

JN0591 Underpass, Bicester

JN0591 Underpass, Bicester

JN0591 Underpass, Bicester

BH3 GL-2.8m	BH3 2.8-5.8m

BH4 10.0-12.9m	BH4 12.9-15.0m

Desk Study and Site Investigation Report

Underpass, Bicester

JN0591

APPENDIX B – GEOTECHNICAL LABORATORY RESULTS

SUMMARY OF CHEMICAL TESTS ON SOIL

Borehole No	Sample No	Depth (m)	Туре	рН	Total (Acid- soluble) SO ₄	Water- Soluble (2:1 extract) SO ₄	Total Sulphur	Water Soluble Chloride	Water Soluble Nitrate	Mg	Organic Content	Carbonate Content
					(%)	(g/L)	(70)	('''9/'L')	(····9/ L)	(g/Ľ)	(70)	(70)
BH1	-	9.00	D	7.8	-	1.3	-	-	-	-	-	-
BH2	-	5.20	D	8.1	-	0.2	-	-	-	-	-	-
BH4	-	11.40	D	7.7	-	2.3	-	-	-	-	-	-
				-								
			_									
Analysis Performed b	y: i2 Analytical L	td, 7 Woodshots M	eadow, C	roxley C	Green, W	atford, WD1	8 8YS					
Chacked and Approve	d by Broject No.	mbor:										
		IDEI.		(GEO /	21079						
JS	Project Nar	me:		•	5207						G	EOLABS
J Sturges (Ops Mg	r)		UN	DERF	PASS	AT BICE	STER					
Date: 15/04/201	4		P	rojec	t num	ber JN0	591					

DETERMINATION OF POINT LOAD STRENGTH ON ROCK

		Sampl	e details]										
Borehole Re	f. Sample Ref.	Depth	Description	Test	t type an	Sample width	Platen se (m	eparation m)	Moisture Content	Failure Load	Equiv. Diameter	I _s P/De²	Correction	Point Load Index I _{s(50)}
		(11)		ui	W (m)		Start D	End D'	(%)	P (kN)	D _e (mm)	(MPa)	Faciol F	(MPa)
BH3	-	4.30 - 4.50	Strong grey massive fine to medium grained LIMESTONE. Fresh. Strong and sustained effervescence to HCI.	А	R	76.7	46.6	37.1	n/a	20.30	60.2	5.60	1.09	6.09
BH2	-	9.20 - 9.40	Strong grey massive fine to medium grained LIMESTONE. Fresh. Strong and sustained effervescence to HCI.	D	R	89.3	89.3	86.4	n/a	30.00	87.8	3.89	1.29	5.01
BH1	-	13.50	Weak dark grey massive fine to medium grained MUDSTONE. Fresh. Strong and sustained effervescence to HCI.	D	R	89.7	89.7	82.0	n/a	2.76	85.7	0.38	1.27	0.48
BH4	-	15.00	Weak dark grey massive medium to coarse grained MUDSTONE. Fresh. Strong and sustained effervescence to HCI.	D	R	89.1	89.1	85.6	n/a	4.04	87.3	0.53	1.29	0.68
Test type and o	lirection: D - Diamet	ral A - Axial B	- Block L - Irregular lump Pd - Perpendicular to	planes	of weakne	ss R - Ran	dom or unkn	own orientat	ion PI - Para	allel to plane:	s of weakness			
Checked and Approved by Project Number:														
С	.C.	Project Name:			GEC	0 / 21079	Ð						[4	GEOLABS
C Clergeaud (C Clergeaud (Snr. Geologist) UNDERPASS AT BICESTER Project number IN0591													
Date:	15/04/2014	Project number JN0591												

 Test Report by GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : ST Consult, Twigdens Barn, Brixworth Road, Creaton, Northampton NN6 8NN

ISRM : 1981 : Part 2 Suggested Methods Uniaxial Compressive Strength of Rock Materials

SUMMARY OF ROCK TESTING

Γ			Samp	le details		Dei	nsity		Uniaxial C	compres	sion Test				
	Borehole Ref.	Sample Ref.	Depth (m)	Description	MC (%)	Bulk (Mg/m³)	Dry (Mg/m³)	Mean af Diameter (mm)	ter prep. Height (mm)	H/D Ratio	Load at Failure (kN)	UCS (MPa)	Failure Sketch	R	emarks
ſ	BH2	-	14.00 - 14.30	Medium strong grey massive medium to coarse grained WACKESTONE. Fresh. Strong and sustained effervescence to HCL	6.3	2.44	2.30	89.58	288.26	3.2	89.8	14.2	hard	Sample failed joint, tight ro	along a subvertical bugh planar clean.
	BH1	-	5.00	Medium strong grey massive medium to coarse grained MUDSTONE. Fresh. Strong and sustained effervescence to HCL	3.9	2.56	2.46	89.62	231.62	2.6	151.8	24.1		Sample failed joint, tight to o filled wi	along a subvertical open smooth planar ith CALCITE.
	BH4	-	8.50 - 8.80	Medium strong grey massive medium to coarse grained LIMESTONE. Fresh. Strong and sustained effervescence to HCL	5.6	2.54	2.41	89.54	275.72	3.1	100.6	16.0			
	Checked and	Approved by	Project Number:		GE	O / 210	79								
C.C. Project Name: C Clergeaud (Snr. Geologist) Date: 15/04/2014 Pr					ERPAS	SS AT I umber	BICEST JN059	TER 1							GEOLABS) [®]

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : ST Consult, Twigdens Barn, Brixworth Road, Creaton, Northampton NN6 8NN

		Te	Atte	rberg ut in acco	Limits	Test Re	esult Su 2:1990(2003	mmary 3) cl. 3.2, 4.2	Sheet 2, 4.3, 5.3 & 5.4
Proje	ect No :	JN0591		Chec	ked By :	AM		Date:	3-Apr-2014
Proje	ect Name :	Underpa	ass, Under	pass at l	Bicester				
Clien	t :	A2 Dom	ninion						
Plot No	TH No.	Depth	pth Moisture Liqu Content Lin		Plastic Limit	Plasticity Index	Class- ification	% Passing 425µm	Visual Description
		(m)	(%)	(%)	(%)	(%)		(%)	
1	TP1	1.00	21.9	49	16	33	СІ	86	Firm, high strength, yellow brown mottled grey, calcareous, sandy CLAY with frequent, fine to medium, off white calcareous gravel.
2	TP2	0.50	26.4	53	20	33	СН	96	Firm, high strength, yellow brown, calcareous, sandy CLAY with occasional fine to medium limestone gravel and roots.
3	TP4	0.35	25.8	56	21	35	СН	96	Firm, high strength, olive brown veined grey, calcareous CLAY with occasional fine to medium white calcareous gravel.
4	TP6	0.30	19.0						
5	TP9	0.30	22.2	47	24	23	СІ	72	Brown, very sandy CLAY with frequent limestone gravel and rootlets.
6	TP11	0.36	19.4						
7	TP13	0.36	19.5						
8	TP17	1.30	28.5	68	23	45	СН	96	Firm, high strength, olive brown veined grey, calcareous CLAY with frequent fine to medium white calcareous gravel.

Desk Study and Site Investigation Report

Underpass, Bicester

JN0591

APPENDIX C – CONTAMINATION LABORATORY TEST RESULTS

Chris Nolan ST Consult Ltd Twigden Barns Brixworth Road Creaton Northamptonshire NN6 8NN

t: 01604 500020

f: 01604 500021

e: cnolan@stconsult.co.uk

Project / Site name:	Bicester	Samples received on:	21/03/2014
Your job number:	JN0591	Samples instructed on:	21/03/2014
Your order number:		Analysis completed by:	01/04/2014
Report Issue Number:	1	Report issued on:	01/04/2014
Samples Analysed:	21 soil samples		

Signed:

TPID

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Project / Site name: Bicester

Lab Sample Number				325360	325361	325362	325363	325364
Sample Reference				TP3	TP4	TP5	TP14	TP15
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.15	0.60	1.00
Date Sampled				17/03/2014	17/03/2014	17/03/2014	18/03/2014	18/03/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditatior Status					
Stana Cantant	07	0.1	NONE	. 0.1	. 0.1	- 0.1	. 0.1	. 0.1
Stone Content	%	0. I	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	%	N/A	NONE	17	13	19	12	21
Ashastas in Sail	KQ	0.001	INUNE	I.Z	1.4 Not detected	I.J Not datastad	I.Z	U.97
Aspestos In Soli	Type	N/A	150 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
σH	pH Units	N/A	MCERTS	7.8	7.9	6.8	7.5	7.5
Total Cvanide	ma/ka	1	MCERTS	< 1	< 1	< 1	< 1	1
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.018	0.029	0.034	0.045	0.19
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	18	29	34	45	190
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0090	0.015	0.017	0.023	0.093
Sulphide	mg/kg	1	MCERTS	2.9	7.7	6.0	4.2	19
Loss on Ignition @ 450°C	%	0.2	MCERTS	7.7	6.9	8.7	4.7	27
Total Phenols								
Total Phenois (monohydric)	mg/kg	2	MCERIS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	0.38
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	0.69
Pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	0.58
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	0.44
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.46
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	0.47
Benzo(k)fluorantnene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	0.29
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	0.33
Dibenz(e, b)enthreesene	mg/kg	0.2	MCEDIC	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	mg/kg	0.2	MCEDTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
benzo(gni)pei yiene	nig/kg	0.05	WIGER 13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	3.6
Heavy Metals / Metalloids		4	MOERTO	20	45	10	10	20
Arsenic (aqua regia extractable)	mg/kg	1	MCERIS	20	15	18	12	38
Caumium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	< 0.2	3.4
Coppor (aqua regia extractable)	m=//-=	1	MCEDIC	33	10	22	C1 40	34 1700
Load (aqua rogia oxtractablo)	mg/kg	2	MCEDTS	27	∠4 ¢0	00	04	1700
Mercury (aqua regia extractable)	mg/kg	∠ 3	MCEDTS	< 0.3	< 0.3	< 0.3	< 0.3	400
Nickel (aqua regia extractable)	ma/ka	2	MCEDTS	25	18	24	17	68
Selenium (aqua regia extractable)	ma/ka	1	MCEDTS	< 1 0	< 1.0	< 10	< 10	< 1.0
Zine (aqua regia extractable)	mg/kg	2	MCEDTS	50	< 1.0 E1	76	70	2400

Project / Site name: Bicester

Lab Sample Number				325360	325361	325362	325363	325364
Sample Reference				TP3	TP4	TP5	TP14	TP15
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.10	0.10	0.15	0.60	1.00
Date Sampled		17/03/2014	17/03/2014	17/03/2014	18/03/2014	18/03/2014		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-			-
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: Bicester

Lab Sample Number				225245	225266	225267	225260	225260
Sample Reference				320300 TD16	323300 TD14	323307 TD17	323300 TDO	323309 TD10
Sample Number				Nono Supplied	Nono Supplied	Nono Supplied	Nono Supplied	Nono Supplied
Denth (m)				2 40			0 10	
Data Sampled				18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	32	8.0	19	23	27
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.1	1.4	0.83
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	_							
nH	nH Units	N/A	MCEDTS	_	7.6	7.5	75	7.4
Total Cvanide	ma/ka	1	MCERTS	-	< 1	< 1	< 1	1
Water Soluble Sulphate (Soil Equivalent)	a/l	0.0025	MCERTS	-	0.037	0.028	0.036	0.20
Water Soluble Sulphate as SO_4 (2:1)	mg/kg	2.5	MCERTS	-	37	28	36	200
Water Soluble Sulphate (2:1 Leachate Equivalent)	a/l	0.00125	MCERTS	-	0.018	0.014	0.018	0.10
Sulphide	ma/ka	1	MCERTS	-	6.5	2.6	3.9	14
Loss on Ignition @ 450°C	%	0.2	MCERTS	-	25	8.5	12	23
	•							
Total Phenois		2	MCEDIC		. 2.0	. 2.0	. 2.0	. 2.0
Total Phenois (mononydric)	mg/kg	2	MCERIS	-	< 2.0	< 2.0	< 2.0	< 2.0
Speciated BAHs								
Nanhthalana	malka	0.05	MCEDIC		< 0.05	< 0.0F	< 0.0F	< 0.05
	mg/kg	0.05	MCEDIC	-	< 0.05	< 0.00	< 0.03	< 0.03
	mg/kg	0.2	MCEDTS	-	0.95	< 0.20	< 0.20	< 0.20
Fluorene	mg/kg	0.1	MCERTS		0.15	< 0.10	< 0.10	< 0.10
Phenanthrone	mg/kg	0.2	MCERTS	_	17	< 0.20	< 0.20	0.83
Anthracene	mg/kg	0.2	MCERTS	_	3.6	< 0.20	< 0.20	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	-	22	0.54	< 0.20	12
Pyrene	ma/ka	0.2	MCERTS	-	15	0.47	< 0.20	0.91
Benzo(a)anthracene	ma/ka	0.2	MCERTS	-	9.2	0.32	< 0.20	0.60
Chrvsene	ma/ka	0.05	MCERTS	-	8.2	0.34	< 0.05	0.80
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	-	8.9	0.34	< 0.10	0.69
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	-	4.2	< 0.20	< 0.20	0.32
Benzo(a)pyrene	mg/kg	0.1	MCERTS	-	7.0	0.26	< 0.10	0.62
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	-	3.5	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	-	0.66	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	3.6	< 0.05	< 0.05	< 0.05
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	-	100	2.4	< 1.6	6.0
Heavy Metals / Metalloids		1	1					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	9.5	21	18	68
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	< 0.2	1.5
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	8.7	26	26	42
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	33	32	27	230
Lead (aqua regia extractable)	mg/kg	2	MCERTS	-	93	4/	39	/80
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	< 0.3	< 0.3
NICKEI (aqua regia extractable)	mg/kg	2	MCERTS	-	13	24	26	9/
Selemium (adua regia extractable)	mg/kg	2	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
zinc (aqua regia extractable)	тту/ку	2	IVICERIS	-	40	07	/0	970

Project / Site name: Bicester

Lab Sample Number				325365	325366	325367	325368	325369
Sample Reference				TP15	TP16	TP17	TP9	TP12
Sample Number				None Supplied				
Depth (m)				2.40	0.35	0.20	0.10	0.42
Date Sampled				18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					_			
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	7.3	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	72	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	640	-	-	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	720	-	-	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	24	-	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	200	-	-	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	230	-	-	-	< 10

Project / Site name: Bicester

Lab Causala Nasakan		005070	005071	205.270	005070	005074		
				325370	325371	325372	325373	325374
Sample Reference				IP12	IP13	WLS1	WLS3	WLS4
Sample Number				None Supplied				
Depth (m)				1.50	0.15	0.15	0.60	0.30
Date Sampled				18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014
lime laken	-			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	21	14	12	12
Total mass of sample received	kg	0.001	NONE	0.48	1.1	1.7	1.1	1.1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-	-	-					
На	pH Units	N/A	MCERTS	7.7	7.7	7.6	8.2	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.042	0.024	0.021	0.023	0.023
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	42	24	21	23	23
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.021	0.012	0.011	0.012	0.012
Sulphide	mg/kg	1	MCERTS	7.7	3.2	4.9	2.8	2.5
Loss on Ignition @ 450°C	%	0.2	MCERTS	3.3	11	8.6	8.0	5.9
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	0.28	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	0.50	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	0.43	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	0.28	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.34	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	< 1.6	1.8	< 1.6	< 1.6
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	ma/ka	1	MCERTS	23	17	16	23	17
Cadmium (aqua regia extractable)	mq/kq	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.6	25	20	20	15
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	23	39	25	18
Lead (aqua regia extractable)	mg/kg	2	MCERTS	12	36	39	34	19
Mercury (aqua regia extractable) mg/kg 0.3 MC		MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	27	24	20	29	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	37	64	65	61	43

Project / Site name: Bicester

Lab Comula Number				225270	005071	225272	225272	225274
Lab Sample Number				325370	325371	325372	325373	325374
Sample Reference				TP12	TP13	WLS1	WLS3	WLS4
Sample Number				None Supplied				
Depth (m)				1.50	0.15	0.15	0.60	0.30
Date Sampled				18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014
Time Taken				None Supplied				
Accreditation Status (Soil Analysis)								
Monoaromatics								
Benzene	µg/kg	1	MCERTS	-	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: Bicester

Lak Causela Number			005075	00507/	005077	005070	005070	
				325375	325376	325377	325378	325379
Sample Reference				WLS4	TP10	IPT1	TP5	IP3
Sample Number				None Supplied				
Depth (m)				3.00	0.35	1.30	0.35	0.20
Date Sampled				18/03/2014	18/03/2014	18/03/2014	17/03/2014	17/03/2014
Time Taken	-	1		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	14	16	18	17
Total mass of sample received	ka	0.001	NONE	1.2	2.0	0.38	2.0	1.7
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	-	-	-
General Inorganics								
pH	pH Units	N/A	MCERTS	7.9	8.2	8.1	8.1	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-	-	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.18	0.020	0.15	0.071	0.021
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	180	20	150	71	21
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.091	0.010	0.074	0.036	0.011
Sulphide	mg/kg	1	MCERTS	28	-	-	-	-
Loss on Ignition @ 450°C	%	0.2	MCERTS	2.4	-	-	-	-
Total Phenois								
Total Phenols (monohydric)	MCERTS	< 20	_	_	_	_		
Total Hierois (Honoriyane)	mg/kg	2	MOLITI	\$ 2.0				
Speciated PAHs								
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	_	-	-	_
Acenanhthylene	mg/kg	0.00	MCERTS	< 0.00	_	_	_	_
Acenaphthene	ma/ka	0.2	MCERTS	< 0.10	_	-	-	_
Fluorene	ma/ka	0.2	MCERTS	< 0.20	_	-	-	_
Phenanthrene	ma/ka	0.2	MCERTS	< 0.20	_	-	-	_
Anthracene	ma/ka	0.1	MCERTS	< 0.10	-	-	-	_
Fluoranthene	ma/ka	0.2	MCERTS	< 0.20	-	-	-	_
Pyrene	ma/ka	0.2	MCERTS	< 0.20	-	-	-	_
Benzo(a)anthracene	ma/ka	0.2	MCERTS	< 0.20	-	-	-	_
Chrysene	ma/ka	0.05	MCERTS	< 0.05	-	-	-	_
Benzo(b)fluoranthene	ma/ka	0.1	MCERTS	< 0.10	-	-	-	_
Benzo(k)fluoranthene	ma/ka	0.2	MCERTS	< 0.20	-	-	-	_
Benzo(a)pyrene	ma/ka	0.1	MCERTS	< 0.10	-	-	-	_
Indeno(1,2,3-cd)pyrene	ma/ka	0.2	MCERTS	< 0.20	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
	• 0 0							
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	< 1.6	-	-	-	-
	ngrig	1.0	MOLITO					
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	7.2	-	-	-	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Chromium (agua regia extractable)	mg/kg	1	MCERTS	12	-	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	-	-	-	-
Lead (aqua regia extractable) mg/kg 2 Mg		MCERTS	4.9	-	-	-	-	
Mercury (aqua regia extractable) mg/kg 0.3 MCERT		MCERTS	< 0.3	-	-	-	-	
Nickel (agua regia extractable)	mg/kg	2	MCERTS	15	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	18	-	-	-	-

Project / Site name: Bicester

Lab Sample Number				325375	325376	325377	325378	325379
Sample Reference				WLS4	TP10	TP11	TP5	TP3
Sample Number				None Supplied				
Depth (m)				3.00	0.35	1.30	0.35	0.20
Date Sampled	Date Sampled					18/03/2014	17/03/2014	17/03/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	-
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic > EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	-

Project / Site name: Bicester

Lab Sample Number				325380		
Sample Reference				TP8		
Sample Number				None Supplied		
Depth (m)				0.30		
Date Sampled				17/03/2014		
Time Taken				None Supplied		
			Þ			
	_	de L	ω ^Ω Ω			
Analytical Parameter	Uni	tec	tat			
(Soil Analysis)	ស	tion	us			
		3	<u>o</u>			
Stone Content	%	0.1	NONE	< 0.1		
Moisture Content	%	Ν/Δ	NONE	21		
Total mass of sample received	ka	0.001	NONE	2.0		
Ashestos in Soil	Type	N/A	ISO 17025	-		
	Type	14/71	150 17025			
General Inorganics						
рН	pH Units	N/A	MCERTS	8.0		
Total Cyanide	mg/kg	1	MCERTS	-		
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.053		
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	53		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.026		
Sulphide	mg/kg	1	MCERTS	-		
Loss on Ignition @ 450°C	%	0.2	MCERTS	-		
Total Phenois						
Total Phenols (monohydric)	MCERTS	-				
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-	 	
Acenaphthylene	mg/kg	0.2	MCERTS	-		
Acenaphthene	mg/kg	0.1	MCERTS	-		
Fluorene	mg/kg	0.2	MCERTS	-		
Phenanthrene	mg/kg	0.2	MCERTS	-		
Anthracene	mg/kg	0.1	MCERTS	-		
Fluoranthene	mg/kg	0.2	MCERTS	-		
Pyrene	mg/kg	0.2	MCERTS	-		
Benzo(a)anthracene	mg/kg	0.2	MCERTS	-		
Chrysene	mg/kg	0.05	MCERTS	-	 	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	-	 	
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	-	 	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	-	 	
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	-		
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERIS	-		
Tetel DALL						
Speciated Total EDA 16 DALLA		1.4	MOEDTO			
Specialeu Tolai EPA-T6 PARS	1.0	-				
Heavy Metals / Metalloids						
Arsonic (agua rogia ovtractablo)	ma/ka	1	MCEDTS			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS			
Chromium (aqua regia extractable)	ma/ka	1	MCEDTS			
Copper (aqua regia extractable)	ma/ka	1	MCERTS			
Lead (aqua regia extractable)	ma/ka	2	MCERTS	-		
Mercury (aqua regia extractable)	ma/ka	0.3	MCERTS	-		
Nickel (agua regia extractable)	ma/ka	2	MCERTS	-		
Selenium (agua regia extractable)	ma/ka	1	MCERTS	-		
Selenium (aqua regia extractable) mo		2	MCERTS	-		

Project / Site name: Bicester

Lab Sample Number				325380				
Sample Reference				TP8				
Sample Number				None Supplied				
Depth (m)	Depth (m)							
Date Sampled		17/03/2014						
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis)								
Monoaromatics						-	-	-
Benzene	µg/kg	1	MCERTS	-				
Toluene	µg/kg	1	MCERTS	-				
Ethylbenzene	µg/kg	1	MCERTS	-				
p & m-xylene	µg/kg	1	MCERTS	-				
o-xylene	µg/kg	1	MCERTS	-				
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-				

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-		

Project / Site name: Bicester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Stone content of

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
325360	TP3	None Supplied	0.10	Brown topsoil and clay with gravel and vegetation.
325361	TP4	None Supplied	0.10	Brown topsoil and clay with gravel and vegetation.
325362	TP5	None Supplied	0.15	Brown topsoil and clay with gravel and vegetation.
325363	TP14	None Supplied	0.60	Light brown topsoil and clay with gravel and vegetation.
325364	TP15	None Supplied	1.00	Brown topsoil and sand with gravel.
325365	TP15	None Supplied	2.40	Black topsoil and gravel with vegetation.
325366	TP16	None Supplied	0.35	Brown topsoil and clay with gravel and vegetation.
325367	TP17	None Supplied	0.20	Brown topsoil and clay with gravel and vegetation.
325368	TP9	None Supplied	0.10	Brown topsoil and clay with gravel and vegetation.
325369	TP12	None Supplied	0.42	Brown topsoil and sand with gravel and vegetation.
325370	TP12	None Supplied	1.50	Light brown clay and sand with gravel.
325371	TP13	None Supplied	0.15	Brown topsoil and clay with gravel and vegetation.
325372	WLS1	None Supplied	0.15	Brown topsoil and clay with gravel and vegetation.
325373	WLS3	None Supplied	0.60	Brown topsoil and clay with gravel and vegetation.
325374	WLS4	None Supplied	0.30	Light brown clay and topsoil with gravel and vegetation.
325375	WLS4	None Supplied	3.00	Green clay and sand with gravel and vegetation.
325376	TP10	None Supplied	0.35	Brown topsoil and clay with gravel and vegetation.
325377	TP11	None Supplied	1.30	Light brown clay and sand with gravel and vegetation.
325378	TP5	None Supplied	0.35	Light brown clay and sand with gravel and vegetation.
325379	TP3	None Supplied	0.20	Brown topsoil and clay with gravel and vegetation.
325380	TP8	None Supplied	0.30	Light brown clay and sand with gravel and vegetation.

Project / Site name: Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	LO47-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	LO38-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	LOO5-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.