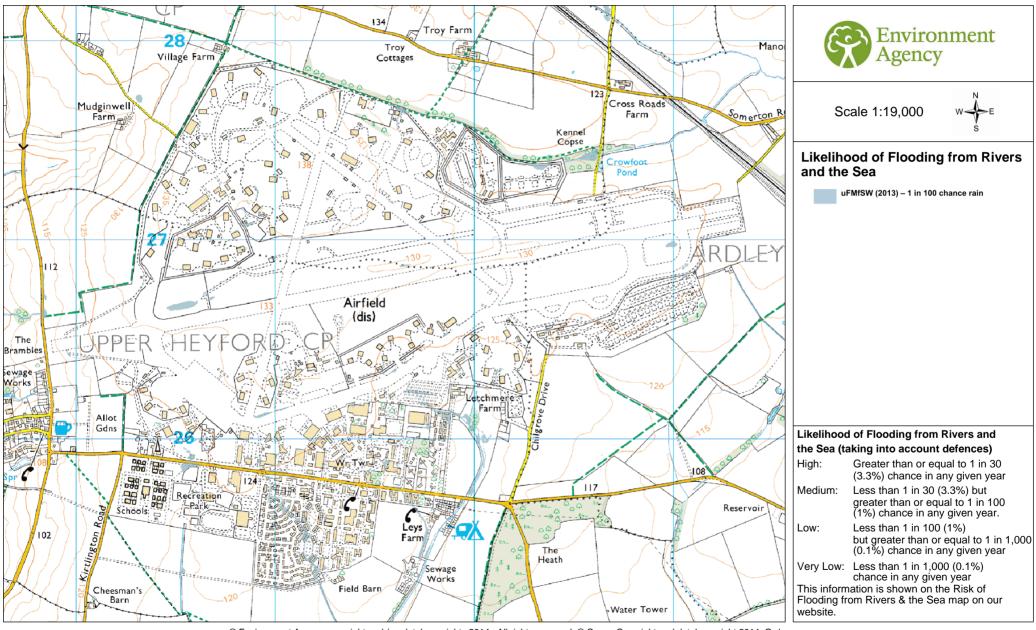
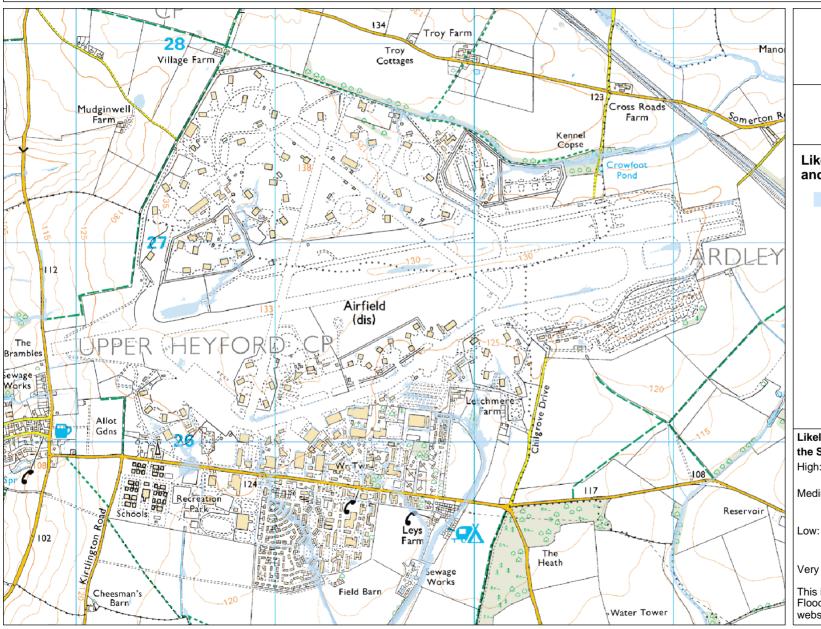

Appendix B EA Flood Maps

- Flood Map for Planning
- Surface Water Map 1 in 30
- Surface Water Map 1 in 100
- Surface Water Map 1 in 1,000
- EA Standard Notice


WT14434 Flood Map centered on 451574,226857 created by NH 20/03/2014


WT14434 Surface Water Map (1 in 30) created by NH 20/03/2014

WT14434 Surface Water Map (1 in 100) created by NH 20/03/2014

WT14434 Surface Water Map (1 in 1000) created by NH 20/03/2014

Scale 1:19.000

Likelihood of Flooding from Rivers and the Sea

uFMfSW (2013) - 1 in 1000 chance rain

Likelihood of Flooding from Rivers and the Sea (taking into account defences)

High: Greater than or equal to 1 in 30

(3.3%) chance in any given year

Medium: Less than 1 in 30 (3.3%) but

greater than or equal to 1 in 100

(1%) chance in any given year.

Less than 1 in 100 (1%)

but greater than or equal to 1 in 1,000 (0.1%) chance in any given year

Very Low: Less than 1 in 1,000 (0.1%)

chance in any given year

This information is shown on the Risk of Flooding from Rivers & the Sea map on our

website.

89_07_SD02, Version 6

Standard notice [not for use with Special Data, Personal Data or unlicensed 3rd party rights]

Information warning

We (The Environment Agency) do not promise that the Information supplied to You will always be accurate, free from viruses and other malicious or damaging code (if electronic), complete or up to date or that the Information will provide any particular facilities or functions or be suitable for any particular purpose. You must ensure that the Information meets your needs and are entirely responsible for the consequences of using the Information. Please also note any specific information warning or guidance supplied to you.

Permitted use

- The Information is protected by intellectual property rights and whilst you have certain statutory rights which include the right to read the Information, you are granted no additional use rights whatsoever unless you agree to the licence set out below.
- Commercial use of anything except EA OpenData is subject to payment of a £50 licence fee (+VAT) for each person seeking the benefit of the licence, except for use as an Environment Agency contractor or for approved media use.
- To activate this licence you do not need to contact us (unless you need to pay us a Commercial licence fee) but if you make any use in excess of your statutory rights you are deemed to accept the terms below.

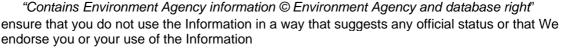
Licence

We grant you a worldwide, royalty-free (apart from the £50 licence fee for commercial use), perpetual, non-exclusive licence to use the Information subject to the conditions below.

You are free to:

copy, publish, distribute and transmit the Information

adapt the Information



exploit the Information commercially, for example, by combining it with other Information, or by including it in your own product or application

You must (where you do any of the above):

acknowledge the source of the Information by including the following attribution statement:

ensure that you do not mislead others or misrepresent the Information or its source or use the Information in a way that is detrimental to the environment, including the risk of reduced future enhancement

ensure that your use of the Information does not breach the Data Protection Act 1998 or the Privacy and Electronic Communications (EC Directive) Regulations 2003

These are important conditions and if you fail to comply with them the rights granted to you under this licence, or any similar licence granted by us will end automatically.

No warranty

The Information is licensed 'as is' and We exclude all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. We are not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. We do not guarantee the continued supply of the Information.

Governing Law

This licence is governed by the laws of England and Wales.

Definitions

"Information" means the information that is protected by copyright or by database right (for example, literary and artistic works, content, data and source code) offered for use under the terms of this licence.

"Commercial" means:

- offering a product or service containing the Information, or any adaptation of it, for a charge, or
- internal use for any purpose, or offering a product or service based on the Information for indirect commercial advantage, by an organisation that is primarily engaged in trade, commerce or a profession.

Contact: enquiries@environment-agency.gov.uk

Appendix C Calculations

- Greenfield Runoff Rate
- Attenuation Volume Requirement

Peter Brett Associates		Page 1
Caversham Bridge House	LAND SOUTH OF CAMP ROAD	
Waterman Place	HEYFORD	
Reading RG1 8DN		Micro
Date 26.06.15	Designed by SM	
File	Checked by AJ	Drainage
Micro Drainage	Source Control 2015.1	1

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.150
Area (ha) 12.500 Urban 0.000
SAAR (mm) 696 Region Number Region 4

Results 1/s

QBAR Rural 5.0 QBAR Urban 5.0

Q100 years 12.9

Q1 year 4.2 Q30 years 9.9 Q100 years 12.9

Peter Brett Associates		Page 1
Blackbrook Business Park	LAND SOUTH OF CAMP ROAD	
Blackbrook Avenue	HEYFORD PARK	
Taunton TA1 2PX	STORAGE VOLUME PER IMP HECTARE	Micro
Date 08.06.15	Designed by SM	
File 150604_STORAGE VOLUME P	Checked by AJ	Drainage
Micro Drainage	Source Control 2015.1	

Summary of Results for 100 year Return Period (+30%)

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0.265	0.265	0.8	241.0	O K
30	min	Summer	0.347	0.347	0.8	315.4	O K
60	min	Summer	0.432	0.432	0.8	392.8	O K
120	min	Summer	0.518	0.518	0.8	471.6	O K
180	min	Summer	0.568	0.568	0.8	517.1	O K
240	min	Summer	0.602	0.602	0.8	548.1	O K
360	min	Summer	0.651	0.651	0.8	592.3	O K
480	min	Summer	0.686	0.686	0.8	624.6	O K
600	min	Summer	0.714	0.714	0.9	649.6	O K
720	min	Summer	0.736	0.736	0.9	669.7	O K
960	min	Summer	0.770	0.770	0.9	700.6	O K
1440	min	Summer	0.814	0.814	0.9	740.5	O K
2160	min	Summer	0.849	0.849	0.9	772.9	O K
2880	min	Summer	0.867	0.867	0.9	788.7	O K
4320	min	Summer	0.874	0.874	0.9	795.3	O K
5760	min	Summer	0.862	0.862	0.9	784.7	O K
7200	min	Summer	0.844	0.844	0.9	767.7	O K
8640	min	Summer	0.826	0.826	0.9	751.8	O K
10080	min	Summer	0.809	0.809	0.9	736.0	O K
15	min	Winter	0.297	0.297	0.8	269.9	O K
30	min	Winter	0.388	0.388	0.8	353.4	O K

Storm			Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	128.843	0.0	70.4	19
30	min	Summer	84.413	0.0	68.2	34
60	min	Summer	52.662	0.0	128.5	64
120	min	Summer	31.735	0.0	122.0	124
180	min	Summer	23.281	0.0	125.8	184
240	min	Summer	18.577	0.0	128.9	244
360	min	Summer	13.477	0.0	132.9	364
480	min	Summer	10.732	0.0	135.5	484
600	min	Summer	8.987	0.0	137.1	604
720	min	Summer	7.771	0.0	138.1	724
960	min	Summer	6.173	0.0	139.1	964
1440	min	Summer	4.456	0.0	138.3	1442
2160	min	Summer	3.212	0.0	282.9	2164
2880	min	Summer	2.543	0.0	281.1	2880
4320	min	Summer	1.828	0.0	270.9	4320
5760	min	Summer	1.445	0.0	548.3	5760
7200	min	Summer	1.203	0.0	540.1	6552
8640	min	Summer	1.035	0.0	527.6	7176
10080	min	Summer	0.912	0.0	511.5	7960
15	min	Winter	128.843	0.0	69.9	19
30	min	Winter	84.413	0.0	65.7	34

©1982-2015 XP Solutions

Peter Brett Associates		Page 2
Blackbrook Business Park	LAND SOUTH OF CAMP ROAD	
Blackbrook Avenue	HEYFORD PARK	
Taunton TA1 2PX	STORAGE VOLUME PER IMP HECTARE	Micro
Date 08.06.15	Designed by SM	
File 150604_STORAGE VOLUME P	Checked by AJ	Drainage
Micro Drainage	Source Control 2015.1	•

Summary of Results for 100 year Return Period (+30%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	0.484	0.484	0.8	440.1	O K
120	min	Winter	0.581	0.581	0.8	528.5	O K
180	min	Winter	0.637	0.637	0.8	579.7	O K
240	min	Winter	0.675	0.675	0.8	614.7	O K
360	min	Winter	0.730	0.730	0.9	664.6	O K
480	min	Winter	0.771	0.771	0.9	701.4	O K
600	min	Winter	0.802	0.802	0.9	729.8	O K
720	min	Winter	0.827	0.827	0.9	752.9	O K
960	min	Winter	0.866	0.866	0.9	788.5	O K
1440	min	Winter	0.918	0.918	1.0	835.3	O K
2160	min	Winter	0.962	0.962	1.0	875.0	O K
2880	min	Winter	0.985	0.985	1.0	896.2	O K
4320	min	Winter	1.001	1.001	1.0	910.7	O K
5760	min	Winter	0.996	0.996	1.0	906.1	O K
7200	min	Winter	0.980	0.980	1.0	891.7	O K
8640	min	Winter	0.958	0.958	1.0	871.9	O K
10080	min	Winter	0.935	0.935	1.0	850.8	O K

Storm		ì	Rain	Flooded	Discharge	Time-Peak
	Event	:	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	123.1	64
120	min V	Winter	31.735	0.0	127.3	124
180	min V	Winter	23.281	0.0	132.6	182
240	min V	Winter	18.577	0.0	135.9	242
360	min V	Winter	13.477	0.0	140.0	362
480	min V	Winter	10.732	0.0	142.6	480
600	min V	Winter	8.987	0.0	144.1	598
720	min V	Winter	7.771	0.0	145.1	716
960	min V	Winter	6.173	0.0	145.9	954
1440	min V	Winter	4.456	0.0	144.6	1428
2160	min V	Winter	3.212	0.0	297.2	2124
2880	min V	Winter	2.543	0.0	294.6	2824
4320	min V	Winter	1.828	0.0	282.6	4192
5760	min V	Winter	1.445	0.0	578.6	5536
7200	min V	Winter	1.203	0.0	568.9	6840
8640	min V	Winter	1.035	0.0	555.0	8040
		Winter	0.912	0.0	537.7	8272

Peter Brett Associates	Page 3	
Blackbrook Business Park	LAND SOUTH OF CAMP ROAD	
Blackbrook Avenue	HEYFORD PARK	
Taunton TA1 2PX	STORAGE VOLUME PER IMP HECTARE	Micro
Date 08.06.15	Designed by SM	Drainage
File 150604_STORAGE VOLUME P	Checked by AJ	namaye
Micro Drainage	Source Control 2015.1	

Rainfall Details

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.405
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 1.000

Peter Brett Associates		Page 4
Blackbrook Business Park	LAND SOUTH OF CAMP ROAD	
Blackbrook Avenue	HEYFORD PARK	
Taunton TA1 2PX	STORAGE VOLUME PER IMP HECTARE	Micro
Date 08.06.15	Designed by SM	
File 150604_STORAGE VOLUME P	Checked by AJ	Drainage
Micro Drainage	Source Control 2015.1	1

Model Details

Storage is Online Cover Level (m) 1.200

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 910.0 1.200 910.0

Hydro-Brake Optimum® Outflow Control

Unit Reference MD-SHE-0047-1000-1000-1000 Design Head (m) 1.000 Design Flow (1/s) 1.0 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 47 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 1.0 Flush-Flo $^{\text{TM}}$ 0.205 0.8 Kick-Flo $^{\text{R}}$ 0.415 0.7 Mean Flow over Head Range - 0.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	0.8	1.200	1.1	3.000	1.6	7.000	2.4
0.200	0.8	1.400	1.2	3.500	1.8	7.500	2.5
0.300	0.8	1.600	1.2	4.000	1.9	8.000	2.6
0.400	0.7	1.800	1.3	4.500	2.0	8.500	2.7
0.500	0.7	2.000	1.4	5.000	2.1	9.000	2.7
0.600	0.8	2.200	1.4	5.500	2.2	9.500	2.8
0.800	0.9	2.400	1.5	6.000	2.3		
1.000	1.0	2.600	1.5	6.500	2.3		

©1982-2015 XP Solutions