

British
Geological Survey
NATURAL ENVIRONMENT RESEARCH COUNCIL
© All rights are reserved by the copyright proprietors.
[SP52SE BJ 29 .]

SP52SE29

SP52SE29			
	Depth ft	Thickness m	Depth m
Forest Marble Formation	17.00	5.18	5.18
White Limestone Formation: Bladon Member and			
Ardley Member	49.50	9.91	15.09
Shipton Member	66.50	5.18	20.27
Rutland Formation	90.00	7.16	27.43
Taynton Limestone Formation	102.00	3.66	31.09
Sharp's Hill Formation and 'White Sands'	124.00	6.71	37.80
Northampton Sand Formation	127.00	0.91	38.71
Whitby Mudstone Formation	142.50	4.72	43.43

Stratigraphical classification by M G Sumbler, May 1999.

$$
\begin{aligned}
& \text {, (ForSurbeyuse only) } \\
& \text { Geological } \\
& \text { Classification, SP52SE29 } \\
& \text { Shay rack } \\
& \text { STay reck } \\
& \text { Thack: sandy ceary } \\
& \text { Stae w. Coundr of gry rock } \\
& \text { ccy } \\
& \begin{array}{|l|l|l|}
\hline \text { Thickness } & \text { Depth } \\
\text { Heet Inches } & \text { Feet } & \text { Inches }
\end{array} \\
& \text { … } \quad . .
\end{aligned}
$$

Bore. $140 / 2 \mathrm{ft}$. ; diameter of bore: at top_ 26 ins. ; at bottom. $23 / 2$ ins.
Lengths, diameters, perforations, etc., of lining tubes $24^{\prime \prime}-100^{\prime}, 4 z^{\prime} \times \geq \frac{1}{2}{ }^{\prime \prime}{ }^{\prime}$ Luens nisembed to eretar of bit.

Water struck at depths, below well-top, of (feet)

ADDITIONAL NOTES.

(Attach a tracing from a map, or a sketchmap, if possible.
Level of ground surface above sea-level (O.D.) 260 feet.
SP52SE9
Is well-top at ground level ? $y \leq$ If not, state how far $\begin{aligned} & \text { above } \\ & \text { below }\end{aligned}$ \qquad feet.

Shaft \qquad ft., diameter ft. Details of headings

Bore__f_ ft._ diameter of bore : at top. $\alpha 5$ ins. ; at bottom_ bins. Lengths, diameters, perforations, etc., of lining tubes 感/ $37 / 7 \times 15$ \qquad fore vargleen.

Water struck at depths, below well-top, of (feet) \qquad

ADDITIONAL NOTES.

LOG of STRATA OVERLEAF.

Geological Survey and Museum South Kensington,

London, S.W. 7

(17208) Wt.42901/0877 10,000 2/41 A. E.W.Lti. Gp. 686
BICESTER.
At
Town or Village Bicester. Oxon
County Oxfordshire. Six-inch quarter sheet
For Mr. Air Ministry. Diredtorate of Works

Working Conditions				
Quality of water (atiach copy of analysis if available).				

ADDITIONAL NOTES.
loG of strata overleaf.

(17208) Wt.42001/0877, $10,000 \quad$ 2/41 A. * E.W.Ltu. Gp.686
$\underset{\substack{\text { (For Survecy uso only } \\ \text { GEOLOGICAL }}}{4}$ Classification

If measurements start below ground surface, state how far..

Clay and Limestone Flints
 (very hard)

Limestone Rock.
Hard Clay.
Limestone Rock.
Marble Rock Formations.
Hard Blue clay and flints:
Marble Rock Formation.
Hard Clay and Flints.
Limestone Formation.
Grey shale.
Grey Rock.
Greyshale.
Grey Rock.
Hard Clay.
Grey Shale with hard bands.
Grey Rock.
Hard Clay.
Grey Rock.
Grey Shale.
Hard Clay.
Grey Rock.
Grey Shale.
Blue Rock.
Hard blue Clay with hard bands.
Blue rock.
Greyshale.
Hard lay with hard bands
Dark Grey Rock (not too hard)
Hard sandstone.
Dark Grey Rock.
Hard Sandstone.
Dark Grey Rock.
Sandstone.
Dark Grey Rock.
Sandstone.
Dark Grey Rock.
Sandstone.
Dark grey Rock.
Sandstone.
Hard Clay and Flints. (small)
Clay and flints.
Clay and Claystones.
Blue Lias Clay \& claystones.
Blue lias Clay.
Blue Iias clay and claystones.
Marlstone.
Hard Grey Rock.
Blue Lias Clay
Rock formation.
Conglomeration of ironstone, rock \&
Blue Lias Clay.
Conglomerate rock, Ironstone, Marlstone
Conglomeration of ironstone, marlstone \& clay.
Blue lias clay \& bands of marlstone about every $3^{\prime \prime}$

LeGrand,Sutcliff \& Gell Ltd.,

 Is well-top at ground level ? $y<y$ If not, state how far $\begin{aligned} & \text { above ; } \\ & \text { below ; }\end{aligned}$

Shaft \qquad ft., diameter \qquad ft. Details of headings. \qquad

Bore_ ft. ; diameter of bore : at top.... ins. ; at bottom 6. ins. Lengths, diameters, perforations, etc., of lining tubes w $157 / 2 \times 15 \leq$

Water struck at depths, below well-top, of (feet) \qquad

Quality of water (attach copy of analysis if available) \qquad \square

Well made by
Date of well \qquad
Information from
ADDITIONAL NOTES.
Yid from 25816 ? $137 \% 1000$ r th.

ADDITIONAL NOTES.

LeGrand. Sutcifff \& Gel 7 Lt.入. .

| SP52SE9 [c. 5919 2048] Graven Hill Well (1941) Datum +88 (Ground level) | | | |
| :--- | ---: | ---: | ---: | ---: |
| | Depth $f t$ Thickness m | Depth m | |
| | 128.00 | 39.01 | 39.01 |
| Oxford Clay Formation | 146.00 | 5.49 | 44.50 |
| Kellaways Formation | | | |
| Great Oolite Group and Inferior Oolite Group | 281.00 | 72.24 | 85.65 |
| undifferentiated | 290.00 | 2.74 | 88.39 |
| Whitby Mudstone Formation | | | |

Stratigraphical classification by M G Sumbler, May 1999.
$\frac{210}{75}$
Gowell Farm, near Bicester, $1 \frac{1}{4}$ miles N.W. of Market Place.
Communicated by Mr. Edgar F. Willson, Surveyor to the Urban District Conncil Height`above O.D. 277 feet.

SP52SE5

A pit, 8 feet square and 11 feet deep, was lined with brickwork and floored with concrete 1 ft . 6 in. thick. A steel tube 11 inches diam. was taken to 112 ft . 4 in . from surface, with perforation at 77 feet. No water worth mentioning was met with until 92 feet, when it rose to the surface. At 105 fout the bulk was struck, and overflowed at the rate of 6,000 gallons per hour when not pumping. The water will rise 3 feet above the surface.

				Thit			Dept	In.
	Surface soil		..	1	6			6.
	[Grer rock (Cornbrash)	3	0			6
	Sandy marl $\quad . \quad$ M \ldots	8	0	12		6
Morest	Blue rock (Forest Marble)	3	0	15		6
	Light shale			2	6	18		0
	Limestone	2	0	20		0
	\% White rock	...	\cdots	7	0	$\frac{20}{30}$		${ }_{6}^{6}$
	Grey shale with hard beds	...		12	6	43		
	Grey rock	...		6	0	49		
	Dark shale	1	0	50		0
	Rock	0	6	50		$1 \cdot$
	Blue binds	...		2	0	52		6
	Blue shale	\ldots	1	6	54		0
Great Oolite	Grey rock	\ldots	...	1	0	57		0
84 ft .6 in .	Grey shale	\ldots	\ldots	1	0	58		0
84 ft 6 in .	Grey rock	1	0	59		
	Variegated rick	3	6	62		6
	Grey rock...	3	0	65		
	Dark shale	7	0	72		6
	Rock	2	i	74		
	Blue clay	5	0	79	6	
	Blue rock	2	6	82	0	
	Dark shale with hard beds	3	0	85	0	
	Limestone	1	6	86	6	
	Limestone with shale beds		..	,	0	89	6	
	Blue shale	1	0	90	6	
	Grey sandy shale with water	\ldots	..	2	0	92	6	
	Grey rock	2	6	95	0	
	Dark sandy shale	.	..	2	6	97	6	
	Light sandy shale	-	.	2	0	99	6	
	Grey rock			2	6	102	0	
	Soft rock, water, bulk here	...		6	0	108	0	
Estuarine	Peat		3	109	3	
Beds 4 ft .4 in .	Light sand		0	8			
(penetrated)	Dark clay and sand . \quad.	...		2	4	112	3	
	Rock, 1 inch only into it	...		0	1	112		

by Mr. W. W. Fisher in "The Salinity of Water from the Oolites" The Analyst," February, 1904. See p. 92

Mr. E. Foster Tanner, Clerk to the Urban District Council, has kindly added the following particulars :-
"The deep well pump has been fixed. Motive power supplied by Crossley's 13-h.p. gas engines in duplicate, either capable of driving the pumping plant, which has the capacity for raising 8,000 gallons per hour. The water is pumped into tanks, constructed of steel, on the top of a tower, immediately adjoining the well. The tanks are in duplicate, i.e., an inner aud an outer tank Their combined holding capacity is about 45,000 gallons. to bottom of tanks, 40 feet. There is a 7 -inch main from the from ground the town, and the distribution mains in the town are respectively 6 -inch, 5 -inch 4 -inch, and 3 -inch. The cost of the works was $£ 7,000$,"

O.D. giram as +287 ly 94.T. Smith Eaq. Surwayor biceater U.D.C. See
 Letter in 9509/28.
 Bore caved in; prump removed.

Publiched in
 'The Water Supply
 ofi Oxfordshire',
 Page 29,30

Yield. $-140,000$ to 212,000 gallons per day. Water reduced by 14 days test-pumping to 70 feet from surface, but rose again to surface in two hours after cessation of pumping.
Report on analysis of water received 30th September, 1905, at end of pumping test. By Mr. W. W. Fisher, F.I.C.
Description.-The sample is slightly cloudy and contains a little sand. The residue left on evaporation is alkaline and contains a little sodium carbonate.

Odour.-None.
Appearance in two-foot tube.-Pale-yellowish.
The results of the analysis are stated in grains per gallon.
Total dissolved solid matter
Chlorine in chlorides
$\begin{array}{lll}\text {... } & \text {... } & \\ \text {... }\end{array}$... $26 \cdot 6$
Ammonia, free and saline
$\begin{array}{cccc}\ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}$... $1 \cdot 1$
Nit" albuminoid
$\begin{array}{llll}\ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}$
in nitrates
in nitrites
$\begin{array}{ll}. . & 028 \\ . . & 003 \\ & 014\end{array}$
in nitrites
... 0
Oxygen required to oxidise organic matter (in $\dddot{3}$ hours) $\quad \cdots \quad . . .007$
Hardness in Clark's
Hardness in Clark's degree
$14 \cdot 5$
Remarks.-The total dissolved solid constituents are normal for water from the Oolite. The chlorides are not in excess of the natural amount ; the nitrates are small, and the proportion of organic matter is extremely small. The water is of a moderate degree of hardness.

Publiched in

'The Wrior Supry

of Uxhorcishre',
Pages 92,93
C. ISLER \& Co., Ltd., ARTESIAN \& CONSULTING WELL ENGINEERS, bear Lane, southwark, s.e.1.

Telegraphic Address: "ISLER, LONDON." Telephone No.: Hop 4460 (3 Lines).

व्ठ्त
Θ
Grow.

BIRMINGHAM BRANCH: 58 Summer Row.
CHART
showing the Soils passed through at M eases The Ruccester Patornorles.

C．ISLER \＆Co．，Ltd．， ARTESIAN \＆CONSULTING WELL ENGINEERS， bear Lane，southwark，s．e．1．

Telegraphic Address：＂ISLER，LONDON．＂
Telephone No．：Hop 4460 （3 Lines）．
QB
BIRMINGHAM BRANCH： 58 Summer Row
CHART
Shoring the Soils passed through at

custer TPatetuorks
Howell Harm Bicestar
Frey Sandy Shale（with water）
Frey Rock．
Dark Sandy Shale
Right．
say pock．
Soft Rook
peat
Light Sand
Dark Clay a fund rock．
$15^{\prime 6}$＂of $15^{\prime \prime}$ so below
97 fe I＂Iukes luralicind sup face 15 ． $10 / \mathrm{m}^{\prime \prime}$ ．gre blow perforated from 17 ft below perforations 发＂or 3／2＂pitch covered with fume mesh brass wire gauge

W． 4 suaflow
12，000 ap at pul of Toft Sug－tiell fends．

Bond by T．Whom：

Name or Description of
Authority or Undertaking.
Postal Address

The Causeway,

Bicester, Oxen.

(A) OVER-GROUND WATER.
(I) (a) Do you take systematic records of levels of water in :-
(1) rivers
(2) streams ...
(3) reservoirs
(4) lakes
(5) canals or navigable rivers
(b) If so, please give a short description of the method used.
(c) How often are the readings taken?
(d) Exact points at which the records are taken. (A map or sketch would be helpful.)
(e) Have the levels been related to Ordnance Datum Level or to some other standard (in the latter case please specify standard)?
(f) Are all the levels (e.g., highest and lowest) covered satisfactorily by the records taken?
(g) Are arrangements made for extra readings during rise and fall of floods, etc.?
(II) What types of systematic records of discharge other than records of levels are kept as regards :-
(1) rivers
(2) streams
(3) reservoirs
(4) lakes
(5) canals or navigable waterways

Form K268
(385) Wt. 31991/G5745 9m 3/35 S.E.R. Ltd. Gp. 662,
(III) (a) Have measurements been made from which the data for levels can be converted to

(2) reservoirs
(3) lakes
(4) canals or navigable waterways
(b) If so, how have these measurements been made (e.g., by current meters, velocities of floats, surveys of sections, calibration of weirs, records of water used for locking, etc.)?
(IV) (a) Are records kept in the case of springs breaking overground of the amount of water yielded?
(b) If so, what form of recording is used?
(c) How often are readings taken?
(d) Exact location of the spring. (A map or sketch would be helpful.)
(V) Since when have the records under I, II, III and IV been kept?
(VI) Are past records available?
(VII) Remarks.
(Please indicate here any further information or particulars which may be thought likely to assist in the survey.)

(In each case please state whether a well and/or boring is in question.)
SP52SE5
I. General.'

1. Exact site of well or boring
(A map or sketch showing position would be useful.)
Well and boring at Gowell Farm, Near Bicester, Oxon.
2. Surface level of ground above Ordnance Datum
277 ft.
3. Date of construction
4.

Wells.
4. Depth of well from surface level of ground (i.e., 2 above). If top of well is below the surface level of the ground (i.e., 2 above) state how much
268. 25 ft .
5. Depth of floor of galleries at site of well: also dimension and

None. ft.

Borings.
6. Depth of boring from surface level of ground (i.e., 2 above). If boring is in bottom of well, state depth of well

7. (a) Diameter of top of boring (8.0'I.b.s... to . 97^{\prime}.b.s..)

11 in.
(b) Diameter of bottom of boring... (97.! b.s. to $\left.11.2^{\prime} 0^{\prime \prime} \ldots \mathrm{b} . \mathrm{s}.\right)$
$10 \frac{1}{2} \mathrm{in}$.
8. Tubed from top of boring to \qquad full depth. :
9. Lining tubes perforated at depths of $\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad 0^{\prime \prime} \quad$ ft.
10. Water struck during boring at depths of

105 ft .
11. What was rest level on completion of boring? $3^{\prime} 0^{\prime \prime}$ above surface.

Wells and Borings.
12. Is the water raised by pump or air lift?

Pump.
13. Depth from top of well or boring to bottom of suction pipe

95 ft
II. If systematic measurements of water levels are made, state whether these include :-
(a) Pumping levels.........75 ${ }^{\prime} 0^{\prime \prime}$ \qquad (b) Rest levels ... overflowed.
Test $70^{\prime \prime}$
(c) Time of recovery to rest level on cessation of pumping. ... 4 hours.... September.,..1934. Test 2 hours.
(d) Changes in pumping level, if rate of pumping is altered. .. Not. altered.

Also state: (e) at what intervals records are taken (i.e., daily, weekly,

Please furnish a specimen graph of records taken over as long a period as available (up to 1 year).

Taken by hour's pumping. (
III. If measurements are made only occasionally, please indicate what is, or has been, done in this respect and furnish examples of any graphs or figures available.

Test taken twice in one day in July last - average per hour 6563 gallons Test taken twice in one day in March last - 7854 gallons.
IV. Yieids.
(1) Number of gallons pumped per hour At. present. 7854 . gallons.
(2) Is pumping continuous? No.
(3) If not, how many hours pumping per day? Average -. 9 hours.
(4) Maximum daily yields available (Test 140,000 to 212,000) in 1905. See above Estimated 300,000 gallons per day. Based on actual tests Further test proposed in near future.
V. If a section or record of strata can be given please attach to this form.

Herewith.
VI. (1) If a chemical analysis can be given please attach.
(2) If not state hardness (1920)
. .15 .5
(3) For what purpose is the water used?

Mainly Domestic.

Ir" irciz Isler Eebi 42

Tab, ment No $121135 / 1$

Thal solids
Chlome

316 pato/ 100,000

$$
2 z+
$$

No 3a funtigi at 6740 gph
That sthids
Chlonic
39.6 farto/100, 000
3.2

Sohds as alove

The erhids
Cllorme

No 4 mining at 7020 ph

Shils as alove.

165 miming on 6420 pph

Thal schids
Cllome
Tral sthids
Clforine
Tolide to atousc
40.6 parte/ 100,000

23

No 4a fumyinq at 7020 ploh

Salorabry xfont ro $7135 / 2$
smate puseter grom Piester water whoks. zier betio935.
Resulto i Dito ter 100,000 ($D . W$. pmpl)
sflearance white shofity prague

$$
\begin{aligned}
& \text { Fhor Bull + Grpden }
\end{aligned}
$$

Battrighaical Bxamistion
 $" . . "$ ". "Gpor. " $37^{\circ} \mathrm{C} \cdot 48$.
B. oli alsent in 100 CLC

British
Geological Survey
NATURAL ENVIRONMENT RESEARCH COUNCIL
© All rights are reserved by the copyright proprietors.
[SP52SE BJ 5 .]

SP52SE5
(219/75(n)
 Height above O.D. 777 feet. $(84 \cdot 42 \mathrm{~m})$
A pit, 8 feet square and 11 feet deep, was lined with brickwork and floored with concrete 1 ft .6 in , thick. A steel tube 11 inches diam. was taken to 112 ft . 4 in. from surface, with perforation at 77 feet. No water worth mentioning was met with until 92 feot when it rose to the surface. At 105 fuet the bulk was struck, and overflowed at the rate of 6,000 gallons per hour when not pumping. The water will rise 3 feet above the surface.

Analysis by Mr. W. W. Fisher in "The Salinity of Water from the Oolites" "The Analyst," Pebruary, 1904. See p. 92.

Mr. E. Foster Tanner, Olerk to the Urban District Council, has kindly added the following particulars :-
"The deep well pump has been fixed. Motive power supplied by Crossley's 13-h.p. gas engines in duplicate, either capable of driving the pumping plant which has the capacity for raising 8,000 gallons per hour. The water is pumped into tanks, constructed of steel, on the top of a tower, immadiately adjoining the well. The tanks are in duplicate, i.e., an inner and an outer tank. Thoir combined holding capacity is about 45,000 gallons. Helght from ground to bottom of tanks, 40 feet. There is a 7 -inch main from the water tower to the town, and the distribation mains in the town are respectively 6 -inch, 5 -inch, 4 -inch, and 3 -inch. The cost of the works was $£ 7,000$."


```
Lever in 9509/28.
Bore cared ni; pump removed.
```


Publirhre in

C. ISLER \& Co., Ltd., ARTESIAN \& CONSULTING WELL ENGINEERS, bear Lane, southwark, s.e.1.

Telegraphic Address: "ISLER, LONDON."
Telephone No.: Hop 4460 (3 Lines).
बक्ठ
BIRMINGHAM BRANCH: 58 Summer Row.
CHART
showing the Soils passed through at

Well st Gowell Farth. Preand iapply, 1909.
Yield.-140,000 to 212,000 gallons per day. Water reduced by 14 days testopamaping to 70 feat from suxface, but rose again to surface in swo hoars after ceksation of pumping.
Report on analyais of watar received 30th Septamber, 1905, 3t ond of punping test. By Mr, W. W, Fisher F.L.C.
Descriphion.-Tho sample is alightly cloudy and containg a little sand. The residue left on erajoration is alkoline and contanise a littlo sodium carbonate.

Othour.-None.
Appcararce in thoo-foot tuda.-malo-yellowish.
The kesults of the analysis are stated in graing per gullon.
Total dissolved aclid matter
Chloring in chlordos
Ammonit, free and raline
albuminoid
Nitrogen in nixtratas
in nitritos

\cdots	\cdots	\ldots	+	\ldots	266
\cdots	\cdots	\cdots	\ldots	\ldots	$1 \cdot 1$
\cdots.	\cdots	\cdots	\ldots	\ldots	028
.	\cdots	\ldots	\ldots	\ldots	003
.	\cdots	\ldots	\ldots	+014	

Oxyen raquired to
Haydagss in Clart's degree are ingall, ind the chlordes are not in oxcens of the natural amount ; the nitruted are suall, and the proportion of organic mittor is extremoly small, The water

Publiched ir
-The feter Gupy y of Ontcrashire'.

Pages $5 z=3$

SP52SE5

Ft, ins

1. 6
2. 0
80.0.
3. 0 .
4. 6
5. 0
6. 6
7. 0
8. 6
9. 0
10. 0

6
2. 0

1. 6
2. 0
3. 0
4. 0
5. 6
6. 0
7. 0
8. 0
9. 0 Blue Clay.
10. 6 Blue Rock.
11. 0 Blue Shale with hard ribs.
12. 6 Limestone.
13. 0 Limestone with Shale beds.
14. 0 Blue Shale.
15. 0 Grey Sandy Shale.
16. 6 Grey Rock.
17. 6 Dark Sandy Shale.
18. 0 Light Bandy Shale.
19. 6 Grey Rock.
20. 0 Soft Rock.
21. 3 Peat.
light Sand
Dark Clay and Sand, Rock.

See SPE S SE /S

SP52SE5

SP 52 SE/6 [5851 2319] Bicester Station Well (19-m) Datum +77.7 (Ground level)

	Depth ft	Thickness m	Depth m
	8.50	2.59	2.59
Cornbrash Formation			
Forest Marble Formation and White Limestone Formation: Bladon Member	29.75	6.48	9.07
Ardley Member and Shipton Member	76.00	14.10	23.16
Rutland Formation and Taynton Limestone Formation	100.00	7.32	30.48
Sharp's Hill Formation, 'White Sands' and Northampton Sand Formation	120.00	6.10	36.58

Stratigraphical classification by M G Sumbler, May 1999.

British

