1									
LOCATION: Land	d East of Woodstock, Oxon			RIAL] Date of Ex			TP27 12/09/2	014	
		Stra	ata Chan			ples	She		Water
Description	n of Strata	Legend		oth -m	Depth	<u>-</u>	Stren (kPa)	igth	Level -m
			Scale	Strata	-m		HV	PP	-
TOPSOIL Brown sandy clay TOPSO	OIL with limestone gravel		-0.00	(0.45)	0.10	D			
CORNBRASH Dense orange brown very and sandy limestone GR	sandy clayey limestone AVEL		- - -	0.45 (0.25) 0.70	0.45 0.50	CBR D			
CORNBRASH Strong horizontally bedden platy orange brown LIME	ed closely fractured, ESTONE		- -1.00 -	(0.60)	1.00	D			
Trial Pit terminated at 1.	30 m		- - - -	1.30					
			- -2.00 -						Dry
			- - -						
			-3.00						
			- - -						
			- -4.00						
Remarks 1. Method of Excavatio 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A		NGR:44	5891: 210	V E C V P M	V S S S S S S S S S S S S S S S S S S S	Water S Water (Water S Bulk Sa Small D Vane To Penetro Mexe P CBR Sa Under F	Standin Sample Imple Disturbe est meter T enetron Imple	d Samj Test neter	
Date September 2014	TRIA	TRIAL PIT LOG						eport No. 14.08.005a ent Ref:	

LOCATION: Land East of Woodstock, Ox	on		RIAL 1		:	TP28 09/09/2	.014	
	Stra	ata Chan	ige	San	ples	She		Water
Description of Strata	Legend	^	oth -m	Depth	Туре	Strer (kPa)	(Cu)	-m
		Scale	Strata	-m		HV	PP	
TOPSOIL Dark brown sandy gravelly clayey silty TOPSOIL. Gravel is fine to coarse angular limestone. LIMESTONE		-0.00	(0.50)	0.50	D			
Loose dark brown sandy clay gravelly angular limestone cobbles. Gravel is fine to coarse angular limestone.		 - -	0.30)					
LIMESTONE Medium dense dense orange brown sandy gravelly angular limestone COBBLES. Gravel is fine to		-1.00 - -	(0.60)	1.00	D			
coarse angular limestone with ornage-brown sandy clay matrix. CORNBRASH		- - -	1.40 (0.30)	1.50	D			
Strong orange-brown and slightly grey horizontally bedded platy LIMESTONE. groundwater seepage at 1.40m sitting at 1.6m No progress past 1.70m. Trial Pit terminated at 1.70 m		-3.00	1.70	Z	Water S	Strike		
Remarks 1. Method of Excavation: JCB 2. Backfilled with Site Arisings 3. Groundwater: Slight seepage at 1.4m 4. Stability: Stable 5. Logged by MJ to +A2	NGR:44	0055: 210	V E C V P M	V	Water (Water S Bulk Sa Small E Vane Te Penetro Mexe P CBR Sa Under I	Sample ample Disturbe est meter T enetror ample	ed Sam Test meter	
Date September 2014 TR	IAL PIT	CLOG	Ţ		Repor Client		4.08.00	05a

T									
LOCATION: Land	d East of Woodstock, Oxon		T	RIAL I	TP29				
			D	ate of Ex	cavation	:	11/09/2	014	
		Stra	ata Chan	ge	Sam	ples	She Strer		Water Level
Description	n of Strata	Legend	Dep	th -m	Depth	Type	(kPa)		-m
			Scale	Strata	-m		HV	PP	
TOPSOIL Dark brown cobbly grave gravel subrounded and su	lly CLAY. Cobbles and bangular limestone	4 - 3 - 9 - 9	-0.00	(0.30)	0.10	D			
Yellowish orange cobbly and gravel are subrounde limestone. Cobbles become	ed and subangular	45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - -		0.50	D			
down trial pit	•		-1.00	(1.00)	1.00	D			
Trial pit terminated on ha		[4] [4] [4] [6] [6]	- - -	1.30					
			-2.00						Dry
			- - -						
			- - - -3.00						
			- - - -						
			- - -						
			- -4.00						
Remarks 1. Method of Excavatio	n: JCB	NGR:44	6182: 210	V	Z V	Water S Water (Water S	Standin Sample	g Leve	<u>l</u> l)
2. Groundwater: Dry3. Stability: Stable4. Logged by MB to +A5. Soakaway test perfor	n2 med				O S 7 S M S CBR O	Bulk Sa Small I Vane T Penetro Mexe P CBR Sa Under I	Disturbe est meter T enetron ample	Cest neter	ole
Date September 2014	TRIA	AL PIT	LOG			Repor Client	t No. 1)5a

LOCATION: Land	d East of Woodstock, Oxon	l		RIAL I			TP30	014	
		Stre	nta Chan	ate of Ex		ples	12/09/2 She		Water
Description	ı of Strata	Legend		oth -m	Depth	-	Stren (kPa)	igth	Level -m
_			Scale	Strata	-m	'	HV	PP	1
	OIL with limestone gravel		-0.00 - -	(0.35)	0.10	D			
CORNBRASH Strong extremely closely horizontally bedded platy orange brown sandy clay	LIMESTONE with		- - - -	(0.55)	0.50	D			
CORNBRASH Dense orange brown very limestone GRAVEL	sandy slightly clayey		- -1.00 -	0.90 (0.30) 1.20	1.00	D			
CORNBRASH Strong horizontally bedded platy orange brown and gono progress past 1.30m Trial Pit terminated at 1.	rey LIMESTONE		-2.00 2.00 3.00 	(0.10) 1.30	1.30	D			Dry
Remarks 1. Method of Excavatio 2. Groundwater: Dry	n: JCB	NGR:44	6302: 210	V B	Z V :	Water S Bulk Sa	Standin Sample Imple		
 3. Stability: Stable 4. Logged by MB to +A 5. Soakaway test perfor 6. Trial pit dimensions: 				O S V	Small I Vane T Penetro Mexe P CBR Sa	Disturbe est meter T enetron	Cest neter	ple	
Date September 2014	TRIA	AL PIT	LOG	r	1	Repor Client	t No. 1 Ref:	4.08.00)5a

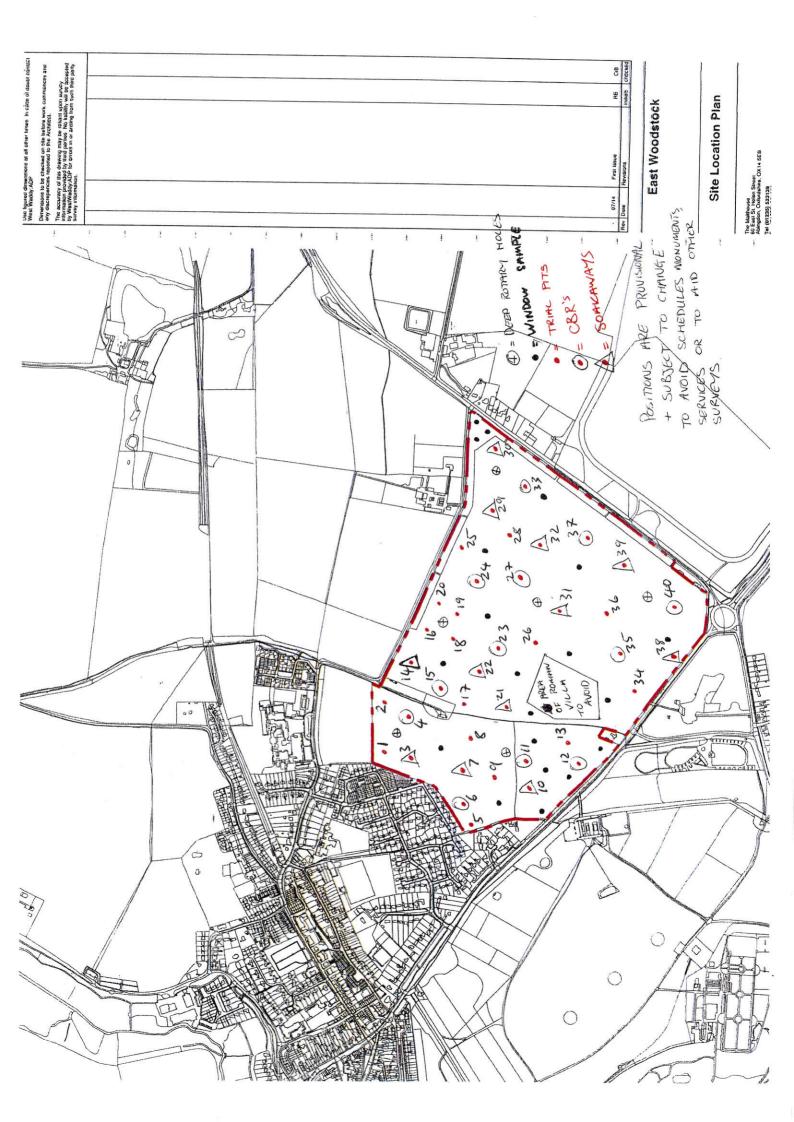
LOCATION: Land East of Woodstock, Oxo Description of Strata	1		RIAL]	PIT:		TP31		
Description of Strata	Stra		ote of Ev	cavation		12/09/2014		
Description of Strata	Stra				ples	She		Water
	Legend	I	oth -m	Depth	<u>. </u>	Stren (kPa)	gth	Level -m
		Scale	Strata	-m		HV	PP	
TOPSOIL Brown sandy clay TOPSOIL with limestone gravel		-0.00	(0.30)	0.10	D			
CORNBRASH Strong extremely closely fractured orange brown horizontally bedded platy LIMESTONE with sandy clay on fractures		- - -	0.30 (0.20) 0.50 (0.25)	0.50	D			
CORNBRASH Medium dense orange brown very sandy clayey angular fine to coarse limestone GRAVEL		- - -1.00	0.75 (0.05) 0.80	0.80	D			
CORNBRASH Very strong horizontally bedded closely fractured, orange brown LIMESTONE		- - -						
Trial Pit terminated at 0.80 m		- - -						
		-2.00						Dry
		- - -						
		 - -						
		-3.00 - - -						
		- - -						
		- - -4.00						
Remarks 1. Method of Excavation: JCB	NGR:44	5826: 216	5156 S	<u> </u>	L Water S Water (Water S	Standin	g Leve	1)
 Groundwater: Dry Stability: Stable Logged by MB to +A2 Trial pit dimensions: 0.7 x 3.0 x 0.8m 			E D V) ;	Bulk Sa	ımple Disturbe	d Samı	ole
5. Trial pit dimensions: 0.7 x 3.0 x 0.8m				M I	Mexe P CBR Sa	meter T enetron ample Foundat	neter	
Date September 2014 TR	IAL PIT	LOG	r		Repor Client	t No. 1	4.08.00)5a

LOCATION: Lon	d East of Woodstock, Oxon		т	RIAL 1	PIT•		TP32		
LOCATION. Land	d East of Woodstock, Oxon			ate of Ex		:	11/09/2	014	
		Stra	ıta Chan	ge	San	nples	She		Water
Description	n of Strata	Legend	Dep	oth -m	Depth	Туре	Stren (kPa)		Level -m
1			Scale	Strata	-m		HV	PP	
TOPSOIL Dark brown cobbly grave gravel are subangular lim	elly CLAY. Cobbles and estone	[d : 0 : 0 : 0	-0.00 - -	(0.30) 0.30	0.10	D			
CORNBRASH Light yellow cobbly grav gravel are subrounded to gettig more cobbly deepe	subangular limestone	. 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	- - -	(0.80)	0.50	D			
Trial pit terminated due to Trial Pit terminated at 1.			- 1.00 	1.10	1.00	D			
Titul I ii terminatea ai 1.	10 m		-2.00						Dry
			- - -4.00						
Remarks 1. Method of Excavatio 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A 5. Soakaway test perfor	Dry e B Bulk Sample D Small Disturbed Sample								
Date September 2014	TRIAL PIT LOG Report No. 14.08.00 Client Ref:)5a		

LOCATION: Land	East of Woodstock, Oxon			RIAL 1			TP33	014					
		Stra	ıta Chan			ples	She		Water				
Description	of Strata	Legend		oth -m	Depth	<u> </u>	Strer (kPa)	ngth	Level -m				
Description	of Strata	Legend	Scale	Strata	-m	Type	HV	PP	-111				
TOPSOIL Brown sandy clay TOPSO CORNBRASH Dense orange brown very COBBLES CORNBRASH Dense light orange brown clayey angular fine to coar CORNBRASH	sandy platy limestone very sandy slightly se limestone GRAVEL		-1.00	(0.30) 0.30 (0.40) 0.70 (0.40) 1.10 (0.10)	0.10 0.40 0.50	D CBR D							
Strong closely fractured, horange brown LIMESTON No progress past 1.20m Trial Pit terminated at 1.2	NE ;		-3.00	1.20					Dry				
Remarks 1. Method of Excavation 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A2		NGR:44	5242: 210	V E C V P M	Z	Water S Water () Water S Bulk Sa Small D Vane To Penetro: Mexe P CBR Sa Under F	Standin ample mple bisturbe est meter T enetron imple	ed Samp Test neter					
Date September 2014	TRIA	AL PIT	LOG	ч т		_		TRIAL PIT LOG Report No. 14.08.005a Client Ref:					

LOCATION: Land	d East of Woodstock, Oxor	1		RIAL 1		TP34			
		1 -		ate of Ex			09/09/2		I
		Stra	ata Chan	ge	San	nples	She Stren		Water Level
Description	n of Strata	Legend	_	oth -m	1 -	Type	(kPa)		-m
			Scale	Strata	-m		HV	PP	
TOPSOIL Dark brown slightly claye TOPSOIL. Gravel is fine limestone.			-0.00 - - -	(0.30) 0.30	0.10	D			
Silty sandy CLAY Medium dense orange sar limestone COBBLES. Gr	ndy gravelly angular avel is fine to coarse.	x x x x x x x x x x x x x x x x x x x	 - - -		0.50	D			
		X—————————————————————————————————————	-1.00 - - -	(1.30)	1.00	D			
Silty sandy CLAY Stiff light grey mottled or	range slightly gravelly	x - x - x - x - x - x - x - x - x - x -	- - - -	1.60	1.50	D			
slightly sandy silty CLAY angular limestone.	7. Gravel is firm slightly	X—————————————————————————————————————	- -2.00 -	(1.40)	2.00	D		134	
		X X X X X X X X X X X X X X X X X X X	 - - -	(1.40)	2.50	D		100	
Trial Pit terminated at 3.	10 m	×	-3.00 -	3.00	3.00	D			
			-4.00						
Remarks 1. Method of Excavatio 2. Backfilled with Site A		NGR:44	<u> </u> 5632: 21:	V	Z V	Water S Water (Water S	Standin Sample	g Leve	el)
Trail Pit Dimensions: Max depth of Visible Groundwater: Dry Stability: Stable Logged by MJ to +A:	2 0.6 x 2.8 x 3.1 2 Roots: 0.4				O 7 M CBR	Bulk Sa Small I Vane To Penetro Mexe P CBR Sa Under I	Disturbe est meter T enetron ample	est neter	ole
Date September 2014	TRI	TRIAL PIT LOG Report No. 14.08.005a Client Ref:)5a	

LOCATION: Lan	d East of Woodstock, Oxon		T	RIAL I	PIT:		TP35		
			D	ate of Ex	cavation	:	11/09/2	014	
		Stra	ıta Chan	ge	Sam	ples	She Strer		Water Level
Description	n of Strata	Legend	Dep	th -m	Depth	Туре	(kPa)		-m
			Scale	Strata	-m		HV	PP	
TOPSOIL Brown sandy clay TOPSO	OIL with limestone gravel		-0.00	(0.35)	0.10	D			
CORNBRASH			-	0.35	0.40	CBR			
Strong extremely closely platy horizontally bedded			-	(0.45)	0.50	D			
CORNBRASH			_	0.80					
	sandy slightly clayey fine and sandy limestone		1.00	(0.55)	1.00	D			
CORNBRASH Strong closely fractured,	horizontaly bedded platy		- - -	1.35 (0.05) 1.40					
grey and orange brown L Trial Pit terminated at 1.			_						
			-2.00						Dry
			-						
			- - -						
			-3.00						
			- - -						
			- - -						
			-4.00						
			Ľ						
Remarks 1. Method of Excavatio	n: JCB	NGR:44	5825: 210	5032 S	<u> </u>	Water S Water (Standin	g Leve	el)
2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A				B D V) ;	Water S Bulk Sa Small D Vane To	ımple Disturbe	d Samj	ole
				P M C	M 1 BR C	Vanc To Penetro Mexe P CBR Sa Under F	meter T enetron imple	neter	
Date September 2014	TRIA	AL PIT	LOG	і Г		Repor		4.08.00)5a
September 2014		TRIAL PIT LOG Client Ref:							


LOCATION: Land East of Woodstock, Oxon TRIAL PIT: TP36									
Booring Woodstock, Oxo	11		Date of Ex		:	09/09/2	014		
	Stra	ata Chan	ıge	Sam	ples	She		Water	
Description of Strata	Legend	Dep	oth -m	Depth	Туре	Stren (kPa)	ngth (Cu)	Level -m	
		Scale	Strata	-m		HV	PP		
TOPSOIL Dark brown sand gravelly clayey silty TOPSOIL. Gravel is fine to coarse angular limestone. Silty Cobbly Gravel Medium dense orange-brown sandy silty GRAVEL with occasional limestone COBBLES. Gravel is fine		0.00 	(0.25) 0.25 (0.40) 0.65	0.50	D				
\to coarse angular limestone. LIMESTONE Strong horizontally-bedded orange-brown and light grey extremely closely fractured platy LIMESTONE with orange-brown sandy clay in fractures.		- - - - - -	(0.75)	1.00	D				
No progress past 1.40m. Trial Pit terminated at 1.40 m	/	 - -	1.40	1.40	D				
		-2.00 2.00 	Z Z	7	Water S	Strike			
Remarks 1. Method of Excavation: JCB 2. Backfilled with Site Arisings 3. Groundwater: Dry 4. Stability: Stable 5. Logged by MJ to +A2	NGR:44	5995: 21	6103 V E E C V P M	V S S S S S S S S S S S S S S S S S S S	Water (Water S Bulk Sa Small D Vane To Penetro Mexe P CBR Sa Under I	Standir Sample Imple Disturbe est meter Tenetror Imple	ed Sam Fest meter		
Date September 2014 TRI	TRIAL PIT LOG Report No. Client Ref:						4.08.00	05a	

T									
LOCATION: Lane	d East of Woodstock, Oxon			RIAL 1			TP37		
			D	ate of Ex	cavation	:	12/09/2	014	
		Stra	ata Chan	ige	Sam	ples	She Stren		Water Level
Description	n of Strata	Legend	^	oth -m	Depth -m	Type	(kPa)	(Cu)	-m
			Scale	Strata	-111		HV	PP	
TOPSOIL Brown sandy clay TOPSO	OIL with limestone gravel		-0.00	(0.35)	0.10	D			
CORNBRASH Strong extremely closely platy horizontally bedded	fractured orange brown LIMESTONE		- - -	(0.45)	0.40 0.50	CBR D			
CORNBRASH Dense light orange brown slightly clayey fine to coa	n very sandy angular arse limestone GRAVEL		- - -1.00	0.80 (0.30) 1.10	1.00	D			
CORNBRASH Very strong closely fracti platy orange brown LIMI Trial Pit terminated at 1.	ESTONE		- - -	(0.10) 1.20					
			-2.00						Dry
			-3.00						
			-4.00						
2. Groundwater: Dry3. Stability: Stable	. Method of Excavation: JCB 2. Groundwater: Dry				Z	Water S Water (Water S Bulk Sa Small D Vane To Penetro Mexe P CBR Sa Under F	Standin Sample Imple Disturbe est meter T enetron Imple	d Samp Test neter	
Date September 2014	TRIA	AL PIT	CLOG	Ţ		Repor		4.08.00)5a

LOCATION: Land	d East of Woodstock, Oxon			RIAL 1			TP38	0.1.1	
		•	D	ate of Ex	cavation	:	12/09/2	014	
		-	ata Chan			ples	She Strer	igth	Water Level
Description	n of Strata	Legend	^	oth -m	Depth	Type	(kPa)		-m
			Scale	Strata	-m		HV	PP	
TOPSOIL Brown sandy clay TOPSO	OIL with limestone gravel		-0.00	(0.35)	0.10	D			
CORNBRASH Medium dense orange bro clayey angular platy fine GRAVEL and COBBLES	to coarse limestone		- - -	0.35	0.50	D			
GRAVEL and COBBLES	•		- - -1.00	(0.95)	1.00	D			
FOREST MARBLE Stiff fissured light grey and with nodules	nd buff very silty CLAY	x_^x	- - -	1.30 (0.10) 1.40	1.40	D			
Trial Pit terminated at 1.	40 m		-2.00 -3.00 -4.00						Dry
Remarks 1. Method of Excavatio 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A 5. Trial pit dimensions:	.2	NGR:44	5703: 21:	V E C V P M	Z	Water S Bulk Sa Small I Vane T Penetro Mexe P CBR Sa	Standin Sample Imple Disturbe est meter Tenetron	d Samp Test neter	
Date September 2014	TRIA	AL PIT	CLOG	Ţ		Repor Client	t No. 1 Ref:	4.08.00)5a

LOCATION: Land	d East of Woodstock, Oxon		T	RIAL 1	PIT:		TP39		
			D	ate of Ex	cavation	:	12/09/2		
		Stra	ata Chan	ge	Sam	ples	Shear Strength		Water Level
Description	n of Strata	Legend	n î	th -m	Depth	Туре	(kPa)	(Cu)	-m
			Scale	Strata	-m		HV	PP	
TOPSOIL Brown sandy clay TOPSO	OIL with limestone gravel		-0.00	(0.30)	0.10	D			
CORNBRASH Strong extremely closely platy horizontally bedded sandy CLAY in fractures	fractured orange brown LIMESTONE with	/-ax: *-ax 8	- - - -	0.30 (0.20) 0.50 (0.25)	0.50	D			
CORNBRASH Medium dense orange broslightly clayey fine to coal and occasional cobbles	own very sandy angular urse limestone GRAVEL		- - -1.00	0.75 (0.05) 0.80	0.80	D			
CORNBRASH Very strong closely fractuplaty orange brown LIME No progress past 0.80m	rred, horizontaly bedded ESTONE		- - - -						
			-2.00						Dry
			-3.00 						
Remarks 1. Method of Excavatio 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A 5. Trial pit dimensions:	.2	NGR:44	5995: 215	V E C V P N	Z	Water S Bulk Sa Small I Vane T Penetro Mexe P CBR Sa	Standin Sample Imple Disturbe est meter Tenetron	d Samp Test neter	
Date September 2014	LOG	r		Repor Client	t No. 1 Ref:	4.08.00)5a		

LOCATION: Land	d East of Woodstock, Oxon			RIAL 1 Date of Ex			TP40 12/09/2	014	
		Stra	ata Chan	Sam	ples	She		Water	
Description	n of Strata	Legend Depth -r		oth -m	Depth	Туре	Strength (kPa) (Cu)		Level -m
_			Scale	Strata	-m		HV	PP	
TOPSOIL Dark brown sandy clay T gravel CORNBRASH Strong extremely closely bedded platy orange brow LIMESTONE No progress past 0.80m Trial Pit terminated at 0.	fractured, horizontaly on fossiliferous		-1.00	(0.30) (0.30) (0.50) (0.80)	0.10 0.40 0.50	D CBR D			Dry
Remarks 1. Method of Excavatio 2. Groundwater: Dry 3. Stability: Stable 4. Logged by MB to +A	NGR:44	5886: 21:	V B C V P M	Z	Water S Water (Water S Bulk Sa Small D Vane To Penetro Mexe P CBR Sa Under F	Standing Sample Imple Disturbe Est Meter Tenetron Imple	d Samp Test neter		
Date September 2014	TRIAL PIT LOG Report No. 14.08.005 Client Ref:								

Appendix E – Foul Drainage Strategy

NOTES

- All dimensions and levels are in metres unless otherwise no
- This drawing is to be read in conjunction with the relevant Architect's/Engineer's drawings, specifications and CDM documentation
- This drawings has been produced electronically and may have been photo reduced or enlarged when copied. Work to figured dimensions only IDO NOT SCALE). All dimensions to be checked or site. Any errors or omissions to be reported to the engineer immediately.
- clear if reproduced in black and white.

P03	NJ		Drainage amended in accordance with revised Architectural site layout (SK012 Rev E)	21/11/14
P02	NJ	TST	Route of rising main amended	05/11/14
P01	NJ	TST	Initial issue	08/10/14
Rev	Drawn by	Chk'd by	Comments	Date

Site Wide Drainage Strategy Plan Foul Water Outfall Plan

PROJECT Woodstock East Woodstock Oxfordshire

DESIGNED BY TST	DRAFTED BY	APP D.

DATE 08/10/2014 STATUS INFORMATION

1:5000

JOB NUMBER DRAWI 13-1363 101

DRAWING NUMBER RE

Appendix F – Greenfield Run Off Rates

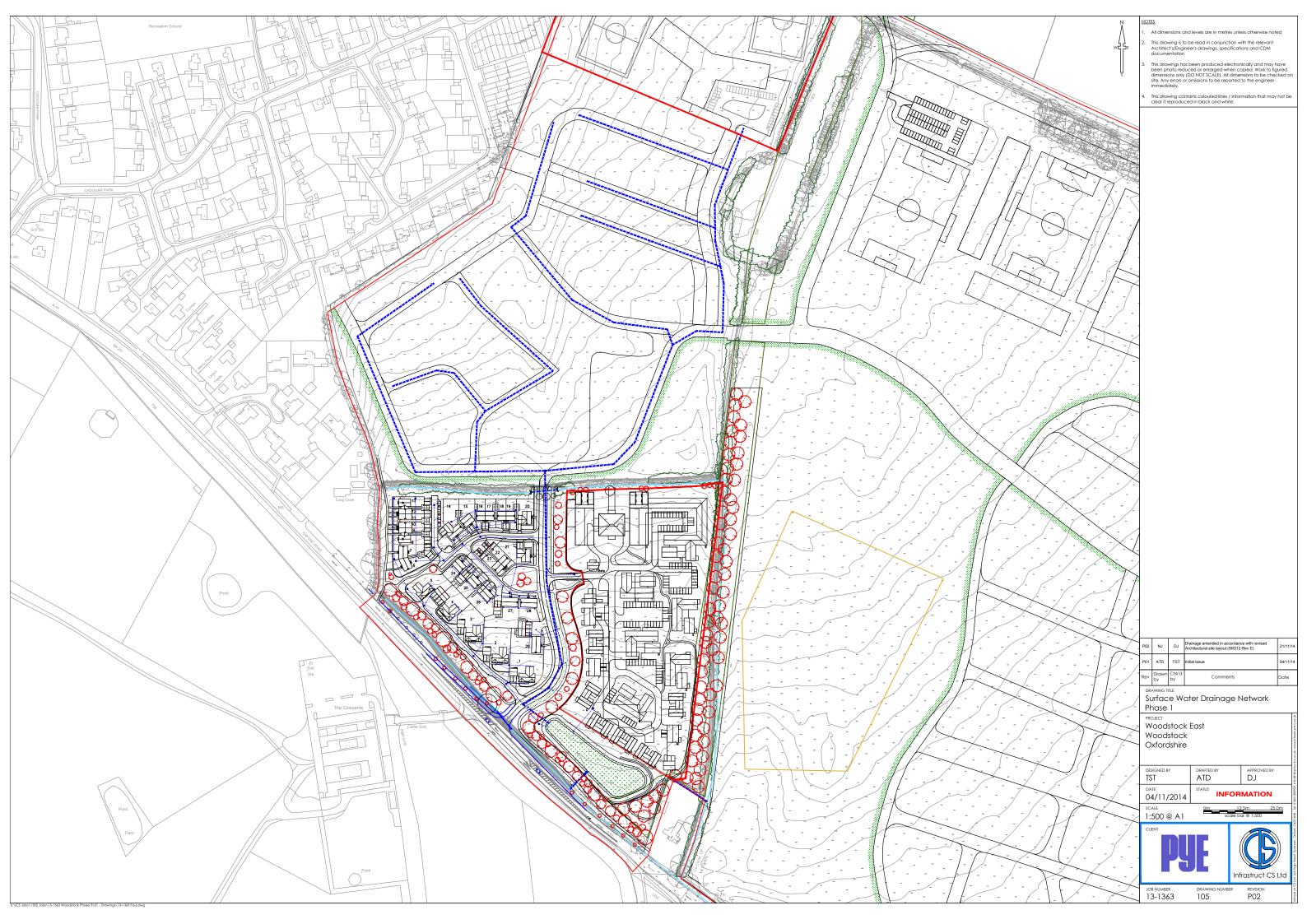
INFRASTRUCT CS LTD		Page 1
Station Point		
Old Station Way		
Eynsham Oxon OX29 4TL		Tricko od
Date 03/11/2014 10:05	Designed by Tim	
File	Checked by	
Micro Drainage	Source Control W.12.6	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 2 Soil 0.400
Area (ha) 15.695 Urban 0.000
SAAR (mm) 663 Region Number Region 6

Results 1/s


QBAR Rural 50.1 QBAR Urban 50.1

Q2 years 44.1

Q1 year 42.6 Q30 years 113.6 Q100 years 159.9

Appendix G – Surface Water Drainage Network

Appendix H - Calculations (detention basin)

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL
Date 03/11/2014 17:22

Designed by Tim

Micro Dramage.

Micro Drainage Source Control W.12.6

File attenuation pond - imp... Checked by

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 390 minutes.

	Half Drain Time : 390 minutes.														
	Stor	m	Max	Max	Max Max Max						Max	Max	Status		
	Even	t	Level	Dept	h I	nfiltra	tion	Cont	trol	Σ (utflow	Volume			
			(m)	(m)		(1/s)		(1,	/s)	((1/s)	(m³)			
15	min	Summer	88.380	0.68	30		0.0	4	49.8		49.8	1079.1	O K		
			88.573				0.1		49.8			1403.2	O K		
60	min	Summer	88.729	1.02	9		0.3	ţ	50.0		50.2	1713.0	Flood Risk		
120	min	Summer	88.841	1.14	1		0.4	į	51.2		51.5	1969.2	Flood Risk		
			88.879				0.4	į	51.6		52.0	2065.0	Flood Risk		
			88.890				0.4		51.8				Flood Risk		
			88.884				0.4		51.7				Flood Risk		
			88.873				0.4		51.5				Flood Risk		
			88.858 88.840				0.4		51.4 51.1				Flood Risk Flood Risk		
			88.800				0.4		50.7				Flood Risk		
			88.710				0.2		49.8				Flood Risk		
			88.566				0.1		49.8			1391.1	0 K		
			88.422				0.0		49.8			1145.0	O K		
			88.190				0.0		49.0		49.0		ОК		
5760	min	Summer	88.078	0.37	8		0.0	4	45.1		45.1	621.7	O K		
7200	min	Summer	88.017	0.31	.7		0.0	4	40.7		40.7	517.0	O K		
8640	min	Summer	87.978	0.27	8		0.0	3	36.5		36.5	449.7	O K		
			87.951				0.0	3	33.0		33.0	404.3	O K		
			88.464				0.1		49.8			1213.0	O K		
			88.664				0.2		49.8			1579.0	O K		
			88.825				0.3		51.0				Flood Risk		
			88.942				0.5		52.5				Flood Risk		
			88.985 89.000				0.5		53.1				Flood Risk Flood Risk		
			88.998				0.6		53.3				Flood Risk		
			88.980				0.5		53.0				Flood Risk		
			88.962				0.5		52.8				Flood Risk		
					Stor	m	Ra		Time	-Pe					
					Even	it	(mm,	/hr)	(m	ins)				
				1.5	min	Summer	128	. 285			30				
						Summer					44				
						Summer		.662			72				
				120	min	Summer	31.	.800		1	30				
				180	min	Summer	23.	.353		1	88				
				240	min	Summer	18.	.644			46				
						Summer		.543			20				
						Summer		.792			82				
						Summer		.043			44				
						Summer Summer		.823 .219			12 48				
						Summer		.493			20				
											08				
						Summer		.568			80				
						Summer		.847			80				
			į	5760	min	Summer	1.	.461		30	64				
			•	7200	min	Summer	1.	.217		37	52				
			8	3640	min	Summer	1.	.048		44	88				
			10			Summer		.923		51	52				
						Winter					30				
						Winter		.226			44				
						Winter Winter		.662			72				
						Winter		.800			.28 .84				
						Winter		. 644			42				
						Winter		.543			50				
						Winter		.792			04				
						Winter		.043			74				
				1 0 0 0	_ 2 0	11 Mic	ro T	722-	n - ~ -	_ T	+ 4			_	
			⊌.	100	-20	TT MTC	TO 1	лтат	.11ayt	ىل ت	LU			_	

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL

Date 03/11/2014 17:22

File attenuation pond - imp...

Micro Drainage

Designed by Tim

Source Control W.12.6

Summary of Results for 100 year Return Period (+30%)

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltrat (1/s)	ion Co		Max Σ Outflow (1/s)	Max Volume (m³)	Status
720 min Winter	88.941	1.241		0.5	52.5	52.9	2225.2	Flood Risk
960 min Winter	88.888	1.188		0.4	51.7	52.2	2087.8	Flood Risk
1440 min Winter	88.765	1.065		0.3	50.3	50.6	1792.8	Flood Risk
2160 min Winter	88.555	0.855		0.1	49.8	49.8	1370.7	O K
2880 min Winter	88.336	0.636		0.0	49.8	49.8	1012.9	O K
4320 min Winter	88.083	0.383		0.0	45.4	45.4	631.1	O K
5760 min Winter	87.995	0.295		0.0	38.4	38.4	478.3	O K
7200 min Winter	87.948	0.248		0.0	32.6	32.6	400.6	O K
8640 min Winter	87.919	0.219		0.0	28.4	28.4	351.0	O K
10080 min Winter	87.897	0.197		0.0	25.1	25.1	315.6	O K
		Sto	orm	Rain	Time	-Peak		
		Eve	ent	(mm/hr	(m:	ins)		
		960 mi	n Winter	6.21	. 9	552 704		

INFRASTRUCT CS LTD

Station Point
Old Station Way

Eynsham Oxon OX29 4TL

Date 03/11/2014 17:22

File attenuation pond - imp... Checked by

Rainfall Details

Source Control W.12.6

Micro Drainage

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time / Area Diagram

Total Area (ha) 4.680

Time	Area	Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.000	4-8	1.560	8-12	1.560	12-16	1.560

INFRASTRUCT CS LTD Page 4 Station Point Old Station Way Eynsham Oxon OX29 4TL Date 03/11/2014 17:22 Designed by Tim File attenuation pond - imp... Checked by Source Control W.12.6

Model Details

Micro Drainage

Storage is Online Cover Level (m) 89.000

Complex Structure

Tank or Pond

Invert Level (m) 87.700

Depth (m)	Area (m²)								
0.000	1550.0	0.600	1450.0	1.200	1750.0	1.800	0.0	2.400	0.0
0.100	1600.0	0.700	1500.0	1.300	1800.0	1.900	0.0	2.500	0.0
0.200	1650.0	0.800	1550.0	1.400	0.0	2.000	0.0		
0.300	1700.0	0.900	1600.0	1.500	0.0	2.100	0.0		
0.400	1750.0	1.000	1650.0	1.600	0.0	2.200	0.0		
0.500	1400.0	1.100	1700.0	1.700	0.0	2.300	0.0		

<u>Swale</u>

Infiltration Coefficient Base (m/hr)	0.00360 Length (m)	660.0
Infiltration Coefficient Side (m/hr)	0.00360 Side Slope (1:X)	3.0
Safety Factor	2.0 Slope (1:X)	500.0
Porosity	1.00 Cap Volume Depth (m)	0.000
Invert Level (m)	88.300 Cap Infiltration Depth (m)	0.000
Base Width (m)	1.0	

Hydro-Brake® Outflow Control

Design Head (m) 1.000 Hydro-Brake® Type Md5 SW Only Invert Level (m) 87.700 Design Flow (1/s) 50.0 Diameter (mm)

Depth (m)	Flow $(1/s)$	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	9.9	0.800	49.1	2.000	64.5	4.000	91.0	7.000	120.4
0.200	25.6	1.000	49.7	2.200	67.6	4.500	96.6	7.500	124.6
0.300	39.0	1.200	51.9	2.400	70.5	5.000	101.8	8.000	128.7
0.400	46.2	1.400	54.8	2.600	73.4	5.500	106.7	8.500	132.7
0.500	49.2	1.600	58.0	3.000	78.8	6.000	111.5	9.000	136.5
0.600	49.8	1.800	61.3	3.500	85.2	6.500	116.0	9.500	140.3

Appendix I – Detailed Drainage Layout – Phase 1

Appendix J – Calculations (Swale)

INFRASTRUCT CS LTD

Station Point
Old Station Way

Eynsham Oxon OX29 4TL

Date 03/11/2014 17:21

File swale - permeable half... Checked by

Summary of Results for 100 year Return Period (+30%)

Source Control W.12.6

Micro Drainage

Half Drain Time : 18 minutes.

	0 t				****				Q L = 4	
	Stor Even		Max Leve		Max	Max Infiltra		Max	Stat	cus
	nve		(m)		(m)	(1/s		(m³)		
1.5		~	00 0	1 7	0 167		0 5	10.0	-1	D: 1
		Summer Summer					8.5 9.1		Flood Flood	
		Summer					9.0		Flood	
		Summer					8.2		Flood	
		Summer					7.4	9.4	Flood	Risk
240	min	Summer	88.8	87	0.137		6.7	7.9	Flood	Risk
		Summer					5.7		Flood	
		Summer					5.0		Flood	
		Summer					4.4		Flood	
		Summer Summer					4.0		Flood Flood	
		Summer					2.5		Flood	
		Summer					1.9		Flood	
2880	min	Summer	88.7	91	0.041		1.5	0.7	Flood	Risk
4320	min	Summer	88.7	85	0.035		1.1	0.5	Flood	Risk
5760	min	Summer	88.7	81	0.031		0.9	0.4	Flood	Risk
		Summer					0.7		Flood	
		Summer					0.6		Flood	
		Summer					0.5		Flood	
		Winter Winter					9.2 9.7		Flood Flood	
		Winter					9.4		Flood	
		Winter					8.2		Flood	
		Winter					7.1		Flood	
240	min	Winter	88.8	79	0.129		6.2	7.0	Flood	Risk
		Winter					5.0	4.6	Flood	Risk
		Winter					4.2		Flood	
600	min	Winter				Rain	3.6		Flood	Risk
			Sto Eve			(mm/hr)				
						128.285		18		
						84.226		27		
					Summer	52.662 31.800		44 78		
						23.353		108		
						18.644		140		
					Summer	13.543		200		
		4	80 mi	n	Summer	10.792		260		
		6	00 mi	n	Summer	9.043		318		
					Summer			380		
						6.219		498		
						4.493		740		
					Summer Summer			1104 1464		
						1.84/		2180		
					Summer			2920		
		72	00 mi	n	Summer	1.217		3624		
		86	40 mi	n	Summer	1.048		4368		
		100	80 mi	n	Summer	0.923		5088		
						128.285		19		
						84.226		28		
						52.662		46		
						31.800 23.353		82 114		
						18.644		144		
						13.543		204		
						10.792		264		
		6	00 mi	n '	Winter	9.043		324		
		©19	82-2	01	1 Mic	ro Drai	nage	Ltd		

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL
Date 03/11/2014 17:21 Des

Micro Drainage

Date 03/11/2014 17:21 Designed by Tim File swale - permeable half... Checked by

Source Control W.12.6

Summary of Results for 100 year Return Period (+30%)

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltra (1/s	ation	Max Volume (m³)	Stat	cus	
		Winter Winter				3.2	2.0	Flood Flood	
		Winter				1.9		Flood	
		Winter				1.3		Flood	
		Winter				1.1		Flood	
4320	min	Winter	88.780	0.030		0.8	0.3	Flood	Risk
5760	min	Winter	88.776	0.026		0.6	0.3	Flood	Risk
7200	min	Winter	88.774	0.024		0.5	0.2	Flood	Risk
8640	min	Winter	88.772	0.022		0.4	0.2	Flood	Risk
10080	min	Winter				0.4		Flood	Risk
		Storm	l	Rain	_	-Peak			
			Event		(mm/hr)	(mi	ns)		
					7.823		380		
					6.219		502		
					4.493		730		
			60 min 1				1080		
					2.568		1472		
			20 min N				2180		
			60 min 1 00 min 1				2952 3632		
			40 min V				4400		
			30 min 1				5136		
					0.323				

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL

Date 03/11/2014 17:21
File swale - permeable half... Checked by

Micro Drainage

Source Control W.12.6

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time / Area Diagram

Total Area (ha) 0.070

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.000	4-8	0.070

INFRASTRUCT CS LTD		Page 4
Station Point		
Old Station Way		
Eynsham Oxon OX29 4TL		
Date 03/11/2014 17:21	Designed by Tim	
File swale - permeable half	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details

Storage is Online Cover Level (m) 89.000

Swale Structure

Infiltration Coefficient Base	e (m/hr)	0.39000		Length (m	100.0
Infiltration Coefficient Side	e (m/hr)	0.39000	S	ide Slope (1:X	2.0
Safety	Factor	2.0		Slope (1:X) 500.0
I	Porosity	1.00	Cap Vo	olume Depth (m	.) 0.000
Invert Le	evel (m)	88.750	Cap Infiltra	ation Depth (m	0.000
Base Wi	dth (m)	1.5			

Appendix K – Calculations (Permeable Roads)

INFRASTRUCT CS LTD

Station Point
Old Station Way

Eynsham Oxon OX29 4TL

Date 03/11/2014 17:19

Page 1

Designed by Tim
File permeable road - perme... Checked by

Summary of Results for 100 year Return Period (+30%)

Source Control W.12.6

Micro Drainage

Half Drain Time : 3 minutes.

Storm		На	lf Drai:	n Time	: 3 m:	inutes.		
(m)								Status
15 min Summer 88.608 0.108 20.5 6.2 0 K 30 min Summer 88.512 0.112 21.2 6.6 0 K 60 min Summer 88.599 0.099 18.8 5.2 0 K 120 min Summer 88.597 0.077 14.6 3.1 0 K 180 min Summer 88.553 0.653 11.9 2.1 0 K 240 min Summer 88.553 0.053 10.1 1.5 0 K 480 min Summer 88.545 0.045 7.6 1.1 0 K 480 min Summer 88.545 0.045 7.6 1.1 0 K 480 min Summer 88.545 0.045 7.6 1.1 0 K 480 min Summer 88.531 0.031 3.6 0.5 0 K 480 min Summer 88.531 0.031 3.6 0.5 0 K 480 min Summer 88.534 0.026 2.6 0.4 0 K 460 min Summer 88.535 0.053 10.1 1 1.5 0 K 480 min Summer 88.534 0.034 4.4 0.6 0 K 460 min Summer 88.526 0.026 2.6 0.4 0 K 480 min Summer 88.526 0.026 2.6 0.4 0 K 480 min Summer 88.527 0.027 1.9 0.3 0 K 480 min Summer 88.520 0.020 1.5 0.2 0 K 4300 min Summer 88.510 0.015 0.8 0.1 0 K 5760 min Summer 88.513 0.013 0.6 0.1 0 K 4800 min Summer 88.514 0.014 0.7 0.1 0 K 4800 min Summer 88.512 0.012 0.5 0.1 0 K 4800 min Summer 88.513 0.013 0.6 0.1 0 K 4800 min Summer 88.513 0.013 0.6 0.1 0 K 4800 min Summer 88.513 0.013 0.6 0.1 0 K 4800 min Summer 88.513 0.013 0.6 0.1 0 K 4800 min Winter 88.614 0.114 21.7 6.8 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Winter 88.505 0.050 9.5 1.3 0 K 4800 min Summer 128.285 16 300 min Summer 7.823 364 400 min Summer 12.000 70 1800 min Summer 13.543 188 4800 min Summer 10.792 248 600 min Summer 1.217 3544 8400 min Summer 1.226 25 600 min Winter 128.285 17 300 min Summer 1.227 3549 8400 min Summer 1.2285 17 300 min Summer 1.227 3549 8400 min Summer 1.227 3549 8400 min Winter 128.285 17 300 min Winter 128.285 17 300 min Winter 128.285 17 300 min Winter 23.353 98 2440 min Winter 10.792 252 600 min Winter 10.792 252 600 min Winter 10.792 252 600 min Winter 10.792 252	Even	t		-				
30 min Summer 88.612 0.112 21.2 6.6 0 K 60 min Summer 88.599 0.099 18.8 5.2 0 K 120 min Summer 88.597 0.077 14.6 3.1 0 K 180 min Summer 88.563 0.063 11.9 2.1 0 K 180 min Summer 88.563 0.063 11.9 2.1 0 K 240 min Summer 88.545 0.045 7.6 1.1 0 K 480 min Summer 88.540 0.040 6.1 0.8 0 K 600 min Summer 88.537 0.037 5.1 0.7 0 K 720 min Summer 88.531 0.031 3.6 0.5 0 K 1440 min Summer 88.531 0.031 3.6 0.5 0 K 1440 min Summer 88.526 0.026 2.6 0.4 0 K 2280 min Summer 88.520 0.020 1.5 0.2 0 K 4320 min Summer 88.520 0.020 1.5 0.2 0 K 4320 min Summer 88.515 0.015 0.8 0.1 0 K 5760 min Summer 88.515 0.015 0.8 0.1 0 K 84640 min Summer 88.512 0.012 1.5 0.2 0 K 84600 min Summer 88.513 0.031 0.6 0.1 0 K 84600 min Summer 88.514 0.014 0.7 0.1 0 K 84600 min Summer 88.515 0.015 0.8 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 8400 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Summer 88.510 0.013 0.6 0.1 0 K 10080 min Winter 88.530 0.033 17.6 4.5 0 K 120 min Winter 88.530 0.034 17.6 4.5 0 K 120 min Winter 88.531 0.031 100 min Winter 88.531 0.031 100 min Winter 88.531 0.034 17.6 4.5 0 K 180 min Winter 88.533 0.038 5.5 0.8 0 K 180 min Winter 88.534 0.34 4.4 0.6 0 K 180 min Winter 88.535 0.050 9.5 1.3 0 K 180 min Summer 128.285 16 180 min Summer 128.285 16 180 min Summer 128.285 16 180 min Summer 13.543 188 180 min Summer 13.543 188 180 min Summer 10.792 248 180 min Summer 1.2568 1448 1420 min Summer 1.261 2904 1720 min Summer 1.277 3544 180 min Summer 1.28285 170 180 min Summer 1.28285 170 180 min Summer 1.28285 170 180 min Summer 1.292 354 180 min Summer 1.297 3544 180 min Winter 84.226 25 180 min Winter 10.792 252 180 min Winter 10.792			(m)	(m)	(1	./s)	(m°)	
18.8 5.2 0 K	15 min	Summer	88.608	0.108		20.5	6.2	ОК
120 min Summer	30 min	Summer	88.612	0.112		21.2	6.6	O K
180 min Summer 88.553 0.063 11.9 2.1 0 K	60 min	Summer	88.599	0.099		18.8	5.2	O K
240 min Summer 88.553 0.053 7.6 1.1 0.8								
360 min Summer								
480 min Summer 88.540 0.040 6.1 0.8 0 K 600 min Summer 88.537 0.037 5.1 0.7 0 K 960 min Summer 88.531 0.031 3.6 0.5 0 K 960 min Summer 88.526 0.026 2.6 0.4 0 K 2160 min Summer 88.520 0.022 1.9 0.3 0 K 2280 min Summer 88.517 0.017 1.1 0.1 0 K 5760 min Summer 88.517 0.017 1.1 0.1 0 K 5760 min Summer 88.517 0.017 1.1 0.1 0 K 640 min Summer 88.518 0.015 0.8 0.1 0 K 640 min Summer 88.518 0.015 0.8 0.1 0 K 640 min Summer 88.518 0.015 0.8 0.1 0 K 640 min Summer 88.518 0.014 0.7 0.1 0 K 640 min Summer 88.518 0.012 0.5 0.1 0 K 640 min Winter 88.614 0.114 21.7 6.8 0 K 640 min Winter 88.615 0.065 12.4 2.2 0 K 640 min Winter 88.555 0.065 12.4 2.2 0 K 640 min Winter 88.555 0.050 9.5 1.3 0 K 640 min Winter 88.538 0.038 5.5 0.8 0 K 640 min Winter 88.538 0.038 5.5 0.8 0 K 640 min Winter 88.538 0.038 5.5 0.8 0 K 640 min Winter 88.538 0.038 5.5 0.8 0 K 640 min Summer 23.353 100 640 min Summer 23.353 100 640 min Summer 18.644 128 640 min Summer 18.644 128 640 min Summer 10.792 248 640 min Summer 10.792 252 640 min Winter 13.800 70 640 min Winter 13.800 70 640 min Winter 13.800 70 640 min Winter 1								
600 min Summer								
720 min Summer 88.534 0.034								
960 min Summer 88.531 0.031 3.6 0.5 0 K 1440 min Summer 88.526 0.026 2.6 0.4 0 K 2160 min Summer 88.522 0.022 1.9 0.3 0 K 2880 min Summer 88.520 0.020 1.5 0.2 0 K 4320 min Summer 88.517 0.017 1.1 0.1 0 K 5760 min Summer 88.515 0.015 0.8 0.1 0 K 7200 min Summer 88.514 0.014 0.7 0.1 0 K 8640 min Summer 88.513 0.013 0.6 0.1 0 K 10080 min Summer 88.512 0.012 0.5 0.1 0 K 30 min Winter 88.612 0.112 21.3 6.6 0 K 60 min Winter 88.593 0.093 17.6 4.5 0 K 120 min Winter 88.555 0.055 12.4 2.2 0 K 180 min Winter 88.555 0.055 9.5 1.3 0 K 240 min Winter 88.534 0.034 4.4 0.6 0 K 600 min Winter 88.534 0.034 4.4 0.6 0 K 600 min Winter 88.531 0.031 3.7 0.5 0 K 8								
1440 min Summer 88.526 0.026								
2880 min Summer 88.520 0.020								
4320 min Summer 88.517 0.017	2160 min	Summer	88.522	0.022		1.9	0.3	ОК
5760 min Summer 88.515 0.015 0.8 0.1 0 K	2880 min	Summer	88.520	0.020		1.5	0.2	O K
7200 min Summer 88.514 0.014 0.7 0.1 0 K 8640 min Summer 88.513 0.013 0.6 0.1 0 K 10080 min Summer 88.512 0.012 0.5 0.1 0 K 15 min Winter 88.612 0.112 21.7 6.8 0 K 60 min Winter 88.612 0.112 21.3 6.6 0 K 60 min Winter 88.565 0.065 12.4 2.2 0 K 180 min Winter 88.565 0.050 9.5 1.3 0 K 240 min Winter 88.550 0.050 9.5 1.3 0 K 240 min Winter 88.534 0.038 5.5 0.8 0 K 240 min Winter 88.534 0.038 5.5 0.8 0 K 240 min Winter 88.534 0.034 4.4 0.6 0 K 360 min Winter 88.531 0.031 3.7 0.5 0 K 240 min Winter 88.531 0.031 3.7 0.5 0 K 240 min Winter 88.534 0.034 4.4 0.6 0 K 360 min Winter 88.534 0.034 4.4 0.6 0 K 360 min Winter 88.534 0.034 4.4 0.6 0 K 360 min Winter 88.534 0.034 4.4 0.6 0 K 360 min Winter 88.531 0.031 3.7 0.5 0 K 240 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 18.644 128 360 min Summer 18.644 128 360 min Summer 18.644 128 360 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.847 2140 5760 min Summer 1.923 5136 15 min Summer 1.048 4272 10080 min Winter 81.8800 70 180 min Winter 81.8800 70 180 min Winter 81.8604 128 360 min Winter 81.8604 128 360 min Winter 81.644 128 360 min Winter 9.043 298	4320 min	Summer	88.517	0.017		1.1	0.1	O K
8640 min Summer 88.513 0.013							0.1	O K
10080 min Summer 88.512 0.012 0.5 0.1 0 K 15 min Winter 88.614 0.114 21.7 6.8 0 K 30 min Winter 88.612 0.112 21.3 6.6 0 K 60 min Winter 88.593 0.093 17.6 4.5 0 K 120 min Winter 88.595 0.065 12.4 2.2 0 K 180 min Winter 88.555 0.065 12.4 2.2 0 K 180 min Winter 88.555 0.050 9.5 1.3 0 K 240 min Winter 88.545 0.045 7.6 1.1 0 K 360 min Winter 88.538 0.038 5.5 0.8 0 K 480 min Winter 88.531 0.031 3.7 0.5 0 K Storm Rain Event (mm/hr) 15 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 13.800 70 180 min Summer 10.792 248 600 min Summer 10.792 248 600 min Summer 7.823 364 960 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 6.219 490 1440 min Summer 7.823 364 960 min Summer 3.241 1072 2880 min Summer 1.847 2140 5760 min Summer 1.217 3544 8640 min Summer 1.2285 17 30 min Winter 84.226 25 60 min Winter 84.226 25 60 min Winter 128.285 19 10080 min Summer 1.217 3544 8640 min Summer 1.2285 17 30 min Winter 84.226 25 60 min Winter 128.285 98 240 min Winter 13.543 188 480 min Winter 13.543 188 480 min Winter 13.543 188 480 min Winter 13.543 188								
15 min Winter 88.612 0.112 21.3 6.6 0 K 30 min Winter 88.593 0.093 17.6 4.5 0 K 120 min Winter 88.595 0.065 12.4 2.2 0 K 180 min Winter 88.555 0.065 12.4 2.2 0 K 180 min Winter 88.555 0.050 9.5 1.3 0 K 240 min Winter 88.555 0.045 7.6 1.1 0 K 360 min Winter 88.538 0.038 5.5 0.8 0 K 480 min Winter 88.534 0.034 4.4 0.6 0 K 600 min Winter 88.531 0.031 3.7 0.5 0 K Storm Rain Event (mm/hr) 15 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 13.543 188 480 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 3.241 1072 2880 min Summer 1.847 2140 5760 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.048 4272 10080 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 1.228.285 30 min Winter 84.226 25 60 min Winter 128.285 30 min Winter 84.226 25 60 min Winter 128.235 98 240 min Winter 13.543 188 480 min Winter 128.285 30 min Winter 13.543 188 480 min Winter 13.543 188								
30 min Winter 88.612 0.112 21.3 6.6 O K 60 min Winter 88.593 0.093 17.6 4.5 O K 120 min Winter 88.565 0.065 12.4 2.2 O K 180 min Winter 88.550 0.050 9.5 1.3 O K 240 min Winter 88.554 0.045 7.6 1.1 O K 360 min Winter 88.538 0.038 5.5 0.8 O K 480 min Winter 88.534 0.034 4.4 0.6 O K 600 min Winter 88.531 0.031 3.7 O.5 O K Storm Rain Event (mm/hr) 15 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 10.792 248 600 min Summer 7.823 364 960 min Summer 7.823 364 960 min Summer 4.493 724 2160 min Summer 4.493 724 2160 min Summer 1.847 2140 5760 min Summer 1.847 2140 5760 min Summer 1.641 2904 7200 min Summer 1.								
60 min Winter 88.593 0.093 17.6 4.5 0 K 120 min Winter 88.565 0.065 12.4 2.2 0 K 180 min Winter 88.555 0.050 9.5 1.3 0 K 240 min Winter 88.545 0.045 7.6 1.1 0 K 360 min Winter 88.538 0.038 5.5 0.8 0 K 480 min Winter 88.531 0.031 3.7 0.5 0 K 8								
120 min Winter								
180 min Winter 88.550 0.050 9.5 1.3 0 K 240 min Winter 88.545 0.045 7.6 1.1 0 K 360 min Winter 88.538 0.038 5.5 0.8 0 K 480 min Winter 88.531 0.031 3.7 0.5 0 K Storm Rain Time-Peak (mm/hr) 15 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 2.568 1448 4320 min Summer 2.568 1448 4320 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.847 2140 5760 min Summer 1.217 3544 8640 min Summer 1.217 3544 8640 min Summer 1.217 3544 8640 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 128.333 98 240 min Winter 13.543 188 480 min Winter 13.543 188								
240 min Winter 88.545 0.045 7.6 1.1 0 K 360 min Winter 88.538 0.038 5.5 0.8 0 K 480 min Winter 88.538 0.031 3.7 0.5 0 K 88.531 0.031 3.7 0.5 0 K Storm Rain Time-Peak (mm/hr) 15 min Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 31.800 70 180 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 10.792 248 600 min Summer 7.823 364 600 min Summer 6.219 490 1440 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 4.493 724 2160 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.2568 1448 4320 min Summer 1.261 2904 7200 min Summer 1.277 3544 8640 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 1.28.285 17 30 min Winter 128.285 17 30 min Winter 31.800 70 180 min Winter 13.543 188 480 min Winter 13.543 188 480 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 10.792 252								
## 480 min Winter							1.1	ОК
Storm Rain Time-Peak Event (mm/hr) (mins)	360 min	Winter	88.538	0.038		5.5	0.8	O K
## Storm Event (mm/hr) (mins) 15 min Summer 128.285	480 min	Winter	88.534	0.034		4.4	0.6	O K
### Summer 128.285 16 30 min Summer 84.226 24 60 min Summer 52.662 40 120 min Summer 31.800 70 180 min Summer 23.353 100 240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.461 2904 7200 min Summer 1.048 4272 10080 min Summer 1.048 4272 10080 min Summer 1.048 4272 10080 min Summer 1.217 3544 8640 min Summer 1.28.285 17 30 min Winter 128.285 17 30 min Winter 31.800 70 180 min Winter 31.800 70 180 min Winter 31.543 188 480 min Winter 10.792 252 600 min Winter 10.792 252 600 min Winter 10.792 252 600 min Winter 9.043 298 100 200 min Winter 9.043 298 100 min Winter 128.285 128 min Winter 9.043 298 10	600 min	Winter		0.031				O K
15 min Summer 128.285				(-				
30 min Summer 84.226 24 60 min Summer 52.662 40 120 min Summer 31.800 70 180 min Summer 23.353 100 240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 31.800 70 180 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298			Evenc	(.	/ 111 /	(IIIIII)	,	
60 min Summer 52.662 40 120 min Summer 31.800 70 180 min Summer 23.353 100 240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.461 2904 7200 min Summer 1.048 4272 10080 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter \$4.226 25 60 min Winter \$52.662 40 120 min Winter 31.800 70 180 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		15	min Sur	nmer 1	28.285		16	
120 min Summer 31.800 70 180 min Summer 23.353 100 240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter \$4.226 25 60 min Winter \$2.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		30	min Sur	nmer	84.226		24	
180 min Summer 23.353 100 240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.461 2904 7200 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 31.800 70 180 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298							40	
240 min Summer 18.644 128 360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.461 2904 7200 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
360 min Summer 13.543 188 480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 31.800 70 180 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
480 min Summer 10.792 248 600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
600 min Summer 9.043 310 720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
720 min Summer 7.823 364 960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298				nmer	9 043	4		
960 min Summer 6.219 490 1440 min Summer 4.493 724 2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298				nmer	7.823			
2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		960	min Sur	nmer	6.219	4	190	
2160 min Summer 3.241 1072 2880 min Summer 2.568 1448 4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		1440	min Sur	mmer	4.493	-	724	
4320 min Summer 1.847 2140 5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		2160	min Sur	mmer	3.241	10	72	
5760 min Summer 1.461 2904 7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
7200 min Summer 1.217 3544 8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298					1.847	21		
8640 min Summer 1.048 4272 10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		7200	min Sur	nmer	1.461			
10080 min Summer 0.923 5136 15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
15 min Winter 128.285 17 30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
30 min Winter 84.226 25 60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
60 min Winter 52.662 40 120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
120 min Winter 31.800 70 180 min Winter 23.353 98 240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		60	min Wi	nter	52.662			
240 min Winter 18.644 128 360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298		120	min Wi	nter	31.800		70	
360 min Winter 13.543 188 480 min Winter 10.792 252 600 min Winter 9.043 298								
480 min Winter 10.792 252 600 min Winter 9.043 298		240	min Wi	nter	18.644	-		
600 min Winter 9.043 298		360	min Wi	nter	13.543	-		
©1982-2011 Micro Drainage Ltd								
		©1982	2-2011	Micro	Drai	lnage I	ıtd	

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL

Date 03/11/2014 17:19 Designed by Tim

File permeable road - perme... Checked by

Micro Drainage.

Page 2

Micro Drainage Source Control W.12.6

Summary of Results for 100 year Return Period (+30%)

	Stor Even		Max Level (m)	Max Depth (m)	Infil	lax tration ./s)	Max Volume (m³)	Status
720	min	Winter	88.529	0.029		3.2	0.4	ОК
960	min	Winter	88.526	0.026		2.6	0.4	O K
1440	min	Winter	88.522	0.022		1.9	0.3	O K
2160	min	Winter	88.519	0.019		1.3	0.2	O K
2880	min	Winter	88.517	0.017		1.1	0.1	O K
4320	min	Winter	88.514	0.014		0.8	0.1	O K
5760	min	Winter	88.513	0.013		0.6	0.1	O K
7200	min	Winter	88.512	0.012		0.5	0.1	O K
8640	min	Winter	88.511	0.011		0.4	0.1	O K
10080	min	Winter	88.510	0.010		0.4	0.1	O K
			Storm		Rain	Time-Pe	eak	
			Event	(mm/hr)	(mins)	
		720	min Wi	nter	7.823	3	364	
		960	min Wi	nter	6.219	4	184	
		1440	min Wi	nter	4.493		728	
		2160	min Wi	nter	3.241	10	068	
		2880	min Wi	nter	2.568	14	160	
		4320	min Wi	nter	1.847	22	L24	
		5760	min Wi	nter	1.461	2	784	
		7200	min Wi	nter	1.217	3	720	
		8640	min Wi	nter	1.048	4.1	L76	
		10080	min Wi	nter	0.923	4.9	944	

INFRASTRUCT CS LTD

Station Point
Old Station Way
Eynsham Oxon OX29 4TL

Date 03/11/2014 17:19
File permeable road - perme... Checked by

Rainfall Details

Source Control W.12.6

Micro Drainage

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time / Area Diagram

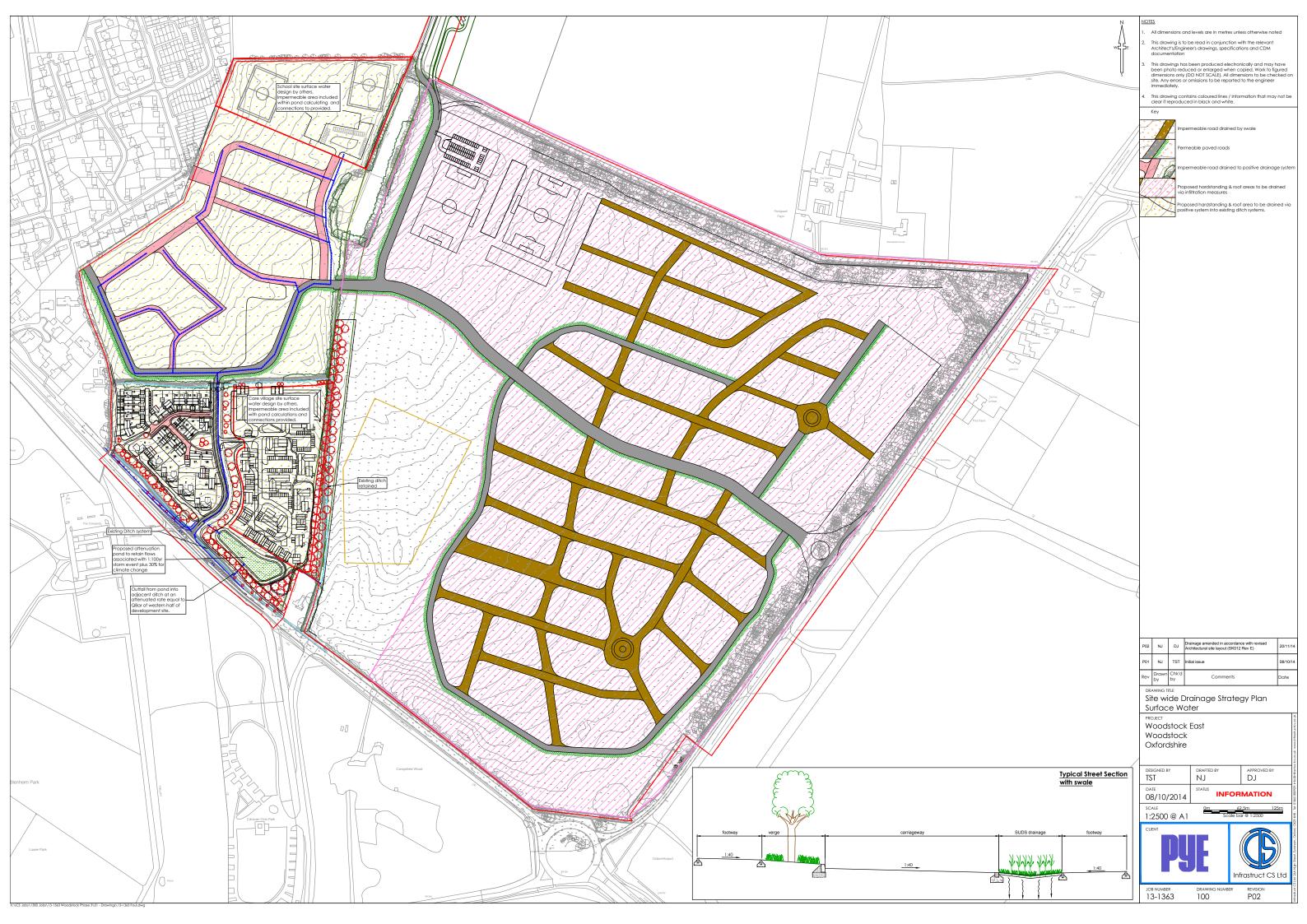
Total Area (ha) 0.070

Time Area (mins) (ha) (mins) (ha)

0-4 0.000 4-8 0.070

INFRASTRUCT CS LTD		Page 4
Station Point		
Old Station Way		
Eynsham Oxon OX29 4TL		
Date 03/11/2014 17:19	Designed by Tim	
File permeable road - perme	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details


Storage is Online Cover Level (m) 89.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.39000	Width (m)	7.0
Membrane Percolation (mm/hr)	1000	Length (m)	100.0
Max Percolation (1/s)	194.4	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	88.500	Cap Volume Depth (m)	0.000

Appendix L – Site Wide Surface Water Drainage

Appendix M – EA Pro-forma Document

Environment Agency Standing Advice to Local Planning Authorities

Version 1.1

<u>West Thames – Surface Water Flood Risk Assessment (FRA)</u> <u>Guidance note and pro-forma for Development over 1ha</u>

To be acceptable as a FRA the applicant should confirm as a minimum:

- 1. That it will be feasible to balance surface water run-off to the Greenfield run-off rate for all events up to the 1 in 100 year storm (including additional climate change allowance*) and set out how this will be achieved, or if the development is Brownfield, achieve betterment in the surface water runoff regime; ensuring that surface water runoff will not increase flood risk to the development or third parties.
- * Climate Change An allowance for climate change needs to be incorporated, which means adding an extra amount to peak rainfall (20% for commercial development, 30% for residential).
- 2. How sustainable drainage system techniques (SuDS) will be used with any obstacles to their use clearly justified.
- 3. That the residual risk of flooding has been addressed should any drainage features fail or if they are subjected to an extreme flood event. Overland flow routes or above ground storage of water should not put people and property at unacceptable risk. This could include measures to manage residual risk such as raising ground or floor levels where appropriate.

The applicant should confirm these above points to you by using the pro-forma which is contained below. This should be completed by the developer and returned to you. The top part of the pro-forma includes a section where the developer can clearly state what the difference in rates and volumes as a result of the development will be. The lower sections are provided to show that the developer can explain how drainage rates and volumes are being dealt with on the site in order to not increase rates and volumes. The pro-forma includes a column where the developer should identify where the information is demonstrated. If the pro-forma is completed and signed by the developer, this can serve as a summary of the surface water strategy on the site and will allow them to demonstrate that they have complied with the Technical Guidance to the National Planning Policy Framework (NPPF).

INFORMATION

Climate Change

The NPPF provides advice on the impact of climate change. Table 5 of the Technical Guidance indicates that surface water FRAs should allow for an increase of 30% in peak rainfall intensity for developments still in existence by 2085 (20% for developments with a life expectancy which ends prior to 2085).

Sustainable Drainage Systems (SuDS)

Surface water run-off should be controlled as near to its source as possible through a sustainable drainage approach to surface water management. SuDS seek to mimic natural drainage systems and retain water on or near to the site, when rain falls, in contrast to traditional drainage approaches, which tend to pipe water off site as quickly as possible. SuDS therefore offer significant advantages over conventional piped drainage systems and will be applicable to most sites.

Government policy set out in paragraph 103 of the NPPF expects Local Planning Authorities (LPAs) to give priority to the use of SuDS in determining planning applications. Further support for SuDS is set out in chapter 5 of the Planning Policy Statement 25 (PPS25) Practice Guide.

Approved Document Part H of the Building Regulations 2010 also establishes a hierarchy for surface water disposal, which encourages a SuDS approach beginning with infiltration where possible e.g. soakaways or infiltration trenches. Where SuDS are used, it must be established that these options are feasible, can be adopted and properly maintained and would not lead to any other environmental problems.

Where the intention is to dispose to soakaway, these should be shown to work through an appropriate assessment carried out under Building Research Establishment Digest 365.

Further information and references on SuDS can be found in chapter 5 of the PPS25 Practice Guide. The Interim Code of Practice for Sustainable Drainage Systems provides advice on design, adoption and maintenance issues and a full overview of other technical guidance on SuDS. The Interim Code of Practice is available electronically on CIRIA's web site at: http://www.ciria.com/suds/interim_code.htm.

Disposal of surface water to public sewer

Before disposal of surface water to the public sewer is considered all other options set out in Approved Document Part H of the Building Regulations 2010 should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.

Designing for exceedence

For on/near site flooding, the PPS25 Practice Guide at paragraph 5.51 states that:

"For events with a return-period in excess of 30 years, surface flooding of open spaces such as landscaped areas or car parks is acceptable for short periods, but the layout and landscaping of the site should aim to route water away from any vulnerable property, and avoid creating hazards to access and egress routes (further guidance in CIRIA publication C635 Designing for exceedence in urban drainage - good practice). No flooding of property should occur as a result of a 1 in 100 year storm event (including an appropriate allowance for climate change). In principle, a well-designed surface water drainage system should ensure that there is little or no residual risk of property flooding occurring during events well in excess of the return-period for which the sewer system itself is designed. This is called designing for event exceedence."

The CIRIA publication `Designing for exceedence in urban drainage-good practice' can be accessed via the following link: http://www.ciria.com/suds/ciria_publications.htm

For off-site flooding, the PPS25 Practice Guide states at paragraph 5.54:

"For the range of annual flow rate probabilities up to and including the one per cent annual exceedence probability (1 in 100 years) event, including an appropriate allowance for climate change, the developed rate of run-off into a watercourse, or other receiving water body, should be no greater than the existing rate of run-off for the same event. Run-off from previously-developed sites should be compared with existing rates, not greenfield rates for the site before it was developed. Developers are, however, strongly encouraged to reduce runoff rates from previously-developed sites as much as is reasonably practicable. Volumes of run-off should also be reduced wherever possible using infiltration and attenuation techniques. Interim guidance on calculation of site run-off rates can be found on the CIRIA website: http://www.ciria.org

Is the proposal part of a larger development site?

LPAs should be aware that some applications for smaller scale developments might be part of larger sites which already have outline permission. In such cases, the LPA should ensure that any conditions which were applied to the larger site, in relation to surface water drainage, are complied with.

Note:

Development which involves a culvert or an obstruction to flow on an Ordinary Watercourse will require consent under the Land Drainage Act 1991 and the Floods and Water Management Act 2010. In the case of an Ordinary Watercourse the responsibility for Consenting lies with the Lead Local Flood Authority (LLFA). An Ordinary Watercourse is defined as any watercourse not identified as a Main River on maps held by the Environment Agency and DEFRA. For further information on Ordinary Watercourses contact the LLFA. We would still wish to be consulted on any proposed culverting or an obstruction to flow on a Main River.

ENVIRONMENT AGENCY WEST THAMES - SURFACE WATER PRO-FORMA

Site Name	Woodstock East, Woodstock
Site Size	70.04 ha
Development Type (Green/Brown field)	Green Field Site

Discharge Rates	Existing	Proposed	Difference Between Existing and Proposed	Which Document or Plan is this information contained in
1 in 1	42.6	50.1	+7.5 l/s	
Qbar(1 in 2)	44.1	50.1	+6 l/s	Section 11.5 of the flood risk assessment and drainage strategy report
1 in 30	113.6	50.1	-63.5 l/s	compiled by Infrastruct CS Ltd confirms that the existing site has been
1 in 100	159.9	50.1	-109.8 l/s	considered as a greenfield site and that the underlying ground
1 in 100 +Climate change (proposed only)		50.1		condition have been substantiated as clays on the western half with gravels on the eastern half. Therefore the current greenfield run off
Discharge Volumes				rates and volumes have been provided for the western half on the understanding that the rates and volumes for the eastern half are
1 in 1	640.6	640.6	0	dealt with on site and infiltrate into the underlying ground conditions.
Q Bar (1 in 2)	779.2	779.2	0	
1 in 30	1478.26	1478.26	0	The proposed surface water drainage system has been developed
1 in 100	2005.05	2005.05	0	to replicate this arrangement via the use of a attenuation pond with a restricted outlet into the adjacent watercourse sized to cater for
Proposed 1 in 100 +Climate change		2390.7		the 1 in 100yr storm event plus climate change with full infiltration devices on the permeable half of the site.

The above section should only show small increases in discharge rate if an increase in discharge volume is shown – otherwise there should be no increase. Note that an increase in discharge volume may be shown in the above table - but how this is being attenuated on site and discharged so as to not increase flood risk should be set out below. If an increase in discharge rate or volume is shown, or if an increase was predicted but has been designed in to the system, please answer the following questions.

Discharge Rates (The to address trickle or Q-the volumes section be	Which Document or Plan is this information contained in	
How are increases in discharge rate being dealt with?	Flows from hard standing and roof areas are being drained via the use of a piped gravity connection which will direct flows into the storage pond at the bottom of the site. From here the restricted outfall links to the adjacent watercourse.	Sections 11 and swaler of the FRA
What storage volume is required as a result of restricting discharge rate?	The storage pond and swale network have been modelled within Microdrainage software and requires a storage volume of 2390.7cum to cater for the 1 in 100yr plus Climate change storm event for the site.	Section 11 of the FRA
Where has this volume been provided on site?	Within an attenuation pond and swale network. Further storage is available but this has been discounted at this master plan stage.	Section 11.7 of the FRA
Discharge Volumes (Varickle discharged at 21/2) rate for the site as if it varieties is less permeable.	Which Document or Plan is this information contained in	

Which method has/will be used to control additional discharge volumes?	Given the clay ground co will find their way into t	Section 11 of the FRA	
What is the Qbar/Trickle Discharge Rate?		Appendix F of the FRA	
As a result of restricting rate, what additional attenuation storage volume was/is required?	2390.7cum provi	Section 11 of the FRA	
Where on site will/has this attenuation be provided?	At the lo	Section 11 of the FRA	
How will rates be restricted (Hydrobrake etc)?		Section 11 of the FRA	
Please also confirm			Which Document or Plan is this information contained in
• • • • • • • • • • • • • • • • • • • •	twork will occur in the 1 in event	System will be offered for adoption and so no flooding of piped network will occur. Final on-site system to be fully simulated	N/A
Any flooding or exceedence outside the pipe network will be safely contained on site and not increase flooding elsewhere (please indicate on a plan the location of any flooding).			

Which SuDS methods have been used on site.	Attenuation pond and swales for western half and infiltration swales, permeable pavement and soakaways for eastern half of the site	Section 11 of the FRA
If infiltration is proposed - That infiltration rates are acceptable (Provide rate).	1.095 x 10-4m/s (eastern half of site only)	11.10 of the FRA
That infiltration devices or their attenuation areas are appropriately sized.	Infiltration swales and permeable pavements are being proposed for the eastern half of the site	Refer to surface water drainage strategy within Appendices J & K

The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with.

This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.

Form Completed By: Tim Trotman Company: Infrastruct C\$ Ltd

Date: 4th November 2014