Source Subsoil

Sample Subsoil

Description Subsoil

4.

5.

6.

Not used

N/A

N/A

Х

Х

Х

Job number	R1742d		Depth ref:	R1742-	-R01-v3	Quality	Quality ref:		R174	R1742-R01-v3		Other docume	ents attach	ied 🗸		
Date	13.11.2020		Area use:	garden			landscaped			stockpi	le		other			
Site name /	Camp Road,		Size	Irregular	Approx	750	Approx	0).3	Approx	225	Approx	n/a	Approx	n/a	
location	Upper Heyford,		area		Area		Depth T	ор		Volume		Depth		Volume		
	Bicester		(m):		(m²):		(m):			Тор		Sub (m)	:	Sub		
Plot:	Village Centre No	th								(m³):				(m ³):		
	public open spa	ce														
	(POS) area in locati	on														
	of former Buildin	gs														
	100-102.															
Compiled by:	SM		Number depth entries required			1 (1 per 50m grid N		Number samples required:			d: 3 TS (1	per 250m	³ , minimum 3 s	amples		
						space).	3 provided.					per sing	le source)	, 3 TS provideo	STS provided.	
Quality Validati	ion		Inspection of	late/time:	20.10.	2020		Inspec	cted by:	SM		Photo	graphed:	✓		
Source Topsoil	1.		 ✓ Taylor 	Wimpey d	evelopment	site: Asp	en Gardens,	Stotfold	d, Bedfo	ordshire.						
Description Top	soil 2.		✓ Brown	very sand	y gravelly cl	ay topsoi	with frequen	t rootle	ets.							
Sample Topsoil 3. Image: sample scale of the							ndicated on att	ached								

Topsoil Results Summary

Contaminant	Soil standard adopted	Concentrations	Compliant? /
	(mg/kg)	(mg/kg)	Exceedances?
Asbestos	NAD	NAD	Yes
Antimony	550	<1-2	Yes
Arsenic	32	13.1-16.1	Yes
Barium	1,300	77-90	Yes
Beryllium	51	0.9-1.1	Yes
Boron (water soluble)	291	1.2-2.4	Yes
Cadmium	10	0.2-0.3	Yes
Chromium (total)	3,000	37.5-53.8	Yes
Chromium VI	4.3	<0.3	Yes
Cobalt	240	6.6-7.1	Yes
Copper	300	15-22	Yes
Lead	200	31-85	Yes
Mercury	1	<0.1	Yes
Molybdenum	670	1.6-4.3	Yes
Nickel	130	15.6-17.8	Yes
Selenium	350	<1	Yes
Vanadium	75	43-52	Yes
Zinc	300	67-81	Yes
Naphthalene	1.5	<0.04-1.31	Yes
Acenaphthene	170	0.06-1.74	Yes
Acenaphthylene	210	0.13-0.77	Yes
Fluorene	160	0.15-1.25	Yes
Phenanthrene	92	1.41-16.43	Yes
Anthracene	2,300	0.47-5.40	Yes
Fluoranthene	260	2.02 - >26.20	Yes
Pyrene	560	1.40-18.96	Yes
Benzo(a)anthracene	3.1	0.91-12.98	No (POS-TS1)

Contaminant	Soil standard adopted (mg/kg)	Concentrations (mg/kg)	Compliant? / Exceedances?
Chrysene	6	1.20-14.49	No (POS-TS1)
Benzo(b) fluoranthene	5.6	1.1-18.32	No (POS-TS1)
Benzo(k) fluoranthene	8.5	0.43-7.12	Yes
Benzo(a) pyrene	0.83	0.72-12.57	No (POS-TS1)
Indeno(123cd) pyrene	3.2	0.56-9.18	No (POS-TS1)
Dibenzo(ah) anthracene	0.76	0.15-2.35	No (POS-TS1)
Benzo(ghi) perylene	44	0.51-8.60	Yes
Aliphatic C5-C6	30	<0.01	Yes
Aliphatic C6-C8	73	<0.01	Yes
Aliphatic C8-C10	19	<0.01	Yes
Aliphatic C10-C12	93	<0.02	Yes
Aliphatic C12-C16	740	<4	Yes
Aliphatic C16-C21	1,000	<7-13	Yes
Aliphatic C21-C35	1,000	<7-114	Yes
Aromatic C6-C7	0.08	<0.01	Yes
Aromatic C7-C8	120	<0.01	Yes
Aromatic C8-C10	27	<0.01	Yes
Aromatic C10-C12	69	<0.01	Yes
Aromatic C12-C16	140	<4-16	Yes
Aromatic C16-C21	250	<7-192	Yes
Aromatic C21-C35	890	<7-829	Yes
MTBE	49	<0.005	Yes
Benzene	0.08	<0.005	Yes
Toluene	120	<0.005	Yes
Ethylbenzene	65	<0.005	Yes
m/p-Xylene	42	<0.005	Yes
o-Xylene	45	<0.005	Yes

Topsoil Validation Record

Further Assessment of PAH Exceedances

As presented in the table above, several exceedances of the adopted screening criteria have been reported for sample 'POS-TS1' for a range of polycyclic aromatic hydrocarbons (PAHs) therefore further assessment has been deemed necessary to determine whether the material is suitable for its current use. No exceedances were reported within the two other samples collected from the POS area. The initial assessment has utilised screening criteria from Table B1 of the Waterman Remediation Strategy for the site (report ref: EED10658-109_S_12.2.3_FA; September 2012) which is intended for a residential land use scenario and assumes a 1% soil organic matter (SOM) content. The assessment criteria utilised is therefore considered to be overly conservative as it does not accurately reflect the site setting - an area of public open space situated in front of several commercial premises and a car parking area - or take into consideration the SOM content of the samples which had an average value of 3.13%.

To reflect the site setting more accurately the exceedances have been compared to screening criteria obtained from the more recently published LQM / CIEH Suitable 4 Use Levels (S4ULs; 2015) with reference to the 'POS 2' scenario defined as 'an area of open space provided for recreational use, usually owned and maintained by Local Authority'. The results are also compared to criteria specified for soils with a 2.5% SOM content, consistent with the reported SOM content of the soil. Comparison of the PAH exceedances to the revised screening criteria are summarised in the table below.

Determinant	Soil standard adopted - S4UL 'POS 2', 2.5% SOM (mg/kg)	Concentrations (mg/kg) – unless specified otherwise	Compliant?
SOM	n/a	3.13% (Ave.)	n/a
Benzo(a)anthracene	56	12.98	Yes
Chrysene	110	14.49	Yes
Benzo(b) fluoranthene	15	18.32	No
Benzo(a) pyrene	12	12.57	No
Indeno(123cd) pyrene	170	9.18	Yes
Dibenzo(ah)anthracene	1.3	2.35	No

Even with the revised screening criteria there were still minor exceedances reported for benzo(b)fluoranthene at 18.32 mg/kg (criteria = 15 mg/kg), benzo(a)pyrene at 12.57 mg/kg (criteria = 12 mg/kg) and dibenzo(ah)anthracene at 2.35 mg/kg (criteria = 1.3 mg/kg). Further assessment of the significance of the exceedances was therefore carried out (see the attached 'Screening Criteria Exceedance Significance' summary) which indicates that the soil is suitable for its intended use, but this is subject to approval by Local Authority as this is a deviation from the approved Remediation Strategy.

Topsoil Validation Record

Exceedances of the Waterman Remediation Strategy residential soil screening criteria (1% SOM assumed) were recorded in a single sample ('POS-TS1') for benzo(a)anthracene at 12.98 mg/kg (criteria = 3.1 mg/kg), chrysene at 14.49 mg/kg (criteria = 6 mg/kg), benzo(b)fluoranthene at 18.32 mg/kg (criteria = 5.6 mg/kg), benzo(a)pyrene at 12.57 mg/kg (criteria = 0.83 mg/kg), Indeno(123cd) pyrene at 9.18 mg/kg (criteria = 3.2 mg/kg) and dibenzo(ah)anthracene at 2.35 mg/kg (criteria = 0.76 mg/kg).

When comparing the PAH exceedances against criteria considered to be more suitable to the site setting and the SOM content of the soil (the LQM / CIEH S4ULs: 'POS 2', 2.5% SOM), minor exceedances were still reported for benzo(b)fluoranthene at 18.32 mg/kg (criteria = 15 mg/kg), benzo(a)pyrene at 12.57 mg/kg (criteria = 12 mg/kg) and dibenzo(ah)anthracene at 2.35 mg/kg (criteria = 1.3 mg/kg).

Both the initial and revised screening criteria are necessarily conservative assuming large safety factors for toxicological data and higher band estimates for exposure frequencies and durations, and uptake / availability of contaminants. While large or frequent exceedances likely indicate the need for Site-Specific Detailed Quantitative Risk Assessment or Remediation, where minor and infrequent expenses occur it is appropriate to assemble other lines of evidence to check the significance of the exceedances, especially where contaminants are common in the environment and remediation of the total mass of soil to very stringent Generic standards may exceed what would be considered reasonable practicable. The three lines of evidence considered are:

	Statistical Significance & Representativeness	Alternative assessment approaches	Availability and Accessibility
Commentary	PAH concentrations exceeding the S4UL 'POS 2' 2.5% SOM criteria were only detected within one of the three topsoil samples tested with the rest demonstrating concentrations significantly below the screening criteria. Given the results, it can be inferred that only a small proportion of relevant individual exposure events (swallowing bolus of soils for ingestion or smears of soil on skin for dermal contact would involve soils above the S4UL 'POS 2' 2.5% screening criteria. Also the managed vegetation cover of the POS area will reduce exposure to future site users to the underlying topsoil.	For PAHs an alternative approach to assessment of risks has been adopted by Public Heath England ¹ where a surrogate PAH marker (usually benzo(a)pyrene in a mixture of PAHs consistent with a confirmed toxicological profile can be used to assess the likelihood of the total genotoxic PAH loading of the soils. The ratio of the PAHs demonstrating exceedances to benzo(a)pyrene in sample 'POS-TS1' are all within the upper and lower limits of the model soils and coal tar mixtures so the surrogate approach could be adopted. Furthermore, the approach uses a Low Level of Toxicological Concern (LLTC) derived for similar mixtures of PAHs in Coal Tar rather than an Index Dose for the individual compound, so the approach adopted in the Category 4 Screening levels (C4SL) to determine land which is definitely not contaminated may be more appropriate.	Although not universally accepted as a means of demonstrating sources of weathered or altered PAHs, PAH cross-plot ratios for various hydrocarbon sources indicate that the current mixture present in the soils does not appear to be of coal tar or other petrogenic origin and is more closely associated with pyrolytic processes (i.e. coal) which tend to yield less available PAHs. The PAHs are likely to be strongly adsorbed to or entrained in solid organic matter particles rather than dissolved in organic solvents such as oil or coal tar as was used in the animal models used to determine Health Criteria Values.
Outcome	The level of exposure assumed in deriving the screening criteria probably significantly overestimates the frequency that soils containing the more elevated PAH concentrations recorded would be ingested or dermally adsorbed as all of the other samples had substantially lower PAH concentrations.	The C4SL ('POS 2') value considering the LLTC for mixtures of PAHs and considering BaP as an indicative marker compound for all genotoxic PAH exposure is probably more appropriate: this threshold of 21 mg/kg <u>was not exceeded</u> .	Although bioavailability or inaccessibility testing has not been carried out on the soils, in general PAHs would be considered less likely to partition from pyrolytic sources widely dispersed in soil for uptake than the consistent petrogenic source that is assumed in the exposure models.

recorded are not considered likely to indicate any significant risk to human health and further assessment or remedial measures are not recommended. See limitations.

¹ <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/671075/Contaminated_land_information_sheet_PAHs.pdf</u>

Depth Validation	Inspection date/time:	20.10.20	Inspected by:	SM	Photographed:	\checkmark			
Trial Pit 1 (west)	Required Depth (mm)	300	Measured Depth (mm)	300	PASS				
Source Topsoil	Taylor Wimpey develo	pment site: Aspen Gardens, Sto	otfold, Bedfordshire						
Source Subsoil	N/A								
Soil profile/description	0.00-0.30m.	Brown very sandy gravelly clay	topsoil with frequent rootlets.						
	0.30m	Base							
Photograph (I	ocation)	Photograph	n (depth profile)		Photograph (soil type)				

Depth Validation	Inspection date/time:	20.10.20	Inspected by:	SM	Photographed:	✓						
Trial Pit 2 (centre)	Required Depth (mm)	300	Measured Depth (mm)	330	PASS							
Source Topsoil	Taylor Wimpey develo	pment site: Aspen Gardens, Sto	otfold, Bedfordshire									
Source Subsoil	N/A											
Soil profile/description	0.00-0.33m.	Brown very sandy gravelly clay	v topsoil with frequent rootlets.									
	0.33m	Base										
Photograph (I	location)	Photograph	h (depth profile)		Photograph (soil type)							

Depth Validation	Inspection date/time:	20.10.20	Inspected by:	SM	Photographed:	✓			
Trial Pit 3 (east)	Required Depth (mm)	300	Measured Depth (mm)	340	PASS				
Source Topsoil	Taylor Wimpey develo	pment site: Aspen Gardens, Sto	otfold, Bedfordshire		•				
Source Subsoil	N/A								
Soil profile/description	0.00-0.34m.	Brown very sandy gravelly clay	topsoil with frequent rootlets.						
	0.34m	Base							
Photograph (I	ocation)	Photograp	h (depth profile)		Photograph (soil type)				

Exceedances have been observed for several PAHs within one of the three sample collected from the imported topsoil. Assessment of the significance of these has been provided which has determined that the soil is suitable for its intended purpose, however this is subject to approval by the Local Planning Authority.										
These plots have PASSED testing for depth.										
No additional inspections are required for these plots.										
SGP Staff:	S D Miller BSc MCIWEM	Signed:	lyntt Miller	17.11.20						
SGP Staff:	D Wayland BSc MSc AssocCIWM MCIWEM C.WEM	Signed:	D:	17.11.20						

Guide notes:

1.	Source Topsoil	As much information as possible: Date Delivered, volume/weight delivery, supplier, certification, source address (yard), original source address (site).
2.	Description Topsoil	Full Description: Grading (Particle Size: clay, silt, sand, gravel), organic content, colour, odour, minerals, stone, glass, slate, ash, clinker, coal, coke, tarmac, plastic, other?
3.	Sample Topsoil	Date sampled, date submitted, sample reference, laboratory, laboratory job number
4.	Source Subsoil	As much information as possible: Date Delivered, volume/weight delivery, supplier, certification, source address (yard), original source address (site).
5.	Description Subsoil	Full Description: Grading (Particle Size: clay, silt, sand, gravel), organic content, colour, odour, minerals, stone, glass, slate, ash, clinker, coal, coke, tarmac, plastic, other?
6.	Sample Subsoil	Date sampled, date submitted, sample reference, laboratory, laboratory job number

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Three samples were received for analysis on 20th October, 2020 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Reference: Location: Contact: EMT Job No: Smith Grant LLP R1742d Heyford (Dorchester) Scott Miller 20/14399

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	20/14399						_		
EMT Sample No.	1-2	3-4	5-6						
Sample ID	POS-TS1	POS-TS2	POS-TS3						
Depth	0.00-0.30	0.00-0.30	0.00-0.30				Plaasa sa	e attached r	otos for all
COC No / misc								ations and a	
Containers	٧J	٧J	٧J						
Sample Date	20/10/2020	20/10/2020	20/10/2020						
Sample Type			Clay						
			-						
Batch Number	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt			20/10/2020						
Antimony	2	<1	1				<1	mg/kg	TM30/PM15
Arsenic ^{#M} Barium ^{#M}	13.1	13.1	16.1				<0.5	mg/kg	TM30/PM15 TM30/PM15
Barlum Beryllium	89 1.0	90 0.9	77 1.1				<1 <0.5	mg/kg mg/kg	TM30/PM15 TM30/PM15
Cadmium #M	0.3	0.3	0.2				<0.1	mg/kg	TM30/PM15
Chromium *	37.5	38.6	53.8				<0.1	mg/kg	TM30/PM15
Cobalt ^{#M}	7.1	6.6	7.0				<0.5	mg/kg	TM30/PM15
Copper ^{#M}	17	15	22				<1	mg/kg	TM30/PM15
Lead ^{#M}	85	31	32				<5	mg/kg	TM30/PM15
Mercury #M	<0.1	<0.1	<0.1				<0.1	mg/kg	TM30/PM15
Molybdenum #M	1.6	1.9	4.3				<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	15.6	15.8	17.8				<0.7	mg/kg	TM30/PM15
Selenium ^{#M}	<1	<1	<1				<1	mg/kg	TM30/PM15
Vanadium	52	43	45				<1	mg/kg	TM30/PM15
Water Soluble Boron #M	1.9	2.4	1.2				<0.1	mg/kg	TM74/PM32
Zinc #M	81	67	75				<5	mg/kg	TM30/PM15
PAH MS									T1 (/ D1 (0
Naphthalene #M	1.31	<0.04	0.50				<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.77 1.74	0.13	0.19 0.42				<0.03 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluorene #M	1.74	0.00	0.42				<0.03	mg/kg	TM4/PM8
Phenanthrene #M	16.43	1.41	4.91				<0.03	mg/kg	TM4/PM8
Anthracene #	5.40	0.47	1.43				<0.04	mg/kg	TM4/PM8
Fluoranthene #M	>>26.20	2.02	7.84				<0.03	mg/kg	TM4/PM8
Pyrene [#]	18.96	1.40	5.60				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	12.98	0.91	3.42				<0.06	mg/kg	TM4/PM8
Chrysene #M	14.49	1.20	4.17				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	25.44	1.53	6.97				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	12.57	0.72	3.41				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	9.18	0.56	2.46				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	2.35	0.15	0.60				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	8.60	0.51	2.24				<0.04	mg/kg	TM4/PM8
PAH 16 Total	157.7	11.2	44.4				<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	18.32 7.12	1.10 0.43	5.02 1.95				<0.05 <0.02	mg/kg mg/kg	TM4/PM8 TM4/PM8
PAH Surrogate % Recovery	99	91	83				<0.02	тд/кд %	TM4/PM8
Ourogate / Recovery	33	31	00				~0	70	T IVIO
									1

Client Name: Reference: Location: Contact: EMT Job No: Smith Grant LLP R1742d Heyford (Dorchester) Scott Miller 20/14399

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	20/14399								
EMT Sample No.	1-2	3-4	5-6						
Sample ID	POS-TS1	POS-TS2	POS-TS3						
Depth	0.00-0.30	0.00-0.30	0.00-0.30				Please se	e attached n	otes for all
COC No / misc								ations and ac	
Containers	VJ	VJ	٧J						
Sample Date	20/10/2020	20/10/2020	20/10/2020						
Sample Type	Clayey Loam	Clayey Loam	Clay						
Batch Number	1	1	1						Method
Date of Receipt	20/10/2020	20/10/2020	20/10/2020				LOD/LOR	Units	No.
TPH CWG									
Aliphatics									
>C5-C6 #M	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12 ^{#M}	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16
>C16-C21 ^{#M} >C21-C35 ^{#M}	13 114	<7 <7	<7 <7				<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C21-C35 Total aliphatics C5-35	114	<19	<19				<19	mg/kg mg/kg	TM5/TM36/PM8/PM12/PM18
Aromatics	127	<13	<15				<15	iiig/kg	
>C5-EC7#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	1.7	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	16	<4	<4				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	192	31	<7				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	829	143	<7				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	1039	174	<19				<19	mg/kg	TM5/TM36/PM8/PM12/PM18
Total aliphatics and aromatics(C5-35)	1166	174	<38				<38	mg/kg	TM5/TM36/PM8/PM12/PM16
MTBE#	<5	<5	<5				<5	ug/kg	TM36/PM12
Benzene [#]	<5	<5	<5				<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5				<5	ug/kg	TM36/PM12 TM36/PM12
Ethylbenzene [#] m/p-Xylene [#]	<5 <5	<5 <5	<5 <5				<5 <5	ug/kg ug/kg	TM36/PM12 TM36/PM12
o-Xylene [#]	<5	<5	<5				<5	ug/kg	TM36/PM12
o Xylone	10	10	10					ugnig	11100/11112
Natural Moisture Content	14.8	17.6	14.5				<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Organic Matter	3.8	3.7	1.9				<0.2	%	TM21/PM24
Electrical Conductivity @25C (5:1 ext)	203	269	187				<100	uS/cm	TM76/PM58
pH ^{#M}	8.07	8.10	7.96				<0.01	pH units	TM73/PM11
Sample Type	Clayey Loam	Clayey Loam	Clay					None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown					None	PM13/PM0
Other Items	stones, vegetation	stones, vegetation	stones					None	PM13/PM0

Client Name:	Smith Grant LLP
Reference:	R1742d
Location:	Heyford (Dorchester)
Contact:	Scott Miller

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14399	1	POS-TS1	0.00-0.30	2	11/11/2020	General Description (Bulk Analysis)	soil/stones
					11/11/2020	Asbestos Fibres	NAD
					11/11/2020	Asbestos ACM	NAD
					11/11/2020	Asbestos Type	NAD
					11/11/2020	Asbestos Level Screen	NAD
20/14399	1	POS-TS2	0.00-0.30	4	11/11/2020	General Description (Bulk Analysis)	soil/stones
					11/11/2020	Asbestos Fibres	NAD
					11/11/2020	Asbestos ACM	NAD
					11/11/2020	Asbestos Type	NAD
					11/11/2020	Asbestos Level Screen	NAD
20/14399	1	POS-TS3	0.00-0.30	6	11/11/2020	General Description (Bulk Analysis)	soil/stones
					11/11/2020	Asbestos Fibres	NAD
					11/11/2020	Asbestos ACM	NAD
					11/11/2020	Asbestos Type	NAD
					11/11/2020	Asbestos Level Screen	NAD

Client Name:	Smith Grant LLP
Reference:	R1742d
Location:	Heyford (Dorchester)
Contact:	Scott Miller

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason						
	No deviating sample report results for job 20/14399											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/14399

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

EMT Job No: 20/14399

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes

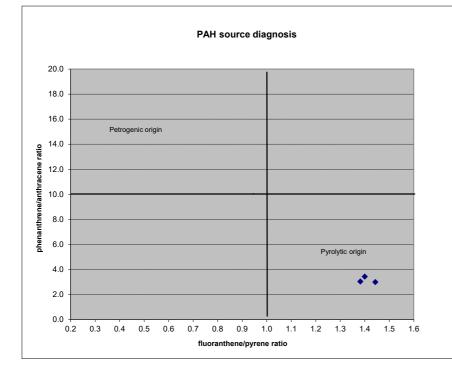
Method Code Appendix

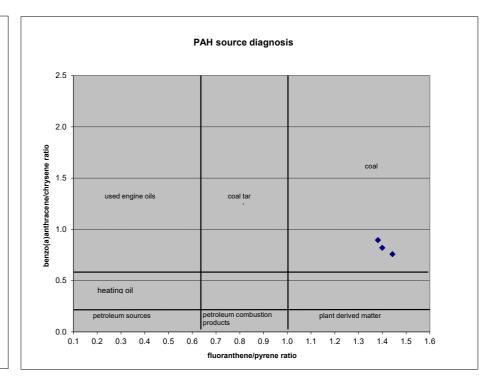
EMT Job No: 20/14399

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM58	Dried and ground solid samples are extracted with water in a 5:1 water to solid ratio, the samples are shaken on an orbital shaker.			AD	Yes

Job name	Heyford - Village Centre North
Job no.	R1742d
Date:	03.11.20
Author:	SM
Laboratory:	Element Deeside
Lab. Reference:	20/14399

mg/kg


PAH concentrations


T AIT CONCENTRATIONS												
sample identity	POS-TS1	POS-TS2	POS-TS3									
phenanthrene	16.43	1.41	4.91									
anthracene	5.4	0.47	1.43									
fluoranthene	26.2	2.02	7.84									
pyrene	18.96	1.4	5.6									
benz(a)anthracene	12.98	0.91	3.42									
chrysene	14.49	1.2	4.17									

PAH units

PAH ratios

phe/ant	3.043	3.000	3.434									
flu/pyr	1.382	1.443	1.400									
baa/chr	0.896	0.758	0.820									

