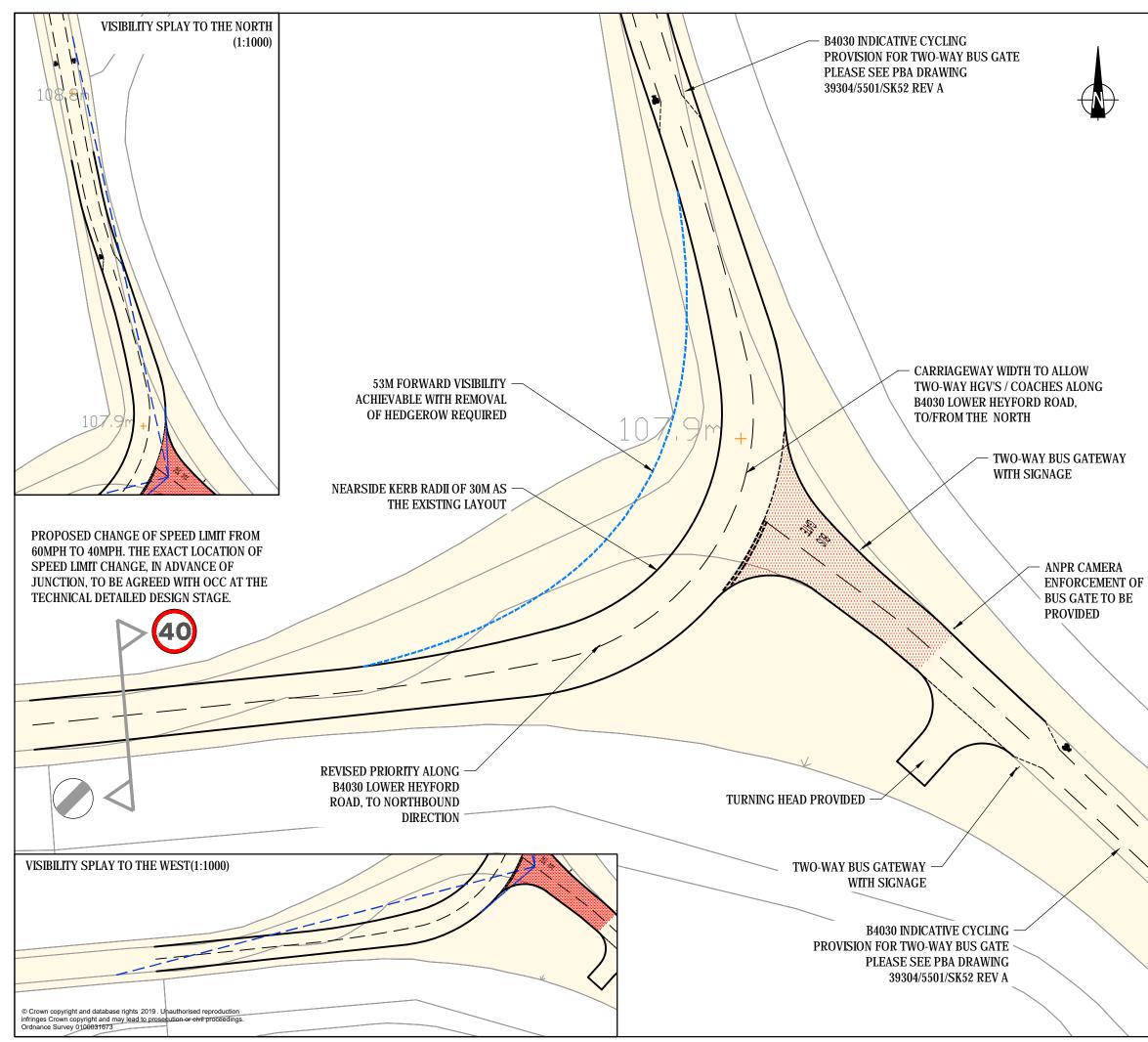
POSITION OF JUNCTION DETERMINED BY — JUNCTION INTERVISIBILITY AND STOPPING SIGHT DISTANCE ON THE WESTERN ARM WITHIN LAND OWNERSHIP

ROAD WIDENED TO PROVIDE — A LEFT TURN LANE AND RIGHT TURN FLARE OF 60M

THE EXISTING VEGETATION TO BE CUT BACK OR – REMOVED, WHERE ACHIEVABLE, TO ENSURE ADEQUATE SSD VISIBILITY TO THE PROPOSED

- STOPPING SIGHT DISTANCE TO SIGNAL HEAD OF 215M (NATIONAL SPEED LIMIT) ACHIEVABLE

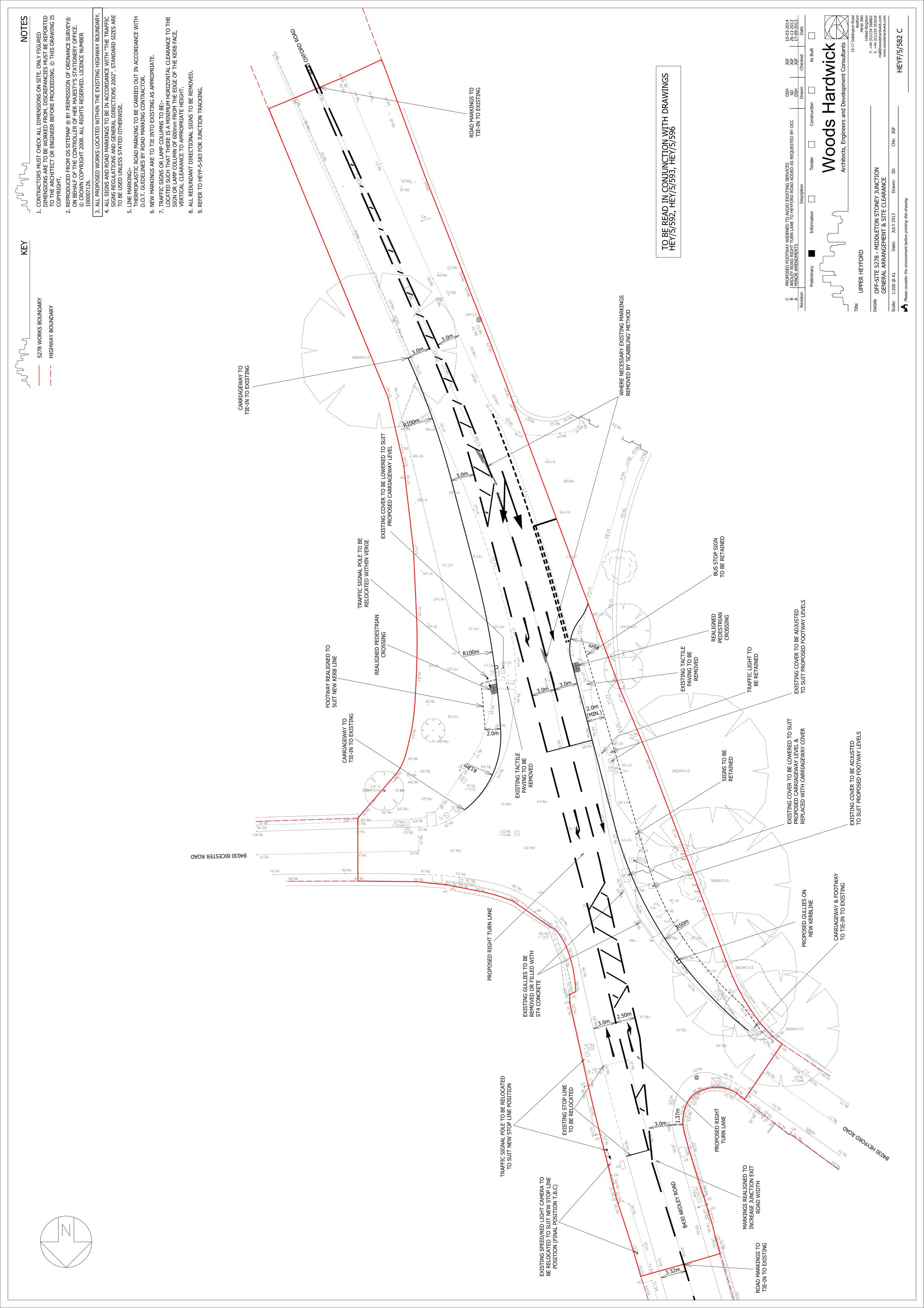

- WIDENING OF THE B430 TO PROVIDE AHEAD LANE WITH RIGHT TURN FLARE OF 164M


3

k

3.650

3.650

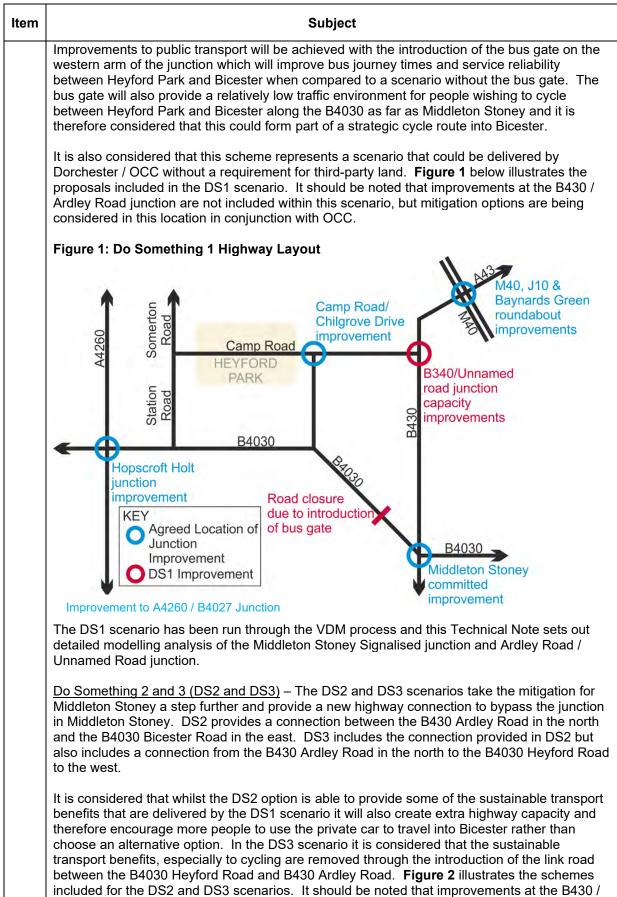

NOTES:												
1	Ι.	CAP RES UTIL	AC UL ⁻	ITY TE IS & E	ST AR ER	ING, 0 THW0 VICES	ECT TO DE GROUND IN ORKS MOD S AND CON	IVESTI ELLIN(GAT G,	IONS	S	
2	2.	DESIGNED IN ACCORDANCE WITH ALL RELEVANT DESIGN GUIDANCE AND STANDARDS;										
3	3.	. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN SPEED FOR OUR CURRENT PROPOSALS;										
2	4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT ASSOCIATED DOCUMENTS; AND											
ţ	5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FROM THEIR RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AND CDM REGULATIONS.											
ł	٢EY	:										
-			53N	A FORV	VAI	RD VIS	IBILITY PRO	VIDED	ENVI	ELOP	Έ	
-	— 4.5M X 120M VISIBILITY SPLAY FOR THE PROPOSED SPEED LIMIT OF 40MPH IN ACCORDANCE WITH DMRB CD123											
-			TA	NGENT	IAL	4.5M X	X 120M VISII	BILITY S	SPLA	Y		
[FR	OM OX	FOI	RD CO	RY INFORM UNTY COUN 9 BY STANTH	CIL ON)	
	-											
Mark								Date	Drawn		Appd	
UTILI drawi be pre	TIES No ng is be esent bu	DTE: The lieved to b it not show	positio e corre vn. Th	n of any exist ect, but no wa e Contractor	ing pu irrant is the	Iblic or priva / to this is ex refore advise	missions shall be report the sewers, utility servi- expressed or implied. (ed to undertake their of ct their operations.	ces, plant or Other such pla	apparatu: ant or app	s shown o paratus m	nay also	
Drav	ving Is	PR		IMINA	٩R	Y CO	ONCEPT	SKE	тсн	┨		
B W	403 /ITI	30 T H CH	W(HA	D-WA	Y D I	BUS PRIC	ORDSH GATE RITY AL		B4	030		
Clie												
		CHI DUP	ES	TER				Sta	n	te	с	
Date	of 1st Is 24.0	sue 02.20		Designed PC	Dr	^{awn} PC	s	tantec.co	m/uk			
A3 Sc	ale	500		Checked PC	Ap	proved PR	The copyrights to all de Reproduction	or use for any pu	gs are the p rpose other	than that	tantec.	
	ing Nun 930		501	I/SK6	0	Revision		BRISTOI el: 01173 32	_	-		
		.,			-							

File Location: j:\39304 heyford park tranche 2\cad\brief 5501\sketches\39304-5501-sk60 b4030 bus gate junction_two-way.dwg

APPENDIX A

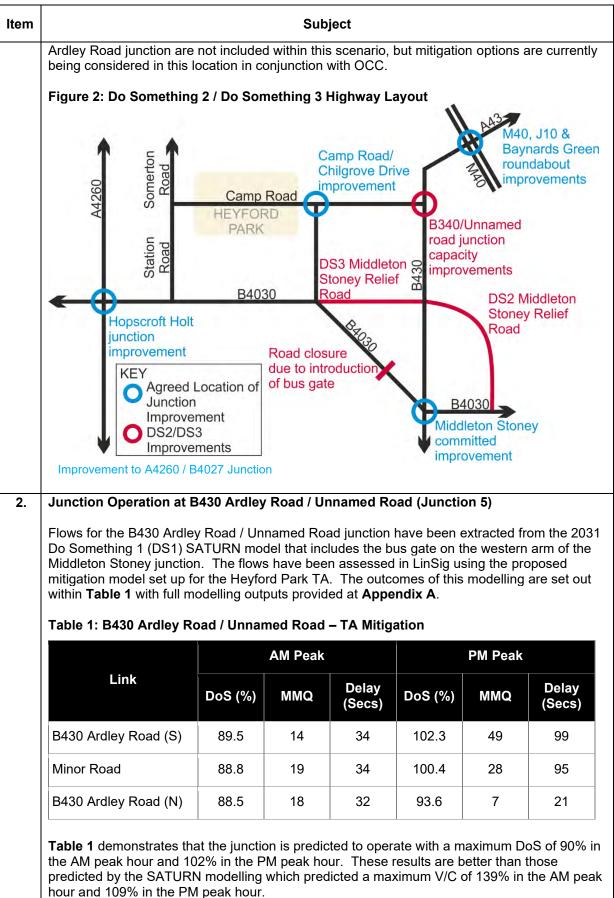
J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN031 Rev B - Middleton Stoney Package.docx

Appendix E Technical Note 024 Rev D



Subject:	Detailed LinSig Modelling associated with the DS1 SATURN Model Scenario
Prepared By:	Phil Rawlins / Jack Harris
Date:	05 th March 2020
Note No:	024 Rev D
Job No:	39304
Job Name:	Heyford Park

ltem	Subject
1.	Introduction
	This Technical Note (TN) has been prepared by Stantec, on behalf of Dorchester Group and Oxfordshire County Council (OCC) and sets out detailed modelling analysis of the Middleton Stoney Signalised junction and Ardley Road / Unnamed Road junction following strategic modelling of the Do Something 1 (DS1) scenario using OCCs Bicester SATURN model.
	By way of background to this modelling exercise, a planning application was submitted for the Heyford Park development in May 2018. A Transport Assessment (TA) accompanied this application and set out that the Middleton Stoney junction was predicted to operate over capacity in the 2031 forecast year scenario both with and without the Heyford Park allocation. A number of scheme options were considered as mitigation however no further improvement scheme was considered deliverable in this location beyond the previously approved S278 scheme associated with delivery of the previously approved 1,075 dwelling scheme.
	On this basis, consideration of a more strategic solution to providing mitigation in this location was requested by OCC and a number of options have been considered as a package of schemes and set out below. These schemes have been assessed through a SATURN Variable Demand Model (VDM).
	<u>Do Something 1 (DS1)</u> – The DS1 scenario is a similar scheme to that proposed as part of the testing that was undertaken to inform the allocation of the site within the Cherwell Local Plan 2011 – 2031 (December 2016). The scheme includes the introduction of a bus gate on the B4030 Heyford Road arm of the Middleton Stoney junction. This bus gate will be located to the west of Heyford Village, allowing access to the Middleton Stoney junction for Middleton Stoney residents but banning through movements associated with both Heyford Park and the wider area from using the arm. In this scenario the Middleton Stoney junction will operate with a reduced number of signal stages with the B4030 Heyford Road arm operating on demand to serve buses and local residential traffic and therefore extra capacity can be created at the junction.
	In this scenario it is considered that the mitigation proposals in the form of traffic signals identified for the B430 Ardley Road / Unnamed Road junction to the north of Middleton Stoney are likely to require amending to increase the flare lengths at the junction in order to accommodate the extra traffic using this junction as a consequence of local re-routing.
	It is considered that this scenario represents an option that is promoting sustainable travel in line with the Cherwell Local Plan Policy Villages 5 objective that states <i>"The settlement should be designed to encourage walking, cycling and use of public transport rather than travel by private car, with the provision of footpaths and cycleways that link to existing networks. Improved access to public transport will be required".</i>


J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

	Subject								
	As the junction was shown to operate over capacity in the PM peak using the mitigation put forward within the TA a further assessment was undertaken with revised flare lengths on two of the arms. These adjustments included:								
	 Increasing the left tu Increasing the right t 						m to 60m		
	The revised junction design is shown on Drawing 39304/5501/SK58 .								
	The outcomes of this mod at Appendix A .	delling are s	et out withi	n Table 2 w	rith full mod	elling outpu	its provideo		
	Table 2: B430 Ardley Ro	oad / Unnar		- DS1 Mitig	ation				
	Link	1	AM Peak			PM Peak			
	Link	DoS (%)	MMQ	Delay (Secs)	DoS (%)	MMQ	Delay (Secs)		
	B430 Ardley Road (S)	82.0	12	7	89.5	20	8		
	Minor Road	82.2	12	6	88.5	13	9		
	B430 Ardley Road (N)	79.2	16	8	85.8	6	4		
	in the AM peak hour and performance compared w maximum V/C of 139% in Table 2 demonstrates tha predicted to operate within Heyford Road. These im control of Dorchester Gro	vith those protection of the AM pea at the junction n capacity in provements	edicted by t ak hour and on layout illu n a scenario are consid	the SATUR 109% in th ustrated in I o where a b ered to be c	N modelling le PM peak Drawing 39 us gate is ir	which pre- hour. 304/5501/S	6K58 is on the B403		
3.	Junction Operation at Middleton Stoney (Junction 6)								
	Reference Case Scenario								
	Reference Case Scenario	<u>0</u>							

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

dleton Stoney nk	y 2031 Refe	Subject Table 3: Middleton Stoney 2031 Reference Case							
nk	AM Peak PM Peak								
nk		AM Peak			PM Peak				
	DoS (%)	MMQ	Delay (Secs)	DoS (%)	MMQ	Delay (Secs)			
Road (N)	109.2	67	231	86.0	19	59			
ter Road (E)	109.9	37	265	93.0	21	79			
Road (S)	75.4	17	43	93.6	24	74			
ord Road (W)	109.7	50	256	92.8	18	88			
DS1 scenario. The results of this modelling are set out within Table 4 below with full modelling outputs provided at Appendix A . Table 4: Middleton Stoney 2031 Do Minimum									
dleton Stone	y 2001 Do 1				PM Peak				
dleton Stone <u>y</u> nk	DoS (%)	AM Peak	Delay (Secs)	DoS (%)	PM Peak MMQ	Delay			
		AM Peak	Delay (Secs) 223	DoS (%) 82.8		Delay			
nk	DoS (%)	AM Peak	(Secs)		MMQ	Delay (Secs)			
nk Road (N)	DoS (%) 108.8	AM Peak MMQ 67	(Secs) 223	82.8	MMQ 18	Delay (Secs) 53			
	Road (S) ord Road (W) onstrates that oS) of 110% i ed performance haximum V/C of <u>Scenario</u> comparison ag iddleton Stone TURN model. the Heyford I at Middleton Stone toted that the ad junction bu o. The results puts provided	Road (S)75.4ord Road (W)109.7onstrates that the junction oS) of 110% in the AM period ed performance compared haximum V/C of 123% in the second	Road (S)75.417ord Road (W)109.750onstrates that the junction is predicted oS) of 110% in the AM peak hour and ed performance compared with the S haximum V/C of 123% in the AM peakScenariocomparison against the DS1 mitigation iddleton Stoney has been tested in Li TURN model. This model includes the the Heyford Park allocation and high at Middleton Stoney over and above ioted that the Do Minimum scheme in ad junction but the improvements are o. The results of this modelling are set puts provided at Appendix A.	Road (S)75.41743ord Road (W)109.750256onstrates that the junction is predicted to operate oS) of 110% in the AM peak hour and 94% in the ed performance compared with the SATURN mo- haximum V/C of 123% in the AM peak hour and ScenarioScenariocomparison against the DS1 mitigation scenario fiddleton Stoney has been tested in LinSig using TURN model. This model includes the previousle the Heyford Park allocation and highway mitiga at Middleton Stoney over and above the consen- toted that the Do Minimum scheme includes junct ad junction but the improvements are not as ext b. The results of this modelling are set out within puts provided at Appendix A.	Road (S)75.4174393.6ord Road (W)109.75025692.8onstrates that the junction is predicted to operate with a max oS) of 110% in the AM peak hour and 94% in the PM peak ed performance compared with the SATURN modelling outcomer aximum V/C of 123% in the AM peak hour and 105% in the ScenarioScenariocomparison against the DS1 mitigation scenario the committed deford Park allocation and highway mitigation as set of at Middleton Stoney over and above the consented S278 in noted that the Do Minimum scheme includes junction improv ad junction but the improvements are not as extensive as in o. The results of this modelling are set out within Table 4 be	Road (S)75.4174393.624ord Road (W)109.75025692.818onstrates that the junction is predicted to operate with a maximum Deg oS) of 110% in the AM peak hour and 94% in the PM peak hour. The ed performance compared with the SATURN modelling outcomes which haximum V/C of 123% in the AM peak hour and 105% in the PM peak Hour ScenarioScenariocomparison against the DS1 mitigation scenario the committed improve iddleton Stoney has been tested in LinSig using flows extracted from the TURN model. This model includes the previously consented Heyford F the Heyford Park allocation and highway mitigation as set out within the at Middleton Stoney over and above the consented S278 improvement toted that the Do Minimum scheme includes junction improvements at the			

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

			Subjec	ct			Subject					
	Do Something 1 Scenario											
Flows extracted from the 2031 Do Something 1 (DS1) SATURN model scenario have at been assessed. The DS1 scenario includes all of the elements from the Do Minimum so with the addition of a bus gate on the Heyford Road west of the junction preventing thro traffic from using this arm and further improvements at the B430 / Unnamed Road junct beyond the improvements included in the Do Minimum scenario. Traffic associated with existing development in Middleton Stoney Village can still use this arm however, as can buses. Within LinSig all of the improvements associated with the committed Middleton Scheme have been included but the Heyford Road arm has only been run every 3 cycle represent the average operation of this arm with reduced traffic levels.						m scenario through inction with can ton Stoney						
	It is considered that the flow level of flow that is likely to model has the Middleton S for traffic from a much wide and was a known limitation calculated the number of tr manner:	be using the toney zone or area than of the SAT	e B430 Hey accessed d the develop URN model	ford Road a irectly off o oment that o in this area	arm of the j f this arm. can access a. On this t	unction bec This zone a directly fror pasis PBA h	ause the ccounts n this arm ave					
	- The number of dwellin											
	 approximate location of calculated from a simple approximately 70 dwe The number of trips generates used within the H The distribution of trips and out of the arm in t 3 buses per hour in ear The flows with adjustments and the results are set out appendix A.	of the proposible review of lings with a enerated by Heyford Park is at the junc he SATURN ach direction is made to th within Table	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca l model. n were adde e Heyford F e 5 below w	e and Midd ping. This o this arm. s were calo lculated us d to these f Road arm w ith full mode	lleton Stone determined culated usir ing the dist flows. ere run thro	ey have bee that there w ng the sensit ribution of tr pugh the Lin	n vere tivity trip ips into Sig mode					
	 approximate location of calculated from a simple approximately 70 dwe The number of trips gerates used within the here of the distribution of trips and out of the arm in term in terms and out of the arm in terms and the results are set out the terms and the results are set out the terms and the results are set out the terms and the terms and the terms and the terms and the terms and the terms and the terms and terms are set out at the terms and terms and terms and terms and terms and terms are set out at the terms and terms and terms are set out at the terms and terms and terms are set out at the terms and terms are set out at the terms and terms are set out at the terms are set	of the proposible review of lings with a enerated by Heyford Park is at the junc he SATURN ach direction is made to th within Table	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca l model. n were adde e Heyford F e 5 below w	e and Midd ping. This o this arm. s were calo lculated us d to these f Road arm w ith full mode	lleton Stone determined culated usir ing the dist flows. ere run thro	ey have bee that there w ng the sensit ribution of tr pugh the Lin	n vere tivity trip ips into Sig model					
	 approximate location of calculated from a simple approximately 70 dwe The number of trips generates used within the H The distribution of trips and out of the arm in t 3 buses per hour in ear The flows with adjustments and the results are set out appendix A.	of the proposible review of lings with a enerated by Heyford Park is at the junc he SATURN ach direction is made to th within Table	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca l model. n were adde e Heyford F e 5 below w Something	e and Midd ping. This o this arm. s were calo lculated us d to these f Road arm w ith full mode	lleton Stone determined culated usir ing the dist flows. ere run thro	ey have bee that there w ng the sensit ribution of tr bugh the Lin its provided	n vere tivity trip ips into Sig mode					
	 approximate location of calculated from a simple approximately 70 dwe The number of trips generates used within the Here of the distribution of trips and out of the arm in term in terms and out of the arm in terms and the results are set out the flows with adjustments and the results are set out the flows A. Table 5: Middleton Stone 	of the proposible review of llings with a enerated by deyford Parks at the junche SATURN ach direction a made to the within Table	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca l model. n were adde e Heyford F e 5 below w Something AM Peak	e and Midd ping. This of this arm. s were calc lculated us d to these f Road arm w ith full mode 1 Flows Delay	lleton Stone determined culated usir ing the dist flows. rere run thro elling outpu	ey have bee that there w ng the sensit ribution of tr bugh the Lin ts provided PM Peak	n vere iivity trip ips into Sig mode at Delay					
	approximate location of calculated from a simp approximately 70 dwe - The number of trips ge rates used within the F - The distribution of trips and out of the arm in t - 3 buses per hour in ear The flows with adjustments and the results are set out Appendix A. Table 5: Middleton Stone Link	of the proposible review of lings with a enerated by leyford Park is at the junc he SATURN ach direction is made to th within Table y 2031 Do S	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca l model. n were adde e Heyford F e 5 below w Something AM Peak	e and Midd ping. This of this arm. s were calc lculated us d to these f Road arm w ith full mode 1 Flows Delay (Secs)	lleton Stone determined culated usir ing the dist flows. rere run thro elling outpu	ey have bee that there w ng the sensit ribution of tr bugh the Lin ts provided PM Peak MMQ	n vere iivity trip ips into Sig mode at Delay (Secs)					
	approximate location of calculated from a simp approximately 70 dwe - The number of trips ge rates used within the F - The distribution of trips and out of the arm in t - 3 buses per hour in ear The flows with adjustments and the results are set out Appendix A. Table 5: Middleton Stone Link B430 Ardley Road (N)	of the proposible review of llings with a enerated by deyford Park s at the junch e SATURN ach direction a made to th within Table y 2031 Do S	sed bus gat f aerial map ccess from 70 dwelling k TA. tion was ca N model. n were adde e Heyford F 5 below w Something AM Peak MMQ 169	e and Midd ping. This of this arm. s were calc lculated us d to these f Road arm w ith full mode 1 Flows Delay (Secs) 375	DoS (%)	ey have bee that there w ng the sensit ribution of tr bugh the Lin ts provided PM Peak MMQ 30	n /ere iivity trip ips into Sig mode at Delay (Secs) 41					

) Stantec

n			Subject					
	operate slightly better than the Reference Case scenario with a DoS of 89% compared with 94% in the Reference Case. It also operates better than the Do Minimum scenario in the Pl peak hour. When comparing the queues from this scenario with the Reference Case. Table 5 shows th							
	When comparing the queues from this scenario with the Reference Case, Table 5 shows that the queue lengths are forecast to be a maximum of 169 PCUs during the AM peak compared with 67 in the reference case scenario on the B430 Ardley Road arm. The queue lengths on the B4030 Bicester Road arm are predicted to 83 compared with 37 in the Reference Case scenario. Queues in the PM peak hour are much more comparable between the two scenarios.							
	Junction Opera	ation at Middleton S	toney Junction –	PBA TA Trip Rate				
	modelling asses and sustainable undertaken usin higher sensitivity application and the sensitivity tri	s details of the trip ge ssment. This included development compa- ig higher residential p y rates were used in f followed through to b ip rates and original F ivity and Standard	residential trip rate rable to Heyford Pa person trip rates tha the subsequent mo e used within the D PBA TA trip rates an	es based on a typica ark as well as a sen it were agreed with delling analysis to s IS1 modelling scena	al large, mixed us sitivity test OCC. These support the ario. For reference			
	Table 0. Sensit	Time Period	Arrival	Departure	Total			
	Sensitivity	AM Peak	0.147	0.452	0.599			
	Trip Rate	PM Peak	0.319	0.165	0.485			
	PBA TA Trip	AM Peak	0.110	0.369	0.479			
	Rate	PM Peak	0.281	0.187	0.469			
	are confirmed to trip generation of cycle infrastruct overall vehicular undertaking the Plan measures reduction betwe It is understood	al assessment was co be implemented or p of the proposed devel ure and the implement r trip generation of He Travel Plan) have mo that would be require en the development that full Travel Plans not limited to measure	oroposals put forwa opment. This inclue ntation of the site T eyford Park. Dorch et with OCCs Trave d to be implemente and Bicester that is are being prepared	ard that are likely to des the impact of pr ravel Plan, which w ester and consultar el Plan officer to disc ed in order to achiev reflected by the rec	reduce the vehicl oposed walk and ill aim to reduce t its Calibro (who a cuss the Travel re the level of trip duction in trip rate			
	 cycle route: Personalise Provision o Implementa employees Adult and o 	f Travel Plan welcom s, and bus service loo ed Travel Planning fo f a free 3 month bus ation of a bike hire sc shild cycle training wil maintenance and bik	cations. r residents and emp pass for residents a heme and one free I be made available	oloyees and employees annual membershi	p for residents an			
	developme							

Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem	Subject
	 Setting up and management of a car share club for residents and employees The introduction of an electric car club vehicle Twice annual public travel events Secure and sheltered employee cycle parking A forum of workplace champions will be established to share knowledge, issues and opportunities Where possible the incorporation of showers and drying rooms into commercial buildings Assess with each business the potential to provide car sharer only parking and smart parking. A commitment to undertake bike maintenance sessions at travel plan events and have a monthly mobile bike repair service. The community cycle club will organise biker breakfasts, buddy schemes and encourage cycle champions from the site to encourage work alongside the TPC. Establish a bike miles scheme where employees can earn points in exchange for
	 Businesses at the site will be able to claim 50% of the cost of installing audio and video conferencing systems at their premises up to £500 Up to 5 desks with wifi access will be made available within offices on site to create an informal co-working space to provide an alternative to home working without the need to travel.
	In addition to these Travel Plan specific measures, there are proposals to increase the bus service that connects Heyford Park with Bicester from one service per hour up to three. This is anticipated to increase the patronage of the bus service and as a result, reduce the vehicle trips generated by Heyford Park, especially for trips travelling to Bicester.
	Furthermore, the provision of a bus gate on the B4030 Heyford Road to the west of Middleton Stoney will improve the travel time and reliability for buses between Heyford park and Bicester due to the removal of through traffic on the link. This is expected to further incentivise public transport trips and reduce vehicle trips.
	It is also anticipated that the implementation of the bus gate will make for a low traffic route along the B4030 to Middleton Stoney and therefore this is likely to encourage people to cycle between the development and Bicester. It is proposed that a contribution be made towards cycle infrastructure between Camp Road and Middleton Stoney as part of the proposed package of measures to support the Middleton Stoney mitigation.
	Therefore, the residential trip rates that were set out within the TA, but not used within the DS1 modelling exercise are considered to be appropriate for use within this assessment. In addition, it is considered that these lower trip rates should be applied to the consented residential development that is also located within Heyford Park as these residents would also benefit from the Travel Plan measures. In addition to the above, the lower trip rates have been applied to the approximately 70 dwellings that are within Middleton Stoney and accessed via Heyford Road. The improved bus service provision is also anticipated to be appropriate for application here as well.
	It is noted that the currently consented dwellings do not currently benefit from a Travel Plan associated with the development. Notwithstanding this it is considered appropriate that the lower trip rate is applied to the consented dwellings at the development because:
	 All existing residents will benefit from the same increase in provision of services and travel choices as future residents. Not all of the consented units have been built and occupied at the current time. At the end of 2019 there were 755 occupations on site. On this basis there are approximately 423

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

		Su	bject			
	units or 36% left to be oc day 1.	cupied. The maj	ority of these wi	ll benefit from	n a Travel F	Plan or
_		dwellings will also order to provide a Heyford site as a s – 350 units. Tu al – 325 units. Tu - 80 units. Turn e the number of u et out below: – 123 units in ne al – 325 units with - 16 units with ne at 464 of the cur enefit from the pr ises, it is likely tha	b benefit from m an estimate of th set out below: irnover of 15% – urnover of 20% over of 10% eve units that will hav w ownership (as n new tenants w tenants rently occupied oposed travel pla at there will be 86	oving into a p is Dorchester - 20% every 5 every year ery 5 years. /e been turne ssuming 17.5 properties wil an by 2031. 87 (75%) of th	roperty wit have prov by ears dover by 2 % turnover have a ne Once these he total 11	th a vided 2031 ⁻) e w e are 78
Ca re	consented units that ben in place. ased on the comparison with apacity issues at the junctior eported for the remainder of able 7 .	n the Reference of during the PM p	Case, there are beak. As such, o	not considere nly the AM pe	ed to be an eak results	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junctior eported for the remainder of	n the Reference of during the PM p this report. The t	Case, there are beak. As such, o otal reduction in rip Rates	not considere nly the AM pe vehicle trips i	ed to be an eak results	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junctior eported for the remainder of able 7 .	n the Reference of during the PM p this report. The t	Case, there are beak. As such, o otal reduction in	not considere nly the AM pe vehicle trips i Middleton Stoney	ed to be an eak results	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junction eported for the remainder of able 7 . able 7: Trip Reductions fro	n the Reference of n during the PM p this report. The t om Sensitivity T Consented Heyford	Case, there are beak. As such, o otal reduction in rip Rates Allocated Heyford	not considere nly the AM pe vehicle trips i Middleton Stoney	ed to be an eak results is set out ir	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junction eported for the remainder of able 7 . able 7: Trip Reductions fro Link	the Reference of during the PM p this report. The t Som Sensitivity T Consented Heyford Development	Case, there are beak. As such, o otal reduction in rip Rates Allocated Heyford Development	not considere nly the AM pe vehicle trips i Middleton Stoney Reduction	ed to be an eak results is set out ir Total	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junction eported for the remainder of able 7 . able 7: Trip Reductions fro Link B430 Ardley Road (N)	the Reference of a during the PM p this report. The to m Sensitivity T Consented Heyford Development 30	Case, there are beak. As such, o otal reduction in rip Rates Allocated Heyford Development 38	not considere nly the AM pe vehicle trips i Middleton Stoney Reduction	ed to be an eak results is set out ir Total 69	y are
ca r∉ T	consented units that ben in place. ased on the comparison with apacity issues at the junction eported for the remainder of able 7 . able 7: Trip Reductions fro Link B430 Ardley Road (N) B4030 Bicester Road (E)	the Reference of during the PM p this report. The tr Consented Heyford Development 30 14	Case, there are peak. As such, o otal reduction in rip Rates Allocated Heyford Development 38 17	not considere nly the AM pe vehicle trips i Middleton Stoney Reduction 1	ed to be an eak results is set out ir Total 69 32	y are

Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem		Subject					
	Table 8: Middleton Stoney Do So	mething – PBA	TA Trip Rates		1		
	Link		AM Peak				
	LINK	DoS (%)	MMQ	Delay (Secs)	1		
	B430 Ardley Road (N)	108.4%	119	246			
	B4030 Bicester Road (E)	108.1%	62	273			
	B430 Oxford Road (S)	75%	10	31			
	B4030 Heyford Road (W)	82.1%	5	353			
	Table 8 demonstrates that the junc in the AM peak hour. Compared wir junction is marginally better in the A Reference Case, however the queu 62 PCUs on Ardley Road and Bices respectively in the Reference Case The queue lengths in the Do Minim	th the Reference of AM peak hour with ue lengths are hig ster Road in this s	Case scenario the a DoS of 108% her with a maxim cenario, compare	e operation of the compared to 110 um forecast of 1 ed to 67 and 37 F	e % in the 19 and PCUs		
	Reference case and so the queue I						
	However, whilst the queues have in lengths forecast on Oxford Road ha minimum scenario to 10 PCUs in th Road have reduced from 45 / 50 PC scenario set out above. This is pre- amount of traffic using this route.	ave reduced from his scenario. Simil CUs in the Refere	17 / 21 PCUs in t arly, the queues f nce Case / Do M	the Reference ca forecast on Heyfo inimum to 5 PCU	ise / Do ord Is in the		
	Impact of Enhanced Public Transpo	ort Provision					
	As set out above there are proposals for the provision of up to 3 buses per hour to connect th site with Bicester town centre. The provision of 3 buses per hour is one of the factors that has permitted the use of the lower trip rates set out in Table 7 , alongside the implementation of th Travel Plan and the potential for a higher level of cycling trips to Bicester. In addition to the 3 proposed buses per hour, there is the potential that an additional bus service could be provided, which would have the potential to encourage further modal shift by providing additional capacity. In order to forecast the potential impact that the provision of additional bus services may have on the traffic flows through the junction, an assessment has been made on the likely uptake or patronage due to the additional service. Using a standard demand elasticity factor of 0.4 (as set out in Section 7.4.1 and Table 7.5 of TRL Report 593 "The Demand for Public Transport a Practical Guide", extract attached at Appendix B) it is likely that there will be an additional 12% of passengers due to the introduction of a 4th bus. The calculation associated with this i provided at Appendix C .						
	This factor has been applied to the likely additional passengers that wil target of 6.8% by bus and an employ there will be a mode shift to bus of The number of trips that are likely to below.	Il use the bus serv byment target of 2 0.82% for residen	vice. The Travel .0%. On this bas tial trips and 0.24	Plan sets a reside sis it is predicted I% for employme	ential that nt trips.		

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

Table 9: Modal				
	Shift Due to Extra	Bus Service		
	AM Peak Hour	Inbound	Outbour	nd Tot
Desidential	Committed Heyford Development	3	8	11
Residential	Allocated Heyford Development	4	11	15
Employment	Committed Heyford Development	2	0	2
Employment	Allocated Heyford Development	2	0	2
	Total	11	19	30
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu	t within Table 9 were such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the lts of which are set o	ips were remove the outbound tri d Bicester Road. n movements on operation of the	d from the right os were remove Ardley Road an junction has bee	turn movement k d from the left tu nd 11 right turn en tested in the L
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu Appendix A . Table 10: Midd	such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the Its of which are set o	ips were remove the outbound tri d Bicester Road. n movements on operation of the put in Table 10 wi	d from the right i os were removed Ardley Road an junction has been th full modelling	turn movement k d from the left tu nd 11 right turn en tested in the L outputs provide
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu Appendix A . Table 10: Midd	such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the lts of which are set o	ips were remove the outbound tri d Bicester Road. n movements on operation of the put in Table 10 wi	d from the right is os were removed Ardley Road an junction has been th full modelling anced Public Tr	turn movement k d from the left tu nd 11 right turn en tested in the L outputs provide
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu Appendix A . Table 10: Midd	such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the Its of which are set o	ips were remove the outbound tri d Bicester Road. n movements on operation of the out in Table 10 wi	d from the right i os were removed Ardley Road an junction has been th full modelling anced Public Tr AM Peak	turn movement k d from the left tu nd 11 right turn en tested in the L outputs provide
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu Appendix A . Table 10: Midd B430 Ard	such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the lts of which are set o	ips were remove the outbound tri d Bicester Road. In movements on operation of the out in Table 10 with Domething – Enha	d from the right is os were removed Ardley Road an junction has been th full modelling anced Public Tr AM Peak MMQ	turn movement k d from the left tu nd 11 right turn en tested in the L outputs provide cansport Provis Delay (Secs)
Stoney junction Bicester Road a movement betw The impact of th movements on model, the resu Appendix A . Table 10: Midd B430 Ard B4030 Bice	such that Inbound tr and Ardley Road and veen Ardley Road an nese 19 fewer left tur Bicester road on the Its of which are set o Ileton Stoney Do So Link	ips were remove the outbound tri d Bicester Road. In movements on operation of the out in Table 10 with Domething – Enha DoS (%) 106.5%	d from the right is os were removed Ardley Road an junction has been th full modelling anced Public Tr AM Peak MMQ 99	turn movement k d from the left tu nd 11 right turn en tested in the L outputs provide cansport Provis Delay (Secs) 203

Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem		Subje	ct						
	The inclusion of the bus gate, Travel Planning measures, additional bus services and contribution towards cycle infrastructure result in the junction operating with a similar level capacity and queuing as that set out in the Reference case (Table 3) and Do minimum scenarios (Table 4). It is therefore considered that this scenario is able to effectively mitigate the impact of the Heyford Park development on the Middleton Stoney junction.								
5.	Junction Operation at Middleton Stoney – HGV Restriction on B4030 East In addition to the measures set out above OCC have been in discussion with Middleton								
	In addition to the measures s Stoney Parish council regard Bicester Road to the east of number of HGV trips travellin	ling the implementati the junction. It was c	on of a HGV restriction considered that this wo	on the B4030 uld help to reduce the					
	It is considered that this sche Middleton Stoney as it would Middleton Stoney and is like	l also help to reduce	the number of trips trav						
	On this basis Select Link An peak DS1 scenario in order t Bicester Road and travelling number of HGV trips using th total HGVs on this link are p	to determine the num through the Middleto ne B4030 Bicester Ro	ber of HGV trips that a n Stoney junction. Ta l oad and the SATURN p	re using the B4030 ble 11 sets out the					
	Table 11: HGV Trips using the B4030 Bicester Road Junction								
	Direction of Movement on B4030 Bicester Road	Trip Route	Movement at Middleton Stoney	Flow (PCUs) AM Peak DS1					
	Eastbound	M40 to Bicester	B430 North to B4030 East	14					
	Eastbound	Heyford Park to Bicester	B430 North to B4030 East	17					
	Eastbound	Middleton Stoney to Bicester	B4030 West to B4030 East	2					
	Westbound	Bicester to M40	B4030 East to B430 North	25					
	Westbound	Bicester to Heyford Park	B4030 East to B430 North	10					
	Westbound	Bicester to Middleton Stoney	B4030 East to B4030 West	1					
	If an HGV restriction were to Table 11 would re-assign to following assumptions for thi - Trips between Bicester Baynards Green Round - Trips between Bicester	other parts of the net s re-assignment have and the M40 (and vic about in order to acc	work in order to avoid been agreed with OC e-versa) will reassign ess the motorway.	the restriction. The C. via the B4100 and					
		1, A34, B430 and B43 and Middleton Stone		n (J5) to Camp Road					

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem			Sub	ect			
	On the basis of the implementation of a HGV restriction and these assumptions the char traffic flow at the Middleton Stoney junction in the AM peak DS1 scenario is set out in Ta 12. Table 12: Change in Traffic Flow at Middleton Stoney associated with HGV Restrict on B4030 Bicester Road						
		B430 North	B4030 East	B430 South	B4030 West	Total	
	B430 North	0	-31	9	0	-22	
	B4030 East	-35	0	0	-1	-36	
	B430 South	5	0	0	1	6	
	B4030 West	0	-2	2	0	0	
	Total	-30	-33	11	0	-52	
	results of this revi Appendix A. Table 13: Middle HGV Restriction			Enhanced Put	olic Transport F		
	Liı	ak		AM Pe	ak		
		IK	DoS (%)	ММС	Delay (Secs)	
	B430 Ardle	y Road (N)	102.7%	74	12	7	
	B4030 Bices	ter Road (E)	102.4%	37	17	1	
	B430 Oxfor	d Road (S)	75.0%	9	29)	
	B4030 Heyfo	rd Road (W)	87.0%	5	37	8	
	Table 13 demonstrates that the junction is predicted to operate with a maximum DoS of 1 in the AM peak hour which is an improvement over the Reference Case which is predicted be at 110%. When compared to Reference Case results, the maximum queue lengths are forecast to have a minor increase on the Ardley Road arm, from 67 to 74 PCUs and they remain consistent on the Bicester Road arm with both scenarios having a queue of 37 PC There is a reduction in queueing overall at the junction when compared with the Reference Case scenario with total queuing in the DS1 scenario of 125 PCUs compared with 171 in Reference Case scenario. Total queue lengths at the junction are also predicted to be low than when compared with the Do Minimum scenario where total queues at the junction are predicted to be 163 PCUs It should also be noted that the way in which the signals have been modelled means that delay shown on the western arm of the junction is significantly overestimated in the scenar where the bus gate is present. The modelling is based on a fixed operation and the wester arm has been set to run once every third cycle, or approximately once every 360 seconds the model vehicles arriving ahead of the arm obtaining a green light would need to wait ur next scheduled which could be up to 360 seconds time, hence the model is reporting larged delays on this arm. In reality the junction would adapt to allow vehicles through when the predicted to allow vehicles through when the provide the provide the provide the provide adapt to allow vehicles through when the provide the						

Stantec

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem	Subject
	arrive such that a vehicle would be unlikely to wait longer than one cycle or 120 seconds. Table 13 shows that the western arm has a delay per vehicle of 378 seconds. In practice we would expect this delay to be approximately 120 seconds.
	On the ground the traffic signals will operate via an adaptive traffic control system called MOVA. The MOVA operation is continuously adapting the signal timing and stage sequence within set parameters to try and reduce the delay at the junction. The system detects traffic travelling towards the junction by sensing cars travelling towards the junction via inductive loops that are cut into the road surface. These sensors are located based on road speed and user behaviour to ensure reliable detection. The system is flexible enough that if an arm did not have any vehicle demand then the associated stage could be skipped and will only be called when there is demand. In this way the junction will not run the stage associated with the western arm if there is no demand but can run this stage at the appropriate time in the cycle if a vehicle is present at the junction.
	The inclusion of the bus gate, HGV restriction on the B4030 east, Travel Plan measures, additional bus services (4 bus per hour) and contribution towards local cycle infrastructure result in the junction operating with a better level of performance and reduced queuing compared with both the Reference Case (Table 3) and Do minimum scenarios (Table 4). It is therefore considered that in this scenario the combination of measures are able to effectively mitigate the impact of the Heyford Park development on the Middleton Stoney junction.
6.	Conclusion
	This Technical Note has tested the impact of the Heyford Park development on the B430 Ardley Road / Unnamed Road junction and Middleton Stoney junction in the DS1 mitigation scenario. The DS1 scenario includes putting a bus gate on the B4030 Heyford Road arm of the Middleton Stoney junction to prevent through traffic and capacity enhancements at the B430 Ardley Road / Unnamed Road junction.
	It was identified that whilst the junction mitigation identified for the B430 Ardley Road / Unnamed Road junction within the Heyford Park TA did not operate within capacity in the DS1 scenario improvements could be made to this design, through increasing flare lengths, that would allow the junction to operate within capacity. The junction could be delivered on land within the control of Dorchester or dedicated as highway.
	The note has also identified that the operation of the Middleton Stoney signalised junction in the DS1 scenario is likely to be similar or better than in the Reference Case scenario (albeit with a slightly different distribution of DoS and queuing across all the arms of the junction) if there is a mode shift away from the private car for trips between Heyford Park and Bicester compared to the Sensitivity Test trips that were assessed within the TA. A summary of the operation of the junction in the different scenarios set out within the note is provided at Table 14 .

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

ltem	Su	ıbject							
	Table 14: Summary of Operation of Middlet	on Stoney J	unction						
		AM P	eak	PM F	eak				
	Link	Worst DoS (%)	Total Queue	Worst DoS (%)	Total Queue				
	2031 Reference Case	109.9	171	93.6	83				
	2031 Do Minimum	108.8	163	100.9	106				
	2031 Do Something 1	115.2	268	89.4	72				
	Do Something 1: PBA TA Trip Rates	108.4	196	-	-				
	Do Something 1: PBA TA Trip Rates and Enhanced Public Transport	106.5	166	-	-				
	Do Something 1: PBA TA Trip Rates, Enhanced Public Transport and HGV Restriction	102.7	125	-	-				
	 The introduction of the bus gate on the Heyford Road arm of the junction will improve bus journey times and reliability between the development and Bicester and encourage shift to public transport. The introduction of the bus gate on the Heyford Road arm of the junction will provide for a low traffic environment on the B4030 between the development and Middleton Stoney. This could allow the route to form part of a strategic cycle route to Bicester which is likely to encourage a mode shift to bike and it is proposed that a contribution be made towards cycle infrastructure between Camp Road and Middleton Stoney. It is also considered that the introduction of a HGV restriction on the B4030 Bicester would reduce the number of HGVs travelling through the junction which would provide an improvement in operation as well as improving the environmental amenity for Middleton Stoney residents. 								
	It should be noted that in the DS1 scenario with a reduced trip rate, an additional bus service and the HGV restriction in place the junction is predicted to operate with improved levels of capacity and queuing when compared to the reference case scenario whilst accommodating an increase in person movements through the junction. This increase in person movements i due to higher traffic flows in this scenario and an increase in bus patronage due to the improved service provision and associated benefits for journey times and reliability afforded b the bus gate.								
	In the context of the above, this exercise demo mitigation schemes, proposed public transport set out in this note can adequately mitigate the the Middleton Stoney signalised junction with than in the without development scenario (Ref	t infrastructure e impacts of t overall junctic	e and bus s he propose on performa	ervice impro d developme	vements ent traffic at				

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

Item	Subject
	The DS1 mitigation measures can be implemented and delivered by the developer and it is therefore considered that they represent a preferred mitigation solution for the development when compared with the DS2 and DS3 scenarios. The DS2 and DS3 scenarios have significant risk and uncertainty associated with delivery due to the requirements for third party land, external funding which is not secured and the additional uncertainty that this causes in terms of timescale.
	On this basis it is considered that the implementation of the following measures would form an appropriate and deliverable package of mitigation measures for Middleton Stoney in combination with other off-site local highway mitigation measures on the local road network as discussed with OCC:
	 a bus gate on the B4030 Heyford Road arm of the Middleton Stoney junction; enhanced improvements at the B430 Ardley Road / Unnamed Road junction; new / revised bus services; a HGV restriction on the B4030 Bicester Road arm; and contributions towards cycle infrastructure between Camp Road and Middleton Stoney,

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Reviewed (Discipline Lead)	Approved (Project Director)
39304/TN024	-	09.01.19	PR / JH	PR	-	MW
39304/TN024	Α	30.01.19	PR	-	-	MW
39304/TN024	В	10.06.19	PR	-	-	MW
39304/TN024	С	29.08.19	PR	-	-	-
39304/TN024	D	06.03.20	RK	-	PR	MW

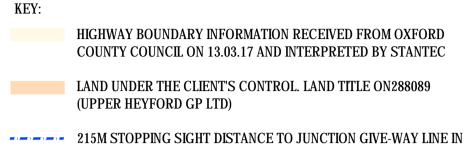
This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report. Stantec 10 Queen Square Bristol BS1 4NT T: +44 (0)117 332 7840

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

DRAWINGS

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

NOTES:


1. THE LAYOUT IS SUBJECT TO DETAILED DESIGN, ROAD SAFETY AUDIT, CAPACITY TESTING, GROUND INVESTIGATIONS RESULTS & EARTHWORKS MODELLING, UTILITIES & SERVICES AND CONFIRMATION OF LAND OWNERSHIP;

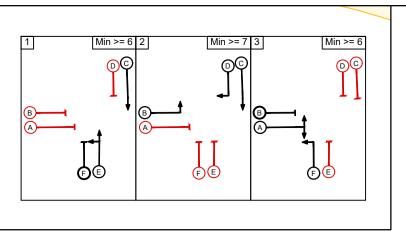
2. THE DETAILED DESIGN LAYOUT WILL BE DESIGNED IN ACCORDANCE WITH ALL **RELEVANT DESIGN GUIDANCE AND STANDARDS;**

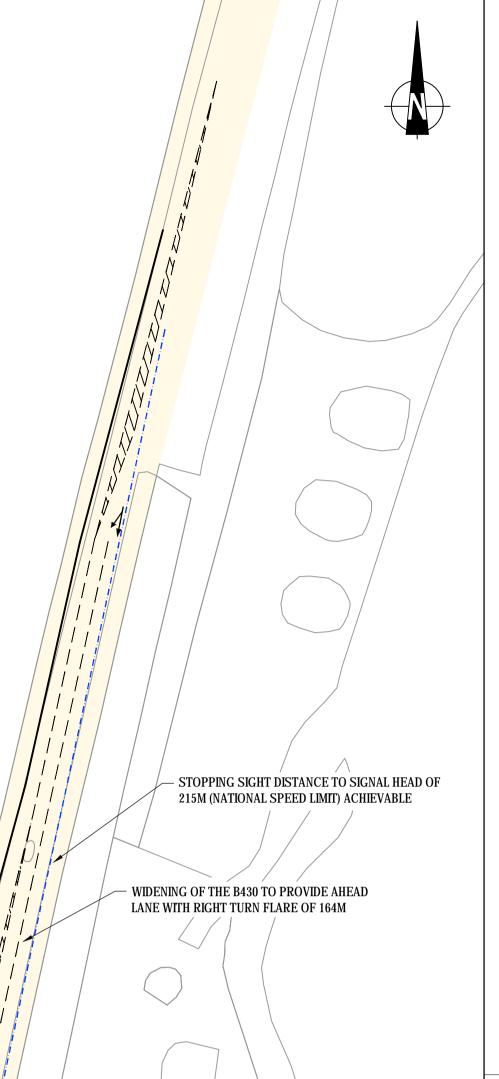
3. THE LAYOUT HAS BEEN BASED ON THE APPROPRIATE DESIGN SPEED FOR OUR CURRENT PROPOSALS;

4. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT ASSOCIATED DOCUMENTS; AND

5. THE USE OF THE DRAWING DOES NOT ABSOLVE THE CLIENT FROM THEIR **RESPONSIBILITIES IN REGARDS TO HEALTH & SAFETY AND CDM REGULATIONS;**

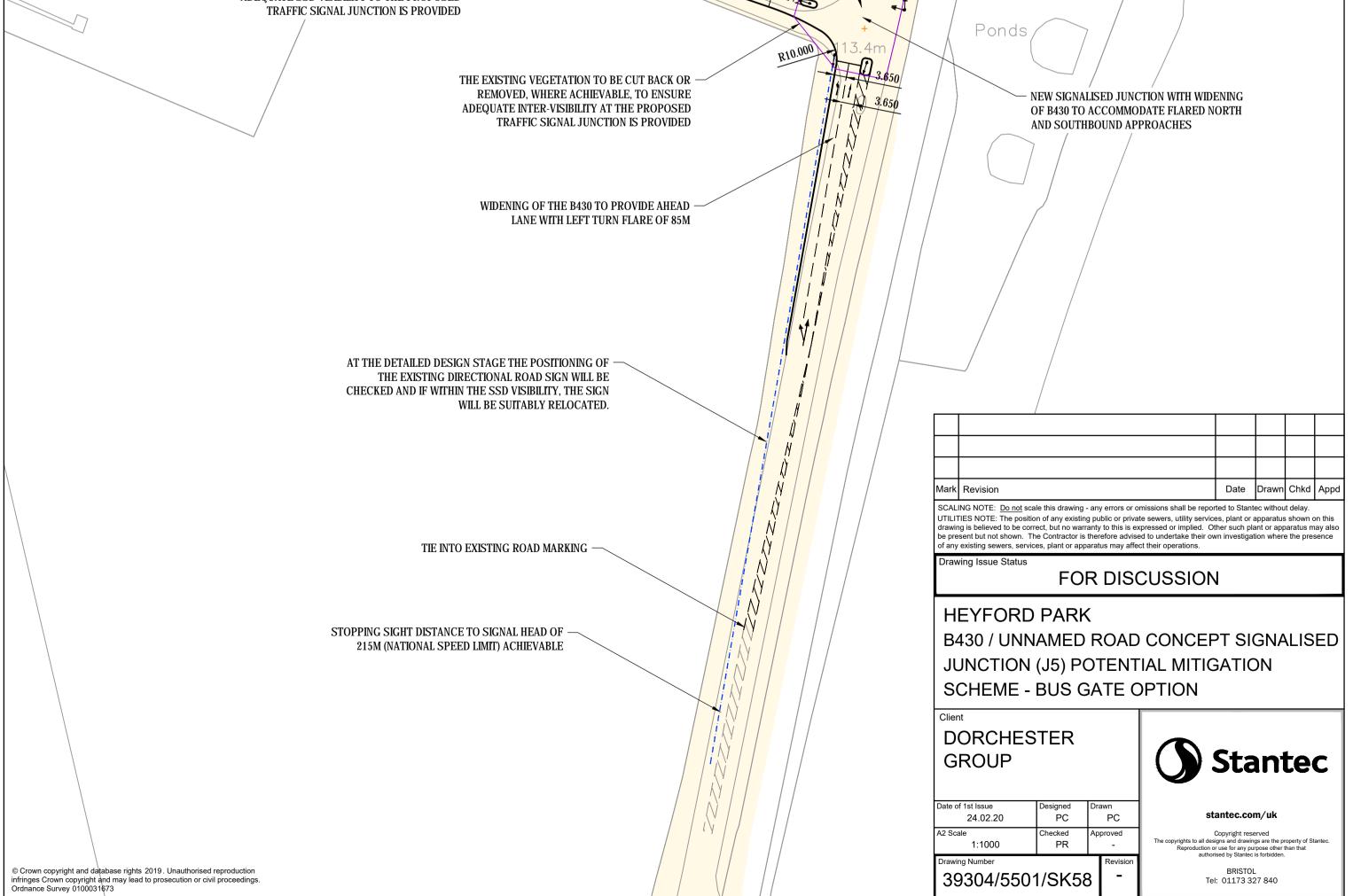
- ACCORDANCE WITH DMRB FOR A 60MPH ROAD
- JUNCTION INTERVISIBILITY IN ACCORDANCE WITH DMRB
- PRIMARY TRAFFIC SIGNAL HEAD AND POLE
- SECONDARY TRAFFIC SIGNAL HEAD AND POLE


STOPPING SIGHT DISTANCE TO SIGNAL HEAD OF


215M (NATIONAL SPEED LIMIT) ACHIEVABLE

POSITION OF JUNCTION DETERMINED BY JUNCTION INTERVISIBILITY AND STOPPING SIGHT DISTANCE ON THE WESTERN ARM WITHIN LAND OWNERSHIP

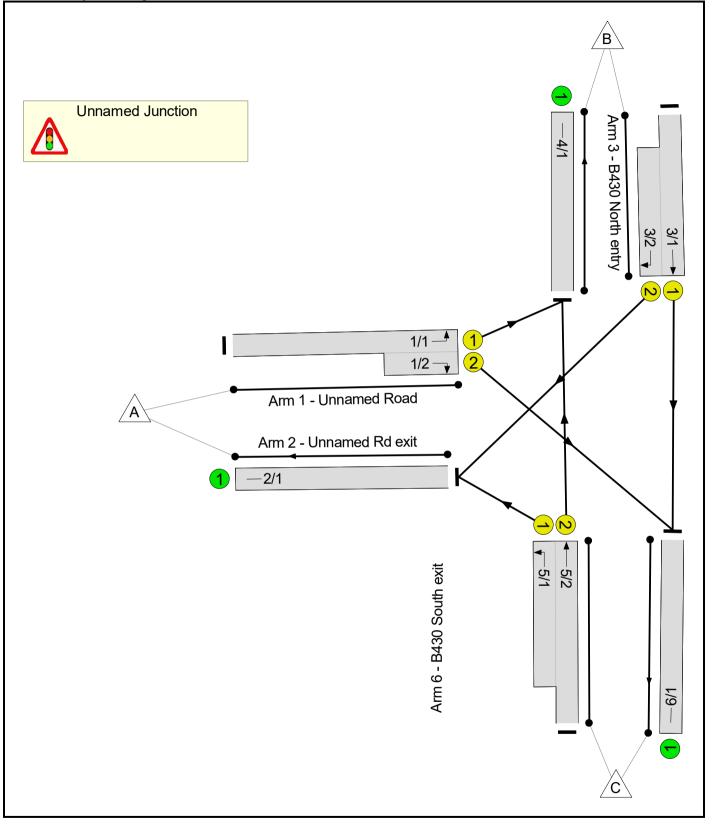
ROAD WIDENED TO PROVIDE A LEFT TURN LANE AND RIGHT **TURN FLARE OF 60M**


THE EXISTING VEGETATION TO BE CUT BACK OR REMOVED, WHERE ACHIEVABLE, TO ENSURE ADEQUATE SSD VISIBILITY TO THE PROPOSED

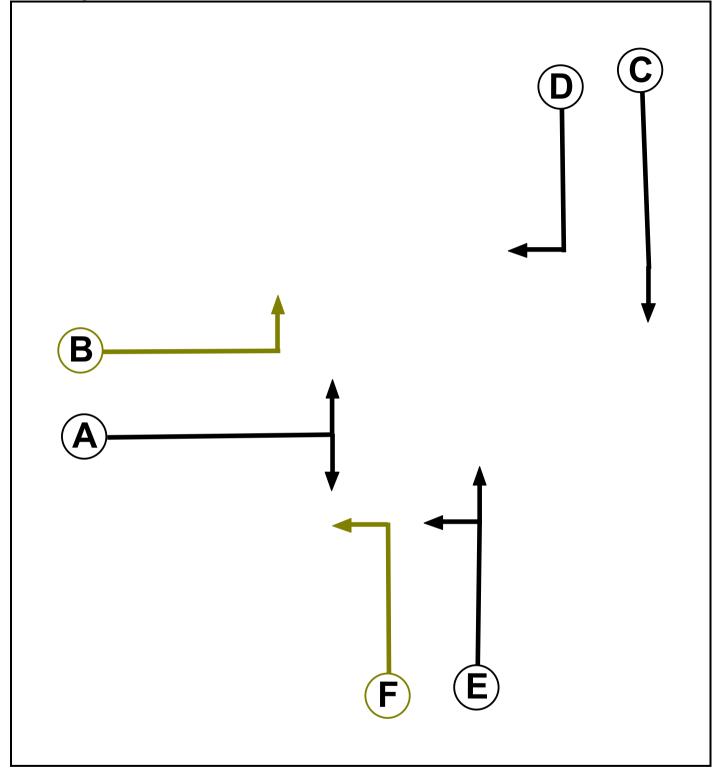
3.650

3.650

APPENDIX A


J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

Full Input Data And Results **Full Input Data And Results**


User and Project Details

Project:	
Title:	
Location:	
File name:	J5 B430 minor rd single lane (possible mit Opt4) V6.lsg3x – TA Geometry
Author:	
Company:	
Address:	
Notes:	

Network Layout Diagram

Phase Diagram

Full Input Data And Results

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		7	7
В	Filter	А	4	0
С	Traffic		7	7
D	Traffic		7	7
E	Traffic		7	7
F	Filter	E	4	0

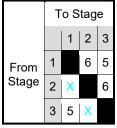
Phase Intergreens Matrix

	Starting Phase							
	_							
		А	В	С	D	Е	F	
	А		-	5	5	5	-	
	В	-		-	-	5	I	
Terminating Phase	С	5	-		-	-	-	
	D	5	-	-		5	6	
	Е	5	6	-	5		-	
	F	-	-	-	5	-		

Phases in Stage

Stage No.	Phases in Stage
1	CE
2	BCD
3	AF

Stage Diagram


1 Min >= 7	2 Min >= 6	3 Min >= 6
I I	T I	T
-		
B · · · ·	B '	B A
	(A)	
	~ - -	
FE	(F)(E)	FE

Phase Delays

Term. Stage Start Stage		Phase	Туре	Value	Cont value			
There are no Phase Delays defined								

Full Input Data And Results

Prohibited Stage Change

Full Input Data And Results Give-Way Lane Input Data

Junction: Unnamed Junction

There are no Opposed Lanes in this Junction

Full Input Data And Results Lane Input Data

Junction: Unnamed Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Unnamed Road)	U	A B	2	3	60.0	Geom	-	3.25	0.00	Y	Arm 4 Left	15.00
1/2 (Unnamed Road)	U	А	2	3	5.0	Geom	-	3.25	0.00	Y	Arm 6 Right	20.00
2/1 (Unnamed Rd exit)	U		2	3	60.0	Inf	-	-	-	-	-	-
3/1 (B430 North entry)	U	с	2	3	60.0	Geom	-	3.65	0.00	Y	Arm 6 Ahead	Inf
3/2 (B430 North entry)	U	D	2	3	28.5	Geom	-	3.65	0.00	Y	Arm 2 Right	15.00
4/1 (B430 North exit)	U		2	3	60.0	Inf	-	-	-	-	-	-
5/1 (B430 South)	U	EF	2	3	12.9	Geom	-	3.65	0.00	Y	Arm 2 Left	10.00
5/2 (B430 South)	U	E	2	3	60.0	Geom	-	3.65	0.00	Y	Arm 4 Ahead	Inf
6/1 (B430 South exit)	U		2	3	60.0	Inf	-	-	-	-	-	-

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
13: 'SATURN Run DS1 AM'	08:00	09:00	01:00	
14: 'SATURN Run DS1 PM'	17:00	18:00	01:00	

Scenario 13: 'SATURN Run DS1 AM' (FG13: 'SATURN Run DS1 AM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination										
		A B C To									
	А	0	319	487	806						
Origin	В	301	0	754	1055						
	С	476	433	0	909						
	Tot.	777	752	1241	2770						

Full Input Data And Results

Traffic Lane Flows

Lane	Scenario 13: SATURN Run DS1 AM									
Junction: Unnamed Junction										
1/1 (with short)	806(In) 319(Out)									
1/2 (short)	487									
2/1	777									
3/1 (with short)	1055(In) 754(Out)									
3/2 (short)	301									
4/1	752									
5/1 (short)	476									
5/2 (with short)	909(In) 433(Out)									
6/1	1241									

Lane Saturation Flows

Junction: Unnamed Junct	Junction: Unnamed Junction									
Lane	Lano Width Gradient Radius		Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)						
1/1 (Unnamed Road)	3.25	0.00	Y	Arm 4 Left	15.00	100.0 %	1764	1764		
1/2 (Unnamed Road)	3.25	0.00	Y	Arm 6 Right	20.00	100.0 %	1805	1805		
2/1 (Unnamed Rd exit Lane 1)		Infinite Saturation Flow						Inf		
3/1 (B430 North entry)	3.65	0.00	Y	Arm 6 Ahead	Inf	100.0 %	1980	1980		
3/2 (B430 North entry)	3.65	0.00	Y	Arm 2 Right	15.00	100.0 %	1800	1800		
4/1 (B430 North exit Lane 1)			Infinite S	aturation Flow			Inf	Inf		
5/1 (B430 South)	3.65	0.00	Y	Arm 2 Left	10.00	100.0 %	1722	1722		
5/2 (B430 South)	3.65	0.00	Y	Arm 4 Ahead	Inf	100.0 %	1980	1980		
6/1 (B430 South exit Lane 1)			Infinite S	Inf	Inf					

Scenario 14: 'SATURN Run DS1 PM' (FG14: 'SATURN Run DS1 PM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination							
		А	В	С	Tot.			
	А	0	367	384	751			
Origin	В	206	0	489	695			
	С	354	765	0	1119			
	Tot.	560	1132	873	2565			

Traffic Lane Flows

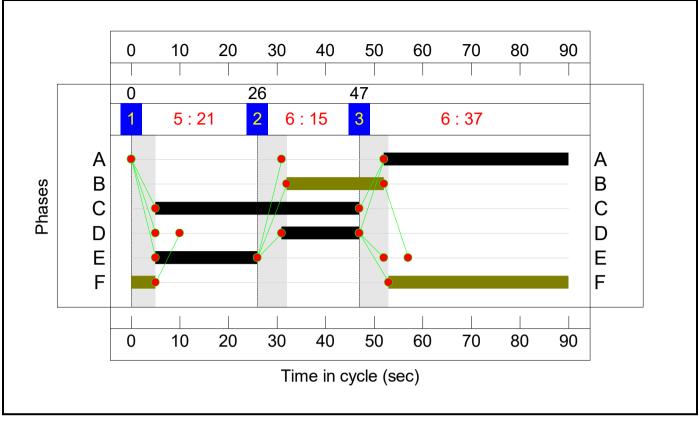

Lane	Scenario 14: SATURN Run DS1 PM										
Junction: Unnamed Junction											
1/1 (with short)	751(In) 367(Out)										
1/2 (short)	384										
2/1	560										
3/1 (with short)	695(In) 489(Out)										
3/2 (short)	206										
4/1	1132										
5/1 (short)	354										
5/2 (with short)	1119(In) 765(Out)										
6/1	873										

Full Input Data And Results

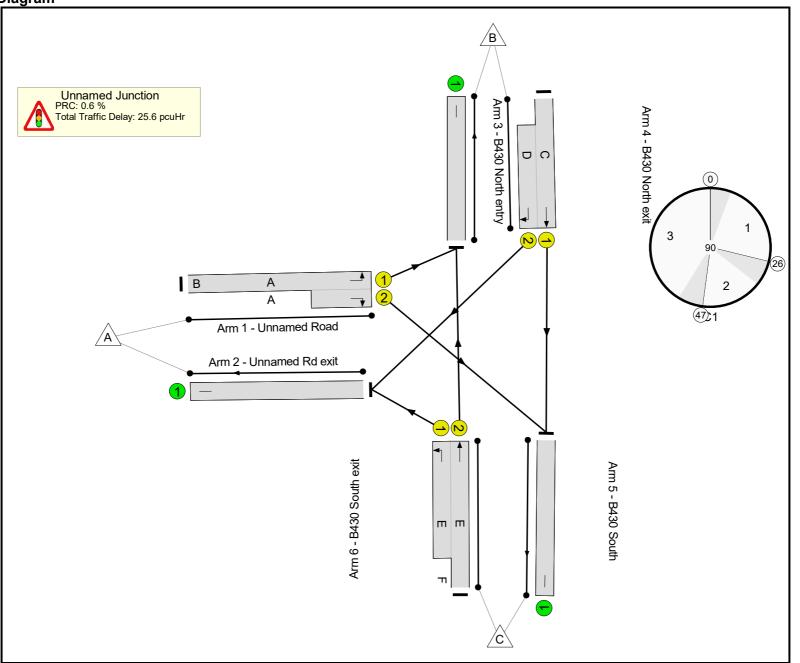
Lane Saturation Flows

Junction: Unnamed Junction									
Lane	Lano Width Gradiont Padille Padille 9		Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)					
1/1 (Unnamed Road)	3.25	0.00	Y	Arm 4 Left	15.00	100.0 %	1764	1764	
1/2 (Unnamed Road)	3.25	0.00	Y	Arm 6 Right	20.00	100.0 %	1805	1805	
2/1 (Unnamed Rd exit Lane 1)		Infinite Saturation Flow						Inf	
3/1 (B430 North entry)	3.65	0.00	Y	Arm 6 Ahead	Inf	100.0 %	1980	1980	
3/2 (B430 North entry)	3.65	3.65 0.00 Y Arm 2 Right 15.00 100.0 %				100.0 %	1800	1800	
4/1 (B430 North exit Lane 1)			Infinite S	aturation Flow			Inf	Inf	
5/1 (B430 South)	3.65	0.00	Y	Arm 2 Left	10.00	100.0 %	1722	1722	
5/2 (B430 South)	3.65	0.00	Y	Arm 4 Ahead	Inf	100.0 %	1980	1980	
6/1 (B430 South exit Lane 1)			Inf	Inf					

Scenario 13: 'SATURN Run DS1 AM' (FG13: 'SATURN Run DS1 AM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram



Stage Timings

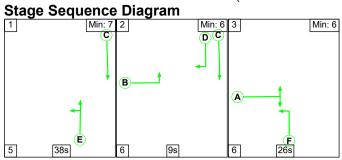

Stage	1	2	3
Duration	21	15	37
Change Point	0	26	47

Full Input Data And Results

Signal Timings Diagram

Full Input Data And Results
Network Layout Diagram

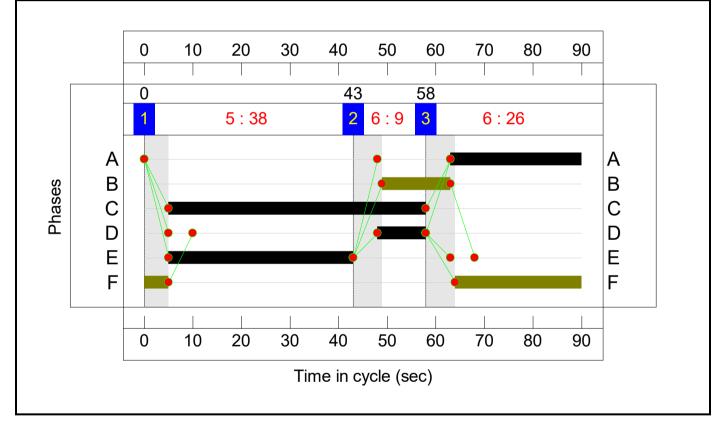
Network Results

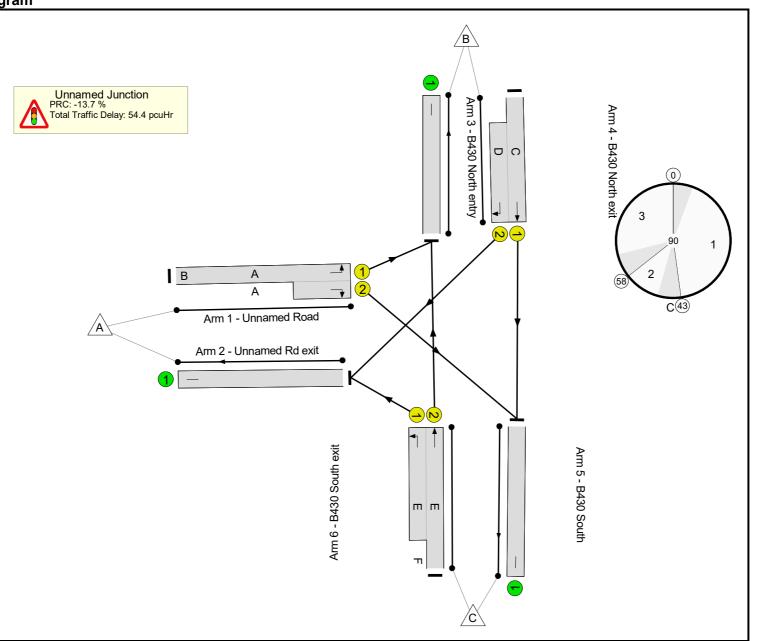

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	89.5%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	89.5%
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	A	В	1	58:38	20	806	1764:1805	359+548	88.8 : 88.8%
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-	-	777	Inf	Inf	0.0%
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	C D		1	42:16	-	1055	1980:1800	946+340	79.7 : 88.5%
4/1	B430 North exit	U	N/A	N/A	-		-	-	-	752	Inf	Inf	0.0%
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	21:63	42	909	1980:1722	484+532	89.5 : 89.5%
6/1	B430 South exit	U	N/A	N/A	-		-	-	-	1241	Inf	Inf	0.0%
ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	0	0	0	15.7	9.9	0.0	25.6	-	-	-	-
Unnamed Junction	-	-	0	0	0	15.7	9.9	0.0	25.6	-	-	-	-
1/1+1/2	806	806	-	-	-	4.0	3.7	-	7.7	34.3	14.9	3.7	18.6
2/1	777	777	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1+3/2	1055	1055	-	-	-	7.1	2.2	-	9.4	32.0	15.7	2.2	17.9
4/1	752	752	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/2+5/1	909	909	-	-	-	4.6	4.0	-	8.6	34.0	10.5	4.0	14.4
6/1	1241	1241	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
	·	C1		for Signalled Lanes (% RC Over All Lanes (%)			y for Signalled La Delay Over All La		.64 Cyc .64	cle Time (s): 90)		<u>.</u>

Full Input Data And Results

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green	(s) Sta	rt Green	End Green		Arrow Green s)	Bonus Green (s)	Demand Flow (pcu	Sat F (pcu/		Max Sat Flow (pcu/Hr)	Capac (pcu)	ity D (%	eg Sat %)	Arriving (pcu)	Leavin (pcu)
Network	-	-	N/A	-	-		-	-		-	-		-	-	-		-	-	-		89.5%	-	-
Unnamed Junction	-	-	N/A	-	-		-	-		-	-		-	-	-		-	-			89.5%	-	-
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	A	В	1	58:38		32:52	0		20	-	806	176	4:1805	1764	359+	-548	88.8 : 88.8%	806	806
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-		-	-		-	-	777		Inf	Inf	Ir	nf	0.0%	777	777
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	СD		1	42:16		5:31	47		-	-	1055	198	0:1800	1980	946+	-340	79.7 : 88.5%	1055	5 1055
4/1	B430 North exit	U	N/A	N/A	-		-	-		-	-	İ	-	-	752		Inf	Inf	lr	nf	0.0%	752	752
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	21:63		5:53	26		42	-	909	198	0:1722	1980	484+	-532	89.5 : 89.5%	909	909
6/1	B430 South exit	U	N/A	N/A	-		-	-		-	-		-	-	1241		Inf	Inf	Ir	nf	0.0%	1241	1241
ltem	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Per PCU 3	Uniform Stops (stops)	Av. Unif Stops P (stops/p	er PCU E	ack of niform nd of ed(pcu)	Onnor	m Ov	eue Qu	an Max eue :u)	De-sliv Thresh (pcu)		ess ue	Weighted Deg Sat (Weigh Total %) (pcuH	Delay F	gnoring Random Delay ?
Network	0	0	0	15.7	9.9	0.0	25.6	-	2247.5		-	-		-	-	-	-	.	-	89.5%	2	9.7	-
Unnamed Junction	0	0	0	15.7	9.9	0.0	25.6	-	2247.5		-	-		-	-	-	-		-	89.5%	2	9.7	-
1/1+1/2	-	-	-	4.0	3.7	-	7.7	34.3	724.5	0	.9	3.9	14	.9	3.7	18.6	-		0.00	88.8 : 88.8%	ę	9.0	-
2/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0	.0	-	0.	.0	0.0	0.0	-	.	0.00	0.0%	(0.0	-
3/1+3/2	-	-	-	7.1	2.2	-	9.4	32.0	919.3	0	.9	9.4	15	5.7	2.2	17.9	-		0.00	79.7 : 88.5%	1	1.0	-
4/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0	.0	-	0.	.0	0.0	0.0	-		0.00	0.0%	(0.0	-
5/2+5/1	-	-	-	4.6	4.0	-	8.6	34.0	603.7	0	.7	7.9	10	0.5	4.0	14.4	-		0.00	89.5 : 89.5%	ę	9.7	-
6/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0	.0	-	0.	.0	0.0	0.0	-		0.00	0.0%	(0.0	-
		C1	PRC for Sig PRC Ove	nalled Lanes (%): er All Lanes (%):	0.6 0.6	Total Delay fo Total Del	r Signalled La ay Over All La		25.64 25.64	Cycle Time	e (s): 90				·								


Full Input Data And Results Scenario 14: 'SATURN Run DS1 PM' (FG14: 'SATURN Run DS1 PM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram



Stage Timings

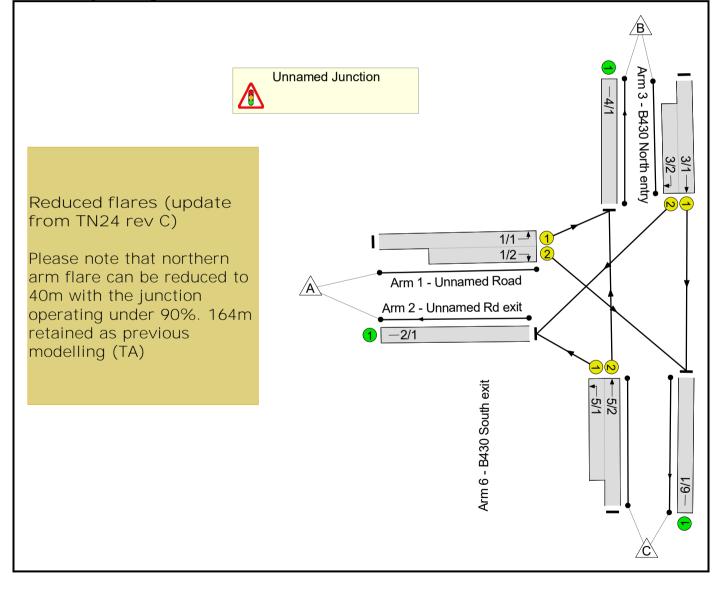
Stage	1	2	3
Duration	38	9	26
Change Point	0	43	58

Signal Timings Diagram

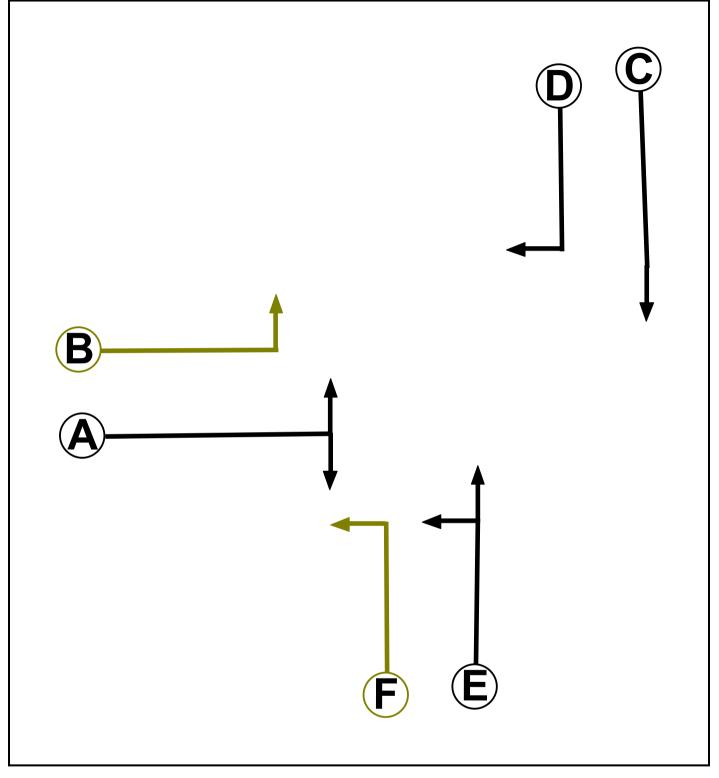
Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	102.3%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	102.3%
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	A	В	1	41:27	14	751	1764:1805	366+383	100.4 : 100.4%
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-	-	560	Inf	Inf	0.0%
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	CD		1	53:10	-	695	1980:1800	1179+220	41.5 : 93.6%
4/1	B430 North exit	U	N/A	N/A	-		-	-	-	1132	Inf	Inf	0.0%
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	38:69	31	1119	1980:1722	748+346	102.3 : 102.3%
6/1	B430 South exit	U	N/A	N/A	-		-	-	-	873	Inf	Inf	0.0%
ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	0	0	0	15.4	39.1	0.0	54.4	-	-	-	-
Unnamed Junction	-	-	0	0	0	15.4	39.1	0.0	54.4	-	-	-	-
1/1+1/2	751	748	-	-	-	5.3	14.4	-	19.8	94.7	14.0	14.4	28.4
2/1	560	560	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1+3/2	695	695	-	-	-	3.5	0.5	-	4.0	20.9	6.4	0.5	6.9
4/1	1113	1113	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/2+5/1	1119	1102	-	-	-	6.5	24.1	-	30.6	98.6	24.4	24.1	48.5
6/1	872	872	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
	-	C1		for Signalled Lanes (% RC Over All Lanes (%)			ay for Signalled La I Delay Over All L		I.44 Cy I.44	cle Time (s): 9	0	•	

Network Results


Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Start Green (s)	End Green (s)	Arrow Green (s)	Bonus Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Max Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Arriving (pcu)	Leaving (pcu)
Network	-	-	N/A	-	-		-	-	-	-	-	-	-	-	-	-	102.3%	-	-
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	-	-	-	-	102.3%	-	-
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	A	В	1	41:27	49:63	0	14	-	751	1764:1805	1764	366+383	100.4 : 100.4%	751	748
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-	-	-	-	-	560	Inf	Inf	Inf	0.0%	560	560
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	CD		1	53:10	5:48	58	-	-	695	1980:1800	1980	1179+220	41.5 : 93.6%	695	695
4/1	B430 North exit	U	N/A	N/A	-		-	-	-	-	-	-	1132	Inf	Inf	Inf	0.0%	1113	1113
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	38:69	5:64	43	31	-	1119	1980:1722	1980	748+346	102.3 : 102.3%	1119	1102
6/1	B430 South exit	U	N/A	N/A	-		-	-	-	-	-	-	873	Inf	Inf	Inf	0.0%	872	872
ltem	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Uniform Stops (stops)	Av. Uniform Stops Per PCU (stops/pcu)	Back of Uniform Q At End of Red(pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)	De-sliver Threshold (pcu)	Average Excess Queue (pcu)	Weighted Deg Sat (%)	Weighted Total Delay (pcuHr)	Ignoring Random Delay ?
Network	0	0	0	15.4	39.1	0.0	54.4	-	2353.3	-	-	-	-	-	-	-	102.3%	58.7	-
Unnamed Junction	0	0	0	15.4	39.1	0.0	54.4	-	2353.3	-	-	-	-	-	-	-	102.3%	58.7	-
1/1+1/2	-	-	-	5.3	14.4	-	19.8	94.7	758.3	1.0	4.9	14.0	14.4	28.4	-	0.00	100.4 : 100.4%	21.2	-
2/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.00	0.0%	0.0	-
3/1+3/2	-	-	-	3.5	0.5	-	4.0	20.9	459.1	0.7	4.6	6.4	0.5	6.9	-	0.00	41.5 : 93.6%	4.9	-
4/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.00	0.0%	0.0	-
5/2+5/1	-	-	-	6.5	24.1	-	30.6	98.6	1135.9	1.0	10.8	24.4	24.1	48.5	-	0.00	102.3 : 102.3%	32.7	-
6/1	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	-	0.00	0.0%	0.0	-
		C1		alled Lanes (%): All Lanes (%):	-13.7 -13.7	Total Delay for Total Dela	Signalled Lane y Over All Lan		54.44 54.44	Cycle Time (s): 90									

Full Input Data And Results Full Input Data And Results


User and Project Details

Project:	
Title:	
Location:	
File name:	J5 B430 minor rd single lane (possible mit Opt4) V7 - TEST FOR SATURN MOD_Feb 2020.lsg3x
Author:	
Company:	
Address:	
Notes:	

Network Layout Diagram

Phase Diagram

Phase Input Data

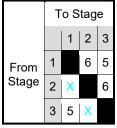
Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		7	7
В	Filter	А	4	0
С	Traffic		7	7
D	Traffic		7	7
E	Traffic		7	7
F	Filter	E	4	0

Phase Intergreens Matrix

	Starting Phase						
		А	в	С	D	Е	F
	А		-	5	5	5	-
	В	-		-	-	5	-
Terminating Phase	С	5	-		-	-	-
	D	5	-	-		5	6
	Е	5	6	-	5		-
	F	-	-	-	5	-	

Phases in Stage

Stage No.	Phases in Stage			
1	CE			
2	BCD			
3	AF			


Stage Diagram

1 Min >= 7	2 Min >= 6	3 Min >= 6
	DC	D C
1		
B →→	B +	B
	A	
	ТТ	ן דר ו
F Ê	(F)Ê	Ê (Ê)
	Ŭ,	

Phase Delays

Term. Stage	Term. Stage Start Stage			Value	Cont value			
There are no Phase Delays defined								

Prohibited Stage Change

Full Input Data And Results Give-Way Lane Input Data

Junction: Unnamed Junction

There are no Opposed Lanes in this Junction

Full Input Data And Results Lane Input Data

Junction: Uni	named	Junction										
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (Unnamed Road)	U	A B	2	3	60.0	Geom	-	3.25	0.00	Y	Arm 4 Left	15.00
1/2 (Unnamed Road)	U	А	2	3	10.4	Geom	-	3.25	0.00	Y	Arm 6 Right	20.00
2/1 (Unnamed Rd exit)	U		2	3	60.0	Inf	-	-	-	-	-	-
3/1 (B430 North entry)	U	с	2	3	60.0	Geom	-	3.65	0.00	Y	Arm 6 Ahead	Inf
3/2 (B430 North entry)	U	D	2	3	28.5	Geom	-	3.65	0.00	Y	Arm 2 Right	15.00
4/1 (B430 North exit)	U		2	3	60.0	Inf	-	-	-	-	-	-
5/1 (B430 South)	U	EF	2	3	14.8	Geom	-	3.65	0.00	Y	Arm 2 Left	10.00
5/2 (B430 South)	U	E	2	3	60.0	Geom	-	3.65	0.00	Y	Arm 4 Ahead	Inf
6/1 (B430 South exit)	U		2	3	60.0	Inf	-	-	-	-	-	-

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
13: 'SATURN Run DS1 AM'	07:45	08:45	01:00	
14: 'SATURN Run DS1 PM'	17:00	18:00	01:00	

Scenario 13: 'SATURN Run DS1 AM' (FG13: 'SATURN Run DS1 AM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination						
		А	В	С	Tot.		
	А	0	319	487	806		
Origin	В	301	0	754	1055		
	С	476	433	0	909		
	Tot.	777	752	1241	2770		

Traffic Lane Flows

Lane	Scenario 13: SATURN Run DS1 AM						
Junction: Unnamed Junction							
1/1 (with short)	806(In) 319(Out)						
1/2 (short)	487						
2/1	777						
3/1 (with short)	1055(In) 754(Out)						
3/2 (short)	301						
4/1	752						
5/1 (short)	476						
5/2 (with short)	909(In) 433(Out)						
6/1	1241						

Lane Saturation Flows

Junction: Unnamed Junct	Junction: Unnamed Junction							
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (Unnamed Road)	3.25	0.00	Y	Arm 4 Left	15.00	100.0 %	1764	1764
1/2 (Unnamed Road)	3.25	0.00	Y	Arm 6 Right	20.00	100.0 %	1805	1805
2/1 (Unnamed Rd exit Lane 1)		Infinite Saturation Flow					Inf	Inf
3/1 (B430 North entry)	3.65	0.00	Y	Arm 6 Ahead	Inf	100.0 %	1980	1980
3/2 (B430 North entry)	3.65	0.00	Y	Arm 2 Right	15.00	100.0 %	1800	1800
4/1 (B430 North exit Lane 1)			Infinite S	aturation Flow			Inf	Inf
5/1 (B430 South)	3.65	0.00	Y	Arm 2 Left	10.00	100.0 %	1722	1722
5/2 (B430 South)	3.65	0.00	Y	Arm 4 Ahead	Inf	100.0 %	1980	1980
6/1 (B430 South exit Lane 1)		Infinite Saturation Flow					Inf	Inf

Scenario 14: 'SATURN Run DS1 PM' (FG14: 'SATURN Run DS1 PM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

		Destination				
		А	В	С	Tot.	
	А	0	367	384	751	
Origin	В	206	0	489	695	
	С	354	765	0	1119	
	Tot.	560	1132	873	2565	

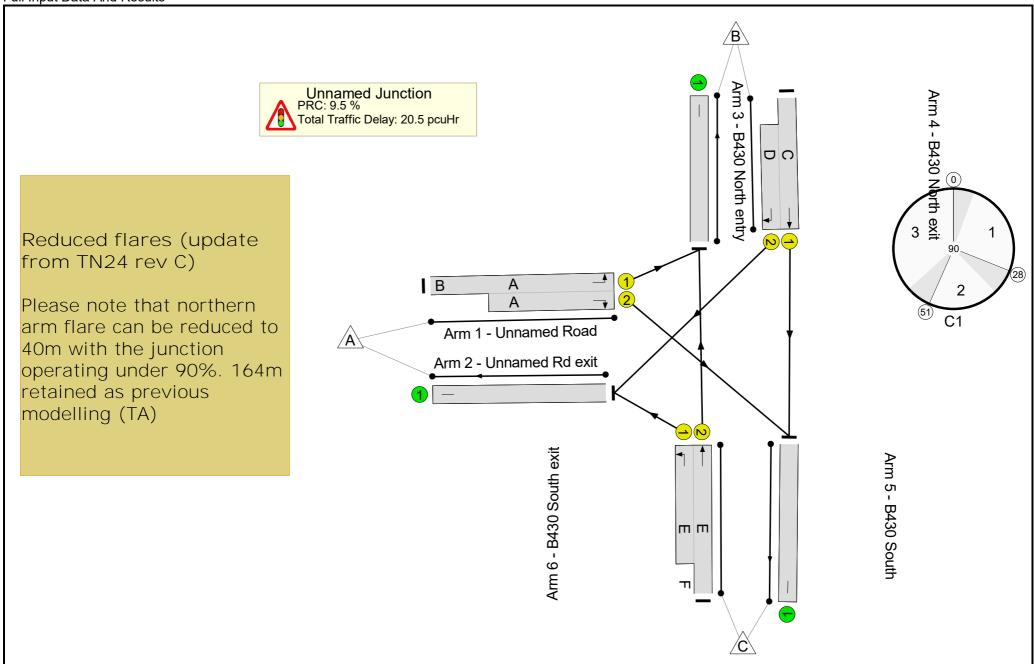

Traffic Lane Flows

Lane	Scenario 14: SATURN Run DS1 PM
Junction: Un	named Junction
1/1 (with short)	751(In) 367(Out)
1/2 (short)	384
2/1	560
3/1 (with short)	695(In) 489(Out)
3/2 (short)	206
4/1	1132
5/1 (short)	354
5/2 (with short)	1119(In) 765(Out)
6/1	873

Lane Saturation Flows

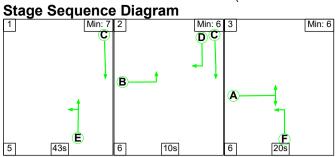
Junction: Unnamed Junc	Junction: Unnamed Junction							
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
1/1 (Unnamed Road)	3.25	0.00	Y	Arm 4 Left	15.00	100.0 %	1764	1764
1/2 (Unnamed Road)	3.25	0.00	Y	Arm 6 Right	20.00	100.0 %	1805	1805
2/1 (Unnamed Rd exit Lane 1)		Infinite Saturation Flow					Inf	Inf
3/1 (B430 North entry)	3.65	0.00	Y	Arm 6 Ahead	Inf	100.0 %	1980	1980
3/2 (B430 North entry)	3.65	0.00	Y	Arm 2 Right	15.00	100.0 %	1800	1800
4/1 (B430 North exit Lane 1)			Infinite S	aturation Flow			Inf	Inf
5/1 (B430 South)	3.65	0.00	Y	Arm 2 Left	10.00	100.0 %	1722	1722
5/2 (B430 South)	3.65	0.00	Y	Arm 4 Ahead	Inf	100.0 %	1980	1980
6/1 (B430 South exit Lane 1)		Infinite Saturation Flow						Inf

Scenario 13: 'SATURN Run DS1 AM' (FG13: 'SATURN Run DS1 AM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram


Stage Timings

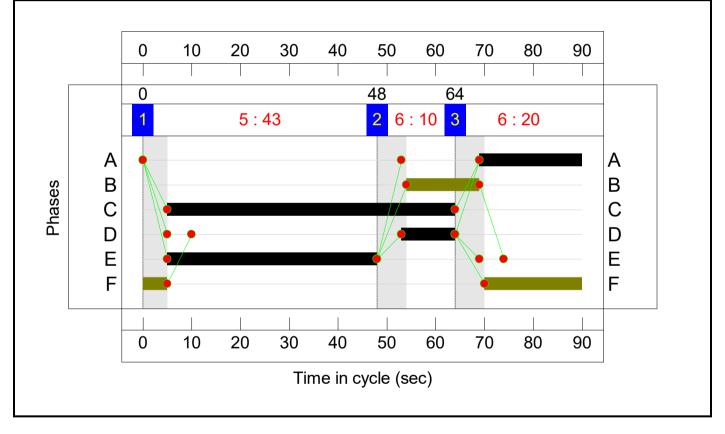
Stage	1	2	3
Duration	23	17	33
Change Point	0	28	51

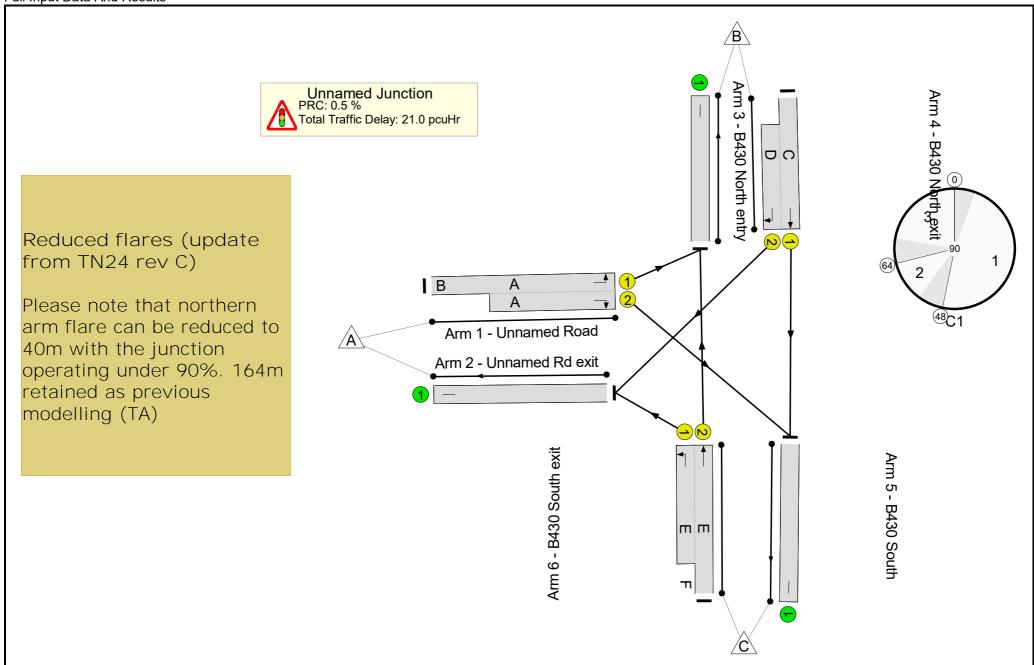
Signal Timings Diagram


Full Input Data And Results
Network Layout Diagram

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	82.2%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	82.2%
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	А	В	1	56:34	22	806	1764:1805	388+593	82.2 : 82.2%
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-	-	777	Inf	Inf	0.0%
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	CD		1	46:18	-	1055	1980:1800	1034+380	72.9 : 79.2%
4/1	B430 North exit	U	N/A	N/A	-		-	-	-	752	Inf	Inf	0.0%
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	23:61	38	909	1980:1722	528+580	82.0 : 82.0%
6/1	B430 South exit	U	N/A	N/A	-		-	-	-	1241	Inf	Inf	0.0%
ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	0	0	0	14.6	5.9	0.0	20.5	-	-	-	-
Unnamed Junction	-	-	0	0	0	14.6	5.9	0.0	20.5	-	-	-	-
1/1+1/2	806	806	-	-	-	3.8	2.2	-	6.0	26.9	10.1	2.2	12.4
2/1	777	777	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1+3/2	1055	1055	-	-	-	6.3	1.5	-	7.7	26.4	14.5	1.5	15.9
4/1	752	752	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/2+5/1	909	909	-	-	-	4.5	2.2	-	6.8	26.7	10.1	2.2	12.3
6/1	1241	1241	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
	C1 PRC for Signalled Lanes (%): 9.5 Total Delay for Signalled Lanes (pcuHr): 20.51 Cycle Time (s): 90 PRC Over All Lanes (%): 9.5 Total Delay Over All Lanes(pcuHr): 20.51 Cycle Time (s): 90												


Full Input Data And Results Scenario 14: 'SATURN Run DS1 PM' (FG14: 'SATURN Run DS1 PM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

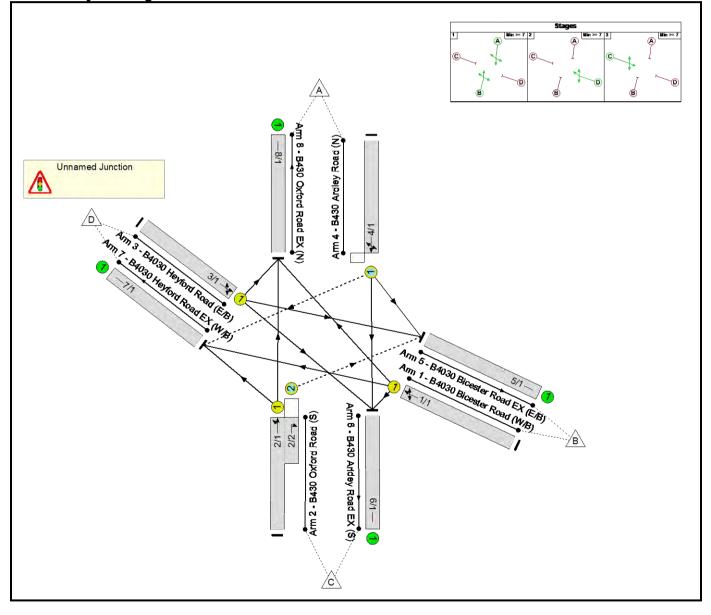

Stage Timings

Stage	1	2	3
Duration	43	10	20
Change Point	0	48	64

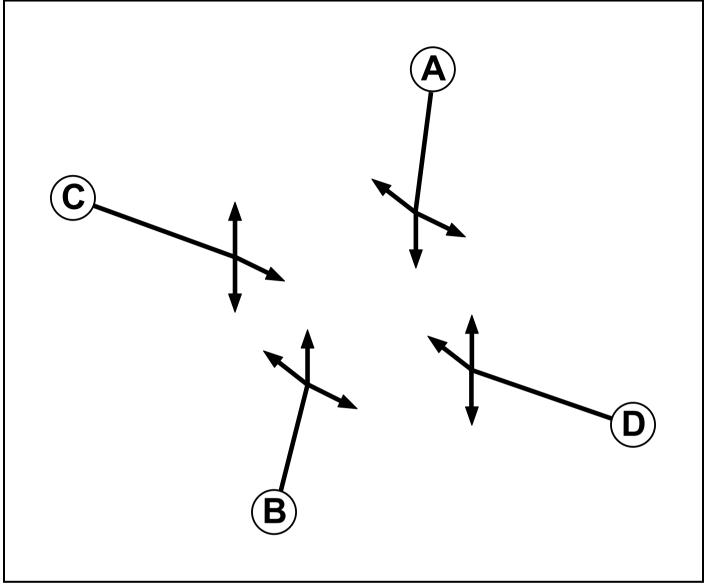
Signal Timings Diagram

Full Input Data And Results
Network Layout Diagram

Network Results


Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	89.5%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	89.5%
1/1+1/2	Unnamed Road Left Right	U	N/A	N/A	А	В	1	36:21	15	751	1764:1805	415+434	88.5 : 88.5%
2/1	Unnamed Rd exit	U	N/A	N/A	-		-	-	-	560	Inf	Inf	0.0%
3/1+3/2	B430 North entry Right Ahead	U	N/A	N/A	C D		1	59:11	-	695	1980:1800	1269+240	38.5 : 85.8%
4/1	B430 North exit	U	N/A	N/A	-		-	-	-	1132	Inf	Inf	0.0%
5/2+5/1	B430 South Left Ahead	U	N/A	N/A	E	F	1	43:68	25	1119	1980:1722	854+395	89.5 : 89.5%
6/1	B430 South exit	U	N/A	N/A	-		-	-	-	873	Inf	Inf	0.0%
ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	0	0	0	13.0	8.0	0.0	21.0	-	-	-	-
Unnamed Junction	-	-	0	0	0	13.0	8.0	0.0	21.0	-	-	-	-
1/1+1/2	751	751	-	-	-	5.5	3.6	-	9.1	43.6	9.2	3.6	12.8
2/1	560	560	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1+3/2	695	695	-	-	-	3.1	0.4	-	3.5	18.2	5.3	0.4	5.7
4/1	1132	1132	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/2+5/1	1119	1119	-	-	-	4.4	4.0	-	8.4	27.1	16.4	4.0	20.4
6/1	873	873	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		for Signalled Lanes (% RC Over All Lanes (%)			y for Signalled Lar Delay Over All La		.01 Cyc .01	cle Time (s): 90	0		

Full Input Data And Results Full Input Data And Results

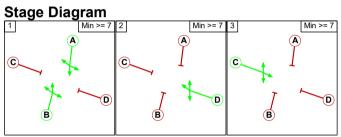

User and Project Details

Project:	Heyford Park
Title:	Middleton Stoney Junction
Location:	
File name:	Middleton Stoney Signalised Junction_Consented V4 Bus Gate Test.lsg3x
Author:	ekeen
Company:	Peter Brett Associates
Address:	10 Queen Square
Notes:	Existing Layout

Network Layout Diagram

Phase Diagram

Phase Input Data


Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		7	7
В	Traffic		7	7
С	Traffic		7	7
D	Traffic		7	7

Phase Intergreens Matrix

	St	arti	ng F	Pha	se
		А	В	С	D
	А		-	5	8
Terminating Phase	В	-		8	5
	С	5	7		8
	D	7	5	8	

Phases in Stage

Stage No.	Phases in Stage
1	AB
2	D
3	С

Phase Delays

Term. Stage	Start Stage	Phase	Туре	Value	Cont value	
1	2	В	Losing	3	3	

Prohibited Stage Change

	To Stage					
		1	2	3		
From	1		8	8		
Stage	2	7		8		
	3	7	8			

Full Input Data And Results Give-Way Lane Input Data

Junction: Unnamed Ju	Junction: Unnamed Junction												
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.		Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)		
2/2 (B430 Oxford Road (S))	5/1 (Right)	1439	0	4/1	1.09	To 5/1 (Left) To 6/1 (Ahead)	2.00	-	0.50	2	2.00		
4/1 (B430 Ardley Road (N))	7/1 (Right)	1439	0	2/1	1.09	To 7/1 (Left) To 8/1 (Ahead)	1.00	1.00	0.50	1	1.00		

Full Input Data And Results Lane Input Data

Junction: Unn	Junction: Unnamed Junction															
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)				
1/1											Arm 6 Left	13.00				
(B4030 Bicester Road	U	D	2	3	60.0	Geom	-	3.00	0.00	Y	Arm 7 Ahead	30.00				
(W/B))											Arm 8 Right	30.00				
2/1 (B430 Oxford	U	В	2	3	60.0	Geom		3.00	0.00	Y	Arm 7 Left	30.00				
Road (S))	U	D	2	5	00.0	Geom	-	3.00	0.00	T	Arm 8 Ahead	Inf				
2/2 (B430 Oxford Road (S))	0	В	2	3	5.0	Geom	-	3.00	0.00	Ν	Arm 5 Right	10.00				
3/1															Arm 5 Ahead	30.00
(B4030 Heyford Road	U	с	2	3	60.0	Geom	-	3.00	0.00	Y	Arm 6 Right	30.00				
(E/B))											Arm 8 Left	7.00				
											Arm 5 Left	12.00				
4/1 (B430 Ardley Road (N))	ο	А	2	3	60.0	Geom	-	3.32	0.00	Y	Arm 6 Ahead	Inf				
											Arm 7 Right	8.00				
5/1 (B4030 Bicester Road EX (E/B))	U		2	3	60.0	Inf	-	-	-	-	-	-				
6/1 (B430 Arldey Road EX (S))	U		2	3	60.0	Inf	-	-	-	-	-	-				
7/1 (B4030 Heyford Road EX (W/B))	U		2	3	60.0	Inf	-	-	-	-	-	-				
8/1 (B430 Oxford Road EX (N))	U		2	3	60.0	Inf	-	-	-	-	-	-				

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
21: 'SATURN Modelling RC AM'	07:30	08:30	01:00	
22: 'SATURN Modelling RC PM'	17:00	18:00	01:00	
23: 'SATURN Run DS1 Middleton Stoney Amend AM'	07:30	08:30	01:00	
24: 'SATURN Run DS1 Middleton Stoney Amend PM'	17:00	18:00	01:00	
25: 'SATURN Run DS1 Mid Stoney Amend - Low TR AM'	07:30	08:30	01:00	
26: 'SATURN Modelling DM AM'	07:30	08:30	01:00	
27: 'SATURN Modelling DM PM'	17:00	18:00	01:00	
28: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM'	07:30	08:30	01:00	

Scenario 21: 'SATURN Modelling RC AM' (FG21: 'SATURN Modelling RC AM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination									
		A	В	С	D	Tot.				
	А	0	23	755	14	792				
Origin	В	59	0	60	278	397				
Ongin	С	454	20	0	84	558				
	D	14	490	44	0	548				
	Tot.	527	533	859	376	2295				

Traffic Lane Flows

Lane	Scenario 21: SATURN Modelling RC AM
Junction: Un	named Junction
1/1	397
2/1 (with short)	558(ln) 538(Out)
2/2 (short)	20
3/1	548
4/1	792
5/1	533
6/1	859
7/1	376
8/1	527

Lane Saturation Flows

Junction: Unnamed Junction										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
		0.00		Arm 6 Left	13.00	15.1 %				
1/1 (B4030 Bicester Road (W/B))	3.00		Y	Arm 7 Ahead	30.00	70.0 %	1807	1807		
				Arm 8 Right	30.00	14.9 %				
2/4			Y	Arm 7 Left	30.00	15.6 %				
2/1 (B430 Oxford Road (S))	3.00	0.00		Arm 8 Ahead	Inf	84.4 %	1900	1900		
2/2 (B430 Oxford Road (S))	3.00	0.00	Ν	Arm 5 Right	10.00	100.0 %	1787	1787		
3/1	3.00	0.00	Y	Arm 5 Ahead	30.00	89.4 %				
(B4030 Heyford Road (E/B))				Arm 6 Right	30.00	8.0 %	1817	1817		
				Arm 8 Left	7.00	2.6 %				
		0.00	Y	Arm 5 Left	12.00	2.9 %				
4/1 (B430 Ardley Road (N))	3.32			Arm 6 Ahead	Inf	95.3 %	1934	1934		
				Arm 7 Right	8.00	1.8 %				
5/1 (B4030 Bicester Road EX (E/B) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf		
6/1 (B430 Arldey Road EX (S) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf		
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow						Inf		
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf		

Scenario 22: 'SATURN Modelling RC PM' (FG22: 'SATURN Modelling RC PM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination									
		А	В	С	D	Tot.				
	А	0	89	418	10	517				
Origin	В	41	0	25	427	493				
Origin	С	488	72	0	42	602				
	D	5	368	35	0	408				
	Tot.	534	529	478	479	2020				

Traffic Lane Flows

Lane	Scenario 22: SATURN
Lunc	Modelling RC PM
Junction: Un	named Junction
1/1	493
2/1 (with short)	602(In) 530(Out)
2/2 (short)	72
3/1	408
4/1	517
5/1	529
6/1	478
7/1	479
8/1	534

Lane Saturation Flows

Junction: Unnamed Junction	Junction: Unnamed Junction										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)			
		0.00		Arm 6 Left	13.00	5.1 %					
1/1 (B4030 Bicester Road (W/B))	3.00		Y	Arm 7 Ahead	30.00	86.6 %	1818	1818			
				Arm 8 Right	30.00	8.3 %					
2/1			Y	Arm 7 Left	30.00	7.9 %					
(B430 Oxford Road (S))	3.00	0.00		Arm 8 Ahead	Inf	92.1 %	1907	1907			
2/2 (B430 Oxford Road (S))	3.00	0.00	Ν	Arm 5 Right	10.00	100.0 %	1787	1787			
3/1	3.00	0.00	Y	Arm 5 Ahead	30.00	90.2 %	1820	1820			
(B4030 Heyford Road (E/B))				Arm 6 Right	30.00	8.6 %					
				Arm 8 Left	7.00	1.2 %					
			Y	Arm 5 Left	12.00	17.2 %					
4/1 (B430 Ardley Road (N))	3.32	0.00		Arm 6 Ahead	Inf	80.9 %	1899	1899			
				Arm 7 Right	8.00	1.9 %					
5/1 (B4030 Bicester Road EX (E/B) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf			
6/1 (B430 Arldey Road EX (S) Lane 1)			Infinite Sa		Inf	Inf					
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow						Inf			
8/1 (B430 Oxford Road EX (N) Lane 1)		Infinite Saturation Flow Inf Inf									

Scenario 23: 'SATURN Run Modelling DS1 Middleton Stoney Amend AM' (FG23: 'SATURN Run DS1 Middleton Stoney Amend AM', Plan 2: 'Bus Gate Heyford Road') Traffic Flows, Desired Desired Flow :

Desired Flow :												
		Destination										
		А	В	С	D	Tot.						
	А	0	464	757	4	1225						
Origin	В	500	0	76	10	586						
Ongin	С	388	45	0	2	435						
	D	10	17	11	0	38						
	Tot.	898	526	844	16	2284						

Traffic Lane Flows

Lane	Scenario 23: SATURN Run Modelling DS1 Middleton Stoney Amend AM					
Junction: Unnamed Junction						
1/1	586					
2/1 (with short)	435(In) 390(Out)					
2/2 (short)	45					
3/1	38					
4/1	1225					
5/1	526					
6/1	844					
7/1	16					
8/1	898					

Lane Saturation Flows

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
			Y	Arm 6 Left	13.00	13.0 %		
1/1 (B4030 Bicester Road (W/B))	3.00	0.00		Arm 7 Ahead	30.00	1.7 %	1809	1809
				Arm 8 Right	30.00	85.3 %		
0/4			Arm 7 Left	30.00	0.5 %			
2/1 (B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	99.5 %	1915	1915
2/2 (B430 Oxford Road (S))	3.00	0.00	N	Arm 5 Right	10.00	100.0 %	1787	1787
3/1 (B4030 Heyford Road (E/B))	3.00	0.00	Y	Arm 5 Ahead	30.00	44.7 %	1752	1752
				Arm 6 Right	30.00	28.9 %		
				Arm 8 Left	7.00	26.3 %		
		3.32 0.00		Arm 5 Left	12.00	37.9 %	1858	
4/1 (B430 Ardley Road (N))	3.32		Y	Arm 6 Ahead	Inf	61.8 %		1858
				Arm 7 Right	8.00	0.3 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)		Infinite Saturation Flow					Inf	Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf

Scenario 24: 'SATURN Run Modelling DS1 Middleton Stoney Amend PM' (FG24: 'SATURN Run DS1 Middleton Stoney Amend PM', Plan 2: 'Bus Gate Heyford Road') Traffic Flows, Desired

Desired Flow : Destination В С D Tot. А 7 А 0 519 336 862 В 466 0 38 16 520 Origin С 642 87 0 5 734 D 3 0 18 11 4 Tot. 1111 617 378 28 2134

Traffic Lane Flows

Lane	Scenario 24: SATURN Run Modelling DS1 Middleton Stoney Amend PM
Junction: Un	named Junction
1/1	520
2/1 (with short)	734(In) 647(Out)
2/2 (short)	87
3/1	18
4/1	862
5/1	617
6/1	378
7/1	28
8/1	1111

Lane Saturation Flows

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
			Y	Arm 6 Left	13.00	7.3 %		
1/1 (B4030 Bicester Road (W/B))	3.00	0.00		Arm 7 Ahead	30.00	3.1 %	1816	1816
				Arm 8 Right	30.00	89.6 %		
0/4			Arm 7 Left	30.00	0.8 %			
2/1 (B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	99.2 %	1914	1914
2/2 (B430 Oxford Road (S))	3.00	0.00	N	Arm 5 Right	10.00	100.0 %	1787	1787
	3.00	0.00	Y	Arm 5 Ahead	30.00	61.1 %	1777	1777
3/1 (B4030 Heyford Road (E/B))				Arm 6 Right	30.00	22.2 %		
				Arm 8 Left	7.00	16.7 %		
		0.00 Y		Arm 5 Left	12.00	60.2 %	1808	
4/1 (B430 Ardley Road (N))	3.32		Y	Arm 6 Ahead	Inf	39.0 %		1808
				Arm 7 Right	8.00	0.8 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)		Infinite Saturation Flow					Inf	Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf

Scenario 25: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR AM' (FG25: 'SATURN Run DS1 Mid Stoney Amend - Low TR AM', Plan 2: 'Bus Gate Heyford Road') Traffic Flows, Desired Desired Flow :

Destination Tot. В С D А А 0 401 753 3 1157 В 469 0 76 9 554 Origin С 383 45 0 1 429 D 8 15 9 0 32 Tot. 860 461 838 13 2172

Traffic Lane Flows

Lane	Scenario 25: SATURN Run Modelling DS1 Mid Stoney Amend - Low TR AM					
Junction: Unnamed Junction						
1/1	554					
2/1 (with short)	429(In) 384(Out)					
2/2 (short)	45					
3/1	32					
4/1	1157					
5/1	461					
6/1	838					
7/1	13					
8/1	860					

Lane Saturation Flows

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
			Y	Arm 6 Left	13.00	13.7 %		
1/1 (B4030 Bicester Road (W/B))	3.00	0.00		Arm 7 Ahead	30.00	1.6 %	1808	1808
				Arm 8 Right	30.00	84.7 %		
0/4				Arm 7 Left	30.00	0.3 %		
2/1 (B430 Oxford Road (S))	3.00	0.00 Y		Arm 8 Ahead	Inf	99.7 %	1915	1915
2/2 (B430 Oxford Road (S))	3.00	0.00	N	Arm 5 Right	10.00	100.0 %	1787	1787
3/1 (B4030 Heyford Road (E/B))	3.00	0.00	Y	Arm 5 Ahead	30.00	46.9 %	1755	
				Arm 6 Right	30.00	28.1 %		1755
				Arm 8 Left	7.00	25.0 %		
			Y	Arm 5 Left	12.00	34.7 %	1865	1865
4/1 (B430 Ardley Road (N))	3.32	0.00		Arm 6 Ahead	Inf	65.1 %		
				Arm 7 Right	8.00	0.3 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)		Infinite Saturation Flow					Inf	Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow					Inf	Inf
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf

Scenario 26: 'SATURN Modelling DM AM' (FG26: 'SATURN Modelling DM AM', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination						
		А	В	С	D	Tot.	
	А	0	123	661	25	809	
Origin	В	30	0	36	277	343	
Origin	С	269	20	0	331	620	
	D	13	506	34	0	553	
	Tot.	312	649	731	633	2325	

Traffic Lane Flows

	0
Lane	Scenario 26: SATURN Modelling DM AM
Junction: Un	named Junction
1/1	343
2/1 (with short)	620(In) 600(Out)
2/2 (short)	20
3/1	553
4/1	809
5/1	649
6/1	731
7/1	633
8/1	312

Lane Saturation Flows

Junction: Unnamed Junction	Junction: Unnamed Junction									
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
			Y	Arm 6 Left	13.00	10.5 %				
1/1 (B4030 Bicester Road (W/B))	3.00	0.00		Arm 7 Ahead	30.00	80.8 %	1812	1812		
				Arm 8 Right	30.00	8.7 %				
2/1					30.00	55.2 %				
(B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	44.8 %	1864	1864		
2/2 (B430 Oxford Road (S))	3.00	0.00	Ν	Arm 5 Right	10.00	100.0 %	1787	1787		
3/1			Y	Arm 5 Ahead	30.00	91.5 %	1817			
(B4030 Heyford Road (E/B))	3.00	0.00		Arm 6 Right	30.00	6.1 %		1817		
				Arm 8 Left	7.00	2.4 %				
				Arm 5 Left	12.00	15.2 %				
4/1 (B430 Ardley Road (N))	3.32	0.00	0.00	0.00	Y	Arm 6 Ahead	Inf	81.7 %	1900	1900
				Arm 7 Right	8.00	3.1 %				
5/1 (B4030 Bicester Road EX (E/B) Lane 1)		Infinite Saturation Flow					Inf	Inf		
6/1 (B430 Arldey Road EX (S) Lane 1)		Infinite Saturation Flow					Inf	Inf		
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow					Inf	Inf		
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf		

Scenario 27: 'SATURN Modelling DM PM' (FG27: 'SATURN Modelling DM PM', Plan 1: 'Network Control Plan 1') **Traffic Flows, Desired** Desired Flow :

	Destination						
		А	В	С	D	Tot.	
	А	0	207	301	14	522	
Origin	В	11	0	16	478	505	
Origin	С	559	43	0	80	682	
	D	6	381	34	0	421	
	Tot.	576	631	351	572	2130	

Traffic Lane Flows

Traffic Lane Flows					
Lane	Scenario 27: SATURN Modelling DM PM				
Junction: Un	named Junction				
1/1	505				
2/1 (with short)	682(In) 639(Out)				
2/2 (short)	43				
3/1	421				
4/1	522				
5/1	631				
6/1	351				
7/1	572				
8/1	576				

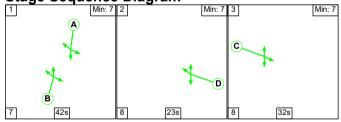
Lane Saturation Flows

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
				Arm 6 Left	13.00	3.2 %		
1/1 (B4030 Bicester Road (W/B))	3.00	0.00	Y	Arm 7 Ahead	30.00	94.7 %	1820	1820
				Arm 8 Right	30.00	2.2 %		
0/4				Arm 7 Left	30.00	12.5 %		
2/1 (B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	87.5 %	1903	1903
2/2 (B430 Oxford Road (S))	3.00	0.00	N	Arm 5 Right	10.00	100.0 %	1787	1787
3/1		0.00		Arm 5 Ahead	30.00	90.5 %		
(B4030 Heyford Road (E/B))	3.00		Y	Arm 6 Right	30.00	8.1 %	1820	1820
				Arm 8 Left	7.00	1.4 %		
				Arm 5 Left	12.00	39.7 %		
4/1 (B430 Ardley Road (N))	3.32	0.00	Y	Arm 6 Ahead	Inf	57.7 %	1846	1846
				Arm 7 Right	8.00	2.7 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)			Infinite Sa		Inf	Inf		
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa		Inf	Inf		

Scenario 28: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM' (FG28: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM', Plan 2: 'Bus Gate Heyford Road') Traffic Flows, Desired

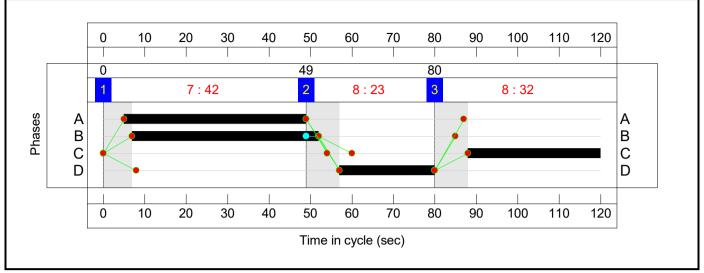
Desired Flow :

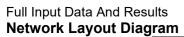
			Desti	nation		
		А	В	С	D	Tot.
	А	0	382	753	3	1138
Origin	В	458	0	76	11	545
Origin	С	383	45	0	1	429
	D	8	17	9	0	34
	Tot.	849	444	838	15	2146

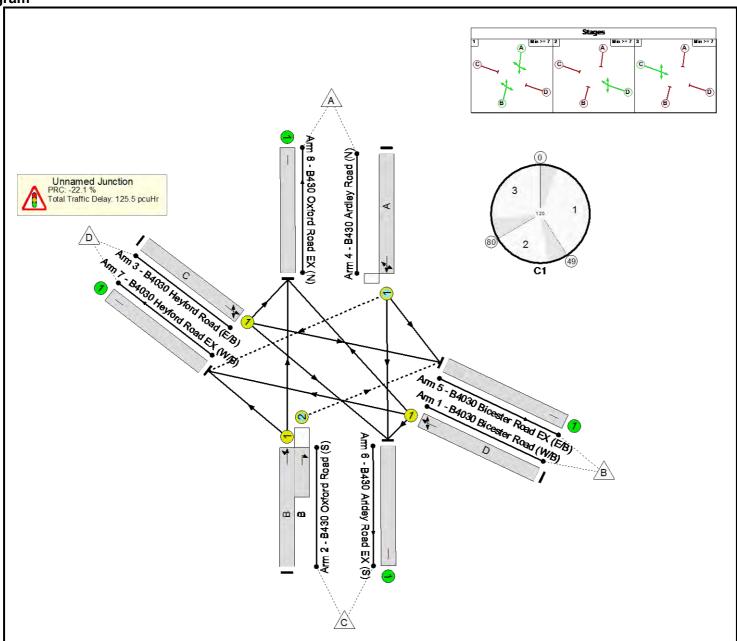

Traffic Lane Flows

Lane	Scenario 28: SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM
Junction: Un	named Junction
1/1	545
2/1 (with short)	429(In) 384(Out)
2/2 (short)	45
3/1	34
4/1	1138
5/1	444
6/1	838
7/1	15
8/1	849

Lane Saturation Flows

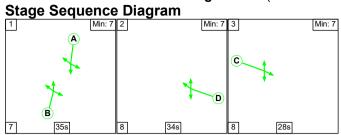

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
				Arm 6 Left	13.00	13.9 %		
1/1 (B4030 Bicester Road (W/B))	3.00	0.00	Y	Arm 7 Ahead	30.00	2.0 %	1808	1808
				Arm 8 Right	30.00	84.0 %		
0/4	[Arm 7 Left	30.00	0.3 %		
2/1 (B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	1915 Inf 99.7 %		1915
2/2 (B430 Oxford Road (S))	3.00	0.00	Ν	Arm 5 Right	10.00	100.0 %	1787	1787
3/1		0.00		Arm 5 Ahead	30.00	50.0 %		
(B4030 Heyford Road (E/B))	3.00		Y	Arm 6 Right	30.00	26.5 %	1759	1759
				Arm 8 Left	7.00	23.5 %		
				Arm 5 Left	12.00	33.6 %		
4/1 (B430 Ardley Road (N))	3.32	0.00	Y	Arm 6 Ahead	Inf	66.2 %	1868	1868
				Arm 7 Right	8.00	0.3 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)			Infinite Sa		Inf	Inf		
8/1 (B430 Oxford Road EX (N) Lane 1) Infinite Saturation Flow								Inf


Scenario 21: 'SATURN Modelling RC AM' (FG21: 'SATURN Modelling RC AM', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram

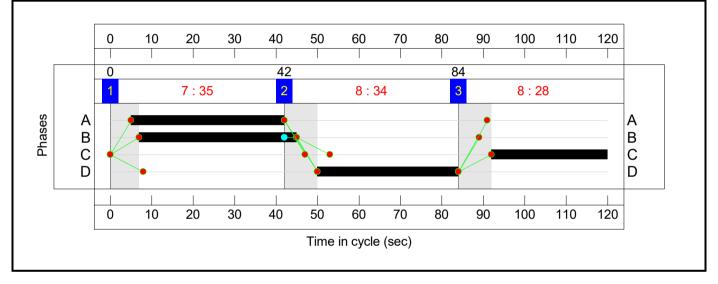


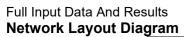
Stage Timings

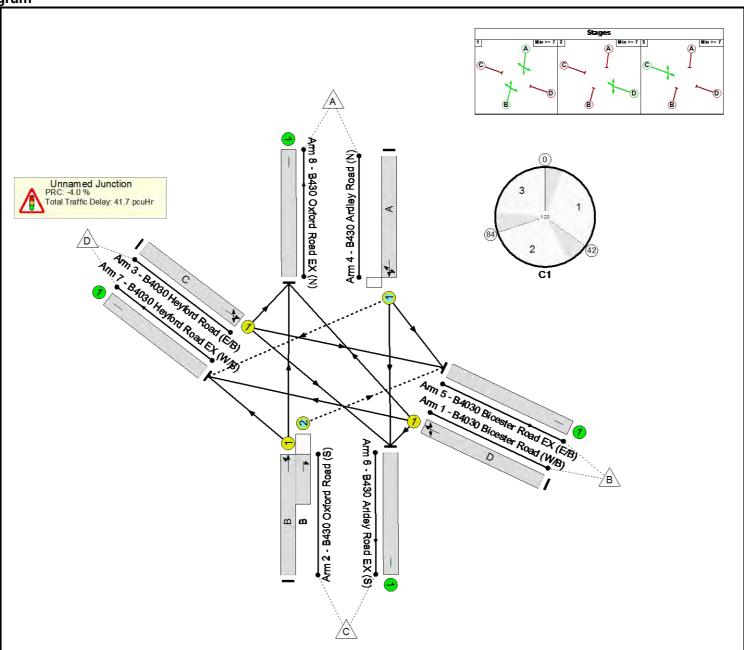
Stage	1	2	3
Duration	42	23	32
Change Point	0	49	80



Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	109.9%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	109.9%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		1	23	-	397	1807	361	109.9%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		1	45	-	558	1900:1787	740	75.4%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	с		1	32	-	548	1817	500	109.7%
4/1	B430 Ardley Road (N) Left Ahead Right	о	N/A	N/A	A		1	44	-	792	1934	725	109.2%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	533	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	859	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	376	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	527	Inf	Inf	0.0%

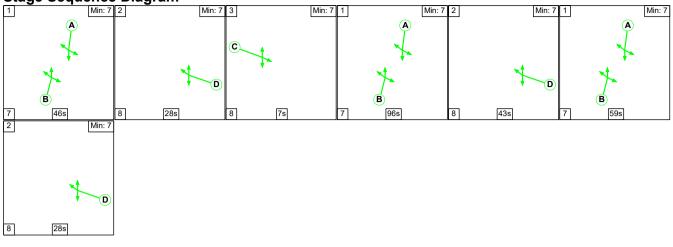

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	13	15	5	34.1	91.2	0.2	125.5	-	-	-	-
Unnamed Junction	-	-	13	15	5	34.1	91.2	0.2	125.5	-	-	-	-
1/1	397	361	-	-	-	7.0	22.3	-	29.2	265.0	14.4	22.3	36.7
2/1+2/2	558	558	0	15	5	4.9	1.5	0.1	6.6	42.5	15.8	1.5	17.3
3/1	548	500	-	-	-	10.0	28.9	-	38.9	255.8	21.0	28.9	49.9
4/1	792	725	13	0	0	12.2	38.5	0.0	50.7	230.5	28.6	38.5	67.1
5/1	488	488	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	786	786	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	350	350	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	520	520	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): r All Lanes (%):	-22.1 -22.1		Signalled Lanes (y Over All Lanes(Cycle	Time (s): 120			


Full Input Data And Results Scenario 22: 'SATURN Modelling RC PM' (FG22: 'SATURN Modelling RC PM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram



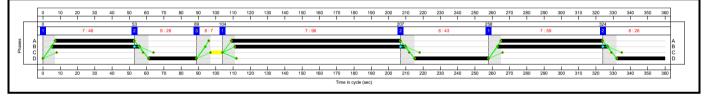
Stage Timings

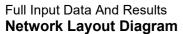
Stage	1	2	3
Duration	35	34	28
Change Point	0	42	84



Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	· ·	-	N/A	-	-		-	-	-	-	-	-	93.6%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	93.6%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		1	34	-	493	1818	530	93.0%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		1	38	-	602	1907:1787	643	93.6%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	с		1	28	-	408	1820	440	92.8%
4/1	B430 Ardley Road (N) Left Ahead Right	Ο	N/A	N/A	А		1	37	-	517	1899	601	86.0%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	529	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	478	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	479	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	534	Inf	Inf	0.0%

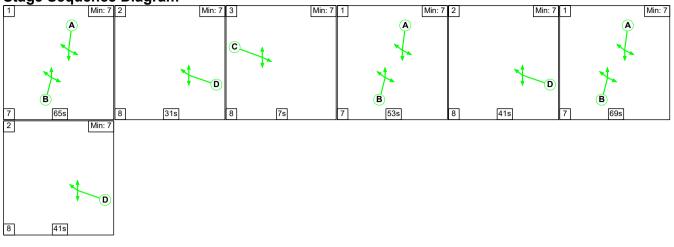
Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	61	15	5	22.7	18.7	0.4	41.7	-	-	-	-
Unnamed Junction	-	-	61	15	5	22.7	18.7	0.4	41.7	-	-	-	-
1/1	493	493	-	-	-	5.7	5.2	-	10.8	79.1	15.9	5.2	21.1
2/1+2/2	602	602	52	15	5	6.5	5.7	0.3	12.5	74.7	18.7	5.7	24.4
3/1	408	408	-	-	-	5.0	4.9	-	9.9	87.7	13.3	4.9	18.2
4/1	517	517	10	0	0	5.5	2.9	0.1	8.5	58.9	16.1	2.9	19.0
5/1	529	529	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	478	478	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	479	479	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	534	534	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1 PRC for Signalled Lanes (%): -4.0 Total Delay for Signalled Lanes (%): -4.0 Total Delay Over All Lanes (%): -4.0 Total Delay Over All Lanes (%): -4.0							Cycle	Time (s): 120			


Scenario 23: 'SATURN Run Modelling DS1 Middleton Stoney Amend AM' (FG23: 'SATURN Run DS1 Middleton Stoney Amend AM', Plan 2: 'Bus Gate Heyford Road')


Stage Sequence Diagram

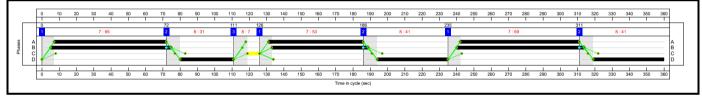
Stage Timings

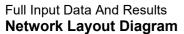
Stage	1	2	3	1	2	1	2
Duration	46	28	7	96	43	59	28
Change Point	0	53	89	104	207	258	324

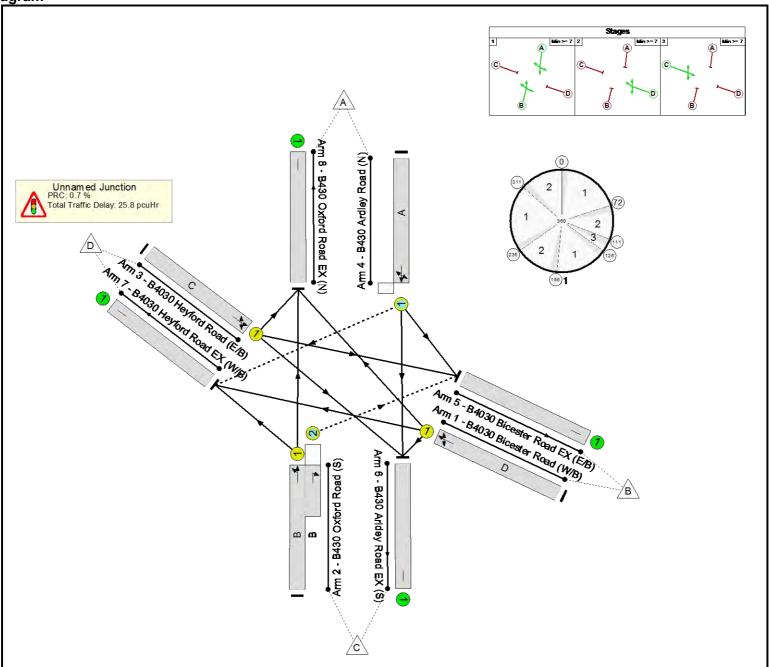


Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction		-	N/A	-	-		-	-	-	-	-	-	115.2%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	115.2%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		3	99	-	586	1809	513	114.3%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		3	214	-	435	1915:1787	580	75.0%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	с		1	7	-	38	1752	39	97.6%
4/1	B430 Ardley Road (N) Left Ahead Right	ο	N/A	N/A	A		3	203	-	1225	1858	1063	115.2%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	526	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	844	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	16	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	898	Inf	Inf	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	3	15	30	70.6	129.2	0.6	200.5	-	-	-	-
Unnamed Junction	-	-	3	15	30	70.6	129.2	0.6	200.5	-	-	-	-
1/1	586	513	-	-	-	24.3	40.4	-	64.6	397.0	42.2	40.4	82.6
2/1+2/2	435	435	0	15	30	1.5	1.5	0.6	3.6	29.5	7.5	1.5	9.0
3/1	38	38	-	-	-	1.9	2.9	-	4.7	446.6	3.8	2.9	6.6
4/1	1225	1063	3	0	0	43.0	84.5	0.0	127.6	374.9	84.8	84.5	169.3
5/1	465	465	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	734	734	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	14	14	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	835	835	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): r All Lanes (%):	-28.0 -28.0		Signalled Lanes (y Over All Lanes(Time (s): 360			

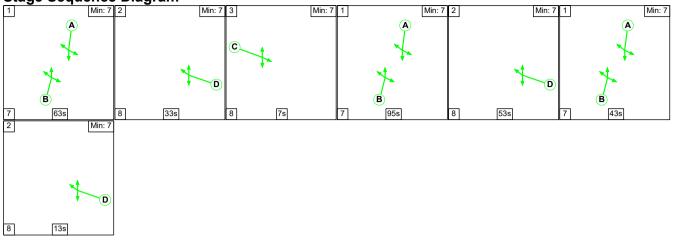

Scenario 24: 'SATURN Run Modelling DS1 Middleton Stoney Amend PM' (FG24: 'SATURN Run DS1 Middleton Stoney Amend PM', Plan 2: 'Bus Gate Heyford Road')


Stage Sequence Diagram



Stage Timings

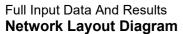
Stage	1	2	3	1	2	1	2
Duration	65	31	7	53	41	69	41
Change Point	0	72	111	126	186	235	311

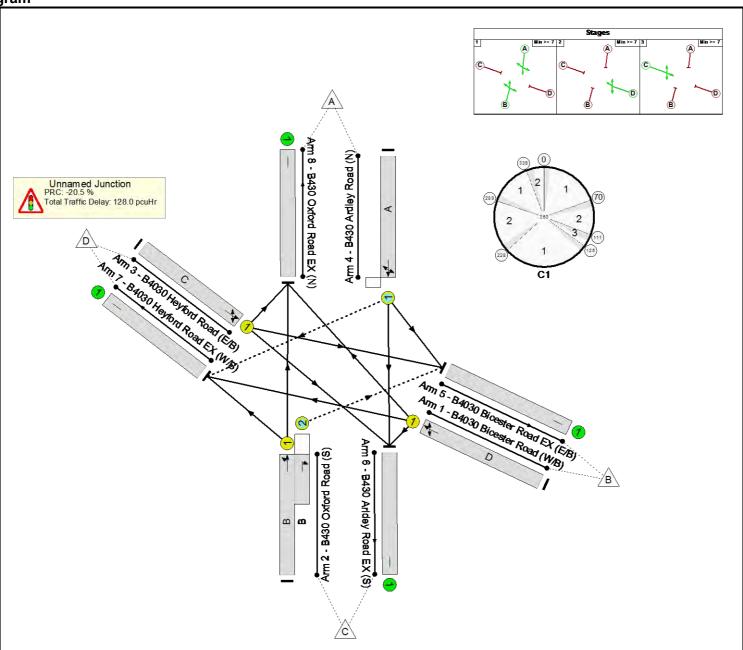


Network Res		Lane	Controller	Position In		Arrow	Num	Total Green	Arrow	Demand	Sat Flow	Capacity	Deg Sat
Item	Lane Description	Туре	Stream	Filtered Route	Full Phase	Phase	Greens	(s)	Green (s)	Flow (pcu)	(pcu/Hr)	(pcu)	(%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	89.4%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	89.4%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		3	113	-	520	1816	585	88.9%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		3	200	-	734	1914:1787	1097	66.9%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	С		1	7	-	18	1777	39	45.6%
4/1	B430 Ardley Road (N) Left Ahead Right	0	N/A	N/A	А		3	189	-	862	1808	964	89.4%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	617	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	378	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	28	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	1111	Inf	Inf	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	61	12	21	16.1	8.9	0.8	25.8	-	-	-	-
Unnamed Junction	-	-	61	12	21	16.1	8.9	0.8	25.8	-	-	-	-
1/1	520	520	-	-	-	5.6	3.6	-	9.2	63.5	16.8	3.6	20.3
2/1+2/2	734	734	54	12	21	3.7	1.0	0.8	5.5	26.8	17.7	1.0	18.7
3/1	18	18	-	-	-	0.9	0.4	-	1.3	254.6	1.8	0.4	2.2
4/1	862	862	7	0	0	6.0	3.9	0.0	9.9	41.4	26.3	3.9	30.3
5/1	617	617	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	378	378	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	28	28	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	1111	1111	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): er All Lanes (%):	0.7 0.7		Signalled Lanes (y Over All Lanes(Time (s): 360			

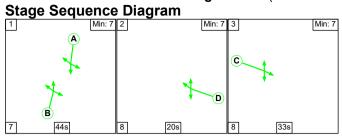

Scenario 25: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR AM' (FG25: 'SATURN Run DS1 Mid Stoney Amend - Low TR AM', Plan 2: 'Bus Gate Heyford Road')


Stage Sequence Diagram

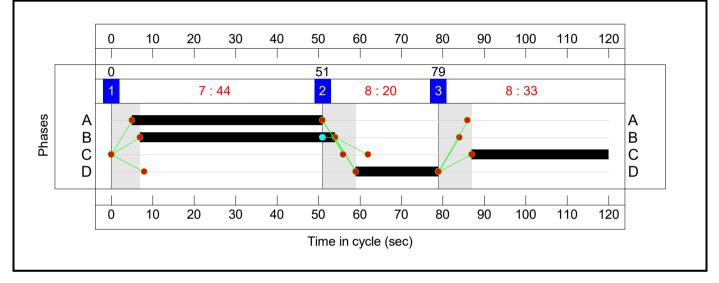


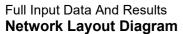
Stage Timings

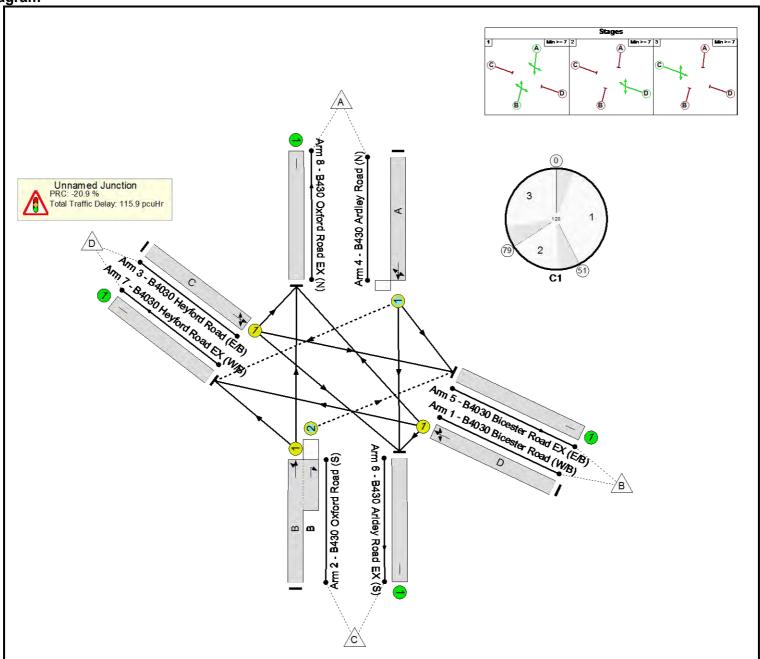
Stage	1	2	3	1	2	1	2
Duration	63	33	7	95	53	43	13
Change Point	0	70	111	126	228	289	339



Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	108.4%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	108.4%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		3	99	-	554	1808	512	108.1%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		3	214	-	429	1915:1787	572	75.0%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	С		1	7	-	32	1755	39	82.1%
4/1	B430 Ardley Road (N) Left Ahead Right	о	N/A	N/A	A		3	203	-	1157	1865	1067	108.4%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	461	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	838	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	13	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	860	Inf	Inf	0.0%

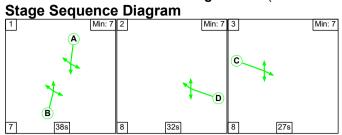

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	3	15	30	47.5	79.8	0.6	128.0	-	-	-	-
Unnamed Junction	-	-	3	15	30	47.5	79.8	0.6	128.0	-	-	-	-
1/1	554	512	-	-	-	15.9	26.2	-	42.0	273.2	35.7	26.2	61.9
2/1+2/2	429	429	0	15	30	1.6	1.5	0.6	3.7	31.0	8.7	1.5	10.2
3/1	32	32	-	-	-	1.6	1.6	-	3.1	352.6	3.2	1.6	4.8
4/1	1157	1067	3	0	0	28.5	50.6	0.0	79.1	246.2	68.7	50.6	119.4
5/1	430	430	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	774	774	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	12	12	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	825	825	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): er All Lanes (%):	-20.5 -20.5		Signalled Lanes (y Over All Lanes(e Time (s): 360			


Full Input Data And Results Scenario 26: 'SATURN Modelling DM AM' (FG26: 'SATURN Modelling DM AM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

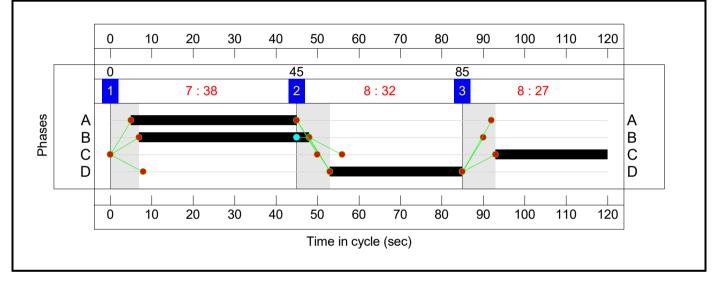


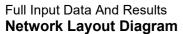
Stage Timings

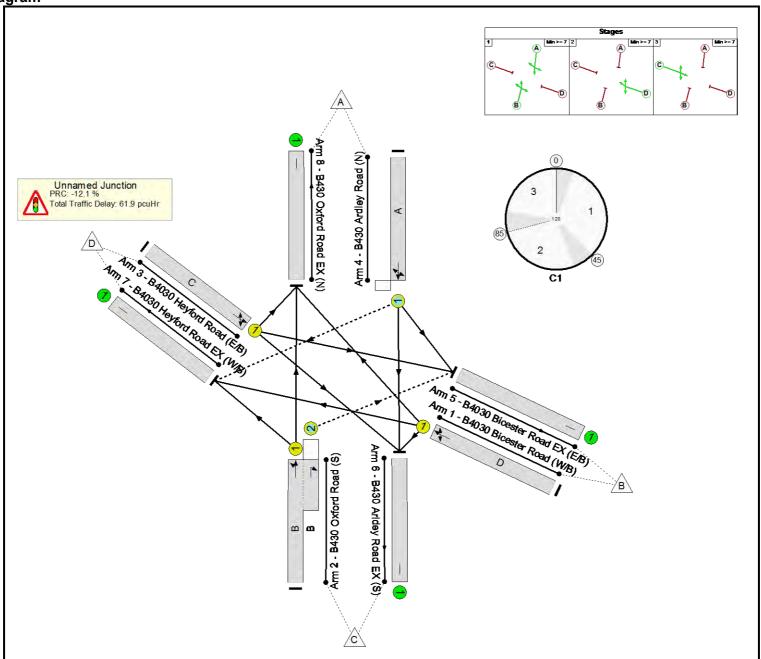
Stage	1	2	3
Duration	44	20	33
Change Point	0	51	79



Network Res	Suits	-			Γ	[[ſ	ſ		[ſ	
Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	108.8%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	108.8%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		1	20	-	343	1812	317	108.2%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		1	47	-	620	1864:1787	744	83.3%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	С		1	33	-	553	1817	515	107.4%
4/1	B430 Ardley Road (N) Left Ahead Right	0	N/A	N/A	A		1	46	-	809	1900	744	108.8%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	649	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	731	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	633	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	312	Inf	Inf	0.0%

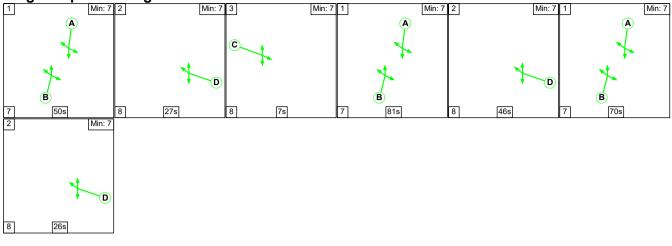

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	22	15	5	32.8	82.9	0.2	115.9	-	-	-	-
Unnamed Junction	-	-	22	15	5	32.8	82.9	0.2	115.9	-	-	-	-
1/1	343	317	-	-	-	5.9	17.8	-	23.7	248.8	12.3	17.8	30.1
2/1+2/2	620	620	0	15	5	5.6	2.4	0.1	8.1	47.1	18.3	2.4	20.7
3/1	553	515	-	-	-	9.3	24.7	-	34.0	221.3	20.5	24.7	45.2
4/1	809	744	22	0	0	12.0	38.0	0.1	50.1	223.0	29.1	38.0	67.2
5/1	604	604	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	673	673	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	610	610	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	309	309	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): r All Lanes (%):	-20.9 -20.9		Signalled Lanes (y Over All Lanes(Cycle	Time (s): 120			


Full Input Data And Results Scenario 27: 'SATURN Modelling DM PM' (FG27: 'SATURN Modelling DM PM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram



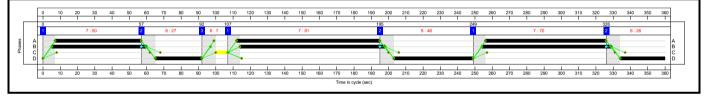
Stage Timings

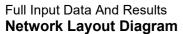
Stage	1	2	3
Duration	38	32	27
Change Point	0	45	85

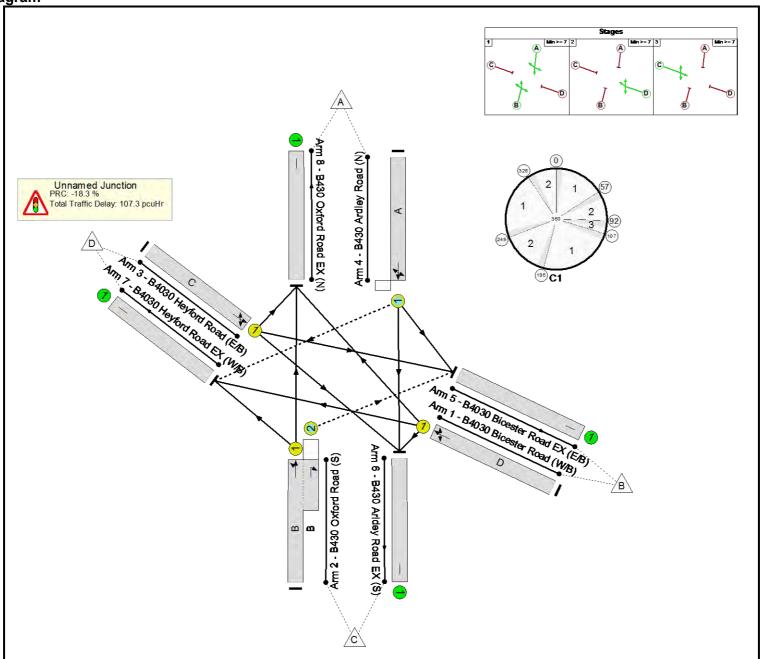


Network Res	Suits	-											1
Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	100.9%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	100.9%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		1	32	-	505	1820	501	100.9%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		1	41	-	682	1903:1787	681	100.1%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	С		1	27	-	421	1820	425	99.1%
4/1	B430 Ardley Road (N) Left Ahead Right	Ο	N/A	N/A	A		1	40	-	522	1846	631	82.8%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	631	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	351	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	572	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	576	Inf	Inf	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	40	1	16	24.3	37.3	0.3	61.9	-	-	-	-
Unnamed Junction	-	-	40	1	16	24.3	37.3	0.3	61.9	-	-	-	-
1/1	505	501	-	-	-	6.3	12.4	-	18.7	133.5	17.0	12.4	29.4
2/1+2/2	682	681	40	1	2	7.4	13.2	0.2	20.8	109.6	22.4	13.2	35.7
3/1	421	421	-	-	-	5.4	9.4	-	14.7	126.1	13.9	9.4	23.3
4/1	522	522	0	0	14	5.3	2.3	0.1	7.7	52.9	15.9	2.3	18.3
5/1	631	631	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	351	351	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	568	568	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	575	575	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1		nalled Lanes (%): er All Lanes (%):	-12.1 -12.1		Signalled Lanes (y Over All Lanes(Cycle	Time (s): 120			


Scenario 28: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM' (FG28: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM', Plan 2: 'Bus Gate Heyford Road')

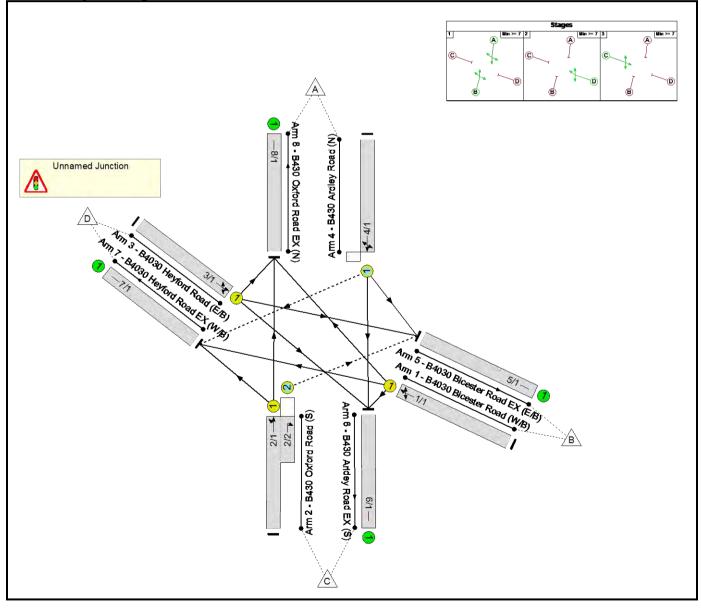

Stage Sequence Diagram



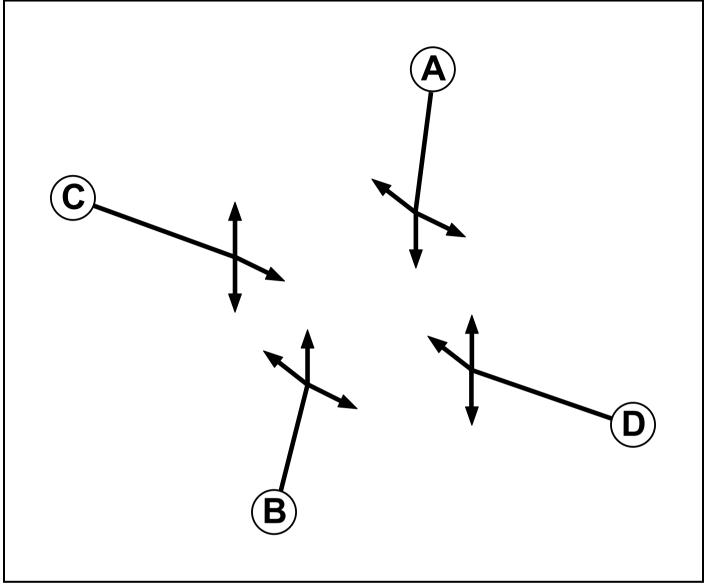
Stage Timings

Stage	1	2	3	1	2	1	2
Duration	50	27	7	81	46	70	26
Change Point	0	57	92	107	195	249	326

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	106.5%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	106.5%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		3	99	-	545	1808	512	106.4%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		3	214	-	429	1915:1787	572	75.0%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	С		1	7	-	34	1759	39	87.0%
4/1	B430 Ardley Road (N) Left Ahead Right	0	N/A	N/A	A		3	203	-	1138	1868	1069	106.5%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	444	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	838	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	15	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	849	Inf	Inf	0.0%


Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	3	15	30	39.5	67.2	0.6	107.3	-	-	-	-
Unnamed Junction	-	-	3	15	30	39.5	67.2	0.6	107.3	-	-	-	-
1/1	545	512	-	-	-	13.6	22.4	-	36.0	237.8	30.3	22.4	52.8
2/1+2/2	429	429	0	15	30	1.4	1.5	0.6	3.5	29.6	7.5	1.5	9.0
3/1	34	34	-	-	-	1.7	1.9	-	3.6	377.6	3.4	1.9	5.3
4/1	1138	1069	3	0	0	22.8	41.4	0.0	64.2	203.1	57.4	41.4	98.9
5/1	421	421	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	788	788	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	14	14	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	821	821	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1	PRC for Sigr PRC Ove	nalled Lanes (%): r All Lanes (%):	-18.3 -18.3	Total Delay for S Total Delay	Signalled Lanes (y Over All Lanes(pcuHr): 107.31 pcuHr): 107.31	Cycle	Time (s): 360			

Full Input Data And Results Full Input Data And Results

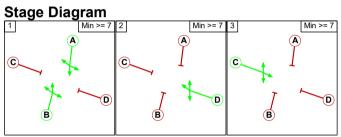

User and Project Details

Project:	Heyford Park
Title:	Middleton Stoney Junction
Location:	
File name:	190517 Middleton Stoney Signalised Junction_Consented V5.lsg3x – HGV Restriction
Author:	ekeen
Company:	Peter Brett Associates
Address:	10 Queen Square
Notes:	Existing Layout

Network Layout Diagram

Phase Diagram

Phase Input Data


Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		7	7
В	Traffic		7	7
С	Traffic		7	7
D	Traffic		7	7

Phase Intergreens Matrix

	St	arti	ng F	Pha	se
		А	В	С	D
	А		-	5	8
Terminating Phase	В	-		8	5
	С	5	7		8
	D	7	5	8	

Phases in Stage

Stage No.	Phases in Stage
1	AB
2	D
3	С

Phase Delays

Term. Stage	Start Stage	Start Stage Phase		Value	Cont value	
1	2	В	Losing	3	3	

Prohibited Stage Change

	To Stage					
		1	2	3		
From	1		8	8		
Stage	2	7		8		
	3	7	8			

Full Input Data And Results Give-Way Lane Input Data

Junction: Unnamed Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.		Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
2/2 (B430 Oxford Road (S))	5/1 (Right)	1439	0	4/1	1.09	To 5/1 (Left) To 6/1 (Ahead)	2.00	-	0.50	2	2.00
4/1 (B430 Ardley Road (N))	7/1 (Right)	1439	0	2/1	1.09	To 7/1 (Left) To 8/1 (Ahead)	1.00	1.00	0.50	1	1.00

Full Input Data And Results Lane Input Data

Junction: Unn	amed .	Junction										
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1											Arm 6 Left	13.00
(B4030 Bicester Road	U	D	2	3	60.0	Geom	-	3.00	0.00	Y	Arm 7 Ahead	30.00
(W/B))											Arm 8 Right	30.00
2/1 (B430 Oxford	U	В	2	2	60.0	Coom		2.00	0.00	Y	Arm 7 Left	30.00
Road (S))	0	D	2	3	00.0	Geom	-	3.00	0.00	T	Arm 8 Ahead	Inf
2/2 (B430 Oxford Road (S))	0	В	2	3	5.0	Geom	-	3.00	0.00	Ν	Arm 5 Right	10.00
3/1										Y	Arm 5 Ahead	30.00
(B4030 Heyford Road	U	С	2	3	60.0	Geom	-	3.00	0.00		Arm 6 Right	30.00
(E/B))											Arm 8 Left	7.00
											Arm 5 Left	12.00
4/1 (B430 Ardley Road (N))	ο	A	2	3	60.0	Geom	-	3.32	0.00	Y	Arm 6 Ahead	Inf
											Arm 7 Right	8.00
5/1 (B4030 Bicester Road EX (E/B))	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1 (B430 Arldey Road EX (S))	U		2	3	60.0	Inf	-	-	-	-	-	-
7/1 (B4030 Heyford Road EX (W/B))	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1 (B430 Oxford Road EX (N))	U		2	3	60.0	Inf	-	-	-	-	-	-

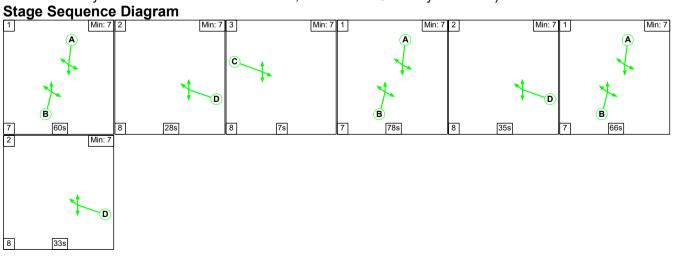
Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM'	07:30	08:30	01:00	

Scenario 1: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM' (FG1: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM', Plan 2: 'Bus Gate Heyford Road') Traffic Flows, Desired

Desired Flow :

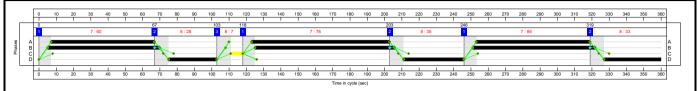
Desileu	esileu Flow .												
	Destination												
		А	В	С	D	Tot.							
	А	0	351	762	3	1116							
Origin	В	423	0	76	10	509							
Ongin	С	388	45	0	2	435							
	D	8	15	11	0	34							
	Tot.	819	411	849	15	2094							

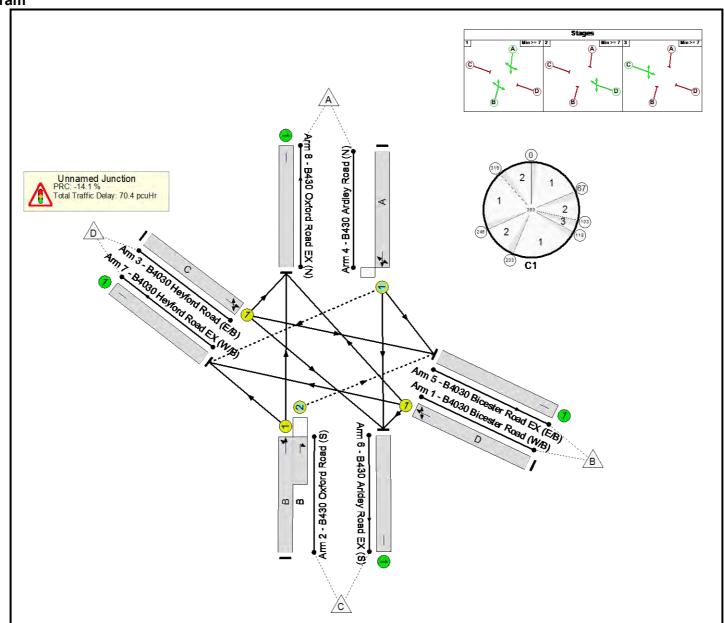

Traffic Lane Flows

Lane	Scenario 1: SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM
Junction: Un	named Junction
1/1	509
2/1 (with short)	435(In) 390(Out)
2/2 (short)	45
3/1	34
4/1	1116
5/1	411
6/1	849
7/1	15
8/1	819

Lane Saturation Flows

Junction: Unnamed Junction								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
		0.00	Y	Arm 6 Left	13.00	14.9 %		
1/1 (B4030 Bicester Road (W/B))	3.00			Arm 7 Ahead	30.00	2.0 %	1807	1807
				Arm 8 Right	30.00	83.1 %		
0/4				Arm 7 Left	30.00	0.5 %		
2/1 (B430 Oxford Road (S))	3.00	0.00	Y	Arm 8 Ahead	Inf	99.5 %	1915	1915
2/2 (B430 Oxford Road (S))	3.00	0.00	N	Arm 5 Right	10.00	100.0 %	1787	1787
3/1 (B4030 Heyford Road (E/B))	3.00	0.00	Y	Arm 5 Ahead	30.00	44.1 %	1759	1759
				Arm 6 Right	30.00	32.4 %		
				Arm 8 Left	7.00	23.5 %		
				Arm 5 Left	12.00	31.5 %		1872
4/1 (B430 Ardley Road (N))	3.32	0.00	Y	Arm 6 Ahead	Inf	68.3 %	1872	
				Arm 7 Right	8.00	0.3 %		
5/1 (B4030 Bicester Road EX (E/B) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf
6/1 (B430 Arldey Road EX (S) Lane 1)		Infinite Saturation Flow						Inf
7/1 (B4030 Heyford Road EX (W/B) Lane 1)		Infinite Saturation Flow						Inf
8/1 (B430 Oxford Road EX (N) Lane 1)			Infinite Sa	aturation Flow			Inf	Inf


Scenario 1: 'SATURN Run Modelling DS1 Mid Stoney Amend - Low TR - Extra Bus AM' (FG1: 'SATURN Run DS1 Mid Stoney Amend - Low TR - Extra BusAM', Plan 2: 'Bus Gate Heyford Road')


Stage Timings

Stage	1	2	3	1	2	1	2
Duration	60	28	7	78	35	66	33
Change Point	0	67	103	118	203	246	319

Signal Timings Diagram

Full Input Data And Results
Network Layout Diagram

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Middleton Stoney Junction	-	-	N/A	-	-		-	-	-	-	-	-	102.7%
Unnamed Junction	-	-	N/A	-	-		-	-	-	-	-	-	102.7%
1/1	B4030 Bicester Road (W/B) Left Ahead Right	U	N/A	N/A	D		3	96	-	509	1807	497	102.4%
2/1+2/2	B430 Oxford Road (S) Right Left Ahead	U+O	N/A	N/A	В		3	217	-	435	1915:1787	580	75.0%
3/1	B4030 Heyford Road (E/B) Ahead Right Left	U	N/A	N/A	с		1	7	-	34	1759	39	87.0%
4/1	B430 Ardley Road (N) Left Ahead Right	о	N/A	N/A	A		3	206	-	1116	1872	1087	102.7%
5/1	B4030 Bicester Road EX (E/B)	U	N/A	N/A	-		-	-	-	411	Inf	Inf	0.0%
6/1	B430 Arldey Road EX (S)	U	N/A	N/A	-		-	-	-	849	Inf	Inf	0.0%
7/1	B4030 Heyford Road EX (W/B)	U	N/A	N/A	-		-	-	-	15	Inf	Inf	0.0%
8/1	B430 Oxford Road EX (N)	U	N/A	N/A	-		-	-	-	819	Inf	Inf	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Middleton Stoney Junction	-	-	3	15	30	26.2	43.6	0.6	70.4	-	-	-	-
Unnamed Junction	-	-	3	15	30	26.2	43.6	0.6	70.4	-	-	-	-
1/1	509	497	-	-	-	9.4	14.7	-	24.1	170.8	22.6	14.7	37.3
2/1+2/2	435	435	0	15	30	1.4	1.5	0.6	3.5	28.6	7.5	1.5	9.0
3/1	34	34	-	-	-	1.7	1.9	-	3.6	377.6	3.4	1.9	5.3
4/1	1116	1087	3	0	0	13.7	25.5	0.0	39.3	126.7	48.0	25.5	73.5
5/1	402	402	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	827	827	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	15	15	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	809	809	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
		C1	PRC for Sigr PRC Ove	nalled Lanes (%): r All Lanes (%):	-14.1 -14.1	Total Delay for S Total Delay	Signalled Lanes (y Over All Lanes(pcuHr): 70.45 pcuHr): 70.45		Time (s): 360			

TECHNICAL NOTE

APPENDIX B

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

significant, correct sign and plausible variations in the values of time have been estimated. Compared to other findings with relatively simple tabulations, the model provided a significant advance. It should be noted that this model is estimated using the dataset in the above mentioned meta-analysis.

Based on the estimated model, the author provides illustrative figures for a range of circumstances for the money value of in vehicle time and weighting of walk time, wait time and headway. The walk time weighting is reported in Table 7.3, while other values are reported in the following sections of the chapter. It should be noted that Table 7.1 reports the average value in the database, while Table 7.3 reports the value implied by the model, which is estimated using the same database.

Table 7.3 Walk time weightings implied by the quantitative model (in units of in-vehicle time)

Time (mins)	Distance (miles)	Car	Bus	Rail	Under- ground
2	2	2.18	1.68	1.28	1.5
5		2.79	2.15	1.65	1.93
10		3.37	2.59	1.99	2.33
20		4.07	3.13	2.4	2.82
2	10	1.72	1.49	1.14	1.33
5		2.2	1.91	1.46	1.71
10		2.66	2.3	1.77	2.08
20		3.21	2.78	2.13	2.5
2	25	1.5	1.39	1.07	1.25
5		1.92	1.79	1.37	1.6
10		2.32	2.16	1.65	1.94
20		2.8	2.6	1.99	2.34
2	50	1.35	1.32	1.02	1.18
5		1.74	1.7	1.3	1.52
10		2.09	2.05	1.57	1.84
20		2.53	2.47	1.9	2.23
2	100	1.22	1.26	0.97	1.13
5		1.57	1.61	1.24	1.45
10		1.89	1.95	1.49	1.75
20		2.28	2.35	1.8	2.12
2	200	1.1	1.2	0.92	1.07
5		1.41	1.53	1.18	1.38
10 🖕		1.71	1.85	1.42	1.66
20		2.06	2.23	1.71	2.01

Source: Wardman (2001)

In the table, the first two columns refers to the assumed walk time and distance travelled. The next four columns report the walk time weighting by each user type in different mode (e.g. how bus users value walk time for bus mode). The most noticeable feature of the IVT values of walk is that they vary considerably. In part this is because of differences in the money value of IVT by user type and mode, but there are other strong influences at work. The increase in the IVT values of walk time as the levels of walk time increase is quite clear, as is the fall in the values as distance increases.

Wardman *et al.* (2001b) provide a valuation of walk time in relation to interchange facilities, based on stated

preference analysis. The attribute weights held by users of different modes are shown in Table 7.4.

Table 7.4 Walk values in association with interchange attributes, Edinburgh

Attribute	Users	Value (IVT mins / trip)	95% confidence interval
Walk time at interchange	Bus	1.6	27%
Walk time to bus	Car	1.3	40%
Between stations walk time	Rail	3.7	32%

Source: Wardman et al. (2001b)

7.4 Effect of service intervals

The effect of service intervals can be measured in a number of ways: total vehicle kilometres or hours, frequency, headway/service interval, wait time and schedule delay. Evidence is a mixture of elasticity and attribute value measures.

7.4.1 Elasticity based evidence

The dominant indicator is vehicle kilometres. Table 7.5 indicates that bus demand is relatively insensitive to service change with a short-run elasticity of approximately 0.4 and a long run elasticity of 0.7.

Table 7.5 Service elasticities, with range and standard deviation according to average values – Bus

Run	Elasticity	Range	Standard deviation	No of measure- ments
Short run	0.38	0.10 to 0.74	0.135	27
Long run	0.66	0.22 to 1.04	0.275	23

Sources: Appendix to Chapter 7

Table 7.6 shows that urban rail may be more sensitive than bus to service change but the evidence is limited to a small number of short-run estimates.

Table 7.6 Service elasticity, with range and standard deviation according to average values - Rail

Run	Elasticity	Range	Standard deviation	No of measure- ments
Run not st	ated* -0.49	-0.33 to -0.65	0.23	2
Short run	0.75	0.65 to 0.90	0.13	3

* Based on headway.

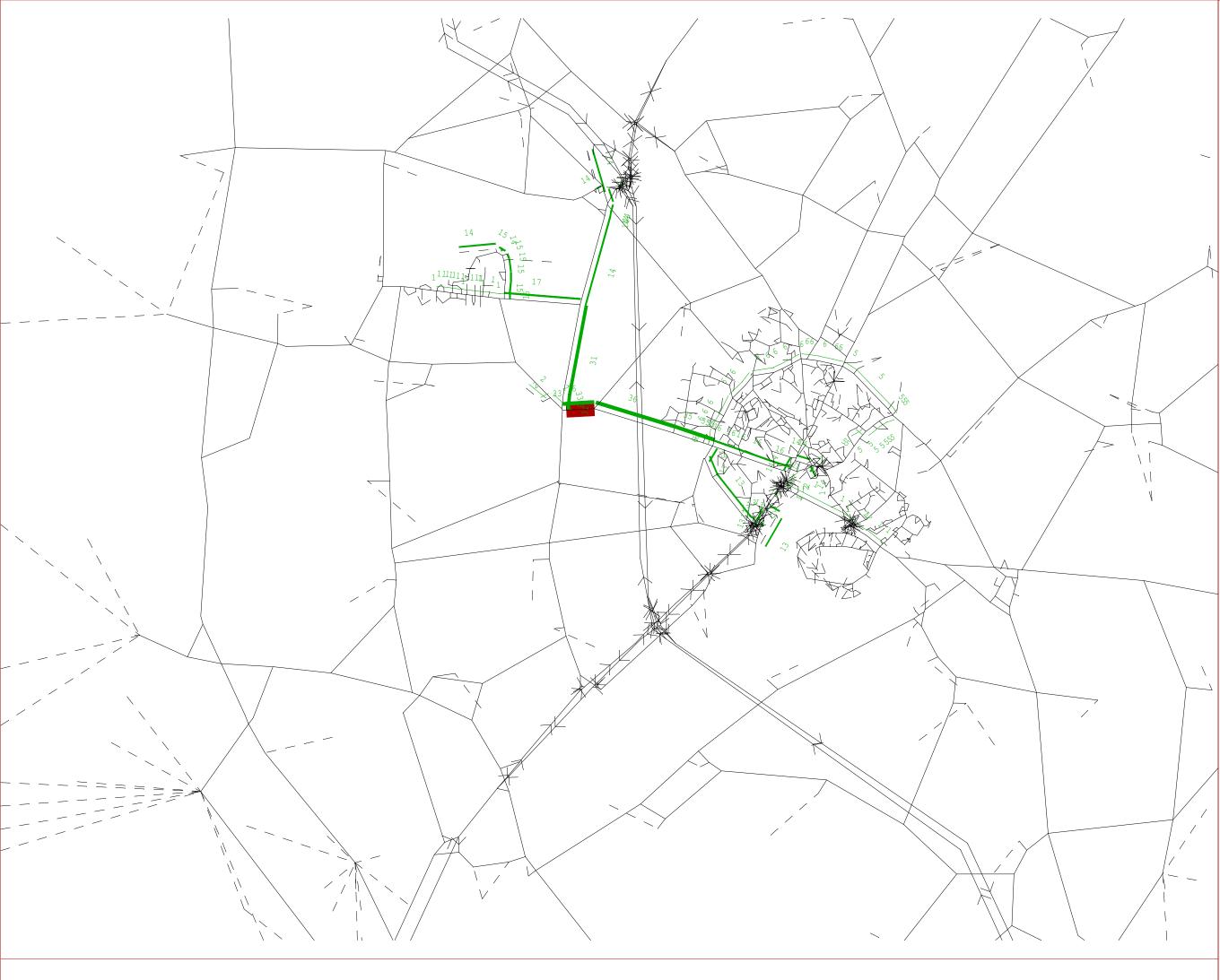
Sources: Appendix to Chapter 7.

The importance of service quality to meeting the needs of public transport customers and decreasing reliance on the car is indicated by the findings of Arsenio's (2000) examination of railway demand in Spanish cities (Table 7.7) **TECHNICAL NOTE**

APPENDIX C

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

Heyford Bus Service Elasticity Calculation


The formu	la used	is as	follows:	
	D2	=	D1 x power (S2/S1, e)	
Where	D1	=	original demand with original service level, say =	100
	D2	=	new demand with new service level	?
	S1	=	original service level (3 buses per hour)	3
	S2	=	new service level (4 buses per hour)	4
	е	=	elasticity factor of 0.4	0.4
Substitutin	g the v	alues	s into the formula:	
	D2	=	100 x power (4/3, 0.4)	
		=	112.1955145	
		=	12% increase on D1	

TECHNICAL NOTE

APPENDIX D

J:\39304 Heyford Park Tranche 2\Technical\Transport\WP\Technotes\TN024 Rev D - 200305_Middleton Stoney Signalised Junction Mitigation Note.docx

SATURN

Atkins Ltd / DVV / ITS

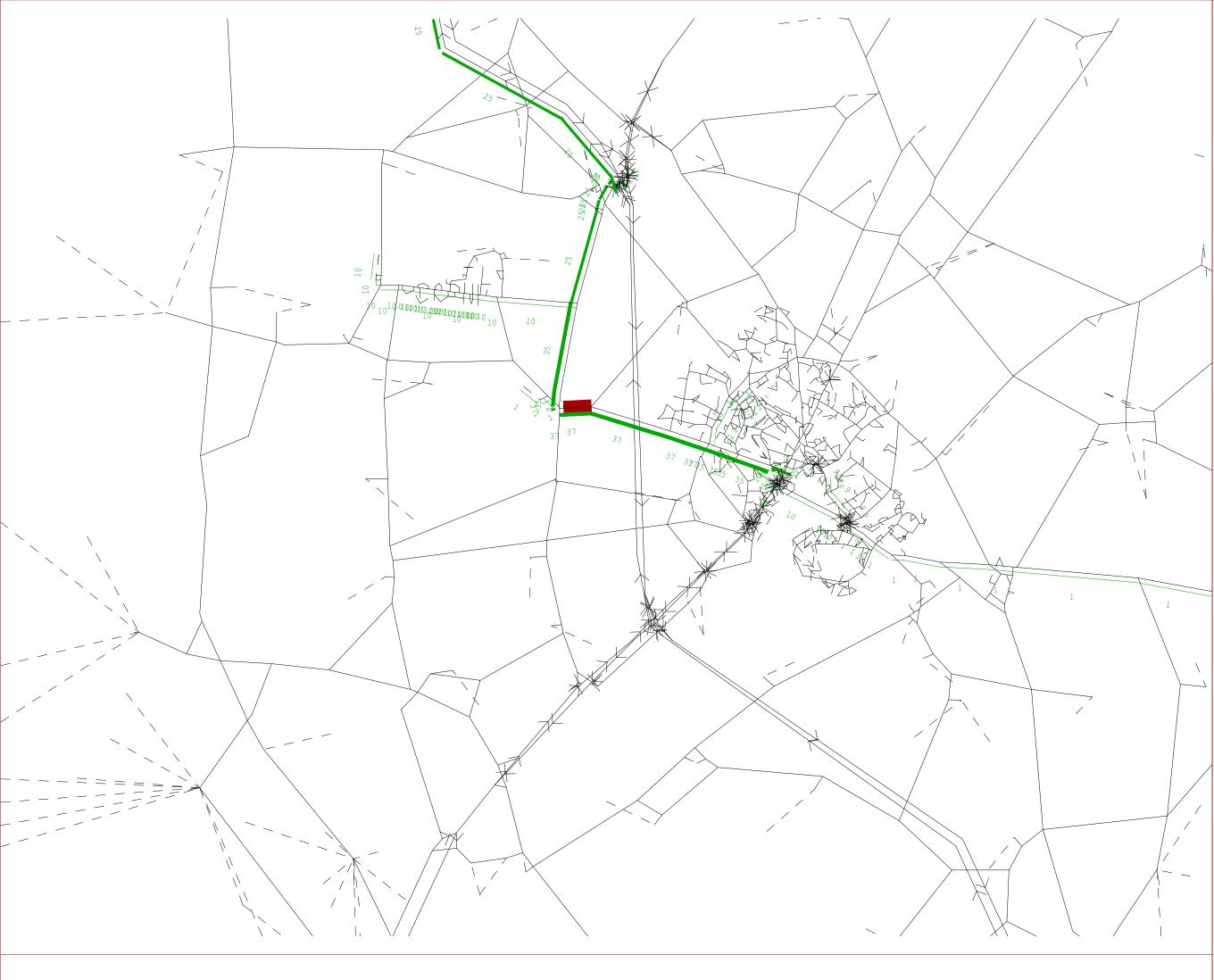
Network.UFS 2031_DS1_AM_

Scale 94944

Link Annot:

S.L.A.

Bandwidths =
50./mm


Selected Link Assignment Thru links: 96030 40215

Total	. Dei	mand
Flow	=	36

Network	fixd
Flow =	20

User Cl. 6

25- 4-19 WHITE YOUNG

SATURN

Atkins Ltd / DVV / ITS

Network.UFS 2031_DS1_AM_

Scale 94944

Link Annot:

S.L.A.

Bandwidths = 50./mm

Selected Link Assignment Thru links: 40215 96030

Total	. De	emand
Flow	=	37

Network	fixd
Flow =	9

User Cl. 6

25- 4-19 WHITE YOUNG

Appendix F AECOM Technical Note 11

M40 Junction 10 TN11

Vissim Forecast Modelling

Highways England

Project reference: 60598250 Project number: EMS107 60598250.EMS107.TN11

October 2019

DRAFT

Quality information

Prepared by	Checked by	Approved by	
Pina Botella, Alex Consultant	Javier Pardo Senior Consultant	Phil Arnold Associate Director	
Drapier Gomis, Martin Consultant			

Revision History

Revision	Revision date	Details	Authorized	Name	Position
Rev.00		Draft	Y	Martin Drapier	Consultant
Rev.01		Check	Y	Alex Pina Botella	Consultant

Distribution List

Hard Copies PDF Required

Association / Company Name

Prepared for:

Highways England

Prepared by:

Martin Drapier Consultant E: Martin.DrapierGomis@aecom.com

AECOM UK Limited AECOM House 63-77 Victoria Street St Albans Hertfordshire AL1 3ER United Kingdom

T: +44(0)1727 535000 aecom.com

© 2019 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

EXECUTIVE SUMMARY	6
Executive Summary	
Introduction	
Background	
Structure of the note	
MODELLING APPROACH	
Overview	
Modelling approach	
Modelling parameters	
Modelled scenarios	
Modelled schemes	
Demand development	
Assumptions	
Matrix development	
Demand growth checks	
Comparison of growth	
Model convergence	
MODELLING RESULTS	
Modelling results	
Journey times	
AM Peak	
PM Peak	
AM Peak	
PM Peak	
Latent Demand	
SUMMARY & CONCLUSIONS	
Summary	
APPENDICES	
Appendix A – O-D Matrices	
A.1 Reference Case AM	
A.2 Reference Case PM	
A.3 Do Minimum AM	
A.4 Do Minimum PM	
Appendix B – TEMPro growth factors Appendix C – Complete queue results	
Appendix C – Complete queue results	

Figures

Figure 1. Modelled VISSIM Network - Source: OpenStreetMap (and) contributors, CC-BY-SA	14
Figure 2. Baynard's Green Roundabout (1)	16
Figure 3. Padbury junction (2)	16
Figure 4. Ardley roundabout (3)	17

DRAFT

Figure 5. Flow profiles	
Figure 6. Locations of journey time route sections.	
Figure 7. Northbound journey times by section - AM peak	
Figure 8. Southbound journey times by section - AM peak.	
Figure 9. Northbound journey times by section - PM peak	
Figure 10. Southbound journey times by section - PM peak.	
Figure 11. Location of queue counters in the model	
Figure 12. AM queue results for selected markers.	
Figure 13. PM queue results for selected markers.	
Figure 14. Latent demand results	
Figure 15. M40 Junction 10 – Relevant TEMPRO Zones	52
Figure 16. AM queue results.	53
Figure 17. PM queue results.	54

Tables

Table 1. M40 J10 – Modelling parameters	14
Table 2. Modelling Scenarios – Summary	
Table 3. Comparison of TEMPro growth factors and growth adopted in the Vissim matrices	
Table 4. Total vehicles in VISSIM and strategic modelling peak hours	19
Table 5. NTEM Areas – 2016-2018 Weights	51
Table 6. TEMPRO growth factors – 2016-2018	51

Executive Summary

Executive Summary

AECOM was commissioned by Highways England to carry out a traffic impact analysis of set of proposed mitigations on junction 10 of the M40. This traffic impact analysis assesses the benefits of each of the proposed schemes in the overall junction performance using 2026 flows including Heyford Park development flows.

The proposed schemes were combined in 5 different scenarios to assess which combination will provide better results for the overall junction operation.

The schemes provide additional capacity at the key junctions listed below:

- Baynard's Green roundabout;
- Padbury Junction; and
- Ardley Roundabout

Different combinations of schemes were tested in the scenarios below.

Name	Scheme
Reference Case	-
Do minimum	
Do Something 1	(1) Baynard's Green Roundabout
Do Something 2	(2) Padbury Roundabout
Do Something 3	(1+2) Baynard's Green & Padbury Roundabouts
Do Something 4	(1+2+3) Baynard's Green & Padbury & Ardley Roundabouts
Do Something 5 (1+3) Baynard's Green & Ardley Round	

A general view of the performance of each scenario is provided below.

Do Something 1

The mitigation at Baynard's Green roundabout results in:

- ✓ a reduction of queues on all approaches to the junction and a significant reduction of the latent demand in the model;
- the increase in flow through Baynard's Green lead to an increase in journey times along the A43 between Baynard's Green and Ardley roundabout;
- the additional demand southbound on Ardley roundabout create queues that back up onto Cherwell junction in the AM peak, these queues affect the southbound flows along the A43.

Do Something 2

The mitigation at Padbury junction results in:

- ✓ the elimination of queuing on the M40 southbound off-slip;
- the increase in flow from the M40 southbound off-slip results in longer journey times and queues along the A43;
- the additional demand southbound on Ardley roundabout create queues that extend back to Padbury and Baynard's Green junctions in the AM peak, reducing the capacity and increasing in latent demand on the approaches to Baynard's Green roundabout.

Do Something 3

The combination of the mitigation schemes at Baynard's Green and Padbury junctions result in:

- ✓ a reduction of queues on all approaches to Baynard's Green junction and a significant reduction of the latent demand in the model;
- ✓ the elimination of queuing on the M40 southbound off-slip;
- the increase in flows across Baynard's Green and the southbound off-slip results in longer journey times and queues along the A43;
- the additional demand on the southbound approach to Ardley roundabout results in queues backing up on to Cherwell junction, affecting the southbound movements along the A43.

Do Something 4

The combination of the mitigation schemes at all three junctions result in:

- ✓ a reduction of queues on all approaches to Baynard's Green and the elimination of the latent demand in the model;
- ✓ the elimination of queuing on the M40 southbound off-slip;
- ✓ a reduction in southbound queues on the A43 approaching Ardley roundabout, which no longer back up to Cherwell junction;
- ✓ a reduction in journey times southbound along the A43 as the access to the southbound on-slip is unaffected by queues from Ardley junction;

Do something 5

The combination of the mitigation schemes at Baynard's Green and Ardley junctions result in:

- ✓ a reduction of queues on all approaches to Baynard's Green and the elimination of the latent demand in the model;
- ✓ a reduction in southbound queues on the A43 approaching Ardley roundabout, which no longer affect Cherwell junction;
- ✓ a reduction in journey times southbound along the A43 as the access to the southbound on-slip is unaffected by queues from Ardley junction; and
- a slight reduction in queues on the southbound off-slip compared to Do Minimum in AM, due to the better operation of the A43.

Introduction

Introduction

Introduction

AECOM has been commissioned by Highways England to carry out a traffic impact analysis of set of proposed mitigations on junction 10 of the M40. The purpose of which is to assess the benefits of each of the schemes in the overall junction performance.

This report details the purpose of the models, the changes made to the base model to produce the 2026 option tests and sets out the methodology adopted. This document also details the changes in measured key journey times, changes in queues, and key network performance indicators between the different scenarios.

Background

This background section provides a simple chronological record of the discussions and development of the M40 J10 Study as well as a summary of the improvement options proposed and tested to date:

- In 2011 A-One+ undertook the Congestion Scoping Study, which resulted in the implementation of the recently delivered M40 J10 pinch point scheme (PPS).
- In December 2013, AECOM's M40 J10 Stage 1 Study Report detailed the strategic development sites, trip generation and forecast the traffic impact on the A43 and M40 J10 up to future year 2031.
- On 3rd April 2014, a meeting was held between Highways England (HE), Oxfordshire County Council (OCC), South Northamptonshire District Council (SNDC) and Cherwell District Council (CDC) to review the developments and growth forecast up to 2031. At this meeting several additional and updated documents were cited for review. Whilst the M40 J10 PPS was going to be delivered, the local planning authorities were concerned about the ability of the M40 J10 PPS to cater for economic growth aspirations, indicating 2020-2025 as the period within which the network is considered to reach unacceptable level of operation and proposing therefore to investigate further potential improvement options.
- On 23rd July 2014, a meeting was held between HE, OCC and CDC to discuss initial modelling results and potential cumulative impacts of proposed growth on the SRN. In addition, it was agreed to carry out modelling assessment at M40 J9 using HE's M40 J9 LinSig model.
- In October 2014, AECOM's M40 J10 Stage 2 Study Report included a review of growth up to 2031 contained in AECOM's M40 J10 Stage 1 Study Report. In addition, it identified the following four improvement options:
 - Option 1: Pinch Point Widening;
 - Option 2: Dumbbell Roundabout with removal of Padbury roundabout;
 - Option 3: Dumbbell Roundabout retaining Padbury roundabout;
 - Option 4: Two Bridge roundabout.
- In March 2015, AECOM's Technical Note 4 (TN4) identified Option 4 as offering the best performance; it was
 decided that this should be assessed further.
- In April 2015, AECOM's Technical Note 5 (TN5) submitted AECOM's Two Bridge roundabout improvement scheme and tested outputs up to 2031. A43 Baynards Green roundabout was recognised as a constraint for the network operation, causing extensive queues along the A43 and potentially constraining the traffic at M40 J10. Conclusions of TN5 were that further testing was needed to be undertaken to determine when the M40 J10 PPS would fail and how to address queues on the A43 taking into consideration the interaction with A43 Baynards Green roundabout acting as a bottleneck holding back traffic on the A43 into M40 J10.
- In November 2015, AECOM's Technical Note 6 (TN6) identified the 2021-2026 time period as the tipping point of the M40 J10 PPS. In addition, AECOM's Two Bridge roundabout improvement scheme was tested for 2026 assuming that the A43 Baynards Green roundabout constraint had been removed (i.e. roundabout removal assuming expressway implementation on the A43), so that queues were released onto the A43 Padbury junction. In this instance, the A43 westbound approach resulted in severe queue issues that needed to be

DRAFT

addressed. Thus, AECOM recognised that the improvement scheme needed to be reviewed in order to achieve optimum operation at all M40 J10 approaches.

- In March 2016, AECOM's Technical Note 7 (TN7) reviewed AECOM's Two Bridge Roundabout option and it was clear that this scheme would not be capable of preventing the high level of queue formation at the A43 southbound approach. Therefore, AECOM undertook an iteration exercise to design an improvement scheme that can accommodate future growth up to 2031 that secures optimal operation on both the M40 mainline and the A43 approach to M40 J10. This scheme included signal control at Ardley, Cherwell and Padbury junctions using MOVA control. In addition, the proposed scheme would require a lane drop at the M40 mainline in the southbound direction between the off-and on-slip and a DMRB (TD 22/06) Merge Lane Layout Type G with a two lane gain after the on-slip. Finally, AECOM carried out an indicative gap analysis of the proposed scheme which showed a low level of completion of the tasks required for the Project Control Framework Stage 0 in order to initiate a project.
- In October 2016, AECOM revalidated HE's M40 J10 VISSIM Model using traffic survey data collected in March 2016. The purpose of this model revalidation was to understand the performance of the junction with the PPS improvements implemented.
- On 14th November 2016, AECOM and HE carried out a workshop to identify potential risks associated with the M40 J10 proposed highway scheme.
- Following discussions with Highways England's Transport Planning Group (TPG) formerly known as Traffic Appraisal Modelling and Economics (TAME) it was deemed that although the 2016 revalidated model provided suitable levels of validation in accordance with both DMRB and WebTAG standards, in order to ensure that a robust tool is available for undertaking a Value for Money (VfM) assessment, tighter levels of validation were required at the M40 Southbound off-slip approach. Therefore, in August 2017 AECOM completed a revalidation of Highways England's M40 J10 VISSIM base model.
- In September 2017, AECOM was commissioned by HE to undertake further assessments of the potential impacts of HS2 construction traffic at M40 J10 up to a 2018 future year, using the 2017 revalidated Vissim model and to analyse several mitigation schemes.
- In January 2019 AECOM produced a 2031 forecast year assessment using the 2017 revalidated Vissim model. These models were used to assess the capacity of a series of proposed mitigation schemes to accommodate future year flows.
- Further to this modelling exercise, Oxfordshire County Council (OCC) showed interest in using this Vissim model to assess the impact of the expected traffic growth and proposed mitigations.

Structure of the note

It is recommended that this TN is read in conjunction with AECOM's M40 Junction 10 TN9 and TN10 in order to get a better understanding of all issues around the junction.

The structure of this note is detailed as follows:

- Section 03: Presents the modelling approach;
- Section 04: Details the assumptions and methodology for the development of the demand matrices;
- Section 05: Summarises the outputs obtained and provides a discussion of the findings; and
- Section 06: Provides a summary of work undertaken and conclusions.

Modelling Approach

Overview

M40 J10, commonly known as Cherwell Valley Interchange, is located to the north-west of Bicester. Whilst the junction is within the boundary of Oxfordshire County Council, it is managed by Highways England's Area 7 Spatial Planning & Economic Development (SPED) team. However, M40 J10 is part of DBFO (area) 30 – M40 [J1-15] Denham to Warwick and the DBFO company is UK Highways M40 Ltd.

Initially designed as a standard two-roundabout dumbbell junction, the current extent of the junction includes:

- A43 Cherwell junction;
- A43 / B430 Ardley Roundabout; and
- A43 Padbury Junction.

M40 J10 is a critical point of the SRN being one of the waypoints on the main freight route to the north-east. It is widely used for movements between the M40 and the A43 and suffers from high congestion, particularly on A43 approaches.

Modelling approach

The junction has been modelled using VISSIM, an industry standard micro-simulation modelling software package, using dynamic traffic assignment (DTA).

As highlighted in the previous section, in August 2017 AECOM revised and refined the latest M40 Junction 10 model validated in October 2016 focusing on validation enhancements, particularly for the PM peak. The model produced in 2017 also provides tighter levels of validation of the M40 southbound off-slip to Junction 10, and therefore is deemed to provide a better platform for future year testing than the 2016 model.

Based on the above, it has been agreed to undertake the re-assessment of the impact of the proposed developments' traffic upon M40 Junction 10 using the M40 Junction 10 VISSIM model revalidated by AECOM in 2017.

The model includes the following junctions/roundabouts:

- A43 Cherwell junction
- A43 / B4100 Baynards Green;
- A43 / B430 Ardley Roundabout; and
- A43 Padbury Junction.

The extents of the model are shown in Error! Reference source not found..

A more detailed breakdown of the re-validated model, including model and matrix development, can be found in the M40 Junction 10 Local Model Validation Report (EMS 107.LMVR).

The assessment of the proposed mitigations is carried out based on a sequential modelling approach that allows the analysis of the impact of the different interventions and the cumulative impact of different combination of them, as shown in Table 2.

It was agreed that, in order to narrow down the number of scenarios to be modelled, the 2026 "Do Minimum" demand would be assigned to all the mitigation scenarios at this stage, which will inform the selection of a preferred combination of schemes. This modelling assumption entails that the results reported in the TN are not showing any rerouting effects caused by the schemes in the wider network; these results are a static picture of the operation of the proposed schemes.

DRAFT

It is envisaged that further scenarios for 2031 and 2036 will be built in a subsequent modelling exercise and will assess the impact of the mitigations with demand assumptions that consider the reassignment/ rerouting induced by the chosen mitigation.

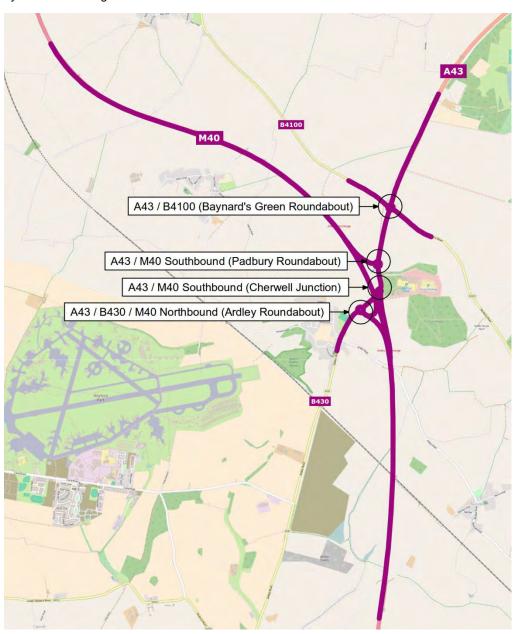


Figure 1. Modelled VISSIM Network - Source: OpenStreetMap (and) contributors, CC-BY-SA

Modelling parameters

Modelling parameters have been kept as in the base model. These are shown in Table 1.

Table 1. M40 J10 – Modelling parameters

Modelling Parameters			
Evaluation Periods	AM Peak	0745-0845	
	PM Peak	1630-1730	
Additional Periods	AM Build-Up	0645-0745	
	AM Cool-Down	0845-0915	
	PM Build-Up	1530-1630	

DRAFT

Modelling Parameters

	*	
	PM Cool-Down	1730-1800
Vehicle Types	Light Vehicles, LVs	
	Heavy Vehicles, HVs	
VISSIM Version	5.40.06	
PC MOVA Version	PC MOVA 7	

Modelled scenarios

Table 2 below shows demand assumptions and coded schemes for each of the coded scenarios:

······································			
Name	Year	Flows	Scheme
Reference Case	2026	Reference Case 2026	-
Do minimum	2026	Do Minimum 2026	
Do Something 1	2026	Do Minimum 2026	(1) Baynard's Green Roundabout
Do Something 2	2026	Do Minimum 2026	(2) Padbury Roundabout
Do Something 3	2026	Do Minimum 2026	(1+2) Baynard's Green & Padbury Roundabouts
Do Something 4	2026	Do Minimum 2026	(1+2+3) Baynard's Green & Padbury & Ardley Roundabouts
Do Something 5	2026	Do Minimum 2026	(1+3) Baynard's Green & Ardley Roundabouts

Table 2. Modelling Scenarios – Summary

Modelled schemes

Figure 2 to Figure 3 below show the schemes modelled in scenarios Do Something 1 to Do Something 5.

The mitigation for **Baynard's Green roundabout (1)**, shown in Figure 2, consists in the addition of an extra flare in each of the approaches, the addition of a circulating lane inside the roundabout, the signalisation of all arms and an increase in the size of the circulatory to increase storage capacity.

The mitigation at **Padbury Junction (2)**, shown in Figure 3, consists in the signalisation of the southbound approach on the A43 and on the M40 southbound off-slip, and the addition of an extra lane between these two approaches.

The mitigation at **Ardley Roundabout (3)**, shown in Figure 4, consists in the signalisation of all approaches to the junction plus the addition of a lane inside the circulatory.

It should be noted that the signal operation has been developed using PC MOVA and it is consistent with the signal operation developed for the forecast test undertaken in 2017.

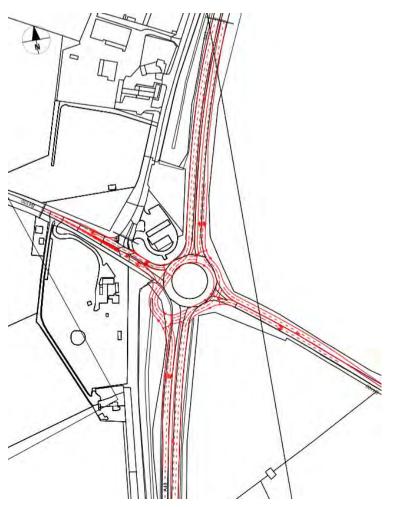


Figure 2. Baynard's Green Roundabout (1).

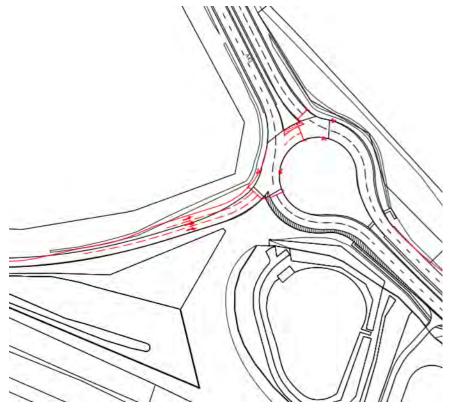


Figure 3. Padbury junction (2).

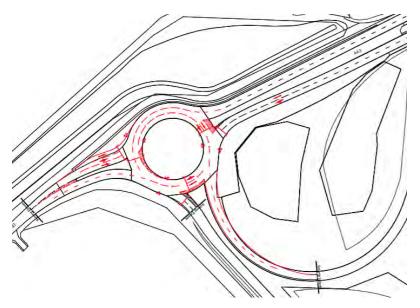


Figure 4. Ardley roundabout (3).

Demand development

Assumptions

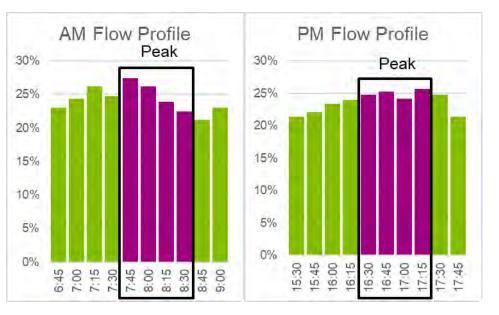
Two sets of demand matrices have been assigned in these models, as shown in Table 2 (page 15), i.e. Reference Case 2026 and Do Minimum 2026.

- The Reference Case demand contains the base modes flows plus the expected growth from 2016 to 2026 without developments; whilst
- the **Do Minimum demand** consist of the base flows plus the expected growth from 2016 to 2026 with Heyford Park development flows.

It should be highlighted that the only additional flow in the Do Minimum demand is Heyford Park development; all other growth is included in the Reference case demand.

The absolute growth from 2016 to 2026 in both sets of demand have been calculated, as detailed in the section below, based on Highways England's Regional Traffic Model (RTM), assigned onto the existing network, i.e. none of the proposed schemes have been coded in the strategic models for the calculation of the demand flows.

Matrix development


The demand growth from 2016 to 2026 for both flow scenarios have been calculated by adding the trip end growth from the RTM strategic model to the validated Vissim's base demand matrices, which then have been furnessed. This methodology has been agreed with OCC and HE as the best approach to develop the forecast VISSIM matrices and minimize the possible turning count discrepancies between the RTM and VISSIM.

The trip end growth from the strategic model have been calculated as follows:

Reference Case growth = Reference Case 2026 flows – Base 2016 flows

Do Minimum growth = Do Minimum 2026 flows - Base 2016 flows

Since the RTM peak hour matrices represent one-hour flows and the Vissim matrices are divided in 15 minutes periods, the RTM growth has been divided into 15-minute slots based on the flow profile extracted from the base Vissim matrices, as shown in Figure 5.

Figure 5. Flow profiles¹.

The absolute growth extracted from the strategic model and the absolute growth assigned to the Vissim model during the peak hour has been checked to be identical.

Demand growth checks

The demand assumed for the Vissim models in the peak hours has been checked against TEMPro growth factors for the area; this comparison can be found on Table 3.

The adopted growth in the Vissim model considerably exceeds the growth estimated using TEMPro.

Table 3. Comparison of TEMPro growth factors and growth adopted in the Vissim matrices.

	Growth from Vissim n	TEMPro	
	2026 RC - 2016 Base	2026 DM - 2016 Base	2016 - 2026
AM	1.1987	1.2136	1.1383
PM	1.2086	1.2117	1.1369

For details on the calculation of the adopted TEMPro factors, refer to Appendix B.

Comparison of growth

The demand used as an input for the VISSIM models has been compared to the hourly demand in the assignment models for the same peaks. The total of vehicles in these matrices appears in Table 4.

As it is shown, the difference between the strategic models and the VISSIM models is consistent through the scenarios, which denotes a constant absolute growth.

¹ Refer to *M40 Junction 10 Local Model Validation Report (EMS 107.LMVR)* for further details on the definition of the peak time periods.

Table 4. Total vehicles in VISSIM and strategic modelling peak hours.

		2016 Base	2026 RC	2026 DM
Strategic models	AM	10456	12702	12876
Matrices	PM	11484	14014	14051
VISSIM Matrices	AM	10332	12578	12752
	PM	11611	14141	14178

Model convergence

The approach used to validate the base models have been also applied in this test.

Whilst the models have been run using Dynamic Traffic Assignment (DTA), there is no route choice between OD pairs, therefore, the model convergence has no impact in the final traffic assignment. The models have nonetheless been converged according to DMRB and TfL's criteria (TfL has developed specific guidance for VISSIM models):

- (1). 95% of all path traffic volumes change by less than 5% for at least four consecutive iterations;
- (2). 95% of the travel times on all paths change by less than 20% for at least four consecutive iterations; and
- (3). The percentage change in user costs or time spent within the network (V) should be less than 1% for four consecutive iterations.

After achieving convergence, models have been multi-run for results using 10 different random seeds, starting with random seed 1 and ending at random seed 10, with a random seed increment of 1.

Results presented in the following sections show average measurements, as derived from 10 model runs undertaken, for each of the AM and PM peaks.

Model adjustments

The models have been optimized in key areas, such as Cherwell roundabout, to improve the model operation and reproduce the changes in the vehicle's behaviour caused by the additional demand and layout changes. However, to provide a like by like comparison the same parameters have been coded in all the models.

The optimization changes applied to the models are listed below:

- The lane changes operation at Cherwell roundabout;
- A route closure has been added to stop vehicles leaving the M40 southbound going through the junction, only to join the M40 again.

Modelling Results

Modelling results

Journey times

In Figure 6, one route was defined by section to assess the impacts in journey time in the junction 10 of the M40. The route was defined separately for southbound and northbound directions.

AM Peak

Figure 7 and Figure 8 show the journey time results northbound and southbound across the model for the AM peak.

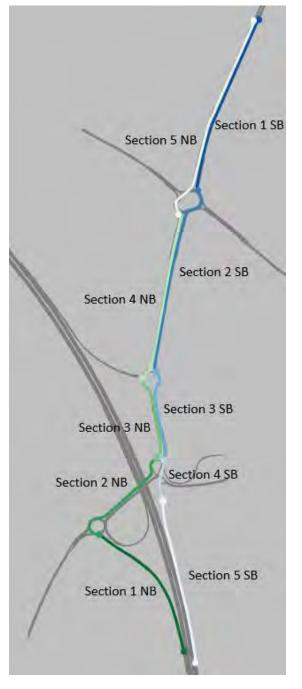


Figure 6. Locations of journey time route sections.

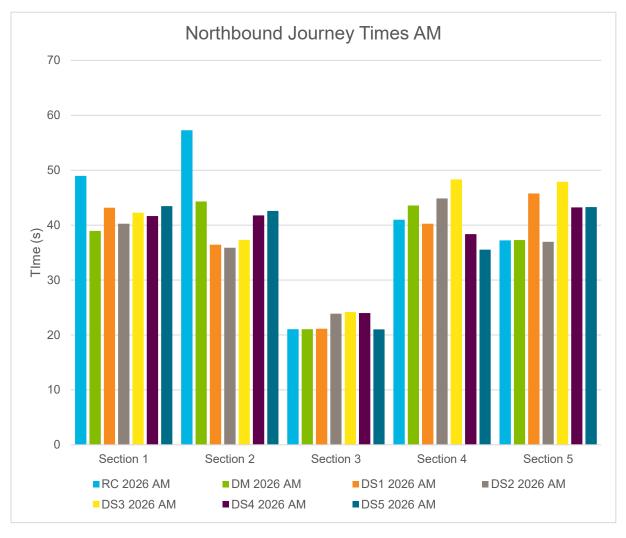
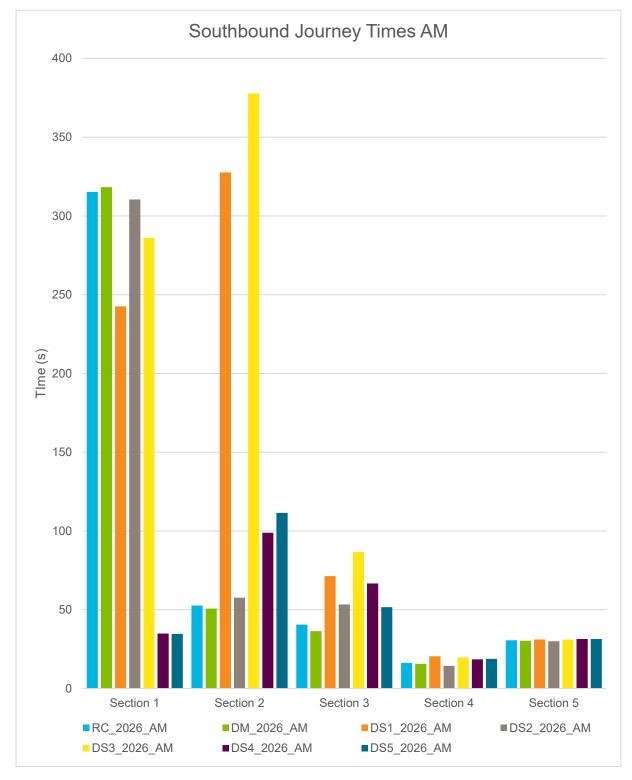



Figure 7. Northbound journey times by section - AM peak.

Do Minimum

There is a slight reduction in the number of vehicles leaving towards Ardley in the Do Something demand compared to Reference Case, which creates more gaps in the southbound traffic approaching Ardley roundabout, resulting in a reduction in journey times in the approach to Ardley roundabout from the northbound off-slip (Section 1). Additionally, there is a reduction of 40 and 30 vehicles accessing Ardley roundabout from the northbound off-slip and the B430 respectively in the Do Something demand, which also contributes to the reduction in journey times observed in the first two sections of this route in the AM peak. This reduction in northbound demand along the A43

is likely to be caused by a wider rerouting, resulting from the additional congestion imposed by the development traffic.

It should be highlighted that this reduction in northbound traffic along the A43 in the AM peak is carried over from the strategic models' flows, thus replicated in the Vissim models. Given the main AM flows are southbound, it seems only reasonable that the additional development demand and associated congestion causes wider rerouting of northbound flows.

Finally, the Do Something models have been observed to allocate a slightly increased green time for the main north-south movements across Cherwell junction caused by the reduction in northbound flows along the A43 (the northbound right turn phase from the A43 onto Cherwell service stations gets activated with a lower frequency) and the increased southbound flows accessing the southbound on-slip (the main southbound phase lasts slightly longer).

The rest of the northbound route does not present significant differences between Reference Case and Do Minimum.

The southbound route presents no significant differences between the Reference Case and Do Minimum scenarios.

Do Something 1

The improvements on Baynard's Green roundabout results in greater flows southbound through this junction onto the A43, this leads to queues building up from downstream junctions. The increased southbound throughput of the junction significantly affects the southbound journey time to access Baynard's Green roundabout. The journey time reductions are 70 seconds in section 1 (to 243 seconds) but in sections 2 and 3 southbound journey times increase by over 28 seconds to 58 seconds and 30 seconds to 53 seconds respectively. What this scheme is effectively causing is a shift of the bottleneck for the southbound movements onto the downstream junctions, particularly Ardley roundabout.

As with the Do Minimum scenario, the increased southbound demand at Cherwell Roundabout results in an increase in green time allocation for the main north-south movements, which causes an 8 second reduction in journey times to 36 seconds in section 2 northbound.

The last northbound section is slightly slower in Do Something 1 due increased flow across Baynard's Green Roundabout.

Do Something 2

There are no significant differences in journey times along the A43 compared to Do Minimum.

Do Something 3

For the northbound movements along the A43, the combination of the mitigation schemes at Baynard's Green roundabout and Padbury junction result in a slight increase in journey time of 11 seconds compared to Do Something 2 in the last section to a total of 48 seconds. This is caused by the additional traffic from the southbound off-slip routing north along the A43.

Whereas, for the southbound movements the additional throughput from the southbound off-slip makes the first section 45s slower to access compared to Do Something 1 to a total of 286s as queues extend back from Padbury roundabout. However, this scenario is 20 seconds faster than Do Something 2 where Baynard's Green has no mitigation and therefore the southbound traffic along the A43 is held back at the first roundabout.

On the second section, the journey times increase by 50 seconds to 377 seconds compared with Do Something 1 and 320 seconds compared to Do Something 2. The first can be explained by the signals at Padbury junction balancing the queues between the southbound off-slip and the A43 southbound while the second is caused by the additional traffic southbound across Baynard's Green roundabout.

As it was described in Scenario 1, this combination of mitigation schemes effectively shifts the bottleneck from Baynard's Green roundabout and Padbury junction onto the downstream junctions.

Do Something 4

The mitigation at Ardley roundabout reduces the queues southbound on the A43 approaching this junction (refer to queue results). This backed up onto Cherwell Junction, affecting the southbound discharge onto the southbound on-slip. With the southbound flow at Cherwell junction unaffected by the queues from Ardley roundabout, the

journey times southbound along the A43 are reduced significantly (in section 1 by 300 seconds to a total of 35 seconds, in section 2 by 280 seconds to 99 seconds, and in section 3 by 20 seconds to a total of 67 seconds).

Do Something 5

The comparison between Do Something 1 and 5 is similar to that between Do Something 3 and 4. The reduction in queues approaching Ardley roundabout results in an increase flows southbound through Cherwell junction and a generalised reduction of southbound journey times (in section 1 by 200s to a total 35 seconds, in section 2 by 280 to 111 seconds, and in section 3 by 20 to 52 seconds).

PM Peak

Figure 9 and Figure 10 show the journey time results northbound and southbound across the model for the PM peak.

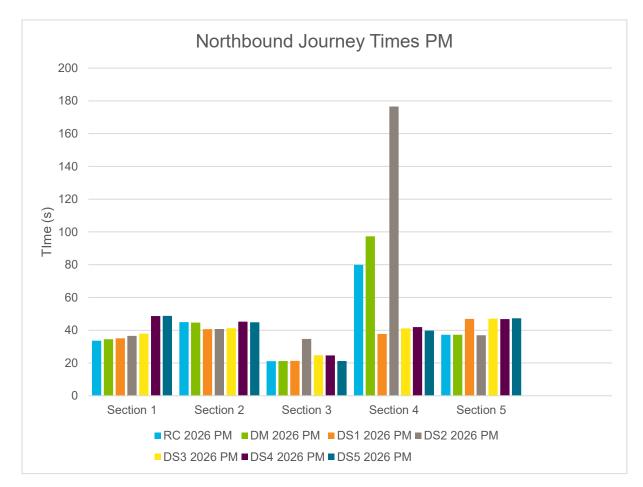


Figure 9. Northbound journey times by section - PM peak.

Figure 10. Southbound journey times by section - PM peak.

Do minimum

The only significant difference on journey time results between the Reference Case and Do Minimum scenarios is on the northbound approach to Baynard's Green Roundabout, where there is an increase in journey times of around 10 seconds, caused by the additional northbound demand of the Do Minimum matrices.

Do Something 1

The only significant difference between Do Something 1 and Do Minimum is the reduction in of 55 seconds from 93 seconds for the northbound journey time on the approach to Baynard's Green roundabout (Section 4).

Do Something 2

The only significant impact of the mitigation of Padbury junction is also the journey times to access Baynard's Green roundabout northbound (Section 4), in this case an increase of 84 seconds to 177 seconds due to additional traffic accessing the A43 from the M40 southbound off-slip.

Do Something 3

The mitigation at Baynard's Green roundabout offsets the impact that the mitigation of Padbury junction had on the northbound journey times, allowing the extra vehicles coming from the M40 off slip.

Do Something 4

There are no significant differences between Do Something 3 and Do Something 4 other than model variability.

Do Something 5

There are no significant differences in journey times between scenarios Do Something 1 and Do Something 5.

Queues

AM Peak

Figure 12 shows the AM queue results for selected markers. The complete set of results can be found in Appendix C. Figure 11shows the location of the queue counters in the models. These queue results represent the length of the queue from the queue counter to the back of the queue, spread across all lanes, i.e.: if the queue backs up onto different approaches or lanes, the queue counter will record the information of the longest maximum queue length.

It should be noted that the queue results represent the average queue across the peak hour.

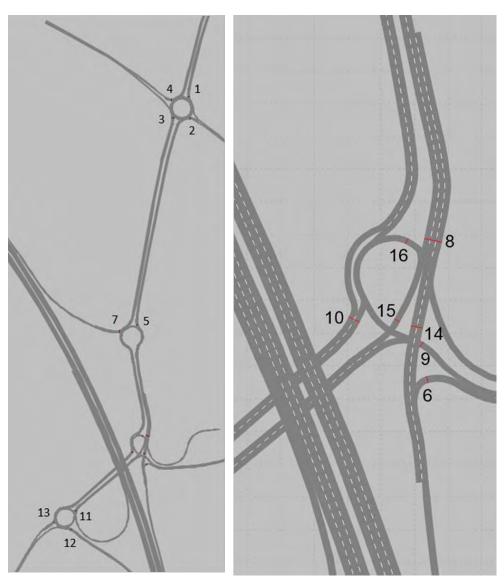


Figure 11. Location of queue counters in the model.

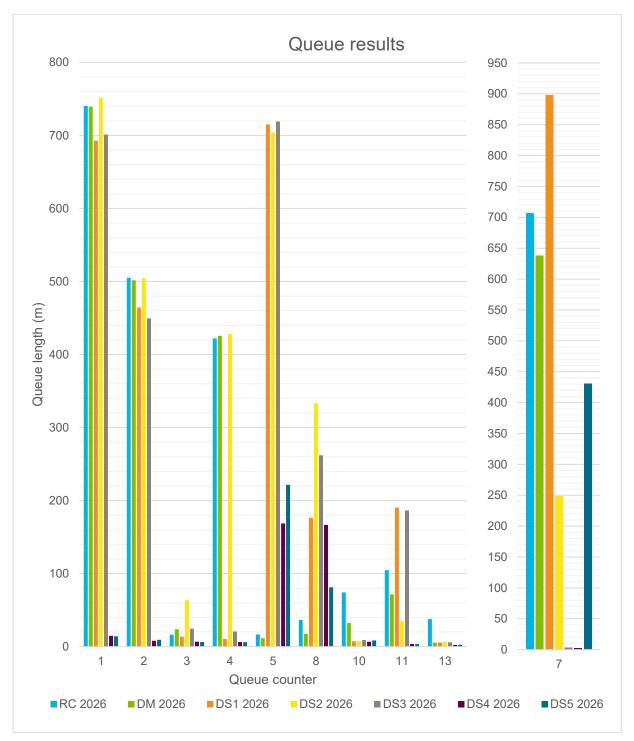


Figure 12. AM queue results for selected markers.

Do Minimum

There are no significant differences in queue results between Reference Case and Do Minimum in queue counters other than 7, 10,11 and 13.

For the southbound off-slip (counter 7), there is a reduction of 70 meters to 638 meters, due to a slight reduction in northbound movements along the A43, which facilitates the discharge from the from the off-slip into the junction.

For queue counter 10, there is a reduction in queues of 40 meters from 74 meters, which is in line with the journey time results northbound shown for this section due to the reduced demand northbound along the A43 and increased green time for the north-south movements at Cherwell junction.

This reduction in demand accessing the A43 northbound from the B430 and the northbound off-slip is also causing the reduction in queues on these approaches (13 and 12 respectively)

There is a slight reduction in demand accessing Ardley from the A43 in the Do Minimum Scenario, which results in a decrease in queues of 44 meters to a total of 190 meters at this approach (queue counter 11).

Do something 1

The implementation of the mitigation at Baynard's Green roundabout results in the following changes in queuing:

- ✓ on the southbound approach (queue counter 1), despite the mitigation achieving a higher discharge from this arm, the queues still extend along the entire length of the link; there is a reduction in latent demand from the zone loading onto this link (refer to latent demand results) but the additional southbound discharge saturates the downstream junctions and the queues build up to reach this junction;
- ✓ on the westbound approach (counter 2), there is a reduction in queues, which in the Reference Case and Do Minimum scenarios extend for the whole length of the link. This results in a reduction in latent demand in the zones loading in this link.
- ✓ queues on the eastbound approach (counter 4), are reduced from the whole length of the link in the Reference Case and Do Something scenarios (with the corresponding reduction in latent demand on this link) to only 10 meters in Do Something 1; and
- \checkmark there is no difference in queues on the northbound approach to this junction.

On the southbound approach to Cherwell junction (queue counter 8) the additional southbound traffic along the A43 results in an increase in queues of around 150 meters to a total of 176 meters. The northbound approach to this junction (queue counter 10) experiences a reduction in queues caused by the increased green time for the north-south movements.

The only significant change at the Ardley roundabout is an increase in queues of 120 to 190 meters on the southbound approach caused by the increased southbound traffic along the A43.

Do Something 2

The most significant impact of the mitigation of Padbury junction is the reduction in queues on the M40 southbound off-slip (counter 7), from 630 meters on Do Minimum to 250 meters; it should be noted that the length of the off-slip is 550 meters from the main carriageway to the stop line.

On the other hand, the increase in flow from the southbound off-slip results in an increase in queues on the southbound approach to Cherwell junction, with its queues increasing by 310 to 330 meters compared to Do Minimum. These queues back up onto Padbury roundabout and Baynard's Green roundabout and result in an increase in queues from the eastbound and westbound approaches to Baynard's Green roundabout. It should be noted that given that in both the Reference Case and Do Minimum models the queues extend for the whole length of the link from the start of the AM peak hour, any increase in queues at this approaches would be reflected in an increase in latent demand (refer to Latent demand results in page 32).

Do Something 3

The most significant impacts in queue results of the scenario Do Something 3 are:

- ✓ A reduction of 400 to 20 meters on the eastbound approach to Baynard's Green roundabout compared to Do Something 2; and
- ✓ A further 250 meters reduction to an almost non-existent queue on the southbound off-slip compared to Do Something 2.

These results are in line with those for journey times, the reduction in queues on the southbound off-slip reflects its higher throughput onto the A43, which shows increased levels of saturation.

Do Something 4

The main impact of the mitigation of Ardley roundabout is a reduction in queues on the southbound approach to this junction to virtually 0m. Without the queues from Ardley roundabout backing up onto Cherwell junction, the southbound queues along the A43 are significantly reduced:

- ✓ Queues on all approaches to Baynard's Green roundabout virtually disappear (counters 1 to 4); and
- ✓ Queues on the southbound approach to Cherwell junction (counter 8) are reduced by 100 to 168 meters.

Do Something 5

The comparison between Do Something 1 and 5 is similar to that between Do Something 3 and 4. The reduction of queues approaching Ardley roundabout (180 meters, queue counter 11) results in an unobstructed southbound flow at Cherwell junction and a generalised reduction of southbound queues along the A43:

- ✓ Queues on all approaches to Baynard's Green roundabout virtually disappear;
- ✓ Queues on the southbound approach to Cherwell junction (counter 8) are reduced to 81 meters; and
- \checkmark Queues on the M40 southbound off-slip are reduced to 430 meters .

PM Peak

Figure 13 shows the queue results for the PM peak.

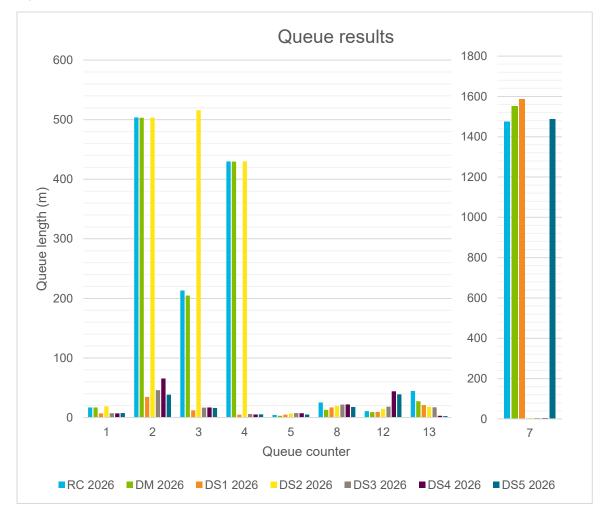


Figure 13. PM queue results for selected markers.

Do Minimum

There are no significant differences in queues between Reference Case and Do Minimum except an increase of 80m on the A40 southbound off-slip (counter 7), from 1476 meters .

Do something 1

The mitigation at Baynard's Green roundabout results in a significant reduction in queues at the approaches to this junction due to its better operation and increased capacity:

- ✓ westbound approach, reduction from the whole length of the link to 35 meters;
- ✓ eastbound approach, reduction from the whole length of the link to almost inexistent; and
- ✓ northbound approach, reduction of 200 meters to almost inexistent.

Due to the additional flows along the A43, there is an increase in queues on the southbound off-slip (counter 7 - 40 meters).

Do Something 2

The most significant impact of the mitigation at Padbury junction is a reduction of queues on the M40 southbound off-slip from over 1500 meters in Do Minimum to under 20 meters.

The additional traffic accessing the A43 from the southbound off-slip results in an increase in queues on the northbound approach to Baynard's Green roundabout (counter 3 - 516 meters)

Do Something 3

The combination of mitigation schemes at Baynard's Green and Padbury junctions' results remove the queues created by the additional demand released from the M40 off-slip on the northbound approach to Baynard's Green roundabout (counter 3). As in the Do Something 1 scenario, the queues at Baynard's Green almost disappear.

Do Something 4

There are no significant differences in queuing between Scenarios 3 and 4 in the PM peak.

Do Something 5

There are no significant changes in queues between Do Something 1 and Do Something 5, with the exception of a decrease on the southbound off-slip (by 100 meters to a total of 1486 meters – counter 7).

Network Performance

Latent demand

Figure 14 shows the latent demand results for AM and PM.

Almost all latent demand in the models is located on the approaches to Baynard's Green roundabout; its mitigation in the AM in scenarios Do Something 1, 4 and 5 achieves a reduction, but the increase in traffic from the southbound off-slip in scenario Do Something 2 leads to even further over-saturation of the approaches to Baynard's Green roundabout.

In PM, the mitigation of Baynard's Green reduces the latent demand observed on the approaches to this junction.

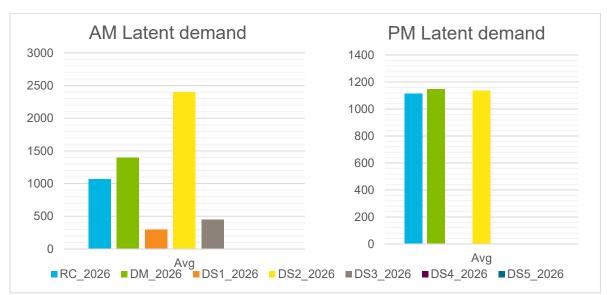


Figure 14. Latent demand results.

Total Delay

Figure 15 shows the total recorded delay for all vehicles that have entered the network at the end of the evaluation period, plus the latent delay². The overall delay results provide a general view of the impact caused by the Heyford Park Development and the overall improvement provided by each scenario.

Scenario 1 achieves a 30% and 65% reduction in delays in the AM and PM peak respectively, mainly in the for of latent delay on the approaches to Baynard's Green roundabout.

Scenario 2 fails to achieve a reduction in overall delays; the delay experienced by vehicles queuing on the M40 southbound off-slip in the Reference Case and Do Minimum scenarios now occurs along the A43 for those same vehicles, and increase the latent delay on the approaches to Baynard's Green roundabout.

Scenario 3 results in a 30% reduction of overall delays in the AM peak, as the reduction in queues on the southbound off-slip is countered by an increase in congestion of the A43 southbound; and 85% decrease in the PM peak as congestion along the A43 gets reduced significantly in this scenario.

Scenario 4 results in additional reductions in delays, 85% in both AM and PM compared to Reference Case, as the improvements at Ardley junction improves the southbound movements along the A43.

Scenario 5 experiences an 80% reduction in delays in the AM peak compared to Reference Case, mainly attributed to the elimination of latent delay on the approaches to Baynard's Green roundabout. In the PM peak, the reduction is of 65% compared to Reference Case, due to a reduction in latent demand on the approaches to Baynard's Green roundabout.

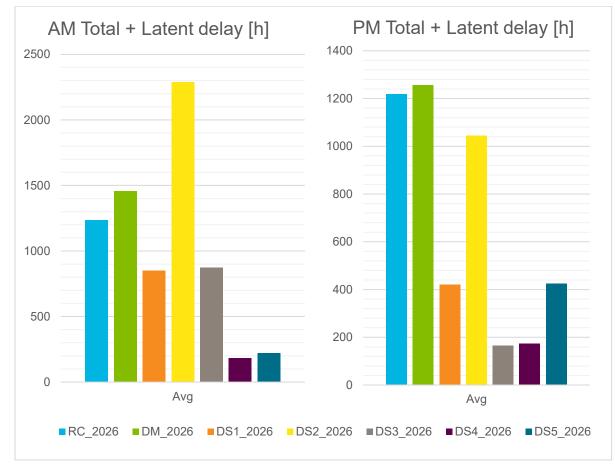


Figure 15. Addition of total recorded delay and latent delay².

 2 Latent delay is defined as , defined as the overall time waited by vehicles between their specified start time and the actual time when they are loaded in the network, or the end of the evaluation period – Vissim 5.40 – User Manual.

Summary & Conclusions

Summary

The results can be summarised as follows:

Do Something 1

The mitigation at Baynard's Green roundabout results in:

- ✓ a reduction of queues on all approaches to the junction and a significant reduction of the latent demand in the model;
- the increase in flow through Baynard's Green lead to an increase in journey times along the A43 between Baynard's Green and Ardley roundabout;
- the additional demand southbound on Ardley roundabout create queues that back up onto Cherwell junction in the AM peak, these queues affect the southbound flows along the A43.

Do Something 2

The mitigation at Padbury junction results in:

- ✓ the elimination of queuing on the M40 southbound off-slip;
- the increase in flow from the M40 southbound off-slip results in longer journey times and queues along the A43;
- the additional demand southbound on Ardley roundabout create queues that extend back to Padbury and Baynard's Green junctions in the AM peak, reducing the capacity and increasing in latent demand on the approaches to Baynard's Green roundabout.

Do Something 3

The combination of the mitigation schemes at Baynard's Green and Padbury junctions result in:

- ✓ a reduction of queues on all approaches to Baynard's Green junction and a significant reduction of the latent demand in the model;
- ✓ the elimination of queuing on the M40 southbound off-slip;
- the increase in flows across Baynard's Green and the southbound off-slip results in longer journey times and queues along the A43;
- the additional demand on the southbound approach to Ardley roundabout results in queues backing up on to Cherwell junction, affecting the southbound movements along the A43.

Do Something 4

The combination of the mitigation schemes at all three junctions result in:

- ✓ a reduction of queues on all approaches to Baynard's Green and the elimination of the latent demand in the model;
- ✓ the elimination of queuing on the M40 southbound off-slip;
- ✓ a reduction in southbound queues on the A43 approaching Ardley roundabout, which no longer back up to Cherwell junction;
- ✓ a reduction in journey times southbound along the A43 as the access to the southbound on-slip is unaffected by queues from Ardley junction;

Do something 5

The combination of the mitigation schemes at Baynard's Green and Ardley junctions result in:

 ✓ a reduction of queues on all approaches to Baynard's Green and the elimination of the latent demand in the model;

- ✓ a reduction in southbound queues on the A43 approaching Ardley roundabout, which no longer affect Cherwell junction;
- ✓ a reduction in journey times southbound along the A43 as the access to the southbound on-slip is unaffected by queues from Ardley junction; and
- a slight reduction in queues on the southbound off-slip compared to Do Minimum in AM, due to the better operation of the A43.

Appendices

Appendix A – O-D Matrices

A.1 Reference Case AM

6.45 7.0 * Scaling 1		-	m]:			
1	2	3	4	5	6	7
0	66	17	274	146	2	6
67	0	0	0	0	41	32
7	6	0	38	12	5	3
113	0	13	12	2	475	5
39	6	17	14	0	69	1
10	34	39	841	41	5	1
11	59	0	25	2	0	0
	erval in ho	ours [hh.mi	m]:			
7.00 7.1						
* Scaling	factor:					
1						
	of zones:					
7						
* zones:						
	0	0	4	-	0	7
1	2	3	4	5	6	7
0	72	7	246	155	11	8
85 -	0	0	0	11	30	46
5	1	0	34	19	14	5
147	1	42	3	6	564	11
48	9	2	12	0	84	7
5	46	41	786	43	4	2
8	60	0	19	8	1	0
	erval in ho	urs [nn.mi	nj:			
7.15 7.3						
* Scaling 1	Tactor.					
	of zones:					
7	of zones.					
* zones:						
201103.						
1	2	3	4	5	6	7
0	- 85	13	230	156	9	16
80	0	0	3	7	35	51
8	4	0	39	12	21	1
176	1	43	10	7	606	8
51	0	4	20	0	102	4
13	47	24	813	63	1	6
29	73	0	38	5	0	0
	erval in ho					
7.30 7.4].			
* Scaling						
1						
	of zones:					
7						
* zones:						
1	2	3	4	5	6	7

					U	
7.45 8.0 * Scaling 1 * number 7		9 0 52 2 38 1 urs [hh.mr	171 2 44 9 10 722 50 n]:	108 10 14 18 0 60 10	7 28 21 641 119 4 0	9 64 0 8 3 1
* zones:						
8.00 8.1 * Scaling 1	factor:	3 10 0 34 4 42 0 urs [hh.mr	4 241 5 43 11 17 791 51 n]:	5 118 3 10 17 0 64 4	6 16 29 36 710 102 3 0	7 9 66 0 13 4 1
* number 7	of zones:					
* zones:						
8.15 8.3 * Scaling 1 * number 7		3 13 5 0 26 10 43 0 urs [hh.mr	4 246 3 54 9 12 648 43 m]:	5 98 2 14 15 0 88 3	6 14 54 22 670 98 6 1	7 13 72 1 9 6 3 1
* zones:						
8.30 8.4 * Scaling 1 * number 7		3 16 2 34 5 35 0 urs [hh.mr	4 217 0 42 8 12 729 33 m]:	5 109 6 14 4 0 62 7	6 21 31 28 562 89 1 0	7 13 63 0 10 4 4 3
* zones:	2	3	4	5	6	7

1 2 3 4 5 6 7

1 * number of zones: 7 * zones:	6 68 60 68 60 17 2 12 2 0
* zones:	
1 2 3 4 5 6	7
0 51 13 202 90 22	
40 2 5 5 9 19	
12 0 0 50 9 35	
146 0 38 1 16 47	
29 0 9 2 0 63	
11 34 34 696 46 1	2
21 72 0 28 2 0	0
* time interval in hours [hh.mm]:	
9.00 9.15	
* Scaling factor: 1	
r * number of zones:	
7	
* zones:	
20163.	
1 2 3 4 5 6	7
0 66 17 274 146 2	6
67 0 0 0 0 41	
7 6 0 38 12 5	3
113 0 13 12 2 47	
39 6 17 14 0 69	
10 34 39 841 41 5	1

A.2 Reference Case PM

25

2

0

0

```
* time interval in hours [hh.mm]:
```

0

```
15.30 15.45
```

59

- * Scaling factor:
- 1
- * number of zones:
- 7

11

* zones:

1	2	3	4	5	6	7
0	47	15	193	55	19	6
94	0	0	4	0	33	80
15	0	0	59	7	27	0
250	1	47	12	12	887	16
31	1	2	5	0	33	4
9	15	38	604	31	4	5
18	64	1	15	6	1	0
			-			

* time interval in hours [hh.mm]:

15.45 16.00

* Scaling factor:

1

* number of zones:

7

* zones:						
16.00 10 * Scaling 1	6.15	3 30 12 0 23 0 34 0 urs [hh.mr	4 196 2 53 4 2 674 21 n]:	5 61 2 17 0 27 2	6 21 33 43 856 31 0 0	7 2 76 0 19 3 2 0
* zones:						
16.15 10 * Scaling 1	6.30	3 11 4 0 48 7 51 0 urs [hh.mr	4 232 2 54 8 6 709 21 n]:	5 50 6 7 12 0 40 4	6 13 36 38 881 55 0 0	7 10 65 0 11 1 3 0
16.30 10 * Scaling 1	6.45	3 27 6 0 43 2 31 0 urs [hh.mr	4 189 0 54 14 2 739 13 n]:	5 65 3 5 6 0 33 4	6 15 42 32 932 40 1 0	7 7 82 0 7 5 3 2
	7.00	3 15 11 0 28 2 41 0 urs [hh.mr	4 202 3 43 16 2 746 28 n]:	5 57 0 4 14 0 31 5	6 22 41 33 933 56 5 0	7 9 4 7 4 5 1

* number of zones:

⁷

* zones:						
17.00 1 * Scaling 1 * number 7	7.15	3 15 4 0 44 3 29 0 uurs [hh.mr	4 243 4 16 7 686 16 n]:	5 45 3 9 0 61 7	6 22 25 32 973 52 2 0	7 9 103 0 7 4 2 2
17.15 1 * Scaling 1	7.30	3 29 5 0 29 6 37 2 urs [hh.mr	4 224 0 44 18 2 677 10 n]:	5 61 5 4 18 0 36 2	6 23 35 16 878 38 1 0	7 6 78 1 16 2 7 5
17.30 1 * Scaling 1	7.45	3 20 2 41 3 28 0 urs [hh.mr	4 238 2 37 17 2 709 11 n]:	5 55 2 3 18 0 64 8	6 17 50 41 955 53 4 0	7 9 105 3 13 1 7 2
	8.00	3 14 0 34 4 43 0 urs [hh.mr	4 205 0 46 16 2 723 18 n]:	5 55 10 9 19 0 32 12	6 17 48 23 912 53 0 1	7 11 91 0 14 5 4 2

.

* number of zones:

7

* zones:

6.45 7.00 * Scaling factor:

1	2	3	4	5	6	7
0	47	15	193	55	19	6
94	0	0	4	0	33	80
15	0	0	59	7	27	0
250	1	47	12	12	887	16
31	1	2	5	0	33	4
9	15	38	604	31	4	5
18	64	1	15	6	1	0

A.3 Do Minimum AM

* time interval in hours [hh.mm]:

laciol.								
1								
of zones:								
2	3	4	5	6	7			
77	18	293	142	2	7			
0	0	0	0	42	37			
6	0	38	11	5	3			
0	14	12	2	483	6			
6	15	13	0	63	1			
36	38	837	37	5	1			
62	0	24	2	0	0			
erval in ho	urs (hh.mn	n]:						
of zones.								
201100.								
2	3	4	5	6	7			
					9			
					9 51			
					5			
					5 12			
					7			
					2			
			1	1	0			
	urs [hh.mn	n]:						
factor:								
of zones:								
					7			
98	13				18			
0	0	3	7	35	57			
5	0	40	12	20	1			
1	44	11	6	615	9			
0	4	19	0	94	4			
50	24	811	57	1	7			
76	0	38	5	0	0			
erval in ho	urs [hh.mn	n]:						
	of zones: 2 77 0 6 0 6 36 62 erval in hor 5 factor: of zones: 2 84 0 1 1 10 49 63 erval in hor 5 factor: of zones: 2 84 0 1 1 10 49 63 erval in hor 5 factor: of zones: 2 98 0 5 1 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7	of zones: 2 3 77 18 0 0 6 0 0 14 6 15 36 38 62 0 erval in hours [hh.mn 5 factor: of zones: 2 3 84 7 0 0 1 0 1 43 10 2 49 40 63 0 erval in hours [hh.mn 0 factor: of zones: 2 3 84 7 0 0 1 43 10 2 49 40 63 0 erval in hours [hh.mn 0 factor: of zones: 2 3 84 7 0 0 1 43 10 2 49 40 63 0 erval in hours [hh.mn 0 factor: of zones: 2 3 84 7 0 0 1 43 10 2 49 40 63 0 erval in hours [hh.mn 0 factor: of zones: 2 3 98 13 0 0 5 0 1 44 0 4 50 24 76 0	of zones: 2 3 4 77 18 293 0 0 0 6 0 38 0 14 12 6 15 13 36 38 837 62 0 24 erval in hours [hh.mm]: 5 factor: of zones: 2 3 4 84 7 265 0 0 0 2 1 43 4 10 2 11 49 40 782 63 0 18 erval in hours [hh.mm]: 0 2 11 49 40 782 63 0 18 erval in hours [hh.mm]: 0 a 35 1 43 4 10 2 11 49 40 782 63 0 18 erval in hours [hh.mm]: 0 a 35 1 43 4 10 2 11 49 40 782 63 0 18 erval in hours [hh.mm]: 0 a 35 1 43 4 10 2 11 49 40 782 63 0 18 erval in hours [hh.mm]: 0 a 3 5 0 40 1 44 11 0 4 19 50 24 811	2 3 4 5 77 18 293 142 0 0 0 0 6 0 38 11 0 14 12 2 6 15 13 0 36 38 837 37 62 0 24 2 erval in hours [hh.mm]: 5 factor:	2 3 4 5 6 77 18 293 142 2 0 0 0 42 6 0 38 11 5 0 14 12 2 483 6 15 13 0 63 36 38 837 37 5 62 0 24 2 0 aval in hours [hh.mm]: 5 6 6 84 7 265 152 12 0 0 11 31 1 0 35 18 14 1 43 4 6 572 0 0 11 31 1 1 43 4 6 572 10 2 11 0 76 49 40 782 39 4 63 0 18 7 1 of zones:			

* time interval in hours [hh.mm]:

7.30 7.45

* Scaling factor:

1 * number 7 * zones:	of zones:					
7.45 8.0 * Scaling 1	00	3 10 0 53 2 37 1 urs [hh.mr	4 191 2 45 9 9 720 49 n]:	5 108 9 13 17 0 53 9	6 8 28 21 650 110 4 0	7 10 70 9 8 3 1
7 * zones:	0120103.					
8.00 8.1 * Scaling 1 * number 7	15	3 11 0 34 3 41 0 urs [hh.mr	4 261 5 44 12 16 789 50 n]:	5 115 3 9 16 0 58 4	6 17 29 36 719 93 2 0	7 11 72 0 15 4 1
* zones:						
		3 14 5 0 26 10 43 0 urs [hh.mr	4 265 3 55 10 11 646 41 m]:	5 97 2 13 15 0 81 3	6 15 55 22 678 91 6 1	7 14 78 1 10 6 3 1
8.15 8.3 * Scaling 1	factor:					
number7* zones:	of zones:					
1 0 56 6 182 45 10 24 * time intt 8.30 8.4		3 16 2 0 34 5 34 0 urs [hh.mr	4 234 0 44 9 12 727 32 n]:	5 108 5 13 3 0 56 7	6 22 32 28 569 82 1 0	7 15 68 0 11 4 4 3

8.30 8.45

* Scaling factor:

AECOM 45

1 * number 7 * zones:	of zones:					
8.45 9.0 * Scaling 1	factor:	3 16 4 0 44 11 27 1 urs [hh.mn	4 214 0 45 2 7 627 30 1]:	5 100 3 11 7 0 55 5	6 14 29 23 566 56 4 0	7 6 74 0 18 12 2 0
7	of zones:					
* zones:						
9.00 9.1 * Scaling 1 * number		3 14 5 0 39 8 33 0 urs [hh.mn	4 218 6 51 1 2 694 27 n]:	5 88 8 15 0 41 2	6 22 20 34 480 56 1 0	7 12 51 0 12 6 2 0
7 * zones:						
1 0 70 7 120 37 10 11	2 77 0 6 0 6 36 62	3 18 0 0 14 15 38 0	4 293 0 38 12 13 837 24	5 142 0 11 2 0 37 2	6 2 42 5 483 63 5 0	7 7 37 3 6 1 1 0

A.4 Do Minimum PM

- * time interval in hours [hh.mm]:
- 15.30 15.45
- * Scaling factor:
- 1

```
* number of zones:
```

- 7
- * zones:

1	2	3	4	5	6	7
0	45	15	194	54	19	7
93	0	0	4	0	32	80
15	0	0	59	7	27	0
251	1	47	12	12	890	16
32	1	2	5	0	35	4
10	14	38	603	30	4	5
19	66	1	16	6	2	0

15.45 * Scaling 1	16.00 g factor: er of zones	ours [hh.m :	m]:			
16.00 * Scaling 1 * numbe 7	16.15 g factor: er of zones	3 31 12 0 23 0 34 0 50urs [hh.m	4 197 2 53 4 2 672 23 m]:	5 60 2 17 0 27 2	6 22 32 44 860 33 0 0	7 2 77 0 20 3 2 0
16.15 * Scaling 1	2 50 0 1 16 92 terval in ho 16.30 g factor:	3 11 4 0 48 7 51 0 51 0 51 0 51 51 0	4 232 54 8 6 707 22 m]:	5 49 6 7 12 0 39 4	6 13 36 39 885 57 0 0	7 10 66 0 11 1 3 0
16.30 * Scaling 1	16.45 g factor: er of zones	3 27 6 0 43 2 31 0 5 5 5 5 5 5 6 1 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 189 0 53 14 2 738 14 m]:	5 63 3 5 5 0 32 4	6 15 42 32 937 41 1 0	7 7 83 0 7 5 3 2
1 123 27 300 92 12 18	2 74 0 1 0 1 21 90	3 15 11 0 28 2 41 0	4 202 3 43 16 2 744 29	5 56 0 4 14 0 31 5	6 23 41 33 937 58 5 0	7 9 86 4 7 4 5 1

 * time interval in hours [hh.mm]: 16.45 17.00 * Scaling factor: 1 * number of zones: 7 * zones: 						
17.00 * Scaling 1 * numbe 7	17.15 g factor: er of zones	3 15 4 0 44 3 29 0 ours [hh.m	4 243 4 16 7 684 17 m]:	5 44 3 0 9 0 60 7	6 22 24 33 977 54 3 0	7 9 103 0 7 5 2 2
17.15 * Scaling 1	2 83 0 0 1 17 93 terval in h 17.30 g factor:	3 29 5 0 29 7 37 2 sours [hh.m	4 225 0 44 18 2 676 11 m]:	5 60 5 4 17 0 35 2	6 23 35 16 882 39 1 0	7 6 79 1 16 3 7 5
1 132 15 324 104 6 22 * time in 17.30 * Scaling 1	2 73 0 1 2 24 105 terval in h 17.45 g factor:	3 20 2 0 40 3 28 0 ours [hh.m	4 238 2 37 17 2 708 11 m]:	5 54 2 3 17 0 63 8	6 17 50 41 960 55 4 0	7 9 105 3 13 2 7 2
1 0 110 38 313 100 9 22	2 67 0 0 1 22 98	3 14 0 34 4 44 0	4 206 0 46 15 2 721 19	5 54 10 9 19 0 31 13	6 17 48 23 917 55 0 2	7 11 91 0 14 6 4 2

* time interval in hours [hh.mm]:

17.45 18.00

* Scaling factor:

1

* number of zones:

7

* zones:

1	2	3	4	5	6	7
0	45	15	194	54	19	7
93	0	0	4	0	32	80
15	0	0	59	7	27	0
251	1	47	12	12	890	16
32	1	2	5	0	35	4
10	14	38	603	30	4	5
19	66	1	16	6	2	0

Appendix B – TEMPro growth factors

To extract growth factors, TEMPRO v7.2 has been interrogated for the origin and destination trip ends

The most updated National Transport Model (NTM) Dataset AF15 has been used in order to extract separate growth predictions for the following relevant areas within the M40 J10 network:

- Northampton;
- Milton Keynes;
- Oxford;
- West Oxfordshire;
- Cherwell; and
- South Northamptonshire.

A weighted average of the districts listed above has been applied to ascertain the final growth factors that have then been used to compare with the growth from the strategic model. Individual weights for each zone have been extracted, based on the distance to the M40 J10 and the number of household and jobs for each district.

These weights are tabulated below in Table 5.

Table 5. NTEM Areas – 2016-2018 Weights

Weight (%)
9%
3%
19%
9%
52%
7%

By applying these weights together with the individual growth factor for each of the areas considered, final growth factors are derived. These are shown below in Table 6.

Table 6. TEMPRO growth factors – 2016-2018

Peak Period	NTEM Factors		
AM Peak	1.1383		
PM Peak	1.1369		

Areas covered by TEMPRO zones mentioned above are shown in Figure 16.