# Gavray Drive West

# FLOOD RISK ASSESSMENT & DRAINAGE ASSESSMENT April 2015

Prepared by JBA Consulting Ltd on behalf of Gallagher Estates Ltd Charles Brown and Simon Digby



# **JBA Project Manager**

Olivier Saillofest BEng MSc CEng MCIWEM C.WEM

JBA Consulting The Library St Philip's Courtyard Church Hill Coleshill B46 3AD

# **Revision History**

| Revision Ref / Date Issued | Amendments      | Issued to                                                                          |
|----------------------------|-----------------|------------------------------------------------------------------------------------|
| v1.0 / November 2014       | Draft           | Kevin Brown (Gallagher<br>Estates Ltd)<br>Peter Chambers (David Lock<br>Associates |
| V2.0 / November 2014       | Final           | Kevin Brown (Gallagher<br>Estates Ltd)<br>Peter Chambers (David Lock<br>Associates |
| V3.0 / February 2015       | Wording - Final | Kevin Brown (Gallagher<br>Estates Ltd)<br>Peter Chambers (David Lock<br>Associates |

# Contract

This report describes work commissioned by Gallagher Estates Ltd in March 2014. Gallagher Estates Ltd representatives for the contract were Andrew Hawkes and Kevin Brown. Enora Lucas, Sophie Dusting and Olivier Saillofest of JBA Consulting carried out this work.

Prepared by .....Sophie Dusting BSc

Analyst

Enora Lucas

Graduate

Reviewed by .....Olivier Saillofest BEng MSc CEng MCIWEM

C.WEM

**Principal Analyst** 

# **Purpose**

This document has been prepared as a Draft Report for Gallagher Estates Ltd. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Gallagher Estates Ltd.

JBA

# Copyright

© Jeremy Benn Associates Limited 2015

# **Carbon Footprint**

A printed copy of the main text in this document will result in a carbon footprint of 165g if 100% post-consumer recycled paper is used and 210g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

# **Executive Summary**

#### Background

JBA Consulting was commissioned by Gallagher Estates Ltd. in March 2014 to prepare a Flood Risk Assessment (FRA) for a proposed residential development at Gavray Drive West, Bicester.

The site is approximately 6.7ha in size and is classified as Greenfield. The site is bounded by the Langford Brook to the east, the Chiltern railway line to the north, the Oxford and Bletchley freight line to the west and Gavray Drive to the south. The proposed development comprises up to 180 dwellings.

#### Flood Risks

An assessment of historical flooding at the site has been undertaken. Table 7.1 of the 2009 Level 1 SFRA identifies a number of historic flood events which have occurred in Bicester. None are thought to have flooded the proposed development site.

The Level 1 SFRA produced by CDC Council and the Environment Agency flood maps show that the site lies within Flood Zones 1, 2 and 3.

The NPPF classifies residential infrastructure as "More Vulnerable" and their construction is permitted within Flood Zones 1 and 2.

Flooding from groundwater and sewer / drainage sources are considered to represent a low flood risk to the site.

Surface water flooding is currently considered to represent a low flood risk to the site. Development of a site will, however, increase the area of impermeable surfaces and will increase surface water flood risk if additional runoff is not attenuated.

#### Floodplain Compensation

The proposed development is shown to encroach within the 100-year with climate change floodplain. As such, a level-for-level floodplain compensation scheme will be provided to ensure water is not displaced elsewhere.

In a 100-year with climate change flood event, approximately 1512m<sup>3</sup> of floodplain capacity would be lost as a result of the development. An area located along the Langford Brook's Right Hand Bank and outside of the 100-year floodplain was selected to provide approximately 1513m<sup>3</sup> of floodplain compensatory volume during the same flood event. Intermediate water levels generated during more frequent flood events will benefit from up to 658m<sup>3</sup> of additional floodplain capacity.

The effect of the proposed level-for-level floodplain compensation scheme on 100-year with climate change levels was simulated using the Langford Brook hydraulic model. Results indicate a decrease of up to 80mm in peak water levels within the site boundary.

#### Mitigation of Flood Risk

The level-for-level floodplain compensation scheme will ensure that the proposed dwellings remain outside of the 1,000-year floodplain.

A review of modelled flood levels indicates that proposed ground levels within the site will remain at least 600mm higher than the 100-year plus climate change flood levels.

Therefore, as required by Part H of the Building Regulations, it is proposed to raise the minimum finished floor level of the proposed dwellings to a minimum of 150mm above the surrounding ground level to mitigate against surface water and groundwater flood risk. It is also recommended that all floors should be of solid construction or sealed beneath suspended floors to prevent the ingress of groundwater.

#### Surface Water Drainage Strategy

The proposed Surface Water Drainage Strategy will attenuate surface water runoff to a 1 in 2year Greenfield rate for all storm events up to the 1 in 100-year with climate change event. Due to the low soil permeability rate, surface water runoff will be discharged into the Langford Brook. Surface water from roof areas will discharge via downpipes into the on-site drainage system. Crushed stone blankets located beneath highways and a storage basin on the site's eastern 2013s7196 - WEST Gavray Drive, Bicester Final FRA - v0.1.doc boundary will provide on-site storage. Additional attenuation may be provided by installing water butts immediately downstream of the downpipes. Attenuated runoff from the site will be discharged to the Langford Brook via a pipe from the storage basin.

The crushed stone blankets and the storage basin will both provide treatment to runoff. Additional treatment could be provided by source control features such as water butts or permeable paving on driveways. Overall, the proposed surface water drainage system is expected to provide 2 to 3 treatment drains for runoff pollution.

#### **Benefit to Third Party Land**

The proposed surface water drainage strategy and level-for-level floodplain compensation scheme will result in a reduction in fluvial flows leaving the site during both surface water and fluvial flood events. Residents from Langford Village will benefit from these peak flow attenuations.

## JBA consulting

# Contents

| Execut                                 | tive Summary                                                                                                                                                                              | . 111                                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1                                      | Introduction                                                                                                                                                                              | .1                                           |
| 1.1<br>1.2                             | Terms of reference<br>FRA Requirements                                                                                                                                                    | .1<br>.1                                     |
| 2                                      | Site Details                                                                                                                                                                              | . 3                                          |
| 2.1<br>2.2                             | Description<br>Proposed Development                                                                                                                                                       | .3<br>.4                                     |
| 3                                      | Site Investigation Work                                                                                                                                                                   | . 5                                          |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5        | Site History<br>Site Investigation<br>Site Geology<br>Site Topography<br>Existing Drainage Regime                                                                                         | .5<br>.5<br>.6<br>.6                         |
| 4                                      | Planning Policy and Flood Risk                                                                                                                                                            | .7                                           |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6 | Development Site Flood Zones<br>Planning Context<br>NPPF Flood Zones<br>Planning for flood risk<br>Sequential and Exception Tests<br>Regional and local policy and guidance review        | .7<br>.8<br>.9<br>.9<br>.9<br>.10            |
| 5                                      | Current flood risk                                                                                                                                                                        | . 13                                         |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6 | Historical flooding<br>Fluvial Flood Risk<br>Surface Water Flood Risk to the site<br>Surface Water Flood Risk from the site<br>Groundwater Flood Risk<br>Risk of flooding from Reservoirs | . 13<br>. 13<br>. 13<br>. 14<br>. 14<br>. 15 |
| 6                                      | Level-for-level Floodplain Compensation Scheme                                                                                                                                            | . 17                                         |
| 6.1<br>6.2<br>6.3<br>6.4               | Loss in Floodplain capacity<br>Available Floodplain compensation area<br>Proposed levels for Floodplain compensation scheme<br>Hydraulic modelling results                                | . 17<br>. 18<br>. 19<br>. 19                 |
| 7                                      | Post-Development Flood Risks                                                                                                                                                              | . 21                                         |
| 8                                      | Mitigation                                                                                                                                                                                | . 23                                         |
| 8.1<br>8.2<br>8.3                      | Fluvial Flood Risk Mitigation<br>Surface water Flood Risk Mitigation<br>Groundwater Flood Risk Mitigation                                                                                 | . 23<br>. 23<br>. 23                         |
| 9                                      | Surface Water Drainage Strategy                                                                                                                                                           | . 25                                         |
| 9.1<br>9.2                             | Existing Drainage Regime<br>Conceptual Drainage Design                                                                                                                                    | . 25<br>. 26                                 |
| 10                                     | CDM Requirements                                                                                                                                                                          | . 29                                         |
| 11                                     | Conclusion                                                                                                                                                                                | . 31                                         |



# Contents

| Appen | dices                                   | I I  |
|-------|-----------------------------------------|------|
| Α     | Site Layout                             | L    |
| В     | Topographic survey                      | III  |
| С     | Extract from NPPF                       | V    |
| D     | Surface Water Drainage Strategy Drawing | XI   |
| E     | WinDes Model Summary                    | XIII |
|       |                                         |      |

# **List of Figures**

| Figure 2- 1: Photograph of the proposed development site at Gavray Drive West,<br>Bicester              | .4   |
|---------------------------------------------------------------------------------------------------------|------|
| Figure 4-1: Environment Agency Flood Zone maps at the proposed development site<br>and surrounding area | . 8  |
| Figure 5- 1: Surface Water Flood Map                                                                    | . 14 |
| Figure 6- 1: Loss in 100-year with climate change floodplain                                            | . 17 |
| Figure 6- 2: Floodplain compensation area                                                               | . 18 |
| Figure 6-1: Comparison of 100-year CC flood extents pre-and post-FCS                                    | . 20 |
| Figure 7-1: 100-year, 100-year CC and 1,000-year post-development flood extents                         | . 21 |
|                                                                                                         |      |

JBA consulting

## **List of Tables**

| Table 2- 1: Site Details                                               | . 3   |
|------------------------------------------------------------------------|-------|
| Table 6- 1: Floodplain loss volumes                                    | . 17  |
| Table 6-1: Floodplain compensation volumes vs. floodplain loss volumes | . 19  |
| Table 6-2: Pre- and post-FCS 100-year peak water levels (m AOD)        | . 20  |
| Table 7-1: Post-development flood levels                               | . 21  |
| Table 8-1: Greenfield runoff rates                                     | . 25  |
| Table 4- 1: NPPF Flood Zones                                           | . V   |
| Table 4- 2: Flood Risk Vulnerability Classification                    | . VII |
| Table 4- 3: Flood Risk Vulnerability and Flood Zone 'Compatibility'    | . IX  |

# **Abbreviations**

| AEP         | . Annual Exceedance Probability                              |
|-------------|--------------------------------------------------------------|
| CC          | . Climate Change                                             |
| CIRIA       | . Construction Industry Research and Information Association |
| DEM         | . Digital Elevation Model                                    |
| EA          | . Environment Agency                                         |
| FCS         | . Flood Compensation Scheme                                  |
| FFL         | . Finished Floor Level                                       |
| FRA         | . Flood Risk Assessment                                      |
| На          | Hectares                                                     |
| ISIS        | . 1D hydraulic modelling software                            |
| ISIS-TUFLOW | . 1D-2D hydraulic modelling software                         |
| M AOD       | . Metres Above Ordnance Datum                                |
| PPS25       | . Planning Policy Statement 25                               |
| rCWS        | . retained County Wildlife Site                              |
| SFRA        | . Strategic Flood Risk Assessment                            |
| SUDS        | . Sustainable Drainage Systems                               |
| WINDES      | . MicroDrainage Software                                     |
|             |                                                              |



This page is intentionally left blank.

# 1 Introduction

### 1.1 Terms of reference

JBA Consulting was commissioned by Gallagher Estates Ltd. in March 2014 to prepare a Flood Risk Assessment (FRA) for a proposed residential development at Gavray Drive West, Bicester. The proposal is for approximately 180 dwellings including affordable housing, public open space, localised land remodelling and structure planting.

This FRA report provides information on the nature of flood risk at the site and follows Government guidance with regards to development and flood risk.

## 1.2 FRA Requirements

This FRA follows government guidance on development and flood risk, within the National Planning Policy Framework (NPPF).

It is a requirement for development applications to consider the potential risk of flooding to a proposed development over its expected lifetime and any possible impacts on flood risk elsewhere, in terms of its effects on flood flows and runoff. Where appropriate, the following aspects of flood risk should be addressed in all planning applications within flood risk areas:

- The area liable to flooding.
- The probability of flooding occurring now and over time.
- The extent and standard of existing flood defences and their effectiveness over time.
- The likely depth of flooding.
- The rates of flow likely to be involved.
- The likelihood of impacts to other areas, properties and habitats.
- The effects of climate change.
- The nature and expected lifetime of the development and the extent to which the development is designed to deal with flood risk.

This FRA follows government guidance on development and flood risk, within the NPPF.

All new developments must comply with the flood risk guidance set out in the NPPF. As the development is greater than 1ha in area and partially lies within the 1,000-year floodplain, a detailed flood risk assessment is required to consider the risk to the development from all sources of flooding including fluvial (river), tidal, coastal, pluvial (surface runoff / surcharging sewers) and groundwater. The NPPF advocates a risk-based approach to flood risk management in terms of appraising, managing and reducing the consequences of flooding both to and from a development site. The SFRA and Local Development Documents set out a series of requirements for site specific FRAs. These are aligned with the NPPF requirements and it is consider that the proposed development meets the requirements as part of this FRA.

This page is intentionally left blank.

# 2 Site Details

## 2.1 Description

The proposed development site is located at Gavray Drive, approx. 1.3km east of Bicester town centre in Oxfordshire. The existing site is 6.7 ha in size and currently is Greenfield.

The proposed development site is bounded by the Langford Brook to the east, the Chiltern railway line to the north, the Oxford and Bletchley freight line to the west and Gavray Drive to the south (see Table 2- 1 Table 2- 1 for location).

A photograph of the proposed development site and the Langford Brook is shown in Figure 2- 1. Table 2- 1: Site Details

| Site name                  | Gavray Drive West, Bicester development |
|----------------------------|-----------------------------------------|
| Site area                  | 6.7 ha                                  |
| Existing land-use          | Greenfield                              |
| Purpose of development     | Residential                             |
| OS NGR                     | SP 59450 22450                          |
| County                     | Oxfordshire                             |
| Country                    | England                                 |
| Local Planning Authorities | Cherwell District Council               |
| Lead Local Flood Authority | Oxfordshire County Council              |
| chool                      | Manor Farm                              |





Figure 2-1: Photograph of the proposed development site at Gavray Drive West, Bicester

**Description:** View standing on Gavray Drive, looking north-west across the proposed development site. The line of trees marks the right bank of Langford Brook.

## 2.2 Proposed Development

The proposal is for approximately 180 dwellings including affordable housing, public open space, localised land remodelling and structure planting.

To comply with a request from Oxfordshire County Council, the design of drainage to all highways on site integrates porous block paving which allows surface waters to soakaway to an underlying stone blanket. This stone blanket is to be surrounded with a permeable geotextile which allows percolation of the surface water into the surround ground. The stone blankets are laid with a gradient of at least 1 in 500 to allow surface water to flow down to points of outfall before entering a surface water attenuation pond.

Appendix A shows the proposed development site layout.

JBA

## 3.1 Site History

Historical mapping of the site indicates that little development has taken place on the site over the last 100 years. Maps dating back to 1881 indicate the presence of several farm buildings on the southern site boundary

## 3.2 Site Investigation

#### 3.2.1 2006 Site Investigation (Wardell Amstrong LLP)

Site Investigation was carried out during 25 October and 2 November 2006 under full time supervision by Wardell Armstrong LLP and comprised the following:

- Light Percussion boreholes (small rig capable of 5.0m holes).
- Trial pits (excavated using JCB wheeled digger).
- California Bearing Ratio (CBR) tests (assessment of near surface strength).
- 1 Soakaway test (assessment of percolation of water into the ground).
- Geotechnical laboratory and in-situ testing (testing to determine the strength and physical characteristics of the soils).
- Geochemical laboratory testing (testing for likely contaminants).
- Ecological watching briefs.
- Archaeological watching briefs.

The materials encountered during the site investigation were generally as follows:

- Topsoil/Subsoil topsoil and subsoil materials were noted to exist across the majority of the site to depths of between 0.09m and 0.55m although generally topsoil was found to be between 0.2m and 0.35m thick.
- Ploughed horizon (logged as made ground) a relatively thin layer of reworked natural material with some brick and inert material was encountered up to a maximum depth of 1.30m below ground level (bgl) but generally around 0.50m bgl.
- Natural Relatively Recent Deposits these materials were alluvial in origin and variable in nature, typically comprising brown sands and clays with sandstone and quartzite gravel encountered to depths of around 2.0m and 3.15m bgl.
- Solid geology Firm to stiff grey and brown silty clays to depths of approximately 2.5m bgl.

#### 3.2.2 In Situ Testing

Standard Penetration Tests (SPTs) were carried out within the boreholes drilled to assess the strength of the materials. These tests assess the strength of the materials in-situ during the drilling of the boreholes. SPT tests were performed in the ploughed horizon materials and indicated loose/soft in nature. The tests undertaken within the superficial clay indicated soft to stiff. The tests undertaken in the weathered Kellaways clay indicated firm to very stiff clay.

The SPT test results indicate that the superficial clays have variable strength characteristics. The strength characteristics generally improve with depth and the weathered Kellaways strata is considered to be moderately to highly weathered at shallow depth and generally firm to stiff. The materials are therefore considered to be predominantly clay materials with a low to very low permeability.

CBR tests were undertaken across the site to assist the preliminary design of roads and pavements. The tests were undertaken at between 0.60m and 0.95m bgl and indicated that shallow materials were low strength. This low strength within the cohesive materials at shallow depth is indicative of softening of clay materials at the surface which could be a result of poor drainage through the materials and therefore retention of water within these shallow materials during periods of wet weather.

A soakaway test was conducted to investigate the potential permeability of the near surface soils and to determine the suitability of the site for Sustainable Urban Drainage Systems (SUDS). The

JBA

soakaway test was undertaken within the land to the west of the brook. The results of this test showed no drop in water level indicating negligible water ingress into the ground over the test period of 4 hours.

#### 3.2.3 Groundwater

Groundwater was encountered within the majority of positions. Seepage was recorded at depths of between 0.45m and 2.4m bgl. Subsequent groundwater monitoring via standpipes installed during site investigation works indicated groundwater levels at between 0.1m and 0.7m bgl across the majority of the site. The deepest groundwater was recorded at 3.0m bgl in SL33.

This variability in the groundwater levels across the site may be due to perched groundwater within discrete isolated pockets of granular material within the clay materials. At the time of the groundwater monitoring there was evidence of surface ponding of water within areas of the site. It is therefore likely that some of the shallower groundwater levels are representative of the recharge of these isolated granular pockets within the clay materials by surface water.

As mentioned previously it is likely that there is little throughput of groundwater across the site although localised transmission may be possible through discontinuous and variable granular lenses as recorded in one of the ground investigation logs (e.g. SL16 0.6m – 1.0m).

#### 3.3 Site Geology

The Environment Agency (EA) have included on their website aquifer designations which have been published by the British Geological Society (BGS) which replace the former groundwater vulnerability maps previously used to assess the potential permeability of the site as a whole. The majority of the site has been given an aquifer designation of "Unproductive Strata" by the BGS, however the plans indicate that the vicinity of the Langford Brook is considered to be Secondary A aquifer. This is strata capable of supplying water on a localised basis and also potentially active in supplying base flow to watercourses.

This assessment is based on the designation of the geological strata present and the generalised permeability of that strata. The designation of the majority of the site as Unproductive Strata is supported by the permeability testing

#### 3.4 Site Topography

A topographic survey of the development site is provided in Appendix B. It shows that the site slightly slopes in an easterly direction towards the Langford Brook. The ground level at the nearest road (Gavray Drive) is approximately 68.1m AOD. The approximate ground level where the development is situated is between 66.6 and 69.2mAOD. The lowest point in the site is adjacent to the Langford Book, outside the security fence, and is at approximately 66.36m AOD.

#### 3.5 Existing Drainage Regime

Within the site water ponding was noted following heavy rainfall within hollows and topographically low areas. This was noted also during the site works undertaken in August 2010.

# 4 Planning Policy and Flood Risk

## 4.1 Development Site Flood Zones

The Environment Agency (EA) states that the flood risk is a function of:

- "The likelihood of a particular flood happening, best expressed as a chance or probability over a period of one year. For example, 'There is a 1 in 100 chance of flooding in any given year in this location'.
- The impact or consequences that will result if the flood occurs."

The EA categorise the risk into a series of flood zones; a definition of the flood zones can be found in Table 4-1. The EA has developed a Flood Map which shows the risk of flooding in England and Wales for different return period events. This map provides the basis for the assessment of flood risk and development suitability to NPPF. Section 4.3 shows how the Flood Zones relate to a sequential planning response, as advised by the NPPF.

The EA Flood Zone Map does not take into account flood defences or the 'residual risk'. These are accounted for when the EA discuss the 'likelihood' of flooding, alongside predicted flood levels, and ground levels.

It is important to note that the EA's Flood Map is, in the majority of cases, based on broad-scale river modelling and provides an indication of the potential flood risk to a site rather than a detailed assessment. When a detailed river modelling study is undertaken, the broad-scale river model outputs are updated using the detailed river model.

Figure 4-1 is an extract from the EA website (http://maps.environment-agency.gov.uk/wiyby/) and shows the EA Flood Zones for the proposed development site and surrounding area. The EA Flood Maps show the proposed development site is at risk of fluvial flooding from the Langford Brook and is to be sited in Flood Zones 1, 2 and 3 (low, medium and high risk of fluvial and coastal flooding respectively).

The NPPF classifies residential infrastructure and associated car parking facilities as "More Vulnerable" and their construction is permitted within Flood Zones 1, 2 and 3a providing the Exception Test is passed. There are advisory notes placed upon this type of development, which are detailed in Table 4-2. Details of Sequential and Exception Tests are provided in



Figure 4-1: Environment Agency Flood Zone maps at the proposed development site and surrounding area

\*The EA are gradually adding flood defences and areas benefiting from defences to the Flood Map through updates therefore not all may be shown.

\*\*Approximate site boundary.

## 4.2 Planning Context

#### 4.2.1 Applicable Planning Policy

The NPPF considers flood risk to developments using a sequential characterisation of risk, based on planning zones and the EA Flood Map. The main study requirement is to identify the flood zones and vulnerability classification relevant to the proposed development, based on an assessment of current and future conditions.

## 4.3 NPPF Flood Zones

Appendix C, Table 4- 1 shows how the Flood Zones relate to a sequential planning response. There are advisory noted placed upon this type of development, which are detailed in Appendix C, Table 4- 2. Details of Sequential and Exception Tests are provided in Appendix C, Table 4- 3.

## 4.4 Planning for flood risk

The NPPF classifies residential infrastructure as 'More Vulnerable' and their construction is permitted within Flood Zones 1 and 2.

When planning a development a sequential approach should be applied to identify suitable sites which are at minimal risk from flooding and avoid Flood Zones 2 and 3 wherever possible. The overall aim of decision-makers should be to steer new development to Flood Zone 1. If there are no suitable areas identified in Flood Zone 1 then sites with the lowest flood risk should be considered next. The Sequential Test aims to promote development in areas with low flood risk, and to direct more vulnerable developments away from flood risk zones. The SFRA is produced to help guide the basis for the application of the Sequential Test.

The Exception Test aims to demonstrate that a development located within a Flood Zone will remain safe and provide sustainability and community benefits. The Exception Test is only required to be passed for certain development types within specific Flood Zones (see Table 4-3). As the proposed development site currently lies within Flood Zones 1, 2 and 3, the Exception Test must be passed.

Surface water flood risk should also be considered when planning the site layout, ensuring that new development is directed away from surface water conveyance routes or areas of deep ponding. This is covered further in section 5.2.

Proposals for development should ensure that, if possible, emergency access to the site will be available at all times. For this reason there should be at least one access road which does not pass through an area at risk of flooding.

## 4.5 Sequential and Exception Tests

It has therefore been assumed that the Sequential Test has been passed for this development.

The Exception Test is used to demonstrate that a development site within a flood risk zone will be suitable; assuming it has already passed the Sequential Test, or that the Sequential Test is not required. The proposed residential development is required to pass the Exception Test as part of this FRA.

As the whole residential footprint will remain Table 3 of NPPF

The criteria which must be met to pass the Exception Test is as follows:

- It must be demonstrated that the development provides wider sustainability benefits to the community that outweigh flood risk, informed by a Strategic Flood Risk Assessment where one has been prepared.
- A site-specific FRA must demonstrate that the site will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere and, where possible, will reduce flood risk overall.

This site is deemed to have passed the Exception Test, as it meets the two conditions above by:

 The proposals are for approximately 180 residential units, including affordable housing, contributing to CDC housing delivery targets. The proposed development is considered to be sustainable as it is situated east of Bicester town centre within an urban area, adjacent to existing residential development and is accessible to the main urban centre where development is generally focussed. Such a location is able to provide increased access to all types of facilities and a good level of public transport. The construction will also generate employment and socially the proposals contribute to any shortage of housing, meeting the aims of the Bicester Masterplan<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> http://www.cherwell.gov.uk/media/pdf/5/t/Bicester\_Masterplan\_-\_Consultation\_Draft\_(August\_2012)\_resize\_100.pdf 2013s7196 - WEST Gavray Drive, Bicester Final FRA – v2.0.doc 9



- The whole residential footprint of the proposed development will be located outside of the 1,000-year floodplain, following the implementation of the proposed floodplain compensation scheme.
- 3. A formal drainage system will be provided to ensure effective drainage of the site and reduce runoff leaving the site during storm events.
- 4. The combination of 2. and 3. above will reduce flood risk to third party lands downstream of the proposed development

## 4.6 Regional and local policy and guidance review

#### 4.6.1 Adopted Cherwell Local Plan

The 1996 Cherwell Local Plan is the adopted development plan for Cherwell District Council (CDC). A list of Saved Policies indicates that the saved flood risk policies are not applicable to the proposals and nature of flood risk at the development site.

#### 4.6.2 Submission Cherwell Local Plan

The Submission Local Plan does not have Development Plan status - it has currently been submitted to the Secretary of State for Communities and Local Government - but it is a material planning consideration. The Submission Local Plan sets out CDC's strategy for the District until 2031. The policies considered to be material to the proposals and flood risk are listed below:

- ESD1: Mitigating and Adapting to Climate Change
- ESD6: Sustainable Flood Risk Management
- ESD7: Sustainable Drainage Systems
- ESD13: Protection & Enhancement of Biodiversity & the Natural Environment

Documents detailing the policies requirements were not available.

#### 4.6.3 Non-Statutory Cherwell Local Plan

The Non Statutory Cherwell Local Plan 2011 was intended to review and update the Local Plan adopted in 1996. Due to changes to the planning system introduced by the Government, work on this plan was discontinued prior to adoption.

The Non Statutory Local Plan 2011 is not part of the statutory development plan but it has been approved as interim planning policy for development control purposes.

The policies considered to be material to the proposals and flood risk are listed below:

**H1a:** Location of New Housing. The proposals for new housing development will be considered against the physical and environmental constraints on development land including flood risk and climate change.

**EN14: Flood Defence**. In areas at risk from flooding, new development, the intensification of development or land raising will not be permitted if the proposals would:

- Result in a new loss of floodplain storage
- Impede the flow of flood water
- Increase the risk of flooding elsewhere

**EN15: Surface Water Run-off and Source Control**. New development generating increased surface water run-off likely to result in an adverse impact to surface drains and watercourses such as an increase in the risk of flooding, will not be permitted unless the proposals include appropriate source control and / or attenuation measures.

#### 4.6.4 CDC and West Oxfordshire District Council Level 1 SFRA

The proposed development site has been identified as a Potential Development Site and was considered in the 2009 Level SFRA review for Cherwell and Oxfordshire District Council's (ID reference B1 31, Bicester SE quadrant). The information contained in the SFRA regarding flood risk and development, applicable to the proposed development site, is summarised below.

#### Sources of flood risk



- Fluvial flood risk: The SFRA mapping shows that the proposed development site is located within Flood Zones 1, 2, 3a and 3b. The SFRA mapping of the Langford Brook flood risk is based on EA detailed hydraulic modelling. Flood defences are shown on the SFRA maps. During flood events, considerable inter-relation resulting in backwater effect is known to have arisen upstream from the confluences of the Langford Brook.
- **Historical flooding**: A number of historic flood events in CDC are listed in Table 7.1 of the SFRA. None are thought to have flooded the proposed development site.
- Pluvial / Surface Water and Sewer flood risk\*: No data available.
- Groundwater flood risk: No Aquifer. Not considered to be materially affected.
- Flooding from artificial sources (reservoirs/canals/other)\*: Not affected.

\*Note: SFRA categorised the data as "low confidence data".

# The SFRA placed requirements on development in the Bicester SE quadrant, as detailed in section 1.2.1 of this report.

The proposed development site was not assessed within the 2012 Level 2 SFRA for CDC.

#### 4.6.5 Catchment Flood Management Plan

The EAs River Thames Catchment Flood Management Plan (CFMP) was published in December 2009. This establishes current and future levels of flood risk within the River Thames catchment, setting appropriate flood risk management policies accordingly. The proposed development site lies within the Towns and villages in open floodplain (north and west) sub-area (policy unit), for which the preferred policy is policy option 6: areas of low to moderate flood risk where we will take action with others to store water or manage run-off in locations that provide overall flood risk reduction or environmental benefits. A number of specific actions were established to implement this policy, none of which have specific relevance for the site.

This page is intentionally left blank.

# 5 Current flood risk

This study assesses the risk from different types of flooding to the proposed development and the risk of flooding elsewhere from the proposed development; as well as how these flood risks can be managed.

The main types of flooding that may apply to the proposed development site are: fluvial flooding (Langford Brook) and surface water flooding (overland flows due to impermeable surfaces).

The approach to assessing flood risk at the development site was informed by the requirements of NPPF in conjunction with the client and Environment Agency requirements. To meet the above objectives a desk-based study was used. The primary objectives of this FRA are to determine the following:

- · Whether the site is at significant risk from any forms of flooding;
- If the site is at risk of flooding, determine if safe access to and from the site will be maintained during an extreme flood event; and,
- The impact of the development on flood risk to other sites, with particular focus on the effects of surface water from the site.

#### 5.1 Historical flooding

An assessment of historical flooding at the proposed development site has been undertaken.

The British Hydrological Society's 'Chronology of British Hydrological Events' database was consulted; however, no site-specific historical records of flooding were found for the proposed development site.

A search on the Internet regarding flooding at the proposed development site was undertaken. No records of historic flooding were found pertaining to the site.

Proposals for development should ensure that emergency access to the site will be available at all times. For this reason there should be at least one access road which does not pass through an area at risk of flooding. The main access road, the Gavray Drive, is not shown to be at risk of flooding through the historical flood risk assessment.

No other records of historic flooding were found pertaining to the site.

#### 5.2 Fluvial Flood Risk

In 2010, the Environment Agency developed a new hydraulic for Bicester that includes the Langford Brook. The model is based on the ISIS-TUFLOW software.

Model results indicate (see 100-year and 1,000-year flood outline in Figure 4-1) that the site is currently at risk of fluvial flooding from the Langford Brook, which flows along the eastern boundary of the site in a southerly direction, bounded by culverts at the northern and southern extents of the site boundary.

To mitigate against fluvial flood risks, a level-for-level floodplain compensation scheme was designed. This is further discussed under Section 6.

#### 5.3 Surface Water Flood Risk to the site

The historical assessment did not show any records of surface water flooding within the proposed development site and the Level 1 SFRA did not have any data available regarding surface water flooding.

The EA website "what's in your backyard" displays mapping that shows the risk of surface water. Figure 5- 1 represents the risk of flooding from Surface Water and shows that the proposed development site is largely at low risk of surface water flooding. Small, isolated areas at medium to high risk to surface water flooding are located around the vicinity of: the Langford Brook and the Chiltern railway line. An area of high risk to surface water is shown to the south-east corner of the site, around the vicinity of the culverts under Gavray Drive.

Figure 5-1: Surface Water Flood Map



The Surface Water Drainage Strategy for the site (see Section 9) will reduce flood risk to a 'Very Low' risk.

#### 5.4 Surface Water Flood Risk from the site

The majority of the site is proposed to be covered in impervious surfaces, primarily the building itself and the surrounding concreted areas. The rate and volume of surface water runoff generated on-site will increase as a result of increasing the sizes of the impervious areas. If not properly managed, this additional runoff could increase flood risk to third party land, either by directing flows towards developments or by increasing flows, and therefore water levels, in sewers, ditches and watercourses.

An outline surface water drainage strategy and a Floodplain Compensation Scheme (FCS) have been developed which will manage this extra runoff and ensure that the rate and volume of discharge from the development will not exceed the predevelopment levels. This is discussed in Section 9.

## 5.5 Groundwater Flood Risk

The Strategic Flood Risk Assessment (SFRA) Level 1 for Cherwell and West Oxfordshire2 states the site will not be materially affected from groundwater flooding.

Sections 3.3 and 3.2.2 highlighted the presence of clay materials across the whole of the site. On the other hand, groundwater was encountered within the majority of the site, with seepages recorded at depths of between 0.45m and 2.4m below ground level (Section 3.2.3). Subsequent groundwater monitoring via standpipes installed during site investigation works also indicated

JBA



groundwater levels at between 0.1m and 0.7m bgl across the majority of the site. The deepest groundwater was recorded at 3.0m bgl in SL33.

As part of in-situ testing (See Section 3.2.2), a soakaway test was conducted to investigate the potential permeability of the near surface soils and to determine the suitability of the site for Sustainable Urban Drainage Systems (SUDS). The soakaway test was undertaken within the land to the west of the brook, in similar ground conditions to those found to the east of the brook. The results of this soakaway showed no drop in water level indicating negligible water ingress into the ground over the test period of 4 hours.

The Environment Agency's Groundwater map<sup>2</sup> shows the site lies on top of a Secondary A aquifer<sup>3</sup>.

The negligible water ingress observed as part of the soakaway test puts forward the effect of clay materials in the soil. Whilst clay layer may prevent deep groundwater pockets to reach the surface, groundwater pockets located within the top soil may equally not be able to infiltrate and hence could potentially resurface in various locations of the site.

#### 5.6 Risk of flooding from Reservoirs

The EA website *"what's in your backyard"* displays mapping that shows the risk of reservoir failure. The proposed development site is not shown to be within an area at risk of flooding from reservoirs.

<sup>&</sup>lt;sup>2</sup> http://maps.environment-

agency.gov.uk/wiyby/wiybyController?topic=drinkingwater&layerGroups=default&lang=\_e&ep=map&scale=7&x=458588&y=22238 5#x=460672&y=222464&lg=1,4,&scale=7

<sup>&</sup>lt;sup>3</sup> Secondary A - permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

<sup>2013</sup>s7196 - WEST Gavray Drive, Bicester Final FRA - v2.0.doc

This page is intentionally left blank.



# 6 Level-for-level Floodplain Compensation Scheme

The residential footprint of the proposed development will encroach within the 100-year with climate change floodplain. As such, a floodplain compensation scheme is required to ensure water is not displaced elsewhere. A level-for-level floodplain compensation scheme meeting the design requirement set by the Environment Agency in March 2014 was developed.

## 6.1 Loss in Floodplain capacity

As part of the proposal, it is intended to disconnect the area labelled 'zone B' in Figure 6- 1 from the 100-year with climate change floodplain.



Figure 6- 1: Loss in 100-year with climate change floodplain

Using a Digital Elevation Model (DEM) representing ground levels within the site boundary and in-house GIS tools, a level-area-volume relationship was derived for the extent represented by zone B. Results are indicates in Table 6-1.

| Table 6- | 1: Floodplain | loss volumes |  |
|----------|---------------|--------------|--|
|          |               |              |  |

| Elevation (m AOD) | Area (m²) | Volume (m <sup>3</sup> ) |
|-------------------|-----------|--------------------------|
| 66.3              | 0         |                          |
| 66.4              | 0         |                          |
| 66.5              | 40        | 1.47                     |
| 66.6              | 300       | 15.91                    |
| 66.7              | 1564      | 98.45                    |
| 66.8              | 3764      | 354.30                   |
| 66.9              | 5984      | 844.44                   |
| 67.0              | 7140      | 1511.79                  |

Table 6- 1 indicates that approximately 1512 m<sup>3</sup> of floodplain storage capacity will be lost following the implementation of the proposal.



## 6.2 Available Floodplain compensation area

Figure 6-2 shows an area located outside of the Langford Brook's 100-year with climate change floodplain (zone A in orange) which is available for floodplain compensation. The floodplain compensation area indicated a total area of approximately 2522m<sup>2</sup>.





To support the proposed development, it is intended to excavate the proposed floodplain compensation area down to 66.4m AOD, i.e. the minimum ground level observed within zone B. As part of the detailed design phase, deeper and wider excavation works (i.e. for landscaping purpose or to enhance hydraulic connectivity with the main channel) may be considered however their associated volumes were not considered in the floodplain compensation calculations.

## 6.3 **Proposed levels for Floodplain compensation scheme**

Table 6-1 compares the losses in the floodplain capacity from zone B to the gains from zone A.

| Elevation | Floodplain loss<br>volumes (m³) | Floodplain<br>compensation<br>volumes (if excavated<br>down to 66.4) (m <sup>3</sup> ) | Loss (-) or Gain(+) |  |
|-----------|---------------------------------|----------------------------------------------------------------------------------------|---------------------|--|
| 66.3      | 0.00                            | 0.00                                                                                   | +0.00               |  |
| 66.4      | 0.00                            | 0.00                                                                                   | +0.00               |  |
| 66.5      | 1.47                            | 252.18                                                                                 | +251.00             |  |
| 66.6      | 15.91                           | 504.35                                                                                 | +488.00             |  |
| 66.7      | 98.45                           | 756.53                                                                                 | +658.00             |  |
| 66.8      | 354.30                          | 1008.71                                                                                | +654.00             |  |
| 66.9      | 844.44                          | 1260.89                                                                                | +416.00             |  |
| 67.0      | 1511.79                         | 1513.06                                                                                | +1.00               |  |
|           |                                 |                                                                                        |                     |  |

Table 6-1: Floodplain compensation volumes vs. floodplain loss volumes

The level-for-level compensation indicates that the lost floodplain capacity can be compensated by the proposed floodplain compensation area.

As the above calculations remain largely based on volume-based calculation, the effect of the proposed FCA on peak water level was modelled.

#### 6.4 Hydraulic modelling results

Figure 6-1 shows the 100-year with climate change prior to and following the implementation of the level-for-level floodplain compensation scheme (FCS).



Figure 6-1: Comparison of 100-year CC flood extents pre-and post-FCS

The pre-development flood extent shows flooding across the site as would be expected prior to raising the ground levels within the residential area. The floodplain compensation event shows the additional capacity made available along the Langford Brook's right hand bank, in the north eastern corner of the site.

| Node ID | 100-year with climate change<br>peak water level<br>pre-FCS<br>(m AOD) | 100-year with climate change<br>peak water level<br>post-FCS<br>(m AOD) |
|---------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| LA.3372 | 67.18                                                                  | 67.10                                                                   |
| LA.3352 | 67.18                                                                  | 67.15                                                                   |
| LA.3272 | 67.04                                                                  | 67.03                                                                   |
| LA.3178 | 66.98                                                                  | 66.98                                                                   |
| LA.3109 | 66.93                                                                  | 66.93                                                                   |
| LA.3088 | 66.91                                                                  | 66.91                                                                   |

Table 6-2: Pre- and post-FCS 100-year peak water levels (m AOD)

Note: Above values rounded up to nearest centimetre

Table 6-2 shows that the 100-year with climate change peak water levels will decrease by up to 80mm following the implementation of the proposed floodplain compensation scheme.

JBA

# 7 Post-Development Flood Risks

The 100-year, 100-year with climate change and 1,000-year post-development (i.e. including the floodplain compensation scheme) flood scenarios were modelled. Flood extents are represented in Figure 7-1 and flood levels are indicated in Table 7-1.

Figure 7-1: 100-year, 100-year CC and 1,000-year post-development flood extents



Contains Ordnance Survey data © Crown copyright and database right 2014

| Node ID         | Maximum 100-year<br>peak water level<br>(m AOD) | 100-year with climate<br>change peak water level<br>(m AOD) | 1,000-year with climate<br>change peak water level<br>(m AOD) |
|-----------------|-------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|
| LA.3372         | 67.09                                           | 67.10                                                       | 67.25                                                         |
| LA.3352         | 67.09                                           | 67.15                                                       | 67.24                                                         |
| LA.3272         | 66.98                                           | 67.03                                                       | 67.14                                                         |
| LA.3178         | 66.89                                           | 66.98                                                       | 67.12                                                         |
| LA.3109         | 66.83                                           | 66.93                                                       | 67.08                                                         |
| LA.3088         | 66.82                                           | 66.91                                                       | 67.05                                                         |
| Noto: Abovo vol | use rounded up to poeror                        | t contimetro                                                |                                                               |

#### Table 7-1: Post-development flood levels

Figure 7-1 and Table 7-1 indicate that the residential footprint of the proposed development will be located in flood zone 1 (i.e. outside of the 1,000yr floodplain) in the post-development scenario.

# 8 Mitigation

## 8.1 Fluvial Flood Risk Mitigation

The proposed development site lies within Flood Zones 1, 2 and 3 and is considered to be at risk from fluvial flooding. The proposed level-for-level floodplain compensation scheme will set the whole residential part of the development away from the 1,000-year floodplain.

#### **Finished Floor Levels**

The minimum finished floor level should be set at 600mm above the modelled 1 in 100-year plus climate change flood levels, as recommended by the EA. This 600mm freeboard will ensure that the flood risk remains at the same levels when considering the increase in flows due to climate change, wave action of flood waters or settlement of structures following construction.

The peak water level within the site for this 100-year plus climate change event is 67.18m AOD; therefore the minimum finished floor level (FFL) will be set to 67.78m AOD. As the western part of the site is already at a higher elevation, this design criteria should only be applied if excavated areas are considered as part of the proposal.

#### 8.1.1 Safe access and egress

The availability of dry access and egress to and from the site was assessed in relation to the EA Flood Map. The main access road is the Gavray Drive; along the proposed development site north boundary, the road is shown not to be at risk from fluvial flooding. Safe access and egress should therefore to be maintained during the 1 in 1,000-year flood event to and from the proposed development, via Gavray Drive.

## 8.2 Surface water Flood Risk Mitigation

In line with Part H of the Building Regulations, it is recommended that finished floor levels should be set at least 150mm above the surrounding ground levels to prevent storm-water from flowing or ponding near doorways and other ingress routes such as vents and air bricks. When considering the landscaping of the site, ground levels should be designed such that surface water flows are directed away from buildings and towards the formal drainage system or less vulnerable areas such as highways and open space.

## 8.3 Groundwater Flood Risk Mitigation

Although the risk of groundwater flooding is considered to be low, if the new developments are to have basement levels beneath ground level, the design of these basements should ensure that a waterproof tanking layer is provided to prevent ingress of ground water. The floors of all new buildings should be made of solid construction materials or the ground beneath suspended floors should be sealed to prevent ingress of groundwater should water table levels increase directly beneath the site.

This page is intentionally left blank.

# 9 Surface Water Drainage Strategy

Development of a site increases both the rate and volume of surface water runoff compared with its greenfield/non-developed condition. The additional surface water needs to be managed to prevent it flowing on to other properties or flowing unrestricted into watercourses, which could exacerbate flood risk elsewhere. Development can also reduce the water quality of runoff generated on site, which should be treated on-site to prevent adverse impacts on receiving watercourses.

A drainage strategy has been produced for the proposed development area, outlining the preferred options for disposal of storm water at the proposed development site. The surface water drainage system employed at the new development will provide flood risk mitigation and ensure that development of the site will not cause an increase in flood risk to other developments. It will ensure that adequate opportunities for water quality treatment will be provided throughout the site, whilst providing ecology benefits to the site and its surroundings. The surface water features included in the strategy will be located within the proposed site boundary.

## 9.1 Existing Drainage Regime

The site is currently Greenfield open space with no formal drainage system. There are several small field drains around the site perimeter which are not expected to be retained following development of the site. Drainage of surface water runoff occurs via percolation into the ground or through overland flows from saturated and impermeable surfaces which follow the site topography.

Site investigations carried out by Wardell Armstrong LLP in 2006 and 2010 showed the site to be underlain by brown sands and clays to a depth of around 2.0m below ground level with firm to stiff grey and brown silty clays beneath. Permeability of the ground was found to be low to very low and thus unsuitable for infiltration SUDS.

The site topography currently falls in an easterly direction towards the Langford Brook which flows south along the eastern boundary of the site. Topographic survey of the site shows the site's south east corner to be around 0.8m lower than adjacent road levels on Gavray Drive. Topographic survey for the site can be found in Appendix B.

#### Greenfield runoff rates

For estimating pre-development (Greenfield) runoff rates for the site, the Revitalised Flood Hydrograph (ReFH) methodology was adopted. In a 2011 paper published in the Journal of Flood Risk Management, Faulkner et al demonstrates how using evidence from 46 gauged small catchments in the United Kingdom, the methods most commonly used for estimating design flows and Greenfield runoff rates on small catchments (IH124, FSR and ADAS 345) do not perform as well as alternative methods. Their results show larger error and a bias towards underestimation of the median annual flood. In contrast, newer methods from the Flood Estimation Handbook (FEH), when applied to small catchments, tend to have lower error and less bias. The paper therefore recommends that Flood Estimation Handbook methods are used.

Pre-development (Greenfield) runoff rates were calculated as follows for a 1 hour storm event, considered to be the critical duration storm event for runoff rate. A summary of the calculated peak runoff rates is shown in Table 8-1 below.

Table 8-1: Greenfield runoff rates

| Return Period                       | Peak Runoff Rate<br>(I/s) |
|-------------------------------------|---------------------------|
| 1 in 2-year                         | 21.6                      |
| 1 in 10-year                        | 36.0                      |
| 1 in 30-year                        | 46.8                      |
| 1 in 100-year                       | 62.6                      |
| 1 in 100-year (plus climate change) | 81.4                      |

2013s7196 - WEST Gavray Drive, Bicester Final FRA - v2.0.doc

## 9.2 Conceptual Drainage Design

A conceptual design of the surface water drainage system has been produced, which outlines the design criteria, SUDS proposals, flow routes through the site and opportunities for source control, attenuation and long-term storage. This design has been produced following current best practise in relation to SUDS and drainage design.

Under the Flood and Water Management Act (2010), Oxfordshire County Council will become the approving body for SUDS. At the time of writing this FRA report, a local SUDS design guidance document is not available. Similarly, a national SUDS guidance document is not yet available, therefore the CIRIA SUDS manual has been used as an example of best practice. Where surface water is managed through sewers, they will conform to guidance provided in Sewers for Adoption (currently 7th edition) or other recognised guidance.

#### 9.2.1 Sustainable Drainage Systems

Sustainable Drainage Systems (SUDS) aim to mimic the natural processes of Greenfield surface water drainage, by allowing water to flow along natural flow routes and reducing the runoff rates and volumes during storm events, while providing some water treatment benefits. SUDS also have the advantage of providing effective Blue and Green Infrastructure, ecology and public amenity benefits when designed and maintained properly.

## 9.2.2 Design Criteria

#### **Runoff Quantity**

The surface water drainage system will ensure that the rate and volume of runoff from the site will not exceed the pre-development (Greenfield) values. There are typically two design storm events which should be considered when designing the SUDS system for managing flows and volumes, reflecting the design criteria set out in Sewers for Adoption for traditional sewered systems:

- 1 in 30-year storm event where surface water flows are generally managed below ground and / or in well-defined storage features.
- 1 in 100-year storm event with allowances for future climate change, where runoff should be managed within the extents of development site, ensuring that it cannot affect people or properties either within the development of surrounding developments.

#### **Runoff Quality**

The surface water drainage system will ensure that a sufficient level of water quality treatment is provided to ensure that development of the site does not cause significant contamination of receiving watercourses.

The CIRIA SUDS manual considers residential development to present a medium source of runoff pollution meaning that at least two treatment trains are required within the SUDS. During the water treatment event (5mm rainfall across the entire site) no runoff should leave the site. This is usually achieved through source control techniques such as green roofs, rainwater harvesting, permeable pavements and soakaways.

#### 9.2.3 SUDS Proposal

A drawing of the proposed surface water drainage system for the site is included in Appendix D. Crushed stone blankets located beneath highways and a storage basin on the site's eastern boundary will provide on-site storage for events up to the 1 in 100-year climate change event, ensuring that flow from the site is limited to the 1 in 2-year Greenfield rate (21.6l/s). The depth of crushed stone blanket is shown on the drawing in Appendix D. Water butts overflowing into the on-site drainage system may be installed immediately downstream of the downpipes to provide further surface water runoff attenuation.

The proposed surface water drainage system will provide 2-3 treatment trains for runoff pollution. The crushed stone blankets and the storage basin will both provide treatment to runoff. Additional treatment could be provided by source control features such as water butts or permeable paving on driveways.

Runoff from the site will be discharged to the Langford Brook via a pipe from the storage basin. A vortex flow control (Hydrobrake or similar) will be required to limit flow to the 1 in 2-year Greenfield rate and a non-return valve will be used to prevent fluvial flooding from the Langford

Brook entering the storage basin. The level of the discharge point has been set to the 1 in 20year fluvial flood level on the Langford Brook. This will allow water to be discharged from the site during moderate fluvial flood events on the Langford Brook. The probability of an extreme rainfall event at the site coinciding with an extreme fluvial flood event on the Langford Brook is considered to be extremely low.

Significant ground raising will be required to allow the site to drain to Langford Brook whilst providing sufficient cover above the crushed stone blankets. Cover levels across the site are shown on the drawing in Appendix D. Road levels have been assumed to be 300mm above the top of stone blankets to allow for construction of the road surface. Cover levels shown are at footway level (100mm above the road surface) to allow overflows in the 1 in 100-year with climate change event to be conveyed along the road surface below footway level.

WinDes has been used to model the proposed surface water drainage system and to ensure optimisation of the system to reduce the amount of ground raising required. Modelling confirms that events up to the 1 in 30-year event will be stored within the stone blankets and basin. The 1 in 100-year climate change event may exceed the capacity of the crushed stone blankets in some locations but overflows will be contained within the road system, below kerb level, and will be directed towards the storage basin on the site's eastern boundary. The low depth and velocities of these overflows mean that this is expected to present a Very Low hazard to people under the Environment Agency's Hazard to People Classification<sup>4</sup>. The capacity of the storage basin is such that overflows from the roads in the 1 in 100-year climate change event can be held on site in the basin and water can be released at the 1 in 2-year Greenfield rate to the receiving watercourse. This ensures no worsening to flood risk on third party land. WinDes modelling summary and results can be found in Appendix E.

<sup>&</sup>lt;sup>4</sup> Environment Agency (2008). Supplementary Note on Flood Hazard Ratings and Thresholds for Development Planning and Control Purpose - Clarification of the Table 13.1 of FD2320/TR2 and Figure 3.2 of FD2321/TR1
### **10 CDM Requirements**

Under current CDM Regulation (note: CDM 2007 or CDM 2015 once enacted), it is the designer's duty to eliminate hazards and reduce risks, as far as reasonably practicable. To support this, the following design parameters were taken into consideration in the proposal:

- The floodplain compensation area should be designed with lateral slopes of 1 in 3 or shallower.
- The surface water attenuation pond should be designed with side slopes of 1 in 3 or shallower.
- The finished flood levels of the proposed dwellings should be set 150mm above surrounding ground levels.

### **11 Conclusion**

- JBA Consulting was commissioned by Gallagher Estates Ltd. in March 2014 to provide a Flood Risk Assessment for a proposed residential development at Gavray Drive West, Bicester. This FRA report provides information on the nature of flood risk at the site and follows Government guidance with regards to development and flood risk.
- The proposed development site is located at Gavray Drive, approx. 1.3km east of Bicester town centre in Oxfordshire. The existing site is 6.7 ha in size and is currently Greenfield. The site is bordered by Langford Brook to the east, the Chiltern railway line to the north, the Oxford and Bletchley freight line to the west and Gavray Drive, which is the main access road, to the south
- The proposal is for up to 180 dwellings including affordable housing, public open space, localised land remodelling and structure planting.
- The 2006 Site Investigation and the in-situ testing show the soil materials are predominantly clay material with low to very low permeability. The CBR tests undertaken to assist the preliminary design of roads and pavements show low strength within the cohesive materials at shallow depth which could result in the retention of water within these shallow materials during periods of wet weather.
- This FRA follows government guidance on development and flood risk, within the National Planning Policy Framework (NPPF). The NPPF classifies the proposed development as 'More Vulnerable'. The site lies within the Environment Agency's Flood Zones 1, 2 and 3 and therefore needs to pass the Sequential and Exception tests.
- The proposal encroaches within the 100-year with climate change floodplain. As such, a level-for-level floodplain compensation scheme was designed to ensure that flood water is not displaced elsewhere. The whole residential footprint of the proposed development will be outside of the 1,000-year floodplain following the implementation of the proposed floodplain compensation scheme.
- A surface water drainage strategy was designed for the whole development site. The strategy was designed to attenuate surface water runoff for up to the 100-year with climate change storm event down to the 1 in 2-year Greenfield rate. This will discharge to the Langford Brook during peak flow conditions.
- This site is deemed to have passed the Exception Test for the following reasons:
  - The proposals are for up to 180 residential units, including affordable housing, contributing to CDC housing delivery targets. The proposed development is considered to be sustainable as it is situated east of Bicester town centre within an urban area, adjacent to existing residential development and is accessible to the main urban centre where development is generally focussed. Such a location is able to provide good access to all types of facilities and a good level of public transport. The construction will also generate employment and socially the proposals contribute to housing objectives of both the emerging Cherwell Local Pan and the Bicester Masterplan.
  - The whole residential footprint of the proposed development will be located outside of the 1,000-year floodplain, following the implementation of the proposed floodplain compensation scheme.
  - A formal drainage system will be provided to ensure effective drainage of the site and reduce runoff leaving the site during storm events.
  - The combination of 2. and 3. above will reduce flood risk to third party lands downstream of the proposed development
- In line with Part H of the Building Regulations, the Finished Floor Level of the proposed units should be set to 150mm above surrounding ground levels. This will mitigate against surface water and groundwater flood risk. Unless excavated areas are considered within the residential area, this minimum finished floor level will exceed the standard 600mm plus 100-year with climate change value normally recommended by the Environment Agency (due to the site topography).
- All floors should be made of solid construction materials or sealed beneath suspended floors to prevent the ingress of groundwater from the ground below.

 An outline surface water drainage strategy has been developed which will manage the extra runoff due to the proposed development and ensure that the rate and volume of discharge from the development will not exceed the pre-development levels. Storage of surface water will be provided by a combination of crushed stone blankets located beneath highways and a storage basin located on the site's eastern boundary. The crushed stone blankets and the storage basin will both provide treatment to runoff. Additional treatment could be provided by source control features such as water butts or permeable paving on driveways.



I

# Appendices

A Site Layout



Parameters Plan

Play Area



Application boundary - area - 6.92Ha including access

Use - Residential - area - 4.62Ha

Use - Public open space - area - 2.0Ha

Area of surface water run-off within public open space

Main residential street - made up of 5.5m wide carriageway and two footways of 2m width

Access to minor lanes and mews streets

Retained footpath

Proposed footpath

Footpath connections at application boundary

Hedgerow canopy (Catagory B)

Local Wildlife Site

#### Scale and massing of buildings by types: in meters and are additional to approximate finished ground level (AOD) indicated on plan.

|    |         | Length (m)                  | Width (m)                   | Ridge Heights<br>(m)       | Storeys |
|----|---------|-----------------------------|-----------------------------|----------------------------|---------|
|    |         | Distance across<br>frontage | Depth from<br>front to back | Highest point<br>above AOD |         |
|    |         |                             |                             |                            |         |
|    | Minimum | 13.5                        | 5.5                         | 8.5                        | 1       |
|    | Maximum | 48                          | 10                          | 11                         | 2.5     |
|    |         |                             |                             |                            |         |
|    | Minimum | 10                          | 5.5                         | 8.5                        | 1       |
|    | Maximum | 20                          | 10                          | 11                         | 2.5     |
|    |         |                             |                             |                            |         |
|    | Minimum | 8                           | 8                           | 6                          | 1       |
|    | Maximum | 12                          | 11                          | 11                         | 2.5     |
|    |         |                             |                             |                            |         |
| ge | Minimum | 10                          | 6                           | 5.5                        | 2       |
|    | Maximum | 13                          | 8                           | 12                         | 2.5     |
|    |         |                             |                             |                            |         |
|    | Minimum | 3                           | 6                           | 1.5                        | 1       |
|    | Maximum | 12                          | 6                           | 6                          | 1       |
|    |         |                             |                             |                            |         |
| ry | Minimum | 2                           | 3                           | 3                          | 1       |
|    | Maximum | 5                           | 5                           | 3.5                        | 1       |

| 23-25 GREAT S<br>LONDON EC1 |                      |                              |
|-----------------------------|----------------------|------------------------------|
| T. +44(0)                   | 20 7017 1785         |                              |
| W. info@p                   | pauldrewdesign.co.uk |                              |
| PAUL                        | DREW DESIGN          |                              |
| Job Ref.                    | Ge.GD.W              | Drawn Pd                     |
| Scale                       | 1:2,000 @ A3         | Date 22.10.2014              |
| Drawing no.                 | 001                  | <sup>Rev.</sup> D 13.02.2015 |
|                             |                      |                              |



# **B** Topographic survey



## **C** Extract from NPPF

Table 4- 1: NPPF Flood Zones

| Zone 1: Low Probability                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land assessed as having a less than<br>1 in 1,000 annual probability of river<br>or sea flooding in any year (<0.1%).<br>(Shown as 'clear' on the Flood Map<br>– all land outside Zones 2 and 3)                                                                               | Appropriate uses<br>All uses of land are appropriate in this zone.<br>FRA requirements<br>For development proposals on sites comprising one<br>hectare or above the vulnerability to flooding from other<br>sources as well as from river and sea flooding, and the<br>potential to increase flood risk elsewhere through the<br>addition of hard surfaces and the effect of the new                                                  |
|                                                                                                                                                                                                                                                                                | development on surface water run-off, should be<br>incorporated in a FRA. This need only be brief unless<br>factors above or other local considerations require<br>particular attention.                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                | Policy aims<br>Developers and local authorities should seek<br>opportunities to reduce the overall level of flood risk in<br>the area and beyond through the layout and form of the<br>development, and the appropriate application of<br>sustainable drainage systems.                                                                                                                                                               |
| Zone 2: Medium Probability                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Land assessed as having between a<br>1 in 100 and 1 in 1,000 annual<br>probability of river flooding (1% –<br>0.1%) or between a 1 in 200 and 1 in<br>1,000 annual probability of sea<br>flooding (0.5% – 0.1%) in any year.<br>(Land shown in light blue on the<br>Flood Map) | Appropriate uses<br>The water-compatible, less vulnerable and more<br>vulnerable uses of land and essential infrastructure in<br>Table 2 are appropriate in this zone.<br>Highly vulnerable uses in Table 2 are only appropriate in<br>this zone if the Exception Test is passed.<br>FRA requirements<br>All proposals in this zone should be accompanied by a<br>FRA.<br>Policy aims<br>Developers and local authorities should seek |
|                                                                                                                                                                                                                                                                                | Developers and local authorities should seek<br>opportunities to reduce the overall level of flood risk in<br>the area through the layout and form of the<br>development, and the appropriate application of<br>sustainable drainage techniques.                                                                                                                                                                                      |
| Continued on next page                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Zone 3a: High Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land assessed as having a 1 in 100<br>or greater probability of river flooding<br>(>1%) or a 1 in 200 or greater<br>annual probability of flooding from<br>the sea (>0.5%) in any year.<br>(Land shown in dark blue on the<br>Flood Map)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Appropriate uses<br>The water-compatible and less vulnerable uses of land<br>in Table 2 are appropriate in this zone.<br>The highly vulnerable uses Table 2 should not be<br>permitted in this zone.<br>The more vulnerable and essential infrastructure uses in<br>Table 2 should only be permitted in this zone if the<br>Exception Test is passed. Essential infrastructure<br>permitted in this zone should be designed and<br>constructed to remain operational and safe for users in<br>times of flood.<br>FRA requirements<br>All proposals in this zone should be accompanied by a<br>FRA.<br>Policy aims<br>Developers and local authorities should seek<br>opportunities to:<br>reduce the overall level of flood risk through the layout<br>and form of the development and the appropriate<br>application of sustainable drainage techniques;<br>relocate existing development to land in zones with a<br>lower probability of flooding;<br>create space for flood flow pathways and by identifying,<br>allocating and safeguarding open space for flood<br>storage. |
| Zone 3b: Functional Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Land where water has to flow or be<br>stored in times of flood.<br>Local Planning Authorities should<br>identify in their SFRAs areas of<br>functional floodplain and its<br>boundaries accordingly, in<br>agreement with the Environment<br>Agency. The identification of<br>functional floodplain should take<br>account of local circumstances and<br>not be defined solely on rigid<br>probability parameters.<br>But land which would flood with an<br>annual probability of 1 in 20 (5%) or<br>greater in any year, or is designated<br>to flood in an extreme (0.1%) flood,<br>should provide a starting point for<br>consideration and discussions to<br>identify functional floodplain. | Appropriate uses<br>Only the water-compatible uses and the essential<br>infrastructure listed in Table 2 that has to be there<br>should be permitted. It should be designed and<br>constructed to:<br>remain operational and safe for users in times of flood;<br>result in no net loss of floodplain storage;<br>not impede water flows; and<br>not increase flood risk elsewhere.<br>Essential infrastructure in this zone should pass the<br>Exception Test.<br>FRA requirements<br>All proposals in this zone should be accompanied by a<br>FRA.<br>Policy aims<br>In this zone, developers and local authorities should<br>seek opportunities to:<br>reduce the overall level of flood risk through the layout                                                                                                                                                                                                                                                                                                                                                              |

application of sustainable drainage techniques; relocate existing development to land with a lower

probability of flooding.

JBA

JBA consulting

Table 4- 2: Flood Risk Vulnerability Classification

| Essential<br>Infrastructure | <ul> <li>Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk.</li> <li>Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood.</li> <li>Wind turbines.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highly Vulnerable           | <ul> <li>Police stations, Ambulance stations and Fire stations and Command Centres and telecommunications installations required to be operational during flooding.</li> <li>Emergency dispersal points.</li> <li>Basement dwellings.</li> <li>Caravans, mobile homes and park homes intended for permanent residential use (Sequential and Exception Tests required for any change of land use to these sites).</li> <li>Installations requiring hazardous substances consent (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the faculties should be classified as "Essential Infrastructure").</li> </ul> |
| More Vulnerable             | <ul> <li>Hospitals.</li> <li>Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels.</li> <li>Buildings used for: dwelling houses; student halls of residence; drinking establishments; nightclubs; and hotels</li> <li>Non-residential uses for health services, nurseries and educational establishments</li> <li>Landfill and sites used for waste management facilities for hazardous waste.</li> <li>Sites used for holiday or short-let caravan and camping, <i>subject to a specific warning and evacuation plan.</i></li> </ul>                                                                                                                                                                                                                                                                                                                  |
| Less Vulnerable             | <ul> <li>Police, ambulance and fire stations which are <i>not</i> required to be operation during flooding.</li> <li>Buildings used for: shops; financial, professional and other services; restaurants and cafes; hot food takeaways; offices; general industry; storage and distribution; non-residential institutions not included in 'more vulnerable'; and assembly and leisure.</li> <li>Land and buildings used for agriculture and forestry.</li> <li>Waste treatment (except landfill and hazardous waste facilities).</li> <li>Minerals working and processing (except for sand and gravel working).</li> <li>Water treatment works and which do <i>not</i> need to remain operation during times of flood.</li> <li>Sewerage treatment works (if adequate measures to control pollution and manage sewage during flooding events are in place).</li> </ul>                                                   |
| Continued on next pag       | ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Water-compatible<br>Development | <ul> <li>Flood control infrastructure.</li> <li>Water transmission infrastructure and pumping stations.</li> <li>Sewage transmission infrastructure and pumping stations.</li> <li>Sand and gravel workings.</li> <li>Docks, marinas and wharves.</li> <li>Navigation facilities.</li> <li>MOD defence installations.</li> <li>Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location.</li> <li>Water-based recreation (excluding sleeping accommodation).</li> <li>Lifeguard and coastguard stations.</li> <li>Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing</li> </ul> |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <ul> <li>Amenity open space, nature conservation and biodiversity, outdoor<br/>sports and recreation and essential facilities such as changing<br/>rooms.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | • Essential ancillary sleeping or residential accommodation for staff required by uses in this category, <i>subject to a specific warning and evacuation plan.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Notes:

Source: Table 2, NPPF Planning Guidance

JBA

1. This classification is based partly on Defra/Environment Agency research on Flood Risks to People (FD2321/TR2) and also on the need of some uses to keep functioning during flooding.

2. Buildings that combine a mixture of uses should be placed into the higher of the relevant classes of flood risk sensitivity. Developments that allow uses to be distributed over the site may fall within several classes of flood risk sensitivity.

3. The impact of a flood on the particular uses identified within this flood risk vulnerability classification will vary within each vulnerability class. Therefore, the flood risk management infrastructure and other risk mitigation measures needed to ensure the development is safe may differ between uses within a particular vulnerability classification.

| Vulnerability<br>Classification<br>(Table 2) |              | Essential<br>Infrastructure | Essential Highly<br>frastructure Vulnerable |                   | Less<br>Vulnerable | Water<br>compatible |
|----------------------------------------------|--------------|-----------------------------|---------------------------------------------|-------------------|--------------------|---------------------|
|                                              | Zone 1       | ✓                           | ✓                                           | ✓                 | ✓                  | ~                   |
| Flood Zone<br>(Table 1)                      | Zone 2       | ✓                           | Exception<br>Test                           | V                 | ~                  | ~                   |
|                                              | Zone<br>3a + | Exception<br>Test           | ×                                           | Exception<br>Test | ~                  | ~                   |
|                                              | Zone<br>3b   | Exception<br>Test           | ×                                           | ×                 | ×                  | √*                  |

Table 4- 3: Flood Risk Vulnerability and Flood Zone 'Compatibility'

Table 3, NPPF Technical Guidance

- Development is appropriate
- Development should not be permitted

#### Notes:

- This table does not show the application of the Sequential Test which should be applied first to guide development to Flood Zone 1, then Zone 2, and then Zone 3; nor does it reflect the need to avoid flood risk from sources other than rivers and the sea;
- The Sequential and Exception Tests do not need to be applied to minor developments and changes of use, except for a change of use to a caravan, camping or chalet site, or to a mobile home or park home site;
- Some developments may contain different elements of vulnerability and the highest vulnerability category should be used, unless the development is considered in its component parts.

*†* In Flood Zone 3a essential infrastructure should be designed and constructed to remain operational and safe in times of flood.

\* In Flood Zone 3b (functional floodplain) essential infrastructure that has to be there and has passed the Exception Test, and water-compatible uses, should be designed and constructed to:

- remain operational and safe for users in times of flood;
- result in no net loss of floodplain storage;
- not impede water flows and not increase flood risk elsewhere.

JBA



## D Surface Water Drainage Strategy Drawing



| The Library, St. Philip's Courty and<br>Church Har<br>Church Har<br>Church Har<br>Church Har<br>Subjective       The Library, St. Philip's Courty<br>and<br>Subjective         War where wher | N         Minor alterations to ground levels following review         08/10/14         RH         OS           Rev.         Modifications         Date         Date         Date         Approved | <ul> <li>Notes</li> <li>Stone blankets assumed to be at least 4.5m wide in all locations</li> <li>Stone blankets to be laid at a gradient of at least 1:500</li> <li>Cover levels represent footway level - road level assumed to be 100mm below footway to allow overflows in extreme rainfall events to be contained in roads</li> <li>Road surface construction has been assumed to have 300mm depth</li> <li>Overflows into swale from road on site's eastern boundary in extreme rainfall events</li> </ul> | General Notes         1. All dimensions shown are in metres unless otherwise stated and levels in metres to Ordnance Datum.         2. Do not scale from this drawing. Indicative layout only - THIS DRAWING IS NOT FOR CONSTRUCTION.         KEY         Image: Stone blanket         Image: Pipe         Swale |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

![](_page_56_Picture_0.jpeg)

## E WinDes Model Summary

2013s7196 - WEST Gavray Drive, Bicester Final FRA - v2.0.doc

![](_page_58_Figure_0.jpeg)

| JBA Consult  | ing           |                     |                |         |                     |       |              |         |      |      | Pa    | ge 1    |
|--------------|---------------|---------------------|----------------|---------|---------------------|-------|--------------|---------|------|------|-------|---------|
| The Library  |               |                     |                |         |                     |       |              |         |      |      |       |         |
| St Philips ( | Courtya       | rd                  |                |         |                     |       |              |         |      |      | 4     |         |
| Coleshill 1  | B46 3AD       | )                   |                |         |                     |       |              |         |      |      | N/    | Je com  |
| Date 28/10/2 | 2014 09       | :22                 |                | De      | esigned             | l by  | Rache        | el Hopo | good |      |       |         |
| File GAVRAY  | DRIVE         | V5A.N               | 1DX            | Ch      | necked              | by F  | Rene D       | obson   | -    |      |       | rainage |
| Micro Draina | age           |                     |                | Ne      | etwork              | 2014  | 1.1          |         |      |      |       |         |
|              | 2             |                     |                |         |                     |       |              |         |      |      |       |         |
|              | STORM         | SEWE                | CR DESI        | GN by   | the Mo              | odifi | ied Ra       | ationa  | l Me | thod | 1     |         |
|              |               |                     |                |         |                     |       |              |         |      |      | _     |         |
|              |               |                     | Networ         | k Desi  | ign Tal             | ole f | Eor St       | lorm    |      |      |       |         |
|              |               |                     | « – Ind        | dicates | s pipe c            | apaci | .ty < f      | low     |      |      |       |         |
| DN           | Ionath        | E-11                | Slene -        | T 3moo  |                     | P     |              | 1-      | UVD  | DTA  | 7.14  |         |
| PN           | Length<br>(m) | raii<br>(m)         | (1:X)          | (ha)    | T.E.<br>(mins)      | Flow  | 15e<br>(1/s) | (mm)    | SECT | (mm) | Desid | m       |
|              | . ,           | . ,                 |                |         | <b>、</b> - <b>,</b> |       | ( ) = )      |         |      | . ,  | •     | ,       |
| 1.000        | 18.357        | 0.050               | 367.1          | 0.133   | 5.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 2.000        | 35.154        | 0.100               | 351.5          | 0.077   | 5.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 2.001        | 50.923        | 0.114               | 446.7          | 0.161   | 0.00                |       | 0.0          | 0.600   | 0    | 300  | - 🍝   |         |
| 1 001        | 10 570        | 0 1 0 0             | 105 0          | 0 000   | 0 00                |       | 0 0          | 0 0 0   |      | 200  |       |         |
| 1.001        | 36.179        | 0.100               | 195.8<br>98.8  | 0.000   | 0.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 1.003        | 13.169        | 0.050               | 263.4          | 0.068   | 0.00                |       | 0.0          | 0.600   | 0    | 300  | - Ă   |         |
|              |               |                     |                |         |                     |       |              |         |      |      | _     |         |
| 3.000        | 33.238        | 0.100               | 332.4<br>504 4 | 0.069   | 5.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 3.001        | 41.202        | 0.030               | 515.0          | 0.072   | 0.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
|              |               |                     |                |         |                     |       |              |         |      |      | Ĩ     |         |
| 1.004        | 41.908        | 0.100               | 419.1          | 0.000   | 0.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 1.005        | 28.342        | 0.100               | 472.4          | 0.082   | 0.00                |       | 0.0          | 0.600   | 0    | 300  |       |         |
| 1.007        | 14.896        | 0.060               | 248.3          | 0.076   | 0.00                |       | 0.0          | 0.600   | 0    | 300  | i 🦉   |         |
|              |               |                     |                |         |                     |       |              |         |      |      |       |         |
| 4.000        | 29.915        | 0.100               | 299.2          | 0.073   | 5.00                |       | 0.0          | 0.600   | 0    | 300  | •     |         |
|              |               |                     | <u>N</u> €     | etwork  | Resul               | ts T  | able         |         |      |      |       |         |
| PN Ra        | ain T.        | .C. t               | JS/IL Σ        | I.Area  | ΣBa                 | se    | Foul         | Add Fl  | ow V | 7el  | Cap   | Flow    |
| (mm          | ı/hr) (mi     | ins)                | (m)            | (ha)    | Flow (              | 1/s)  | (1/s)        | (1/s)   | (n   | 1/s) | (1/s) | (1/s)   |
| 1.000 7      | 5.00 5        | 5.38 <mark>6</mark> | 7.936          | 0.133   |                     | 0.0   | 0.0          | 0       | .0 0 | .81  | 57.6  | 27.0    |
| 2.000 7      | 4.32 5        | 5.70 <mark>6</mark> | 8.100          | 0.077   |                     | 0.0   | 0.0          | 0       | .0 0 | .83  | 58.9  | 15.5    |
| 2.001 6      | 5.44 6        | 5.85 6              | 8.000          | 0.238   |                     | 0.0   | 0.0          | 0       | .0 0 | .74  | 52.1  | 42.2    |
| 1.001 6      | 3.58 5        | 7.15 6              | 7.886          | 0.371   |                     | 0.0   | 0.0          | 0       | .0 1 | .12  | 79.2  | 63.8    |
| 1.002 6      | 1.33          | 7.53 6              | 7.786          | 0.451   |                     | 0.0   | 0.0          | 0       | .0 1 | .58  | 111.8 | 75.0    |
| 1.003 6      | 0.08 7        | 7.75 6              | 7.420          | 0.519   |                     | 0.0   | 0.0          | 0       | .0 0 | .96  | 68.1« | 84.5    |
| 3.000 7      | 4.84 5        | 5.65 6              | 7,600          | 0.069   |                     | 0.0   | 0 0          | Ω       | .0 0 | .86  | 60.6  | 14.1    |
| 3.001 6      | 9.74 6        | 5.25 6              | 7.500          | 0.127   |                     | 0.0   | 0.0          | 0       | .0 0 | .69  | 49.0  | 24.0    |
| 3.002 6      | 2.92          | 7.25 <mark>6</mark> | 7.450          | 0.199   |                     | 0.0   | 0.0          | 0       | .0 0 | .69  | 48.5  | 33.9    |
| 1 004 5      | 5 61 9        | 2 67 <del>(</del>   | 7 370          | 0 710   |                     | 0 0   | 0 0          | 0       | 0 0  | 76   | 53 0% | 108 2   |
| 1.005 5      | 3.18          | 9.25 6              | 7.270          | 0.800   |                     | 0.0   | 0.0          | 0       | .0 0 |      | 62.9« | 115.3   |
| 1.006 5      | 0.70 9        | 9.91 6              | 7.170          | 0.856   |                     | 0.0   | 0.0          | 0       | .0 0 | .72  | 50.7« | 117.5   |
| 1.007 4      | 9.84 10       | 0.16 <mark>6</mark> | 7.110          | 0.932   |                     | 0.0   | 0.0          | 0       | .0 0 | .99  | 70.2« | 125.8   |
| 4.000 7      | 5.00 5        | 5.55 <mark>6</mark> | 7.400          | 0.073   |                     | 0.0   | 0.0          | 0       | .0 0 | .90  | 63.9  | 14.9    |
|              |               |                     |                |         |                     |       |              |         |      |      |       |         |
|              |               |                     | ©19            | 982-20  | 14 XP               | Solu  | tions        |         |      |      |       |         |

| JBA Cons | sulti     | ng            |                  |         |               |                |              |               |         |               |             | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ge 2          |
|----------|-----------|---------------|------------------|---------|---------------|----------------|--------------|---------------|---------|---------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| The Libr | rary      |               |                  |         |               |                |              |               |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| St Phili | ips (     | Courty        | yard             |         |               |                |              |               |         |               |             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~            |
| Coleshi  | 11 E      | 346 37        | AD               |         |               |                |              |               |         |               |             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | licro         |
| Date 28, | /10/2     | 2014 (        | )9 <b>:</b> 22   |         | D             | esigne         | d by         | Rache         | el Hop  | good          |             | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| File GAV | VRAY      | DRIVE         | E V5A.           | MDX     | С             | hecked         | by F         | Rene D        | obson   |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lainaye       |
| Micro Di | raina     | ige           |                  |         | N             | etwork         | 2014         | 1.1           |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          |           |               |                  |         |               |                |              |               |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          |           | STOF          | RM SEW           | ER DES  | IGN by        | the M          | odifi        | ied Ra        | ationa  | l Me          | thod        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          |           |               |                  | Netwo   | rk Dos        | ian Ta         | hlo t        | for st        | orm     |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          |           |               |                  | NCCWO   | IR DC3        | <u>1911 14</u> | DICI         |               |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          | PN        | Lengt         | h Fall           | Slope   | I.Area        | T.E.           | Ba           | ase           | k       | HYD           | DIA         | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o             |
|          |           | (m)           | (m)              | (1:X)   | (ha)          | (mins)         | Flow         | (1/s)         | (mm)    | SECT          | (mm)        | Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gn            |
|          |           |               |                  |         |               |                |              |               |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| ,        | 5.000     | 32.73         | 0 0.05           | 0 654.6 | 0.093         | 5.00           |              | 0.0           | 0.600   | 0             | 225         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 1        | 5.001     | 33.16         | 0 0.05           | 0 663.2 | 0.063         | 0.00           |              | 0.0           | 0.600   | 0             | 225         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          | 5.002     | 15.02         | 3 0.05           | 0 300.5 | 0.088         | 0.00           |              | 0.0           | 0.600   | 0             | 225         | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          | 4.001     | 52.33         | 1 0.13           | 0 402.5 | 0.045         | 0.00           |              | 0.0           | 0.600   | 0             | 300         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          | c 000     | 01 50         | 1 0 05           |         | 0 071         | F 00           |              | 0 0           | 0 6 0 0 |               | 0.05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 6        | 6.000     | 21.59         | 1 0.05<br>3 0 05 | 0 431.8 | 0.0/1         | 5.00           |              | 0.0           | 0.600   | 0             | 225         | , in the second |               |
| 6        | 6.002     | 26.40         | 1 0.03           | 0 880.0 | 0.058         | 0.00           |              | 0.0           | 0.600   | 0             | 225         | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          |           |               |                  |         |               |                |              |               |         |               |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          | 4.002     | 15.07         |                  | 0 753.8 | 0.075         | 0.00           |              | 0.0           | 0.600   | 0             | 300         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          | 1.005     | 12.11         | 5 0.10           | 0 12/./ | 0.040         | 0.00           |              | 0.0           | 0.000   | 0             | 500         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| -        | 1.008     | 17.29         | 8 0.05           | 0 346.0 | 0.053         | 0.00           |              | 0.0           | 0.600   | 0             | 300         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| =        | 1.009     | 24.09         | 1 0.05           | 0 481.8 | 0.000         | 0.00           |              | 0.0           | 0.600   | 0             | 300         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| -        | 1.010     | 33.93         | 0 0.05           | 0 0/8.0 | 0.036         | 0.00           |              | 0.0           | 0.000   | 0             | 300         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          | 7.000     | 29.86         | 1 0.05           | 0 597.2 | 0.089         | 5.00           |              | 0.0           | 0.600   | 0             | 225         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          | 8 000     | 12 07         | 8 0 10           | 0 120 8 | 0 052         | 5 00           |              | 0 0           | 0 600   | 0             | 225         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          | 0.000     | 42.07         | 0 0.10           | 0 420.0 | 0.052         | 5.00           |              | 0.0           | 0.000   | 0             | 223         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|          |           |               |                  | 1       | letworl       | k Resul        | lts T        | able          |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|          | _         |               |                  |         |               |                |              |               |         |               |             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1            |
| PN       | Ra<br>(mm | lin<br>/hr) ( | T.C.<br>mins)    | (m)     | L.Are<br>(ha) | a ΣΒα<br>Flow  | ise<br>(1/s) | fout<br>(1/s) | Add Fl  | .OW V<br>) (π | /e⊥<br>n/s) | (1/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow<br>(1/s) |
|          | (11211)   | ,, (          |                  | (,      | (114)         | 1100           | (_, 0,       | (1,0)         | (1)0    | , (1          | ., 0,       | (1,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)0)         |
| 5 000    | 0 7       | 1 0 9         | 6 0.0            | 67 450  | 0 00          | 3              | 0 0          | 0 0           | ^       | 0 0           | 50          | 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 0          |
| 5.001    | 1 6       | 3.33          | 7.19             | 67.400  | 0.09          | 6              | 0.0          | 0.0           | 0       | .0 0          | .50         | 19.9«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.7          |
| 5.002    | 2 6       | 1.36          | 7.52             | 67.350  | 0.24          | 4              | 0.0          | 0.0           | 0       | .0 0          | .75         | 29.8«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.6          |
| 4 007    | 1 5       | F 70          | 0 6 4            | 67 200  | 0.20          | 0              | 0 0          | 0 0           | 0       | 0 0           | . 70        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 4.00     | 1 5       | 5.13          | 8.64             | 01.300  | 0.36          | 2              | 0.0          | 0.0           | 0       | .0 0          | . 18        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54./          |
| 6.000    | 0 7       | 5.00          | 5.58             | 67.300  | 0.07          | 1              | 0.0          | 0.0           | 0       | .0 0          | .62         | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4          |
| 6.001    | 1 6       | 7.26          | 6.59             | 67.250  | 0.15          | 5              | 0.0          | 0.0           | 0       | .0 0          | .52         | 20.5«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.3          |
| 6.002    | ∠ 6       | 0.90          | /.60             | 67.200  | 0.21          | ک              | υ.Ο          | 0.0           | 0       | .0 0          | .43         | 11.2«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.2          |
| 4.002    | 2 5       | 3.83          | 9.09             | 67.170  | 0.65          | 1              | 0.0          | 0.0           | 0       | .0 0          | .57         | 39.9«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.8          |
| 4.003    | 3 5       | 0.27          | 10.03            | 67.150  | 0.69          | 0              | 0.0          | 0.0           | 0       | .0 0          | .75         | 53.3«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.8          |
| 1 000    | g ,       | 8 70          | 10 50            | 67 050  | 1 67          | 5              | 0 0          | 0 0           | ^       | 0 0           | 9 87        | 59 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221 0         |
| 1.009    | 9 4       | 6.97          | 11.07            | 67.000  | 1.67          | 5              | 0.0          | 0.0           | 0       | .0 0          | .71         | 50.2«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221.0         |
| 1.010    | 0 4       | 4.37          | 12.02            | 66.950  | 1.71          | 2              | 0.0          | 0.0           | 0       | .0 0          | .60         | 42.1«                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221.0         |
| 7 000    | 0 7       | 0 01          | 5 0 4            | 67 100  | 0 00          | 9              | 0 0          | 0 0           | ^       | 0 0           | 50          | 21 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 /          |
| /.000    | U 7.      | 2.24          | J.94             | 07.100  | 0.08          | J              | 0.0          | 0.0           | U       | .0 0          |             | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.4          |
| 8.000    | 0 7       | 0.85          | 6.11             | 67.150  | 0.05          | 2              | 0.0          | 0.0           | 0       | .0 0          | .63         | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0          |
|          |           |               |                  | ©1      | 982-20        | 014 XP         | Solu         | tions         |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1        |           |               |                  | 01      |               |                |              |               |         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |

| JBA Consult: | ing                    |                    |                     |             |         |          |         | Pag         | ge 3         |
|--------------|------------------------|--------------------|---------------------|-------------|---------|----------|---------|-------------|--------------|
| The Library  |                        |                    |                     |             |         |          |         |             |              |
| St Philips ( | Courtyard              |                    |                     |             |         |          |         | 4           | ~            |
| Coleshill H  | 346 3AD                |                    |                     |             |         |          |         | N/          | icco         |
| Date 28/10/2 | 2014 09:2              | 2                  | De                  | signed by   | Rache   | el Hopg  | lood    |             |              |
| File GAVRAY  | DRIVE V5               | A.MDX              | Ch                  | necked by   | Rene 1  | Dobson   |         |             | amage        |
| Micro Draina | age                    |                    | Ne                  | twork 201   | 4.1     |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              | STORM S                | EWER DESI          | GN by               | the Modif   | ied R   | ational  | L Metho | od          |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        | Networ             | k Desi              | ign Table   | for S   | torm     |         |             |              |
| DN           | Length F               | all Slope          | T Area              | <b></b>     | 8360    | ŀ        |         | TA A11+     | •            |
| - IN         | (m)                    | (m) (1:X)          | (ha)                | (mins) Flow | v (l/s) | (mm)     | SECT (m | m) Desi     | qn           |
|              |                        |                    | <b>、</b> - <b>,</b> |             | ( ) = ) | <b>、</b> | •       |             | 5            |
| 7 001        | 13 010 0               | 075 574 0          | 0 0 1 9             | 0 00        | 0 (     | 0 600    | 0 7     | 25          |              |
| 7.001        | 43.049 0.<br>38.038 0. | .075 507.2         | 0.040               | 0.00        | 0.0     | 0.600    | 0 2     | 00          |              |
|              |                        |                    |                     |             |         |          |         |             |              |
| 1.011        | 20.290 0.              | .100 202.9         | 0.061               | 0.00        | 0.0     | 0.600    | 0 4     | 50 🍈        |              |
| 9 000        | 27 025 0               | 175 154 /          | 0 097               | 5.00        | 0 0     | ) () 600 | 0 0     | 25 🎍        |              |
| 9.001        | 41.179 0.              | .150 274.5         | 0.067               | 0.00        | 0.0     | 0.600    | 0 2     | 25 <b>B</b> |              |
| 9.002        | 43.045 0.              | .382 112.7         | 0.081               | 0.00        | 0.0     | 0.600    | 0 2     | 25          |              |
| 9.003        | 26.539 0.              | .068 390.3         | 0.122               | 0.00        | 0.0     | 0.600    | o 3     | 00 🍈        |              |
| 9.004        | 31.305 0.              | .150 208.7         | 0.064               | 0.00        | 0.0     | 0.600    | 03      | 00 🌔        |              |
| 9.005        | 18.225 0.              | .050 364.5         | 0.035               | 0.00        | 0.0     | 0.600    | 0 3     | 00          |              |
| 9.006        | 52.686 0.              | 150 351.2          | 0.087               | 0.00        | 0.0     |          | 0 3     | 00 💾        |              |
| 9.007        | 130.701 0.             | .130 923.1         | 0.094               | 0.00        | 0.0     | 0.800    | 0 4     | JU 📮        |              |
| 1.012        | 11.816 0.              | .050 236.3         | 0.000               | 0.00        | 0.0     | 0.600    | 0 4     | 50 🔒        |              |
| 1.013        | 11.816 0.              | .050 236.3         | 0.000               | 0.00        | 0.0     | 0.600    | o 4     | 50 🎒        |              |
|              |                        | N                  | etwork              | Results '   | Cable   |          |         |             |              |
|              |                        |                    | 000011              | 1000100     |         |          |         |             |              |
| PN Ra        | in T.C.                | US/IL Σ            | I.Area              | Σ Base      | Foul    | Add Flor | w Vel   | Cap         | Flow         |
| (mm          | /hr) (mins)            | ) (m)              | (ha)                | Flow (l/s)  | (l/s)   | (1/s)    | (m/s)   | (1/s)       | (1/s)        |
|              |                        |                    |                     |             |         |          |         |             |              |
| 7.001 61     | L.81 7.44              | 4 67.050           | 0.189               | 0.0         | 0.0     | 0.       | 0 0.54  | 21.4«       | 31.6         |
| 7.002 5      | 7.04 8.36              | 66.975             | 0.239               | 0.0         | 0.0     | 0.       | 0 0.69  | 48.9        | 36.9         |
| 1.011 43     | 3.77 12.25             | 5 66.900           | 2.011               | 0.0         | 0.0     | 0.       | 0 1.42  | 226.4«      | 238.4        |
|              |                        |                    |                     |             |         |          |         |             |              |
| 9.000 75     | 5.00 5.43              | 3 68.250           | 0.097               | 0.0         | 0.0     | 0.       | 0 1.05  | 41.7        | 19.7         |
| 9.001 69     | 9.34 6.30              | 0 68.000           | 0.164               | 0.0         | 0.0     | 0.       | 0.78    | 31.2        | 30.7         |
| 9.002 65     | 0.22 6.89              | 01.850<br>5 67 169 | 0.244               | 0.0         | 0.0     | 0.       | U 1.23  | 48.9        | 43.⊥<br>61 3 |
| 9.003 01     | 0.17 7.9 <sup>3</sup>  | 3 67.400           | 0.430               | 0.0         | 0.0     | 0.       | 0 1.08  | 76.7        | 68.9         |
| 9.005 5      | 7.32 8.30              | 0 67.300           | 0.465               | 0.0         | 0.0     | 0.       | 0 0.82  | 57.8«       | 72.1         |
| 9.006 52     | 2.77 9.35              | 5 67.250           | 0.551               | 0.0         | 0.0     | 0.       | 0 0.83  | 58.9«       | 78.8         |
| 9.007 42     | 2.34 12.86             | 67.100             | 0.645               | 0.0         | 0.0     | 0.       | 0 0.66  | 105.0       | 78.8         |
| 1 012 43     | 2 00 13 01             | 1 66 800           | 2 657               | 0 0         | 0 0     | 0        | 0 1 3 2 | 209 64      | 302 2        |
| 1.013 41     | L.67 13.15             | 5 66.750           | 2.657               | 0.0         | 0.0     | 0.       | 0 1.32  | 209.6«      | 302.2        |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        |                    |                     |             |         |          |         |             |              |
|              |                        | ©1                 | 982-20              | 14 XP Solu  | itions  | 3        |         |             |              |
|              |                        | 01                 | 202 20              |             |         |          |         |             |              |

| JBA Consulting            |                            | Page 4  |
|---------------------------|----------------------------|---------|
| The Library               |                            |         |
| St Philips Courtyard      |                            | L'      |
| Coleshill B46 3AD         |                            | Micco   |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood |         |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson     | Diamaye |
| Micro Drainage            | Network 2014.1             |         |

### Area Summary for Storm

| Pipe   | PIMP | PIMP | PIMP       | Gross     | Imp.      | Pipe Total |
|--------|------|------|------------|-----------|-----------|------------|
| Number | Туре | Name | (%)        | Area (ha) | Area (ha) | (ha)       |
| 1 000  |      |      | <b>C</b> 0 | 0 001     | 0 1 2 2   | 0 1 2 2    |
| 2 000  | User | _    | 60         | 0.221     | 0.133     | 0.133      |
| 2.000  | User | _    | 60         | 0.129     | 0.077     | 0.077      |
| 2.001  | User | _    | 100        | 0.268     | 0.161     | 0.161      |
| 1 000  |      | _    | 100        | 0.000     | 0.000     | 0.000      |
| 1 002  | User | _    | 60         | 0.134     | 0.081     | 0.081      |
| 2 000  | User | _    | 60         | 0.115     | 0.068     | 0.068      |
| 2 001  | User | _    | 60         | 0.116     | 0.069     | 0.069      |
| 3.001  | User | _    | 60         | 0.096     | 0.058     | 0.058      |
| 3.002  | User | -    | 100        | 0.120     | 0.072     | 0.072      |
| 1.004  |      | -    | 100        | 0.000     | 0.000     | 0.000      |
| 1.005  | User | -    | 60         | 0.136     | 0.082     | 0.082      |
| 1.006  | User | -    | 60         | 0.092     | 0.055     | 0.055      |
| 1.007  | User | -    | 60         | 0.12/     | 0.076     | 0.076      |
| 4.000  | User | -    | 60         | 0.122     | 0.073     | 0.073      |
| 5.000  | User | -    | 60         | 0.155     | 0.093     | 0.093      |
| 5.001  | User | -    | 60         | 0.105     | 0.063     | 0.063      |
| 5.002  | User | -    | 60         | 0.147     | 0.088     | 0.088      |
| 4.001  | User | -    | 60         | 0.075     | 0.045     | 0.045      |
| 6.000  | User | _    | 60         | 0.118     | 0.071     | 0.071      |
| 6.001  | User | -    | 60         | 0.140     | 0.084     | 0.084      |
| 6.002  | User | -    | 60         | 0.097     | 0.058     | 0.058      |
| 4.002  | User | -    | 60         | 0.125     | 0.075     | 0.075      |
| 4.003  | User | -    | 60         | 0.067     | 0.040     | 0.040      |
| 1.008  | User | -    | 60         | 0.089     | 0.053     | 0.053      |
| 1.009  | -    | -    | 100        | 0.000     | 0.000     | 0.000      |
| 1.010  | User | -    | 60         | 0.060     | 0.036     | 0.036      |
| 7.000  | User | -    | 60         | 0.148     | 0.089     | 0.089      |
| 8.000  | User | -    | 60         | 0.087     | 0.052     | 0.052      |
| 7.001  | User | -    | 60         | 0.080     | 0.048     | 0.048      |
| 7.002  | User | -    | 60         | 0.083     | 0.050     | 0.050      |
| 1.011  | User | -    | 60         | 0.102     | 0.061     | 0.061      |
| 9.000  | User | -    | 60         | 0.161     | 0.097     | 0.097      |
| 9.001  | User | -    | 60         | 0.111     | 0.067     | 0.067      |
| 9.002  | User | -    | 60         | 0.134     | 0.081     | 0.081      |
| 9.003  | User | -    | 60         | 0.203     | 0.122     | 0.122      |
| 9.004  | User | -    | 60         | 0.106     | 0.064     | 0.064      |
| 9.005  | User | -    | 60         | 0.058     | 0.035     | 0.035      |
| 9.006  | User | -    | 60         | 0.144     | 0.087     | 0.087      |
| 9.007  | User | -    | 60         | 0.157     | 0.094     | 0.094      |
| 1.012  | -    | -    | 100        | 0.000     | 0.000     | 0.000      |
| 1.013  | -    | -    | 100        | 0.000     | 0.000     | 0.000      |
|        |      |      |            | Total     | Total     | Total      |
|        |      |      |            | 4.428     | 2.657     | 2.657      |

| JBA Consulting            |                            | Page 5  |
|---------------------------|----------------------------|---------|
| The Library               |                            |         |
| St Philips Courtyard      |                            | L'      |
| Coleshill B46 3AD         |                            | Micco   |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood |         |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson     | Diamaye |
| Micro Drainage            | Network 2014.1             |         |

### Surcharged Outfall Details for Storm

| Outfall<br>Pipe Number | Outfall<br>Name | C. Level<br>(m) | I. Level<br>(m) | Min<br>I. Level<br>(m) | D,L<br>(mm) | W<br>(mm) |
|------------------------|-----------------|-----------------|-----------------|------------------------|-------------|-----------|
| 1.013                  |                 | 67.500          | 66.700          | 66.700                 | 0           | 0         |
|                        | Datum (         | m) 0.000        | Offset (m       | ins) O                 |             |           |

| Time         | Depth            | Time         | Depth            | Time         | Depth | Time   | Depth |
|--------------|------------------|--------------|------------------|--------------|-------|--------|-------|
| (mins)       | (m)              | (mins)       | (m)              | (mins)       | (m)   | (mins) | (m)   |
| 1440<br>2880 | 66.700<br>66.700 | 4320<br>5760 | 66.700<br>66.700 | 7200<br>8640 | 0.000 | 10080  | 0.000 |

©1982-2014 XP Solutions

| ne Lib  | sult  | ing         |             |             |             |            |             | Page 6     |
|---------|-------|-------------|-------------|-------------|-------------|------------|-------------|------------|
|         | rary  | ,           |             |             |             |            |             |            |
| t Phil  | ips   | Courtyard   | t           |             |             |            |             | 4          |
| oleshi  | 11    | B46 3AD     |             |             |             |            |             | Micco      |
| ate 28  | /10/  | 2014 09:2   | 2.2         | Desig       | ned by Ra   | chel Hopa  | ood         |            |
| ile GAN | VRAY  | DRIVE V     | 54 MDX      | Check       | ed by Rer   | e Dobson   |             | Drainac    |
| iaro D  | rain  |             | 574.1107    | Notwo       | rk 2014 1   |            |             | -          |
| ICIO D. | Lalli | aye         |             | Netwo.      | IK 2014.1   |            |             |            |
|         |       |             | Onl         | ine Contro  | ols for S   | torm       |             |            |
|         | ΗJ    | /dro-Brak   | e® Manhol   | e: 35, DS,  | /PN: 1.01   | 2, Volume  | (m³): 25    | 5.1        |
|         | Γ     | )esign Head | l (m) 0.600 | Hydro-Brake | e® Type Md1 | Invert Lev | vel (m) 66. | .800       |
|         | Des   | sign Flow ( | 1/s) 21.0   | Diamete     | er (mm) 150 |            |             |            |
| Depth   | (m)   | Flow (1/s)  | Depth (m)   | Flow (1/s)  | Depth (m)   | Flow (1/s) | Depth (m)   | Flow (1/s) |
| 0.      | .100  | 6.2         | 1.200       | 29.7        | 3.000       | 46.9       | 7.000       | 71.7       |
| 0.      | .200  | 16.2        | 1.400       | 32.1        | 3.500       | 50.7       | 7.500       | 74.2       |
| 0.      | .300  | 19.6        | 1.600       | 34.3        | 4.000       | 54.2       | 8.000       | 76.6       |
| 0.      | .400  | 18.3        | 1.800       | 36.3        | 4.500       | 57.5       | 8.500       | 79.0       |
| 0.      | .500  | 19.3        | 2.000       | 38.3        | 5.000       | 60.6       | 9.000       | 81.3       |
| 0.      | .600  | 21.0        | 2.200       | 40.2        | 5.500       | 63.5       | 9.500       | 83.5       |
| 0.      | .800  | 24.2        | 2.400       | 42.0        | 6.000       | 66.4       |             |            |
|         |       | 27.1        | 1 2.000     | 10.1        | 0.000       | 00.1       | I           |            |
|         | Non   | Return N    | /alve Mani  | nole: 36.   | DS/PN: 1.   | 013. Volu  | ume (m³):   | 2.8        |
|         | -     |             |             | · · ·       |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |
|         |       |             |             |             |             |            |             |            |

| JBA Consulting                               |                                                   | Page 7   |
|----------------------------------------------|---------------------------------------------------|----------|
| The Library                                  |                                                   |          |
| St Philips Courtyard                         |                                                   | L'       |
| Coleshill B46 3AD                            |                                                   | Mirco    |
| Date 28/10/2014 09:22 D                      | esigned by Rachel Hopgood                         | Dcainago |
| File GAVRAY DRIVE V5A.MDX C                  | hecked by Rene Dobson                             | Diamaye  |
| Micro Drainage N                             | etwork 2014.1                                     |          |
|                                              |                                                   |          |
| Offline C                                    | Controls for Storm                                |          |
|                                              |                                                   |          |
| Pipe Manhole: 1, DS/                         | 'PN: 1.000, Loop to PN: 1.001                     |          |
| Diameter (m) -8                              | 8 Manning's n 0.017                               |          |
| Section Type Pipe/Conduit                    | Entry Loss Coefficient 0.500                      |          |
| Slope (1:X) 1150.0                           | D Coefficient of Contraction 0.600                |          |
|                                              |                                                   |          |
| Pipe Manhole: 2, DS/                         | PN: 2.000, Loop to PN: 2.001                      |          |
| Diameter (m) -8                              | 8 Manning's n 0.017                               |          |
| Section Type Pipe/Conduit                    | t Entry Loss Coefficient 0.500                    |          |
| Length (m) 35.000                            | ) Upstream Invert Level (m) 69.250                |          |
|                                              |                                                   |          |
| Pipe Manhole: 3, DS/                         | 'PN: 2.001, Loop to PN: 1.001                     |          |
| Diameter (m) -8                              | 8 Manning's n 0.017                               |          |
| Section Type Pipe/Conduit                    | t Entry Loss Coefficient 0.500                    |          |
| Length (m) 50.000                            | O Upstream Invert Level (m) 68.950                |          |
| Pipe Manhole: 4, DS/                         | 'PN: 1.001, Loop to PN: 1.002                     |          |
|                                              |                                                   |          |
| Diameter (m) -8                              | 8 Manning's n 0.017                               |          |
| Slope (1:X) 75.(                             | Coefficient of Contraction 0.600                  |          |
| Length (m) 19.000                            | 0 Upstream Invert Level (m) 68.820                |          |
| Pipe Manhole: 5, DS/                         | 'PN: 1.002, Loop to PN: 1.003                     |          |
|                                              |                                                   |          |
| Diameter (m) -{<br>Section Type Pine/Conduit | Manning's n 0.017                                 |          |
| Slope (1:X) 150.0                            | Coefficient of Contraction 0.600                  |          |
| Length (m) 36.000                            | 0 Upstream Invert Level (m) 68.550                |          |
| Pipe Manhole: 6, DS/                         | 'PN: 1.003, Loop to PN: 1.004                     |          |
|                                              |                                                   |          |
| Diameter (m) -{<br>Section Type Pine/Conduit | Manning's n 0.017<br>Entry Loss Coefficient 0.500 |          |
| Slope (1:X) 475.0                            | 0 Coefficient of Contraction 0.600                |          |
| Length (m) 13.000                            | 0 Upstream Invert Level (m) 68.320                |          |
| Pipe Manhole: 7, DS/                         | 'PN: 3.000, Loop to PN: 3.001                     |          |
| Diameter (m)                                 | Mannington 0 017                                  |          |
| Section Type Pipe/Conduit                    | t Entry Loss Coefficient 0.500                    |          |
| Slope (1:X) 175.0                            | 0 Coefficient of Contraction 0.600                |          |
| Length (m) 42.000                            | 0 Upstream Invert Level (m) 68.750                |          |
|                                              |                                                   |          |
| ©1982-2                                      | 014 XP Solutions                                  |          |

| JBA Consulting            |                                      | Page 8    |
|---------------------------|--------------------------------------|-----------|
| The Library               |                                      |           |
| St Philips Courtyard      |                                      | 4         |
| Coleshill B46 3AD         |                                      | Micco     |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood           |           |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson               | Dialitage |
| Micro Drainage            | Network 2014.1                       |           |
|                           |                                      |           |
| Pipe Manhole: 8, D        | S/PN: 3.001, Loop to PN: 3.002       |           |
| Diameter (m)              | -8 Manning's n 0.017                 |           |
| Section Type Pipe/Condu   | it Entry Loss Coefficient 0.500      |           |
| Slope (1:X) 200           | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 25.0           | 000 Upstream Invert Level (m) 68.573 |           |
| Pipe Manhole: 9, D        | S/PN: 3.002, Loop to PN: 1.004       |           |
| Diamotor (m)              | _8 Manninala n 0.017                 |           |
| Section Type Pipe/Condu   | ait Entry Loss Coefficient 0.500     |           |
| Slope (1:X) 250           | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 41.0           | 000 Upstream Invert Level (m) 68.449 |           |
| Pipe Manhole: 10, I       | DS/PN: 1.004, Loop to PN: 1.005      |           |
| Diameter (m)              | -8 Manning's n 0 017                 |           |
| Section Type Pipe/Condu   | it Entry Loss Coefficient 0.500      |           |
| Slope (1:X) 175           | 5.0 Coefficient of Contraction 0.600 |           |
| Length (m) 42.0           | 000 Upstream Invert Level (m) 68.292 |           |
| Pipe Manhole: 11, I       | DS/PN: 1.005, Loop to PN: 1.006      |           |
| Diameter (m)              | -8 Manning's n 0.017                 |           |
| Section Type Pipe/Condu   | it Entry Loss Coefficient 0.500      |           |
| Slope (1:X) 600           | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 31.0           | 000 Upstream Invert Level (m) 68.050 |           |
| Pipe Manhole: 12, I       | DS/PN: 1.006, Loop to PN: 1.007      |           |
| Diameter (m)              | -8 Manning's n 0.017                 |           |
| Section Type Pipe/Condu   | it Entry Loss Coefficient 0.500      |           |
| Slope (1:X) 950           | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 28.0           | JUU Upstream Invert Level (m) 68.000 |           |
| Pipe Manhole: 13, I       | OS/PN: 1.007, Loop to PN: 1.008      |           |
| Diameter (m)              | -8 Manning's n 0.017                 |           |
| Section Type Pipe/Condu   | uit Entry Loss Coefficient 0.500     |           |
| Slope (1:X) 750           | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 15.0           | 000 Upstream Invert Level (m) 67.970 |           |
| Pipe Manhole: 14, I       | OS/PN: 4.000, Loop to PN: 4.001      |           |
| Diameter (m)              | -8 Manning's n 0.017                 |           |
| Section Type Pipe/Condu   | it Entry Loss Coefficient 0.500      |           |
| Slope (1:X) 1000          | 0.0 Coefficient of Contraction 0.600 |           |
| Length (m) 30.0           | 000 Upstream Invert Level (m) 68.000 |           |
|                           |                                      |           |
|                           |                                      |           |
|                           |                                      |           |
| ©1982-                    | -2014 XP Solutions                   |           |

| JBA Consulting |                        |                                                | Page 9   |
|----------------|------------------------|------------------------------------------------|----------|
| The Library    |                        |                                                |          |
| St Philips Cou | rtyard                 |                                                | 4        |
| Coleshill B46  | 3AD                    |                                                | Micco    |
| Date 28/10/201 | 4 09:22                | Designed by Rachel Hopgood                     |          |
| File GAVRAY DR | IVE V5A.MDX            | Checked by Rene Dobson                         | Urainage |
| Micro Drainage |                        | Network 2014.1                                 |          |
|                |                        |                                                |          |
| Ē              | Pipe Manhole: 15, D    | S/PN: 5.000, Loop to PN: 5                     | .001     |
|                | iomotor (m)            | 9 Manajarda a                                  | 0 017    |
| S              | ection Type Pipe/Condu | -o Manning S n<br>nit Entry Loss Coefficient   | 0.500    |
|                | Slope (1:X) 150        | .0 Coefficient of Contraction                  | 0.600    |
|                | Length (m) 32.0        | 000 Upstream Invert Level (m) 6                | 58.529   |
| F              | Pipe Manhole• 16 F     | $S/PN \cdot 5 001 \text{ Loop to } PN \cdot 5$ | 002      |
| <u>_</u>       | ipe Mannoie, 10, L     | <u>, , , , , , , , , , , , , , , , , , , </u>  |          |
| D              | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 100        | 0.0 Coefficient of Contraction                 | 0.600    |
|                | Lengen (m) 55.0        | (m) opstream invert lever (m) o                | 0.520    |
| Ē              | Pipe Manhole: 17, D    | S/PN: 5.002, Loop to PN: 4                     | .001     |
| D.             | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 500        | 0.0 Coefficient of Contraction                 | 0.600    |
|                | Length (m) 15.0        | 000 Upstream Invert Level (m) 6                | 58.000   |
| Ē              | Pipe Manhole: 18, D    | OS/PN: 4.001, Loop to PN: 4                    | .002     |
| D              | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 1050       | .0 Coefficient of Contraction                  | 0.600    |
|                | Length (m) 52.0        | 000 Upstream Invert Level (m) 6                | 57.970   |
| Ē              | Pipe Manhole: 16, D    | NS/PN: 6.000, Loop to PN: 6                    | .001     |
| D              | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 125        | 0.0 Coefficient of Contraction                 | 0.600    |
|                | Length (m) 21.0        | ooo opstream invert Level (m) 6                | 00.293   |
| Ē              | Pipe Manhole: 17, D    | S/PN: 6.001, Loop to PN: 6                     | .002     |
| D              | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 175        | .0 Coefficient of Contraction                  | 0.600    |
|                | Length (m) 31.0        | 000 Upstream Invert Level (m) 6                | 08.126   |
| Ē              | Pipe Manhole: 18, D    | S/PN: 6.002, Loop to PN: 4                     | .002     |
| D              | iameter (m)            | -8 Manning's n                                 | 0.017    |
| S              | ection Type Pipe/Condu | it Entry Loss Coefficient                      | 0.500    |
|                | Slope (1:X) 875        | .0 Coefficient of Contraction                  | 0.600    |
|                | Length (m) 26.0        | uuu upstream invert Level (m) 6                | 07.950   |
|                |                        |                                                |          |
|                |                        |                                                |          |
|                |                        |                                                |          |
|                | ©1982-                 | 2014 XP Solutions                              |          |

| JBA Consulting                                                                |                                                                                                                                          | Page 10  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| The Library                                                                   |                                                                                                                                          |          |
| St Philips Courtyard                                                          |                                                                                                                                          |          |
| Coleshill B46 3AD                                                             |                                                                                                                                          | Micro    |
| Date 28/10/2014 09:22                                                         | Designed by Rachel Hopgood                                                                                                               | Drainage |
| File GAVRAY DRIVE V5A.MDX                                                     | Checked by Rene Dobson                                                                                                                   | Drainage |
| Micro Drainage                                                                | Network 2014.1                                                                                                                           |          |
| Pipe Manhole: 16, I                                                           | DS/PN: 4.002, Loop to PN: 4.003                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 750<br>Length (m) 15.0 | -8 Manning's n 0.017<br>ait Entry Loss Coefficient 0.500<br>0.0 Coefficient of Contraction 0.600<br>000 Upstream Invert Level (m) 67.920 |          |
| Pipe Manhole: 17, I                                                           | OS/PN: 4.003, Loop to PN: 8.000                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 500<br>Length (m) 42.0 | -8 Manning's n 0.017<br>Dit Entry Loss Coefficient 0.500<br>D.0 Coefficient of Contraction 0.600<br>D00 Upstream Invert Level (m) 67.900 |          |
| Pipe Manhole: 18, I                                                           | DS/PN: 1.008, Loop to PN: 1.009                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 575<br>Length (m) 17.0 | -8Manning's n0.017aitEntry Loss Coefficient0.5005.0Coefficient of Contraction0.600000Upstream Invert Level (m)67.950                     |          |
| Pipe Manhole: 19, I                                                           | DS/PN: 1.009, Loop to PN: 1.010                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 150<br>Length (m) 24.0 | -8 Manning's n 0.017<br>ait Entry Loss Coefficient 0.500<br>0.0 Coefficient of Contraction 0.600<br>000 Upstream Invert Level (m) 67.920 |          |
| Pipe Manhole: 20, I                                                           | DS/PN: 1.010, Loop to PN: 1.011                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 675<br>Length (m) 34.( | -8 Manning's n 0.017<br>ait Entry Loss Coefficient 0.500<br>5.0 Coefficient of Contraction 0.600<br>000 Upstream Invert Level (m) 67.750 |          |
| Weir Manhole: 21,                                                             | DS/PN: 7.000, Loop to PN: None                                                                                                           |          |
| Discharge Coef 0.544 Wi                                                       | dth (m) 2.000 Invert Level (m) 67.850                                                                                                    |          |
| Pipe Manhole: 21, I                                                           | DS/PN: 7.000, Loop to PN: 7.001                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Condu<br>Slope (1:X) 600<br>Length (m) 30.0 | -8 Manning's n 0.017<br>ait Entry Loss Coefficient 0.500<br>0.0 Coefficient of Contraction 0.600<br>000 Upstream Invert Level (m) 67.850 |          |
| Pipe Manhole: 22, I                                                           | DS/PN: 8.000, Loop to PN: 7.001                                                                                                          |          |
| Diameter (m)<br>Section Type Pipe/Cor<br>Slope (1:X) 8                        | -8Length (m) 42.000nduitManning's n 0.017350.0Entry Loss Coefficient 0.500                                                               |          |
| ©1982-                                                                        | -2014 XP Solutions                                                                                                                       |          |

| JBA Consulting             |                                         | Page 11   |
|----------------------------|-----------------------------------------|-----------|
| The Library                |                                         |           |
| St Philips Courtyard       |                                         | 4         |
| Coleshill B46 3AD          |                                         | Micco     |
| Date 28/10/2014 09:22      | Designed by Rachel Hopgood              |           |
| File GAVRAY DRIVE V5A.MDX  | Checked by Rene Dobson                  | Digiliada |
| Micro Drainage             | Network 2014.1                          |           |
|                            |                                         |           |
| Pipe Manhole: 22, I        | DS/PN: 8.000, Loop to PN: 7.001         |           |
| Coefficient of Contraction | n 0.600 Upstream Invert Level (m) 67.85 | 50        |
| Weir Manhole: 24,          | DS/PN: 7.001, Loop to PN: None          |           |
| Discharge Coef 0.544 Wi    | dth (m) 2.000 Invert Level (m) 67.800   |           |
| Pipe Manhole: 24, I        | DS/PN: 7.001, Loop to PN: 7.002         |           |
| Diameter (m)               | -8 Manning's n 0.017                    |           |
| Section Type Pipe/Condu    | LIT Entry Loss Coefficient 0.500        |           |
| Length (m) 43.0            | 000 Upstream Invert Level (m) 67.800    |           |
|                            | -                                       |           |
| Weir Manhole: 25,          | DS/PN: 7.002, Loop to PN: None          |           |
| Discharge Coef 0.544 Wi    | dth (m) 2.000 Invert Level (m) 67.750   |           |
| Pipe Manhole: 25, I        | DS/PN: 7.002, Loop to PN: 1.011         |           |
| Diameter (m)               | -8 Manning's n 0.017                    |           |
| Section Type Pipe/Condu    | Lit Entry Loss Coefficient 0.500        |           |
| Length (m) 38.0            | 000 Upstream Invert Level (m) 67.750    |           |
| Weir Manhole: 26, I        | DS/PN: 1.011, Loop to PN: 1.012         |           |
| Discharge Coef 0.544 Wi    | dth (m) 2.000 Invert Level (m) 67.700   |           |
| Pipe Manhole: 27, I        | DS/PN: 9.000, Loop to PN: 9.001         |           |
| Diameter (m)               | -8 Manning's n 0.017                    |           |
| Section Type Pipe/Condu    | uit Entry Loss Coefficient 0.500        |           |
| Slope (1:X) 150            | 0.0 Coefficient of Contraction 0.600    |           |
| Length (m) 27.0            | 000 Upstream Invert Level (m) 69.150    |           |
| Pipe Manhole: 28, I        | DS/PN: 9.001, Loop to PN: 9.002         |           |
| Diameter (m)               | -8 Manning's n 0.017                    |           |
| Section Type Pipe/Cond     | Lit Entry Loss Coefficient 0.500        |           |
| Slope (1:X) 100            | 0.0 Coefficient of Contraction 0.600    |           |
|                            | See Specieum invere nevel (m) 00.975    |           |
| Pipe Manhole: 29, I        | DS/PN: 9.002, Loop to PN: 9.003         |           |
| Diameter (m)               | -8 Manning's n 0.017                    |           |
| Section Type Pipe/Cond     | Lit Entry Loss Coefficient 0.500        |           |
| Slope (1:X) 100            | 0.0 Coefficient of Contraction 0.600    |           |
| Length (m) 43.0            | ooo opstream invert Level (m) 68.600    |           |
|                            |                                         |           |

©1982-2014 XP Solutions

| JBA Consulting            |                                 | Page 12  |
|---------------------------|---------------------------------|----------|
| The Library               |                                 |          |
| St Philips Courtyard      |                                 | L'       |
| Coleshill B46 3AD         |                                 | Micco    |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood      |          |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson          | Diamacju |
| Micro Drainage N          | Network 2014.1                  |          |
|                           |                                 |          |
| Pipe Manhole: 30, DS      | 3/PN: 9.003, Loop to PN: 9.0    | 004      |
| Diameter (m) -            | .8 Manning's n 0                | .017     |
| Section Type Pipe/Condui  | t Entry Loss Coefficient 0      | .500     |
| Slope (1:X) 125.          | 0 Coefficient of Contraction 0  | .600     |
| Length (m) 26.00          | 00 Upstream invert Level (m) 68 | .218     |
| Pipe Manhole: 31, DS      | S/PN: 9.004, Loop to PN: 9.0    | 005      |
|                           | · •                             |          |
| Diameter (m) -            | 8 Manning's n 0                 | .017     |
| Section Type Pipe/Condui  | .t Entry Loss Coefficient 0     | .500     |
| Length (m) 31.00          | 00 Upstream Invert Level (m) 68 | .000     |
|                           |                                 |          |
| Pipe Manhole: 32, DS      | S/PN: 9.005, Loop to PN: 9.0    | 006      |
| Diameter (m) -            | .8 Manning's n ()               | 017      |
| Section Type Pipe/Condui  | t Entry Loss Coefficient 0      | .500     |
| Slope (1:X) 350.          | O Coefficient of Contraction O  | .600     |
| Length (m) 18.00          | 00 Upstream Invert Level (m) 67 | .950     |
| Pipe Manhole: 33, DS      | S/PN: 9.006, Loop to PN: 9.0    | 007      |
| Diameter (m) -            | -8 Manning's n ()               | 017      |
| Section Type Pipe/Condui  | t Entry Loss Coefficient 0      | .500     |
| Slope (1:X) 1050.         | O Coefficient of Contraction O  | .600     |
| Length (m) 52.00          | 00 Upstream Invert Level (m) 67 | .900     |
| Pipe Manhole: 34, DS      | S/PN: 9.007, Loop to PN: 7.0    | 000      |
| Diameter (m) -            | -8 Manning's n 0                | .017     |
| Section Type Pipe/Condui  | t Entry Loss Coefficient 0      | .500     |
| Slope (1:X) 200.          | 0 Coefficient of Contraction 0  | .600     |
| Length (m) 10.00          | 00 Upstream invert Level (m) 67 | .850     |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           |                                 |          |
|                           | 2014 XP Solutions               |          |
| 01902 2                   |                                 |          |

| JBA Consulting   |                                                 |                                                                   |                                              | Page 13   |
|------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-----------|
| The Library      |                                                 |                                                                   |                                              |           |
| St Philips Court | tyard                                           |                                                                   |                                              |           |
| Coleshill B46 3  | 3AD                                             |                                                                   |                                              | Mirro     |
| Date 28/10/2014  | 09:22                                           | Designed by Ra                                                    | chel Hopgood                                 | Drainane  |
| File GAVRAY DRIV | VE V5A.MDX                                      | Checked by Ren                                                    | e Dobson                                     | Diamage   |
| Micro Drainage   |                                                 | Network 2014.1                                                    |                                              |           |
|                  | Storage                                         | e Structures for                                                  | Storm                                        |           |
|                  | Infiltration Ba                                 | asin Manhole: 1,                                                  | DS/PN: 1.000                                 |           |
| Infil            | Inv<br>tration Coefficien<br>tration Coefficien | ert Level (m) 67.93<br>t Base (m/hr) 0.000<br>t Side (m/hr) 0.000 | 36 Safety Factor 2.<br>00 Porosity 0.3<br>00 | 0<br>0    |
| Depth (m) Area   | a (m²) Depth (m) A                              | rea (m²) Depth (m)                                                | Area (m²) Depth (m)                          | Area (m²) |
| 0.000            | 81.0 0.600                                      | 81.0 0.601                                                        | 1.0 0.900                                    | 1.0       |
|                  | Infiltration Ba                                 | asin Manhole: 2,                                                  | DS/PN: 2.000                                 |           |
| Infil<br>Infil   | Inv<br>tration Coefficien<br>tration Coefficien | ert Level (m) 68.10<br>t Base (m/hr) 0.000<br>t Side (m/hr) 0.000 | 00 Safety Factor 2.<br>00 Porosity 0.3<br>00 | 0         |
| Depth (m) Area   | a (m²) Depth (m) A                              | area (m <sup>2</sup> ) Depth (m)                                  | Area (m <sup>2</sup> ) Depth (m)             | Area (m²) |
| 0.000            | 157.5 0.600                                     | 157.5 0.601                                                       | 1.0 0.900                                    | 1.0       |
|                  | Infiltration Ba                                 | asin Manhole: 3,                                                  | DS/PN: 2.001                                 |           |
| Infil<br>Infil   | Inv<br>tration Coefficien<br>tration Coefficien | ert Level (m) 67.9<br>t Base (m/hr) 0.000<br>t Side (m/hr) 0.000  | 70 Safety Factor 2.<br>00 Porosity 0.3<br>00 | 0         |
| Depth (m) Area   | a (m²) Depth (m) A                              | rea (m <sup>2</sup> ) Depth (m)                                   | Area (m <sup>2</sup> ) Depth (m)             | Area (m²) |
| 0.000            | 225.0 0.600                                     | 225.0 0.601                                                       | 1.0 0.900                                    | 1.0       |
|                  | Infiltration Ba                                 | asin Manhole: 4,                                                  | DS/PN: 1.001                                 |           |
| Infil            | Inv<br>tration Coefficien<br>tration Coefficien | ert Level (m) 67.55<br>t Base (m/hr) 0.000<br>t Side (m/hr) 0.000 | 50 Safety Factor 2.<br>00 Porosity 0.3<br>00 | 0         |
| Depth (m) Area   | a (m²) Depth (m) A                              | area (m <sup>2</sup> ) Depth (m)                                  | Area (m²) Depth (m)                          | Area (m²) |
| 0.000            | 85.5 0.600                                      | 85.5 0.601                                                        | 1.0 0.900                                    | 1.0       |
|                  | Infiltration Ba                                 | asin Manhole: 5,                                                  | DS/PN: 1.002                                 |           |
| Infil            | Inv<br>tration Coefficien<br>tration Coefficien | ert Level (m) 67.52<br>t Base (m/hr) 0.000<br>t Side (m/hr) 0.000 | 10 Safety Factor 2.<br>00 Porosity 0.3<br>00 | 0         |
| Depth (m) Area   | a (m²) Depth (m) A                              | rea (m²) Depth (m)                                                | Area (m <sup>2</sup> ) Depth (m)             | Area (m²) |
| 0.000            | 162.0 0.600                                     | 162.0 0.601                                                       | 1.0 0.900                                    | 1.0       |
|                  | 0100                                            | 2 2014 VD C 1                                                     |                                              |           |
| 1                | ©198.                                           | Z-ZUI4 AP SOLUTIC                                                 | JIIS                                         |           |
| JBA Consulting  |                    |                              |                                           |                                          |                             |          | Pag         | ge 14 |
|-----------------|--------------------|------------------------------|-------------------------------------------|------------------------------------------|-----------------------------|----------|-------------|-------|
| The Library     |                    |                              |                                           |                                          |                             |          |             |       |
| St Philips Cour | tyard              |                              |                                           |                                          |                             |          | 4           | A .   |
| Coleshill B46   | 3AD                |                              |                                           |                                          |                             |          |             | - Um  |
| Date 28/10/2014 | 09:22              |                              | Desig                                     | ned by Ra                                | achel Hop                   | aood     |             | ILI U |
| File GAVRAY DRT | VE V5A             | MDX                          | Check                                     | ed by Rer                                | ne Dobson                   | <u> </u> | L L I       | anage |
| Micro Drainage  |                    | •••••                        | Netwo                                     | rk 2014.1                                |                             |          |             |       |
|                 |                    |                              |                                           |                                          | -                           |          |             |       |
|                 | Infil              | tration                      | Basin Ma                                  | nhole: 6,                                | DS/PN: 1                    | 1.003    |             |       |
|                 |                    |                              |                                           |                                          |                             |          |             |       |
| Infil<br>Infil  | tration.           | I:<br>Coeffici<br>Coeffici   | nvert Leve<br>ent Base (r<br>ent Side (r  | l (m) 67.4<br>n/hr) 0.000<br>n/hr) 0.000 | 120 Safety<br>)00 Pc<br>)00 | Factor   | 2.0<br>0.30 |       |
| Depth (m) Are   | a (m²)             | Depth (m)                    | Area (m²)                                 | Depth (m)                                | Area (m²)                   | Depth (  | (m) Area    | (m²)  |
| 0.000           | 58.5               | 0.600                        | 58.5                                      | 0.601                                    | 1.0                         | 0.9      | 900         | 1.0   |
|                 | Infil              | tration                      | Basin Ma                                  | nhole: 7,                                | DS/PN: 3                    | 3.000    |             |       |
|                 |                    |                              |                                           | · · ·                                    |                             |          |             |       |
| Infi]<br>Infi]  | tration<br>tration | I<br>Coeffici<br>Coeffici    | nvert Leve<br>ent Base (r<br>ent Side (r  | l (m) 67.0<br>n/hr) 0.000<br>n/hr) 0.000 | 500 Safety<br>)00 Pc<br>)00 | Factor   | 2.0<br>0.30 |       |
| Depth (m) Are   | a (m²)             | Depth (m)                    | Area (m²)                                 | Depth (m)                                | Area (m²)                   | Depth (  | (m) Area    | (m²)  |
| 0.000           | 148.5              | 0.600                        | 148.5                                     | 0.601                                    | 1.0                         | 0.9      | 900         | 1.0   |
|                 | Infil              | tration                      | Basin Ma                                  | nhole: 8,                                | DS/PN: 3                    | 3.001    |             |       |
| Infil<br>Infil  | tration.           | I:<br>Coeffici<br>Coeffici   | nvert Level<br>ent Base (r<br>ent Side (r | L (m) 67.5<br>n/hr) 0.000<br>n/hr) 0.000 | 500 Safety<br>000 Pc<br>000 | Factor   | 2.0<br>0.30 |       |
| Depth (m) Are   | a (m²)             | Depth (m)                    | Area (m²)                                 | Depth (m)                                | Area (m²)                   | Depth (  | (m) Area    | (m²)  |
| 0.000           | 112.5              | 0.600                        | 112.5                                     | 0.601                                    | 1.0                         | 0.9      | 900         | 1.0   |
|                 | Infil              | tration                      | Basin Ma                                  | nhole: 9,                                | DS/PN: 3                    | 3.002    |             |       |
| Infi]<br>Infi]  | tration<br>tration | I:<br>Coeffici<br>Coeffici   | nvert Leve<br>ent Base (r<br>ent Side (r  | L (m) 67.4<br>n/hr) 0.000<br>n/hr) 0.000 | 450 Safety<br>000 Pc<br>000 | Factor   | 2.0<br>0.30 |       |
| Depth (m) Are   | a (m²)             | Depth (m)                    | Area (m²)                                 | Depth (m)                                | Area (m²)                   | Depth (  | (m) Area    | (m²)  |
| 0.000           | 184.5              | 0.600                        | 184.5                                     | 0.601                                    | 1.0                         | 0.9      | 900         | 1.0   |
|                 | Infil              | tration i                    | Basin Mar                                 | hole: 10                                 | , DS/PN:                    | 1.004    |             |       |
| Infil<br>Infil  | tration.           | I:<br>Coefficie<br>Coefficie | nvert Leve<br>ent Base (r<br>ent Side (r  | L (m) 67.2<br>n/hr) 0.000<br>n/hr) 0.000 | 200 Safety<br>200 Pc<br>200 | Factor   | 2.0<br>0.30 |       |
| Depth (m) Are   | a (m²)             | Depth (m)                    | Area (m²)                                 | Depth (m)                                | Area (m²)                   | Depth (  | (m) Area    | (m²)  |
| 0.000           | 189.0              | 0.600                        | 189.0                                     | 0.601                                    | 1.0                         | 0.9      | 900         | 1.0   |
|                 |                    |                              |                                           |                                          |                             |          |             |       |
|                 |                    |                              |                                           |                                          |                             |          |             |       |

| BA Consulting  |                             |                            |                            |            |         | Pa       | ge 15    |
|----------------|-----------------------------|----------------------------|----------------------------|------------|---------|----------|----------|
| he Library     |                             |                            |                            |            |         |          |          |
| t Philips Cou  | rtyard                      |                            |                            |            |         | 4        | <u> </u> |
| oleshill B46   | 3AD                         |                            |                            |            |         | M        | irm      |
| ate 28/10/201  | 4 09:22                     | Desig                      | yned by Ra                 | chel Hop   | good    | n        | ainan    |
| ile GAVRAY DR  | IVE V5A.MDX                 | Check                      | ced by Ren                 | e Dobson   |         |          | anay     |
| licro Drainage |                             | Netwo                      | ork 2014.1                 |            |         |          |          |
|                | T. C'1                      |                            |                            | DG (DN     | 1 005   |          |          |
|                | Infiltrati                  | on Basin Ma                | nhole: 11,                 | DS/PN:     | 1.005   |          |          |
|                |                             | Invert Leve                | el (m) 67.1                | 50 Safety  | Factor  | 2.0      |          |
| Inf            | iltration Coef              | ficient Base (             | m/hr) 0.000                | 00 Pc      | rosity  | 0.30     |          |
| Inf            | iltration Coef              | ficient Side (             | m/hr) 0.000                | 00         |         |          |          |
| Depth (m) Ar   | ea (m²) Depth               | (m) Area (m²)              | Depth (m)                  | Area (m²)  | Depth   | (m) Area | (m²)     |
|                |                             | (,                         |                            |            | 1       | (,       | ( )      |
| 0.000          | 135.0 0.                    | 600 135.0                  | 0.601                      | 1.0        | 0.      | 900      | 1.0      |
|                | Infiltrati                  | on Basin Ma                | nhole. 12                  | DS/PN.     | 1 006   |          |          |
|                | IIIIIICIACI                 |                            | <u></u>                    | DS/IN.     | 1.000   |          |          |
|                |                             | Invert Leve                | el (m) 67.1                | .00 Safety | Factor  | 2.0      |          |
| Inf            | iltration Coef              | ficient Base (             | m/hr) 0.000                | 00 Pc      | prosity | 0.30     |          |
| Int            | iltration Coefi             | icient Side (              | m/hr) 0.000                | 00         |         |          |          |
| Depth (m) Ar   | ea (m²) Depth               | (m) Area (m²)              | Depth (m)                  | Area (m²)  | Depth   | (m) Area | (m²)     |
| 0.000          | 100 0                       | COO 10C (                  | 0 601                      | 1 0        |         | 000      | 1 0      |
| 0.000          | 126.0 0.                    | 600 126.0                  | 0.601                      | 1.0        | 0.1     | 900      | 1.0      |
|                | Infiltrati                  | on Basin Ma                | nhole: 13,                 | DS/PN:     | 1.007   |          |          |
|                |                             |                            |                            |            |         |          |          |
|                |                             | Invert Leve                | el (m) 67.0                | 70 Safety  | Factor  | 2.0      |          |
| Inf            | iltration Coefi             | ficient Base (             | m/hr) 0.000<br>m/hr) 0.000 | .00 Pc     | prosity | 0.30     |          |
| 1111           |                             | .ioione bide (             | in, iii, o.ooo             | 00         |         |          |          |
| Depth (m) Ar   | cea (m <sup>2</sup> ) Depth | (m) Area (m²)              | Depth (m)                  | Area (m²)  | Depth   | (m) Area | (m²)     |
| 0.000          | 67.5 0.                     | .600 67.5                  | 0.601                      | 1.0        | 0.      | 900      | 1.0      |
|                | I                           |                            | I                          |            | I       |          |          |
|                | Infiltrati                  | on Basin Ma                | nhole: 14,                 | DS/PN:     | 4.000   |          |          |
|                |                             |                            |                            |            |         |          |          |
| Inf            | iltration Coef              | Invert Leve                | :⊥ (m) 67.2<br>m/br) 0.000 | .50 Safety | Factor  | 2.0      |          |
| Inf            | iltration Coef              | ficient Side (             | (m/hr) 0.000               | 00 10      | rosrcy  | 0.00     |          |
|                |                             |                            | 1                          |            |         |          |          |
| Depth (m) Ar   | ea (m <sup>2</sup> ) Depth  | (m) Area (m <sup>2</sup> ) | Depth (m)                  | Area (m²)  | Depth   | (m) Area | (m²)     |
| 0.000          | 135.0 0.                    | 450 135.0                  | 0.451                      | 1.0        | 0.      | 750      | 1.0      |
|                |                             |                            |                            |            |         |          |          |
|                | Infiltrati                  | on Basin Ma                | nhole: 15,                 | DS/PN:     | 5.000   |          |          |
|                |                             | Invert Leve                | ) (m) ۲٦ ٦                 | 50 Safety  | Factor  | 2.0      |          |
| Inf            | iltration Coef              | ficient Base (             | (m/hr) 0.000               | 00 Pc      | rosity  | 0.30     |          |
| Inf            | iltration Coef              | ficient Side (             | m/hr) 0.000                | 00         |         |          |          |
| Depth (m) Ar   | ea (m²) Denth               | (m) Area (m2)              | Depth (m)                  | Area (m²)  | Depth   | (m) Area | (m²)     |
| Depen (m) AI   |                             | (, ATEG (III-)             | Depen (m)                  |            | Depen   | (m) Aled | ()       |
| 0.000          | 144.0 0.                    | .600 144.0                 | 0.601                      | 1.0        | 0.      | 900      | 1.0      |
|                |                             |                            |                            |            |         |          |          |
|                |                             |                            |                            |            |         |          |          |
|                |                             |                            |                            |            |         |          |          |
|                |                             |                            |                            |            |         |          |          |

| JBA Consulting                                | Page 16                                                                                |
|-----------------------------------------------|----------------------------------------------------------------------------------------|
| The Library                                   |                                                                                        |
| St Philips Courtyard                          |                                                                                        |
| Coleshill B46 3AD                             | Micro                                                                                  |
| Date 28/10/2014 09:22                         | Designed by Rachel Hopgood                                                             |
| File GAVRAY DRIVE V5A.MDX                     | Checked by Rene Dobson                                                                 |
| Micro Drainage                                | Network 2014.1                                                                         |
|                                               |                                                                                        |
| Infiltration Bas                              | sin Manhole: 16, DS/PN: 5.001                                                          |
| Trave                                         | wet Lowel (m) (7.200 Cofety Feeter 2.0                                                 |
| Infiltration Coefficient                      | Base (m/hr) 0.00000 Porosity 0.30                                                      |
| Infiltration Coefficient                      | Side (m/hr) 0.00000                                                                    |
| Donth (m) Area $(m^2)$ Donth (m) Ar           | $(m^2)$ Doubh $(m)$ Area $(m^2)$ Doubh $(m)$ Area $(m^2)$                              |
|                                               |                                                                                        |
| 0.000 148.5 0.450                             | 148.5 0.451 1.0 0.750 1.0                                                              |
| Infiltration Da                               | ain Manhala, 17 DC/DN, 5 002                                                           |
|                                               | SIII Malmole: 17, DS/PN: 5.002                                                         |
| Inve                                          | ert Level (m) 67.250 Safety Factor 2.0                                                 |
| Infiltration Coefficient                      | Base (m/hr) 0.00000 Porosity 0.30                                                      |
| Infiltration Coefficient                      | . Side (m/hr) 0.00000                                                                  |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Ar | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) |
| 0.000 67.5 0.450                              | 67.5 0.451 1.0 0.750 1.0                                                               |
| Infiltration Bas                              | sin Manhole: 18, DS/PN: 4.001                                                          |
| Invo                                          | art Lougl (m) 67 200 Safaty Factor 2.0                                                 |
| Infiltration Coefficient                      | Base (m/hr) 0.00000 Porosity 0.30                                                      |
| Infiltration Coefficient                      | Side (m/hr) 0.00000                                                                    |
| Depth (m) Area (m²) Depth (m) Ar              | cea $(m^2)$ Depth $(m)$ Area $(m^2)$ Depth $(m)$ Area $(m^2)$                          |
| 0.000 234.0 0.450                             | 234.0 0.451 1.0 0.750 1.0                                                              |
| Infiltration Bas                              | sin Manhole: 16, DS/PN: 6.000                                                          |
|                                               |                                                                                        |
| Inve                                          | ert Level (m) 67.300 Safety Factor 2.0                                                 |
| Infiltration Coefficient                      | Side (m/hr) 0.00000 Porosity 1.00                                                      |
|                                               |                                                                                        |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Ar | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) |
| 0.000 94.5 0.450                              | 94.5 0.451 1.0 0.750 1.0                                                               |
| Infiltration Bas                              | sin Manhole: 17, DS/PN: 6.001                                                          |
| T                                             | art Level (m) 67 250 Safety Factor 2 0                                                 |
| Infiltration Coefficient                      | Base (m/hr) 0.00000 Porosity 0.30                                                      |
| Infiltration Coefficient                      | Side (m/hr) 0.00000                                                                    |
| Depth (m) Area (m²) Depth (m) Ar              | ea $(m^2)$ Depth (m) Area $(m^2)$ Depth (m) Area $(m^2)$                               |
| 0.000 139.5 0.450                             | 139.5 0.451 1.0 0.750 1.0                                                              |
|                                               | ·                                                                                      |
|                                               |                                                                                        |
|                                               |                                                                                        |
|                                               |                                                                                        |
|                                               |                                                                                        |

| JBA Consulting                            |                                                                        | Page 17  |
|-------------------------------------------|------------------------------------------------------------------------|----------|
| The Library                               |                                                                        |          |
| St Philips Courtyard                      |                                                                        | Ly       |
| Coleshill B46 3AD                         |                                                                        | Mirm     |
| Date 28/10/2014 09:22                     | Designed by Rachel Hopgood                                             | Nrainane |
| File GAVRAY DRIVE V5A.MDX                 | Checked by Rene Dobson                                                 | bianiage |
| Micro Drainage                            | Network 2014.1                                                         |          |
| Infiltration                              | Basin Manhole: 18 DS/PN: 6 002                                         |          |
|                                           |                                                                        |          |
|                                           | Invert Level (m) 67.200 Safety Factor 2.0                              |          |
| Infiltration Coeffic                      | ient Base (m/hr) 0.00000 Porosity 0.30                                 |          |
|                                           | Tent Side (m/nr) 0.00000                                               |          |
| Depth (m) Area (m <sup>2</sup> ) Depth (m | ) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Ar | cea (m²) |
| 0.000 117.0 0.45                          | 0 117.0 0.451 1.0 0.750                                                | 1.0      |
| 1                                         |                                                                        |          |
| Infiltration                              | Basin Manhole: 16, DS/PN: 4.002                                        |          |
|                                           | Invert Level (m) 67 170 Safety Factor 2.0                              |          |
| Infiltration Coeffic                      | ient Base (m/hr) 0.00000 Porosity 0.30                                 |          |
| Infiltration Coeffic                      | ient Side (m/hr) 0.00000                                               |          |
| Depth (m) Area (m <sup>2</sup> ) Depth (m | ) Area (m²) Depth (m) Area (m²) Depth (m) Ar                           | rea (m²) |
|                                           |                                                                        |          |
| 0.000 67.5 0.45                           | 0 67.5 0.451 1.0 0.750                                                 | 1.0      |
| Infiltration                              | Basin Manhole: 17, DS/PN: 4.003                                        |          |
|                                           |                                                                        |          |
| Infiltration Cooffic                      | Invert Level (m) 67.150 Safety Factor 2.0                              |          |
| Infiltration Coeffic                      | ient Side (m/hr) 0.00000 Porosity 0.30                                 |          |
|                                           |                                                                        |          |
| Depth (m) Area (m <sup>2</sup> ) Depth (m | ) Area (m²) Depth (m) Area (m²) Depth (m) Ar                           | cea (m²) |
| 0.000 189.0 0.45                          | 0 189.0 0.451 1.0 0.750                                                | 1.0      |
| Ta 6: ltastica                            | Destr Markeles 10 DC/DN. 1 000                                         |          |
| Infiltration                              | Basin Mannole: 18, DS/PN: 1.008                                        |          |
|                                           | Invert Level (m) 67.050 Safety Factor 2.0                              |          |
| Infiltration Coeffic                      | ient Base (m/hr) 0.00000 Porosity 0.30                                 |          |
| Infiltration Coeffic                      | lent Side (m/hr) 0.00000                                               |          |
| Depth (m) Area (m²) Depth (m              | ) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Ar | cea (m²) |
| 0.000 76.5 0.60                           | 0 76.5 0.601 1.0 0.900                                                 | 1.0      |
|                                           |                                                                        | 1.0      |
| Infiltration                              | Basin Manhole: 19, DS/PN: 1.009                                        |          |
|                                           | Invert Level (m) 67 020 Seferty Factor 2 0                             |          |
| Infiltration Coeffic                      | ient Base (m/hr) 0.00000 Porosity 0.30                                 |          |
| Infiltration Coeffic                      | ient Side (m/hr) 0.00000                                               |          |
| Depth (m) Area (m <sup>2</sup> ) Depth (m | ) Area $(m^2)$ Depth $(m)$ Area $(m^2)$ Depth $(m)$ Ar                 | rea (m²) |
|                                           |                                                                        | /        |
| 0.000 108.0 0.45                          | u 108.0  0.451 1.0  0.750                                              | 1.0      |
|                                           |                                                                        |          |
|                                           |                                                                        |          |
|                                           |                                                                        |          |
|                                           |                                                                        |          |
| ©1                                        | .982-2014 XP Solutions                                                 |          |

| JBA Consulting                                                |                                                                                                                                 | Page 18   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| The Library                                                   |                                                                                                                                 | [         |
| St Philips Courtyard                                          |                                                                                                                                 | L.        |
| Coleshill B46 3AD                                             |                                                                                                                                 | Micco     |
| Date 28/10/2014 09:22                                         | Designed by Rachel Hopgood                                                                                                      |           |
| File GAVRAY DRIVE V5A.MDX                                     | Checked by Rene Dobson                                                                                                          | Dialitaye |
| Micro Drainage                                                | Network 2014.1                                                                                                                  |           |
| Infiltration Bas                                              | in Manhole: 20, DS/PN: 1.010                                                                                                    |           |
|                                                               |                                                                                                                                 |           |
| Inver<br>Infiltration Coefficient<br>Infiltration Coefficient | t Level (m) 67.000 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000                                |           |
| Depth (m) Area (m²) Depth (m) Are                             | ea $(m^2)$ Depth $(m)$ Area $(m^2)$ Depth $(m)$ Ar                                                                              | rea (m²)  |
| 0.000 148.5 0.450                                             | 148.5 0.451 1.0 0.750                                                                                                           | 1.0       |
| Infiltration Bas                                              | in Manhole: 21, DS/PN: 7.000                                                                                                    |           |
| -                                                             |                                                                                                                                 |           |
| Inver<br>Infiltration Coefficient<br>Infiltration Coefficient | Evel (m)   67.100   Safety Factor   2.0     Base (m/hr)   0.00000   Porosity   0.30     Side (m/hr)   0.00000   Porosity   0.30 |           |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Are                | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) An                                                              | rea (m²)  |
| 0.000 135.0 0.450                                             | 135.0 0.451 1.0 0.750                                                                                                           | 1.0       |
| Infiltration Bas                                              | in Manhole: 22, DS/PN: 8.000                                                                                                    |           |
| Inver<br>Infiltration Coefficient<br>Infiltration Coefficient | t Level (m) 67.100 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000                                |           |
| Depth (m) Area (m²) Depth (m) Are                             | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) An                                                              | rea (m²)  |
| 0.000 189.0 0.450                                             | 189.0 0.451 1.0 0.750                                                                                                           | 1.0       |
| Infiltration Bas                                              | in Manhole: 24, DS/PN: 7.001                                                                                                    |           |
| Inver<br>Infiltration Coefficient<br>Infiltration Coefficient | rt Level (m) 67.050 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000                               |           |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Area               | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) An                                                              | rea (m²)  |
| 0.000 193.5 0.450                                             | 193.5 0.451 1.0 0.750                                                                                                           | 1.0       |
| Infiltration Bas                                              | in Manhole: 25, DS/PN: 7.002                                                                                                    |           |
| Inver<br>Infiltration Coefficient<br>Infiltration Coefficient | t Level (m) 67.000 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000                                |           |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Area               | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) An                                                              | rea (m²)  |
| 0.000 171.0 0.450                                             | 171.0 0.451 1.0 0.750                                                                                                           | 1.0       |
|                                                               |                                                                                                                                 |           |

| JBA Consulting                                               | Page 19                                                                                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| The Library                                                  |                                                                                                        |
| St Philips Courtyard                                         |                                                                                                        |
| Coleshill B46 3AD                                            | Micro                                                                                                  |
| Date 28/10/2014 09:22                                        | Designed by Rachel Hopgood                                                                             |
| File GAVRAY DRIVE V5A.MDX                                    | Checked by Rene Dobson                                                                                 |
| Micro Drainage                                               | Network 2014.1                                                                                         |
| Infiltration Bas                                             | sin Manhole: 27, DS/PN: 9.000                                                                          |
| Inve<br>Infiltration Coefficient<br>Infiltration Coefficient | ert Level (m) 68.250 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000     |
| Depth (m) Area (m²) Depth (m) Ar                             | rea (m²) Depth (m) Area (m²) Depth (m) Area (m²)                                                       |
| 0.000 121.5 0.600                                            | 121.5 0.601 1.0 0.900 1.0                                                                              |
| Infiltration Bas                                             | sin Manhole: 28, DS/PN: 9.001                                                                          |
| Inve<br>Infiltration Coefficient<br>Infiltration Coefficient | ert Level (m) 68.000 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000     |
| Depth (m) Area (m²) Depth (m) Ar                             | rea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )                |
| 0.000 184.5 0.450                                            | 184.5 0.451 1.0 0.750 1.0                                                                              |
| Infiltration Bas                                             | sin Manhole: 29, DS/PN: 9.002                                                                          |
| Inve<br>Infiltration Coefficient<br>Infiltration Coefficient | ert Level (m) 67.850 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000     |
| Depth (m) Area (m²) Depth (m) Ar                             | rea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )                |
| 0.000 193.5 0.450                                            | 193.5 0.451 1.0 0.750 1.0                                                                              |
| Infiltration Bas                                             | sin Manhole: 30, DS/PN: 9.003                                                                          |
| Inve<br>Infiltration Coefficient<br>Infiltration Coefficient | ert Level (m) 67.468 Safety Factor 2.0<br>E Base (m/hr) 0.00000 Porosity 0.30<br>E Side (m/hr) 0.00000 |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Ar                | rea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )                |
| 0.000 117.0 0.450                                            | 117.0 0.451 1.0 0.750 1.0                                                                              |
| Infiltration Bas                                             | sin Manhole: 31, DS/PN: 9.004                                                                          |
| Inve<br>Infiltration Coefficient<br>Infiltration Coefficient | ert Level (m) 67.250 Safety Factor 2.0<br>Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000     |
| Depth (m) Area (m²) Depth (m) Ar                             | rea $(m^2)$ Depth $(m)$ Area $(m^2)$ Depth $(m)$ Area $(m^2)$                                          |
| 0.000 139.5 0.450                                            | 139.5 0.451 1.0 0.750 1.0                                                                              |
|                                                              |                                                                                                        |
|                                                              |                                                                                                        |
|                                                              |                                                                                                        |
|                                                              |                                                                                                        |

| JBA Consulting                                  | Page 20                                                                                |
|-------------------------------------------------|----------------------------------------------------------------------------------------|
| The Library                                     |                                                                                        |
| St Philips Courtyard                            |                                                                                        |
| Coleshill B46 3AD                               |                                                                                        |
| Date 28/10/2014 09:22                           | Designed by Rachel Hopgood                                                             |
| File CAVRAY DRIVE V5A MDX                       | Checked by Rene Dobson                                                                 |
| Migro Drainago                                  | Network 2014 1                                                                         |
|                                                 | NECWOIK 2014.1                                                                         |
| Infiltration Bas                                | in Manhole: 32, DS/PN: 9.005                                                           |
|                                                 |                                                                                        |
| Inve                                            | t Level (m) 67.200 Safety Factor 2.0                                                   |
| Infiltration Coefficient                        | Base (m/hr) 0.00000 Porosity 0.30<br>Side (m/hr) 0.00000                               |
|                                                 |                                                                                        |
| Depth (m) Area (m <sup>2</sup> ) Depth (m) Area | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) |
| 0.000 81.0 0.450                                | 81.0 0.451 1.0 0.750 1.0                                                               |
| Infiltration Pag                                | in Manhalo, 33 $DS/DN$ , 0,006                                                         |
|                                                 | III Mannole: 55, D5/PN: 9.000                                                          |
| Inve                                            | t Level (m) 67.150 Safety Factor 2.0                                                   |
| Infiltration Coefficient                        | Base (m/hr) 0.00000 Porosity 0.30                                                      |
| Infiltration Coefficient                        | Side (m/hr) 0.00000                                                                    |
| Depth (m) Area (m²) Depth (m) Area              | ea (m²) Depth (m) Area (m²) Depth (m) Area (m²)                                        |
| 0.000 234.0 0.450                               | 234.0 0.451 1.0 0.750 1.0                                                              |
|                                                 |                                                                                        |
| Tank or Pond                                    | Manhole: 35, DS/PN: 1.012                                                              |
| Inve                                            | rt Level (m) 66.800                                                                    |
| Depth (m) Are                                   | ea (m²) Depth (m) Area (m²)                                                            |
| 0.000                                           | 1200.0 0.600 2000.0                                                                    |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
|                                                 |                                                                                        |
| ©1982-                                          | -2014 XP Solutions                                                                     |

| JBA Consulting                                                                                                                     | Page 21                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Library                                                                                                                        |                                                                                                                                                                                                                      |
| St Philips Courtyard                                                                                                               |                                                                                                                                                                                                                      |
| Coleshill B46 3AD                                                                                                                  | Micro                                                                                                                                                                                                                |
| Date 28/10/2014 09:22                                                                                                              | Designed by Rachel Hopgood                                                                                                                                                                                           |
| File GAVRAY DRIVE V5A.MDX                                                                                                          | Checked by Rene Dobson                                                                                                                                                                                               |
| Micro Drainage                                                                                                                     | Network 2014.1                                                                                                                                                                                                       |
|                                                                                                                                    |                                                                                                                                                                                                                      |
| 30 year Return Period Summary                                                                                                      | of Critical Results by Maximum Level (Rank 1)<br>for Storm                                                                                                                                                           |
| Areal Reduction Factor<br>Hot Start (mins<br>Hot Start Level (mm<br>Manhole Headloss Coeff (Global<br>Foul Sewage per hectare (1/s | Simulation Criteria<br>1.000 Additional Flow - % of Total Flow 0.000<br>0 MADD Factor * 10m <sup>3</sup> /ha Storage 5.000<br>0 Inlet Coeffiecient 0.800<br>0.500 Flow per Person per Day (l/per/day) 0.000<br>0.000 |
| Number of Input Hydrog<br>Number of Online Con<br>Number of Offline Con                                                            | raphs 0 Number of Storage Structures 38<br>trols 2 Number of Time/Area Diagrams 0<br>trols 42 Number of Real Time Controls 0                                                                                         |
| Synt                                                                                                                               | hetic Rainfall Details                                                                                                                                                                                               |
| Rainfall Model                                                                                                                     | FEH                                                                                                                                                                                                                  |
| Site Location                                                                                                                      | GB 459800 222850 SP 59800 22850                                                                                                                                                                                      |
| D1 (1km)                                                                                                                           | 0.323                                                                                                                                                                                                                |
| D2 (1km)                                                                                                                           | 0.320                                                                                                                                                                                                                |
| D3 (1km)                                                                                                                           | 0.249                                                                                                                                                                                                                |
| E (1km)                                                                                                                            | 0.289                                                                                                                                                                                                                |
| F (1km)                                                                                                                            | 2.479                                                                                                                                                                                                                |
| Cv (Summer)                                                                                                                        | 0.750                                                                                                                                                                                                                |
| CV (WINCER)                                                                                                                        | 0.040                                                                                                                                                                                                                |
| Margin for Flood Risl<br>Ana                                                                                                       | Warning (mm) 300.0 DVD Status OFF<br>ysis Timestep Fine Inertia Status OFF<br>DTS Status ON                                                                                                                          |
| Profile(s)<br>Duration(s) (mins)                                                                                                   | Summer and Winter<br>15, 30, 60, 120, 180, 240, 360, 480, 600,<br>720, 960, 1440                                                                                                                                     |
| Climate Change (%)                                                                                                                 | 0, 30                                                                                                                                                                                                                |
| Return Climat<br>PN Storm Period Change                                                                                            | e First X First Y First Z O/F Lvl<br>9 Surcharge Flood Overflow Act. Exc.                                                                                                                                            |
| 1.000 15 Winter 30 0                                                                                                               | % 100/15 Summer 0                                                                                                                                                                                                    |
| 2.000 15 Winter 30 0                                                                                                               | % 100/15 Summer 0                                                                                                                                                                                                    |
| 2.001 15 Winter 30 0                                                                                                               | す IUU/15 Summer U<br>2 100/15 Summer 0                                                                                                                                                                               |
| 1.002 30 Winter 30                                                                                                                 | * 100/15 Summer 0                                                                                                                                                                                                    |
| 1.003 60 Winter 30 0                                                                                                               | % 30/30 Winter 0                                                                                                                                                                                                     |
| 3.000 15 Winter 30 0                                                                                                               | % 100/30 Summer 0                                                                                                                                                                                                    |
| 3.001 60 Winter 30 0                                                                                                               | % 100/15 Summer 0                                                                                                                                                                                                    |
| 3.002 60 Winter 30 0                                                                                                               | % 100/15 Summer 0                                                                                                                                                                                                    |
| 1.004 60 Winter 30 0                                                                                                               | % 30/30 Winter 0                                                                                                                                                                                                     |
| 1.005 120 Winter 30 0                                                                                                              | %   30/60 Winter   3     20/20 Winter   100/60 Winter   2                                                                                                                                                            |
| 1.007 120 Winter 30 0                                                                                                              | s SU/SU WINLER IUU/6U WINTER Z                                                                                                                                                                                       |
| 4.000 120 Winter 30 0                                                                                                              | • 50/50 Summer 0<br>% 100/30 Winter 100/60 Winter 3                                                                                                                                                                  |
| 5.000 15 Winter 30 0                                                                                                               | % 100/15 Summer 0                                                                                                                                                                                                    |
| ©198                                                                                                                               | 2-2014 XP Solutions                                                                                                                                                                                                  |

| JBA Consulting            |                            | Page 22  |
|---------------------------|----------------------------|----------|
| The Library               |                            |          |
| St Philips Courtyard      |                            | 4        |
| Coleshill B46 3AD         |                            | Micco    |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood |          |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson     | Diamacje |
| Micro Drainage            | Network 2014.1             |          |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

| 5.001 60 Winter 30 0% 100/15 Summer 100/60 Winter 3   4.001 120 Winter 30 0% 100/15 Summer 100/60 Winter 3   4.001 120 Winter 30 0% 100/15 Summer 100/60 Winter 4   6.001 180 Winter 30 0% 30/30 Winter 0 6   6.001 180 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   1.008 120 Winter 30 0% 30/15 Winter 0 0 30/15 Winter 0 100/60 Winter 4 1.008 100/15 Winter 0 0 1.00/60 Winter 0 1.00/60 Winter 0 1.00/60 Winter 0 1.00/15 Summer 0 0 1.00/15 0 1.01                                                                                                                                                             | PN    | Storm    | Return<br>Period | Climate<br>Change | Firs<br>Surch | t X<br>arge | First Y<br>Flood | Fir:<br>Over | st Z<br>flow | O/F<br>Act. | Lvl<br>Exc. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------------|-------------------|---------------|-------------|------------------|--------------|--------------|-------------|-------------|
| 5.001 30 0% 100/15 Summer 100/60 Winter 3   4.001 120 Winter 30 0% 100/15 Summer 100/60 Winter 3   6.001 180 Winter 30 0% 100/15 Summer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                     | E 001 | CO Wint  | 20               | 0.8               | 100/15        | -<br>       |                  |              |              | 0           |             |
| 5.002 120 Winter 30 0% 100/15 Summer 100/60 Winter 3   4.001 120 Winter 30 0% 100/15 Summer 0   6.001 180 Winter 30 0% 100/15 Summer 0   6.001 180 Winter 30 0% 30/30 Winter 0   6.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.003 120 Winter 30 0% 30/15 Winter 0 0 100/60 Winter 4 100/60 Winter 0 100/16 Winter 0 100/16 Winter 0 100/16 Winter 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                             | 5.001 | 60 Wint  | er 30            | 03                | 100/15        | Summer      |                  | 100/00       | T.T          | 0           |             |
| 4.001 120 Winter 30 0% 100/15 Summer 100/60 Winter 4   6.000 180 Winter 30 0% 30/30 Winter 0   6.001 180 Winter 30 0% 30/30 Winter 0   6.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.003 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0   1.001 120 Winter 30 0% 30/15 Winter 0   1.001 120 Winter 30 0% 100/15 Summer 0 0   1.001 120 Winter 30 0% 100/15 Summer 0 0 0 0 100/15                                                                                                                                                                                   | 5.002 | 120 Wint | er 30            | 03                | 100/15        | Summer      |                  | 100/60       | winter       | 3           |             |
| 6.000 180 Winter 30 0% 100/15 Summer 0   6.001 180 Winter 30 0% 30/30 Winter 0   6.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   1.008 120 Winter 30 0% 30/15 Winter 0 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0 0 100/60 Winter 0 1.00/60 Winter 0 0 1.00/60 Winter 0 0 1.00/60 Winter 0 0 1.00/60 Winter 0 1.00/60 Winter 0 0 1.00/20 Winter 0 1.00/20 Winter 0 1.00/20 <t< td=""><td>4.001</td><td>120 Wint</td><td>er 30</td><td>08</td><td>100/15</td><td>Summer</td><td></td><td>100/60</td><td>Winter</td><td>4</td><td></td></t<> | 4.001 | 120 Wint | er 30            | 08                | 100/15        | Summer      |                  | 100/60       | Winter       | 4           |             |
| 6.001 180 Winter 30 0% 30/30 Winter 0   6.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   4.003 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0 0 100/60 Winter 4   1.010 120 Winter 30 0% 30/15 Winter 0 0 100/10 Winter 0 0 100/60 Winter 0 0 100/10 Winter 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                           | 6.000 | 180 Wint | er 30            | 0 응               | 100/15        | Summer      |                  |              |              | 0           |             |
| 6.002 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   4.002 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   4.003 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   1.008 120 Winter 30 0% 30/15 Winter 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0 0 100/60 Winter 4   1.010 120 Winter 30 0% 30/15 Winter 0 0 100/10 Winter 0 0 100/12 Winter 0 0 100/10 Winter 0 0 100/12 Winter 0 0 100/11 Winter 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                            | 6.001 | 180 Wint | er 30            | 0%                | 30/30         | Winter      |                  |              |              | 0           |             |
| 4.002 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   4.003 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   1.008 120 Winter 30 0% 30/15 Winter 0 100/60 Winter 4   1.009 120 Winter 30 0% 30/15 Winter 0 0 100/60 Winter 0 100/60 Winter 0 0 100/10 10 100 100 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>6.002</td><td>120 Wint</td><td>er 30</td><td>0%</td><td>30/15</td><td>Winter</td><td></td><td>100/60</td><td>Winter</td><td>4</td><td></td></t<>                                                                                      | 6.002 | 120 Wint | er 30            | 0%                | 30/15         | Winter      |                  | 100/60       | Winter       | 4           |             |
| 4.003 120 Winter 30 0% 30/60 Winter 100/60 Winter 4   1.008 120 Winter 30 0% 30/15 Winter 0   1.009 120 Winter 30 0% 30/15 Winter 0   1.010 120 Winter 30 0% 30/15 Winter 0   7.000 15 Winter 30 0% 100/15 Summer 0   8.000 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/12 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0%                                                                                             | 4.002 | 120 Wint | er 30            | 0응                | 30/60         | Winter      |                  | 100/60       | Winter       | 4           |             |
| 1.008 120 Winter 30 0% 30/15 Winter 0   1.009 120 Winter 30 0% 30/15 Winter 0   1.010 120 Winter 30 0% 30/15 Winter 0   1.010 120 Winter 30 0% 30/15 Winter 0   7.000 15 Winter 30 0% 100/15 Summer 0   8.000 600 Winter 30 0% 100/15 Summer 0   7.001 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/120 Winter 0   9.002 600 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30                                                                                                                                                                                           | 4.003 | 120 Wint | er 30            | 0응                | 30/60         | Winter      |                  | 100/60       | Winter       | 4           |             |
| 1.009 120 Winter 30 0% 30/15 Winter 0   1.010 120 Winter 30 0% 30/15 Winter 0   7.000 15 Winter 30 0% 100/15 Summer 0   8.000 600 Winter 30 0% 100/15 Summer 0   7.001 600 Winter 30 0% 100/15 Summer 0   7.011 600 Winter 30 0% 100/15 Summer 0   7.022 600 Winter 30 0% 100/10 Winter 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 100/15 Winter   9.004 30 <t< td=""><td>1.008</td><td>120 Wint</td><td>er 30</td><td>0응</td><td>30/15</td><td>Winter</td><td></td><td></td><td></td><td>0</td><td></td></t<>                                       | 1.008 | 120 Wint | er 30            | 0응                | 30/15         | Winter      |                  |              |              | 0           |             |
| 1.010 120 Winter 30 0% 30/15 Winter 0   7.000 15 Winter 30 0% 100/15 Summer 0   8.000 600 Winter 30 0% 100/30 Winter 0   7.001 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/10 Winter 0   7.002 600 Winter 30 0% 100/120 Winter 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 <                                                                                                                                                                                       | 1.009 | 120 Wint | er 30            | 0%                | 30/15         | Winter      |                  |              |              | 0           |             |
| 7.000 15 Winter 30 0% 100/15 Summer 0   8.000 600 Winter 30 0% 100/30 Winter 0   7.001 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/10 Winter 0   1.011 600 Winter 30 0% 100/120 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.004 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/15 Summer 0 1                                                                                   | 1.010 | 120 Wint | er 30            | 0응                | 30/15         | Winter      |                  |              |              | 0           |             |
| 8.000 600 Winter 30 0% 100/30 Winter 0   7.001 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/60 Winter 0   1.011 600 Winter 30 0% 100/120 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 0   9.005 30 Winter 30 0% 100/15 Summer 100/15 Winter   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter   9.007 60 Winter 30 0% 100/15 Summer 0   1.012 600 Winter 30 0% 100/60 Winter 0   1.012 600 Winter 30 0% 100/60 Winter 0                                                              | 7.000 | 15 Wint  | er 30            | 0%                | 100/15        | Summer      |                  |              |              | 0           |             |
| 7.001 600 Winter 30 0% 100/15 Summer 0   7.002 600 Winter 30 0% 100/60 Winter 0   1.011 600 Winter 30 0% 100/120 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter   9.006 60 Winter 30 0% 100/15 Summer 0   9.007 60 Winter 30 0% 100/60 Winter 0   1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                | 8.000 | 600 Wint | er 30            | 0 응               | 100/30        | Winter      |                  |              |              | 0           |             |
| 7.002 600 Winter 30 0% 100/60 Winter 0   1.011 600 Winter 30 0% 100/120 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0 1   1.012 600 Winter 30 0% 100/60 Winter 0 0                                                                                                                                                                   | 7.001 | 600 Wint | er 30            | 0 응               | 100/15        | Summer      |                  |              |              | 0           |             |
| 1.011 600 Winter 30 0% 100/120 Winter 0   9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0 1   1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                                                                              | 7.002 | 600 Wint | er 30            | 0%                | 100/60        | Winter      |                  |              |              | 0           |             |
| 9.000 15 Winter 30 0% 100/15 Summer 0   9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0 1   1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                                                                                                                        | 1.011 | 600 Wint | er 30            | 0%                | 100/120       | Winter      |                  |              |              | 0           |             |
| 9.001 15 Winter 30 0% 100/15 Summer 0   9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0 1   1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                                                                                                                                                                | 9.000 | 15 Wint  | er 30            | 0%                | 100/15        | Summer      |                  |              |              | 0           |             |
| 9.002 30 Winter 30 0% 100/15 Summer 0   9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0 0   1.012 600 Winter 30 0% 0 0 0                                                                                                                                                                                                                                                                                                                                                  | 9.001 | 15 Wint  | er 30            | 0%                | 100/15        | Summer      |                  |              |              | 0           |             |
| 9.003 15 Winter 30 0% 100/15 Summer 0   9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0   1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                                                                                                                                                                                                                                                  | 9.002 | 30 Wint  | er 30            | 0%                | 100/15        | Summer      |                  |              |              | 0           |             |
| 9.004 30 Winter 30 0% 100/15 Summer 100/15 Winter 3   9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 1   1.012 600 Winter 30 0% 100/60 Winter 1                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.003 | 15 Wint  | er 30            | 0응                | 100/15        | Summer      |                  |              |              | 0           |             |
| 9.005 30 Winter 30 0% 100/15 Summer 100/30 Winter 2   9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 100/60 Winter 0   1.012 600 Winter 30 0% 100/60 Winter 0   1.012 100 Winter 30 0% 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.004 | 30 Wint  | er 30            | 0응                | 100/15        | Summer      |                  | 100/15       | Winter       | 3           |             |
| 9.006 60 Winter 30 0% 100/15 Summer 100/30 Winter 1   9.007 60 Winter 30 0% 0 0   1.012 600 Winter 30 0% 100/60 Winter 0   1.012 100 Winter 20 0% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.005 | 30 Wint  | er 30            | 0응                | 100/15        | Summer      |                  | 100/30       | Winter       | 2           |             |
| 9.007 60 Winter 30 0% 0<br>1.012 600 Winter 30 0% 100/60 Winter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.006 | 60 Wint  | er 30            | 0%                | 100/15        | Summer      |                  | 100/30       | Winter       | 1           |             |
| 1.012 600 Winter 30 0% 100/60 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.007 | 60 Wint  | er 30            | 0%                |               |             |                  |              |              | 0           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.012 | 600 Wint | er 30            | 0%                | 100/60        | Winter      |                  |              |              |             |             |
| I.UIJ IZU WINTER JU Uš                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.013 | 120 Wint | er 30            | 0%                |               |             |                  |              |              |             |             |

|       |       | Water  |           | Flooded |        |        | Pipe  |            |
|-------|-------|--------|-----------|---------|--------|--------|-------|------------|
|       | US/MH | Level  | Surch'ed  | Volume  | Flow / | O'flow | Flow  |            |
| PN    | Name  | (m)    | Depth (m) | (m³)    | Cap.   | (1/s)  | (l/s) | Status     |
| 1.000 | 1     | 68.165 | -0.071    | 0.000   | 0.92   | 0.0    | 45.8  | OK         |
| 2.000 | 2     | 68.248 | -0.152    | 0.000   | 0.31   | 0.0    | 16.8  | OK         |
| 2.001 | 3     | 68.220 | -0.080    | 0.000   | 0.86   | 0.0    | 42.4  | OK         |
| 1.001 | 4     | 68.114 | -0.072    | 0.000   | 0.93   | 0.0    | 64.1  | OK         |
| 1.002 | 5     | 67.960 | -0.126    | 0.000   | 0.63   | 0.0    | 65.2  | OK         |
| 1.003 | 6     | 67.741 | 0.021     | 0.000   | 1.14   | 0.0    | 63.5  | SURCHARGED |
| 3.000 | 7     | 67.726 | -0.174    | 0.000   | 0.33   | 0.0    | 18.1  | OK         |
| 3.001 | 8     | 67.703 | -0.097    | 0.000   | 0.40   | 0.0    | 17.4  | OK         |
| 3.002 | 9     | 67.698 | -0.052    | 0.000   | 0.52   | 0.0    | 23.6  | OK         |
| 1.004 | 10    | 67.690 | 0.020     | 0.000   | 1.15   | 0.0    | 57.6  | SURCHARGED |
| 1.005 | 11    | 67.616 | 0.046     | 0.000   | 0.85   | 0.0    | 48.8  | SURCHARGED |
| 1.006 | 12    | 67.565 | 0.095     | 0.000   | 0.96   | 0.0    | 43.9  | SURCHARGED |
| 1.007 | 13    | 67.515 | 0.105     | 0.000   | 0.76   | 0.0    | 44.5  | SURCHARGED |
| 4.000 | 14    | 67.530 | -0.170    | 0.000   | 0.10   | 0.0    | 5.5   | OK         |
| 5.000 | 15    | 67.608 | -0.067    | 0.000   | 0.81   | 0.0    | 15.3  | OK         |
| 5.001 | 16    | 67.574 | -0.051    | 0.000   | 0.83   | 0.0    | 15.5  | OK         |
| 5.002 | 17    | 67.543 | -0.032    | 0.000   | 0.71   | 0.0    | 18.6  | OK         |
| 4.001 | 18    | 67.527 | -0.073    | 0.000   | 0.37   | 0.0    | 19.3  | OK         |
| 6.000 | 16    | 67.524 | -0.001    | 0.000   | 0.18   | 0.0    | 4.1   | OK         |

| JBA Consulting            |                            | Page 23  |
|---------------------------|----------------------------|----------|
| The Library               |                            |          |
| St Philips Courtyard      |                            | L'       |
| Coleshill B46 3AD         |                            | Micco    |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood |          |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson     | Diamacje |
| Micro Drainage            | Network 2014.1             |          |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

|       | US/MH | Water<br>Level | Surch'ed  | Flooded<br>Volume | Flow / | O'flow | Pipe<br>Flow |             |
|-------|-------|----------------|-----------|-------------------|--------|--------|--------------|-------------|
| PN    | Name  | (m)            | Depth (m) | (m³)              | Cap.   | (l/s)  | (l/s)        | Status      |
| 6.001 | 17    | 67.522         | 0.047     | 0.000             | 0.32   | 0.0    | 6.2          | SURCHARGED  |
| 6.002 | 18    | 67.516         | 0.091     | 0.000             | 0.65   | 0.0    | 8.2          | SURCHARGED  |
| 4.002 | 16    | 67.510         | 0.040     | 0.000             | 1.28   | 0.0    | 27.1         | SURCHARGED  |
| 4.003 | 17    | 67.496         | 0.046     | 0.000             | 0.44   | 0.0    | 21.6         | SURCHARGED  |
| 1.008 | 18    | 67.474         | 0.124     | 0.000             | 1.20   | 0.0    | 61.2         | SURCHARGED  |
| 1.009 | 19    | 67.402         | 0.102     | 0.000             | 1.36   | 0.0    | 60.6         | SURCHARGED  |
| 1.010 | 20    | 67.311         | 0.061     | 0.000             | 1.58   | 0.0    | 61.3         | SURCHARGED  |
| 7.000 | 21    | 67.290         | -0.035    | 0.000             | 1.00   | 0.0    | 19.6         | OK          |
| 8.000 | 22    | 67.250         | -0.125    | 0.000             | 0.07   | 0.0    | 1.7          | OK          |
| 7.001 | 24    | 67.249         | -0.026    | 0.000             | 0.29   | 0.0    | 5.8          | OK          |
| 7.002 | 25    | 67.246         | -0.029    | 0.000             | 0.15   | 0.0    | 7.0          | OK          |
| 1.011 | 26    | 67.245         | -0.105    | 0.000             | 0.30   | 0.0    | 52.9         | OK          |
| 9.000 | 27    | 68.404         | -0.071    | 0.000             | 0.80   | 0.0    | 30.8         | OK          |
| 9.001 | 28    | 68.213         | -0.012    | 0.000             | 1.00   | 0.0    | 29.6         | OK          |
| 9.002 | 29    | 68.010         | -0.065    | 0.000             | 0.83   | 0.0    | 38.7         | OK          |
| 9.003 | 30    | 67.751         | -0.017    | 0.000             | 1.00   | 0.0    | 50.2         | OK          |
| 9.004 | 31    | 67.656         | -0.044    | 0.000             | 0.75   | 0.0    | 52.2         | OK          |
| 9.005 | 32    | 67.583         | -0.017    | 0.000             | 1.00   | 0.0    | 49.8         | OK          |
| 9.006 | 33    | 67.490         | -0.060    | 0.000             | 0.98   | 0.0    | 54.4         | OK          |
| 9.007 | 34    | 67.350         | -0.200    | 0.000             | 0.59   | 0.0    | 59.8         | OK          |
| 1.012 | 35    | 67.239         | -0.011    | 0.000             | 0.12   | 0.0    | 19.6         | FLOOD RISK* |
| 1.013 | 36    | 66.857         | -0.343    | 0.000             | 0.13   | 0.0    | 19.6         | OK          |

| JBA Consulting                                                                            |                               |                                           | Page 24              |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|----------------------|--|--|--|--|--|--|--|
| The Library                                                                               |                               |                                           |                      |  |  |  |  |  |  |  |
| St Philips Courtyard                                                                      |                               |                                           | 4                    |  |  |  |  |  |  |  |
| Coleshill B46 3AD                                                                         |                               |                                           | Micco                |  |  |  |  |  |  |  |
| Date 28/10/2014 09:22                                                                     | Designed by Rach              | nel Hopgood                               |                      |  |  |  |  |  |  |  |
| File GAVRAY DRIVE V5A.MDX                                                                 | Checked by Rene               | Dobson                                    | Digilight            |  |  |  |  |  |  |  |
| Micro Drainage                                                                            | Network 2014.1                |                                           |                      |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| 100 year Return Period Summary of Critical Results by Maximum Level (Rank<br>1) for Storm |                               |                                           |                      |  |  |  |  |  |  |  |
| <u>-, -, -, -, -, -, -, -, -, -, -, -, -, -</u>                                           |                               |                                           |                      |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| Si<br>Nucel Deduction Foster                                                              | mulation Criteria             | Plan & of Tabal T                         | ·] 0. 000            |  |  |  |  |  |  |  |
| Hot Start (mins)                                                                          | 0 MADD Fac                    | 10W = % OI lotal F<br>stor * 10m³/ha Stor | age 5.000            |  |  |  |  |  |  |  |
| Hot Start Level (mm)                                                                      | 0                             | Inlet Coeffieci                           | ent 0.800            |  |  |  |  |  |  |  |
| Manhole Headloss Coeff (Global)<br>Foul Sewage per hectare (1/s)                          | 0.500 Flow per Perso<br>0.000 | on per Day (l/per/d                       | lay) 0.000           |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| Number of Input Hydrogra                                                                  | phs 0 Number of St            | orage Structures 3                        | 8                    |  |  |  |  |  |  |  |
| Number of Offline Contr                                                                   | ols 42 Number of Re           | al Time Controls                          | 0                    |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| Rainfall Model                                                                            | etic Rainfall Detail          | S<br>FEH                                  |                      |  |  |  |  |  |  |  |
| Site Location (                                                                           | GB 459800 222850 SP           | 59800 22850                               |                      |  |  |  |  |  |  |  |
| C (1km)                                                                                   |                               | -0.022                                    |                      |  |  |  |  |  |  |  |
| D1 (1km)                                                                                  |                               | 0.323                                     |                      |  |  |  |  |  |  |  |
| D2 (1km)                                                                                  |                               | 0.320                                     |                      |  |  |  |  |  |  |  |
| E (1km)                                                                                   |                               | 0.289                                     |                      |  |  |  |  |  |  |  |
| F (1km)                                                                                   |                               | 2.479                                     |                      |  |  |  |  |  |  |  |
| Cv (Summer)                                                                               |                               | 0.750                                     |                      |  |  |  |  |  |  |  |
| Cv (Winter)                                                                               |                               | 0.840                                     |                      |  |  |  |  |  |  |  |
| Margin for Flood Risk                                                                     | Warning (mm) 300.0            | DVD Status OFF                            |                      |  |  |  |  |  |  |  |
| Analy                                                                                     | sis Timestep Fine I           | Inertia Status OFF                        |                      |  |  |  |  |  |  |  |
|                                                                                           | DIS Status ON                 |                                           |                      |  |  |  |  |  |  |  |
| Profile(s)                                                                                |                               | Summer and W                              | inter                |  |  |  |  |  |  |  |
| Duration(s) (mins)                                                                        | 15, 30, 60, 120, 1            | 80, 240, 360, 480,                        | 600,                 |  |  |  |  |  |  |  |
|                                                                                           |                               | 720, 960,                                 | 1440                 |  |  |  |  |  |  |  |
| Climate Change (%)                                                                        |                               | 30,                                       | , 100<br>), 30       |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| Return Climate<br>PN Storm Period Change                                                  | First X Firs<br>Surcharge Flo | tY FirstZ<br>od Overflow                  | O/F Lvl<br>Act. Exc. |  |  |  |  |  |  |  |
|                                                                                           |                               |                                           |                      |  |  |  |  |  |  |  |
| 1.000 15 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 2.001 15 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 1.001 30 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 1.002 60 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 1.003 60 Winter 100 +30%                                                                  | 30/30 Winter                  |                                           | 0                    |  |  |  |  |  |  |  |
| 3.001 60 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 3.002 60 Winter 100 +30%                                                                  | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| 1.004 60 Winter 100 +30%                                                                  | 30/30 Winter                  |                                           | 0                    |  |  |  |  |  |  |  |
| 1.005 60 Winter 100 +30%                                                                  | 30/60 Winter                  | 100/60 Winter                             | 3                    |  |  |  |  |  |  |  |
| 1.006 I20 Winter 100 +308                                                                 | 30/30 Winter                  | 100/60 Winter                             | 2                    |  |  |  |  |  |  |  |
| 4.000 120 Winter 100 +30%                                                                 | 100/30 Winter                 | 100/60 Winter                             | 3                    |  |  |  |  |  |  |  |
| 5.000 120 Winter 100 +30%                                                                 | 100/15 Summer                 |                                           | 0                    |  |  |  |  |  |  |  |
| ©1982                                                                                     | -2014 XP Solution             | IS                                        |                      |  |  |  |  |  |  |  |

| JBA Consulting                 |                                                  | Page 25    |  |
|--------------------------------|--------------------------------------------------|------------|--|
| The Library                    |                                                  |            |  |
| St Philips Courtyard           |                                                  | L.         |  |
| Coleshill B46 3AD              |                                                  | Micco      |  |
| Date 28/10/2014 09:22          | Designed by Rachel Hopgood                       |            |  |
| File GAVRAY DRIVE V5A.MDX      | Checked by Rene Dobson                           | Dialitaye  |  |
| Micro Drainage                 | Network 2014.1                                   |            |  |
| 100 year Return Period Summary | of Critical Results by Maximum L<br>1) for Storm | evel (Rank |  |
|                                |                                                  |            |  |

|       |     |        | Return | Climate | Firs    | tΧ     | First Y | Fir    | st Z   | O/F  | Lvl  |
|-------|-----|--------|--------|---------|---------|--------|---------|--------|--------|------|------|
| PN    | S   | torm   | Period | Change  | Surch   | arge   | Flood   | Over   | flow   | Act. | Exc. |
| 5.001 | 120 | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 5.002 | 120 | Winter | 100    | +30%    | 100/15  | Summer |         | 100/60 | Winter | 3    |      |
| 4.001 | 120 | Winter | 100    | +30%    | 100/15  | Summer |         | 100/60 | Winter | 4    |      |
| 6.000 | 120 | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 6.001 | 120 | Winter | 100    | +30%    | 30/30   | Winter |         |        |        | 0    |      |
| 6.002 | 120 | Winter | 100    | +30%    | 30/15   | Winter |         | 100/60 | Winter | 4    |      |
| 4.002 | 120 | Winter | 100    | +30%    | 30/60   | Winter |         | 100/60 | Winter | 4    |      |
| 4.003 | 120 | Winter | 100    | +30%    | 30/60   | Winter |         | 100/60 | Winter | 4    |      |
| 1.008 | 120 | Winter | 100    | +30%    | 30/15   | Winter |         |        |        | 0    |      |
| 1.009 | 120 | Winter | 100    | +30%    | 30/15   | Winter |         |        |        | 0    |      |
| 1.010 | 240 | Winter | 100    | +30%    | 30/15   | Winter |         |        |        | 0    |      |
| 7.000 | 720 | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 8.000 | 720 | Winter | 100    | +30%    | 100/30  | Winter |         |        |        | 0    |      |
| 7.001 | 720 | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 7.002 | 720 | Winter | 100    | +30%    | 100/60  | Winter |         |        |        | 0    |      |
| 1.011 | 720 | Winter | 100    | +30%    | 100/120 | Winter |         |        |        | 0    |      |
| 9.000 | 15  | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 9.001 | 15  | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 9.002 | 30  | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 9.003 | 30  | Winter | 100    | +30%    | 100/15  | Summer |         |        |        | 0    |      |
| 9.004 | 30  | Winter | 100    | +30%    | 100/15  | Summer |         | 100/15 | Winter | 3    |      |
| 9.005 | 30  | Winter | 100    | +30%    | 100/15  | Summer |         | 100/30 | Winter | 2    |      |
| 9.006 | 30  | Winter | 100    | +30%    | 100/15  | Summer |         | 100/30 | Winter | 1    |      |
| 9.007 | 60  | Winter | 100    | +30%    |         |        |         |        |        | 0    |      |
| 1.012 | 720 | Winter | 100    | +30%    | 100/60  | Winter |         |        |        |      |      |
| 1.013 | 720 | Winter | 100    | +30%    |         |        |         |        |        |      |      |

|       |       | Water  |           | Flooded |        |        | Pipe  |            |
|-------|-------|--------|-----------|---------|--------|--------|-------|------------|
|       | US/MH | Level  | Surch'ed  | Volume  | Flow / | O'flow | Flow  |            |
| PN    | Name  | (m)    | Depth (m) | (m³)    | Cap.   | (l/s)  | (1/s) | Status     |
| 1.000 | 1     | 68.398 | 0.162     | 0.000   | 1.70   | 0.0    | 84.4  | SURCHARGED |
| 2.000 | 2     | 68.470 | 0.070     | 0.000   | 0.38   | 0.0    | 20.7  | SURCHARGED |
| 2.001 | 3     | 68.445 | 0.145     | 0.000   | 1.10   | 0.0    | 54.2  | SURCHARGED |
| 1.001 | 4     | 68.369 | 0.183     | 0.000   | 1.40   | 0.0    | 96.0  | SURCHARGED |
| 1.002 | 5     | 68.304 | 0.218     | 0.000   | 0.76   | 0.0    | 78.2  | SURCHARGED |
| 1.003 | 6     | 68.213 | 0.493     | 0.000   | 1.51   | 0.0    | 84.7  | FLOOD RISK |
| 3.000 | 7     | 68.193 | 0.293     | 0.000   | 0.30   | 0.0    | 16.6  | SURCHARGED |
| 3.001 | 8     | 68.191 | 0.391     | 0.000   | 0.59   | 0.0    | 26.0  | SURCHARGED |
| 3.002 | 9     | 68.186 | 0.436     | 0.000   | 0.66   | 0.0    | 29.8  | SURCHARGED |
| 1.004 | 10    | 68.178 | 0.508     | 0.000   | 1.30   | 0.0    | 65.1  | FLOOD RISK |
| 1.005 | 11    | 68.090 | 0.520     | 0.000   | 1.15   | 8.0    | 65.8  | FLOOD RISK |
| 1.006 | 12    | 68.036 | 0.566     | 0.000   | 1.24   | 3.0    | 57.0  | FLOOD RISK |
| 1.007 | 13    | 67.970 | 0.560     | 0.000   | 1.09   | 0.0    | 64.1  | FLOOD RISK |
| 4.000 | 14    | 68.021 | 0.321     | 0.000   | 0.15   | 1.1    | 8.5   | FLOOD RISK |
| 5.000 | 15    | 68.096 | 0.421     | 0.000   | 0.56   | 0.0    | 10.5  | SURCHARGED |
| 5.001 | 16    | 68.074 | 0.449     | 0.000   | 0.73   | 0.0    | 13.6  | SURCHARGED |
| 5.002 | 17    | 68.038 | 0.463     | 0.000   | 0.96   | 7.1    | 25.0  | FLOOD RISK |
| 4.001 | 18    | 68.015 | 0.415     | 0.000   | 0.51   | 7.0    | 26.7  | FLOOD RISK |
| 6.000 | 16    | 68.045 | 0.520     | 0.000   | 0.25   | 0.0    | 5.6   | SURCHARGED |

| JBA Consulting            | Page 26                    |          |
|---------------------------|----------------------------|----------|
| The Library               |                            |          |
| St Philips Courtyard      |                            | L'       |
| Coleshill B46 3AD         |                            | Micco    |
| Date 28/10/2014 09:22     | Designed by Rachel Hopgood |          |
| File GAVRAY DRIVE V5A.MDX | Checked by Rene Dobson     | Diamacje |
| Micro Drainage            | Network 2014.1             |          |

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

| PN    | US/MH<br>Name | Water<br>Level<br>(m) | Surch'ed<br>Depth (m) | Flooded<br>Volume<br>(m <sup>3</sup> ) | Flow /<br>Cap. | O'flow<br>(l/s) | Pipe<br>Flow<br>(1/s) | Status      |
|-------|---------------|-----------------------|-----------------------|----------------------------------------|----------------|-----------------|-----------------------|-------------|
| 6.001 | 17            | 68.032                | 0.557                 | 0.000                                  | 0.60           | 0.0             | 11.5                  | FLOOD RISK  |
| 6.002 | 18            | 67.998                | 0.573                 | 0.000                                  | 0.78           | 8.5             | 9.8                   | FLOOD RISK  |
| 4.002 | 16            | 67.981                | 0.511                 | 0.000                                  | 2.01           | 22.2            | 42.7                  | FLOOD RISK  |
| 4.003 | 17            | 67.955                | 0.505                 | 0.000                                  | 0.69           | 19.2            | 34.5                  | FLOOD RISK  |
| 1.008 | 18            | 67.910                | 0.560                 | 0.000                                  | 1.86           | 0.0             | 94.6                  | FLOOD RISK  |
| 1.009 | 19            | 67.735                | 0.435                 | 0.000                                  | 2.12           | 0.0             | 94.7                  | FLOOD RISK  |
| 1.010 | 20            | 67.530                | 0.280                 | 0.000                                  | 2.31           | 0.0             | 89.6                  | SURCHARGED  |
| 7.000 | 21            | 67.514                | 0.189                 | 0.000                                  | 0.19           | 0.0             | 3.6                   | SURCHARGED  |
| 8.000 | 22            | 67.514                | 0.139                 | 0.000                                  | 0.09           | 0.0             | 2.1                   | SURCHARGED  |
| 7.001 | 24            | 67.513                | 0.238                 | 0.000                                  | 0.33           | 0.0             | 6.7                   | SURCHARGED  |
| 7.002 | 25            | 67.509                | 0.234                 | 0.000                                  | 0.16           | 0.0             | 7.2                   | SURCHARGED  |
| 1.011 | 26            | 67.506                | 0.156                 | 0.000                                  | 0.35           | 0.0             | 62.0                  | FLOOD RISK  |
| 9.000 | 27            | 68.578                | 0.103                 | 0.000                                  | 1.12           | 0.0             | 43.2                  | SURCHARGED  |
| 9.001 | 28            | 68.439                | 0.214                 | 0.000                                  | 1.14           | 0.0             | 33.9                  | SURCHARGED  |
| 9.002 | 29            | 68.294                | 0.219                 | 0.000                                  | 0.96           | 0.0             | 44.8                  | SURCHARGED  |
| 9.003 | 30            | 68.142                | 0.374                 | 0.000                                  | 1.46           | 0.0             | 73.2                  | FLOOD RISK  |
| 9.004 | 31            | 68.058                | 0.358                 | 0.000                                  | 1.19           | 24.7            | 83.4                  | FLOOD RISK  |
| 9.005 | 32            | 67.998                | 0.398                 | 0.000                                  | 1.83           | 14.8            | 91.1                  | FLOOD RISK  |
| 9.006 | 33            | 67.922                | 0.372                 | 0.000                                  | 1.64           | 0.7             | 91.4                  | FLOOD RISK  |
| 9.007 | 34            | 67.548                | -0.002                | 0.000                                  | 1.00           | 0.0             | 101.3                 | OK          |
| 1.012 | 35            | 67.500                | 0.250                 | 0.000                                  | 0.13           | 0.0             | 21.6                  | FLOOD RISK* |
| 1.013 | 36            | 66.862                | -0.338                | 0.000                                  | 0.14           | 0.0             | 21.6                  | OK          |

This page is intentionally left blank.

## Offices at

Coleshill

Doncaster

Dublin

Edinburgh

Exeter

**Haywards Heath** 

Limerick

Newcastle upon Tyne

Newport

Saltaire

Skipton

Tadcaster

Thirsk

Wallingford

Warrington

Registered Office South Barn Broughton Hall SKIPTON North Yorkshire BD23 3AE

t:+44(0)1756 799919 e:info@jbaconsulting.com

Jeremy Benn Associates Ltd Registered in England 3246693





Visit our website www.jbaconsulting.com davidlock.com