

FLOOD RISK ASSESSMENT Fewcott Road, Fritwell

Prepared for: CALA Homes Issue 1: 3 August 2016 Ref: CV8160423/AH/DW/005

Document History

Issue	Date	Description	Prepared By	Checked By
1	3 Aug. 16	First Issue	A. Horswell	K. Rayner

Glanville

Glanville Consultants is a multi-disciplinary engineering, design and surveying consultancy with the following expertise:

- Structural Engineering
- Civil Engineering
- Transport & Highways
- Geomatics (Land Surveying)
- Building Surveying
- CDM Consultants

For further advice contact:

Cornerstone House 62 Foxhall Road Didcot Oxfordshire OX11 7AD Offices also at:

3 Grovelands Business Centre Boundary Way Hemel Hempstead Hertfordshire HP2 7TE

Telephone: 01235 515550 Fax: 01235 817799 Telephone: 01442 835999 Fax: 01442 258924

postbox@glanvillegroup.com www.glanvillegroup.com

© Glanville Consultants Ltd. All rights reserved.

This report contains confidential information intended solely for the recipient. No part of this report may be copied, reproduced or stored electronically without prior written permission from Glanville Consultants Ltd. This report has been prepared in accordance with the commissioning brief and is for the client's exclusive use unless otherwise agreed in writing. Glanville Consultants Ltd does not accept liability for any use of this report, other than for the purposes for which it is was originally prepared and provided. Third parties should not use or rely on the contents of this report without written permission from Glanville Consultants Ltd.

Contents

1.0	Introduction	. 1
2.0	Site Description and Proposed Development	. 2
3.0	Planning Policy and Guidance	. 4
4.0	Flood Risk Assessment	. 5
5.0	Flood Risk Assessment	. 7
6.0	Surface Water Drainage	. 8
7.0	Summary and Conclusions	10

Appendices

Appendix A:	Location Plan
Appendix B:	Topographical Survey
Appendix C:	British Geological Survey Mapping Extracts
Appendix D:	Anglian Records
Appendix E:	Design Proposals
Appendix F:	Environment Agency Map Extracts
Appendix G:	Surface Water Drainage Strategy
Appendix H:	MicroDrainage Calculations

1.0 Introduction

- 1.1 This Flood Risk Assessment has been prepared by Glanville Consultants on behalf of CALA Homes (Chiltern) Ltd in support of a planning application to develop land off Fewcott Road, Fritwell to provide 34 new homes.
- 1.2 The purpose of this document is to assess the existing level of flood risk to the site and its surroundings within the context of the development proposals and to outline a surface water drainage strategy.
- 1.3 This appraisal has been prepared in accordance with the National Planning Policy Framework (NPPF), dated March 2012, and the Planning Practice Guidance (PPG) to the NPPF, dated March 2014.
- 1.4 Local guidance concerning flood risk is provided within the Cherwell and West Oxfordshire Level 1 Strategic Flood Risk Assessment.
- 1.5 This assessment was undertaken with reference to publicly available information provided and/or published by the following bodies:
 - Ordnance Survey;
 - British Geological Survey;
 - Buckinghamshire County Council;
 - Aylesbury Vale District Council; and
 - Environment Agency.
- 1.6 This report concludes that the site is at the lowest possible risk of flooding and can be developed safely without increasing flood risk elsewhere, and with due consideration to the potential effects of climate change.

2.0 Site Description and Proposed Development

Site Description

- 2.1 The site is located in the village of Fritwell, approximately 7km from Bicester which is located to the south east. The site is accessed from the north east corner via Fewcott Road. The site is bound by undeveloped land to the north, east and south and residential buildings to the west. The location of the site is shown on the plan included as Appendix A.
- 2.2 The approximate centre of the site is located at Ordnance Survey National Grid reference SP 52957 29070.
- 2.3 The site is approximately 1.2ha in area, and is currently used for agricultural purposes.

Topographical Survey

2.4 A copy of the detailed topographical survey of the site by Groundsurveys Ltd, drawing numbers 6028-01 and 6028-02 are included as Appendix B. The survey indicates that the site has an approximate falls to the south of the site with levels ranging from approximately 128.20m AOD to 125.20m AOD.

Existing Watercourses

- 2.5 There is a large pond located approximately 200m to the south west of the site. The closest main river, as classified by the Environment agency, is located 3.4km to the west.
- 2.6 The feasibility study for the site identifies ditches located along both the northern and southern boundaries.

Geological Characteristics

- 2.7 Geological maps published by the British Geological Survey (BGS) indicates that the site is underlain by bedrock geology of Great Oolite Group Limestone and Argillaceous Rocks. The BGS mapping does not indicate any superficial geology underlying the site. Extract from the BGS online mapping are included in Appendix C for reference.
- 2.8 A borehole log located close to the proposed entrance to the site indicates geology of limestone, sand and mudstone.
- 2.9 An intrusive site investigation was undertaken by The Brownfield Consultancy in November 2015 (report ref BC195 L001/JT). The ground conditions were consistent with the BGS mapping, indicating Topsoil or Made Ground overlaying the Great Oolite Group. Their interpretive report also concluded that infiltration drainage would be feasible, subject to further testing to confirm design rates.

Groundwater Vulnerability

2.10 The EA publish on their website details of indicative Source Protection Zones (SPZs) for groundwater sources such as wells, boreholes and springs used for public drinking water supply. The Zones define areas where a range of human activities may damage/pollute groundwater. The site is not indicated to be located within a source protection zone.

Existing Surface Water Drainage

- 2.11 Drainage records obtained from Anglian Water are included as Appendix D. The records indicate a 300mm surface water sewer running through the middle of the site to an outfall located to the south east. A manhole is located within the site, approximately 25m from the eastern boundary.
- 2.12 The records show only those sewers that are known to be maintained by Thames Water, other privately owned sewers may be present in the vicinity of the site that are not shown on public records.

Proposed Development

2.13 It is proposed to develop the site to provide 34 dwellings with associated access roads, and hard and soft landscaping. A copy of the illustrative site layout for the proposed development is included within Appendix E.

3.0 Planning Policy and Guidance

3.1 Set out below is a summary of the national and local planning policy and guidance relating to flood risk and surface water management that are relevant to the development proposals.

National

- 3.2 At a national level, the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF ensure flood risk is taken into account at all stages of the planning process, to avoid inappropriate development in areas at risk of flooding and to direct development towards areas at lowest flood risk. The NPPF retains a risk based approach to the planning process and defines four Flood Zones to be used as the basis for applying the sequential test to consider a development in terms of Flood Risk Vulnerability Classifications, which define the type of development that is considered appropriate within each zone.
- 3.3 The NPPF establishes the Flood Zones as the starting point for assessment with the overarching aim to steer new development to areas with the lowest probability of flooding. The Flood Zones are defined as follows:
 - Flood Zone 1 (Low Probability) comprises land assess as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%).
 - Flood Zone 2 (Medium Probability) comprises land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% – 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% – 0.1%) in any year.
 - Flood Zone 3a (High Probability) comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Flood Zone 3b (The Functional Floodplain) compromises land where water has to flow or be stored in times of flood.

Local Policy and Guidance

Cherwell District Council (CDC) and West Oxfordshire District Council (WODC) Strategic Flood Risk Assessment (SFRA), April 2009

- 3.4 This SFRA was produced by CDC and WODC to inform the planning process. The SFRA includes flood maps covering the entire district as well as strategic sites and key settlements. It also summarises the flood risk from each source of flooding in the districts.
- 3.5 The SFRA provides a reference and policy document to advise and inform developers of their obligations under the NPPF. The maps and accompanying report and guidance provide a sound framework enabling consistent and sustainable decisions to be made when making future planning decisions.

4.0 Flood Risk Assessment

4.1 This section of the report assesses flood risk at the site from all sources and including appropriate allowance for climate change required by relevant national and local planning policy.

Tidal

4.2 Given that there are no tidally influenced watercourses on or within the vicinity of the site it is considered that tidal flooding is not an issue that would prevent the development of the site for its intended end use.

Reservoir Flooding

4.3 The EA publishes indicative mapping on its website which shows the maximum extent of reservoir flooding in the unlikely event that a reservoir should fail. The mapping indicates the site is not at risk of reservoir flooding. The reservoir flood map is included as Appendix F.

Fluvial

- 4.4 The EA publishes Flood Zone mapping on its website which shows the maximum extent of fluvial flooding. The Flood Zone mapping indicates that the site lies entirely in Flood Zone 1. An extract from the EA mapping is included as Appendix F.
- 4.5 Table 1 of the Planning Practice Guidance to the NPPF defines land located within Flood Zone 1 as areas which are outside the floodplain and have little or no chance of flooding. These are areas with an indicative probability of flooding of 1 in 1,000 years or greater (i.e. less than 0.1% chance in any given year) from fluvial sources. As such, the majority of the development is considered to be at the lowest possible risk of fluvial sources.
- 4.6 Table 3 of the PPG to the NPPF confirms that all forms of development are appropriate for Flood Zone 1.

Surface Water

- 4.7 The EA publishes mapping on its website which indicates the predicted risk of surface water flooding in the event that rainwater does not drain away through normal drainage systems or soak into the ground. The mapping indicates that the entire site is at very low risk from surface water flooding. An extract from the EA's surface water flood map is included within Appendix F.
- 4.8 It should be noted that the EA mapping only provides a high level overview to indicate where there may be an increased risk and further investigation warranted.
- 4.9 There is no known evidence to indicate that the site has been affected by this form of flooding in the past.

Groundwater

4.10 The Cherwell and West Oxfordshire Level 1 SFRA considers the site to be materially affected by flooding from groundwater. Therefore it is reasonable to conclude that groundwater flooding is not an issue that would prevent the development of the site for its intended end use and no site-specific mitigation measures are anticipated to be required.

Sewer

- 4.11 The Cherwell and West Oxfordshire Level 1 SFRA does not record any form of sewer flooding within or in the vicinity of the site, and there is no known evidence to indicate that the site is at risk of flooding from these sewers. It is reasonable to conclude that sewer flooding is not an issue that would prevent the development of the site for its intended end use.
- 4.12 Therefore it is reasonable to conclude that the risk of sewer flooding to the site is low and is not an issue that would prevent the development of the site for its intended end use.

Historic Flooding

4.13 The Cherwell and West Oxfordshire Level 1 SFRA does not record any historical flood incidence occurring in or around the site.

Summary

4.14 The site is considered to be at low risk from all sources of flooding examined.

5.0 Flood Risk Assessment

- 5.1 Table 2 of the PPG to the NPPF categorises different types of development into five flood risk vulnerability classifications:
 - Essential Infrastructure;
 - Highly Vulnerable;
 - More Vulnerable;
 - Less Vulnerable; and
 - Water Compatible Development.
- 5.2 The NPPF encourages a sequential, risk based approach to determine the suitability of land for development. This document advises that the development of sites within Flood Zone 1 should be given preference where available. Table 3 of the PPG to the NPPF advises that all land uses are appropriate in Flood Zone 1.

Consideration for Flood Risk Mitigation Measures

- 5.3 Given that the development is located within Flood Zone 1, the lowest risk of flood zone, flood compensation or resilience measures will not be required to mitigate against the risk of fluvial flooding.
- 5.4 A review of sources of potential flooding in Section 4 of this assessment has also concluded that there is a low risk from all other sources examined.
- 5.5 Given that the development is located wholly within an area outside of the floodplain and is not located within an EA defined dry island, the site is accessible to other areas outside of the floodplain in times of flooding.

6.0 Surface Water Drainage

- 6.1 The PPG recommends that priority should be given to the use of sustainable drainage systems as they are designed to control surface water run-off where it falls and mimic natural drainage as closely as possible. Sustainable drainage systems also provide opportunities for the following:
 - Reduce the causes and impacts of flooding;
 - Remove pollutants from urban run-off at source; and
 - Combine water management with green space with benefits for amenity, recreation and wildlife.
- 6.2 SuDS encompass a wide range of drainage techniques intended to minimise the rate of discharge, volume and environmental impact of run-off and include:
 - Permeable pavements;
 - Swales and basins;
 - Green roofs and rainwater reuse;
 - Infiltration trenches and filter drains; and
 - Ponds and wetlands.
- 6.3 Infiltration based techniques are high up in the hierarchy of techniques available due to the ability for close to source dispersion of surface water. These techniques are considered the closest solution to mimic the natural drainage of undeveloped sites.
- 6.4 Sustainable infiltration techniques include the use of permeable paving (typically 30% void volume), lined soakaways and crated (geocellular) soakaways. When used across a site these techniques control the rate of discharge, attenuate flow, provide storage and recharge groundwater. Storage capacity within infiltration and attenuation schemes can be increased with the use of geocellular storage crates (typically 95% void volume).
- 6.5 As well as allowing infiltration and attenuation, permeable paving also degrades pollutants such as hydrocarbons, which thereby improves the quality of surface water to ground.
- 6.6 The Building Regulations part H3 stipulates that rainwater from roofs and paved areas is carried away from surface to discharge to one of the following, listed in order of priority:
 - a) an adequate soakaway or some other adequate infiltration system; where that is not practical;
 - b) a watercourse; or, where that is not practical
 - c) a sewer.

Proposed Surface Water Drainage Strategy

6.7 As discussed in Section 2, the site is underlain by a bedrock geology Great Oolite Group, Limestone. The use of infiltration drainage techniques is therefore considered feasible as a means of draining surface water from the proposed development.

- 6.8 An intrusive site investigation was undertaken by The Brownfield Consultancy. Their interpretive report (ref BC195 L001/JT) concluded that infiltration drainage would be feasible, subject to further testing to confirm design rates.
- 6.9 At the detailed design stage infiltration testing and rates on the site will be calculated in accordance with the guidance given in BRE Digest 365. The estimated size of the infiltration devices included in this proposed drainage strategy assumes that the underlying ground conditions will support infiltration at a relatively conservative rate of 2x10⁻⁵ m/s.
- 6.10 The proposed strategy will utilise sustainable drainage techniques in accordance with the guidance described in Ciria C753. The strategy employs the use of paving with a voided (porous) subbase to facilitate the discharge of surface water by infiltration to the underlying soil strata. A copy of the surface water drainage strategy is included in Appendix G.
- 6.11 Permeable paving is identified in the SuDS manual as improving water quality and providing treatment as runoff percolates through the layers of the system.
- 6.12 All SuDS features will be designed to accommodate surface water runoff from all rainfall events up to and including the 1 in 100 year event, including a 30% increase in rainfall intensity as allowance for the potential effects of climate change.
- 6.13 Copies of associated MicroDrainage calculations are provided in Appendix H. These demonstrate that the SuDS features provide storage for the 1 in 100 + 30% climate change storm event without flooding from surface water.
- 6.14 In the strategy, porous paved driveways and roads will discharge surface water runoff from their own footprint by infiltration to ground. For the purpose of sizing, a 20m long, 4.8m wide section of road has been used.
- 6.15 The site is generally flat, with a slight fall from north to south. In order to provide maximum infiltration and attenuation the formation of the porous paving will be level.
- 6.16 Domestic soakaways will be used to drain roof areas. These will be located at minimum of 5m from dwellings as per building regulations.
- 6.17 Water butts will be used to collect rainwater from the roofs of all dwellings; these structures will provide additional attenuation and water for reuse (irrigation of private gardens).

Pollution Control Measures

6.18 CIRIA 156 Infiltration Drainage – Manual of Good Practice suggests that surface water runoff from roofs and public amenity areas are permissible without pollution control measures. The use of permeable paving to drain the site means that no pollution control measures are anticipated.

7.0 Summary and Conclusions

<u>Summary</u>

- 7.1 This document includes an assessment of the existing level of flood risk to the site and its surroundings within the context of the development proposals and includes a proposed surface water drainage strategy for the site once developed.
- 7.2 This assessment has been prepared in accordance with the National Planning Policy Framework (NPPF), Planning Practice Guidance (PPG), and with reference to the Oxford City Council Strategic Flood Risk Assessment.
- 7.3 The development is not considered to be at risk from any potential sources of flooding.
- 7.4 The development is located within Flood Zone 1, which the NPPF considers to be the most suitable zone for residential development in terms of flood risk.
- 7.5 The proposed strategy utilises sustainable drainage techniques in accordance with the guidance described in Ciria C753 and employs the use of soakaways and porous paving to facilitate the discharge of surface water by infiltration to the underlying soil strata.
- 7.6 Proposed infiltration features will provide storage for the 1 in 100 + 30% climate change storm event without flooding from surface water. As a consequence of the proposed development there shall therefore be no on site or off site increase in flood risk to properties.
- 7.7 Intrusive investigations will be undertaken to confirm infiltration rates at the appropriate stage of the planning process.

Conclusion

- 7.8 In conclusion, this report has demonstrated that the proposed residential development:
 - is in accordance with the National Planning Policy Framework;
 - will not be at an unacceptable risk from fluvial flooding;
 - will not increase flood risk elsewhere; and
 - will employ a surface water drainage strategy based on the principles of sustainable drainage.
- 7.9 On this basis, the proposals are considered to fully comply with National, Regional and Local planning policy.

Appendices

Appendix A

Location Plan

Drawing No. June 2016 K. Rayner Date :

postbox@glanvillegroup.com www.glanvillegroup.com

Project Director

Appendix B

Topographical Survey

LEGEND		452860 F	452880 E	452900 F	ett. 452920 E	452940 E	452960 E	452980 E
FEATURE STYLES FEATURE ABREVIATIONS SURVEY CONTROL ▲ AV Air Valve BS Bus Stop FENCE → HEDGE → FWS → SWS → WATER ↓ POWER LINE (OVERHEAD) ↓ TELECOM LINE (OVERHEAD) ↓ ELECTRIC MAIN € GAS MAIN ↓ FMBANKMENT ↓	s 229200 N	TREE SCHEDULE TREE GIRTH HEIGHT SPREAD SPECIES 1 0.7 6.0 3.0 PURPLE PRUNUS 2 3X0.5 12.0 5.0 ASH 3 3X0.5 12.0 5.0 ASH 4 2X0.4 8.0 6.0 ASH 5 MB 12.0 5.0 FIELD MAPLE 6 MB 12.0 5.0 FIELD MAPLE 6 MB 12.0 5.0 FIELD MAPLE 8 0.6 9.0 3.0 ELM 7 5X0.4 10.0 5.0 FIELD MAPLE 8 0.6 9.0 3.0 ELM 9 MB 10.0 5.0 ASH 10 0.4 10.0 3.0 HAWTHORN 11 0.4 8.0 5.0 HAZEL 13 MB 7.0 3.0 PRUNUS 14 MB 7.0	TREE SCHEDULE TREE GIRTH HEIGHT SPREAD SPECIES 51 0.4/2X0.6 9.0 5.0 MAPLE 52 MB 6.0 3.5 ELDER 53 3X1.4 16.0 7.0 ASH 54 1.6 15.0 7.0 ASH 55 0.7 6.0 3.0 OAK 56 0.7 10.0 4.0 PRUNUS 57 2X0.6 12.0 4.0 FIELD MAPLE 58 0.4 6.0 2.0 BEECH 59 0.7 9.0 4.0 FIELD MAPLE 61 0.5 10.0 4.0 BEECH 62 0.7 8.0 4.0 FIELD MAPLE 63 0.7 9.0 4.0 FIELD MAPLE 64 0.6 7.0 3.0 WHITEBEAM 65 0.6 9.0 3.0 PRUNUS 66 0.6	TREE SCHEDULE TREE GIRTH HEIGHT SPREAD SPECIES 101 2X0.7 9.0 2.5 HAWTHORN 102 0.5 9.0 4.0 ASH 103 0.6 6.0 3.0 SPRUCE 104 0.5 6.0 2.5 WALNUT 105 0.5 6.0 3.0 FIELD MAPLE 106 MB 9.0 3.0 HAWTHORN	¹ ¹ ² ³ ² ³ ² ³ ² ³ ² ³ ² ³	+ .138.00 .100,00,00,00 .100,00,00,00 .100,00,00 .100,00,00 .100,00,00	4	+ 229200 N
MB Metal Bollard P Post PI Petrol Interceptor RG Road Gully RNB Road Name Board RS Road Sign FENCE TYPES BWR Barbed Wire CI Corrugated Iron CL Chain Link CDL Conc Panel CL Chain Link CPL Conc Panel CPL Conc Panel CPL Conc Panel CW Chicken Wire CW Water Meter PR Post and Wire CW Water Valve CH Chicken Wire CW Water Valve CH Chicken Wire CH C	229180 N	21 0.6 9.0 3.5 ASH 22 0.4 7.0 2.5 ELM 23 0.4 7.0 2.5 ELM 24 0.4 6.0 1.5 HAWTHORN 25 0.6 6.0 2.0 HAWTHORN 26 0.6 4.0 1.5 HAWTHORN 27 0.4 6.0 2.0 HAWTHORN 28 0.4/0.6 6.0 2.5 HAZEL 29 MB 4.0 2.0 HAWTHORN 30 0.6 5.0 2.0 PRUNUS 31 2X0.7 8.0 3.5 PRUNUS 32 2X0.8 10.0 5.0 MAPLE 33 0.9 7.0 3.0 ELDER 34 MB 6.0 3.5 HAWTHORN 35 2.6 15.0 9.0 MAPLE 36 1.4 13.0 6.5 WILLOW 37 1.4 16.0 6.0 MAPLE 39 0.4 <t< th=""><th>1 2X0.5 10.0 3.0 FIELD MAPLE 72 0.6 10.0 3.0 FIELD MAPLE 73 3X0.4 10.0 3.0 FIELD MAPLE 74 0.4 10.0 3.0 FIELD MAPLE 74 0.4 10.0 4.0 FIELD MAPLE 75 0.6 10.0 4.0 PRUNUS 76 0.6 8.0 2.0 PRUNUS 78 0.5 8.0 3.0 FIELD MAPLE 79 0.5 9.0 4.0 PRUNUS 80 2X0.4 8.0 3.0 ASH 81 0.4 8.0 3.0 PRUNUS 80 2X0.4 8.0 3.0 PRUNUS 81 0.6 9.0 3.0 PRUNUS 82 0.5 8.0 3.0 PRUNUS 85 0.6 5.0 2.5 WALNUT 86 2X0.4 5.0 3.0 WALNUT<!--</th--><th>+</th><th>+</th><th>¹73, <u>1</u> <u>1</u>28, <u>70</u> <u>1</u>28, <u>72</u> <u>1</u>28, <u>76</u> <u>1</u>28, <u>76</u> <u>1</u><u>28</u>, <u>76</u> <u>1</u><u>1</u><u>1</u><u>1</u><u>28</u> <u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u></u></th><th>RNB 3 3 3 3 3 3 3 3 3 3 3 3 3</th><th>+ 229180 N</th></th></t<>	1 2X0.5 10.0 3.0 FIELD MAPLE 72 0.6 10.0 3.0 FIELD MAPLE 73 3X0.4 10.0 3.0 FIELD MAPLE 74 0.4 10.0 3.0 FIELD MAPLE 74 0.4 10.0 4.0 FIELD MAPLE 75 0.6 10.0 4.0 PRUNUS 76 0.6 8.0 2.0 PRUNUS 78 0.5 8.0 3.0 FIELD MAPLE 79 0.5 9.0 4.0 PRUNUS 80 2X0.4 8.0 3.0 ASH 81 0.4 8.0 3.0 PRUNUS 80 2X0.4 8.0 3.0 PRUNUS 81 0.6 9.0 3.0 PRUNUS 82 0.5 8.0 3.0 PRUNUS 85 0.6 5.0 2.5 WALNUT 86 2X0.4 5.0 3.0 WALNUT </th <th>+</th> <th>+</th> <th>¹73, <u>1</u> <u>1</u>28, <u>70</u> <u>1</u>28, <u>72</u> <u>1</u>28, <u>76</u> <u>1</u>28, <u>76</u> <u>1</u><u>28</u>, <u>76</u> <u>1</u><u>1</u><u>1</u><u>1</u><u>28</u> <u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u>1</u><u></u></th> <th>RNB 3 3 3 3 3 3 3 3 3 3 3 3 3</th> <th>+ 229180 N</th>	+	+	¹ 7 3 , <u>1</u> <u>1</u> 28 , <u>70</u> <u>1</u> 28 , <u>72</u> <u>1</u> 28 , <u>76</u> <u>1</u> <u>28</u> , <u>76</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>28</u> <u>1</u> <u>1</u> <u></u>	RNB 3 3 3 3 3 3 3 3 3 3 3 3 3	+ 229180 N
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_229160 N	Image: Arrow and arrow an	+	+	RG C ((((((((((((((((((ridge 136 ge	13333 13333 13333 1333333 1333333 1333333 1333333 13333333 13333333 13333333 13333333 1333333333333333333333333333333333333	128.04 STN4 + ' ¹ 2:229160 N + ' ¹ 2:30 30 12:8:04 + ' ¹ 2:229160 N - ' ¹ 2:30 - '

229120 N +

+

NOTES

Surveyed boundaries are not necessarily the site legal boundaries. Client should refer to the relevant Land Registry document for confirmation of title.

Drainage and service covers that were buried, obscured or not visible at the time of the survey cannot be shown. Sewer connections between manholes are assumed to be straight and only pipes visible from the cover are shown. Tree canopy measured values are written as maximium spreads. Tree species and condition to be confirmed by an arboriculturist

Iand & engineering surveyors					128	126.90	.125.93	
units 9&10 woodlands farm spring lane cookham dean berkshire	<u>229020</u> N	+	+	+	* 100 + * 100 + * 100 + * 1/23 * 20	+ .125.70 .125.89	+ +125.97	-125.72 -125.71 -125.71
SL6 9PN						-125.57	•125.82	S blocked
t: 01628 485200 f: 01628 485300 e:office@groundsurveys.com www.groundsurveys.com					125 30 × 3.41	· .125.14 · .125.32	125.75	
CLIENT							STIN13	
CALA HOMES (CHILTERN) LTD						124.88 1/24.88 1/24.88	·125.37	track T89
SITE	229000 N	+	+	+	+	+ ^{footpoth}		229000 N 12 ^h 51N14
FEWCOTT ROAD FRITWELL OX27						125.00	100 124.73 124.65 124.65 124.73 124.73 124.73 124.73 124.73	NUX S Sap
							27 € 6 post 1106 12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.54.50 12.12.59 124.55 12.50 12.50 124.55 12.50 12.50 12.50 124.55 12.50 12.5	
TITLE							2 ^{4.5} 1105	
SITE SURVEY								
AS EXISTING								
SCALE 1/200 (A0) DATE MAY 2015		Ш		ш		ш	track	
DRAWING No. 01 JOB No. 6028	228980 N	452860	+452880	452900	45292C	45294C	452960	00 60 72 75 74 74 74 74 74 74 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75

	0	0	O		0	0	0	
	0	0			WO CONTRACTOR OF			
	N IC	N		$\hat{\mathbf{O}}$	M IO		23	
	4	4		4	4	4	4	
								LEGEND
				TREE SCHEDULE	TREE SCHEDULE	TREE SCHEDULE	\wedge	FEATURE STYLES FEATURE ABREVIATIONS
				TREE GIRTH HEIGHT SPREAD SPECIES	TREE GIRTH HEIGHT SPREAD SPECIES	TREE GIRTH HEIGHT SPREAD SPECIES		
				1 0.7 6.0 3.0 PURPLE PRUNUS	51 0.4/2X0.6 9.0 5.0 MAPLE	101 2X0.7 9.0 2.5 HAWTHORN		SURVEY CONTROL AV AIR VAIVE
				2 3X0.5 12.0 5.0 ASH	52 MB 6.0 3.5 ELDER	102 0.5 9.0 4.0 ASH		FFNCF BT British Telecom
220200 N				3 3X0.5 12.0 5.0 ASH	53 3X1.4 16.0 7.0 ASH	103 0.6 6.0 3.0 SPRUCE		BW Brick Wall
_229200 N	+	+	+	+ 4 2X0.4 8.0 6.0 ASH	+ 54 1.6 15.0 7.0 ASH	+ 104 0.5 6.0 2.5 WALNUT	+ 229200 11	HEDGE CB Conc Bollard
				5 MB 12.0 5.0 FIELD MAPLE	55 0.7 6.0 3.0 OAK	105 0.5 6.0 3.0 FIELD MAPLE		
				6 MB 12.0 5.0 ELM	56 0.7 10.0 4.0 PRUNUS	106 MB 9.0 3.0 HAWTHORN		FWS = - = · = · = · = · CTO Cuble TV Outlet
				7 5X0.4 10.0 5.0 FIELD MAPLE	57 2X0.6 12.0 4.0 FIELD MAPLE			SWS EC Electric Cover
				8 0.6 9.0 3.0 ELM	58 0.4 6.0 2.0 BEECH			EP Electricity Pole
				9 MB 10.0 5.0 ASH	59 0.7 9.0 4.0 FIELD MAPLE			WATER
				10 0.4 10.0 3.0 HAVEL	60 0.4 8.0 5.0 FIELD MAPLE			POWER LINE . G Gully
				12 MB 80 50 HAZEL	62 0.7 80 40 FIELD MAPLE			(OVERHEAD) GM Gas Meter
				13 MB 7.0 3.0 PRUNUS	63 0.7 9.0 4.0 FIELD MAPLE			GV Gas Valve
				14 MB 7.0 3.0 PRUNUS	64 0.6 7.0 3.0 WHITEBEAM			(OVERHEAD) IL Invert Level
				15 10X0.7 15.0 7.0 MAPLE	65 0.6 9.0 3.0 PRUNUS			KLS Keep Left Sign
				16 1.5 13.0 7.0 ASH	66 0.6 9.0 4.0 FIELD MAPLE			ELECTRIC MAIN —— E —— KO Kerb Offlet
				17 1.5 13.0 5.0 ASH	67 0.5 10.0 5.0 FIELD MAPLE			LB Letter Box
				18 1.0 12.0 5.0 ASH	68 MB 10.0 5.0 HAWTHORN			GAS MAIN 6 MKR Marker
				19 2.6 13.0 6.0 OAK	69 0.7 9.0 5.0 HAWTHORN			MP Metal Post
				20 MB 7.0 3.5 MAPLE	70 MB 9.0 3.0 HAWTHORN			EMBANKMENT WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
				21 0.6 9.0 3.5 ASH	71 2X0.5 10.0 3.0 FIELD MAPLE			MB Metal Bollard
				22 0.4 7.0 2.5 ELM	72 0.6 10.0 3.0 FIELD MAPLE			Pl Petrol Interceptor
				24 0.4 6.0 1.5 HAWTHORN	73 3X0.4 10.0 3.0 FIELD MAPLE			RG Road Gully
				25 0.6 6.0 2.0 HAWTHORN	75 0.6 10.0 4.0 FIELD MAPLE			RNB Road Name Board
				26 0.6 4.0 1.5 HAWTHORN	76 0.6 8.0 4.0 PRUNUS			RS ROOD Sign RW Retaining Wall
				27 0.4 6.0 2.0 HAZEL	77 0.5 8.0 2.0 PRUNUS			SA Soakaway
				28 0.4/0.6 6.0 2.5 HAZEL	78 0.5 8.0 3.0 FIELD MAPLE			BWR Barbed Wire SC Stopcock
				29 MB 4.0 2.0 HAWTHORN	79 0.5 9.0 4.0 PRUNUS			CB Close Board SV Sluice Valve
				30 0.6 5.0 2.0 PRUNUS	80 2X0.4 8.0 3.0 ASH			CL Chain Link TCB Telephone Box
				31 2X0.7 8.0 3.5 PRUNUS	81 0.4 8.0 3.0 FIELD MAPLE			CPL Conc Panel TJB Tel.Junc.Box
_229180 N	+	+	+	+ 32 2X0.8 10.0 5.0 MAPLE	+ 82 0.5 8.0 5.0 PRUNUS	+	+ 229180 N	CP Chestnut Paling TL Traffic Light
				34 MB 60 35 HAWTHORN	84 0.6 9.0 3.0 PRIMUS			IW Interwoven VP Vent Pipe
				35 2.6 15.0 9.0 MAPLE	85 0.6 5.0 2.5 WALNUT			IR Iron Railing WL Water Level
				36 1.4 13.0 6.5 WILLOW	86 2X0.4 5.0 2.0 WALNUT			OB Openboard WM Water Meter
				37 1.4 16.0 6.0 MAPLE	87 2X0.4 5.0 3.0 WALNUT			PR Post and rail WU Water Value
				38 1.6 16.0 7.0 MAPLE	88 1.3 12.0 5.0 FIELD MAPLE			
				39 0.4 9.0 2.0 PRUNUS	89 0.5 4.0 2.0 WALNUT			
				40 0.6 9.0 3.0 PRUNUS	90 0.5 4.0 2.0 WALNUT			
				41 0.7 9.0 3.0 PRUNUS	91 0.4 3.0 2.0 WALNUT			
				42 3X0.4 6.0 2.0 HAZEL	92 0.7 4.0 3.0 WALNUT			
				44 3X0.4 8.0 3.0 MAPLE	94 0.4 9.0 2.5 ASH			
				45 0.5 6.0 2.0 SILVER BIRCH	95 0.4 9.0 2.5 ASH			
				46 0.4 6.0 2.0 SILVER BIRCH	96 0.4 8.0 3.0 WALNUT			GRID – ORDNANCE SURVEY NATIONAL GRID (OSTNO2)
				47 0.4 6.0 2.0 SILVER BIRCH	97 0.5 9.0 4.0 WALNUT			LEVELS – ORDNANCE SURVEY (OSGM02)
				48 0.4 5.0 2.0 MAPLE	98 0.4 12.0 3.0 FIELD MAPLE			
				49 2X0.6 8.0 4.0 MAPLE	99 1.1 14.0 7.0 ASH			
				50 MB 9.0 5.0 HAWTHORN	100 2X1.0 14.0 4.0 FIELD MAPLE			

+

+

229160 N +

229140 N

+

+

SURVEY CONTRO 035.424 229089.210 017.653 229079.663 003.942 229069.623
 1
 453003.942
 229093.62.

 1
 452995.371
 229043.82.

 12
 452976.260
 229025.03.

 13
 452958.114
 229006.15.

 14
 452973.618
 228999.99

+

~~~ ·/<sub>2></sub>

229160 N



229120 N

229100 N +

+

STN

126.39

+

·126.47 ·126.48

126.35

+

229100

229120 N





Appendix C

British Geological Survey Mapping Extracts





Appendix D

**Anglian Water Records** 



(c) Crown copyright and database rights 2016 Ordnance Survey 100022432

Date: 15/06/16

Map Centre: 452945,229073

Data updated: 04/12/15 Our Ref: 188740 - 1

Wastewater Plan A4

| This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991<br>sections 198 or 199. It must be used in conjunction with any search results attached. The information<br>on this plan is based on data currently recorded but position must be regarded as approximate.<br>Service pipes, private sewers and drains are generally not shown. Users of this map are strongly<br>advised to commission their own survey of the area shown on the plan before carrying out any works.<br>The adual position of all apparatus MUST be established by trial holes. No liability whatsoever,<br>including liability for negligence, is accepted by Anglian Water for any error or inaccuracy or omission,<br>including liability for negligence, is accepted by Anglian Water for any error or inaccuracy or omission,<br>including the follows to accurate word or errors of all the locations of any unders. | Foul Sewer<br>Surface Sewer<br>Combined Sewer<br>Final Effluent                                                                                            |         | Outfall<br>(Colour denotes effluent type)<br>Inlet<br>(Colour denotes effluent type)   | dwigston@glanvillegroup.com<br>CV8160423 | love every drop |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|------------------------------------------|-----------------|
| Including the failure to accurately record, or record at all, the location of any water main, discharge<br>pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed.<br>This plan is produced by Anglian Water Services Limited (c) Crown copyright and database rights 2016<br>Ordnance Survey 100022432. This map is to be used for the purposes of viewing the location of<br>Anglian Water plant only. Any other uses of the map data ar further copies is not permitted. This notice<br>is not intended to exclude or restrict liability for death or personal injury resulting from negligence.                                                                                                                                                                                                                                                                                            | Rising Main<br>(Colour denotes effluent type)<br>Private Sewer<br>(Colour denotes effluent type)<br>Decommissioned Sewer<br>(Colour denotes effluent type) | <b></b> | Manhole<br>(Colour denotes effluent type)<br>Sewage Treatment Works<br>Pumping Station |                                          |                 |

| Manhole Reference | Liquid Type | Cover Level | Invert Level | Depth to Invert | Manhole Reference | Liquid Type | Cover Level | Invert Level | Depth to Invert |
|-------------------|-------------|-------------|--------------|-----------------|-------------------|-------------|-------------|--------------|-----------------|
| 7103              | F           | 127.3       | 125.035      | 2.265           |                   |             |             |              |                 |
| 7104              | F           | 127.3       | 124.989      | 2.311           |                   |             |             |              |                 |
| 7105              | F           | 127.81      | 125.183      | 2.627           |                   |             |             |              |                 |
| 7106              | F           | 127.77      | 125.129      | 2.641           |                   |             |             |              |                 |
| 8000              | F           | 128.2       | 125.454      | 2.746           |                   |             |             |              |                 |
| 8100              | F           | 128.3       | 126.325      | 1.975           |                   |             |             |              |                 |
| 8101              | F           | 128.2       | 126.445      | 1.755           |                   |             |             |              |                 |
| 8102              | F           | 128.2       | 125.766      | 2.434           |                   |             |             |              |                 |
| 8103              | F           | 128.6       | 125.94       | 2.66            |                   |             |             |              |                 |
| 8104              | F           | 128.36      | 126.586      | 1.774           |                   |             |             |              |                 |
| 8105              | F           | 128.1       | 126.652      | 1.448           |                   |             |             |              |                 |
| 9100              | F           | 128.4       | 126.7        | 1.7             |                   |             |             |              |                 |
| 8051              | S           | 128         | 125.701      | 2.299           |                   |             |             |              |                 |
| 8052              | S           | 128.15      | 125.784      | 2.366           |                   |             |             |              |                 |
| 8151              | S           | 128.3       | 126.625      | 1.675           |                   |             |             |              |                 |
| 8152              | S           | 128.2       | 126.75       | 1.45            |                   |             |             |              |                 |
| 8153              | S           | 128.2       | 125.065      | 3.135           |                   |             |             |              |                 |
| 8154              | S           | 128.6       | 126.24       | 2.36            |                   |             |             |              |                 |
| 8155              | S           | 128.1       | 126.025      | 2.075           |                   |             |             |              |                 |
| 9051              | S           | 126.7       | 125.195      | 1.505           |                   |             |             |              |                 |
| 9151              | S           | 128.5       | 127          | 1.5             |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |
|                   |             |             |              |                 |                   |             |             |              |                 |



Appendix E

**Design Proposals** 





Appendix F

Environment Agency Map Extracts









Appendix G

Surface Water Drainage Strategy





Appendix H

**MicroDrainage Calculations** 

| Glanville Consultar | nts                  |                    |                  |                   |             |          | Page 1  |
|---------------------|----------------------|--------------------|------------------|-------------------|-------------|----------|---------|
| Cornerstone Court   |                      | Εe                 | ewcott i         | Road              |             |          |         |
| 62 Foxhall Road     |                      | F                  | ritwell          |                   |             |          | L.      |
| Didcot OX11 7AD     |                      |                    |                  |                   |             |          | Micco   |
| Date 03/08/2016 08: | 50                   | De                 | esigned          | by AH             |             |          |         |
| File 50M2.SRCX      |                      | Cł                 | hecked 1         | оу                |             |          | Diamaye |
| Micro Drainage      |                      | S                  | ource C          | ontrol 2          | 2016.1      |          |         |
|                     |                      |                    |                  |                   |             |          |         |
| Summary             | y of Result          | s for              | 100 ye           | ar Retu           | rn Perioo   | d (+30%) |         |
|                     | Half                 | Drain              | Time : 2         | 206 minute        | es.         |          |         |
|                     | Storm                | Max                | Max              | Max               | Max         | Status   |         |
| 1                   | Event                | Level              | Depth I          | nfiltrati         | on Volume   |          |         |
|                     |                      | (m)                | (m)              | (1/s)             | (m³)        |          |         |
| 15                  | min Summer 1         | 26.052             | 0.202            | C                 | ).1 1.2     | ОК       |         |
| 30                  | min Summer 1         | L26.107            | 0.257            | C                 | ).1 1.5     | ОК       |         |
| 60                  | min Summer 1         | L26.154            | 0.304            | C                 | .1 1.7      | O K      |         |
| 120                 | min Summer 1         | L26.180            | 0.330            | C                 | ).1 1.9     | O K      |         |
| 180                 | min Summer 1         | L26.180            | 0.330            | 0                 | ).1 1.9     | ОК       |         |
| 240                 | min Summer 1         | LZ6.175            | 0.325            | 0                 | ).1 1.9     | OK       |         |
| 480                 | min Summer 1         | 126.147            | 0.297            | 0                 | ).1 1.7     | 0 K      |         |
| 600                 | min Summer 1         | L26.132            | 0.282            | C                 | 0.1 1.6     | 0 K      |         |
| 720                 | min Summer 1         | L26.117            | 0.267            | C                 | 1.5         | O K      |         |
| 960                 | min Summer 1         | L26.090            | 0.240            | С                 | 1.4         | O K      |         |
| 1440                | min Summer 1         | L26.043            | 0.193            | C                 | ).1 1.1     | O K      |         |
| 2160                | min Summer 1         | L25.988            | 0.138            | 0                 | 0.1 0.8     | ОК       |         |
| 4320                | min Summer 1         | LZ5.949<br>125 904 | 0.099            | 0                 | ).1 0.6     | 0 K      |         |
| 5760                | min Summer 1         | L25.893            | 0.043            | 0                 | ).1 0.2     | 0 K      |         |
| 7200                | min Summer 1         | L25.886            | 0.036            | C                 | 0.0 0.2     | ΟK       |         |
| 8640                | min Summer 1         | L25.881            | 0.031            | C                 | 0.0 0.2     | O K      |         |
| 10080               | min Summer 1         | L25.878            | 0.028            | C                 | 0.0 0.2     | 0 K      |         |
| 15                  | min Winter 1         | 126.0//            | 0.227            | Ŭ                 | ).1 1.3     | ΟK       |         |
|                     |                      |                    |                  | _                 | _           |          |         |
|                     | Storm                | n<br>-             | Rain             | Flooded           | Time-Peak   |          |         |
|                     | Lvent                | -                  | (1117)           | (m <sup>3</sup> ) | (mins)      |          |         |
|                     | 15 min               | Summer             | 130.382          | 0.0               | 21          |          |         |
|                     | 30 min               | Summer             | 84.926           | 0.0               | 35          |          |         |
|                     | 60 min               | Summer             | 52.662           | 0.0               | 64          |          |         |
|                     | 120 min 1            | Summer             | 31.557           | 0.0               | 122         |          |         |
|                     | 180 min<br>240 min   | Summer             | ∠3.U8/<br>18 392 | 0.0               | 16U<br>192  |          |         |
|                     | 360 min              | Summer             | 13.299           | 0.0               | 256         |          |         |
|                     | 480 min              | Summer             | 10.568           | 0.0               | 324         |          |         |
|                     | 600 min              | Summer             | 8.836            | 0.0               | 392         |          |         |
|                     | 720 min              | Summer             | 7.631            | 0.0               | 462         |          |         |
|                     | 960 min 1            | Summer             | 6.050            | 0.0               | 596         |          |         |
|                     | 1440 min<br>2160 min | Summor             | 4.356<br>२ 1२1   | 0.0               | 854<br>1232 |          |         |
|                     | 2880 min             | Summer             | 2.475            | 0.0               | 1584        |          |         |
|                     | 4320 min             | Summer             | 1.775            | 0.0               | 2248        |          |         |
|                     | 5760 min             | Summer             | 1.401            | 0.0               | 2936        |          |         |
|                     | 7200 min             | Summer             | 1.165            | 0.0               | 3672        |          |         |
|                     | 8640 min 1           | Summer             | 1.002            | 0.0               | 4400        |          |         |
|                     | 15 min 1             | Winter             | 130.382          | 0.0               | 5136<br>21  |          |         |
|                     |                      |                    |                  |                   |             |          |         |
|                     | ©1                   | 982-20             | )16 XP 3         | Solution          | IS          |          |         |

| Glanville Consultants         |             |           |            |                   |          | Page 2   |
|-------------------------------|-------------|-----------|------------|-------------------|----------|----------|
| Cornerstone Court             |             | Fewcott   | Road       |                   |          |          |
| 62 Foxhall Road               |             | Fritwell  |            |                   |          | 4        |
| Didcot OX11 7AD               |             |           |            |                   |          | Micco    |
| Date 03/08/2016 08:50         |             | Designed  | by AH      |                   |          |          |
| File 50M2.SRCX                |             | Checked   | by         |                   |          | Drainage |
| Micro Drainage                |             | Source C  | ontrol 3   | 2016.1            |          |          |
|                               |             |           |            |                   |          |          |
| Summary of Re                 | esults fo   | or 100 ye | ar Retu    | rn Period         | d (+30%) |          |
|                               |             |           |            |                   |          |          |
| Storm                         | Max         | Max       | Max        | Max               | Status   |          |
| Event                         | Leve        | 1 Depth 1 | Infiltrat: | ion Volume        |          |          |
|                               | (m)         | (m)       | (1/5)      | (m <sup>3</sup> ) |          |          |
| 30 min Wir                    | ter 126.1   | 40 0.290  | (          | 0.1 1.7           | ОК       |          |
| 60 min Wir                    | ter 126.1   | 94 0.344  | (          | 0.1 2.0           | ОК       |          |
| 120 min Win                   | ter 126.2   | 28 0.378  | (          | 0.1 2.2           | OK       |          |
| 180 min Wir                   | ter $126.2$ | 31 0.381  |            | J.I 2.2           | OK       |          |
| 240 min Wir<br>360 min Wir    | ter 126.2   | 22 U.J/2  | (          | 0.1 2.1<br>01 20  | 0 K      |          |
| 480 min Wir                   | ter 126.1   | 84 0.334  | (          | 0.1 1.9           | 0 K      |          |
| 600 min Win                   | ter 126.1   | 63 0.313  | (          | 0.1 1.8           | 0 K      |          |
| 720 min Wir                   | ter 126.1   | 42 0.292  | (          | 0.1 1.7           | ΟK       |          |
| 960 min Wir                   | ter 126.1   | 03 0.253  | (          | 0.1 1.4           | ΟK       |          |
| 1440 min Wir                  | ter 126.0   | 35 0.185  | (          | 0.1 1.1           | O K      |          |
| 2160 min Wir                  | ter 125.9   | 60 0.110  | (          | 0.1 0.6           | O K      |          |
| 2880 min Wir                  | ter 125.9   | 12 0.062  | (          | 0.1 0.4           | O K      |          |
| 4320 min Wir                  | ter 125.8   | 90 0.040  | (          | 0.1 0.2           | ΟK       |          |
| 5760 min Win                  | ter 125.8   | 82 0.032  | (          | 0.0 0.2           | ОК       |          |
| /200 min Win                  | ter 125.8   | 76 0.026  | (          | 0.0 0.1           | OK       |          |
| 8640 min Wir<br>10080 min Wir | ter 125.8   | 73 0.023  | (          |                   | OK       |          |
|                               | 1001 120.0  | 10 0.020  | ,          | 0.0 0.1           | 0 10     |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               | Storm       | Rain      | Flooded    | Time-Peak         |          |          |
|                               | Event       | (mm/hr)   | Volume     | (mins)            |          |          |
|                               |             |           | (m³)       |                   |          |          |
| 30                            | min Winte   | er 84.926 | 0.0        | 35                |          |          |
| 60                            | min Winte   | er 52.662 | 0.0        | 62                |          |          |
| 120                           | min Winte   | er 31.557 | 0.0        | 118               |          |          |
| 180                           | min Winte   | er 23.087 | 0.0        | 174               |          |          |
| 240                           | min Winte   | er 18.392 | 0.0        | 202               |          |          |
| 360                           | min Winte   | er 13.299 | 0.0        | 274               |          |          |
| 480                           | min Winte   | er 10.568 | 0.0        | 352               |          |          |
| 600                           | min Winte   | er 8.836  | 0.0        | 426               |          |          |
| 120                           | min Winte   | r 6 050   | 0.0        | 500               |          |          |
| 1440                          | min Winte   | er 4.356  | 0.0        | 910               |          |          |
| 2160                          | min Winte   | er 3.131  | 0.0        | 1276              |          |          |
| 2880                          | min Winte   | er 2.475  | 0.0        | 1588              |          |          |
| 4320                          | min Winte   | er 1.775  | 0.0        | 2212              |          |          |
| 5760                          | min Winte   | er 1.401  | 0.0        | 2936              |          |          |
| 7200                          | min Winte   | er 1.165  | 0.0        | 3680              |          |          |
| 8640                          | min Winte   | er 1.002  | 0.0        | 4376              |          |          |
| 10080                         | min Winte   | er 0.882  | 0.0        | 5128              |          |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               |             |           |            |                   |          |          |
|                               | ©1982-      | 2016 XP   | Solutior   | ıs                |          |          |
|                               |             |           |            |                   |          |          |

| Glanville Consulta | nts                  |                    |          |                   |                   |          | Page 1   |
|--------------------|----------------------|--------------------|----------|-------------------|-------------------|----------|----------|
| Cornerstone Court  |                      | Εe                 | ewcott   | Road              |                   |          |          |
| 62 Foxhall Road    |                      | F                  | ritwell  |                   |                   |          | Y.       |
| Didcot OX11 7AD    |                      |                    |          |                   |                   |          | Micco    |
| Date 03/08/2016 08 | :51                  | De                 | esigned  | by AH             |                   |          |          |
| File 90M2.SRCX     |                      | Cl                 | hecked   | by                |                   |          | vrainage |
| Micro Drainage     |                      | S                  | ource C  | ontrol            | 2016.1            |          |          |
|                    |                      |                    |          |                   |                   |          |          |
| Summar             | y of Result          | ts for             | 100 ye   | ar Retu           | rn Perio          | d (+30%) |          |
|                    | _                    |                    |          |                   |                   |          |          |
|                    | Half                 | E Drain            | Time : 2 | 295 minut         | .es.              |          |          |
|                    | Storm                | Max                | Maw      | Maw               | Max               | Status   |          |
|                    | Event                | Level              | Depth I  | infiltrat:        | ion Volume        | Status   |          |
|                    |                      | (m)                | (m)      | (1/s)             | (m <sup>3</sup> ) |          |          |
|                    |                      |                    |          |                   |                   |          |          |
| 15                 | min Summer           | 126.045            | 0.295    |                   | 0.1 2.1           | O K      |          |
| 50                 | min Summer           | 126.128<br>126 201 | 0.378    |                   | 0.1 2.7           | 0 K      |          |
| 120                | min Summer           | 126.251            | 0.501    |                   | 0.1 3.6           | 0 K      |          |
| 180                | min Summer           | 126.261            | 0.511    | (                 | 0.1 3.6           | 0 K      |          |
| 240                | min Summer           | 126.256            | 0.506    | (                 | 0.1 3.6           | ΟK       |          |
| 360                | min Summer           | 126.241            | 0.491    | (                 | 0.1 3.5           | ОК       |          |
| 480                | min Summer 3         | 126.225            | 0.475    | (                 | 0.1 3.4           | O K      |          |
| 600                | min Summer           | 126.208            | 0.458    | (                 | 0.1 3.3           | O K      |          |
| 720                | min Summer 3         | 126.191            | 0.441    | (                 | 0.1 3.1           | O K      |          |
| 960                | min Summer           | 126.159            | 0.409    | (                 | 0.1 2.9           | O K      |          |
| 1440               | min Summer           | 126.102            | 0.352    |                   | 0.1 2.5           | ОК       |          |
| 2160               | min Summer           | 126.030            | 0.280    |                   | 0.1 2.0           | OK       |          |
| 2880               | min Summer           | 125.971<br>125.996 | 0.221    |                   |                   | OK       |          |
| 4320               | min Summer           | 125.000<br>125.832 | 0.130    |                   | 0.1 1.0           | 0 K      |          |
| 7200               | min Summer           | 125.804            | 0.002    |                   | 0.1 0.0           | O K      |          |
| 8640               | min Summer           | 125.795            | 0.045    |                   | 0.1 0.3           | O K      |          |
| 10080              | min Summer           | 125.790            | 0.040    | (                 | 0.1 0.3           | ОК       |          |
| 15                 | min Winter           | 126.082            | 0.332    | (                 | 0.1 2.4           | O K      |          |
|                    |                      |                    |          |                   |                   |          |          |
|                    |                      |                    |          |                   |                   |          |          |
|                    | Stor                 | m<br>⊢             | Rain     | Flooded           | Time-Peak         |          |          |
|                    | Even                 | L                  | (1111)   | (m <sup>3</sup> ) | (mins)            |          |          |
|                    | 15 min               | Summer             | 130 382  | 0 0               | 22                |          |          |
|                    | 30 min               | Summer             | 84.926   | 0.0               | 36                |          |          |
|                    | 60 min               | Summer             | 52.662   | 0.0               | 64                |          |          |
|                    | 120 min              | Summer             | 31.557   | 0.0               | 122               |          |          |
|                    | 180 min              | Summer             | 23.087   | 0.0               | 180               |          |          |
|                    | 240 min              | Summer             | 18.392   | 0.0               | 216               |          |          |
|                    | 360 min              | Summer             | 13.299   | 0.0               | 276               |          |          |
|                    | 480 min              | Summer             | 10.568   | 0.0               | 342               |          |          |
|                    | 600 min              | Summer             | 8.836    | 0.0               | 410               |          |          |
|                    | /20 min              | Summer             | /.631    | 0.0               | 480               |          |          |
|                    | 960 Min              | Summer             | 0.050    | 0.0               | 004               |          |          |
|                    | 1440 MIN<br>2160 min | Summer             | 4.300    | 0.0               | 884<br>1976       |          |          |
|                    | 2880 min             | Summer             | 2.475    | 0.0               | 1648              |          |          |
|                    | 4320 min             | Summer             | 1.775    | 0.0               | 2376              |          |          |
|                    | 5760 min             | Summer             | 1.401    | 0.0               | 3056              |          |          |
|                    | 7200 min             | Summer             | 1.165    | 0.0               | 3680              |          |          |
|                    | 8640 min             | Summer             | 1.002    | 0.0               | 4408              |          |          |
|                    | 10080 min            | Summer             | 0.882    | 0.0               | 5136              |          |          |
|                    | 15 min               | Winter             | 130.382  | 0.0               | 22                |          |          |
|                    | ~ 1                  | 000 00             | 10 10    | 0-1 ''            |                   |          |          |
| 1                  | ©1                   | 982-20             | DIG XP : | Solution          | ns                |          |          |

|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          | Page 2   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Cornerstone Court                                                                                                                                                                       |                                                                                                                                                                              | Fewcott                                                                                                                                                                                                   | Road                                                                                   |                                                                                                                                 |          |          |
| 62 Foxhall Road                                                                                                                                                                         |                                                                                                                                                                              | Fritwell                                                                                                                                                                                                  |                                                                                        |                                                                                                                                 |          | <u> </u> |
| Didcot OX11 7AD                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          | Micco    |
| Date 03/08/2016 08:51                                                                                                                                                                   |                                                                                                                                                                              | Designed                                                                                                                                                                                                  | by AH                                                                                  |                                                                                                                                 |          |          |
| File 90M2.SRCX                                                                                                                                                                          |                                                                                                                                                                              | Checked                                                                                                                                                                                                   | by                                                                                     |                                                                                                                                 |          | Drainage |
| Micro Drainage                                                                                                                                                                          |                                                                                                                                                                              | Source C                                                                                                                                                                                                  | ontrol 2                                                                               | 2016.1                                                                                                                          |          |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          |          |
| Summary of Resu                                                                                                                                                                         | lts fo                                                                                                                                                                       | or 100 ye                                                                                                                                                                                                 | ar Retu                                                                                | rn Perioc                                                                                                                       | 1 (+30%) |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          |          |
| Storm                                                                                                                                                                                   | Max                                                                                                                                                                          | Max                                                                                                                                                                                                       | Max                                                                                    | Max                                                                                                                             | Status   |          |
| Event                                                                                                                                                                                   | Level                                                                                                                                                                        | l Depth I                                                                                                                                                                                                 | nfiltrati                                                                              | on Volume                                                                                                                       |          |          |
|                                                                                                                                                                                         | (m)                                                                                                                                                                          | (m)                                                                                                                                                                                                       | (1/s)                                                                                  | (m <sup>3</sup> )                                                                                                               |          |          |
| 30 min Winter                                                                                                                                                                           | 126.1                                                                                                                                                                        | 75 0.425                                                                                                                                                                                                  | C                                                                                      | ).1 3.0                                                                                                                         | O K      |          |
| 60 min Winter                                                                                                                                                                           | 126.20                                                                                                                                                                       | 60 0.510                                                                                                                                                                                                  | C                                                                                      | 3.6                                                                                                                             | O K      |          |
| 120 min Winter                                                                                                                                                                          | 126.32                                                                                                                                                                       | 21 0.571                                                                                                                                                                                                  | C                                                                                      | 0.1 4.1                                                                                                                         | ОК       |          |
| 180 min Winter                                                                                                                                                                          | 126.33                                                                                                                                                                       | 37 0.587                                                                                                                                                                                                  | C                                                                                      | 0.1 4.2                                                                                                                         | ОК       |          |
| 240 min Winter                                                                                                                                                                          | 126.33                                                                                                                                                                       | 34 U.584                                                                                                                                                                                                  | C                                                                                      | J.⊥ 4.2                                                                                                                         | O K      |          |
| 360 min Winter                                                                                                                                                                          | . ⊥∠b.J.<br>• 126 20                                                                                                                                                         | 14 U.364<br>94 0 577                                                                                                                                                                                      |                                                                                        | ) 1 2 0                                                                                                                         | O K      |          |
| 600 min Winter                                                                                                                                                                          | 126.2                                                                                                                                                                        | 71 0.521                                                                                                                                                                                                  | ſ                                                                                      | ).1 37                                                                                                                          | 0 K      |          |
| 720 min Winter                                                                                                                                                                          | 12.6.24                                                                                                                                                                      | 48 0.498                                                                                                                                                                                                  | ſ                                                                                      | ).1 3.5                                                                                                                         | 0 K      |          |
| 960 min Winter                                                                                                                                                                          | 126.20                                                                                                                                                                       | 0.452                                                                                                                                                                                                     | C                                                                                      | ).1 3.2                                                                                                                         | 0 K      |          |
| 1440 min Winter                                                                                                                                                                         | 126.11                                                                                                                                                                       | 18 0.368                                                                                                                                                                                                  | C                                                                                      | 0.1 2.6                                                                                                                         | ОК       |          |
| 2160 min Winter                                                                                                                                                                         | 126.01                                                                                                                                                                       | 16 0.266                                                                                                                                                                                                  | C                                                                                      | 0.1 1.9                                                                                                                         | ОК       |          |
| 2880 min Winter                                                                                                                                                                         | 125.93                                                                                                                                                                       | 37 0.187                                                                                                                                                                                                  | C                                                                                      | 1.3                                                                                                                             | O K      |          |
| 4320 min Winter                                                                                                                                                                         | 125.83                                                                                                                                                                       | 30 0.080                                                                                                                                                                                                  | C                                                                                      | 0.1 0.6                                                                                                                         | O K      |          |
| 5760 min Winter                                                                                                                                                                         | 125.79                                                                                                                                                                       | 96 0.046                                                                                                                                                                                                  | C                                                                                      | 0.1 0.3                                                                                                                         | ОК       |          |
| 7200 min Winter                                                                                                                                                                         | 125.78                                                                                                                                                                       | 38 0.038                                                                                                                                                                                                  | C                                                                                      | 0.1 0.3                                                                                                                         | ОК       |          |
| 8640 min Winter                                                                                                                                                                         | 125.78                                                                                                                                                                       | 33 0.033                                                                                                                                                                                                  | (                                                                                      | 0.1 0.2                                                                                                                         | ОК       |          |
| 10080 min Winter                                                                                                                                                                        | 125.7                                                                                                                                                                        | 19 0.029                                                                                                                                                                                                  | Ĺ                                                                                      | 0.0                                                                                                                             | ΟK       |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          |          |
| Sto                                                                                                                                                                                     | orm                                                                                                                                                                          | Rain                                                                                                                                                                                                      | Flooded                                                                                | Time-Peak                                                                                                                       |          |          |
| Eve                                                                                                                                                                                     | ent                                                                                                                                                                          | (mm/hr)                                                                                                                                                                                                   | Volume                                                                                 | (mins)                                                                                                                          |          |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                        |                                                                                                                                 |          |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           | (m³)                                                                                   |                                                                                                                                 |          |          |
|                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                           | (m³)                                                                                   |                                                                                                                                 |          |          |
| 30 mi                                                                                                                                                                                   | n Winte                                                                                                                                                                      | r 84.926                                                                                                                                                                                                  | (m <sup>3</sup> )                                                                      | 36                                                                                                                              |          |          |
| 30 mi<br>60 mi                                                                                                                                                                          | n Winte<br>n Winte                                                                                                                                                           | r 84.926<br>r 52.662                                                                                                                                                                                      | (m <sup>3</sup> )<br>0.0<br>0.0                                                        | 36                                                                                                                              |          |          |
| 30 mi<br>60 mi<br>120 mi                                                                                                                                                                | n Winte<br>n Winte<br>n Winte                                                                                                                                                | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087                                                                                                                                                              | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0                                                 | 36<br>64<br>120                                                                                                                 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi                                                                                                                                            | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                                                                          | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392                                                                                                                                                  | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | 36<br>64<br>120<br>176<br>230                                                                                                   |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi                                                                                                                                  | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                                                               | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299                                                                                                                                      | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 36<br>64<br>120<br>176<br>230<br>290                                                                                            |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi                                                                                                                        | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                                                    | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568                                                                                                                          | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | 36<br>64<br>120<br>176<br>230<br>290<br>366                                                                                     |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi                                                                                                              | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                                         | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836                                                                                                               | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0              | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444                                                                              |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi                                                                                                    | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                              | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631                                                                                                    | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520                                                                       |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi                                                                                          | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                   | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050                                                                                         | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668                                                                |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi                                                                               | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                              | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356                                                                              | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952                                                         |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi                                                                    | n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte<br>n Winte                                                                   | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131                                                                   | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348                                                 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi                                               | n Winte<br>n Winte                                                        | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475                                                        | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384                                 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi                                    | n Winte<br>n Winte                                             | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401                                  | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944                         |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi                                   | n Winte<br>n Winte                                  | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.465                       | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672                 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi                        | n Winte<br>n Winte                                  | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002            | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408         |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi   | n Winte<br>n Winte | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi             | n Winte<br>n Winte            | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882             | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi             | n Winte<br>n Winte | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | n Winte<br>n Winte            | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | n Winte<br>n Winte                       | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | n Winte<br>n Winte                       | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | n Winte<br>n Winte            | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 13.299<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.401<br>r 1.165<br>r 1.002<br>r 0.882 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |
| 30 mi<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | n Winte<br>n Winte                       | r 84.926<br>r 52.662<br>r 31.557<br>r 23.087<br>r 18.392<br>r 10.568<br>r 8.836<br>r 7.631<br>r 6.050<br>r 4.356<br>r 3.131<br>r 2.475<br>r 1.775<br>r 1.775<br>r 1.401<br>r 1.102<br>r 0.882             | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 36<br>64<br>120<br>176<br>230<br>290<br>366<br>444<br>520<br>668<br>952<br>1348<br>1732<br>2384<br>2944<br>3672<br>4408<br>5128 |          |          |

| Glanville Consultants |                      |         |                   |                   |                    |          | Page 1   |  |  |
|-----------------------|----------------------|---------|-------------------|-------------------|--------------------|----------|----------|--|--|
| Cornerstone Court     |                      | F€      | ewcott i          | Road              |                    |          |          |  |  |
| 62 Foxhall Road       |                      | Fı      | ritwell           |                   |                    |          | 4        |  |  |
| Didcot OX11 7AD       |                      |         |                   |                   |                    |          | Micco    |  |  |
| Date 03/08/2016 08    | :52                  | De      | esigned           | by AH             |                    |          |          |  |  |
| File 120M2.SRCX       |                      | Cł      | necked 1          | by                |                    |          | Digitigh |  |  |
| Micro Drainage        |                      | Sc      | ource C           | ontrol 2          | 2016.1             |          |          |  |  |
|                       |                      |         |                   |                   |                    |          |          |  |  |
| Summar                | y of Result          | s for   | 100 ye            | ar Retu           | rn Perio           | d (+30응) |          |  |  |
|                       | Half                 | Drain   | Time : 3          | 330 minut         | es.                |          |          |  |  |
|                       | Storm                | Max     | Max               | Max               | Max                | Status   |          |  |  |
|                       | Event                | Level   | Depth I           | nfiltrati         | ion Volume         |          |          |  |  |
|                       |                      | (m)     | (m)               | (1/s)             | (m³)               |          |          |  |  |
| 15                    | min Summer 1         | 26.079  | 0.329             | (                 | 0.1 2.8            | ОК       |          |  |  |
| 30                    | min Summer 1         | 26.172  | 0.422             | (                 | 0.1 3.6            | 0 K      |          |  |  |
| 60                    | min Summer 1         | 26.255  | 0.505             | (                 | 0.2 4.3            | O K      |          |  |  |
| 120                   | min Summer 1         | 26.316  | 0.566             | (                 | 0.2 4.8            | O K      |          |  |  |
| 180                   | min Summer 1         | 26.331  | 0.581             | (                 | D.2 5.0            | O K      |          |  |  |
| 240                   | min Summer 1         | 26.328  | U.5/8<br>0 563    | (                 | J.∠ 4.9<br>D.2 /0  | U K      |          |  |  |
| 480                   | min Summer 1         | 26.296  | 0.546             | (                 | 0.2 4.0            | 0 K      |          |  |  |
| 600                   | min Summer 1         | 26.279  | 0.529             | (                 | 0.2 4.5            | ОК       |          |  |  |
| 720                   | min Summer 1         | 26.262  | 0.512             | (                 | 0.2 4.4            | O K      |          |  |  |
| 960                   | min Summer 1         | 26.228  | 0.478             | (                 | 0.1 4.1            | O K      |          |  |  |
| 1440                  | min Summer 1         | 26.168  | 0.418             | (                 | 0.1 3.6            | ΟK       |          |  |  |
| 2160                  | min Summer 1         | .26.091 | 0.341             | (                 | D.1 2.9            | ОК       |          |  |  |
| 2880                  | min Summer 1         | 25 930  | 0.277             | (                 | J.L 2.4<br>D.1 1.5 | OK       |          |  |  |
| 5760                  | min Summer 1         | 25.864  | 0.114             | (                 | 0.1 1.0            | 0 K      |          |  |  |
| 7200                  | min Summer 1         | 25.822  | 0.072             | (                 | 0.1 0.6            | ΟK       |          |  |  |
| 8640                  | min Summer 1         | 25.801  | 0.051             | (                 | 0.1 0.4            | O K      |          |  |  |
| 10080                 | min Summer 1         | 25.795  | 0.045             | (                 | 0.1 0.4            | ΟK       |          |  |  |
| 15                    | min Winter l         | .26.120 | 0.370             | (                 | 0.1 3.2            | ΟK       |          |  |  |
|                       | Sta a sur            |         | Dain              | TI and ad         | Mime Deck          |          |          |  |  |
|                       | Storn<br>Event       |         | Rain<br>(mm/hr)   | Volume            | (mins)             |          |          |  |  |
|                       | 270110               |         | (                 | (m <sup>3</sup> ) | (                  |          |          |  |  |
|                       | 15 min 1             | Summor  | 130 202           | 0 0               | 0.0                |          |          |  |  |
|                       | ID MIN A             | Summer  | 130.382<br>84 926 | 0.0               | 22                 |          |          |  |  |
|                       | 60 min 3             | Summer  | 52.662            | 0.0               | 66                 |          |          |  |  |
|                       | 120 min              | Summer  | 31.557            | 0.0               | 124                |          |          |  |  |
|                       | 180 min :            | Summer  | 23.087            | 0.0               | 182                |          |          |  |  |
|                       | 240 min :            | Summer  | 18.392            | 0.0               | 232                |          |          |  |  |
|                       | 360 min :            | Summer  | 10 560            | 0.0               | 288                |          |          |  |  |
|                       | 400 MLD 600 min 1    | Summer  | 10.308<br>8.836   | 0.0               | 35U<br>420         |          |          |  |  |
|                       | 720 min :            | Summer  | 7.631             | 0.0               | 488                |          |          |  |  |
|                       | 960 min              | Summer  | 6.050             | 0.0               | 626                |          |          |  |  |
|                       | 1440 min 3           | Summer  | 4.356             | 0.0               | 898                |          |          |  |  |
|                       | 2160 min :           | Summer  | 3.131             | 0.0               | 1296               |          |          |  |  |
|                       | 2880 min :           | Summer  | 2.4/5             | 0.0               | 1672               |          |          |  |  |
|                       | 4320 MILN 5760 min 5 | Summer  | 1,401             | 0.0               | ∠384<br>3112       |          |          |  |  |
|                       | 7200 min :           | Summer  | 1.165             | 0.0               | 3752               |          |          |  |  |
|                       | 8640 min :           | Summer  | 1.002             | 0.0               | 4408               |          |          |  |  |
|                       | 10080 min :          | Summer  | 0.882             | 0.0               | 5136               |          |          |  |  |
|                       | 15 min 1             | Winter  | 130.382           | 0.0               | 22                 |          |          |  |  |
|                       | @1                   | 982-20  | 16 XP 4           | Solution          | าร                 |          |          |  |  |
| L                     | 91.                  | 0       |                   | JULUCIOI          |                    |          |          |  |  |

| Glanville Consultants                                |           |                          |                   |              |            |          |  |
|------------------------------------------------------|-----------|--------------------------|-------------------|--------------|------------|----------|--|
| Cornerstone Court Fewcott Road                       |           |                          |                   |              |            |          |  |
| 62 Foxhall Road                                      | I         | Fritwell                 |                   |              |            | 4        |  |
| Didcot OX11 7AD                                      |           |                          | - Com             |              |            |          |  |
| Date 03/08/2016 08:52                                | I         | Designed                 | MICIO             |              |            |          |  |
| File 120M2 SPCY                                      |           | Chockod                  |                   |              |            | Drainage |  |
| rile izomz.skca                                      |           |                          | J                 |              |            |          |  |
| Micro Drainage                                       |           | Source C                 | ontrol 2          | 016.1        |            |          |  |
| Summary of Poculta for 100 year Poturn Poriod (+30%) |           |                          |                   |              |            |          |  |
| Summary of Results for 100 year Return Period (+30%) |           |                          |                   |              |            |          |  |
| Storm                                                | Max       | Mav                      | May               | May Status   |            |          |  |
| Event                                                | Level     | Depth Inf                | iltration         | Volume       | blacus     |          |  |
|                                                      | (m)       | (m)                      | (1/s)             | (m³)         |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
| 30 min Winter                                        | 126.225   | 0.475                    | 0.1               | 4.1          | ОК         |          |  |
| 60 min Winter<br>120 min Winter                      | 126.321   | 0.5/1                    | 0.2               | 4.9          | OK         |          |  |
| 180 min Winter                                       | 126 741   | 0.793                    | 0.2               | 5.7          | Flood Risk |          |  |
| 240 min Winter                                       | 126.758   | 1.008                    | 0.2               | 5.7          | Flood Risk |          |  |
| 360 min Winter                                       | 126.584   | 0.834                    | 0.2               | 5.5          | Flood Risk |          |  |
| 480 min Winter                                       | 126.396   | 0.646                    | 0.2               | 5.4          | O K        |          |  |
| 600 min Winter                                       | 126.355   | 0.605                    | 0.2               | 5.2          | O K        |          |  |
| 720 min Winter                                       | 126.331   | 0.581                    | 0.2               | 5.0          | O K        |          |  |
| 960 min Winter                                       | 126.284   | 0.534                    | 0.2               | 4.6          | O K        |          |  |
| 1440 min Winter                                      | 126.196   | 0.446                    | 0.1               | 3.8          | ОК         |          |  |
| 2160 min Winter                                      | 126.086   | 0.336                    | 0.1               | 2.9          | OK         |          |  |
| 4320 min Winter                                      | 125.990   | 0.240                    | 0.1               | 1 0          | OK         |          |  |
| 5760 min Winter                                      | 125.803   | 0.053                    | 0.1               | 0.5          | 0 K        |          |  |
| 7200 min Winter                                      | 125.793   | 0.043                    | 0.1               | 0.4          | O K        |          |  |
| 8640 min Winter                                      | 125.787   | 0.037                    | 0.1               | 0.3          | ОК         |          |  |
| 10080 min Winter                                     | 125.783   | 0.033                    | 0.1               | 0.3          | O K        |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
| St                                                   | orm       | Rain                     | Flooded 1         | l'ime-Peak   | 2          |          |  |
| Ev                                                   | enc       | (1111)                   | (m <sup>3</sup> ) | (11115)      |            |          |  |
|                                                      |           |                          | ( )               |              |            |          |  |
| 30 mi                                                | in Winter | r 84.926                 | 0.0               | 36           | ō          |          |  |
| 60 m                                                 | in Winte  | r 52.662                 | 0.0               | 64           | 1          |          |  |
| 120 m                                                | in Winter | r 31.557                 | 0.0               | 122          | <u> </u>   |          |  |
| 240 m                                                | in Winter | r = 23.007<br>r = 18.392 | 0.0               | 1/8<br>234   | ,<br>1     |          |  |
| 360 m <sup>-</sup>                                   | in Winter | r 13.299                 | 0.0               | 330          | )          |          |  |
| 480 mi                                               | in Winter | r 10.568                 | 0.0               | 374          | 1          |          |  |
| 600 m                                                | in Winter | r 8.836                  | 0.0               | 450          | )          |          |  |
| 720 m                                                | in Winter | r 7.631                  | 0.0               | 526          | 5          |          |  |
| 960 m                                                | in Winter | r 6.050                  | 0.0               | 676          | ô          |          |  |
| 1440 mi                                              | in Winter | r 4.356                  | 0.0               | 968          | 3          |          |  |
| 2160 m                                               | in Winter | r 3.131                  | 0.0               | 1372         |            |          |  |
| 2880 mi<br>//320 mi                                  | in Winter |                          | 0.0               | 1/6U<br>2/60 | 2          |          |  |
| 5760 m <sup>-</sup>                                  | in Winter | r 1.401                  | 0.0               | 3000         | )          |          |  |
| 7200 m                                               | in Winter | r 1.165                  | 0.0               | 3672         | 2          |          |  |
| 8640 m                                               | in Winter | r 1.002                  | 0.0               | 4408         | 3          |          |  |
| 10080 m                                              | in Winte  | r 0.882                  | 0.0               | 5136         | 5          |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      |           |                          |                   |              |            |          |  |
|                                                      | ©1982-2   | 2016 XP 3                | Solution          | S            |            |          |  |
|                                                      |           | -                        |                   | -            |            |          |  |

| Glanville Consultants                |              |        |                |            |             |          | Page 1   |  |
|--------------------------------------|--------------|--------|----------------|------------|-------------|----------|----------|--|
| Cornerstone Court                    |              | F€     | ewcott i       | Road       |             |          |          |  |
| 62 Foxhall Road                      |              | Fı     | ritwell        |            |             |          | La l     |  |
| Didcot OX11 7AD                      |              |        |                |            |             |          | Micco    |  |
| Date 03/08/2016 08                   | :53          | De     | esigned        | by AH      |             |          |          |  |
| File 160M2.SRCX                      |              | Cł     | necked 1       | бу         |             |          | Drainage |  |
| Micro Drainage Source Control 2016.1 |              |        |                |            |             |          | 1        |  |
|                                      |              |        |                |            |             |          |          |  |
| Summar                               | y of Result  | s for  | 100 ye         | ar Retui   | rn Period   | d (+30%) |          |  |
|                                      |              |        |                |            |             |          |          |  |
|                                      | Half         | Drain  | Time : 0       | 597 minute | es.         |          |          |  |
|                                      | Storm        | Max    | Max            | Max        | Max         | Status   |          |  |
|                                      | Event        | Level  | Depth I        | nfiltrati  | on Volume   |          |          |  |
|                                      |              | (m)    | (m)            | (l/s)      | (m³)        |          |          |  |
| 15                                   | min Summer 1 | 25,931 | 0.381          | 0          | .1 3.8      | ОК       |          |  |
| 30                                   | min Summer 1 | 26.042 | 0.492          | 0          | .1 4.9      | ОК       |          |  |
| 60                                   | min Summer 1 | 26.148 | 0.598          | 0          | .1 6.0      | ΟK       |          |  |
| 120                                  | min Summer 1 | 26.239 | 0.689          | 0          | .1 6.9      | O K      |          |  |
| 180                                  | min Summer 1 | 26.279 | 0.729          | 0          | .1 7.3      | O K      |          |  |
| 240                                  | min Summer 1 | 26.297 | 0.747          | 0          | .1 7.4      | O K      |          |  |
| 360                                  | min Summer 1 | 26.304 | 0.754          | 0          | .1 7.5      | OK       |          |  |
| 480                                  | min Summer 1 | 26.294 | 0.744          | 0          | .1 7.4      | ОК       |          |  |
| 600                                  | min Summer 1 | 26.275 | 0.725          | 0          | .1 7.2      | OK       |          |  |
| /20                                  | min Summer 1 | 26.257 | 0./0/          | 0          | .1 /.1      | OK       |          |  |
| 960                                  | min Summer 1 | 26.164 | 0.673          | 0          | .1 6.1      | OK       |          |  |
| 2160                                 | min Summer 1 | 26 084 | 0.014          | 0          | 1 5 3       | OK       |          |  |
| 2100                                 | min Summer 1 | 26 011 | 0.334          | 0          | 1 4 6       | O K      |          |  |
| 4320                                 | min Summer 1 | 25.881 | 0.331          | 0          | .1 3.3      | 0 K      |          |  |
| 5760                                 | min Summer 1 | 25.777 | 0.227          | 0          | .1 2.3      | ОК       |          |  |
| 7200                                 | min Summer 1 | 25.698 | 0.148          | 0          | .1 1.5      | ОК       |          |  |
| 8640                                 | min Summer 1 | 25.644 | 0.094          | 0          | .1 0.9      | ОК       |          |  |
| 10080                                | min Summer 1 | 25.611 | 0.061          | 0          | .1 0.6      | O K      |          |  |
| 15                                   | min Winter 1 | 25.978 | 0.428          | 0          | .1 4.3      | O K      |          |  |
|                                      |              |        |                |            |             |          |          |  |
|                                      |              |        |                |            |             |          |          |  |
|                                      | Storm        | ı      | Rain           | Flooded !  | Time-Peak   |          |          |  |
|                                      | Event        |        | (mm/hr)        | Volume     | (mins)      |          |          |  |
|                                      |              |        |                | (m³)       |             |          |          |  |
|                                      | 15 min 9     | Summer | 130,382        | 0.0        | 2.2         |          |          |  |
|                                      | 30 min 8     | Summer | 84.926         | 0.0        | 37          |          |          |  |
|                                      | 60 min 3     | Summer | 52.662         | 0.0        | 66          |          |          |  |
|                                      | 120 min \$   | Summer | 31.557         | 0.0        | 126         |          |          |  |
|                                      | 180 min 3    | Summer | 23.087         | 0.0        | 184         |          |          |  |
|                                      | 240 min 3    | Summer | 18.392         | 0.0        | 244         |          |          |  |
|                                      | 360 min \$   | Summer | 13.299         | 0.0        | 362         |          |          |  |
|                                      | 480 min 8    | Summer | 10.568         | 0.0        | 480         |          |          |  |
|                                      | 600 min 3    | Summer | 8.836          | 0.0        | 560         |          |          |  |
|                                      | /20 min \$   | Summer | 1.631          | 0.0        | 610         |          |          |  |
|                                      | 960 Min 1    | Summer | 0.050          | 0.0        | 128         |          |          |  |
|                                      | 2160 min 9   | Summer | 4.336<br>3 131 | 0.0        | 200<br>1202 |          |          |  |
|                                      | 2880 min 9   | Summer | 2.475          | 0.0        | 1792        |          |          |  |
|                                      | 4320 min 9   | Summer | 1.775          | 0.0        | 2552        |          |          |  |
|                                      | 5760 min \$  | Summer | 1.401          | 0.0        | 3280        |          |          |  |
|                                      | 7200 min \$  | Summer | 1.165          | 0.0        | 3960        |          |          |  |
|                                      | 8640 min 3   | Summer | 1.002          | 0.0        | 4584        |          |          |  |
|                                      | 10080 min \$ | Summer | 0.882          | 0.0        | 5240        |          |          |  |
|                                      | 15 min 1     | Winter | 130.382        | 0.0        | 22          |          |          |  |
|                                      |              | 000 00 | 10 000         |            |             |          |          |  |
|                                      | ©19          | 982-20 | NTR XL 3       | polution   | S           |          |          |  |

| Gianville consultants                                                                                             | Glanville Consultants                                                                                                                       |                                                                                                                                                    |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|--|--|
| Cornerstone Court                                                                                                 | Ε                                                                                                                                           | Tewcott                                                                                                                                            | Road                                                                                                         |                                                                                                 |                                                                           |       |  |  |
| 62 Foxhall Road                                                                                                   | F                                                                                                                                           | Fritwell                                                                                                                                           |                                                                                                              |                                                                                                 |                                                                           | 4     |  |  |
| Didcot OX11 7AD                                                                                                   |                                                                                                                                             |                                                                                                                                                    |                                                                                                              |                                                                                                 |                                                                           | Micco |  |  |
| Date 03/08/2016 08:53                                                                                             | Ι                                                                                                                                           | Designed                                                                                                                                           |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
| File 160M2.SRCX                                                                                                   | (                                                                                                                                           | Checked 1                                                                                                                                          | Diamage                                                                                                      |                                                                                                 |                                                                           |       |  |  |
| Micro Drainage                                                                                                    |                                                                                                                                             | Source C                                                                                                                                           |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
|                                                                                                                   |                                                                                                                                             |                                                                                                                                                    |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
| Summary of Results for 100 year Return Period (+30%)                                                              |                                                                                                                                             |                                                                                                                                                    |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
|                                                                                                                   |                                                                                                                                             | <u> </u>                                                                                                                                           |                                                                                                              |                                                                                                 |                                                                           |       |  |  |
| Storm                                                                                                             | Max                                                                                                                                         | Max                                                                                                                                                | Max                                                                                                          | Max                                                                                             | Status                                                                    |       |  |  |
| Event                                                                                                             | Level                                                                                                                                       | Depth Inf                                                                                                                                          | iltration                                                                                                    | Volume                                                                                          |                                                                           |       |  |  |
|                                                                                                                   | (m)                                                                                                                                         | (m)                                                                                                                                                | (1/S)                                                                                                        | (m <sup>3</sup> )                                                                               |                                                                           |       |  |  |
| 30 min Winter                                                                                                     | 126.103                                                                                                                                     | 0.553                                                                                                                                              | 0.1                                                                                                          | 5.5                                                                                             | O K                                                                       |       |  |  |
| 60 min Winter                                                                                                     | 126.224                                                                                                                                     | 0.674                                                                                                                                              | 0.1                                                                                                          | 6.7                                                                                             | O K                                                                       |       |  |  |
| 120 min Winter                                                                                                    | 126.331                                                                                                                                     | 0.781                                                                                                                                              | 0.1                                                                                                          | 7.8                                                                                             | ОК                                                                        |       |  |  |
| 180 min Winter                                                                                                    | 126.407                                                                                                                                     | 0.857                                                                                                                                              | 0.1                                                                                                          | 8.3                                                                                             | U K                                                                       |       |  |  |
| 240 min Winter<br>360 min Winter                                                                                  | 126.000                                                                                                                                     | 1 284                                                                                                                                              | 0.1                                                                                                          | 0.0<br>87                                                                                       | Flood Risk                                                                |       |  |  |
| 480 min Winter                                                                                                    | 126.812                                                                                                                                     | 1.262                                                                                                                                              | 0.1                                                                                                          | 8.7                                                                                             | Flood Risk                                                                |       |  |  |
| 600 min Winter                                                                                                    | 126.677                                                                                                                                     | 1.127                                                                                                                                              | 0.1                                                                                                          | 8.5                                                                                             | Flood Risk                                                                |       |  |  |
| 720 min Winter                                                                                                    | 126.476                                                                                                                                     | 0.926                                                                                                                                              | 0.1                                                                                                          | 8.3                                                                                             | O K                                                                       |       |  |  |
| 960 min Winter                                                                                                    | 126.340                                                                                                                                     | 0.790                                                                                                                                              | 0.1                                                                                                          | 7.9                                                                                             | ОК                                                                        |       |  |  |
| 1440 min Winter                                                                                                   | 126.260                                                                                                                                     | 0.710                                                                                                                                              | 0.1                                                                                                          | 7.1                                                                                             | O K                                                                       |       |  |  |
| 2160 min Winter                                                                                                   | 126.142                                                                                                                                     | 0.592                                                                                                                                              | 0.1                                                                                                          | 5.9                                                                                             | O K                                                                       |       |  |  |
| 2880 min Winter                                                                                                   | 126.030                                                                                                                                     | 0.480                                                                                                                                              | 0.1                                                                                                          | 4.8                                                                                             | O K                                                                       |       |  |  |
| 4320 min Winter                                                                                                   | 125.836                                                                                                                                     | 0.286                                                                                                                                              | 0.1                                                                                                          | 2.9                                                                                             | ОК                                                                        |       |  |  |
| 5760 min Winter<br>7200 min Winter                                                                                | 125.692                                                                                                                                     | 0.142                                                                                                                                              | 0.1                                                                                                          | 1.4                                                                                             | OK                                                                        |       |  |  |
| 8640 min Winter                                                                                                   | 125.000                                                                                                                                     | 0.038                                                                                                                                              | 0.1                                                                                                          | 0.0                                                                                             | OK                                                                        |       |  |  |
| 10080 min Winter                                                                                                  | 125.590                                                                                                                                     | 0.040                                                                                                                                              | 0.1                                                                                                          | 0.4                                                                                             | ОК                                                                        |       |  |  |
| Si<br>Ev                                                                                                          | torm<br>vent                                                                                                                                | Rain<br>(mm/hr)                                                                                                                                    | Flooded T<br>Volume<br>(m <sup>3</sup> )                                                                     | ime-Peal<br>(mins)                                                                              | c                                                                         |       |  |  |
|                                                                                                                   |                                                                                                                                             |                                                                                                                                                    | . ,                                                                                                          |                                                                                                 |                                                                           |       |  |  |
| 30 m                                                                                                              | in Winter                                                                                                                                   | 84.926                                                                                                                                             | 0.0                                                                                                          | 31                                                                                              | 7                                                                         |       |  |  |
| 60 m                                                                                                              | in Winter                                                                                                                                   | c 52.662                                                                                                                                           | 0.0                                                                                                          | 12                                                                                              | 0                                                                         |       |  |  |
| 120 II<br>180 m                                                                                                   | un Winter<br>un Winter                                                                                                                      | $2^{\circ}$ 31.557                                                                                                                                 | 0.0                                                                                                          | 183                                                                                             | ±<br>>                                                                    |       |  |  |
| 240 m                                                                                                             | in Winter                                                                                                                                   | 18.392                                                                                                                                             | 0.0                                                                                                          | 240                                                                                             | )                                                                         |       |  |  |
| 360 m                                                                                                             | in Winter                                                                                                                                   | 13.299                                                                                                                                             | 0 0                                                                                                          |                                                                                                 | 1                                                                         |       |  |  |
|                                                                                                                   |                                                                                                                                             |                                                                                                                                                    | 0.0                                                                                                          | 354                                                                                             | -                                                                         |       |  |  |
| 480 m                                                                                                             | in Winter                                                                                                                                   | 10.568                                                                                                                                             | 0.0                                                                                                          | 354<br>468                                                                                      | 3                                                                         |       |  |  |
| 480 m<br>600 m                                                                                                    | iin Winter<br>Min Winter                                                                                                                    | 10.568<br>8.836                                                                                                                                    | 0.0                                                                                                          | 354<br>468<br>578                                                                               | 3                                                                         |       |  |  |
| 480 m<br>600 m<br>720 m                                                                                           | in Winter<br>in Winter<br>in Winter                                                                                                         | 10.568<br>8.836<br>7.631                                                                                                                           | 0.0<br>0.0<br>0.0                                                                                            | 468<br>578<br>684                                                                               | 3<br>3<br>4                                                               |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m                                                                                  | nin Winter<br>nin Winter<br>nin Winter<br>nin Winter                                                                                        | 10.568<br>8.836<br>7.631<br>6.050                                                                                                                  |                                                                                                              | 354<br>468<br>578<br>684<br>782                                                                 | 2<br>3<br>4<br>2                                                          |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m                                                                        | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter                                                                          | 10.568         8.836         7.631         6.050         4.356         3.131                                                                       |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1080                                                         | 2<br>2<br>2                                                               |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m                                                    | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter                                                            | <ul> <li>10.568</li> <li>8.836</li> <li>7.631</li> <li>6.050</li> <li>4.356</li> <li>3.131</li> <li>2.475</li> </ul>                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                       | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1934                                         | 3<br>3<br>4<br>2<br>0<br>0                                                |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m                                          | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter                                              | 10.568         8.836         7.631         6.050         4.356         3.131         2.475         1.775                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                         | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1930<br>2688                                 | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>3                                      |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m                                | in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter                                        | 10.568       8.836         7.631       6.050         4.356       3.131         2.475       1.775         1.401       1.401                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                  | 354<br>468<br>578<br>1080<br>1520<br>1930<br>2688<br>3344                                       | 2<br>2<br>0<br>5<br>3<br>4                                                |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m                      | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter                  | 10.568         8.836         7.631         6.050         4.356         3.131         2.475         1.775         1.401         1.165               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                           | 354<br>468<br>578<br>688<br>782<br>1080<br>1520<br>1930<br>2688<br>3344<br>3824                 | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>3<br>4<br>4                            |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m            | tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter<br>tin Winter    | 10.568         8.836         7.631         6.050         4.356         3.131         2.475         1.775         1.401         1.165         1.002 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                           | 354<br>468<br>578<br>684<br>782<br>1088<br>1520<br>1934<br>2688<br>3344<br>3824<br>4408         | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>5<br>3<br>4<br>4<br>4<br>3             |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | in Winter<br>in Winter | 10.568         8.836         7.631         6.050         4.356         3.131         2.475         1.775         1.401         1.165         0.882 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 354<br>468<br>578<br>1088<br>1522<br>1933<br>2688<br>3344<br>3824<br>4408<br>5088               | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>5<br>3<br>4<br>4<br>4<br>3<br>3        |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter    | 10.568         8.836         7.631         6.050         4.356         3.131         2.475         1.775         1.401         1.165         0.882 |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1930<br>2688<br>3344<br>3824<br>4408<br>5088 | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>3<br>4<br>4<br>3<br>3<br>3             |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter    | e 10.568<br>8.836<br>7.631<br>6.050<br>6.3.131<br>2.475<br>1.775<br>1.401<br>1.165<br>1.002<br>0.882                                               |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1936<br>2688<br>3344<br>3824<br>4408<br>5088 | 3<br>3<br>4<br>2<br>0<br>0<br>0<br>5<br>3<br>4<br>4<br>3<br>3             |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter<br>ain Winter    | 10.568<br>8.836<br>7.631<br>6.050<br>4.356<br>3.131<br>2.475<br>1.775<br>1.401<br>1.165<br>1.002<br>0.882                                          |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1936<br>2688<br>3344<br>3824<br>4408<br>5088 | 3<br>3<br>4<br>2<br>0<br>0<br>0<br>5<br>3<br>4<br>4<br>4<br>3<br>3        |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter    | 10.568<br>8.836<br>7.631<br>6.050<br>4.356<br>3.131<br>2.475<br>1.775<br>1.401<br>1.165<br>1.002<br>0.882                                          |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1086<br>1520<br>1936<br>2688<br>3344<br>3824<br>4408<br>5088 | A<br>3<br>4<br>2<br>0<br>0<br>5<br>3<br>4<br>4<br>3<br>3                  |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter<br>hin Winter    | e 10.568<br>8.836<br>7.631<br>6.050<br>4.356<br>3.131<br>2.475<br>1.775<br>1.401<br>1.165<br>1.002<br>0.882                                        |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1088<br>1520<br>1933<br>2688<br>3344<br>3824<br>4408<br>5088 | 3<br>3<br>4<br>2<br>0<br>0<br>5<br>3<br>4<br>4<br>3<br>3                  |       |  |  |
| 480 m<br>600 m<br>720 m<br>960 m<br>1440 m<br>2160 m<br>2880 m<br>4320 m<br>5760 m<br>7200 m<br>8640 m<br>10080 m | in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter<br>in Winter              | <pre>10.568 8.836 7.631 6.050 4.356 3.131 2.475 1.775 1.401 1.165 1.002 0.882</pre>                                                                |                                                                                                              | 354<br>468<br>578<br>684<br>782<br>1080<br>1520<br>1936<br>2688<br>3344<br>3824<br>4408<br>5088 | 3       3       4       2       0       5       3       4       3       3 |       |  |  |

| Glanville Consultants                  |          |                |            |            |            | Page 1 |  |
|----------------------------------------|----------|----------------|------------|------------|------------|--------|--|
| Cornerstone Court                      |          | Fewcott        | Road       |            |            |        |  |
| 62 Foxhall Road                        | :        | Fritwell       |            |            |            |        |  |
| Didcot OX11 7AD                        |          |                |            |            |            | Micco  |  |
| Date 03/08/2016 08:54                  |          | Designed       | by AH      |            |            |        |  |
| File ROAD.SRCX                         |          | Checked 1      | Digitigh   |            |            |        |  |
| Micro Drainage                         |          | Source C       | ontrol 2   | 016.1      |            |        |  |
|                                        |          |                |            |            |            |        |  |
| Summary of Resu                        | lts fo   | r 100 ye       | ar Retur   | n Peri     | od (+30%)  |        |  |
|                                        |          |                | ac         |            |            |        |  |
| Ha<br>I                                | ali Dra: | in Time :      | 36 minutes | 5 <b>.</b> |            |        |  |
| Storm                                  | Max      | Max            | Max        | Max        | Status     |        |  |
| Event                                  | Level    | Depth Inf      | iltration  | Volume     |            |        |  |
|                                        | (m)      | (m)            | (1/s)      | (m³)       |            |        |  |
| 15 min Summer 1                        | 125.627  | 0.177          | 0.6        | 1.6        | O K        |        |  |
| 30 min Summer 1                        | 25.647   | 0.197          | 0.7        | 2.0        | O K        |        |  |
| 60 min Summer 1                        | 125.657  | 0.207          | 0.7        | 2.2        | Flood Risk |        |  |
| 120 min Summer 1                       | 25.655   | U.∠U5<br>N 197 | 0./        | 2.2        | riood Risk |        |  |
| 240 min Summer 1                       | 25.637   | 0.187          | 0.7        | 2.U<br>1.8 | OK         |        |  |
| 360 min Summer 1                       | L25.619  | 0.169          | 0.6        | 1.5        | 0 K        |        |  |
| 480 min Summer 1                       | 125.604  | 0.154          | 0.5        | 1.2        | ОК         |        |  |
| 600 min Summer 1                       | 125.592  | 0.142          | 0.5        | 1.1        | O K        |        |  |
| 720 min Summer 1                       | 125.581  | 0.131          | 0.5        | 0.9        | O K        |        |  |
| 960 min Summer 1                       | 25.564   | 0.114          | 0.4        | 0.7        | O K        |        |  |
| 1440 min Summer 1                      | L25.540  | 0.090          | 0.3        | 0.4        | O K        |        |  |
| 2160 min Summer 1                      | 125.519  | 0.069          | 0.2        | 0.3        | ОК         |        |  |
| 2880 min Summer 1                      | 125.506  | 0.056          | 0.2        | 0.2        | OK         |        |  |
| 4320 min Summer 1<br>5760 min Summer 1 | 25,495   | 0.045          | 0.1        | 0.1        | OK         |        |  |
| 7200 min Summer 1                      | 25 486   | 0.036          | 0.1        | 0.1        | 0 K        |        |  |
| 8640 min Summer 1                      | 25.484   | 0.034          | 0.1        | 0.1        | ОК         |        |  |
| 10080 min Summer 1                     | 25.482   | 0.032          | 0.1        | 0.1        | 0 K        |        |  |
| 15 min Winter 1                        | L25.640  | 0.190          | 0.7        | 1.9        | 0 K        |        |  |
|                                        |          |                |            |            |            |        |  |
|                                        |          |                |            |            |            |        |  |
| Sto                                    | orm      | Rain           | Flooded T  | ime-Peal   | k          |        |  |
| Eve                                    | ent      | (mm/hr)        | Volume     | (mins)     |            |        |  |
|                                        |          |                | (m³)       |            |            |        |  |
| 15 mi                                  | n Summe  | r 130.382      | 0.0        | 1'         | 7          |        |  |
| 30 mi                                  | n Summe  | r 84.926       | 0.0        | 28         | 8          |        |  |
| 60 mi                                  | n Summe  | r 52.662       | 0.0        | 44         | 4          |        |  |
| 120 mi                                 | n Summe  | r 31.557       | 0.0        | 78         | 8          |        |  |
| 180 mi                                 | n Summe  | r 23.087       | 0.0        | 112        | 2          |        |  |
| 240 mi:                                | n Summe  | r 12.392       | 0.0        | 14         | 4<br>0     |        |  |
| 360 mi                                 | n Summe  | r 10 569       | 0.0        | 200        | 9<br>8     |        |  |
| 400 mi                                 | n Summe  | r 8.836        | 0.0        | 200        | 0          |        |  |
| 720 mi                                 | n Summe  | r 7.631        | 0.0        | 390        | 0          |        |  |
| 960 mi                                 | n Summe  | r 6.050        | 0.0        | 510        | 0          |        |  |
| 1440 mi                                | n Summe  | r 4.356        | 0.0        | 750        | 0          |        |  |
| 2160 mi                                | n Summe  | r 3.131        | 0.0        | 1104       | 4          |        |  |
| 2880 mi                                | n Summe  | r 2.475        | 0.0        | 1468       | 8          |        |  |
| 4320 mi                                | n Summe  | r 1.775        | 0.0        | 219        | 6          |        |  |
| 5/60 mi                                | n Summe  | r 1.401        | 0.0        | 2928       | 0<br>2     |        |  |
| /200 ml                                | n Summe  | r 1.105        | 0.0        | 2012       | _<br>6     |        |  |
| 10080 mi                               | n Summe  | r 0.882        | 0.0        | 5050       | 6          |        |  |
| 15 mi                                  | n Winte  | r 130.382      | 0.0        | 1          | 7          |        |  |
|                                        |          |                |            |            |            |        |  |
| ©1982-2016 XP Solutions                |          |                |            |            |            |        |  |

| Glanville Consultants                                | Page 2   |           |           |            |            |          |  |  |
|------------------------------------------------------|----------|-----------|-----------|------------|------------|----------|--|--|
| Cornerstone Court Fewcott Road                       |          |           |           |            |            |          |  |  |
| 62 Foxhall Road                                      |          | Fritwell  |           |            |            | 4        |  |  |
| Didcot OX11 7AD                                      |          |           |           |            |            | Micco    |  |  |
| Date 03/08/2016 08:54                                |          | Designed  | bv AH     |            |            |          |  |  |
| File ROAD SRCX                                       |          | Checked   | by        |            |            | Drainage |  |  |
| Micro Drainage                                       |          | Source C  | ontrol 2  | 016 1      |            |          |  |  |
| Source concror zoro.r                                |          |           |           |            |            |          |  |  |
| Summary of Results for 100 year Return Period (+30%) |          |           |           |            |            |          |  |  |
| Summary of Results for foo year Recull refloc (150%) |          |           |           |            |            |          |  |  |
| Storm                                                | Max      | Max       | Max       | Max        | Status     |          |  |  |
| Event                                                | Level    | Depth Inf | iltration | Volume     |            |          |  |  |
|                                                      | (m)      | (m)       | (1/s)     | (m³)       |            |          |  |  |
| 20 min Winton                                        | 105 (()  | 0 010     | 0 7       | 2 4        | Eland Dial |          |  |  |
| 60 min Winter                                        | 125.662  | 0.212     | 0.7       | 2.4        | Flood Risk |          |  |  |
| 120 min Winter                                       | 125.664  | 0.214     | 0.8       | 2.4        | Flood Risk |          |  |  |
| 180 min Winter                                       | 125.651  | 0.201     | 0.7       | 2.1        | Flood Risk |          |  |  |
| 240 min Winter                                       | 125.637  | 0.187     | 0.7       | 1.8        | O K        |          |  |  |
| 360 min Winter                                       | 125.613  | 0.163     | 0.6       | 1.4        | 0 K        |          |  |  |
| 480 min Winter                                       | 125.593  | 0.143     | 0.5       | 1.1        | 0 K        |          |  |  |
| 600 min Winter                                       | 125.578  | 0.128     | 0.4       | 0.9        | O K        |          |  |  |
| 720 min Winter                                       | 125.565  | 0.115     | 0.4       | 0.7        | ОК         |          |  |  |
| 960 min Winter                                       | 125.545  | 0.095     | 0.3       | 0.5        | O K        |          |  |  |
| 1440 min Winter                                      | 125.521  | 0.071     | 0.2       | 0.3        | O K        |          |  |  |
| 2160 min Winter                                      | 125.502  | 0.052     | 0.2       | 0.1        | O K        |          |  |  |
| 2880 min Winter                                      | 125.495  | 0.045     | 0.1       | 0.1        | O K        |          |  |  |
| 4320 min Winter                                      | 125.488  | 0.038     | 0.1       | 0.1        | 0 K        |          |  |  |
| 5760 min Winter                                      | 125.484  | 0.034     | 0.1       | 0.1        | 0 K        |          |  |  |
| 7200 min Winter                                      | 125.481  | 0.031     | 0.1       | 0.0        | OK         |          |  |  |
| 8640 min Winter                                      | 125.4/8  | 0.028     | 0.1       | 0.0        | OK         |          |  |  |
| 10000 mill wincer                                    | 123.477  | 0.027     | 0.1       | 0.0        | 0 K        |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
| St                                                   | orm      | Rain      | Flooded T | 'ime-Peal  | k          |          |  |  |
| Ev                                                   | ent      | (mm/hr)   | Volume    | (mins)     | -          |          |  |  |
|                                                      |          |           | (m³)      |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
| 30 m                                                 | in Winte | r 84.926  | 0.0       | 2          | 9          |          |  |  |
| 60 m:                                                | in Winte | r 52.662  | 0.0       | 4          | B          |          |  |  |
| 120 m                                                | ın Winte | r 31.557  | 0.0       | 8.         | 4          |          |  |  |
| 180 m                                                | in Winte | r 23.08/  | 0.0       | 12         | U<br>4     |          |  |  |
| 240 m                                                | in Winte | r 13 300  | 0.0       | 15·<br>01: | τ<br>0     |          |  |  |
| 360 m                                                | in Winte | r 10 560  | 0.0       | 21         | 0          |          |  |  |
| 400 III.<br>600 m <sup>-</sup>                       | in Winto | r 8 836   | 0.0       | 22         | 8          |          |  |  |
| 720 m <sup>-</sup>                                   | in Winte | r 7.631   | 0.0       | 39:        | 8          |          |  |  |
| 960 m <sup>-</sup>                                   | in Winte | r 6.050   | 0.0       | 51         | -<br>8     |          |  |  |
| 1440 mi                                              | in Winte | r 4.356   | 0.0       | 75         | 0          |          |  |  |
| 2160 m                                               | in Winte | r 3.131   | 0.0       | 110        | 0          |          |  |  |
| 2880 m                                               | in Winte | r 2.475   | 0.0       | 146        | 4          |          |  |  |
| 4320 m                                               | in Winte | r 1.775   | 0.0       | 216        | 0          |          |  |  |
| 5760 m                                               | in Winte | r 1.401   | 0.0       | 287        | 2          |          |  |  |
| 7200 mi                                              | in Winte | r 1.165   | 0.0       | 367        | 2          |          |  |  |
| 8640 m                                               | in Winte | r 1.002   | 0.0       | 436        | 8          |          |  |  |
| 10080 mi                                             | in Winte | r 0.882   | 0.0       | 500        | 8          |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      |          |           |           |            |            |          |  |  |
|                                                      | ©1982-2  | 2016 XP S | Solution  | s          |            |          |  |  |
| L                                                    |          |           |           |            |            |          |  |  |



Cornerstone House, 62 Foxhall Road, Didcot, Oxon OX11 7AD

Tel: (01235) 515550 Fax: (01235) 817799

Postbox@glanvillegroup.com www.glanvillegroup.com

- Structural Engineering
- Civil Engineering
- Transport & Highways
- Geomatics (Land Surveying)
- Building Surveying
- CDM Consultants