T: 01530 264 753 group@m-ec.co.uk www.m-ec.co.uk

Offices also at Birmingham, Milton Keynes, Nottingham and Leeds

Consulting Development Engineers

PROPOSED RESIDENTIAL DEVELOPMENT AT HEMPTON ROAD, DEDDINGTON FLOOD RISK AND DRAINAGE TECHNICAL NOTE FEBRUARY 2019 REF. 23933/05-18/6010 - REV C

Introduction

Mewies Engineering Consultants Ltd (M-EC) has been instructed to produce this Technical Note to describe the drainage strategy designed for a proposed residential development of 21 units on land off Hempton Road, Deddington, Oxfordshire.

Site Location & Description

The site is mostly comprised of undeveloped agricultural land although its southern half is currently used as a vegetable garden. A single large corrugated iron shed is present on the site accessed from a gate in the south-east corner. The site measures approximately 1.177ha. The site falls from north to south towards Hempton Road with a fall of 2.5m from a high point around 139.2m AOD in its north-west corner to a low point of 136.7m AOD in the centre of its southern boundary.

Flood Risk

Based on the latest Flood Zone Mapping issued by the Environment Agency, the site area is located entirely in Flood Zone 1. The closest designated flood zones are over a kilometre to the north.

Figure 1: EA Flood Zones

Environment Agency Surface Water Flood Risk Mapping shows that there are no areas of designated surface water flood risk within the site's boundaries. There are small areas of low risk extending along Hempton Road further east. All development will be located a sufficient distance from these areas to negate any risk.

Civil Engineering · Drainage · Flood Risk · Transport · Highways · Structures · Geotechnics · Contamination · Sustainability · Noise & Air Quality · Utilities · Geomatics

Registered in England No. 07102309 VAT Registration No. 982 4164 04 Registered Office: 4-8 Kilwardby Street, Ashby-de-la-Zouch, Leicestershire LE65 2FU Mewies Engineering Consultants Ltd Directors: E Mewies BEng(Hons) CEng MICE MCIWEM, A Bennett BSc(Hons) MCIHT MTPS

The proposed development area will be located wholly within Flood Zone 1 (less than 0.1% chance of flooding). In accordance with Table 3 of the Planning Practice Guidance the development is therefore "sequentially acceptable".

Geology & Ground Conditions

Geological mapping indicates that the site is underlain by two types of solid geology; the north of the site is underlain by Whitby Mudstone Formation while the south of the site is Marlstone Rock Formation – Ferruginous Limestone and Ironstone. No superficial deposits are present within the site's boundaries.

Soakage testing was undertaken in June 2018 with two trial pits in the site's south-east corner. Both pits were found to infiltrate very well (findings are summarised in Table 1). As a result of this the site's proposed drainage strategy has been revised to be based on infiltration.

SA01		SA02		
m/s	m/hr	m/s m/hi		
1.27 x 10 ⁻³	4.572	5.93 x 10 ⁻³	21.348	
9.55 x 10 ⁻⁴	3.438	7.35 x 10 ⁻³	26.460	
7.77 x 10 ⁻⁴	2.797	1.84 x 10 ⁻³ 6.624		
		1.67 x 10 ⁻³	6.012	
		1.57 x 10 ⁻³	5.652	
		1.67 x 10 ⁻³	6.012	
		1.66 x 10 ⁻³	5.976	

Table 1: Soakage Test Summary

Drainage Strategy

No ditches or significant drainage features are located within the site and therefore existing surface water runs off directly downhill towards Hempton Road along the southern boundary.

Given the confirmation of viable infiltration and the lack of nearby watercourses, surface water runoff from the site will be attenuated on-site and then discharged into the underlying ironstone bedrock. No existing public surface water sewers are present within the site's boundaries.

The proposed surface water strategy for the site will comprise of a single infiltration basin with a total storage capacity of 156m³ based on an impermeable area of 0.74ha inclusive of 10% urban creep. This system will have sufficient capacity for the 1 in 100 year storm event (plus a 40% allowance of climate change).

The SUDS scheme will be offered to the Borough Council or other local bodies such as the Town or Parish Council for adoption and future maintenance. A proposed maintenance plan shown in Table 2 breaks down the maintenance responsibility of the various assets.

Drainage Asset	Responsible Organisation	Maintenance Work	Frequency	
Pipework / Manholes	Private Ownership / Management Company / Water Authority /	Inspect pipe work and clear blockages Inspect manholes and clear blockages	Annually or after severe storms.	
	Developer	Repair any defects in network		
Headwalls	Private Ownership / Water Authority / Management Company	Inspect structure and remove any debris/litter on structure	Monthly or after severe storms.	
		Amenity grass cutting of surrounding green spaces	As required	
Basin	Borough Council / Management Company	Litter and Debris removal	Monthly	
	management company	Inspect and clear inlets, outlets and overflows	6 Monthly	
Catch Pit	Private Ownership / Management Company	Inspect structure and remove excessive silt build up	Annually or after severe storms.	

Table 2: Proposed Maintenance Regime

Foul Drainage

Foul sewage from the site will be gathered by a gravity based foul sewerage network and outfall to an existing foul sewer in Wimborn Close to the east connecting at manhole ref. 0701. Connection will be subject to a S106 application with Thames Water.

Summary

To summarise the key points outlined above:

- All development will be contained in Flood Zone 1 and is therefore sequentially acceptable. Other sources of flood risk to the site are considered to be low to very low.
- The site's surface water will be attenuated by a drainage network with an infiltration basin.
- The development will not increase runoff or flood risk downstream by utilising a sustainable drainage system to store runoff and discharge into the underlying bedrock.
- Foul drainage for the site will entail a gravity based system gathering to the existing • foul sewer in Wimborn Close south-east of the site.

Overall it is considered there are no insurmountable Flood Risk and Drainage constraints to the development of this site for residential use.

Report Prepared By:

Report Checked By:

Alexander Bennett BSc MCIHT, MTPS

-4-Hempton Road, Deddington, Oxfordshire Flood Risk and Drainage Technical Note June 2018 Ref. 23933/05-18/6010 – Rev C

APPENDICES

- A. Site Location Plan
- B. Proposed Site Layout
- C. Topographical Survey
- D. Water Authority Correspondence
- E. Microdrainage Calculations
- F. Strategy Drawing
- G. Soakage Testing Results

APPENDIX A

M-EC The Old Chapel Station Road Hugglescote Leicestershire LE67 2GB

SITE LOCATION PLAN

OX15 0QJ

Project:

LAND AT HEMPTON ROAD, DEDDINGTON

 File Ref:
 23933

O.S. Grid Ref: 445952, 231916

Postcode:

APPENDIX B

NOTES:

AT ARCHITECTURE LIMITED

WWW.ATARCHITECTURELTD.COM

26 THE RIDE, THE GRANGE, DESBOROUGH, NN14 2HZ ASHLEY.THOMPSON@AT-ARCHITECTURE.UK

NO DIMENSIONS TO BE SCALED FROM DRAWING ALL DIMENSIONS ARE APPROXIMATE AND TO BE CHECKED ON SITE

THIS DRAWING IS FOR PLANNING PURPOSES ONLY SUBJECT TO BUILDING CONTROL STANDARDS AND COMMENTS

COPYRIGHT RESERVED

APPENDIX C

APPENDIX D

Asset location search

Infrastructure Gateway Ltd Kettering Parkway Kettering V Vantage House KETTERING NN15 6XR

Search address supplied	Hepmton Road
	Hempton Road
	Deddington
	Oxfordshire
	OX15 0QH

Your reference w

w18-3231

Our reference

ALS/ALS Standard/2018_3774307

Search date

13 April 2018

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Asset location search

Search address supplied: Hepmton Road, Hempton Road, Deddington, Oxfordshire, OX15 0QH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and

pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

NB. Levels auoted in metres	Ordnance Newlyn Datum.	The value -9999.00 indicates	that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
281H	n/a	n/a
281G	n/a	n/a
281K	n/a	n/a
281A	n/a	n/a
281C	n/a	n/a
281D	n/a	n/a
2811	n/a	n/a
281E	n/a	n/a
0810	n/a	n/a
0812	n/a	n/a
0802	137.22	135.98
0811	n/a	n/a
0809	n/a	n/a
0701	n/a	n/a
0801	137.37	136.47
0803	n/a	n/a
0815	n/a	n/a
0814	n/a	n/a
0703	n/a	n/a
0707	136 45	135.05
0706	n/a	n/a
0705	n/a	n/a
0813	n/a	n/a
0804	136 79	135.87
0014	n/a	n/a
091B	n/a	n/a
1701	135.86	134 66
1801	135.68	133.07
1802	136.23	137.66
1804	136.13	134.00
1803	136.03	134.67
1005	136.31	134.07
181 A	n/a	n/a
191R	n/a	n/a
2811	n/a	n/a
201L 201D	n/a	n/a
0654	174 88	122 07
06101	134.65	n/a
0651	13/ 8/	132 52
0602	134.5	132.52
170/	135.80	13/ 06
1653	n/a	132.81
1702	135.88	132.01
160/	13/ 17	n/a
1703	135 /1	133 36
1603	133.41	n/a
1657	133.07	132 0/
1601	n/a	132.34 n/a
2702	174 124 00	170 01
2102	134.00	132.04
The position of the approximation of the second s	a siyas without abligation and warments and d	and the momenta of Ormites since
The position of the apparatus shown on this plan	s given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not

shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve Dam Chase Fitting

Σ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

いし Outfall

Undefined End Inlet

Other Symbols

Symbols used on maps which do not fall under other general categories

- Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- **FIRE** Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- ^{3' METERED} Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND	
Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Æ

Manifold

Fire Supply

Customer Supply

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Email: <u>admin@tpos.co.uk</u>

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

Mr Shyam Joshi The Old Chapel Station Road Hugglescote LE67 2GB

Wastewater pre-planning Our ref DS6048759

26 May 2018

Pre-planning enquiry: Confirmation of sufficient capacity

Dear Mr Joshi

Thank you for providing information on your development at Land off Hempton Road, Deddignton, OX15 0NA, OS grid ref. 445962, 231842.

Residential development comprising 20 dwellings. Foul water to be discharged by gravity into foul water sewer in Hempton Road. Surface Water to be disposed via suds.

We're pleased to confirm that there will be sufficient foul and surface water capacity in our sewerage network to serve your development, so long as your phasing follows the timescale you've suggested.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 0203 577 8082.

Yours sincerely

Artur Jaroma

Thames Water

APPENDIX E

Calculated by:	Ben Donoghue
Site name:	Hempton Rd
Site location:	Deddington

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	51.98349° N
Longitude:	1.33243° W
Reference:	6365492
Date:	2018-05-17T13:17:06

IH124					
		1.56			
bd	Calculate fro	om SPR ar	nd SAAR		
SPR estimation method Calculate fro			ире		
SOIL type					
HOST class					
SPR/SPRHOST			0.1		
Hydrological characteristics Default Edited					
SAAR (mm)			661		
Hydrological region			6		
Growth curve factor: 1 year			0.85		
Growth curve factor: 30 year			2.3		
Growth curve factor: 100 year			3.19		
	IH12 od eristic year 00 yea	IH124 Dd Calculate fro d Calculate fro d Calculate fro year 0 year 00 year	IH1241.561.56OdCalculate from SPR and SOIL by DefaultDefaultate from SOIL byDefault1DefaultImage: Second Sec		

Notes:

(1)	ls	Q	<	2.0	l/s/ha?
(' /	10			2.0	<i>ii</i> 0/110.

Normally limiting discharge rates which are less than 2.0 l/s/ha are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite may be a requirement for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Qbar (l/s)	0.25	0.25
1 in 1 year (l/s)	0.21	0.21
1 in 30 years (l/s)	0.56	0.56
1 in 100 years (l/s)	0.78	0.78

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

M-EC		Page 1
The Old Chapel	23933	
Station Road, Hugglescote	Hempton Rd, Deddington	<u> </u>
Leicestershire LE67 2GB	Design Calculations - Infilt	Micco
Date 18.06.2018	Designed by BD	
File 2018-06-18 INFILTRATION	Checked by WD	Digiligh
XP Solutions	Source Control 2016.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 7 minutes.

Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Status
		(m)	(m)	(1/s)	(m³)	
min	Summer	136.660	0.960	212.0	143.1	ОК
min	Summer	136.628	0.928	202.8	134.0	ОК
min	Summer	136.548	0.848	180.4	112.7	ОК
min	Summer	136.418	0.718	146.4	82.8	ОК
min	Summer	136.322	0.622	123.4	64.2	ОК
min	Summer	136.249	0.549	107.2	51.9	ОК
min	Summer	136.144	0.444	85.4	36.7	ОК
min	Summer	136.070	0.370	71.4	27.8	ОК
min	Summer	136.016	0.316	61.7	22.0	O K
min	Summer	135.973	0.273	54.4	17.8	O K
min	Summer	135.906	0.206	44.0	12.2	ОК
min	Summer	135.824	0.124	32.1	6.5	0 K
min	Summer	135.755	0.055	23.2	2.6	O K
min	Summer	135.742	0.042	18.4	1.9	O K
min	Summer	135.731	0.031	13.1	1.4	O K
min	Summer	135.725	0.025	10.4	1.1	O K
min	Summer	135.721	0.021	8.6	0.9	O K
min	Summer	135.718	0.018	7.5	0.8	O K
min	Summer	135.716	0.016	6.6	0.7	O K
min	Winter	136.700	1.000	276.1	155.7	Flood Risk
min	Winter	136.669	0.969	214.7	145.8	O K
min	Winter	136.551	0.851	181.2	113.5	O K
min	Winter	136.373	0.673	135.3	73.7	O K
min	Winter	136.252	0.552	107.8	52.3	O K
	Stor Even min min min min min min min min min mi	Storm Event min Summer min Summer	Storm Max Event Level (m) min Summer 136.660 min Summer 136.628 min Summer 136.548 min Summer 136.418 min Summer 136.322 min Summer 136.418 min Summer 136.424 min Summer 136.749 min Summer 136.016 min Summer 136.016 min Summer 136.016 min Summer 136.016 min Summer 135.973 min Summer 135.725 min Summer	Storm Max Max Event Level Depth (m) min Summer 136.660 0.900 min Summer 136.628 0.928 min Summer 136.548 0.448 min Summer 136.428 0.718 min Summer 136.428 0.718 min Summer 136.428 0.424 min Summer 136.144 0.444 min Summer 136.016 0.316 min Summer 136.016 0.216 min Summer 135.973 0.201 min Summer 135.906 0.226 min Summer 135.914 0.124 min Summer 135.915 0.025 min Summer 135.715 0.021 min Summer 135.715 0.021 min Summer 135.715 0.021 min Summer 135.716 0.021 min Summer 135.718 0.021 min Summer 135.718 0.021 min Summer 135.716	StormMaxMaxMaxMaxEventLevelDepthInfiltration(m)136.6600.960212.0min Summer136.6280.928202.8min Summer136.5480.848180.4min Summer136.5480.718146.4min Summer136.2200.622123.4min Summer136.2490.549107.2min Summer136.1440.44485.4min Summer136.0700.37071.4min Summer136.0160.31661.7min Summer135.9730.27354.4min Summer135.9730.27354.4min Summer135.7550.05523.2min Summer135.7420.04218.4min Summer135.7550.02510.4min Summer135.7250.02510.4min Summer135.7260.0218.6min Summer135.7160.0166.6min Summer135.7160.0166.6min Summer135.7160.0166.6min Winter136.6690.969214.7min Winter136.5510.851181.2min Winter136.3730.673135.3min Winter136.3730.673135.3min Winter136.3730.673135.3min Winter136.3730.673135.3min Winter136.2520.552107.8	StormMaxMaxMaxMaxMaxMaxMaxMaxEventLevelDepthInfiltrationVolume(m)(m)(m)(1/s)143.1min Summer136.6600.960212.0143.1min Summer136.6280.928202.8134.0min Summer136.5480.848180.4112.7min Summer136.4180.718146.482.8min Summer136.2290.622123.464.2min Summer136.1440.44485.436.7min Summer136.0160.31661.722.0min Summer136.0160.31661.722.0min Summer135.9730.27354.417.8min Summer135.9750.05523.22.6min Summer135.7550.05523.22.6min Summer135.7420.04218.41.9min Summer135.7550.02510.41.1min Summer135.7160.0166.60.7min Summer135.7180.0187.50.8min Summer135.7160.0166.60.7min Summer135.7160.0166.60.7min Summer135.7160.0166.60.7min Summer135.7160.0166.60.7min Summer135.7160.0166.60.7min Summer135.7160.0166.60.7 <td< td=""></td<>

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	187.093	0.0	16
30	min	Summer	109.471	0.0	24
60	min	Summer	64.053	0.0	40
120	min	Summer	37.479	0.0	70
180	min	Summer	27.392	0.0	100
240	min	Summer	21.929	0.0	132
360	min	Summer	16.028	0.0	190
480	min	Summer	12.831	0.0	250
600	min	Summer	10.798	0.0	312
720	min	Summer	9.378	0.0	370
960	min	Summer	7.418	0.0	492
1440	min	Summer	5.330	0.0	734
2160	min	Summer	3.830	0.0	1100
2880	min	Summer	3.029	0.0	1432
4320	min	Summer	2.155	0.0	2160
5760	min	Summer	1.693	0.0	2928
7200	min	Summer	1.404	0.0	3544
8640	min	Summer	1.205	0.0	4392
10080	min	Summer	1.059	0.0	5128
15	min	Winter	187.093	0.0	16
30	min	Winter	109.471	0.0	25
60	min	Winter	64.053	0.0	42
120	min	Winter	37.479	0.0	72
180	min	Winter	27.392	0.0	102

M-EC		Page 2
The Old Chapel	23933	
Station Road, Hugglescote	Hempton Rd, Deddington	<u> </u>
Leicestershire LE67 2GB	Design Calculations - Infilt	Micco
Date 18.06.2018	Designed by BD	
File 2018-06-18 INFILTRATION	Checked by WD	Digitigh
XP Solutions	Source Control 2016.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
240	min	Winter	136.166	0.466	89.8	39.7	ОК
360	min	Winter	136.051	0.351	67.9	25.7	ΟK
480	min	Winter	135.977	0.277	55.1	18.2	ΟK
600	min	Winter	135.924	0.224	46.7	13.6	ΟK
720	min	Winter	135.884	0.184	40.7	10.5	ΟK
960	min	Winter	135.826	0.126	32.3	6.6	ΟK
1440	min	Winter	135.756	0.056	23.3	2.6	ΟK
2160	min	Winter	135.739	0.039	16.9	1.8	ΟK
2880	min	Winter	135.731	0.031	13.4	1.4	ΟK
4320	min	Winter	135.723	0.023	9.5	1.0	ΟK
5760	min	Winter	135.718	0.018	7.5	0.8	ΟK
7200	min	Winter	135.715	0.015	6.2	0.7	ΟK
8640	min	Winter	135.713	0.013	5.4	0.6	ΟK
10080	min	Winter	135.712	0.012	4.7	0.5	O K

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
240	min	Winter	21.929	0.0	132
360	min	Winter	16.028	0.0	192
480	min	Winter	12.831	0.0	252
600	min	Winter	10.798	0.0	312
720	min	Winter	9.378	0.0	372
960	min	Winter	7.418	0.0	492
1440	min	Winter	5.330	0.0	730
2160	min	Winter	3.830	0.0	1084
2880	min	Winter	3.029	0.0	1428
4320	min	Winter	2.155	0.0	2200
5760	min	Winter	1.693	0.0	2840
7200	min	Winter	1.404	0.0	3632
8640	min	Winter	1.205	0.0	4112
10080	min	Winter	1.059	0.0	5336

M-EC		Page 3		
The Old Chapel	23933			
Station Road, Hugglescote	Hempton Rd, Deddin	ngton		
Leicestershire LE67 2GB	Design Calculation	ns - Infilt Micco		
Date 18.06.2018	Designed by BD			
File 2018-06-18 INFILTRATION	Checked by WD	Diamacje		
XP Solutions	Source Control 203	16.1		
	<u>Rainfall Details</u>			
Rainfall Model	FEH	F (1km) 2.480		
Site Location GB 44	6100 232550 SP 46100 32550	Winter Storms Yes		
C (1km)	-0.022	Cv (Summer) 0.750		
D1 (1km)	0.328	Cv (Winter) 0.840		
D2 (1km) D3 (1km)	0.286	Shortest Storm (mins) 15 Longest Storm (mins) 10080		
E (1km)	0.292	Climate Change % +40		
Time Area Diagram				
Time From:	(mins) Area Time (mins) To: (ha) From: To:	Area (ha)		
0	4 0.370 4 8	0.370		
	Ι			

M-EC		Page 4	
The Old Chapel	23933		
Station Road, Hugglescote	Hempton Rd, Deddington	<u> </u>	
Leicestershire LE67 2GB	Design Calculations - Infilt	Micco	
Date 18.06.2018	Designed by BD		
File 2018-06-18 INFILTRATION	2018-06-18 INFILTRATION Checked by WD		
XP Solutions	Source Control 2016.1		
Storage is C	<u>Model Details</u> Online Cover Level (m) 137.000		
Infilt	ration Basin Structure		
Inv Infiltration Coefficier Infiltration Coefficier	vert Level (m) 135.700 Safety Factor 2.0 ht Base (m/hr) 2.79700 Porosity 1.00 ht Side (m/hr) 2.79700		
Depth (m) Area (m ²) Depth (m) Area (m ²) I	Depth (m) Area (m²) Depth (m) Area (m²) Depth ((m) Area (m²)	

1.200

1.300

1.400

1.500

1.600

1.700

0.0

0.0

0.0

0.0

0.0

0.0

1.800

1.900

2.000

2.100 2.200

2.300

0.0

0.0

0.0

0.0

0.0

0.0

2.400

2.500

0.0

0.0

42.8

76.6

96.7

119.8

145.1

58.2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900 1.000

1.001

172.9

202.9

235.4

270.5

307.7

0.0

©1982-2016 X	XP Solutions
--------------	--------------

APPENDIX F

	<u>GENERAL NOTES</u>		
Δ	1. DO NOT SCA	LE THIS DRAWING.	
	2. THIS DRAWIN ALL OTHER SPECIALIST [IG IS TO BE READ IN CC RELEVANT ENGINEERS, AR DESIGN DRAWINGS AND D	NJUNCTION WITH CHITECTS AND ETAILS.
	3. ALL DIMENSI OTHERWISE. NOTED OTHE	ONS ARE IN METRES UNI ALL LEVELS ARE IN METF RWISE.	LESS NOTED RES UNLESS
Y	4. THIS DRAWIN AND IS NOT PURPOSES.	IG IS FOR STRATEGY PUF TO BE USED FOR CON	POSES ONLY STRUCTION
	<u>KEY</u>		
	<	EXISTING SURFACE WA	TER DRAIN
	≪⊷	EXISTING FOUL WATER	DRAIN
	<	PROPOSED SURFACE	WATER DRAIN
		PROPOSED FOUL WAT	ER DRAIN
		PROPOSED HEADWALL	
		BANKING (MAXIMUM 1 : 3 GRA	DIENT)
	•	INDICATIVE OVERLAND	FLOW DIRECTION
		ASSUMED IMPERMEABL	E AREAS
	1		
	C Pond amended B Infiltration rates	incorperated in design	MD WD 22.02.19 BD WD 18.06.18
	Basin redesigned A Basin relocated to REV: AMENDMEN	d into Infiltration to south-west corner TS:	BD WD 05.06.18 DRN: CHK: DATE:
	PROJECT:	HEMPTON ROA	D
		DEDDINGTON	
	DRAWING TITLE:		
	PRELIMIN	IARY DRAINAGE	STRATEGY
	CLIENT:	EBB DEVELOPME	NTS
	DRAWING NUMBER:	23933 01 230 0	1
	REVISION:	SHEET SIZE:	SCALE:
	C DRAWN BY:	А1	1:500 date:
	BD	WD	21.05.18
	STATUS:	PRELIMINARY	
		Leicester Birmingh	T: 01530 264 753 am T: 0121 7264 888
		Milton Ke Nottingha Leeds	rynes T: 01908 440 042 m T: 0115 838 0990 T: 0113 468 1127
	Consulting Develop	oment Engineers E: group@ www.m-e)m-ec.co.uk c.co.uk
	ORDNANCE SURVEY	© CROWN COPYRIGHT 2015. A LICENCE NUMBER 100055865	LL RIGHTS RESERVED.

APPENDIX G

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA01	
Length	1.80	m
Width	0.45	m
Depth	1.60	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.50	Reddish brown, gravelly SAND with a low cobble content.
	0.50 - 1.60	Reddish brown, sandy, fine to coarse angular GRAVEL with high
		cobble and low boulder content.

Time	Depth to	Effective storage depth =	0.65 m
mins	water	75% effective storage depth =	0.49 m
0.00	0.95	(ie depth below GL) =	1.11 m
0.25	1.12	25% effective storage depth =	0.16 m
0.50	1.31	(ie depth below GL) =	1.44 m
0.75	1.42	effective storage depth 75%-25% =	0.33 m
1.00	1.45		
		Time to fall to 75% effective depth =	0.24 mins
		Time to fall to 25% effective depth =	0.85 mins
		Void Ratio =	40%
		V (75%-25%) =	0.1053 m3
		a (50%) =	2.2725 m2
		t (75%-25%) =	0.61 mins
		SOIL INFILTRATION RATE =	1.27 E-03 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA01	
Length	1.80	m
Width	0.45	m
Depth	1.60	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.50	Reddish brown, gravelly SAND with a low cobble content.
	0.50 - 1.60	Reddish brown, sandy, fine to coarse angular GRAVEL with high
		cobble and low boulder content.

Time	Depth to	Effective storage depth =	0.63 m
mins	water	75% effective storage depth =	0.47 m
0.00	0.97	(ie depth below GL) =	1.13 m
0.25	1.22	25% effective storage depth =	0.16 m
0.75	1.37	(ie depth below GL) =	1.44 m
1.00	1.44	effective storage depth 75%-25% =	0.32 m
		Time to fall to 75% effective depth =	0.20 mins
		Time to fall to 25% effective depth =	1.00 mins
		Void Ratio =	40%
		V (75%-25%) =	0.1021 m3
		a (50%) =	2.2275 m2
		t (75%-25%) =	0.80 mins
		SOIL INFILTRATION RATE =	9.55E-04 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA01	
Length	1.80	m
Width	0.45	m
Depth	1.60	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.50	Reddish brown, gravelly SAND with a low cobble content.
	0.50 - 1.60	Reddish brown, sandy, fine to coarse angular GRAVEL with high
		cobble and low boulder content.

Time	Depth to	Effective storage depth =	0.70 m
mins	water	75% effective storage depth =	0.53 m
0.00	0.90	(ie depth below GL) =	1.08 m
0.25	1.18	25% effective storage depth =	0.18 m
0.50	1.29	(ie depth below GL) =	1.43 m
0.75	1.35	effective storage depth 75%-25% =	0.35 m
1.00	1.41		
1.25	1.44	Time to fall to 75% effective depth =	0.13 mins
		Time to fall to 25% effective depth =	1.15 mins
		Void Ratio =	40%
		V (75%-25%) =	0.1134 m3
		a (50%) =	2.3850 m2
		t (75%-25%) =	1.02 mins
		SOIL INFILTRATION RATE =	7.77E-04 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02
Length	1.80 m
Width	0.45 m
Depth	2.00 m
Ground water level	N/A
Ground conditions	0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60 Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90 Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Depth to	Effective storage depth =	1.36 m
water	75% effective storage depth =	1.02 m
0.64	(ie depth below GL) =	0.98 m
0.94	25% effective storage depth =	0.34 m
2.01	(ie depth below GL) =	1.66 m
	effective storage depth 75%-25% =	0.68 m
	Time to fall to 75% effective depth =	0.26 mins
	Time to fall to 25% effective depth =	0.42 mins
	Void Ratio =	40%
	V (75%-25%) =	0.2203 m3
	a (50%) =	3.8700 m2
	t (75%-25%) =	0.16 mins
	SOIL INFILTRATION RATE =	5.93E-03 m/s
	Depth to water 0.64 0.94 2.01	Depth to waterEffective storage depth = 75% effective storage depth = (ie depth below GL) = 0.940.9425% effective storage depth = (ie depth below GL) = effective storage depth 75%-25% =2.01Time to fall to 75% effective depth = Time to fall to 25% effective depth = Void Ratio = V (75%-25%) = a (50%) = t (75%-25%) =SOIL INFILTRATION RATE =

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02
Length	1.80 m
Width	0.45 m
Depth	2.00 m
Ground water level	N/A
Ground conditions	0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60 Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90 Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Depth to	Effective storage depth =	1.41 m
water	75% effective storage depth =	1.06 m
0.59	(ie depth below GL) =	0.94 m
1.76	25% effective storage depth =	0.35 m
1.89	(ie depth below GL) =	1.65 m
2.01	effective storage depth 75%-25% =	0.71 m
	Time to fall to 75% effective depth =	0.08 mins
	Time to fall to 25% effective depth =	0.21 mins
	Void Ratio =	40%
	V (75%-25%) =	0.2284 m3
	a (50%) =	3.9825 m2
	t (75%-25%) =	0.13 mins
	SOIL INFILTRATION RATE =	7.35E-03 m/s
	Depth to water 0.59 1.76 1.89 2.01	Depth to waterEffective storage depth = 75% effective storage depth = (ie depth below GL) = 25% effective storage depth = (ie depth below GL) = 2.011.89 2.01effective storage depth 75%-25% =Time to fall to 75% effective depth = Time to fall to 25% effective depth = Void Ratio = V (75%-25%) = a (50%) = t (75%-25%) =SOIL INFILTRATION RATE =

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02	
Length	1.80	m
Width	0.45	m
Depth	2.00	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60	Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90	Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00	Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Depth to	Effective storage depth =	1.41 m
water	75% effective storage depth =	1.06 m
0.59	(ie depth below GL) =	0.94 m
1.35	25% effective storage depth =	0.35 m
1.55	(ie depth below GL) =	1.65 m
1.72	effective storage depth 75%-25% =	0.71 m
1.84		
1.97	Time to fall to 75% effective depth =	0.12 mins
2.01	Time to fall to 25% effective depth =	0.64 mins
	Void Ratio =	40%
	V (75%-25%) =	0.2284 m3
	a (50%) =	3.9825 m2
	t (75%-25%) =	0.52 mins
	SOIL INFILTRATION RATE =	1.84E-03 m/s
	Depth to water 0.59 1.35 1.55 1.72 1.84 1.97 2.01	Depth to waterEffective storage depth = 75% effective storage depth = (ie depth below GL) = 1.351.3525% effective storage depth = (ie depth below GL) = (ie depth below GL) = (ie depth below GL) = 1.721.55effective storage depth 75%-25% = 1.841.97Time to fall to 75% effective depth = Time to fall to 25% effective depth = Void Ratio = V (75%-25%) = a (50%) = t (75%-25%) =SOIL INFILTRATION RATE =

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02	
Length	1.80	m
Width	0.45	m
Depth	2.00	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60	Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90	Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00	Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Time	Depth to	Effective storage depth =	1.39 m
mins	water	75% effective storage depth =	1.04 m
0.00	0.61	(ie depth below GL) =	0.96 m
0.25	1.13	25% effective storage depth =	0.35 m
0.50	1.52	(ie depth below GL) =	1.65 m
0.75	1.64	effective storage depth 75%-25% =	0.70 m
1.00	1.72		
1.25	1.83	Time to fall to 75% effective depth =	0.19 mins
1.50	1.87	Time to fall to 25% effective depth =	0.76 mins
1.75	1.92	Void Ratio =	40%
2.00	1.97	V (75%-25%) =	0.2252 m3
2.25	2.01	a (50%) =	3.9375 m2
		t (75%-25%) =	0.57 mins
		SOIL INFILTRATION RATE =	1.67E-03 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02	
Length	1.80	m
Width	0.45	m
Depth	2.00	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60	Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90	Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00	Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Time	Depth to	Effective storage depth =	1.41 m
mins	water	75% effective storage depth =	1.06 m
0.00	0.59	(ie depth below GL) =	0.94 m
0.25	1.25	25% effective storage depth =	0.35 m
0.50	1.53	(ie depth below GL) =	1.65 m
0.75	1.66	effective storage depth 75%-25% =	0.71 m
1.00	1.72		
1.25	1.85	Time to fall to 75% effective depth =	0.13 mins
1.75	1.91	Time to fall to 25% effective depth =	0.74 mins
2.00	1.99	Void Ratio =	40%
2.25	2.01	V (75%-25%) =	0.2284 m3
		a (50%) =	3.9825 m2
		t (75%-25%) =	0.61 mins
		SOIL INFILTRATION RATE =	1.57E-03 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02	
Length	1.80	m
Width	0.45	m
Depth	2.00	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60	Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90	Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00	Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Time	Depth to	Effective storage depth =	1.40 m
mins	water	75% effective storage depth =	1.05 m
0.00	0.60	(ie depth below GL) =	0.95 m
0.25	1.22	25% effective storage depth =	0.35 m
0.50	1.53	(ie depth below GL) =	1.65 m
0.75	1.69	effective storage depth 75%-25% =	0.70 m
1.00	1.76		
1.25	1.79	Time to fall to 75% effective depth =	0.13 mins
1.50	1.85	Time to fall to 25% effective depth =	0.70 mins
1.75	1.90	Void Ratio =	40%
2.00	1.95	V (75%-25%) =	0.2268 m3
2.25	1.98	a (50%) =	3.9600 m2
2.50	2.01	t (75%-25%) =	0.57 mins
		SOIL INFILTRATION RATE =	1.67E-03 m/s

<u>Scheme</u>	Hempton Road, Deddington
<u>Client</u>	Robert Webb
<u>Job ref.</u>	23933

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.	SA02	
Length	1.80	m
Width	0.45	m
Depth	2.00	m
Ground water level	N/A	
Ground conditions	0.00 - 0.20	TOPSOIL comprising reddish brown, clayey, gravelly, SAND.
	0.20 - 0.60	Reddish brown, clayey, gravelly SAND with a low cobble content.
	0.60 - 0.90	Reddish brown, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.
	0.90 - 2.00	Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Time	Depth to	Effective storage depth =	1.36 m
mins	water	75% effective storage depth =	1.02 m
0.00	0.64	(ie depth below GL) =	0.98 m
0.25	1.12	25% effective storage depth =	0.34 m
0.50	1.48	(ie depth below GL) =	1.66 m
0.75	1.66	effective storage depth 75%-25% =	0.68 m
1.00	1.68		
1.25	1.78	Time to fall to 75% effective depth =	0.18 mins
1.50	1.83	Time to fall to 25% effective depth =	0.75 mins
1.75	1.84	Void Ratio =	40%
2.00	1.93	V (75%-25%) =	0.2203 m3
2.25	1.94	a (50%) =	3.8700 m2
2.50	1.98	t (75%-25%) =	0.57 mins
2.75	2.01		
		SOIL INFILTRATION RATE =	1.66E-03 m/s

Civil Engineering

Drainage

Flood Risk

Transport

Highways

Structures

Geotechnics

Contamination

Sustainability

Noise & Air Quality

Utilities

Geomatics

Leicester Birmingham Milton Keynes Nottingham Leeds

T: 01530 264 753 group@m-ec.co.uk www.m-ec.co.uk

Consulting **Development** Engineers