Tables

Table 3	Bicester Station CSM table
Table 4	Islip Station CSM table
Table 5	Water Eaton Station CSM table

 Table 1:
 Evaluation of Potential Contaminant Linkages - Bicester Station

Potential Contaminant	Re	eceptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
All contaminants	•	Secondary A aquifer	Leaching from sorbed phase and	Construction	No evidence of NAPL in logs.	No
		(Cornbrash)	dissolution from NAPL.	Post-construction	Site Investigation to be undertaken and analytical results assessed in relation to potential contamination.	
					Mobilisation of contaminants in groundwater derived from off-site sources possible during and post-construction.	
					Enhanced vertical migration considered unlikely post-construction given the lack of a laterally continuous shallow groundwater.	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
	Langford Brook Deposition of ai	Deposition of air-borne soil particles.	Construction	CoCP states that precautions will be	No	
				Post-construction	taken to prevent air-borne dusts from entering any bodies of water during construction (Section 7).	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
		Deposition of water-borne soil	Construction	CoCP states that precautions will be	No
		particles.	Post-construction	taken to prevent water-borne dusts from entering any bodies of water during construction (Section 7).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				Groundwater unlikely to be encountered but could potentially flow towards the water bodies.	
		Lateral migration in groundwater or NAPL.	Construction	No evidence of NAPL in logs.	No
			Post-construction	Contaminants derived from site not considered to be significant based on evidence from logs.	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).
				Mobilisation of contaminants in groundwater derived from off-site sources possible during and post-construction, but groundwater unlikely to be encountered.	
	Local employees	Dermal contact and ingestion of soil	Construction	CoCP states that work sites will be	No
	Local residents	particles (on-site)	Post-construction	secured to prevent unauthorised access during construction (Section 4).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs.	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
		Dermal contact, ingestion and inhalation of soil particles (off-site)	Construction Post-construction	Dust suppression and prevention measures during construction are included in the CoCP (Sections 4 and 7).	No
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs.	
Volatile compounds	 Local employees 	Vapour inhalation	Construction	No odours recorded.	No
	• Local residents		Post-construction	CoCP states requirement for suitable monitoring and mitigation during construction where the potential for VOC emissions exists.	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

CoCP - Code Of Construction Practice

Table 1: Evaluation of Potential Contaminant Linkages - Bicester Station

Potential Contaminant	Recep	ptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
All contaminants	• S	Secondary A aquifer	Leaching from sorbed phase and dissolution from NAPL.	Construction	No evidence of NAPL in logs.	No
	(1	River Terrace Gravels)		Post-construction	Mobilisation of contaminants in groundwater derived from off-site sources possible during and post-construction.	
					Enhanced vertical migration considered unlikely post-construction given the lack of a laterally continuous shallow groundwater.	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
	• B	Bletchingdon Brook and	Deposition of air-borne soil particles.	Construction	CoCP states that precautions will be	No
	F	River Ray		Post-construction	taken to prevent air-borne dusts from entering any bodies of water during construction (Section 7).	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
		Deposition of water-borne soil	Construction	CoCP states that precautions will be	No
		particles.	Post-construction	taken to prevent water-borne dusts from entering any bodies of water during construction (Section 7).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				Groundwater unlikely to be encountered but could potentially flow towards the water bodies.	
		Lateral migration in groundwater or NAPL.	Construction	No evidence of NAPL in logs.	No
			Post-construction	Contaminants derived from site not considered to be significant based on evidence from logs.	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				Mobilisation of contaminants in groundwater derived from off-site sources possible during and post-construction, but groundwater unlikely to be encountered.	
	Local employees	Dermal contact and ingestion of soil	Construction	CoCP states that work sites will be	No
	Local residentsOnsite Users	particles (on-site)	Post-construction	secured to prevent unauthorised access during construction (Section 4).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs.	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
		Dermal contact, ingestion and inhalation of soil particles (off-site)	Construction Post-construction	Dust suppression and prevention measures during construction are included in the CoCP (Sections 4 and 7).	No
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs.	
Volatile compounds	 Local employees 	Vapour inhalation	Construction	No odours recorded. Detections of soil	No
	Local residentsOnsite Users		Post-construction	gas. No known voids or confined space where gas could accumulate.	
				CoCP states requirement for suitable monitoring and mitigation during construction where the potential for VOC emissions exists.	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

CoCP - Code Of Construction Practice

Table~XX:~Evaluation~of~Potential~Contaminant~Linkages~-~Water~Eaton~Station

Potential Contaminant	Ro	eceptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
All contaminants	•	Secondary A aquifer	Leaching from sorbed phase and	Construction	No evidence of NAPL in logs.	No
		(Cornbrash)	dissolution from NAPL.	Post-construction	Site Investigation undertaken and analytical results assessed in relation to potential contamination. No significant sources of contamination noted.	
					Mobilisation of contaminants in groundwater derived from off-site sources considered unlikely due to low permeability underlying strata.	
					Enhanced vertical migration considered unlikely post-construction given the lack of a laterally continuous shallow groundwater and predominantly hard standing post construction.	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
	•	Surface water ponds	Deposition of air-borne soil particles.	Construction	No continuous groundwater noted in	No
				Post-construction	the available borehole logs. CoCP states that precautions will be taken to prevent air-borne dusts from entering any bodies of water during construction (Section 7).	
					CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
		Deposition of water-borne soil particles.	Construction Post-construction	CoCP states that precautions will be taken to prevent water-borne dusts from entering any bodies of water during construction (Section 7).	No
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				A continuous body of Groundwater is considered unlikely to be encountered therefore the risk of lateral migration is considered negligible.	
		Lateral migration in groundwater or	Construction	No evidence of NAPL in logs.	No
		NAPL.	Post-construction	Contaminants derived from site not considered to be significant based on evidence from logs.	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				A continuous body of Groundwater is considered unlikely to be encountered therefore the risk of lateral migration is considered negligible	

Potential Contaminant	Receptors	Pathways	Phase When Pathway Is Relevant	Evaluation	Plausible Contaminant Linkage?
	Local employees Local recidents	Dermal contact and ingestion of soil particles (on-site)	Construction	CoCP states that work sites will be secured to prevent unauthorised access	No
	• Local residents	ents particles (off-site)	Post-construction	during construction (Section 4).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs and analytical results.	
		Dermal contact, ingestion and	Construction	Dust suppression and prevention	No
		inhalation of soil particles (off-site)	Post-construction	measures during construction are included in the CoCP (Sections 4 and 7).	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	
				No visual or olfactory indication of significant on-site impact from available geological logs.	
Volatile compounds	• Local employees	Vapour inhalation	Construction	No significant odours recorded.	No
	Local residentsFuture Site users		Post-construction	CoCP states requirement for suitable monitoring and mitigation during construction where the potential for VOC emissions exists.	
				CoCP states that materials re-use criteria will ensure post-construction suitability for use (Section 8).	

CoCP - Code Of Construction Practice

Annex A

Logs

Annex A1

Bicester

WINDOWLESS SAMPLER LOG

Project East West Rai	1	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 07-02-13 07-02-13	Ground Level (m)	Co-Ordinates ()	LRX WS01 - Wk4
Contractor		•		Sheet
Bridgeway Cor	nsulting			1 of 1

		_						
SAMPLES & T	TESTS					STRATA		ent/
Depth Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.00-0.20 B					(0.45)	Grey CLEAN BALLAST of igneous rock.	110 7 11	
0.45-0.65 B					0.43	MADE GROUND: Yellowish brown sandy CLAY. Sand is fine to coarse.		
0.75-0.90 B					-(0.45) 1.20	Yellowish brown COBBLES of sandstone. Dark brown sandy slightly gravelly CLAY. Sand is fine to		
1.20-1.80 B 1.20-1.65 S	N7				(0.60)	coarse. Gravel is angular to subrounded fine to coarse sandstone. Firm high locally medium strength brown with pockets of greyish green sandy CLAY. Sand is fine to medium. Rare	98	
1.80-2.00 D					1.80	angular to subrounded fine mudstone and flint gravel. Slight organic odour. Some selenite crystals and rare black	88 61	
2.00-2.10 2.00-2.45 2.10-3.00 B	N7				2.10	\speckling.Pockets of greyish green more frequent with depth. Firm yellowish brown sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is angular to subangular fine to coarse	59	
2.10-3.00 B					- - -	sandstone and flint. Becoming more sandy and gravelly with depth. Loose yellowish brown slightly sandy GRAVEL. Sand is	68	
3.00-3.45 S	N9				(1.57)	medium to coarse. Gravel is subangular to rounded fine to coarse flint and sandstone.	58	
3.60-3.67 S	N50/				3.67	Firm medium strength grey mottled brown with rare yellow pockets CLAY. Rare angular fine sandstone and mudstone gravel. Becoming dark green with depth.		
3.00-3.07	30 mm				-			
					- - -			
					- - -			
					- - -			
					- - -			
					- - -			
					-			
					- - -			
					- - -			
					- - -			
D	1 337 - 4	01						

NVESTIGATION/GI	-					- - - - -			
SITE	Prog	gress and	l Water (Observati	ons				GENERAL
TEST K	Date	Depth	Water Dpt	Dia. mm	% Rec				REMARKS
AGS 3_1 LAB.GLB BCL WS FIELD	07-02-13 07-02-13 08-02-13 08-02-13	1.20 2.00 3.00 3.60	DŔY DAMP DRY DRY	N/A 87 77 67	N/A 100 80 80				Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole Drilled at London Road level crossing.
GINT STD		nsions in m cale 1:50	netres Cl	ient Chi	ltern Rai	lways Ltd	Method/ Plant Used	Dart Competitor Rig	Logged By ZS

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West 1	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 30-05-13 30-05-13	Ground Level (m)	Co-Ordinates ()	BT WS01 - Wk 9
Contractor		'		Sheet
Bridgeway	Consulting			1 of 1

Brid	lgeway	Consult	ıng					1 0	t I	
SAMPLI	ES & T	ESTS					STRATA	2		nt/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		l Test Pa PP	Instrument/
- 0.20 - 0.20 - 0.20 - 0.20 - 0.60 - 0.60	B D ES B D ES					(1.00)	MADE GROUND: Black gravelly clayey SAND. Sand is fine to coarse. Gravel is angular to subangular fine to coarse ballast. Rare metal wire. Rare rootlets. Very soft grey mottled black/brown CLAY.	0		
1.20-1.60 1.20-1.65	D S	N4			0 · · · · · · · · · · · · · · · · · · ·	(0.40)	Black slightly gravelly clavey SAND. Sand is fine to coarse			
1.65-1.80 - 1.80-2.00 - 2.00-2.45	B D S	N4				(0.60)	Soft low sterngth greyish blue sandy CLAY. Sand is fine to coarse.		25 25	
2.25-2.80	В					(0.80)	Soft low strength light brown slightly sandy CLAY. Sand is fin to coarse.	e e	25 38	
2.80-2.90 - 3.00-3.35 - 3.05-3.80	D S B	N7				3.00	Firm medium strength brownish blue slightly sandy CLAY. Sar is fine to coarse.	ıd	38 58 50	
3.80-4.00	D S	N8				3.80 - - - - - - - - - - - - - - - - - - -	Firm medium strength dark brown very sandy CLAY. Sand is medium to coasre.		63 75 75 58	
4.40-4.50 4.50-4.85	D B					- (0.55) - 4.85	Firm medium strength yellowish brown slightly sandy CLAY. Sand is fine to coarse. Becoming very sandy from 4.8m.		67	
Progr	D					4.90/ - - -	Strong grey LIMESTONE.			
- - - -						- - - -				
· · · · ·						- - - -				
- -						- - - -				
						- - - -				
				ervation		1		GENEI		
Date	Depth	Water Dpt	D	ia. mm	% Rec			REMA	CAN	

K:\SITE IP	Data	gress and	Water	Observati Dia. mm					GENERAL REMARKS
AGS 3_1 LAB.GLB BCL WS FIELD TEST	30-05-13 30-05-13 30-05-13 30-05-13	1.20 2.00 3.00 4.00 4.90	Dpt DRY DRY DRY DRY DRY	N/A 87 87 77 67	N/A 80 100 100 90				1. Position scanned with CAT & genny prior to excavation. 2. Inspection pit excavated to 1.20mbgl prior to drilling. 3. Hole Drilled at 19m 40ch West.
GINT STD,		nsions in m	netres Cl	ient Chi	ltern Rail	ways Ltd	Method/ Plant Used	Premier Rig	Logged By AH

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West Rail	I	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 30-05-13 30-05-13	Ground Level (m)	Co-Ordinates ()	BT WS02 - Wk 9
Contractor				Sheet
Bridgeway Cor	sulting			1 of 1

		- a-a	1115					1 01 1	<u> </u>
SAMPLE	ES & T	ESTS					STRATA		l ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.00-0.45	B D					(0.45) 0.45	MADE GROUND: Dark brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse sandstone and ballast.		
0.30 - 0.45-1.20 - 0.70 - 0.70	ES B D ES					(0.75)	Light brown mottled grey slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium sandstone. Occasional rootlets.		
1.20		N4				1.20	Soft low strength brownish green slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fin eo	_	
1.60-1.70 1.70-2.00	D B					- - -	to coarse limestone.	38	
2.00-2.45	S B	N4			- <u> </u>	L(1.50)		36	
2.50-2.70	D				0	2.70	Firm low and medium strength dark brown very sandy CLAY.	25 38	
2.75-3.00 3.00 3.00	B D	N	1			3.00	Sand is fine to coarse. Soft low strength dark brown becoming yellowish brown very	75	
3.00-3.45	S	N6	_			(1.00)	sandy CLAY. Sand is fine to coarse.	25	
3.60-3.70	D S	N8				4.00	Loose yellowish brown slightly gravelly clayey SAND. Sand is	25 25	
SING	3	140			-0	(0.78)	fine to coarse. Gravel is subangular to subrounded fine to medium quartzite, limestone and flint.		
4.80-5.00	D					4.78	Soft low strength dark grey CLAY.	25	
5.00-5.45	S	N8				(0.82)		38	
5.60-5.70	D					5.60	Strong grey LIMESTONE.		
						- - -			
						- - - -			
						- - -			
Progre						- - -			
Progre	ess and	Water	Obs	ervation	ns	-		ENER AL	

Prog	gress and		Observati	ons			GENERAL
Date	Depth	Water Dpt	Dia. mm	% Rec			REMARKS
Prog Date 30-05-13 30-05-13 30-05-13 30-05-13 30-05-13 30-05-13	1.20 2.00 3.00 4.00 5.00 5.70	DRY DRY DRY 3.2 3.2 3.2	N/A 87 87 77 77 67	N/A 25 80 60 60 10			Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole Drilled at 19m 47ch West.
		otmaa Cl	ient Chi	Itarn Dai	wave I td	Method/	Logged By

Logged By AH All dimensions in metres Scale 1:50 Method/ Plant Used Client Chiltern Railways Ltd Premier Rig

Bridgeway Consulting Ltd Beeston Business Park, Technology DriveVINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West Ra	ail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 16-08-12 16-08-12	Ground Level (m)	Co-Ordinates ()	WS05B - Wk20
Contractor				Sheet
Bridgeway Co	onsulting			1 of 1

DI	ageway	Consuit	mg						1 01 1	
SAMP	LES & T	ESTS					STRATA			ent/
Depth	Type No	Test Result	Water	Reduce Level	d	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/
0.30 0.30	B D					(0.80)	MADE GROUND: Dark brown gravelly fine to coarse SANI Gravel is angular to rounded fine to coarse ballast, flint and quartzite. Some roots.	D.	IISV FF	
0.95 0.95 1.20-2.00	B D L		<u> </u>			0.80 -(0.40) - 1.20 - 1.30	MADE GROUND: Light brownish yellow slightly gravelly clayey SAND. Sand is fine to coarse. Gravel is angular to subrounded flint, sandstone and quartzite. Rare roots.			
						(0.70)	Orangey brown clayey SAND & GRAVEL. Sand is fine to coarse. Gravel is subangular fine to coarse sandstone. Soft to firm medium strength dark brown CLAY.	/		
-						2.00			69	
						-				
-						-				
-						<u>-</u> - -				
-						- - -				
						-				
-										
						-				
-						-				
						-				
						-				
Prog	gress and		_			1		GI	ENERAL	
Date	Depth	Water Dpt	+		% Rec			RE	EMARKS	
16-08-12 16-08-12	1.20 2.00	1.20		N/A 87	N/A 100%		genn 2. In 1.20	ny prior to spection mbgl pri	anned with CAT o excavation. pit excavated to or to drilling. ed at 20m 41ch)
All dime	nsions in m	netres C	lient	Chil	tern Rai	lways Lt	d Method/ Plant Used HHWS	gged B	y GD	

K:\SITE IN	Prog	gress and	l Water C	Observati	ons				GENERAL
	Date	Depth	Water Dpt	Dia. mm	% Rec				REMARKS
AGS 3_1 LAB.GLB BCL WS FIELD TEST	16-08-12 16-08-12	1.20 2.00	1.20	N/A 87	N/A 100%				Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole Drilled at 20m 41ch East.
2	A 11 dimes		C1	ient Chi	Itorn Doi	wave I td	Method/	<u> </u>	Logged By

Bridgeway Consulting Ltd Beeston Business Park, Technology DriveVINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West Rai	I	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 11-10-12 11-10-12	Ground Level (m)	Co-Ordinates ()	WS43B - Wk28
Contractor				Sheet
Bridgeway Cor	sulting			1 of 1

	T EC 0.7		T				CITID A TE A	1 01 1	<u> </u>
SAMP	LES & T					ъ л	STRATA	F: 1175 4	nent
Depth	Type No	Test Result	Water	Reduce Level	Legend	Depth (Thickness)		Field Test kPa HSV PP	Instrument/
0.10	D D		1 2 -			(1.00)	Sand is fine to coarse. Gravel is angular to subangular fine to coarse limestone and flint. Some roots. Soft greenish grey mottled orangey brown CLAY.	/	
1.20-1.40 - 1.40-1.90 - 1.55-1.85) B) B					1.20	Soft very low and low strength brown slightly sandy CLAY with rare subrounded fine mudstone gravel. Sand is fine to medium.	25 17 19	
Pro Date 11-10-12 11-10-12 All dime S						- - - - - - - -			
- - - - - - -						- - - - - - - -			
-						- - - - - - - - -			
- - - - - - - -						-			
- - - - - - - -						- - - - - - - -			
Pro	gress and	l Water	Ohs	ervatio	ins			ENIED A I	
Date	Depth	Water Dpt	_	ia. mm	% Rec]		ENERAL EMARKS	
11-10-12 11-10-12 11-10-12	0.60 1.20 1.90	0.6 0.9 0.9		N/A N/A 87	N/A N/A 50		1. Position s genny prior 2. Inspectio	scanned with CAT to excavation. n pit excavated to ior to drilling, ed at 19m 33ch E	
All dime	ensions in n	netres (Client	Chil	tern Rai	lways Lt	d Method/ Plant Used HHWS Logged F	By NY	

	Prog	gress and	l Water C)bservati	ons		GENERAL
ST K	Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS
副1	1-10-12 1-10-12 1-10-12	0.60 1.20 1.90	0.6 0.9 0.9	N/A N/A 87	N/A N/A 50		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at 19m 33ch East.
	All dime	ncione in m	netres Cl	ient Chi	ltern Rai	Iways Ltd Method/	Logged By

2	1-Oct-03 10:35 British Geological Survey		25	8ritish €	eolog	ical S	urvey	Depth							В	riish	Geo	logic	al Su		01
	British Geological Survey		SP 52.2	a Ref. 5864 2202		1000 Joseph	4	Summary of Geological Section Thickness	Great Ooluk Saves		irvey									Briti	sh Geologic:
ANNO MARINE CONTRACTOR AT SEA	British Geological Survey	:		Nat. Grid Ref.	Stafus	cal S O	OD	bwt	ОO			Type		_	В	ritsh	Geo	logi	al Su	vey	
หนึ่ง (5. เมิงให้สายาเลียง) คือเมือนโดยได้เลียงกำเลย		i		Licence No.	IGS Ref. No.	£.	ft.	£ £	ft.			Sig.					1	0	465		otes' overleaf.
dissovidade als orticides sovientes caldin	British Geological Survey		BKESTER	ב	9	00 m	0 E	shewa w	.00 ₪	cal Si	Linings (below well top)	From To						Type of Pump	Chem./Bact. Anal.	Well Driller	icient space has been allowed, continue in Notes' overleaf
ะ สังเสริ พังวารีสาราสร้าน - ในนัก ภาพบาก - เกิ	British Geological Survey		00V NOO	British G	olog		do	ter Level	^	. Persi		. F.	۶.,		В	ritish	- 1		al Su	vey pd6	r space has been allo
and the second s			Lono	Owner	Occupier	Ground Level	Level of Wel	Rest Water Lev	(Date	Construction	Depth	pwd	120					Abstraction Rates			If insufficien
	British Geological Survey						Brit	ish G	eologi	cal Si	urvey									Briti	sh Geologic:
	British Geological Survey			British G	eolog	ical S	urvey								В	ritish	Geo	logic	al Su	rvey	
	British Geological Survey						Brit	ish G	eologi	cal Si	urvey									Briti	sh Geologic:

British Geological Survey

British Geological Survey

British Geological Survey

British Geological Survey

British Geologic

British Geological Survey

BOREHOLE RECORDS

ADJUSTMENT FORM

British Geological Survey

British	Geolog	gical Si	urvey	
OH	LDI	FD	SH	EET

SP 52 SE

ritish Geologic:

BH REGISTRATION NUMBER 161-186

British Geological Survey

British Geological Survey

British Geological Survey

RECORDS ENTERED AND HELD BY WALLINGFORD

British Geological Survey

British Geological Surve

British Geologic

British Geological Survey

British Geological Survey

British Geological Survey

BH-REGISTRATION NUMBER(S)

British Geological Survey

British Geologic:

Project East West F	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 15-11-12 15-11-12	Ground Level (m)	Co-Ordinates ()	WS43AAA
Contractor	•	•		Sheet
Bridgeway (1 of 1			

Bridgeway Consulting							Sheet				
Brid	geway	Consulti	ing						1 of 1		
SAMPLE	ES & T	ESTS					STRATA			ent/	
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/	
- 0.10-0.30 - 0.10	B D					0.35	MADE GROUND: Silty gravelly sand with ash. (Driller's description)		10 7 11	2	
0.10	ES					0.60	MADE GROUND: Orange sand. (Driller's description)			翠	
0.40-0.60 0.45	B D					-	Firm orangey brown mottled grey very low strength slightly sandy CLAY with some roots. Sand is fine to medium.	'			
0.45 0.60-1.00	ES B				<u> </u>	-				祭	
0.90	D ES					(1.20)					
1.20-1.80	B								13		
						1.80	Firm to stiff brown low strength mottled grey CLAY.				
2.00-3.00	В					-	Time to still brown low strength motified grey CLATT.				
						(1.20)					
									38		
						3.00					
3.00-4.70	В					-	Stiff dark grey and orangey brown high strength slightly gr CLAY. Gravel is subangular to subrounded fine to medium	avelly			
						-	limestone with some shells.				
						-					
_						(1.70)			113		
						-					
						-					
						4.70					
-						- - -					
						-					
•						-					
· ·						-					
- ·						-					
						-					
						-					
						-					
_						-					
						-					
						-					
						-	٦				
		Water				İ			NERAL		
	Depth	Water Dpt	_		% Rec		-		MARKS		
15-08-12	1.20 2.00	DRY DRY		N/A 87	N/A 100		ge	enny prior to	nned with CAT excavation. oit excavated to		
	3.00 4.00	DRY DRY		77 67	100 100			20mbgl prior	r to drilling.		
All dimensi	ions in m	etres C	lient	Atkii	ns		Method/ Plant Used Dart Competitor Rig	ogged By	GD		
Scale 1:50							Dur Competitor rag		<i></i>		

Project East West Rai	1	Site	Consultant	PROBE No			
Edgt West Rai	•		Atkins				
Job No	Date 15-11-12	Ground Level (m)	Ground Level (m) Co-Ordinates ()				
J11631	15-11-12						
Contractor		•		Sheet			
Bridgeway Cor	nsulting			1 of 1			

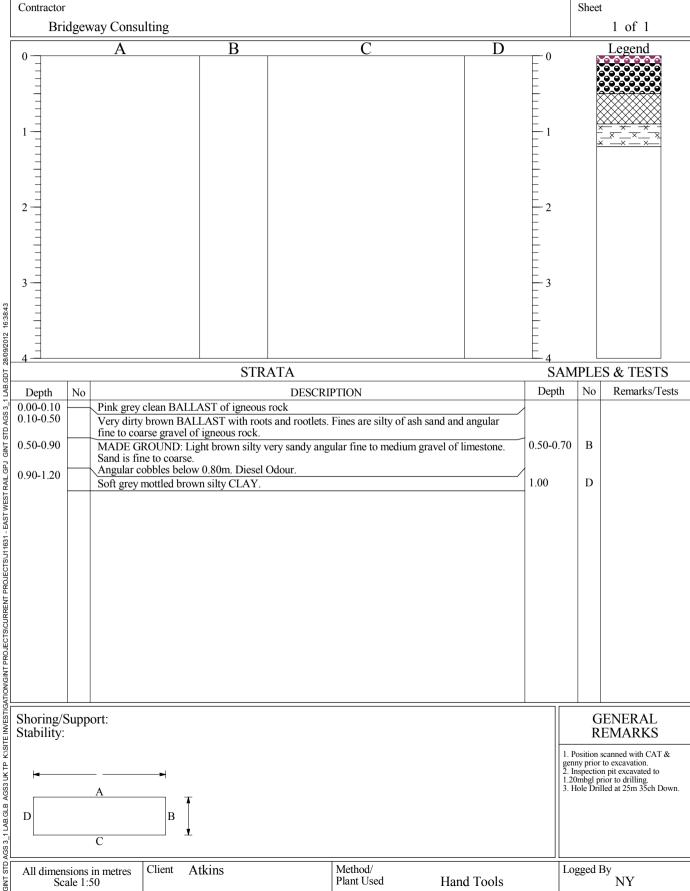
										1 of 1
Depth (m)	Readings (blows/100mm	n)	5	Diagrai	m (Blow 0	Count)	25	30	Torqu (Nm)	e Remarks
1	0 0									
2										
3								 		
456								 		
5	2 50							50		
6								 		
7								 		
Hammer	r Wt (kg)	63								GENERAL REMARKS
Hammer	Hammer Drop (mm) Cone Dia (mm)									Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling.
Cone Di										1.20mbgl prior to drilling.
Cone Ty		Sacrificia	al							
Hammer Hammer Cone Di Cone Ty Damper All dimen		lient Atkir	ns		Method Plant U	d/	Dart Comp	.:	.	Logged By GD

Project East West l	Rail	Site	Consultant Atkins	PROBE No		
Job No J11631	Date 11-10-12 11-10-12	Ground Level (m)	Ground Level (m) Co-Ordinates ()			
Contractor				Sheet		
Bridgeway (1 of 1					

Br	idgeway Consul	ting								1 of 1
Depth (m)	Readings (blows/100m	m)	5	Diagran	m (Blow 15	Count)	25	30	Toro	nue n) Remarks
- 1	4 4	6						 		
2	6 8 7	3 3						50		
3								 		
- - - - -								 		
5										
6								 		
Hammer Cone Di Cone Ty Damper										
Hamme	r Wt (kg)	10						!		GENERAL REMARKS
Hamme	r Drop (mm)	760								1 Position scanned with CAT &
Cone Di	ia (mm)	35								genny prior to excavation. 2. Inspection pit excavated to 1.20mbgl prior to drilling.
Cone Ty	Cone Type	Sacrificia	1							
Damper					152.4	1/		1 15		
All dimer Sc	nsions in metres cale 1:50	Client Atkin	S		Metho Plant U	a/ Used	НН	WS		Logged By NY

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 11-10-12 11-10-12	Ground Level (m)	Co-Ordinates ()	WS43B
Contractor	•	•		Sheet
Bridgeway	Consulting			1 of 1

SAMPL		ESTS	<u>8</u>				STRATA	1 01 1	nt/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.10 0.50	D D		1 2 2			0.20	TOPSOIL: Brown and dark grey slightly gravelly sandy silt with some rootlets. Gravel is angular to subangular fine to coarse chalk and flint. Soft green grey low strength mottled orange brown CLAY.	/	
1.00 1.20-1.40 1.40-1.90 1.55-1.85	D B B U		<u>-</u>			1.20	Soft brown low to very low strength slightly sandy CLAY with rare subrounded fine mudstone gravel.	25 17	
						1.90		19	
						- - - - -			
						- - - - -			
						- - - - -			
						- - - - -			
						- - - - -			
						- - - - -			
						- - - - -			
Drog	ress and	Water	Oba	ervation	ne ne	- - - -		ENIEDAL	
Date	Depth	Water Dpt			% Rec			ENERAL EMARKS	
11-10-12	0.60	<u>Dpt</u> 0.6	_	N/A	N/A		1. Position s genny prior	scanned with CA' to excavation. n pit excavated to ior to drilling.	Г&
All dimen	sions in male 1:50	etres C	lient	Atkir	ns		Method/ Plant Used HHWS Logged F	By NY	


Pro	Progress and Water Observations													
Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS								
Pro Date 11-10-12	0.60	0.6	N/A	N/A		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling.								
All dime	Logged By													

Annex A2

Islip

Project East West Rail Site Consultant Atkins TRIAL PIT No Job No Date 27-08-12 27-08-12 Ground Level (m) Co-Ordinates () CPT17C Contractor Sheet

Project East West Rail	1	Site	Consultant	BOREHOLE No						
East West Itali	•		Atkins							
Job No	Date 29-04-13	Ground Level (m)	Co-Ordinates ()	BH 198 - Wk5						
J11631	30-04-13									
Contractor	Contractor									
Bridgeway Cor	1 of 3									

I	Bridgeway Consulting									1 01 3	
	SAMPLE	S & TI	ESTS	_				STRATA			ent/
	Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION			Instrument/
	0.20	D ES					0.10	MADE GROUND: Black bituminous material. MADE GROUND: Greyish brown gravelly fine t angular to subangular fine to coarse brick and company of the coarse brick and co	ncrete.	/	
	- - - 1 00	D					1.00	MADE GROUND: Blackish brown gravelly slight SAND of ash. Gravel is angular to subangular find brick. Cobbles are limestone.			
	1.00 1.20 1.40	D D S	N12				(0.90)	MADE GROUND: Greyish brown mottled black is fine to coarse. Cobbles are limestone. Rare rocodour.	sandy co otlets and	obbly CLAY. Sand I a strong organic	
	1.90-2.40	В					1.90	Soft to firm brownish grey mottled orangey black	CLAY	with rootlets.	
	- 2.40 - 2.50-2.95	D U100					(1.50)				
13 09:45:07	3.00	D					3.40				
GDT 23/05/20	3.40 3.50-3.95	D S	N16				-	Stiff to very stiff dark greyish green CLAY with	fossil and	d shell fragments.	
AGS 3_1 LAB.	4.00	D					- - - - -				
PJ GINT STD	- 4.50-4.95 - 5.00	U100 D		±			- - - - -				
WEST RAIL.G	- 5.50	S	N23				-				
11631 - EAST	6.00	D					- - - - - -				
CTS/CURRENT PROJECTS\U	7.00-7.45	S	N24								
ION/GINT PROJE	Paring Progress and Water					-					
ᅱ	Porin	a Droa	race and	4 VV	atar Oho	carrati	one	Chicalling Water Add	الامطا	CENTED AT	

09:45:07	3.00	D					- 2.40						
T 23/05/2013 09:45:07		D S	N16				3.40	Stiff to ver	y stiff dark	greyish gre	en CLAY v	vith fossil a	nd shell fragments.
3_1 LAB.GD	4.00	D					- - - -						
NT STD AGS	4.50-4.95	U100		1			- - -						
RAIL.GPJ GI	5.00	D		<u></u>			- - - -						
EAST WEST	5.50	S	N23				-						
TS/11631 -	6.00	D					- - - -						
KISITE INVESTIGATIONIGINT PROJECTSICURRENT PROJECTSU11631 - EAST WEST RAIL.GPJ. GINT STD AGS 3_1 LAB.GDT	7.00-7.45	S	N24										
GATIO	Bor	ng Prog	ress and	l Wa	ter Ol	bservatio	ns		Chiselling	g	Water	Added	GENERAL
IVESTI	Date	Time	Depth	De	Casi	ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMARKS
GINT STD AGS 3_1 LAB.GLB BCL BH K:\SITE IN	29-04-13 29-04-13 29-04-13 29-04-13	00.00 00.01 00.02 00.03	1.20 3.50 5.50 7.00	N. 3. 5.	/A 50 50 50 00	N/A	N/A DRY 5.0 2.6						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at Islip Station.
GINT STD	All dimen Sca	sions in male 1:50	etres	lient	Chil	tern Rail	ways Lto	Meth Plant	od/ Used	Cable	Percussi	on	Logged By MR

NG9 1L Telepho	A one: 01159191111	BOREHO	LE LOG	
Project East West	Rail	Site	Consultant Atkins	BOREHOLE No
Job No J11631	Date 29-04-13 30-04-13	Ground Level (m)	Co-Ordinates ()	BH 198 - Wk5
Contractor	·	·		Sheet
Bridgeway	Consulting			2 of 3

CAMDIEC & TECTS										<u> </u>
SAMPLE	SAMPLES & TESTS						STRATA			nent II
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		SCRIPTION		Instrument/ Backfill
8.00	D					-	Stiff to very stiff dark greyish gree (continued)	en CLAY with fossil ar	nd shell fragments.	
8.50-8.95	U100					- - - - -	(commuea)			
9.00	D					<u> </u>				
- 10.00- - 10.45	S	N25				(13.60)				
11.00	D					- - - - -				
11.50- 11.95	U100					- - -				
를 - 12.00	D					- - -				
5 - 13.00- - 13.45	S	N40								
14.00	D					- - - - - - - -				
3- 14.50- 14.95	U100					-				
15.00	D									
					<u> </u>	t l				
Rorin	o Prog	ress and	1 W	ater Oh	servatio	ons	Chiselling	Water Added	CENIEDAI	

GINT STD AGS 3_1 LABGLB BCL BH K'SITE INVESTIGATION/GINT PROJECTS/CURRENT PROJECTS/J11631 - EAST WEST RAIL, GPJ GINT STD AGS 3_1 LAB.GDT 23/05/2013 09:45:08		D U100 D S U100 D	N40									
SATION	Boı	ing Prog	ress and	l Water C	bservatio	ons	(Chiselling	g	Water	Added	GENERAL
VESTIC	Date	Time	Depth	Depth Cas	sing Dia. mm	Water Dpt	From	То	Hours	From	То	REMARKS
AGS 3_1 LAB.GLB BCL BH K'SITE IN	30-04-13 30-04-13 30-04-13	00.00 00.01 00.02	10.00 13.00 16.00	7.00 7.00 7.00		2.6 DRY DRY						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at Islip Station.
GINT STD	All dimer	nsions in m cale 1:50	etres C	lient Chi	ltern Rail	ways Ltd	Meth Plant	od/ Used	Cable	Percussi	on	Logged By MR

Project East West	Rail	Site	Consultant	BOREHOLE No
			Atkins	
Job No J11631	Date 29-04-13 30-04-13	Ground Level (m)	Co-Ordinates ()	BH 198 - Wk5
Contractor	20 0.12			Sheet
Bridgeway	Consulting			3 of 3

	Bridg	geway (yay Consulting 3 of 3											
	SAMPLE	ES & T	ESTS	_					STRA	ATA				ent/
	Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DES	SCRIPTIO!	N		Instrument/ Backfill
	- 16.00- - 16.45	S	N46				17.00	(continued	ry stiff dar	k greyish gre	en CLAY v	vith fossil and	l shell fragments.	
9.45:08	- 17.50- - 17.95	S	N47				(3.00)	Stiff to ver fragments.	ry stiff dar Sand is fi	k greyish gre ne.	en sandy C	LAY with for	ssil and shell	
AB.GDT 23/05/2013	- 19.50- - 19.95	S	N52				20.00							
GATIONIGINT PROJECTS/CURRENT PROJECTS/J11631 - EAST WEST RAIL.GPJ GINT STD AGS 3_1 L														
GATION	Borin	g Prog	ress and	d W	ater Ob	servation			Chiselli	ng	Water	Added	GENERAL	
ÆST		Time	Depth		Casin enth I		Water	From	То	Hours	From	То	REMARKS	

AB.GDT 23/05/2013 09:45:08	- - - 19.50- - - 19.95	S	N52			20.00						
GINT STD AGS 3_1 LAB GLB BCL BH KISITE INVESTIGATION GINT PROJECTS CURRENT PROJECTS U11631 - EAST WEST RAIL, GPJ, GINT STD AGS 3_1 LAB GDT 23/05/2013 09/45/08												
TIGATIO	Во				bservatio	ons	(Chiselling	g	Water		GENERAL
INVES	Date	Time	Depth		sing Dia. mm	Water Dpt	From	То	Hours	From	То	REMARKS
AGS 3_1 LAB.GLB BCL BH K:\SITE	30-04-13 30-04-13	00.03 00.04	17.50 20.00	7.00 7.00		DRY DRY						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at Islip Station.
GINT STD	All dime	nsions in m cale 1:50	etres Cl	ient Chi	ltern Rail	ways Ltd	Meth Plant	od/ Used	Cable	Percussi	on	Logged By MR

Project East West	Rail	Site	Consultant	BOREHOLE No
East West	TC411		Atkins	
Job No J11631	Date 29-04-13 19-04-13	Ground Level (m)	Co-Ordinates ()	BH 199 - Wk5
Contractor	<u>'</u>			Sheet
Bridgeway	Consulting		1 of 1	

	ugeway	1	5									1 01 1	_
SAMPI	ES & T	ESTS	er					STRA	ГА				nent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				SCRIPTIO			\Instrument/
0.50-1.00	B D					(0.50)	coarse. Grav some rootle	vel is angula ts.	ar to subar	ngular fine	to coarse fli	Y. Sand is fine to nt and sandstone. Tine to medium. Some rootlets.	
1.00	D S	N10				(2.02)							
2.00-2.45	U100					 							
2.50-2.52	S	N50/ 5 mm				2.52							
Bor Date 29-04-13 29-04-13						-							
-						- - - -							
						-							
-						-							
						- - - -							
-						- - - -							
						-							
-						- - -							
						-							
Bor	ing Prog	ress and					C	Chiselling		Water	Added	GENERAL	
Date	Time	Depth		Casin epth I		Water Dpt	From	То	Hours	From	То	REMARKS	
29-04-13 29-04-13	00.00 00.01	1.20 2.50	1	N/A 1.50	N/A	DRY DRY						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at Islip Station.	&
	sions in male 1:50	etres C	lient	Chilt	ern Rai	lways Lto	d Metho Plant		Cable	Percussi	on	Logged By MR	=

IGATIC	Bo	ring Prog	gress and		bservatio		(Chiselling	g	Water	Added	GENERAL
IVEST	Date	Time	Depth	Cas Depth	ing Dia. mm	Water Dpt	From	То	Hours	From	То	REMARKS
	29-04-13 29-04-13	00.00 00.01	1.20 2.50	N/A 1.50	N/A	DRY DRY						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at Islip Station.
Plant Obitem Dileman Ltd Mathod/											Lagrand Dry	

Project East West	Rail	Site	Consultant Atkins	BOREHOLE No
Job No Date 29-04-13 29-04-13		Ground Level (m)	Co-Ordinates ()	BH 199A - Wk5
Contractor	<u>'</u>	<u> </u>		Sheet
Bridgeway	1 of 3			

Dila	Bridge way Consulting							1 01 3	
SAMPLE	ES & T	ESTS					STRATA		ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			Instrument/ Backfill
						(0.50)	MADE GROUND: Brown slightly gravelly sandy CLAY. coarse. Gravel is angular to subangualr fine to coarse brick	Sand is fine to Some rootlets.	
0.50-1.00 0.60	B D					0.50	Orangey brown sandy CLAY. Sand is fine to medium.		
1.00	D B					(1.60)		Į	
1.70-2.15	S	N7				- - - - -			
- 2.10-2.50 - 2.30	B D					2.10	Soft to firm CLAY with rootlets.		
- 2.30						-			
3.00	D					(2.20)			
3.50-3.90	S	N50/ 245 mm				- - - -			
						4.30	Borehole continued as a Cored Drillhole		
- - - -						-	20.00.00		
						-			
-						-			
<u>-</u> - - -						-			
- - - -						-			
- - - -						-			
- - - -						-			
Porir	o Drog	rocc on	1 W	otor Ob	correctie	one	Chicalling Water Added	CENEDAL	

KISITE INVESTIGATIONIGINT PROJECTSICURRENT PROJECTSU11631 - EAST WEST RAIL.GPJ GINT STD AGS 3_1 LAB.GDT 23/05/2013 09:45:10	3.50-3.90	D S	N50/ 245 mm			4.30	Borehole co	ontinued as	s a Cored Di	rillhole		
GATIO	Bo	ring Prog	ress and	Water C	bservatio	ons		Chiselling	g	Water	Added	GENERAL
AVESTI	Date	Time	Depth	Cas Depth	ing Dia. mm	Water Dpt	From	То	Hours	From	То	REMARKS
AGS 3_1 LAB.GLB BCL BH	29-04-13 29-04-13	00.00 00.01 00.02 00.03	1.20 2.50 4.30 7.50	N/A 2.50 4.30 4.30	N/A	DRY						Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. 3. Dynamic sampling to 4.3m with rotary core follow on. 4. Hole drilled at Islip Station.
GINT STD	All dime	nsions in m cale 1:50	etres Cl	ient Chi	ltern Rail	ways Ltd	Meth Plant	od/ Used	Com	nachio 20)5	Logged By MR

Project East West l	Rail	Site	Consultant Atkins	BOREHOLE No
Job No Date 29-04-13 29-04-13		Ground Level (m)	Co-Ordinates ()	BH 199A - Wk5
Contractor Bridgeway	Consulting		·	Sheet 2 of 3

F			EATL C		0 TEC	TDIC	STRATA						<u> </u>	
-		TCR	Fracture	SAMPLES	& IES	IING			Depth	5			22.7	men ii
	Depth	(SCR)	Spacing	Depth	Type	Result	Red'co Level		(Thick-	D		ESCRIPTIO		Instrument/ Backfill
	4.30	93	min(ave)ma	4.30-5.80 4.30-4.55	C S	N70/ 0 mm			4.30	Discontinu		bedded light grained shelly	Main ng closely to medium grey fine to medium y LIMESTONE.	Ir
	5.80	(93) 57	40 202 500	5.80-7.30	С				(3.20)			to medium sp rough with da 4.53 - 5.03 O gravel size po	tures are: sub 0-20 degrees), closely acced, undulating, ark grey clay infill. ccasional medium ockets of clay fill. and of firm dark grey	
2013 09:44:24	7.30	87 (80) 56		7.20.0.00								orange stainin		
23/05/.				7.30-8.80	C			<u>×_×</u>	7.50			7.30 - 7.37 B grey clay.	and of firm to stiff	
1 LAB.GDT		100 (93)	40 191 450					* - X - X - X - X - X - X - X - X - X -	3			Firm to stiff of grey silty CL.		
PJ GINT STD AGS 3	8.80	62	60 240	8.80-10.30	C			× × × × × × × × × × × × × × × × × × ×	(2.00)	8.30 - 8.60 sub vertica fracture (40 degrees)	1 No. 1 0	horizontal (10 spaced, plana 8.30 - 8.60 B	otures are: sub 0 degrees) closely ar, smooth. Band of medium strong he to medium grained	
T WEST RAIL.G		100 (47)	450					X X X X X X X X X X X X X X X X X X X	9.50	undulating, rough, with black stain surface. 8.60 - 8.80	ed		ng medium bedded	
IS\J11631 - EAS	10.30	23								of drilling disturbed fracture. 9.50 - 10.1	0 1	light grey med grained LIMI Bedding fract	dium to coarse ESTONE. tures are: sub	
PROJECTS/CURRENT PROJECTS/J/1631 - EAST WEST RAIL.GPJ GINT STD AGS 3_1 LAB.GDT 23/05/2013 09:44:24	7010	100 (80) 40	40 223 620	10.30- 11.80	С				(2.70)	No. sub ver fracture (60 degrees) undulating, rough, with orange stai surface. 10.10 - 10.	o n ned 30	Bedding fractures are: sub horizontal (10-20 degrees) medium spaced, undulating, rough, with orange and black stained suface. 10.80 - 10.92 Band of firm to stiff grey shelly clay with organic odour and decomposed material.		
K:SITE INVESTIGATION/GINT PROJE	11.80			11.80- 13.00	С				12.20	Zone of dri disturbed fracture. Recovered grey clay w	as			
INVES		Drilling Progress and Water Observations Rotary Flush								GENERAL				
CISITE	Date	Tir			Core D	ia	Wate	r Standing	From	To	Type	Returns	REMARKS	
DH MPS	29-04-13 29-04-13 29-04-13	3 00. 3 00.	02 4.3 03 7.5	30 4.30 50 4.30	mm	Stri	Ke S	standing	4.3 5.8 7.3 8.8 10.3 11.8	5.8 7.3 8.8 10.3 11.8 13.0	100 100 100 100 100 100 100		1. Position scanned with CAT & genny prior to excavation. 2. Inspection pit excavated to 1.20mbgl prior to drilling. 3. Dynamic sampling to 4.3m w rotary core follow on. 4. Hole drilled at Islip Station.	
GINT STD AGS 3	All dimensions in metres Scale 1:50 Client Chiltern Railways							Metl Plan	nod/ t Used	Com	machio	205	Logged By MR	

	Drilling Progress and Water Observations Deta Time Double Coging Core Dia Water						Rotary Flush				GENERAL	
Date	Time	Depth	Casing	Core Dia	Wa Strike	ater Standing	From	То	Туре	Returns	REMARKS	
29-04-13	00.02 00.03 00.04	4.30 7.50 10.00	4.30 4.30 4.30				4.3 5.8 7.3 8.8 10.3 11.8	5.8 7.3 8.8 10.3 11.8 13.0		100 100 100 100 100 100	Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Dynamic sampling to 4.3m with rotary core follow on. Hole drilled at Islip Station.	

Project East West	Rail	Site	Consultant	BOREHOLE No
Edst West	Tun		Atkins	
Job No	Date 29-04-13	Ground Level (m)	Co-Ordinates ()	BH 199A - Wk5
J11631	29-04-13			
Contractor	·			Sheet 2 - 6 2
Bridgeway	Consulting			3 of 3

		vay Conc											
		TAILS	SAMPLES	& TE	STING				S	TRATA	A		lent/
Depth	TCR SCR)	Fracture Spacing	Depth	Туре	Result	Red'cd	Legend	Depth (Thick-		DΕ	ESCRIPTION	ON	Instrument/ Backfill
F	RQD 🛊	nin(ave)ma	Х	1,700		Level	Legend	ness)	Discontinui			Main	Ins
	(64) 60							(0.50) 12.70	coarse grav limestone. 11.30 - 11.6	63 1	medium grair LIMESTONI	E. (continued)	
13.00		30 165	13.00-	С				(0.90)	No. sub ver fracture (60 degrees))	Stiff to very s dark grey she	stiff closely bedded elly CLAY.	
	77 (77)	300	14.25					13.60	undulating, rough, with orange stair		horizontal (10	tures are: sub 0-20 degrees) closely lating, rough, open	
	42	40 67 100						(0.65)	surface. 12.70 - 13.0 Zone of dri	00	and clean. 13.20 - 13.41	Band of black shelly anic odour and	
14.25		100						14.25	disturbed fracture.	١٦.	decomposing	wood.	
										1	light grey find LIMESTONI	e to medium grained	
											horizontal (10	tures are: sub 0-20 degrees) closely	
										- 11	spaced, undu and clean wit surface.	lating, rough, open th black stained	
Date	Dril	ling Prog	gress and W						Rotary	Flush		GENERAL	<u> </u>
Date	Tin	ne Dep	oth Casing	Core :	Dia Stri	Water ke St	anding	From	То	Type	Returns	REMARKS	
29-04-13 All dime S	00.0	05 14.	25 4.30				-	13	14.25		100	Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Dynamic sampling to 4.3m with rotary core follow on. Hole drilled at Islip Station.	
	ensions	in metres	Client Ch	iltern	Railways	Ltd	Meth Plan	nod/	Comr	machio 2	205	Logged By MR	

<u>2</u>		Drilling Progress and Water Observations							Rotary	GENERAL			
K:\S	Date	Time	Depth	Casing	Core Dia	Wa Strike	Water Strike Standing		То	Туре	Returns	REMARKS	
AGS 3_1 LAB GLB AGS3 UK DH MPS	29-04-13	00.05	14.25	4.30				13	14.25		100	Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Dynamic sampling to 4.3m with rotary core follow on. Hole drilled at Islip Station.	

ANALYTICAL TEST REPORT

Contract no: 46740

Contract name: East-West Rail

Client reference: PSL12/4199

Clients name: Professional Soils Laboratory

Clients address: 5-7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 30 November 2012

Analysis started: 30 November 2012

Analysis completed 06 December 2012

Report issued: 06 December 2012

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd were not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, withour prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell

(Comphall

John Campbell

Director

Director

Chemtech Environmental Limited

SOILS

Lab number			46740-1	46740 - 2	46740 - 3	46740 - 4	46740-5
Sample id			WS 71B	WS 72	WS 73A	WS 107A	WS 108A
Depth (m)			0.60-1.20	0.40	0.50	0.30-0.70	0.50
Date sampled			-	-	ı	-	-
Test	Method	Units					
рН	CE004 ^M	units	8.2	8.9	8.8	8.4	8.7
Magnesium (2:1 water soluble)	CE120	g/l Mg	<0.01	<0.01	<0.01	<0.01	<0.01
Chloride (2:1 water soluble)	CE049 [∪]	g/l Cl	0.01	<0.01	<0.01	<0.01	<0.01
Nitrate (2:1 water soluble)	CE049 [∪]	g/l NO₃	<0.01	<0.01	<0.01	<0.01	<0.01
Sulphate (2:1 water soluble)	CE061 ^M	g/I SO₄	0.04	<0.01	0.02	0.07	<0.01
Sulphate (total)	CE062 ^M	% w/w SO ₄	0.04	0.04	0.04	0.03	0.02
Sulphur (total)	CE119	% w/w S	0.03	0.02	0.03	0.06	0.03

Chemtech Environmental Limited

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	Wet	М	ı	units
CE120	Magnesium (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		0.01	g/l Mg
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	0.01	g/l Cl
CE049	Nitrate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	0.01	g/l NO₃
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	0.01	g/l SO₄
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	М	0.01	% w/w SO ₄
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		0.01	% w/w S

ANALYTICAL TEST REPORT

Contract no: 46741

Contract name: East-West Rail

Client reference: PSL12/4199

Clients name: Professional Soils Laboratory

Clients address: 5-7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 30 November 2012

Analysis started: 30 November 2012

Analysis completed 10 December 2012

Report issued: 10 December 2012

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

 $\ensuremath{\mathsf{BTEX}}$ compounds are identified by retention time only and may include interference from

co-eluting compounds.

This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Karan Campbell

6 Campbell

John Campbell

ector Director

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are exclusive of stones.

Lab ref	Sample id	Depth (m)	Soil description	Description of material	% Retained	Moisture
			passing 2mm sieve	retained on 2mm sieve	on 2mm sieve	(%)
46741-1	WS 45a	1.80-2.00	Sandy Clay	Gravel	38.3	17.1
46741-2	WS 52a	0.80	Sand	Stones	66.8	5.9
46741-3	WS 54	0.70	Silty Clay	Gravel	24.4	21.7
46741-4	WS 55	0.50	Sand	Stones	49.3	7.4
46741-5	WS 55	1.00	Silty Clay	Gravel	27.4	19.6
46741-6	Ws 59a	0.70	Clayey Sand	Gravel	46.5	10.1
46741-7	WS 68a	0.50	Sandy Clay	Gravel and Stones	70.2	8.1
46741-8	WS 68a	1.00	Clay	Gravel	19.4	17.4
46741-9	WS 68a	2.00-3.00	Clay	Gravel	35.8	19.5
46741-10	WS 72	1.00	Clay	Gravel	26.6	21.6
46741-11	WS 73a	0.50	Clayey Sand	Gravel and Stones	56.4	7.4
46741-12	WS 73a	1.00	Clay	Gravel and Stones	48.5	16.6
46741-13	WS 73a	3.00-4.00	Clay	Gravel	44.0	18.7
46741-14	WS 73b	1.00	Clay	Gravel	46.8	24.3
46741-15	WS 74a	0.50	Clayey Sand	Stones	61.4	8.7
46741-16	WS 74b	1.00	Clay	Gravel	40.5	20.4
46741-17	WS 81	0.70	Clay	Gravel and Stones	55.3	14.5
46741-18	WS 87	0.00-0.30	Loamy Sand	Gravel and Stones	46.5	12.6
46741-19	WS 98	0.70	Clayey Sand	Gravel and Stones	47.0	10.1
46741-20	WS 102a	1.20-2.00	Clay	Gravel	31.5	18.3
46741-21	WS 107a	0.50	Sand	Gravel and Stones	42.2	6.7
46741-22	WS 108a	0.50	Sand	Gravel and Stones	43.9	9.5

Lab number			46741-1	46741-2	46741-3	46741-4	46741-5	46741-6
Sample id			WS 45a	WS 52a	WS 54	WS 55	WS 55	Ws 59a
Depth (m)			1.80-2.00	0.80	0.70	0.50	1.00	0.70
Date sampled	I	l	-	-	-	-	-	-
Arsonia (total)	Method	Units	0.0	FO	6.0	4.0	0.1	6.4
Arsenic (total)	CE054 M	mg/kg As	8.8	5.8	6.0	4.0	9.1	6.4
Boron (water soluble)	CE063 M	mg/kg B	0.8	<0.3	1.6	<0.3	0.7	0.6
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	0.3	<0.2	<0.2	<0.2	<0.2
Chromium (total)	CE054 M	mg/kg Cr	26	10	31	8.6	25	14
Chromium (VI)	CE050 U	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 M	mg/kg Cu	12	13	15	8.6	8.1	5.7
Lead (total)	CE054 ^M	mg/kg Pb	14	7.5	11	4.7	8.9	6.0
Mercury (total)	CE054	mg/kg Hg	<0.5	0.6	0.6	0.5	0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	16	8.5	17	7.8	19	13
Selenium (total)	CE054 ^M	mg/kg Se	1.1	<0.3	1.8	<0.3	1.5	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	57	38	44	21	35	20
рН	CE004 ^M	units	7.6	8.9	8.4	8.9	8.2	8.7
Chloride (2:1 water soluble)	CE049 [∪]	mg/l Cl	3.5	<1	1.2	<1	1.2	7.9
Sulphate (total)	CE062 ^M	mg/kg SO₄	317	300	828	248	4910	244
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	-	<0.5	<0.5	<0.5	<0.5	<0.5
Organic matter content (OMC)	CE005 ^M	% w/w	0.75	0.64	2.88	0.18	2.68	0.21
РАН								
Naphthalene	CE087	mg/kg	ı	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	CE087	mg/kg	-	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	CE087	mg/kg	ı	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	CE087	mg/kg	ı	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	CE087	mg/kg	-	0.4	<0.1	<0.1	<0.1	<0.1
Anthracene	CE087	mg/kg	ı	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	CE087	mg/kg	-	2.0	0.2	0.3	<0.1	<0.1
Pyrene	CE087	mg/kg	-	1.8	0.2	0.4	<0.1	<0.1
Benzo(a)anthracene	CE087	mg/kg	-	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	CE087	mg/kg	=	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	CE087	mg/kg	-	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	CE087	mg/kg	1	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	CE087	mg/kg	-	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123cd)pyrene	CE087	mg/kg	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(ah)anthracene	CE087	mg/kg	-	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	CE087	mg/kg	-	0.1	<0.1	<0.1	<0.1	<0.1
PAH (total)	CE087	mg/kg	-	5.8	<5	<5	<5	<5
BTEX & TPH								
МТВЕ	CE057 [∪]	mg/kg	i	<0.01	<0.01	<0.01	<0.01	<0.01
Benzene	CE057 [∪]	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	CE057 [∪]	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	CE057 [∪]	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01

Lab number			46741-1	46741-2	46741-3	46741-4	46741-5	46741-6
Sample id			WS 45a	WS 52a	WS 54	WS 55	WS 55	Ws 59a
Depth (m)			1.80-2.00	0.80	0.70	0.50	1.00	0.70
Date sampled			-	-	-	-	-	-
Test	Method	Units						
m & p-Xylene	CE057 [∪]	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
o-Xylene	CE057 [∪]	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC5-EC7	CE068	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC7-EC8	CE068	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC8-EC10	CE068	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC10-EC12	CE068	mg/kg	-	<1	<1	<1	<1	<1
TPH Aromatic EC12-EC16	CE068	mg/kg	-	<1	<1	<1	<1	<1
TPH Aromatic EC16-EC21	CE068	mg/kg	-	4	<1	<1	<1	<1
TPH Aromatic EC21-EC35	CE068	mg/kg	-	2	<1	<1	<1	<1
TPH Aromatic EC35-EC44	CE068	mg/kg	-	<1	<1	<1	<1	<1
TPH Aliphatic EC5-EC6	CE068	mg/kg	-	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC6-EC8	CE068	mg/kg	-	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC8-EC10	CE068	mg/kg	-	<0.1	0.1	0.1	0.1	<0.1
TPH Aliphatic EC10-EC12	CE068	mg/kg	-	<1	<1	<1	<1	<1
TPH Aliphatic EC12-EC16	CE068	mg/kg	-	2	<1	2	2	1
TPH Aliphatic EC16-EC35	CE068	mg/kg	-	59	8	15	7	4
TPH Aliphatic EC35-EC44	CE068	mg/kg	-	<1	<1	<1	<1	<1
Subcontracted analysis								
Asbestos	\$	-	NAD	NAD	NAD	NAD	NAD	NAD

Lab number			46741-7	46741-8	46741-9	46741-10	46741-11	46741-12
Sample id			WS 68a	WS 68a	WS 68a	WS 72	WS 73a	WS 73a
Depth (m)			0.50	1.00	2.00-3.00	1.00	0.50	1.00
Date sampled	l		-	-	-	-	-	-
Arconic (total)	Method	Units mg/kg As	12	0.6	7.5	12	16	12
Arsenic (total)	CE054 M	mg/kg As	12	9.6			16	13
Boron (water soluble)	CE063 ^M	mg/kg B	0.5	2.7	5.3	2.2	<0.3	1.4
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium (total)	CE054 ^M	mg/kg Cr	14	41	51	33	12	30
Chromium (VI)	CE050 U	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	19	13	13	14	17	14
Lead (total)	CE054 ^M	mg/kg Pb	9.9	8.2	9.5	13	8.8	9.5
Mercury (total)	CE054	mg/kg Hg	0.6	0.5	0.7	<0.5	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	18	28	36	23	18	25
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	1.1	1.5	0.5	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	12	16	13	53	45	42
рН	CE004 ^M	units	8.8	8.4	8.1	7.7	8.6	8 . 2
Chloride (2:1 water soluble)	CE049 [∪]	mg/l Cl	1.1	2.1	36	1.9	1.8	1.4
Sulphate (total)	CE062 ^M	mg/kg SO₄	533	910	52410	6795	495	612
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Organic matter content (OMC)	CE005 ^M	% w/w	0.84	0.42	0.21	2.00	0.37	0.43
РАН								
Naphthalene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Fluorene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	CE087	mg/kg	0.3	<0.1	<0.1	<0.1	0.5	0.5
Pyrene	CE087	mg/kg	0.2	<0.1	<0.1	<0.1	0.4	0.3
Benzo(a)anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
PAH (total)	CE087	mg/kg	<5	<5	<5	<5	<5	<5
BTEX & TPH								
МТВЕ	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Lab number			46741-7	46741-8	46741-9	46741-10	46741-11	46741-12
Sample id			WS 68a	WS 68a	WS 68a	WS 72	WS 73a	WS 73a
Depth (m)			0.50	1.00	2.00-3.00	1.00	0.50	1.00
Date sampled		•	-	-	-	-	-	-
Test	Method	Units						
m & p-Xylene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
o-Xylene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC5-EC7	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC7-EC8	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC8-EC10	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC10-EC12	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aromatic EC12-EC16	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aromatic EC16-EC21	CE068	mg/kg	<1	<1	<1	<1	1	<1
TPH Aromatic EC21-EC35	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aromatic EC35-EC44	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aliphatic EC5-EC6	CE068	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC6-EC8	CE068	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC8-EC10	CE068	mg/kg	<0.1	<0.1	0.1	0.2	<0.1	0.1
TPH Aliphatic EC10-EC12	CE068	mg/kg	1	2	1	1	1	1
TPH Aliphatic EC12-EC16	CE068	mg/kg	3	5	2	4	3	2
TPH Aliphatic EC16-EC35	CE068	mg/kg	16	14	9	18	17	10
TPH Aliphatic EC35-EC44	CE068	mg/kg	<1	<1	<1	<1	<1	<1
Subcontracted analysis	Subcontracted analysis			·	·		·	
Asbestos	\$	_	NAD	NAD	NAD	NAD	NAD	NAD

Lab number			46741-13	46741-14	46741-15	46741-16	46741-17	46741-18
Sample id			WS 73a	WS 73b	WS 74a	WS 74b	WS 81	WS 87
Depth (m)			3.00-4.00	1.00	0.50	1.00	0.70	0.00-0.30
Date sampled	l		-	-	-	-	-	-
Test	Method	Units	0.7	10	1.4	7.5	0.0	21
Arsenic (total)	CE054 M	mg/kg As	9.7	10	14	7.5	9.0	21
Boron (water soluble)	CE063 ^M	mg/kg B	4.3	2.2	<0.3	2.2	0.7	1.0
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	<0.2	0.3
Chromium (total)	CE054 ^M	mg/kg Cr	31	49	15	53	19	14
Chromium (VI)	CE050 U	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	12	21	9.8	19	12	73
Lead (total)	CE054 ^M	mg/kg Pb	6.4	13	7.5	9.9	8.7	44
Mercury (total)	CE054	mg/kg Hg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	23	23	17	32	16	22
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	<0.3	<0.3	3.5	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	35	58	32	63	32	199
рН	CE004 ^M	units	7.9	8.3	8.8	8 . 3	8.4	8.2
Chloride (2:1 water soluble)	CE049 [∪]	mg/l Cl	18	11	<1	20	2.6	4.4
Sulphate (total)	CE062 ^M	mg/kg SO₄	134600	2614	455	455	880	1750
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Organic matter content (OMC)	CE005 ^M	% w/w	0.44	1.77	0.76	0.21	2.84	0.22
РАН								
Naphthalene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	CE087	mg/kg	0.2	<0.1	0.2	<0.1	<0.1	0.8
Pyrene	CE087	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	1.0
Benzo(a)anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.5
Chrysene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.9
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.5
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	CE087	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.5
PAH (total)	CE087	mg/kg	<5	<5	<5	<5	<5	<5
BTEX & TPH								
МТВЕ	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Lab number			46741-13	46741-14	46741-15	46741-16	46741-17	46741-18
Sample id			WS 73a	WS 73b	WS 74a	WS 74b	WS 81	WS 87
Depth (m)			3.00-4.00	1.00	0.50	1.00	0.70	0.00-0.30
Date sampled			-	-	-	-	-	-
Test	Method	Units						
m & p-Xylene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
o-Xylene	CE057 [∪]	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC5-EC7	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC7-EC8	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC8-EC10	CE068	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TPH Aromatic EC10-EC12	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aromatic EC12-EC16	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aromatic EC16-EC21	CE068	mg/kg	<1	<1	<1	<1	<1	2
TPH Aromatic EC21-EC35	CE068	mg/kg	<1	<1	<1	<1	<1	3
TPH Aromatic EC35-EC44	CE068	mg/kg	<1	<1	<1	<1	<1	<1
TPH Aliphatic EC5-EC6	CE068	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC6-EC8	CE068	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TPH Aliphatic EC8-EC10	CE068	mg/kg	0.1	0.2	<0.1	0.2	0.1	0.1
TPH Aliphatic EC10-EC12	CE068	mg/kg	1	1	1	1	1	2
TPH Aliphatic EC12-EC16	CE068	mg/kg	2	2	2	4	5	8
TPH Aliphatic EC16-EC35	CE068	mg/kg	5	4	8	9	9	94
TPH Aliphatic EC35-EC44	CE068	mg/kg	<1	<1	<1	<1	<1	3
Subcontracted analysis	Subcontracted analysis							
Asbestos	\$	-	NAD	NAD	NAD	NAD	NAD	NAD

Lab number			46741-19	46741-20	46741-21	46741-22
Sample id			WS 98	WS 102a	WS 107a	WS 108a
Depth (m)			0.70	1.20-2.00	0.50	0.50
Date sampled			-	-	-	-
Test	Method	Units				
Arsenic (total)	CE054 ^M	mg/kg As	24	10	16	49
Boron (water soluble)	CE063 ^M	mg/kg B	0.5	1.7	0.3	<0.3
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2
Chromium (total)	CE054 ^M	mg/kg Cr	23	40	15	16
Chromium (VI)	CE050 [∪]	mg/kg CrVI	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	32	9.3	9.9	57
Lead (total)	CE054 ^M	mg/kg Pb	20	10	7.7	19
Mercury (total)	CE054	mg/kg Hg	<0.5	<0.5	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	19	17	12	18
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	0.4	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	53	54	34	76
рН	CE004 ^M	units	8.2	8.0	8.4	8.5
Chloride (2:1 water soluble)	CE049 [∪]	mg/l Cl	2.0	1.2	1.5	<1
Sulphate (total)	CE062 ^M	mg/kg SO₄	1165	1392	116	255
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	-	-
Organic matter content (OMC)	CE005 ^M	% w/w	1.46	0.70	0.60	0.21
РАН		•				
Naphthalene	CE087	mg/kg	<0.1	<0.1	-	-
Acenaphthylene	CE087	mg/kg	<0.1	<0.1	-	-
Acenaphthene	CE087	mg/kg	<0.1	<0.1	-	-
Fluorene	CE087	mg/kg	<0.1	<0.1	-	-
Phenanthrene	CE087	mg/kg	<0.1	<0.1	-	-
Anthracene	CE087	mg/kg	<0.1	<0.1	-	-
Fluoranthene	CE087	mg/kg	0.5	<0.1	-	-
Pyrene	CE087	mg/kg	0.5	<0.1	=	=
Benzo(a)anthracene	CE087	mg/kg	<0.1	<0.1	-	
Chrysene	CE087	mg/kg	<0.1	<0.1	1	1
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	<0.1	1	1
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	<0.1	1	1
Benzo(a)pyrene	CE087	mg/kg	<0.1	<0.1	-	-
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	<0.1	1	1
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	<0.1	-	-
Benzo(ghi)perylene	CE087	mg/kg	<0.1	<0.1	-	-
PAH (total)	CE087	mg/kg	<5	<5	-	-
BTEX & TPH						
МТВЕ	CE057 [∪]	mg/kg	<0.01	<0.01	-	=
Benzene	CE057 [∪]	mg/kg	<0.01	<0.01	-	=
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	-	-
Ethylbenzene	CE057 [∪]	mg/kg	<0.01	<0.01	-	-

Lab number			46741-19	46741-20	46741-21	46741-22
Sample id			WS 98	WS 102a	WS 107a	WS 108a
Depth (m)			0.70	1.20-2.00	0.50	0.50
Date sampled	_		-	-	-	-
Test	Method	Units				
m & p-Xylene	CE057 [∪]	mg/kg	<0.01	<0.01	-	-
o-Xylene	CE057 ^U	mg/kg	<0.01	<0.01	-	-
TPH Aromatic EC5-EC7	CE068	mg/kg	<0.01	<0.01	-	-
TPH Aromatic EC7-EC8	CE068	mg/kg	<0.01	<0.01	ı	ı
TPH Aromatic EC8-EC10	CE068	mg/kg	<0.01	<0.01	ı	-
TPH Aromatic EC10-EC12	CE068	mg/kg	<1	<1	-	-
TPH Aromatic EC12-EC16	CE068	mg/kg	<1	<1	=	-
TPH Aromatic EC16-EC21	CE068	mg/kg	1	<1	-	-
TPH Aromatic EC21-EC35	CE068	mg/kg	<1	<1	-	-
TPH Aromatic EC35-EC44	CE068	mg/kg	<1	<1	-	-
TPH Aliphatic EC5-EC6	CE068	mg/kg	<0.1	<0.1	i	1
TPH Aliphatic EC6-EC8	CE068	mg/kg	<0.1	<0.1	i	1
TPH Aliphatic EC8-EC10	CE068	mg/kg	0.1	0.2	i	1
TPH Aliphatic EC10-EC12	CE068	mg/kg	1	1	ı	ı
TPH Aliphatic EC12-EC16	CE068	mg/kg	2	4	-	-
TPH Aliphatic EC16-EC35	CE068	mg/kg	12	6	ı	-
TPH Aliphatic EC35-EC44	CE068	mg/kg	<1	<1	-	-
Subcontracted analysis		-	-			
Asbestos	\$	1	NAD	NAD	NAD	NAD

LEACHATES

Lab number			46741-1L	46741-2L	46741-4L	46741-5L	46741-6L	46741-7L
Sample id			WS 45a	WS 52a	WS 55	WS 55	Ws 59a	WS 68a
Depth (m)			1.80-2.00	0.80	0.50	1.00	0.70	0.50
Test	Method	Units						
Arsenic (dissolved)	CE055	mg/l As	0.004	0.002	0.003	<0.001	0.001	0.002
Boron (dissolved)	CE063	mg/l B	0.04	<0.03	<0.03	<0.03	<0.03	<0.03
Cadmium (dissolved)	CE055 [∪]	mg/l Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (dissolved)	CE055 [∪]	mg/l Cr	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Chromium (VI) (dissolved)	CE050 [∪]	mg/l CrVI	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper (dissolved)	CE055 [∪]	mg/l Cu	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Lead (dissolved)	CE055 [∪]	mg/l Pb	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Selenium (dissolved)	CE055	mg/l Se	0.005	0.003	0.002	0.002	0.003	0.002
Zinc (dissolved)	CE055 [∪]	mg/l Zn	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
рН	CE004	units	7.7	8.3	8.4	7.7	8.3	7.8
Ammonia	CE012 [∪]	mg/l N	0.55	0.09	0.06	0.09	0.07	0.08
Chloride	CE049 ^U	mg/l Cl	<1	<1	1.1	<1	2.0	<1
Nitrate	CE049 ^U	mg/l NO₃	12	<1	<1	<1	<1	<1
Sulphate	CE049 ^U	mg/l SO₄	<10	<10	<10	2250	<10	<10
Cyanide (free)	CE077	mg/l CN	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Organic Carbon	CE071	mg/l C	10.8	2.5	2.2	2.3	2.8	2.3

LEACHATES

Lab number			46741-8L	46741-9L	46741-10L	46741-11L	46741-12L	46741-13L
Sample id			WS 68a	WS 68a	WS 72	WS 73a	WS 73a	WS 73a
Depth (m)			1.00	2.00-3.00	1.00	0.50	1.00	3.00-4.00
Test	Method	Units						
Arsenic (dissolved)	CE055	mg/l As	0.001	0.002	0.004	0.003	0.004	0.003
Boron (dissolved)	CE063	mg/l B	0.06	0.21	0.05	<0.03	0.04	0.12
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (dissolved)	CE055 ^U	mg/l Cr	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Chromium (VI) (dissolved)	CE050 [∪]	mg/l CrVI	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper (dissolved)	CE055 [∪]	mg/l Cu	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Lead (dissolved)	CE055 [∪]	mg/l Pb	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Selenium (dissolved)	CE055	mg/l Se	<0.001	<0.001	<0.001	0.001	0.003	0.002
Zinc (dissolved)	CE055 [∪]	mg/l Zn	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
рН	CE004	units	7.8	7.3	7.6	8.6	8.1	7.6
Ammonia	CE012 [∪]	mg/l N	0.19	0.15	3.35	0.05	1.95	0.25
Chloride	CE049 ^U	mg/l Cl	<1	7.5	<1	<1	<1	4.5
Nitrate	CE049 [∪]	mg/l NO₃	<1	<1	<1	<1	2.0	<1
Sulphate	CE049 ^U	mg/l SO₄	30	1852	2074	<10	<10	2925
Cyanide (free)	CE077	mg/l CN	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Organic Carbon	CE071	mg/l C	3.1	2.2	5.7	1.9	3.3	2.0

LEACHATES

Lab number			46741-14L	46741-17L	46741-18L	46741-19L	46741-20L	46741-21L
Sample id			WS 73b	WS 81	WS 87	WS 98	WS 102a	WS 107a
Depth (m)			1.00	0.70	0.00-0.30	0.70	1.20-2.00	0.50
Test	Method	Units						
Arsenic (dissolved)	CE055	mg/l As	0.003	0.002	0.002	<0.001	0.001	0.002
Boron (dissolved)	CE063	mg/l B	0.03	<0.03	0.05	0.06	0.07	<0.03
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (dissolved)	CE055 [∪]	mg/l Cr	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Chromium (VI) (dissolved)	CE050 ^U	mg/l CrVI	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper (dissolved)	CE055 ^U	mg/l Cu	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Lead (dissolved)	CE055 [∪]	mg/l Pb	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Selenium (dissolved)	CE055	mg/l Se	<0.001	0.003	0.001	<0.001	<0.001	0.004
Zinc (dissolved)	CE055 ^U	mg/l Zn	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
рН	CE004	units	7.7	8.1	7.7	8.1	7.8	8.3
Ammonia	CE012 [∪]	mg/l N	0.02	0.07	0.06	0.07	0.04	0.06
Chloride	CE049 ^U	mg/l Cl	1.5	<1	<1	<1	<1	<1
Nitrate	CE049 [∪]	mg/l NO₃	2.2	<1	<1	<1	<1	<1
Sulphate	CE049 ^U	mg/l SO₄	25	<10	365	15	110	<10
Cyanide (free)	CE077	mg/l CN	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Organic Carbon	CE071	mg/l C	5.2	2.7	1.8	2.8	3.0	4.0

Chemtech Environmental Limited LEACHATES

Lab number			46741 - 22L						
Sample id	Sample id								
Depth (m)			0.50						
Test	Method	Units							
Arsenic (dissolved)	CE055	mg/l As	<0.001						
Boron (dissolved)	CE063	mg/l B	<0.03						
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001						
Chromium (dissolved)	CE055 ^U	mg/l Cr	<0.003						
Chromium (VI) (dissolved)	CE050 [∪]	mg/l CrVI	<0.01						
Copper (dissolved)	CE055 ^U	mg/l Cu	<0.004						
Lead (dissolved)	CE055 ^U	mg/l Pb	<0.009						
Mercury (dissolved)	CE055	mg/l Hg	<0.001						
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003						
Selenium (dissolved)	CE055	mg/l Se	0.003						
Zinc (dissolved)	CE055 ^U	mg/l Zn	<0.020						
рН	CE004	units	8.5						
Ammonia	CE012 [∪]	mg/l N	0.07						
Chloride	CE049 ^U	mg/l Cl	<1						
Nitrate	CE049 ^U	mg/l NO₃	<1						
Sulphate	CE049 ^U	mg/l SO₄	<10						
Cyanide (free)	CE077	mg/l CN	<0.02						
Total Organic Carbon	CE071	mg/l C	2.8						

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE054	Arsenic (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg As
CE063	Boron (water soluble)	(water soluble) Hot water extract, ICP-OES		М	0.3	mg/kg B
CE054	Cadmium (total)	Aqua regia digest, ICP-OES	Dry	М	0.2	mg/kg Cd
CE054	Chromium (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Cr
CE050	Chromium (VI)	Acid extraction, Colorimetry	Dry	U	1	mg/kg CrVI
CE054	Copper (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Cu
CE054	Lead (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Pb
CE054	Mercury (total)	Aqua regia digest, ICP-OES	Dry		0.5	mg/kg Hg
CE054	Nickel (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Ni
CE054	Selenium (total)	enium (total)		М	0.3	mg/kg Se
CE054	Zinc (total)	Aqua regia digest, ICP-OES	Dry	М	3	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	М	100	mg/kg SO₄
CE079	Sulphide	Extraction, Continuous Flow Colorimetry	Wet		10	mg/kg S ²⁻
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		2	mg/kg CN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	Wet		0.5	mg/kg PhOH
CE005	Organic matter content (OMC)	Based on BS 1377, Colorimetry	Dry	М	0.01	% w/w
CE087	PAH (speciated)	Solvent extraction, GC-MS	Wet		0.1	mg/kg
CE087	PAH (total)	Solvent extraction, GC-MS	Wet		5	mg/kg
CE057	BTEX & MTBE	Headspace GC-FID	Wet	U	0.01	mg/kg
CE068	TPH Aliphatic/Aromatic fractions (C5-C10)	Headspace GC-FID	Wet		0.01-0.1	mg/kg
CE068	TPH Aliphatic/Aromatic fractions (C10-C44	Solvent extraction, GC-FID	Wet		1	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

METHOD DETAILS

METHOD	LEACHATES	METHOD SUMMARY	STATUS	LOD	UNITS
CE055	Arsenic (dissolved)	ICP-OES		0.001	mg/l As
CE063	Boron (dissolved)	ICP-OES		0.03	mg/l B
CE055	Cadmium (dissolved)	ICP-OES	U	0.001	mg/l Cd
CE055	Chromium (dissolved)	ICP-OES	U	0.003	mg/l Cr
CE050	Chromium VI (dissolved)	Colorimetry	U	0.01	mg/l CrVI
CE055	Copper (dissolved)	ICP-OES	U	0.004	mg/l Cu
CE055	Lead (dissolved)	ICP-OES	U	0.009	mg/l Pb
CE055	Mercury (dissolved)	ICP-OES		0.001	mg/l Hg
CE055	Nickel (dissolved)	ICP-OES	U	0.003	mg/l Ni
CE055	Selenium (dissolved)	ICP-OES		0.001	mg/l Se
CE055	Zinc (dissolved)	ICP-OES	U	0.020	mg/l Zn
CE004	рН	Based on BS 1377, pH Meter		-	units
CE012	Ammonia	Colorimetry	U	0.01	mg/l N
CE049	Chloride	Ion Chromatography	U	1	mg/l Cl
CE049	Nitrate	Ion Chromatography	U	1	mg/l NO₃
CE049	Sulphate	Ion Chromatography	U	10	mg/l SO₄
CE077	Cyanide (free)	Distillation, Colorimetry		0.02	mg/I CN
CE071	Total Organic Carbon	TOC analyser		1	mg/l C

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 25-11-12 25-11-12	Ground Level (m)	Co-Ordinates ()	WS159 - Wk35
Contractor	Sheet			
Bridgeway	1 of 1			

SAMPLES & TESTS STRATA										4
	SAMPLE	S & 11	ESIS					STRATA	D. 110	nen 11
	Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/ Backfill
	0.00-0.70	В					0.25	Black DIRTY BALLAST of igneous rock. Fines are granular fine to coarse sand.	,	
	0.40	D					(0.45)	MADE GROUND: Cream silty very sandy GRAVEL. Gravel is angular to subrounded fine to coarse flint and quartzite.		
	0.70	B D					-	Soft to firm extremely low strength blueish grey and yellow slightly sandy CLAY. Sand is fine.	-	
	1.20-1.65	S	N2				(0.90)			
	1.60-1.70	D					1.60	Firm extremely low strength blackish blue grey mottled red slightly sandy CLAY. Sand is fine to medium. Some roots.	-	
	2.00-2.10	D S	N20	4			(0.50)	Firm high strength yellowish blue CLAY.	-	
07:53:59	2.50-2.60	D		<u></u>			2.50	Medium dense yellowish orange slightly clayey gravelly SAND. Sand is fine to coarse. Gravel is subangular to subrounded fine to	-	
1/07/2013	3.00-3.45	S	N10				- - -	coarse sandstone and flint. Firm medium to high strength yellowish blue slightly sandy	,	
AB.GDT 1	-			₹				CLAY. Sand is fine.		
AGS 3_11	- -						(1.65)			
GINT STD	4.00	S	N19				4.45			
RAIL.GPJ	• • •						-		-	
STWEST	- - - -						- - -			
1631 - EA	• • •						-			
JECTS/J1	- - -						- - -			
RENT PRC	- - -						-			
CTS/CUR	- - -						-			
INT PROJE	- - - -									
INVESTIGATIONIGINT PROJECTSICURRENT PROJECTSIJ11631 - EAST WEST RAIL.GPJ. GINT STD AGS 3_1 LAB.GDT. 11/07/2013 07:53:59	- - -						-			
INVESTIC	-						-			

5							
SITE	Prog	gress and		Observati			GENERAL
STK	Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS
AGS 3_1 LAB.GLE		1.20 2.00 3.00 4.00	DRY DRY 2.5 2.5	N/A 87 77 67	N/A 95 100 0		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at 22m 50ch West.
STD	All dime	nsions in m	netres Cl	ient Chi	ltern Rai	ways Ltd Method/	Logged By

mensions in metres Scale 1:50 MR Plant Used Dart Competitor Rig

All dimensions in metres Scale 1:50 Client

Atkins

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 06-12-12 06-12-12	Ground Level (m)	Co-Ordinates ()	WS160
Contractor	Sheet			
Bridgeway	1 of 1			

Bridgeway Consulting								511000	1 of 1	
SAMPLE							STRATA			nt/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/ Backfill
- 0.00-0.20 - 0.10 - 0.20-0.60 - 0.50 - 1.00-1.20 - 1.20-2.00 - 1.20-1.65	B D B D D	N5	<u>\psi}</u>		0000	0.20 (0.60) 0.80 (0.40) 1.20	MADE GROUND: Firm brown slightly sandy slightly grave CLAY. Gravel is angular to subangular fine to coarse muds sandstone and ballast of granite. Some roots. Brown and light brown slightly clayey SAND and GRAVE Sand is fine to coarse. Gravel is angular to subrounded fine coarse sandstone, mudstone and quartzite. Stiff blue mottled green and yellow gravelly CLAY. Gravel angular to subrounded fine to medium sandstone, mudstone quartzite. Firm greenish brown medium strength CLAY.	L. to	74	
2.00-3.60	B S	N13	-			2.00	Orange brown clayey very gravelly fine to coarse SAND. G is subangular to subrounded fine to coarse sandstone, quart and flint.	ravel zite		
Progre Date 06-12-12 06-12-12 06-12-12 06-12-12 06-12-12	S	N17				(2.45)				
					· · · · · · · · · · · · · · · · · · ·	4.45				
-						- - - - - - - -				
-						- - - - - - -				
D _m		Water	<u> </u>			- - - - -	1			
Date I	ess and Depth	Water Water Dpt			ns % Rec			G RI	ENERAL EMARKS	
06-12-12 06-12-12 06-12-12 06-12-12	1.20 2.00 3.00 4.00	Dpt DRY 1.8 1.8 1.8	1	N/A 87 77 67	N/A 90 80 60		ge 2.	Position sonny prior t	canned with CAT to excavation. n pit excavated to ior to drilling.	&

Method/ Plant Used

Dart Competitor Rig

Logged By

GD

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West R	ail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 24-11-12 25-11-12	Ground Level (m)	Co-Ordinates ()	WS161 - Wk35
Contractor	Sheet			
Bridgeway C	1 of 1			

Bridgeway Consulting									
SAMPLE	ES & T	ESTS					STRATA		ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/ Backfill
						(0.40) 0.40	Black VERY DIRTY BALLAST of igneous rock. Fines are granular fine to coarse sand and ash and gravel of subangular to subrounded fine to coarse coal and granite. Some rootlets.		
0.40-1.00	B D					(0.60)	MADE GROUND: Light yellowish brown gravelly SAND. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium flint and sandstone. Occasional shell fragments. Some		
1.10 1.20-1.30 1.20-1.65	D B S	N6				1.20	voots. Very soft greyish blue mottled yellow sandy CLAY. Sand is fine to medium. Some rootlets.		
1.30-2.50	В	110				(1.20)	Very soft low strength brownish blue and grey gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse flint and sandstone. Very soft low strength brownish blue and grey mottled red sandy		
2.00-2.10	D S	N6				2.50	CLAY. Sand is fine to coarse.		
55.50 2.50-5.50 2.50-5.50	В					- - - -	Firm medium becoming high strength blueish grey slightly sandy CLAY with some selenite crystals. Sand is fine to medium.		
3.00-3.10	D S	N12				- - - - - - -			
2.50-5.50 3.00-3.10 3.00-3.45 3.00-3.45 4.00-4.10 4.00-4.45 5.00-5.45	D S	N13				(3.95)			
5.00-5.45	S	N20				- - - - -			
5.50-5.60	D					-			
6.00-6.45	S	N20				6.45			
00ECTS/CUF						- - - -			
						- - - -			
INVESTIGATION OF THE PROPERTY		***	01			-			
≝⊢ Progre	ess and	Water	Obs	ervation	IS			FNFRAL.	

Pro	gress and)bservati	ons		GENERAL
Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS
Pro. Date 25-11-12 25-11-12 25-11-12 25-11-12 25-11-12	1.20 2.00 3.00 4.00 5.00 6.00	DRY DRY DRY DRY DRY DRY DRY	N/A 87 77 67 57 45	N/A 100 100 100 100 100		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at 23m 18ch West.
All dime	ncione in n	notros Cl	ient Chi	ltern Rai	ways Ltd Method/	Logged By

All dimensions in metres Scale 1:50 Client Chiltern Railways Ltd Method/ Plant Used Dart Competitor Rig MR

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 01-12-12 01-12-12	Ground Level (m)	Co-Ordinates ()	WS162 - Wk36
Contractor	Sheet			
Bridgeway	1 of 1			

		Consult	ing					Sheet	1 of 1	
SAMPL	ES & T	ESTS					STRATA)ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/
0.30-0.70	B D					0.30	POSSIBLE MADE GROUND: Yellow SAND and GRAVI Sand is fine to coarse. Gravel is angular to subrounded fine medium sandstone, mudstone and flint.	EL. to	11.5 V 11	
- 1.00 - 1.20-2.00 - 1.20-1.65	D B S	N7				_(0.50) - 1.20	Blue gravelly CLAY. Gravel is angular to subrounded fine medium sandstone, mudstone and flint. Firm medium locally high strength brown and grey mottled orange slightly sandy CLAY. Sand is fine to coarse. Some gypsum crystals from 2.0m.		74	
2.00-3.00	B S	N13				-			88	
3.00-4.60 3.00-3.45 4.00-4.45	B S	N8				(3.40)				
4.00-4.45	S	N7				4.60			63	
4.60-6.00	В					4.00	Stiff medium becoming very high strength laminated dark g CLAY with rare shells fragments.	grey		
Progr Date 01-01-12 01-12-12 01-12-12	S	N30				(1.85)			>225	
- 6.00-6.45	S	N54				6.45				
Progr	ess and	Water	Obs	ervatio	ns	-		Gl	ENERAL	
Date 01-01-12 01-12-12 01-12-12 01-12-12 01-12-12 01-12-12	Depth 4.00 1.20 2.00 3.00 5.00 6.00	Water Dpt DRY DRY DRY DRY DRY DRY DRY	Di		% Rec 100 N/A 100 100 90 90		ge 2. 1.	Position so enny prior t Inspection 20mbgl pri	ENERAL EMARKS canned with CAT o excavation. pit excavated to or to drilling. d at 23m 70ch V	
All dimens Sca	ions in m le 1:50	etres C	lient	Chil	tern Rai	lways Lto	d Method/ Plant Used Dart Competitor Rig	ogged B	GD	

All dimensions in metres Scale 1:50

Client

Chiltern Railways Ltd

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No Date 26-11-12 27-11-12		Ground Level (m)	Co-Ordinates ()	WS163 - Wk35
Contractor	'	'	<u>'</u>	Sheet
Bridgeway	Consulting			1 of 1

Contractor								Sheet		
Brid	geway	Consult	ing						1 of 1	
SAMPLI	ES & T	ESTS					STRATA			snt/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/
0.25-0.40 0.30 0.40 0.80-1.20 1.00 1.20-1.65	B D D B D S	N7	1			0.25 0.40 (0.40) 0.80 -(0.40) 1.20 (0.40) 1.60		nell /		
2.00	S	N0			0000	(0.40) 2.00 (0.40) 2.40	Firm low strength dark orangey brown sandy slightly gravel CLAY. Sand is fine to coarse. Gravel is subangular fine to offlint. Rare rootlets. Very loose orangey brown very sandy GRAVEL. Sand is finedium. Gravel is subangular to subrounded fine to coarse sandstone and quartzite.	ne to	25	
3.00-3.45	S	N9					Stiff high locally low strength dark grey CLAY with some s fragments.	sieli	125	
4.00-4.45	S	N30 N27				(4.05)			113	
6.00-6.45	S	N7				- - - - - - - - - -			113	
-						6.45				
Progr	ess and	Water	Obs	ervatio	ns	-		G	ENERAL	•
Ť	Depth	Water Dpt	$\overline{}$		% Rec			RI	EMARKS	
26-11-12 26-11-12 26-11-12 26-11-12 26-11-12 26-11-12	1.20 2.00 3.00 4.00 5.00 6.00	Dpt DRY 1.7 1.67 1.67 1.67	ì	N/A 101 101 101 86 76	N/A 100 70 100 90 100		ge 2. 1.1	Position so nny prior t Inspection 20mbgl pri	canned with CAT to excavation. a pit excavated to for to drilling. ed at 24m 50ch E	

Method/ Plant Used

Dart Competitor Rig

Logged By

GD

Bridgeway Consulting Ltd Beeston Business Park, Technology Drive WINDOWLESS Nottingham. NG9 1LA Telephone: 0115 919 1111 Fax: 0115 919 1112 SAMPLER LOG SAMPLER LOG

		/		
Project East West R	ail	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 27-11-12 28-12-12	Ground Level (m)	Co-Ordinates ()	WS164 - Wk35
Contractor				Sheet
Bridgeway C	Consulting			1 of 1

Bric	igeway i	Consult	ıng					1 01 1	
SAMPL	ES & T	ESTS					STRATA		nt/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/ Backfill
0.30-0.50	B ES					0.30	MADE GROUND: Yellow SAND and GRAVEL. Sand is fine to coarse. Gravel is subangulalr to subrounded fine to coarse		
- 0.80-1.20 - 1.00	B D					-(0.40) 1.20	Blue gravelly CLAY. Gravel is angular to subangular fine to medum sandstone.		
1.00 1.20-1.60 1.20-1.65 1.60-2.00	ES D S D	N9				(0.80)	Loose dark brown clayey SAND with rare rootlets. Sand is fine to medium.		
2.00-3.80 2.00-2.45	B S	N26				2.00	Medium dense locally dense orangey brown slightly clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse sandstone and flint.	_	
3.00-3.45	S	N28				(1.80)			
3.80-6.00 4.00-4.45	B S	N19				3.80	Stiff to very stiff high to very high strength laminated CLAY with some shell fragments.		
ECISCURBERIA PROJECTS/ATT/1631 - ENST WEST FAIL OF JON-3 '10-107/2013 O'-3-49-40-4-4-5 O'-2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	S	N31				(2.65)		188	
26.9-6.45	S	N32				6.45		_	
SITE INVESTIGATION GIVE PROJECTSIC						-			
Progr	ess and	Water	Obse	ervation	ns	_		 GENERAL	

Pro	ogress and		Observati	ons		GENERAL
Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS
Pro Date 27-11-12 27-11-12 28-11-12 28-11-12 28-11-12	1.20 2.00 3.00 4.00 5.00 6.00	N/A DRY 2.73 2.73 2.73 2.73	N/A 101 101 101 86 76	N/A 80 100 100 100 100		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at 24m 60ch East.
All dim	encione in n	netres Cl	ient Chi	ltern Rai	ways Ltd Method/	Logged By

ogged By GD All dimensions in metres Scale 1:50 Method/ Plant Used Dart Competitor Rig

Annex A3

Water Eaton

Sheet Contractor 1 of 1 **Bridgeway Consulting** В $\overline{\mathsf{D}}$ Legend . 3 10/01/2013 15:51:48 **STRATA SAMPLES & TESTS** GINT STD AGS 3_1 LAB.GLB AGS3 UK TP KASITE INVESTIGATIONIGINT PROJECTSICURRENT PROJECTSUJ1631 - EAST WEST RAIL. GPJ GINT STD AGS 3_1 LAB.GDT Depth Remarks/Tests Depth No DESCRIPTION 0.00-0.20 MADE GROUND: Black SAND and GRAVEL. Sand is fine to coarse ash. Gravel is angular to subangular fine to coarse flint, sandstone and mudstone. 0.20-0.40 Yellow SAND and GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to 0.40-0.80 medium sandstone and mudstone. BOULDERS of sandstone. Shoring/Support: **GENERAL** Stability: REMARKS 1. Position scanned with CAT & genny prior to excavation.
2. Trial pit terminated at 0.8m due to sandstone boulders. D Client Atkins Method/ Logged By All dimensions in metres Plant Used Scale 1:50

Job No

TRIAL PIT LOG Project East West Rail Consultant TRIAL PIT No **Atkins** Date Ground Level (m) Co-Ordinates () 41-TP3 13-12-12 13-12-12

J11631 Sheet Contractor 1 of 1 **Bridgeway Consulting** В $\overline{\mathsf{D}}$ Legend . 3 10/01/2013 15:51:48 **STRATA SAMPLES & TESTS** GINT STD AGS 3_1 LAB.GLB AGS3 UK TP KASITE INVESTIGATIONIGINT PROJECTSICURRENT PROJECTSUJ1631 - EAST WEST RAIL. GPJ GINT STD AGS 3_1 LAB.GDT Depth Remarks/Tests Depth No DESCRIPTION MADE GROUND: Black SAND and GRAVEL. Sand is ash. Gravel is angular to subangular 0.00-0.15 0.15-0.50 fine to coarse flint, sandstone and mudstone. MADE GROUND: Yellow SAND and GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse sandstone and mudstone. 0.50-0.60 BOULDERS of sandstone. Shoring/Support: **GENERAL** Stability: REMARKS 1. Position scanned with CAT & genny prior to excavation.
2. Trial pit terminated at 0.6m due to sandstone boulders. D Client Atkins Method/ Logged By All dimensions in metres Plant Used Scale 1:50

(Window Sampler)

Sheet 1 of 1

lient Itkins Limited					Boring diameter: 100 mm to 3.00m	Casing diameter: 100 mm to 2.00m	Project No	
ogged by: NB	Ground Le	vel:			Date: 28/03/2013	Location: -	Scale:	1:50
Samples & In situ	Tests SPT N	Water	Level (mAOD)	Depth (m)	Str	rata Description	Legend	Backfi
E1 0.30-0.40 B2 0.50-0.60 E3 0.60-0.70	31111	•	(1111100)	0.50	Vegetation over very so rare coarse angular lime roots.	ft red brown sandy CLAY with estone gravel and many		
E4 1.00-1.10 D5 1.10-1.20 S 1.20 SD6 1.20-1.65 D7 1.50-2.00	N=3	_		1.50	with occasional roots.	pale grey mottled sandy CLAY silty fine to medium sand		
S 2.00 SD8 2.00-2.45	N=2				Firm orange brown and	grey CLAY.		
D9 2.60-2.90 D10 2.90-3.00 S 3.00	50/10mm			2.60 2.90 3.00	Stiff fissured grey CLAY. Stiff dark grey CLAY with			

- 1. Hand dug starter pit to 1.20m to check for services.
- Groundwater seepages were encountered at 0.70m during excavation of the hand dug starter pit.
 The borehole was backfilled with the spoil arisings.

(Window Sampler)

Sheet 1 of 1

Client Atkins Limited				Boring diameter: 100 mm to 3.10m	Casing diameter: 100 mm to 2.00m	Project N G13	o.: 8066
Logged by: NB	Ground Level:			Date: 28/03/2013	Location: -	Scale:	1:50
Samples & In situ	vvatci	Level	Depth	C+	rata Description	Legend	Backfill
Ref: Depth (m)	SPT N	(mAOD)	(m)		·	12:42	
E1 0.30 D2 0.30-0.45 E3 0.60 B4 0.60-0.80 E5 1.00 D6 1.10-1.20 S 1.20 SD7 1.20-1.65 D8 1.40-1.60 D9 1.60-2.00 S 2.00 SD10 2.00-2.45 D11 2.00-2.60	N=6 N=7		0.45 0.80 1.40 1.60	coarse angular flint). Soft orange and grey bi becoming firm from Firm orange brown and CLAY.	tly gravelly CLAY (gravel is rown locally sandy CLAY. 1.30m. I white mottled locally sandy ellow mottled CLAY with	X - X	
D12 2.60-3.00 \$ 3.00 \$D13 3.00-3.10	50/5mm		2.60 3.05 3.10	Stiff fissured grey CLAY Weak grey LIMESTONE			
				End of Borehole at 3.10	m		

- 1. Hand dug starter pit to 1.20m to check for services.
- Slight groundwater seepages were encountered at 1.00m during excavation of the hand dug starter pit.
 The borehole was backfilled with the spoil arisings.

(Window Sampler)

Sheet 1 of 1

G	EOTECHNI	CAL			-	Site East West Rail Phase 1	I - Off Track Investigation		
Client Atkin	s Limited					Boring diameter: 100 mm to 3.40m	Casing diameter: 100 mm to 2.00m	Project N G13	o.: 8066
Logge	ed by: NB	Ground	Level:			Date: 28/03/2013	Location: -	Scale:	1:50
S Ref:	amples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	St	rata Description	Legend	Backfil
CI.	Deptii (iii)	3FT IN		(IIIAOD)	(111)		over brown sandy topsoil.		
E1 E2	0.30 0.60				0.30 0.50	MADE GROUND - very sandy clay.	soft orange brown and pale grey		
E3	0.80-1.00				0.80	MADE GROUND - firm	orange sandy clay.		
S SD4 D5 D6	1.20 1.20-1.65 1.20-1.50 1.70-2.00	N=5			1.10	\ coarse sand and fine to	ge and black ashy clayey fine to coarse angular rock and vith a sulphurous odour.		
S	2.00	N=10				Firm orange brown and	grey mottled CLAY.		
SD7 D8	2.00-2.45 2.00-2.50					Firm orange grey and y	ellow mottled CLAY.		
D9	2.50-3.00				2.40	Stiff fisssured grey CLA	Υ.		
S D10	3.00 3.00-3.40	50/245mm							
					3.35 3.40	Weak grey LIMESTONE			
						End of Borehole at 3.40			

- Hand dug starter pit to 1.20m to check for services.
 Groundwater seepages were encountered at 0.20m during excavation of the hand dug starter pit.
 The soils excavated within the starter pit were softened by the inflow of groundwater and turned to slurry.
 Gas/groundwater monitoring pipe (slotted from 1.00m installed to 3.00m).

(Window Sampler)

Sheet 1 of 1

Site

Client					-	East West Rail Phase 1	- Off Track Investigation		
	t s Limited					Boring diameter: 148 mm to 6.45m	Casing diameter:	Project No G13	
Logg	ed by: PP	Ground	Level:			Date: 08/04/2010	Location: -	Scale:	1:50
	Samples & In situ		Water	Level	Depth	St.	rata Description	Legend	Backfill
Ref: E1	Depth (m) 0.00-0.20	SPT N		(mAOD)	(m)	TOPSOIL.	Tata Bescription	W/////	
D2	0.40-0.60				0.40				
D3	0.80-1.10				0.70	Firm light brown slightl CLAY.	y sandy slightly organic	We X	
S B4	1.20 1.20-1.60	N=10				Firm yellow brown sligh CLAY. Gravel is sub ang medium flint.	ntly sandy slightly gravelly ular to sub rounded fine to		
B5	1.60-2.00				1.60	Stiff locally firm yellow	grey and brown CLAY.		
S D6 B7	2.00 2.00-2.45 2.00-3.00	N=13							
S D8 B9	3.00 3.00-3.45 3.00-3.60	N=15							
B10	3.60-4.00				3.60	Stiff dark grey CLAY.			
S D11 B12	4.00 4.00-4.45 4.00-5.00	N=20							
S D13 B14	5.00 5.00-5.45 5.00-6.00	N=24							
S D15	6.00 6.00-6.45	N=24			6.00	End of Borehole at 6.45	m	====	

- 1. Waiting for access problems to be resolved; 2 hours.
- 2. Hand dug starter pit to 1.20m to check for services.
- No groundwater entries were recorded during boring operations.
 The borehole was completed at 6.45m and backfilled with arisings.

(Window Sampler)

Sheet 1 of 1

Site

Clien Atkin	t s Limited					Boring diameter: 148 mm to 6.45m	Casing diameter:	Project No	
Logg	ed by: PP	Ground	l Level:			Date: 09/04/2013	Location: -	Scale:	1:50
Ref:	Samples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	St	rata Description	Legend	Backfill
D1	0.10-0.30	31111		(III/IOD)	(111)	TOPSOIL.	·		
D2	0.50-0.90				0.40	Medium dense brown a gravelly SAND. Gravel is fine to coarse flint and	and orange brown slightly s angular to sub angular quartz.		
S D3 B4	1.20 1.20-1.65 1.20-2.00	N=29							
S D5	2.00 2.00-2.45	N=3			2.00	Firm yellow grey CLAY.		33 200	
В6	2.50-3.00				2.40	Stiff grey CLAY.			
S D7 B8	3.00 3.00-3.45 3.00-4.00	N=11							
S B10 D9	4.00 4.00-5.00 4.00-4.45	N=12							
S D11 D12	5.00 5.00-5.45 5.00-6.00	N=21							
S D13	6.00 6.00-6.45	N=28			6.45				
					5.10	End of Borehole at 6.45	m		

- 1. Waiting for access problems to be resolved; 1.5 hours.

- Walting for access problems to be resolved, 1.5 Hours.
 Hand dug starter pit to 1.20m to check for services.
 Slight groundwater entry at 0.90m, water level did not rise.
 Borehole was completed at 6.45m and backfilled with arisings.

(Window Sampler)

Sheet 1 of 1

Site

Clien						Boring diameter: 100 mm to 6.45m	Casing diameter:	Project N	
Atkın	s Limited					100 111111 to 0.45111		G13	066
Logg	ed by: PP	Ground	Level:			Date: 12/04/2013	Location: -	Scale:	1:50
Ref:	Samples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	St	rata Description	Legend	Backfill
E1	0.00-0.20	31 1 14		(III/IOD)	(11)	TOPSOIL.	·	XXX	
B2 E2	0.50-1.00 0.50-1.00				0.40	Orange brown slightly coarse SAND. Gravel is to medium quartz, flint	angular to sub angular fine		
S D3 B4	1.20 1.20-1.65 1.20-1.90	N=20							
D5 S D6	1.90-2.00 2.00 2.00-2.30	N=4			1.90	Loose brown silty fine	to medium SAND.	* * * * * * * * * * * * * * * * * * * *	
D7 D8	2.60-2.80 2.80-3.00				2.60 2.80	Firm brown CLAY			
S D10 D9 D11	3.00 3.00-3.50 3.00-3.45 3.50-4.00	N=13			2.00	Stiff grey CLAY.			
S D12 D13 D14	4.00 4.00-4.45 4.00-4.50 4.50-5.00	N=23							
S D15 D16 D17	5.00 5.00-5.45 5.00-5.50 5.50-6.00	N=35							
S D18	6.00 6.00-6.45	N=34			6.45	End of Borehole at 6.45			
						2.14 3. 23. 61.016 41 0.40			

- 1. Track rig to position; 1 Hour.
- Hand dug starter pit to 1.20m to check for services.
 No groundwater entries were recorded during boring operations.
 Borehole completed at 6.45m and backfilled with arisings.

(Cable Percussion)

Site

GEOTECHNICAL						East West Rail Phase 1 - Off Track Investigation				
Client Atkin	t is Limited					Boring diameter: 150 mm to 10.00m	Casing diameter:	Project No		
Logged by: PP Ground Level:						Date: 10/04/2013	Location: -	Scale:	1:50	
- 5	Samples & In situ	u Tests Water Level Depth		0.1		Legend	Backfill			
Ref:	Depth (m)	SPT N		(mAOD)	(m)		rata Description	V//8///8/		
B1	0.00-0.30 0.30-0.70				0.20	TOPSOIL.				
B2 B3	0.70-1.20				0.30	Brown and grey slightly fine to coarse SAND. Gr rounded fine to mediur	ravel is angular to sub			
S D5	1.20	N=6			1.70	Gravel is angular to sub limestone and quartz a	avelly fine to coarse SAND. o rounded fine to coarse nd flint. ered from SPT at 1.20m.			
					1.70		ered from 31 T at 1.20m.			
S D7	2.00 2.00-2.45	N=6			2.20	Soft grey CLAY.		====		
B8	2.20-3.00				2.20	Stiff locally very stiff gro	ey CLAY.			
U9	3.00-3.45	(19)								
D10 B11	3.50 3.50-4.00									
S D13 B14	4.00 4.00-4.45 4.50-5.00	N=18			4.00	Stiff locally very stiff gregrey silt.	ey CLAY with bands of			
S D16	5.00 5.00-5.45	N=50								
B17	5.50-6.50				5.50	Stiff locally very stiff gro	ey silty CLAY.	× × × × × × × × × × × × × × × × × × ×		
S D19	6.50 6.50-6.95	N=34						x x x		
D20	7.00-8.00							x x x x x x x x x x x x x x x x x x x		
S D22 D23	8.00 8.00-8.45 8.50-9.50	N=35						x x x		
			1					X_X_		

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepages were encountered at 6.95m (casing at 2.50m) rising to stand at 5.50m after 5 minutes during boring

(continued next sheet)

Sheet 1 of 2

3. On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Sheet 2 of 2

Site

GEOTECHNICAL						East West Rail Phase 1 - Off Track Investigation				
Client Atkin	s Limited					Boring diameter: 150 mm to 10.00m	Casing diameter:	Project No G13		
Logged by: PP Ground Level:						Date: 10/04/2013	Location: -	Scale:	1:50	
	amples & In situ		Water Level Depth			C+	rata Description	Legend	Backfill	
S D25 D26	9.50 9.50-9.95 9.50-10.00	SPT N N=31		(mAOD)	(m)	Stiff locally very stiff grey silty CLAY. End of Borehole at 10.00 m		xx xx xx xx		

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepages were encountered at 6.95m (casing at 2.50m) rising to stand at 5.50m after 5 minutes during boring operations.
- 3. On completion the borehole was backfilled with spoil arisings.

(Window Sampler)

Sheet 1 of 1

Site

GEOTECHNICAL						East West Rail Phase 1 - Off Track Investigation					
Client Atkin	s Limited					Boring diameter: 148 mm to 4.00m	Casing diameter:	diameter: Project No G130			
Logg	ed by: PP	Ground	Level:			Date: 10/04/2013	Location: -	Scale:	1:50		
	Samples & In situ Tests Water Level Depth		Depth	C+r	rata Description	Legend	Backfill				
Ref:	Depth (m)	SPT N		(mAOD)	(m)		V///8////8/	*.2885.231			
B1	0.00-0.30				0.20	TOPSOIL.					
B2 B3	0.30-0.50 0.50-1.00				0.30 0.50	Brown clayey gravelly fine to coarse SAND. Gravel is angular to sub angular fine to coarse limestone and quartz.					
S B4	1.20 1.20-1.60	N=7				Yellow brown gravelly fi is angular to sub angula flint.	Yellow brown gravelly fine to coarse SAND. Gravel is angular to sub angular fine to medium quartz and				
B5	1.60-2.00				1.60		Stiff locally very stiff dark grey CLAY.				
S D6 B7	2.00 2.00-2.45 2.00-3.00	N=17									
S D8 B9	3.00 3.00-3.45 3.00-3.80	N=25									
D10 S	3.80-4.00 4.00	50/85mm			3.80	Hard grey CLAY with ma selenite crystals.					
S	5.00	50/230mm									
S	6.00	N=19			(45						
					6.45	End of Borehole at 6.45 i	m				

- 1. Hand dug starter pit to 1.20m to check for services.
- Slight groundwater seepage at 0.80m, the water level did not rise.
 Borehole completed at 6.45m and a groundwater monitoring standpipe installed to the base of the hole.

(Cable Percussion)

Site

East West Rail Phase 1 - Off Track Investigation Boring diameter: Casing diameter: Project No.: Client 150 mm to 20.00m Atkins Limited G13066 Logged by: PP Ground Level: Date: 08/04/2013-09/04/2013 Location: -Scale: 1:50 Samples & In situ Tests Water Legend Backfill Level Depth Strata Description Ref: Depth (m) SPT N (mAOD) (m) D1 0.00-0.30 MADE GROUND - Topsoil. B2 0.30-1.15 0.30 Firm locally stiff yellow brown and grey CLAY. UT3 1.20-1.65 1.70 D4 D5 1.70-2.00 2.00 2.00-2.45 N=14 D7 2.50-3.00 **B8** UT9 3.00-3.45 D10 3.50 3.50-4.00 4.00 N=13 D13 4.00-4.45 B14 4.50-5.00 4.50 Stiff locally very stiff dark grey CLAY. UT15 5.00-5.40 D16 5.45 5.50-6.50 B17 N=25 6.50 D19 6.50-6.95 B20 7.00-8.00 U21 8.00-8.30 (39)D22 8.35 8.40-9.50 B23

(continued next sheet)

Sheet 1 of 3

- 1. Waiting for access problems to be resoved; 2 hours.
- 2. Hand dug starter pit to 1.20m to check for services.
- 3. Slight groundwater seepages were encountered at 15.85m (casing at 2.50m) during boring operations.
- 4. On completion the borehole was backfilled with spoil arisings.
- 5. Winch rig out of field due to soft ground; 1 hour.

(Cable Percussion)

Site

Clien Atkin	t is Limited					Boring diameter: 150 mm to 20.00m	Casing diameter:	eter: Project No.: G13066	
Logg	ed by: PP	Ground	Level:			Date: 08/04/2013-09/04/2013	Location: -	Scale:	1:50
Ref:	Samples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
S D25	9.50 9.50-9.95	N=29				Stiff locally very stiff dark gr	ey CLAY.		
B26	10.00-11.00								
U27	11.00-11.45	(40)							
D28 B29	11.50 11.50-12.50								
S D31	12.50 12.50-12.95	N=45							
B32	13.00-14.00								
U33	14.00-14.45	(45)							
D34 B35	14.50 14.50-15.50								
S D37 B38	15.50 15.50-15.85 15.85-17.00	50/225mm	•						
S D40 D41	17.00 17.00-17.35 17.35-18.50	50/210mm							

(continued next sheet)

Sheet 2 of 3

- 1. Waiting for access problems to be resoved; 2 hours.
- Hand dug starter pit to 1.20m to check for services.
 Slight groundwater seepages were encountered at 15.85m (casing at 2.50m) during boring operations.
- 4. On completion the borehole was backfilled with spoil arisings.
- 5. Winch rig out of field due to soft ground; 1 hour.

(Cable Percussion)

Sheet 3 of 3

G	EOTECHNI	CAL		-		East West Rail Phase 1 - Off Track Investigation				
Client Atkin	t s Limited					Boring diameter: 150 mm to 20.00m	Casing diameter: Project G		No.: 13066	
Logged by: PP Ground Level:						Date: 08/04/2013-09/04/2013	Location: -	Scale:	1:50	
Ref:	amples & In sit	u Tests SPT N	Water Level Depth			Strata I	Description	Legend	Backfill	
S D43 D44	18.50 18.50-18.80 18.80-20.00	50/195mm		(mAOD)	(m)	Stiff locally very stiff dark gre				
S D46	20.00 20.00-20.35	50/205mm			20.00	End of Borehole at 20.00 m				

- 1. Waiting for access problems to be resoved; 2 hours.
- Hand dug starter pit to 1.20m to check for services.
 Slight groundwater seepages were encountered at 15.85m (casing at 2.50m) during boring operations.
- 4. On completion the borehole was backfilled with spoil arisings.
- 5. Winch rig out of field due to soft ground; 1 hour.

(Cable Percussion)

Site

G	EOTECHNI	CAL		-	4	East West Rail Phase 1	- Off Track Investigation		
Client Atkin	t s Limited					Boring diameter: 150 mm to 17.40m	Casing diameter:	Project No	
Logge	ed by: PP	Ground	Level:			Date: 03/04/2013	Location: -	Scale:	1:50
S Ref:	Samples & In situ		Water	Level	Depth	St	Legend	Backfill	
B1	Depth (m) 0.00-0.30	SPT N		(mAOD)	(m)	TOPSOIL.	rata Description	3000000	
B2	0.30-1.15				0.30				
						gravelly CLAY. Gravel is fine to medium limesto	grey slightly sandy slightly angular to sub angular ne.		
JT3	1.20-1.55								
D4 B5	1.60 1.60-2.00								
S	2.00	N=6							
B8	2.50-3.00				2.50	Stiff orange brown and	grey slightly sandy slightly		
JT9	3.00-3.45					gravelly CLAY. Gravel is fine to medium limesto			
010	3.50				3.50				
B11	3.55-4.00				0.00	Stiff grey clay with man	y shell fragments.		
S D13	4.00 4.00-4.45	N=30							
B14	4.50-5.00								
U15 D7	5.00-5.80 5.00	(40)							
D1	3.00								
D16	5.85				5.85				
B17	5.90-6.50					Hard grey SILT.		X X X X X X X X X X X X X X X	
S D19	6.50 6.50-6.95	50/275mm			6.50	Very stiff grey CLAY wit	h many shell fragments.		
320	7.00-8.00								
S	8.00	46/190mm							
D22	8.00-8.45								
B23	8.50-9.50								

(continued next sheet)

Sheet 1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- No groundwater seepages were encountered during boring operations.
 On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Sheet 2 of 2

GEOTECHNICAL						East West Rail Phase 1 - Off Track Investigation						
Client Atkin	s Limited						g diameter: n to 17.40m		Casing diameter:	į	Project No G130	
Logge	ed by: PP	Ground	Level:			Date:	03/04/2013		Location: -		Scale:	1:50
	amples & In sit		Water	Level	Depth			Strata D	escription		Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD)	(m)	.,	.155 01.41/					
S D25	9.50 9.50-9.95	50/220mm				Very	stiff grey CLAY	with man	y shell fragments.			
B26	10.00-11.00											
S D28	11.00 11.00-11.45	50/175mm										
B29	11.50-12.50											
S D31	12.50 12.50-12.95	50/220mm										
B32	13.00-14.00											
S D34 B35	14.00 14.00-14.45 14.50-15.50	50/210mm										
S D37 B38	15.50 15.50-15.90 15.90-17.00	50/285mm										
S D40	17.00 17.00-17.40	50/270mm			17.40	End c	of Borehole at 1	7.40 m				

- 1. Hand dug starter pit to 1.20m to check for services.
- No groundwater seepages were encountered during boring operations.
 On completion the borehole was backfilled with spoil arisings.

(Window Sampler)

Sheet 1 of 1

Site

GEOTECHNICAL						East West Rail Phase 1 - Off Track Investigation					
Client Atkin	t s Limited					Boring diameter: 148 mm to 7.45m	Casing diameter:	Project No G130			
Logg	ed by: PP	Ground	Level:			Date: 05/04/2013	Location: -	Scale:	1:50		
	Samples & In sit	1	Water	Level	Depth	C+	rata Description	Legend	Backfill		
Ref:	Depth (m)	SPT N		(mAOD)	(m)		<u> </u>	Letter Lat			
E1	0.10-0.50				0.50	Firm brown and yellow	brown slightly sandy CLAY.				
D2 S D3	0.60-1.10 1.20 1.20-1.65	N=11			0.30	Firm locally stiff yellow	brown and grey CLAY.				
B4 B5 S D6 B7	1.20-1.65 1.20-1.60 1.60-2.00 2.00 2.00-2.45 2.00-3.00	N=12			1.60	Stiff grey locally brown crystals and shell fragm	CLAY with many selenite nents.				
S D8 B9	3.00 3.00-3.45 3.00-3.85	N=10									
D10 S D11 B12	3.85-4.00 4.00 4.00-4.45 4.00-5.00	N=18			3.85	Stiff locally very stiff da shell fragments and sel	rk grey CLAY with many enite crystals.				
S D13	5.00 5.00-5.45	N=46									
S D14	6.00 6.00-6.45	N=42									
S D15	7.00 7.00-7.45	50/285mm			7.45	End of Borehole at 7.45					
						2.12 3. Bololiolio de 7.40					

- 1. Hand dug starter pit to 1.20m to check for services.
- No groundwater entries were recorded during boring operations.
 Borehole completed at 7.45m and backfilled with arisings.

(Window Sampler)

Sheet 1 of 1

Site

	GEOTECHNICAL				East West Rail Phase 1 - Off Track Investigation				
Client Atkin	s Limited					Boring diameter: 148 mm to 7.45m	Casing diameter:	Project N G13	
Logge	ed by: PP	Ground	Level:			Date: 04/04/2013	Location: -	Scale:	1:50
S Ref:	amples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Sti	rata Description	Legend	Backfill
E1	0.00-0.20	31111		(III/OD)	(11)	TOPSOIL.	·	WANN.	
D2 B3	0.30-0.60 0.60-1.00				0.30		grey slightly sandy slightly angular to sub angular ne.		= = -
S D10 B4	1.20 1.20-1.65 1.20-1.80	N=15				Firm orange brown and of fine to medium sand	grey CLAY with rare partings sized selenite crystals.		
B5 S D10 B6	1.80-2.00 2.00 2.00-2.45 2.00-2.60	N=16			1.80	Firm locally stiff yellow many selenite crystals.	brown and grey CLAY with		
B7 B8 S D10	2.60-2.90 2.90-3.50 3.00 3.00-3.45	N=9			2.60	Stiff dark grey CLAY wit occasional selenite crys	h many shell fragments and tals.		
S B10 D10	4.00 4.00-5.00 4.00-4.45	N=32			3.50	Very stiff dark grey CLA fragments.	Y with many shell		
S D10	5.00 5.00-5.45	50/280mm							
S D10	6.00 6.00-6.45	50/200mm							
S D10	7.00 7.00-7.45	50/240mm			7.00	End of Borehole at 7.45	m		

- 1. Hand dug starter pit to 1.20m to check for services.
- No groundwater entries were recorded during boring operations.
 Borehole completed at 7.45m and backfilled with arisings.

(Cable Percussion)

Client Atkins Limited					Boring diameter: 150 mm to 20.00m	Casing diameter:	Project No.: G13066	
Logged by: PP	Ground	Level:			Date: 02/01/1900-03/04/2013	Location: -	Scale:	1:50
Samples & In s	situ Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfi
B1 0.05-1.15					Firm orange brown and grey gravelly CLAY. Gravel is angu fine to medium limestone.	r slightly sandy slightly ular to sub angular		
UT2	N=7			2.50				
UT8 3.00-3.45					Stiff orange brown and grey	slightly sandy CLAY.		
D9 3.50 D10 3.70-4.00				3.50	Firm grey slightly sandy SILT		××××>	
S 4.00 D12 4.00-4.45 B13 4.50-5.00	N=24			4.00	Stiff locally very stiff grey CL	AY.		
JT14 5.00-5.25 D15 5.30 B16 5.35-6.50								
S 6.50 D17 6.50-6.95	N=32							
B19 7.00-8.00								
U20 8.00-8.25 D21 8.30	(40)			8.30	OUTS III VISS III			
B22 8.35-9.50					Stiff locally very stiff dark greshell fragments.	ey clay with many		

(continued next sheet)

Sheet 1 of 3

- 1. Hand dug starter pit to 1.20m to check for services.
- Slight groundwater seepages were encountered at 3.50m during boring operations.
 On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Site

						East West Rail Phase 1 - O		D : IN		
Clien Atkir	t ns Limited					Boring diameter: 150 mm to 20.00m	Casing diameter:	Project N G13	o.: 8066	
Logg	ed by: PP	Ground	Level:			Date: 02/01/1900-03/04/2013	Location: -	Scale:	1:50	
Ref:	Samples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
S D24 B25	9.50 9.50-9.90 9.90-11.00	50/255mm				Stiff locally very stiff dark gi shell fragments.	rey clay with many			
S D27 B28	11.00 11.00-11.35 11.40-12.50	50/220mm								
S D30 B31	12.50 12.50-12.75 12.75-14.00	50/115mm								
S D33 D34	14.00 14.00-14.35 14.40-15.50	49/220mm								
S D36 B37	15.50 15.50-15.85 15.90-17.00	50/195mm								
S D39 B40	17.00 17.00-17.40 17.45-18.50	50/255mm								

(continued next sheet)

Sheet 2 of 3

- 1. Hand dug starter pit to 1.20m to check for services.
- Slight groundwater seepages were encountered at 3.50m during boring operations.
 On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Sheet 3 of 3

Site

G	EOTECHN	East West Rail Phase 1 - Off Track Investigation							
Client Atkin	t s Limited					Boring diameter: 150 mm to 20.00m	Casing diameter:	Project No	
Logg	ed by: PP	Ground	Level:			Date: 02/01/1900-03/04/2013	Location: -	Scale:	1:50
	amples & In sit		Water	Level	Depth	Strata	Description	Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD)	(m)		Description		***************************************
S D42	18.50 18.50-18.85	50/255mm				Stiff locally very stiff dark gr shell fragments.	ey clay with many		
B43	18.95-20.00	50/260mm			20.00				
S D45	20.00 20.00-20.45	50/260mm			20.00	End of Borehole at 20.00 m			

- 1. Hand dug starter pit to 1.20m to check for services.
- Slight groundwater seepages were encountered at 3.50m during boring operations.
 On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Site

Client Atkin	t s Limited					Boring diameter: 150 mm to 14.00m	Casing diameter:	Project No G13	
Logg	ed by: PP	Ground	Level:			Date: 09/04/2013	Location: -	Scale:	1:50
Sef:	Samples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	St	rata Description	Legend	Backfi
B1	0.00-0.30	0		((0.5)	()	Topsoil.			
B2	0.30-1.15				0.30	Orange brown fine to r	nedium SAND.		
S D4 B5	1.20 1.20-1.65 1.70-2.00	N=9			1.20	Loose orange brown sli SAND. Gravel is angular medium quartz.	ghtly gravelly fine to coarse to sub angular fine to		
S B7	2.00	N=6			2.35				
D/	2.35-3.00				2.35	Firm yellow grey slightl	y silty CLAY.	xx	
S D9	3.00 3.00-3.45	N=9			3.25			×	
B10	3.50-4.00					Stiff grey CLAY with occ	asional shell fragments.		
U11 D12	4.00-4.45 4.50	(25)							
B13	4.50-5.00								
S D15	5.00 5.00-5.45	N=19							
B16	5.50-6.50								
U17	6.50-6.95	(30)							
D18 B19	7.00 7.00-8.00								
S D21	8.00 8.00-8.45	N=25							
B22	8.50-9.50								

(continued next sheet)

Sheet 1 of 2

- 1. Waiting for access problems to be resolved; 1.5 hours.
- Hand dug starter pit to 1.20m to check for services.
 Water added to assist drilling from 1.70m to 2.35m.
- 4. No groundwater seepages were encountered during boring operations.
- 5. On completion the borehole was backfilled with spoil arisings.

(Cable Percussion)

Sheet 2 of 2

GEOTECHNICAL				-		East West Rail Phase 1 - Off Track Investigation					
Clien Atkin	t is Limited					Boring diameter: 150 mm to 14.00m	Casing diameter:	Project No G130			
Logg	ed by: PP	Ground	Level:			Date: 09/04/2013	Location: -	Scale:	1:50		
	Samples & In situ		Water	Level	Depth	0.1	harta Dan salatian	Legend	Backfill		
Ref:	Depth (m)	SPT N		(mAOD)	(m)		trata Description				
U23	9.50-9.80	(36)				Stiff grey CLAY with oc	casional shell fragments.				
D24 B25	9.85 9.85-11.00										
S D27	11.00 11.00-11.45	N=49									
B28	11.50-12.50										
U29	12.50-12.80	(50)						=7-05			
D30 B31	12.85 12.85-14.00										
					14.00	End of Borehole at 14.0	0 M		************		

- 1. Waiting for access problems to be resolved; 1.5 hours.
- Hand dug starter pit to 1.20m to check for services.
 Water added to assist drilling from 1.70m to 2.35m.
- 4. No groundwater seepages were encountered during boring operations.
- 5. On completion the borehole was backfilled with spoil arisings.

All dimensions in metres Scale 1:50 Client

Chiltern Railways Ltd

WINDOWLESS SAMPLER LOG

Project East West Rail	I	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 06-06-13 06-06-13	Ground Level (m)	Co-Ordinates ()	ONP WS01 - Wk1
Contractor				Sheet
Bridgeway Cor	1 of 1			

Contractor								Sheet		
Brid	geway (Consulti	ing						1 of 1	
SAMPLI	ES & T	ESTS					STRATA			nt/
Depth	Type No	Test Result	Water	Reduce Level		Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/
0.00-0.40	В					(0.40)	Grey DIRTY BALLAST of limestone. Fines are granular ficoarse sand.	ne to		超级
- 0.40 - 0.40 - 0.50-0.80	D ES B					(0.40)	MADE GROUND: Brown very gravelly SAND. Sand is fit coarse. Gravel is angular to rounded fine to coarse granite a quartzite.	ne to and		
_0.50-0.80 - 0.90-1.20	D B					-(0.40) 1.20	Very soft grey mottled light brown CLAY.			<u> </u>
- 1.20-1.65 - 1.30 - 1.35-2.00	S D B	N7			-0	(0.80)	Firm medium locally high strength yellowish brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse limestone and quantum coarse.		104 63 50	
2.00-2.45 2.05-2.60 - 2.05	S B D	N5				(0.60)	Firm medium strength yellowish brown sandy CLAY. Sand fine to coarse.	lis		
2.65-3.00 2.65	B D					2.60	Firm medium strength light grey slightly sandy CLAY. San fine to coarse.	d is	75 75 75	
3.00-3.45	S D	N7					Stiff medium becoming high and very high strength dark br CLAY.	own	67 54	
4.00-4.45 4.05-5.00	S B	N24				-	From 3.5m occasional shell fragments.		92 117	
5.00-5.45	S	N35				(2.95)			133 225	
5.50-5.95 5.55-5.95 5.55	S B D	N93				5.95			>225	
						- - - - -				
-						- - - -				
						-				
						- - -				
		Water (_			1			ENERAL	
	Depth	Water Dpt		a. mm	% Rec	1			EMARKS	
06-06-13 06-06-13 06-06-13 06-06-13 06-06-13	1.20 2.00 3.00 4.00 5.00 5.50	DRY DRY DRY DRY DRY DRY		N/A 87 87 77 67	N/A 70 100 100 100 40		ge 2.	enny prior to Inspection	canned with CAT o excavation. pit excavated to or to drilling.	&

Method/ Plant Used

Premier Rig

Logged By

AH

WINDOWLESS SAMPLER LOG

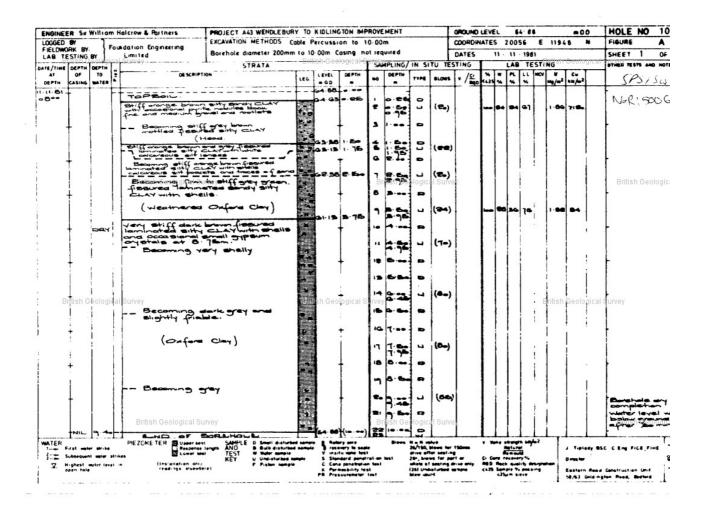
Project East West Rai	1	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 16-04-13 16-04-13	Ground Level (m)	Co-Ordinates ()	ONP WS02 - Wk0.
Contractor			·	Sheet
Bridgeway Cor	nsulting			1 of 1

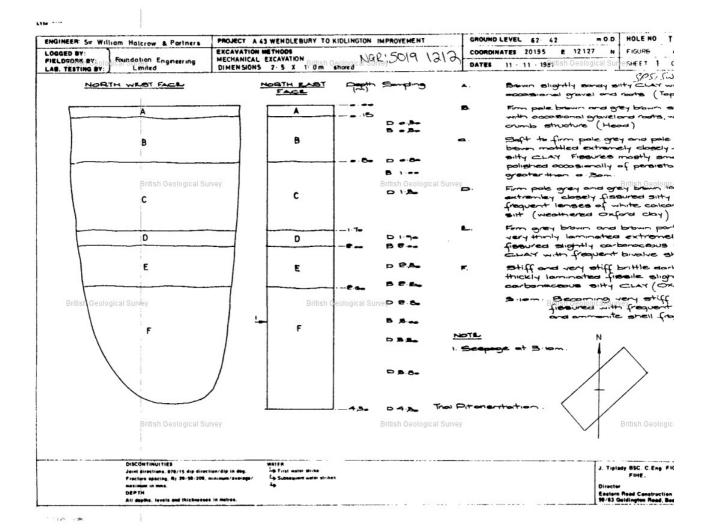
Dilu	geway	Consun	mg					1 01 1	
SAMPLI	ES & T	ESTS					STRATA		ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.00-0.20	В		1			0.20	Grey and cream CLEAN BALLAST of limestone. Gravel is		
0.20-0.50	В		Ţ			(0.40)	angular to subangular medium to coarse. MADE GROUND: Red angular to subangular COBBLES of		
0.50	D					(0.40) 0.60	brick.	,	
0.50	ES					<u> </u>	Stiff blue mottled yellow slightly gravelly CLAY. Gravel is		
- 0.60-0.80	В					(1.00)	subrounded to rounded fine to meidum quartzite. At 0.6m rare yellow angular to subangular boulders of sandstone.		1994
1.10	D				<u>-°</u>	[(1.00)	yenow ungular to subungular bounders of sundstone.		
1.10 - 1.20-1.65	ES S	N8				1.60			
1.60-1.90	В						Stiff medium strength grey green with black specks slightly	-	
-1.90-2.00	D					(0.40) (0.40) (0.40)	gravelly CLAY. Gravel is subrounded to rounded fine to medium quartzite.	40 60	
2.00-2.45	S	N8				E	Firm very low strength blue mottled brown yellow CLAY with		
2.20-2.90	В					<u> </u>	occasional pockets of fine to coarse sand.		
-						ţ	From 3.25m no mottling.	10	
-						(1.50)		18 14	
-2.90-3.00 3.00-3.30	D					[12	
3.00-3.30	B S	N8				}			
3.25-3.40	D					3.50		_	
						[Firm low to medium strength dark brown blue sandy CLAY. Sand is fine to medium. Occasional fossils.	48	
-3.90-4.00	D					(1.00)	Some white specks from 4.0m.	32 38	
4.00		N10				-			
						4.50			
-						-	Extremely weak thinly laminated dark grey MUDSTONE. From 4.3-4.8m fine to medium shell fragments.	48	
4.80-5.00	D					} }	Prom 4.5-4.8m fine to medium shen magnients.		
5.00-5.45	S	N44				E			
5.30-5.80	D					-			
-						(1.95)			
5.80-6.00	D					Ē			
6.00-6.45	S	N41				-			
- 0.00 0.15		1111				(15			
-						6.45		-	
						E			
-						<u> </u>			
- -						F			
						E			
-						ţ			
-						ļ.			
-2.90-3.00 3.00-3.30 3.00-3.45 3.25-3.40 -3.90-4.00 4.00 -4.80-5.00 5.00-5.45 -5.30-5.80 -5.80-6.00 6.00-6.45	ess and	Water	Obs	ervation	ns		G	ENERAL	
<u> </u>						-			

<	_							
K:\SITE IN	ì	Ĭ	Water C	Observati Dia. mm	ons % Rec]		GENERAL REMARKS
ST	Date	Depth	Dpt	Dia. IIIIII	70 Rec			ICEIVII IICICS
AGS 3_1 LAB.GLB BCL WS FIELD TEST K:\SITE IN\	16-04-13 16-04-13 16-04-13 16-04-13 16-04-13	1.20 2.00 3.00 4.00 5.00 6.00	0.3	N/A 87 87 77 67 57	N/A 80 100 100 100 70			Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling.
STD	All dime	nsions in m	netres Cl	ient Chi	ltern Rai	lwavs Ltd	Method/	Logged By

All dimensions in metres Scale 1:50

Client Chiltern Railways Ltd Method/Plant Used Dart Competitor Rig EK




WINDOWLESS SAMPLER LOG

Project East West Rai	1	Site	Consultant Atkins	EXPLORATORY HOLE No
Job No J11631	Date 18-04-13 19-04-13	Ground Level (m)	Co-Ordinates ()	ONP WS03 - Wk03
Contractor				Sheet
Bridgeway Cor	nsulting			1 of 1

	8								
SAMPLE	ES & T	ESTS					STRATA		ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.20-0.50	В					0.20	Grass and shrubs over dark brown clayey SAND. Sand is fine to coarse. Frequent roots.	/	
0.60 0.60	D ES					(1.00)	Soft to firm yellow mottled blueish grey CLAY. Occasional pockets of yellow fine to coarse sand. Rare rootlets.		
						1.20			500
1.20-1.65 1.30-1.40 1.40-2.00	S D B	N5				(0.80)	Very soft low locally medium strength yellowish brown mottled grey and black slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is angular to subangular fine to medium coal. Occasional rootlets.	29 55 26	
2.00-2.45 2.20-2.30 2.30-2.50	S D B	N5				(0.50)	Soft to firm low strength yellowish brown and grey slightly sandy CLAY. Sand is fine to medium.	32	
2.50-2.60 2.60-3.80	D B					2.30	Soft to firm medium locally low strength yellowish brown and grey slightly gravelly CLAY. Gravel is subangular to subrounded fine sandstone. Some shell fragments. Occasional rootlets.	48	
3.00-3.45	S	N8				(1.30)	Ç	32	
3.80-4.00	В					3.80	Firm greyish brown slightly sandy CLAY. Sand is fine to	47 - 56	
4.00-4.15	S	N64/ 145 mm				4.15	medium.	-	
						-			
						- - -			
						-			
						-			
						- - -			
						-			
						- - -			
						-			
D	1	337-4	<u> </u>						

INVESTIGATION	-								
SITE	Prog	gress and		Observati	ons				GENERAL
ST K:\	Date	Depth	Water Dpt	Dia. mm	% Rec				REMARKS
AGS 3_1 LAB.GLB BCL WS FIELD TE	18-04-13 18-04-13 19-04-13 19-04-13	1.20 2.00 3.00 4.00	N ⁷ A DRY DRY DRY	N/A 87 87 77	N/A 80 90 90				Position scanned with CAT & genny prior to excavation. Inspection pit excavated to Only prior to drilling.
GINT STD		nsions in m cale 1:50	etres Cl	ient Chi	ltern Rai	lways Ltd	Method/ Plant Used	Dart Competitor Rig	Logged By EK

SPSISW

Record of Borehole No.P

Client

DEPARTMENT OF TRANSPORT N : 211 753 E : 450 173

Type of boring LIGHT CABLE PERCUSSION (PILCON 150)

Job No. 11311028

Ground level 62.63m 0.D.

Diameter / 150mm to 20.00m

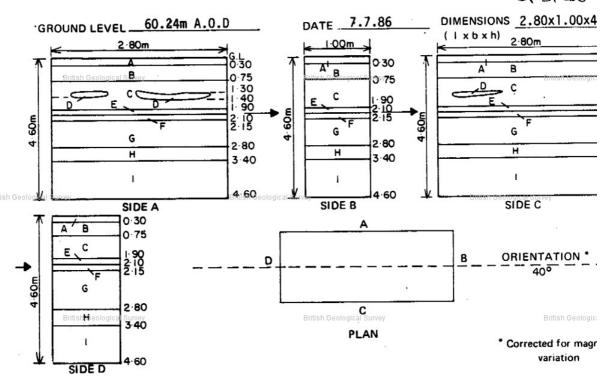
Casing / 150mm to 1.50m

1	Daily	Ground	Depth	Sam	ples		S	Str	ata	
	Programs h	water eological Si levels	of casing	Depth	No.	Туре	a Brite	si Deptin gi	Reduced al Survey level	Description of strate British Geo
	4.8.86			0.20 0.30	1 2	D D	-	0.25	62.38	TOPSOIL. Stiff to very stiff friable orange brown mottled light grey and brown
				1.00 - 1.45	3	U(21)	H	(0.85)	61.53	sandy silty CLAY with a little sub- angular fine flint gravel and occasional fine rootlets.
tish Geolog	ical Survey		1.50	1.45	4 sh Gei	D logical Sur	ev	(0.65)		Firm horizontally poorly thinly laminated closely fissured brown with light grey staining on discontinuities is ley CLAY with
				1.80 2.00 - 2.45	6	U(30)	-	1.75	60.88	white calcareous silt on laminations traces of shell fragments and fine rootlets.
				2.45	7	D D	H	(1.50)		Firm to stiff horizontally poorly thinly laminated closely fissured variegated olive green and brown
				3.00 - 3.45	9	U(33)	L			slightly to moderately calcareous silty CLAY(CV) with small inclusions and laminations of white calcareous
	B 111 1 4			3.45	10	D	Ŀ	3.25	59.38	silt, small pockets of fine to mediu sand size gypsum crystals and traces
	British (eological Si	rvey	3.75 4.00 - 4.45	11	D U (60)	1 -	sh Geologi (1.45)	al Survey	of shell fragments. Stiff becoming very stiff horizon-
				4.45	13	D	-	(1.45)		tally thinly laminated closely fissured dark brownish olive grey with bands of brown calca-
				4.75	14	D	ļ.	4.70	57.93	reous stity CLAY with traces of shell fragments, inc. bivalves and ammonites.
				5.00 - 5.45	15	U(90)*	-			Very stiff horizontally thinly laminated closely fissured brownish
tish Geolog	ical Survey			5.45 5.50 - 5.95⊟rit	16 ish] ;7ec	D -1)(903).ir	vev.			olive grey slightly calcareous silty CLAY with occasional shalls and shell fragments, inc. bivalves.
				5.95	18	D	L			
				6.50	19	D	-			
				7.00 - 7.45	20	U(100)	L	/n		
	British (Beological St	rvey	7.45	21	D	Brit	(5.30) sh Geologi	al Survey	British Ged
				7.70	22	D	Ŀ			
				8.50 - 8.95	23	U(90)	-			
				8.95	24	D	Ŀ			
tish Geolog	cal Survey			9.50	25	ogical Sur D	vey•			British Geological Survey
					L		-	10.00	52.63	(borehole continues)
	D B W S(). C().	disturbed j disturbed to water samp standard po cone penet	ar sample bulk sample ble enetration	test	Se U4 Re U4	No. 17 mainder No. 15	: :	290mm Red 380mm Red stripped 320mm Red	thread i	n borehole. Tube damaged in recovery.

GROUND **ENGINEERING**

GÉ 3035

GROUND ENGINEERING


Trial Pit No. T

JOB No. 11311028

COORDINATES 211 776

450 538 E

5951SW

STRATA

Brids Geo	ologGalLurvey 0.30m	TOPSOIL. British Geological Survey	British G	eological Survey	
B)	0.30 - 0.75m	Stiff friable yellowish brown slightly			
		sandy silty CLAY of intermediate plasticity		SAMPLES	S
	89	with occasional rounded medium to coarse	No	Туре	Depth
		gravel and cobble sized flints, occasional	-		
		fine rootlets and traces of brick frag-	See	attached	sheet
	British Geological Su	ments at 0.6m (Head) British Geological Survey	300		h Geológic
C)	0.75 - 1.90m	Stiff very closely fissured grey mottled			
		olive brown silty CLAY of high plasticity			
		with occasional small pockets of white			
		calcareous sand and traces of fine rootlets.			
British Ged	olog ical Survey	-with occasional medium to coarse gravel	British G	e ological Survey	
		and cobble sized flints to 1.0m			
	A	(Weathered Oxford Clay).			
¥					
	REMARKS		/cor	itinued	
	British Geological Su	rvey British Geological Survey	, 501		h Geologic

LAING

Site

East West Rail Phase 1 - Off Track Investigation

							· ·		
Clier Atki	nt ns Limited					Method of excavation Mechanical Excavator	Dimensions 0.60m x 2.10m	Project N G13	
Logg	ed by: PP	Ground	Level:			Date: 12/07/2013	Location: -	Scale:	1:25
	Samples & In s	itu Tests	Water	Level	Depth	Strata	Description	Legend	Backfill
Ref:	Depth (m)	Result		(mAOD)	(m)		•		
					0.05	MADE ODOLIND DIL		***************************************	

LUgg	cuby. II	Ground	LCVCI.			Date. 12/07/2013	Julio.	1.23
Ref:	Samples & In s Depth (m)	situ Tests Result	Water	Level (mAOD)	Depth (m)	Strata Description	Legend	Backfill
NOI.	Deput (III)	Result		(**************************************	0.05	MADE GROUND - Bituminous macadam.		
					0.20	MADE GROUND - Concrete.		
E1 D2	0.30 0.30					MADE GROUND - Topsoil.		
B4	0.50-0.70				0.45	Firm locally stiff yellow brown and grey slightly	2000	
E3	0.60					sandy slightly gravelly CLAY. Gravel is angular to		
						sub angular fine to medium flint and quartz.		
D5	1.00-1.20							
טט	1.00-1.20							
					1.40			
						Firm locally stiff grey locally yellow brown slightly sandy CLAY with many shell fragments.		
D6	1.60-1.90					signity sailey services with many short regiments.		
D7	2.60-29.00				2.60			
υ,	2.00 27.00				2.00	Firm locally stiff grey and dark grey slightly organic CLAY with partings of sand sized selenite		
						crystals.		
						Occasional sandstone boulders from 2.90 to 3.40m.		
D8	3.30-3.40							
					3.40	End of Trial Pit 3.40 m	-	
							<u> </u>	
		1					Sheet	1 of 1

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation.
- Trial pit completed at 3.40m and a soakaway test constructed.
 No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Sheet 1 of 1

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation **Dimensions** Project No: Client Mechanical Excavator 0.60m x 1.70m **Atkins Limited** G13066 Date: 12/07/2013 Scale: Logged by: PP Ground Level: Location: -1:25 Samples & In situ Tests Water Level Depth Strata Description Legend Backfill (mAOD) Ref: Depth (m) Result (m) MADE GROUND - Bituminous macadam. 0.10 0.20 MADE GROUND - Sub-base. E1 0.30 MADE GROUND - Black ash. 0.50 Firm grey slightly sandy slightly gravelly slightly F2 0.60 organic CLAY. Gravel is angular to sub rounded 0.60-0.90 D3 fine to coarse quartz and flint. 1.10 Firm green grey slightly organic SILT. D4 1.20-1.40 1.60 Firm orange brown sandy CLAY with occasional sand D5 1.70-1.90 D6 2.20-2.40 2.80 Stiff dark brown grey CLAY. D7 2.90-3.10 3.10

End of Trial Pit 3.10 m

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation however on completion seepages were noted below 2.30m.
- 3. Trial pit completed at 3.10m and a soakaway test constructed.
- 4. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation Dimensions Project No: Client 0.60m x 2.20m Mechanical Excavator **Atkins Limited** G13066 Logged by: PP Ground Level: Date: 11/07/2013 Location: -Scale: 1:25

Loggi	ed by: PP	Ground	Levei.			Date: 11/0//2013 Location	scale:	1:25
	Samples & In s	1	Water	Level	Depth	Strata Description	Legend	Backfill
Ref:	Depth (m)	Result		(mAOD)	(m)		V///X////X/	**********
D1	0.00-0.20					MADE GROUND - Topsoil.		
D2	0.20-0.40				0.20	MADE COOLIND Stiff vallow brown and grow slightly		
D3	0.30					MADE GROUND - Stiff yellow brown and grey slightly sandy slightly gravelly clay. Gravel is anglar to		
						sub rounded fine to coarse brick and quartz.		
						Sab Founded fine to obtaine briok and quarter		
D4	0.60				0.60	Stiff yellow brown and grey slightly sndy slightly		
						gravelly CLAY. Gravel is angula rot sub rounded		
						fine to coarse quartz.		
							-	
D5	1.40-1.60							
							+ $+$ $+$	
							1	
D6	2.60-2.80				2.60	Stiff dark grey CLAY with many sand sized selenite		
						crystals.		
						or yours.		
							=	
							-3-3-3	
D7	3.20-3.40							
	0.20 0.10							
					3.40	F- d - 6 T-1-1 D1+ 2 40		
						End of Trial Pit 3.40 m		
							Sheet	1 of 1
	ı	1	1	1	i	I and the second	JIICEL	. 0

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation.
- Trial pit completed at 3.40m and a soakaway test constructed.
 PID reading on sample B2 at 0.20 to 0.40m = 0.7ppm.
- 5. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Client
Atkins Limited

Method of excavation
Mechanical Excavator

Dimensions
0.60m x 1.70m

G13066

Logged by: PP Ground Level:

Date: 12/07/2013

Location: - Scale: 1:25

Samples & In situ Tests

Water Level Depth

Strata Description

Legend Backfill

Logge	ed by: PP	Ground	Level:			Date: 12/07/2013 Location: -	Scale:	1:25
	Samples & In:		Water	Level	Depth	Strata Description	Legend	Backfill
Ref:	Depth (m) 0.00-0.40	Result		(mAOD)	(m)		***************************************	************
B1	0.00-0.40					MADE GROUND - Mixed Ballast and sub-base.		
					0.40	MADE COOLING Pitagein and an analysis		
E2	0.50				0.50	MADE GROUND - Bituminous macadam.	× _7/2 ×	
E3	0.70					Firm grey organic CLAY.	× N/c ×	
B4	0.70-0.90						X Alk X	
							*	
							3/2 × ×	
							W = W ×	
D5	1.50-1.60				1.50		W Silve	
D/					1.60	Yellow brown clayey fine to medium SAND.		
D6	1.70-1.90					Stiff grey slightly sandy CLAY.		
					2.00			
D7	2.10-2.40				2.00	Stiff brown grey highly fissile CLAY with many shell fragments.		
						stell ragificitis.	EEE	***********
							=3==3	
D8	2.80-3.10							4.
Dδ	2.80-3.10							
					3.40			
						End of Trial Pit 3.40 m		
							Sheet	1 of 1
_								

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation however on completion seepages were noted below 1.40m.
- 3. Trial pit completed at 3.40m and a soakaway test constructed.
- 4. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation Dimensions Project No: Client 0.60m x 2.50m Mechanical Excavator Atkins Limited G13066 Logged by: PP Ground Level: Scale: Date: 11/07/2013 Location: -1:25

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation.
- Trial pit completed at 3.70m and backfilled with arisings.
 PID reading on sample D2 at 0.30m = 23.9ppm.
- 5. PID reading on sample B4 at 1.00 to 1.40m = 4.1ppm.
- 6. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation Dimensions Project No: Client 0.60m x 2.10m Mechanical Excavator **Atkins Limited** G13066 Logged by: PP Ground Level: Location: -Scale: Date: 11/07/2013 1:25

Logg	Juby. 11	Ground	LCVCI.			Date. 11/07/2013 Location.	Julie.	1.23
Dof.	Samples & In s		Water	Level (mAOD)	Depth (m)	Strata Description	Legend	Backfill
Ref: B1	Depth (m) 0.00-0.20	Result		(IIIAOD)	(111)	MADE GROUND - Concrete.		
					0.20	MADE GROUND - Concrete. MADE GROUND - Black ash with coal and brick		
E1 D2 E2	0.30 0.30 0.30				0.40	fragments.		
D3 E3 D4 E4 D5	0.30 0.60 0.60 0.60 0.60-0.80					MADE GROUND - Stiff grey slightly sandy slightly gravelly clay. Gravel is angular to sub rounded fine to coarse brick, coal and ash.		
E5 B6	1.00 1.00-1.30				1.00	Firm green grey slightly organic SILT.	× × × × × × × × × × × × × × × × × × ×	
E6 B7	1.20 1.20-1.50						× 3/16 × × × (× × × 3/16 × 3/16 × × × (× × × 3/16 × 3/16 × × × (× × × 3/16 × 3/16 × × × (× × × 3/16	
D7	1.70-2.00				1.70	Firm locally stiff yellow brown and grey slightly sandy slightly gravelly CLAY. Gravel is angular to	XXX	
38	2.00-2.40					sub angular fine to medium flint and quartz.		256
D8 D9	2.30-2.60							
	2.70-3.00							
)9	3.00-3.30							
					3.40	End of Trial Pit 3.40 m		1.5.2
							Sheet	1 of 1
			1				Jileet	1 01 1

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation.
- Trial pit completed at 3.40m and a soakaway test constructed (S3).
 PID reading on sample D2 at 0.30m = 1.4ppm.
- 5. PID reading on sample D4 at 0.60m = 1.3ppm.
- 6. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation **Dimensions** Project No: Client 0.60m x 2.10m Mechanical Excavator Atkins Limited G13066 Logged by: PP Ground Level Date: 11/07/2013 Location: -Scale: 1.25

Logged by: PF	Groun	nd Level:			Date: 11/07/2013	Location: -	Scale:	1:25
	In situ Tests	Water	Level	Depth		Strata Description	Legend	Backfill
Ref: Depth (m)) Result		(mAOD)	(m)	MADE GROUND - Su	ub-base.		
				0.20	MADE GROUND - Fir slightly sandy slightl	rm locally stiff green grey y gravelly slightly organic ar to sub rounded fine to		
				1.20	slightly gravelly sligh occasional black mo	en grey slightly sandy ntly organic CLAY with ttlingGravel is sub angular to coarse quartz and flint.		
				2.30	Stiff yellow brown a occasional quartz gr	nd pale grey sandy CLAY with avels.		
				3.00	Very stiff dark grey (fragments.	CLAY with occasional shell		
				3.50	End of Trial Pit 3.50	m	333	
							Sheet	1 of 1

- 1. Trial pit walls did not collapse during excavation.
- 2. No significant groundwater entries were recorded during excavation.
- Trial pit completed at 3.40m and a soakaway test constructed.
 PID reading on sample D3 at 0.30m = 3.6ppm.
- 5. PID reading on sample D5 at 0.60 to 0.80m = 2.9ppm.
- 6. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation Dimensions Project No: Client 0.60m x 2.50m Mechanical Excavator **Atkins Limited** G13066 Logged by: PP Ground Level Location: -Scale: Date: 11/07/2013 1:25

Samples & In situ Tests Depth (m) Result	l: Date: 11/07/2013 Location: - Scale:	1:25
MADE GROUND - Crushed brick, concrete and bituminous materials. MADE GROUND - Yellow brown and grey clayey gravelly fine to coarse sand. Gravel is angular to sub rounded fine to coarse concrete, mudstone and bituminous macadam. Firm green grey slightly organic SILT. Orange brown sandy slightly gravelly CLAY. Gravel is angular to sub angular fine to medium quartz and flint. Stiff locally very stiff highly fissile dark grey brown CLAY with many shell fragments.	ter Level Depth Strata Description Legend	Backfil
bituminous materials. 0.30	(mAOD) (m)	*******
MADE GROUND - Yellow brown and grey clayey gravelly fine to coarse sand. Gravel is angular to sub rounded fine to coarse concrete, mudstone and bituminous macadam. Firm green grey slightly organic SILT. Orange brown sandy slightly gravelly CLAY. Gravel is angular to sub angular fine to medium quartz and flint. Stiff locally very stiff highly fissile dark grey brown CLAY with many shell fragments.	bituminous materials.	
Firm green grey slightly organic SILT. Orange brown sandy slightly gravelly CLAY. Gravel is angular to sub angular fine to medium quartz and flint. 2.00-2.50 Stiff locally very stiff highly fissile dark grey brown CLAY with many shell fragments.	MADE GROUND - Yellow brown and grey clayey gravelly fine to coarse sand. Gravel is angular to sub rounded fine to coarse concrete, mudstone and	
Orange brown sandy slightly gravelly CLAY. Gravel is angular to sub angular fine to medium quartz and flint. 2.00-2.50 Stiff locally very stiff highly fissile dark grey brown CLAY with many shell fragments.	1 × × × × × × × × × × × × × × × × × × ×	
Stiff locally very stiff highly fissile dark grey brown CLAY with many shell fragments.	Orange brown sandy slightly gravelly CLAY. Gravel is angular to sub angular fine to medium quartz and flint.	
3.00-3.50	Stiff locally very stiff highly fissile dark grey	
9 4.00-4.50 Continued port sheet	Continued post sheet	
Continued next sheet	Continued next sneet Sheet	

- 1. Trial pit walls noted to collapse from 1.20 to 2.00m.
- Groundwater entry at 2.00m, water level did not rise.
 Trial pit completed at 4.60m and backfilled with arisings.
 PID reading on sample B4 at 0.60 to 0.90m = 1.5ppm.
- 5. PID reading on sample B7 at 2.00 to 2.50m = 1.2ppm.
- 6. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

Site

East West Rail Phase 1 - Off Track Investigation

Method of excavation Dimensions Project No: Client 0.60m x 2.50m Mechanical Excavator G13066

ogg	ed by: PP	Ground I	Level:			Date: 11/07/2013	Location: -	Scale:	1:25
	Samples & In sit		Water	Level	Depth (m)	Strata	a Description	Legend	Backfill
f:	Depth (m)	Result		(mAOD)	(m) 4.60				
					4.60	End of Trial Pit 4.60 m		0.7-7	
	+								2 of 2

- 1. Trial pit walls noted to collapse from 1.20 to 2.00m.
- Groundwater entry at 2.00m, water level did not rise.
 Trial pit completed at 4.60m and backfilled with arisings.
 PID reading on sample B4 at 0.60 to 0.90m = 1.5ppm.
- 5. PID reading on sample B7 at 2.00 to 2.50m = 1.2ppm.
- 6. No visual or olfactory evidence of contamination was recorded unless noted within the descriptions.

INSPECTION PIT LOG

m

Pit No TB032

Sheet 1 of 1

Date

Telephone: 01452 739165 , Fax: 01452 739220 , Email: info@ccground.co.uk

Project Name: East - West Rail Phase 1 Project No:

C3723 Level:

16/09/2013 Scale

Location: Bicester to Oxford

Dimensions:

1:9.375

Client: Atkins Rail Ltd

1.20m E

Co-ords: E 450078 N 211932

mAD

Logged By MA

(m)	Water	Samp	les & In Situ T	esting	Description	Depth	Level	Legend
''')	Levels	No/Type	Depth (m)	Result		(m)	(mAD)	Legena
		No/Type B ES	Depth (m) 0.00 0.00 - 0.20		MADE GROUND: Grey and light grey GRAVEL. Gravel is angular and subangular coarse ballast (CLEAN BALLAST).	(0.20)		
-		B ES	0.50		MADE GROUND: Reddish brown clayey very gravelly SAND. Gravel is angular and subangular medium to coarse ballast.	(0.40)		
		ES			Soft to firm greenish brown locally greyish brown slightly sandy CLAY locally with a slight organic odour.	0.60		
-		Н	0.70	58		(0.60)		
-	Dry	B ES	1.00		Inspection pit completed at 1.20m	1.20		
-								

REMARKS:

EQUIPMENT: Hand digging tools.

METHOD: Hand dug inspection pit: 0.00-1.20m. STABILITY: Trial pit sides unstable 0.00-0.20m.

GROUNDWATER: None encountered.

PID TESTING: PID testing carried out at regular intervals, 0.0ppm recorded.

BACKFILL: On completion trial pit backfilled with compact arisings.

LOCATION: OXD MP27.75 -137.50m four foot. 0.55m to nearest running rail.

REMARKS: All measurements from top of sleeper (concrete 160mm thickness). TRL DCP test carried out 1.20-2.20m.

INSPECTION PIT LOG

Pit No TB033

Sheet 1 of 1

Telephone: 01452 739165 , Fax: 01452 739220 , Email: info@ccground.co.uk

Project Name: East - West Rail Phase 1

Project No:

C3723

Co-ords: E 450108 N 211973
Level: mAD

Date
17/09/2013

Dimensions: m
Scale
1: 9.375

Client: Atkins Rail Ltd Depth
1.20m E Logged By
MA

o/Type B ES	Depth (m) 0.00 0.00 - 0.20	esult MADE GROUND: Greyish brown and brown slightly ashy sandy GRAV is angular and subangular fine to coarse ballast and clinker. Approxima undersized with fines of ash and degraded ballast (DIRTY BALLAST).	(0.20)	(mAD)	Legend
B ES	0.00 0.00 - 0.20	is angular and subangular fine to coarse ballast and clinker. Approxima undersized with fines of ash and degraded ballast (DIRTY BALLAST).	(0.20)		
				1	0.000000
D	0.30	MADE GROUND: Yellowish brown and brown slightly clayey very sand GRAVEL. Gravel is subangular and subrounded fine to coarse limestor siliceous material.	0.20 ne and (0.35)		
B ES	0.50	Fire revisit have leadly ded and lightly of all this are ally CIA	0.55		
н	0.60	with a slight organic odour. Gravel is angular to subrounded fine and m limestone and siliceous material.	AY IOCAIIV		
D ES	1.00	71 Inspection pit completed at 1.20m	(0.65)		
	B ES H	B 0.50 ES	B ES H 0.50 Firm greyish brown locally dark grey slightly sandy slightly gravelly CL/with a slight organic odour. Gravel is angular to subrounded fine and millimestone and siliceous material.	B	B 0.50 ES

REMARKS:

EQUIPMENT: Hand digging tools.

METHOD: Hand dug inspection pit: 0.00-1.20m. STABILITY: Trial pit sides unstable 0.00-0.20m.

GROUNDWATER: None encountered.

PID TESTING: PID testing carried out at regular intervals, 0.0ppm recorded.

BACKFILL: On completion trial pit backfilled with compact arisings.

LOCATION: OXD MP27.75 -187.50m MOD sidings four foot. 0.65m to nearest running rail.

REMARKS: All measurements from top of sleeper (wooden 120mm thickness).

INSPECTION PIT LOG

m

Pit No TB034

Sheet 1 of 1

Telephone: 01452 739165 , Fax: 01452 739220 , Email: info@ccground.co.uk

Project Name: East - West Rail Phase 1 Project No: C3723

Level: mAD

Co-ords: E 450131 N 212017

Ε

Date 17/09/2013

Location: Bicester to Oxford

Dimensions:

Scale 1 : 9.375

Client: Atkins Rail Ltd

Depth 1.20m

Logged By MA

(m)	Water	Samp	les & In Situ T	esting	Description		Depth	Level	Logand
(m)	Levels	No/Type	Depth (m)	Result	Description		(m)	(mAD)	Legend
-	-	B ES	0.00 0.00 - 0.50		MADE GROUND: Grey and light grey GRAVEL. coarse ballast (CLEAN BALLAST).	Gravel is angular and subangular	(0.25)		_
-	_				MADE GROUND: Greyish brown sandy GRAVE subangular fine to coarse ballast. Approximately degraded ballast (SLIGHTLY DIRTY BALLAST)	20% undersized with fines of	0.25		-
-	_						(0.45)		_
-	-	D	0.75	-	MADE GROUND: Yellowish brown and brown s Gravel is angular to subrounded fine to coarse to Soft greenish brown locally dark greyish brown sCLAY. Gravel is subangular and subrounded fin siliceous material.	oallast and limestone.	(0.10) - 0.80		
1 -		B ES	1.00				(0.40)		1 1
-	- Dry				Inspection pit completed at 1.20m		1.20		

REMARKS:

EQUIPMENT: Hand digging tools.

METHOD: Hand dug inspection pit: 0.00-1.20m. STABILITY: Trial pit sides unstable 0.00-0.70m.

GROUNDWATER: None encountered.

PID TESTING: PID testing carried out at regular intervals, 0.0ppm recorded.

BACKFILL: On completion trial pit backfilled with compact arisings.

LOCATION: OXD MP27.75 -235.50m four foot. 0.60m to nearest running rail.

REMARKS: All measurements from top of sleeper (concrete 160mm thickness). TRL DCP test carried out 1.20-2.20m.

INSPECTION PIT LOG

m

Pit No TB035

Sheet 1 of 1

Telephone: 01452 739165 , Fax: 01452 739220 , Email: info@ccground.co.uk

Project Name: East - West Rail Phase 1 Project No: C3723

Level: mAD

Date 17/09/2013

Location: Bicester to Oxford

Dimensions:

Co-ords: E 450162 N 212056

Ε

Scale 1 : 9.375

Client: Atkins Rail Ltd

Depth 1.20m

Logged By MA

No/Type B ES	Depth (m) 0.00 0.00 - 0.25	Result	Description MADE GROUND: Grey and light grey slightly sandy GRAVEL. Gravel is angular	(m)	(mAD)	Legend
B	0.00		MADE GROUND: Grey and light grey slightly sandy GRAVEL. Gravel is angular			
	0.00 - 0.23		and subangular fine to coarse ballast (SLIGHTLY DIRTY BALLAST).	(0.10)		
			MADE GROUND: Brown locally yellowish brown clayey very sandy GRAVEL. Gravel is angular to subrounded fine to coarse limestone and siliceous material.	0.25		-000000
B ES	0.50		0.45-0.70m: With low cobble content. Cobbles are limestone.	(0.45)		
			Soft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone and siliceous material. Cobbles are limestone.	0.70		
B ES	1.00			(0.50)		
			Inspection pit completed at 1.20m	1.20		
	ES	ES B 1.00	ES	B Coft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone. Soft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone. Soft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone and siliceous material. Cobbles are limestone.	Gravel is angular and subangular fine to coarse ballast and clinker. Approximately 50% undersized with fines of ash and degraded ballast (DIRTY BALLAST). MADE GROUND: Brown locally yellowish brown clayey very sandy GRAVEL. Gravel is angular to subrounded fine to coarse limestone and siliceous material. 0.45-0.70m: With low cobble content. Cobbles are limestone. Soft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone and siliceous material. Cobbles are limestone. 8 1.00 (0.50)	Gravel is angular and subangular fine to coarse ballast and clinker. Approximately 50% undersized with fines of ash and degraded ballast (DIRTY BALLAST). MADE GROUND: Brown locally yellowish brown clayey very sandy GRAVEL. Gravel is angular to subrounded fine to coarse limestone and siliceous material. 0.25 Soft greyish brown and brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to subrounded fine to coarse limestone and siliceous material. Cobbles are limestone and siliceous material. Cobbles are limestone and siliceous material. Cobbles are limestone.

REMARKS:

EQUIPMENT: Hand digging tools.

METHOD: Hand dug inspection pit: 0.00-1.20m. STABILITY: Trial pit sides unstable 0.00-0.25m.

GROUNDWATER: None encountered.

PID TESTING: PID testing carried out at regular intervals, 0.0ppm recorded.

BACKFILL: On completion trial pit backfilled with compact arisings.

LOCATION: OXD MP27.75 -284.75m MOD sidings four foot. 0.50m to nearest running rail.

REMARKS: All measurements from top of sleeper (wooden 120mm thickness).

INSPECTION PIT LOG

m

Pit No TB036

Sheet 1 of 1

Telephone: 01452 739165 , Fax: 01452 739220 , Email: info@ccground.co.uk

Project Name: East - West Rail Phase 1 Project No: C3723

Level: mAD

Co-ords: E 450186 N 212100

Ε

Date 17/09/2013

Location: Bicester to Oxford

Dimensions:

Scale 1 : 9.375

Client: Atkins Rail Ltd

Depth 1.20m

Logged By MA

n) Water	Samp	les & In Situ T	Description	Depth	Level Legend
Levels	No/Type	Depth (m)	Result	(m)	(mAD)
-	B ES	0.00 0.00 - 0.20	MADE GROUND: Grey and pinkish grey GRAVEL. Gravel is angular and subangular coarse ballast (CLEAN BALLAST).	(0.20)	
			MADE GROUND: Greyish brown slightly ashy slightly sandy GRAVEL. Gravel is angular and subangular fine to coarse ballast and clinker. Approximately 70% undersized with fines of ash and degraded ballast (DIRTY BALLAST). 0.40-0.55m: Ash non-apparent.	(0.35)	
	B ES	0.50	MADE GROUND: Yellowish brown and brown clayey sandy GRAVEL. Gravel is	0.55	****
			subangular and subrounded fine and medium limestone and siliceous material.	(0.15)	
			Soft greyish brown and brown sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse limestone and siliceous material (POSSIBLE MADE GROUND).	(0.50)	
 - - Dry	B ES	1.00	Inspection pit completed at 1.20m	1.20	

REMARKS:

EQUIPMENT: Hand digging tools.

METHOD: Hand dug inspection pit: 0.00-1.20m. STABILITY: Trial pit sides unstable 0.00-0.55m.

GROUNDWATER: None encountered.

PID TESTING: PID testing carried out at regular intervals, 0.0ppm recorded.

BACKFILL: On completion trial pit backfilled with compact arisings.

LOCATION: OXD MP25.50 +65.00m four foot. 0.50m to nearest running rail.

 $REMARKS: All\ measurements\ from\ top\ of\ sleeper\ (concrete\ 140mm\ thickness).\ TRL\ DCP\ test\ carried\ out\ 1.20-2.20m.$

Project East West F	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No						
Job No J11631	Date 15-11-12 15-11-12	Ground Level (m)	Co-Ordinates ()	WS43AAA						
Contractor	Sheet									
Bridgeway (Bridgeway Consulting									

Contractor				Sheet								
Brid	geway	Consulti	ing						1 of 1	_		
SAMPLE	ES & T	ESTS					STRATA			ent/		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION		Field Test kPa HSV PP	Instrument/		
- 0.10-0.30 - 0.10	B D					0.35	MADE GROUND: Silty gravelly sand with ash. (Driller's description)		10 7 11	2		
0.10	ES					0.60	MADE GROUND: Orange sand. (Driller's description)			翠		
0.40-0.60 0.45	B D					-	Firm orangey brown mottled grey very low strength slightly sandy CLAY with some roots. Sand is fine to medium.	'				
0.45 0.60-1.00	ES B				<u> </u>	-				祭		
0.90	D ES					(1.20)						
1.20-1.80	B								13			
						1.80	Firm to stiff brown low strength mottled grey CLAY.					
2.00-3.00	В					-	Time to still brown low strength motified grey CLATT.					
						(1.20)						
									38			
						3.00						
3.00-4.70	В					-	Stiff dark grey and orangey brown high strength slightly gr CLAY. Gravel is subangular to subrounded fine to medium	avelly				
						-	limestone with some shells.					
						-						
_						(1.70)			113			
						-						
						-						
						4.70						
-						- - -						
						-						
•						-						
· ·						-						
- ·						-						
						-						
						-						
						-						
_						-						
						-						
						-						
						-	٦					
		Water				İ			NERAL			
	Depth	Water Dpt	_		% Rec		-		MARKS			
15-08-12	1.20 2.00	DRY DRY		N/A 87	N/A 100		ge	enny prior to	nned with CAT excavation. oit excavated to			
	3.00 4.00	DRY DRY		77 67	100 100			20mbgl prior	r to drilling.			
All dimensi	ions in mele 1:50	etres C	lient	Atkii	ns		Method/ Plant Used Dart Competitor Rig	ogged By	GD			
- Scal	1.50						Dur Competitor rag		<i></i>			

Project East West Rai	1	Site	Consultant	PROBE No
Edgt West Rai	•		Atkins	
Job No	Date 15-11-12	Ground Level (m)	Co-Ordinates ()	WS43AAA
J11631	15-11-12			
Contractor	Sheet			
Bridgeway Cor	1 of 1			

										1 of 1
Depth (m)	Readings (blows/100mm	n)	5	Diagrai	m (Blow 0	Count)	25	30	Torqu (Nm)	e Remarks
· 1	0 0							 		
2										
3								 		
456								 		
5	2 50							50		
6								 		
7								 		
Hammer	r Wt (kg)	63								GENERAL REMARKS
Hammer Drop (mm) 760								Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling.		
Cone Di	ia (mm)	50								1.20mbgl prior to drilling.
Cone Ty		Sacrificia	al							
Hammer Hammer Cone Di Cone Ty Damper All dimen		lient Atkir	ns		Method Plant U	d/	Dart Comp	.:	.	Logged By GD

Project East West l	Rail	Site	Consultant Atkins	PROBE No					
Job No J11631	Date 11-10-12 11-10-12	Ground Level (m)	Ground Level (m) Co-Ordinates ()						
Contractor	Contractor								
Bridgeway (1 of 1								

Br	idgeway Consul	ting								1 of 1
Depth (m)	Readings (blows/100m	m)	5	Diagrai	m (Blow 15	Count)	25	30	Torqu (Nm	Remarks
1	4 4	6						 		
2	6 8 7	3 50						50	0	
- 3								 		
- - - - - -								 		
5										
6										
Hammer Cone Di Cone Ty Damper										
Hamme	r Wt (kg)	10								GENERAL REMARKS
Hamme	Hammer Drop (mm) 760				1 Position scanned with CAT &					
Cone Dia (mm) 35									genny prior to excavation. 2. Inspection pit excavated to 1.20mbgl prior to drilling.	
Cone Ty	Cone Type Sacrificial		1							
Damper		Climt Addi			344	.1/				Leadp
All dimer Sc	nsions in metres cale 1:50	Client Atkin	S		Metho Plant	Used	НН	WS		Logged By NY

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No					
Job No J11631	Date 11-10-12 11-10-12	Ground Level (m)	Ground Level (m) Co-Ordinates ()						
Contractor	•			Sheet					
Bridgeway	Bridgeway Consulting								

SAMPL		ESTS	<u>8</u>				STRATA	1 01 1	,ut/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	Field Test kPa HSV PP	Instrument/
0.10	D D		1 2 2			0.20	TOPSOIL: Brown and dark grey slightly gravelly sandy silt with some rootlets. Gravel is angular to subangular fine to coarse chalk and flint. Soft green grey low strength mottled orange brown CLAY.	/	
1.00 1.20-1.40 1.40-1.90 1.55-1.85	D B B U		<u>-</u>			1.20	Soft brown low to very low strength slightly sandy CLAY with rare subrounded fine mudstone gravel.	25 17	
- - -						1.90		19	
-						- - - - - - -			
						- - - - - -			
						- - - - - -			
-						- - - - -			
-						- - - - - -			
-						- - - - -			
						- - - - -			
Prog	ress and	Water	Obs	ervation	ns		G	ENERAL	
Date 11-10-12	Depth 0.60	Water Dpt 0.6	D		% Rec N/A		R 1. Position s genny prior	EMARKS scanned with CA' to excavation. n pit excavated to ior to drilling.	Γ&
All dimen	sions in male 1:50	etres C	lient	Atkir	ns		Method/ Plant Used HHWS Logged I	By NY	_

Pro	Progress and Water Observations									
Date	Depth	Water Dpt	Dia. mm	% Rec		REMARKS				
Pro Date 11-10-12	0.60	0.6	N/A	N/A		Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling.				
	nsions in m	netres Cl	ient Atk	ins	Method/	Logged By				

Project East West Rai	1	Site	Consultant	PROBE No
Edgt West Rai	•		Atkins	
Job No	Date 09-09-12	Ground Level (m)	Co-Ordinates ()	WS44
J11631	09-09-12			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Contractor				Sheet
Bridgeway Cor	1 of 1			

Bri	idgeway Consult	ting							1 of 1
Depth (m)	Readings (blows/100mm) 5		Diagra	Diagram (Blow Count) 10			30	Torque (Nm)	Remarks
1									
2	0 0						 	-	
3							 	-	
- - - 4	0 2 2 2 3 5 5 5	4						-	
- 5	2 2 1 2 2 1 2 3 3 3 3	4						-	
6	3 4 4	6					50	-	
Hammer Cone Di Cone Ty Damper							 		
Hamme	r Wt (kg)	63							GENERAL REMARKS
Hammer Drop (mm) 760 Cone Dia (mm) 50		760						1.	Position scanned with CAT &
		50						2. 1. 3.	enny prior to excavation. Inspection pit excavated to 20mbgl prior to drilling. Hole drilled at 19m 50ch down.
Cone Type S		Sacrificial	-						
Damper				1263	1/				1.0
All dimer Sc	nsions in metres cale 1:50	Client Atkins		Method Plant U	d/ Jsed [Oart Comp	etitor Ri	g L	ogged By NY

Project East West	Rail	Site	Consultant Atkins	EXPLORATORY HOLE No					
Job No J11631	Date 09-09-12 09-09-12	Ground Level (m)	Ground Level (m) Co-Ordinates ()						
Contractor	Contractor								
Bridgeway	Bridgeway Consulting								

Bridg	geway (Consulti	ing					1 (of 1
SAMPLE	S & T	ESTS					STRATA		,ut/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thickness)	DESCRIPTION	k	d Test Pa
- 0.20 - 0.20	D ES					0.30	MADE GROUND: Grass and vegetation over black and dark brown silty very sandy angular to subangular fine to coarse GRAVEL of clinker, coal, flint and granite. Sand is ash.		d Test iPa PP
0.30-0.50	B ES					(0.90)	Soft becoming firm orange mottled grey and brown slightly gravelly CLAY. Gravel is angular fine to medium flint.		
70.90-1.10 - 1.00 - 1.20-2.00	B D B					1.20	Firm dark greenish brown mottled orange medim strength slightly gravelly CLAY. Gravel is fine to coarse subangular sandstone.		69
2.00-3.00	В					2.00	Firm dark green medium strength slightly sandy gravelly CLz with rare cobbles. Gravel is subangular to subrounded fine to	AY	
-						(1.00)	coarse sandstone. Sand is fine to medium.		50
3.25	D					3.00 - (0.40) 3.40	Soft slightly friable grey mottled green low strength slightly gravelly CLAY. Gravel is subangular fine flint.	28	
3.40-3.50	D					(0.60)	Soft brown mottled grey low strength slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is subangual fine flint.	r 22	21
4.20	D U		<u>‡</u>			-	Soft grey mottled orange low strength CLAY with traces of rootlets up to 5.0m. Mottled green from 5.0m.	37 38	21
-4.90 -5.10-5.20	D D		2 <u>−</u>			(1.60)		37 38 30	
4.20 - 4.40-4.80 - 5.10-5.20 - 5.40-5.80 - 5.80-6.00	U					5.60	Firm fissured dark grey medium strength CLAY with occasion	32	
5.80-6.00	D					(0.40) 6.00	pockets of pyrite crystals.	67	
						- - - -			
- - - -						- - - -			
, - -						- - - - -			
Progre	ss and	Water				1		GENE	
09-09-12	Depth 1.20 4.50	Water Dpt DRY 4.5	Di	ia. mm	% Rec		gem 2. Ir 1. 2.0	REMA osition scanned ny prior to excav spection pit exc mbgl prior to di lole drilled at 19	with CAT & vation. avated to
All dimension	ons in me	etres C	lient	Atkiı	ns	<u> </u>	Method/ Plant Used Dart Competitor Rig	gged By	Y

SITE	Prog	GENERAL						
ST K	Date	Depth	Water Dpt	Dia. mm	% Rec			REMARKS
AGS 3_1 LAB.GLB BCL WS FIELD TE	Prog Date 09-09-12 09-09-12	1.20 4.50	DRY 4.5					Position scanned with CAT & genny prior to excavation. Inspection pit excavated to 1.20mbgl prior to drilling. Hole drilled at 19m 50ch down.
GINT STD.	All dimensions in metres Client Atkins				Method/ Plant Used	Dart Competitor Rig	Logged By NY	

Annex B

Laboratory Results

Annex B1

Islip

Certificate of Analysis

Date: 06/06/2013

Client: Professional Soils Laboratory Ltd

5/7 Hexthorpe Road

Hexthorpe DN4 0AR

Our Reference: 13-82108

Client Reference: PSL13/1880

Contract Title: EWR Testing

Description: 20 water samples

Date Received: 30 May 2013

Date Started: 31 May 2013

Date Completed: 06 June 2013

Test Procedures: Identified by prefix DETSn, details available upon request.

Notes: Observations and interpretations are outside the scope of UKAS accreditation

PUQ.

Approved By:

Rob Brown, Business Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Information in Support of the Analytical Results

Analysis

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425um sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28oC +/-2oC.

Key

- * Denotes test not included in laboratory scope of accreditation
- # Denotes test that holds MCERTS accreditation, however, MCERTS accreditation is only implied if the report carries the MCERTS logo
- \$ Denotes tests completed by an approved subcontractor
- I/S Denotes insufficient sample to carry out test
- U/S Denotes that the sample is not suitable for testing

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month

Liquids - 2 weeks

Asbestos (test portion) - 6 months

			Lab No.	518665	518666	518667	518668	518669
		9	Sample ID	WS163	WS701	WS160	WS72	WS708
			Depth	110.00				
		Sa	ample Ref					
			nple Type					
			oling Date	29/05/2013	29/05/2013	29/05/2013	29/05/2013	29/05/2013
		-	ling Time	20/00/2010	20/00/2010	20/00/2010	20/00/2010	20/00/2010
Test	Units	DETSxx	LOD					
Arsenic, Dissolved	ug/l	DETSC 2306	0.16	0.33	1.1	1.6	0.71	0.35
Total Cadmium	ug/l	DETSC 2306*	0.03	1.0	0.22	8.8	0.49	1.1
Chromium, Dissolved	ug/l	DETSC 2306	0.25	< 0.25	< 0.25	< 0.25	0.40	< 0.25
Copper, Dissolved	ug/l	DETSC 2306	0.4	< 0.40	2.4	1.2	2.5	3.6
Lead, Dissolved	ug/l	DETSC 2306	0.09	< 0.090	< 0.090	0.41	0.39	0.34
Mercury, Dissolved	ug/l	DETSC 2306	0.01	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nickel, Dissolved	ug/l	DETSC 2306	0.5	4.2	2.6	4.8	1.1	5.7
Selenium, Dissolved	ug/l	DETSC 2306	0.25	1.1	2.7	1.3	15	1.5
Vanadium, Dissolved	ug/l	DETSC 2306	0.6	< 0.60	1.3	< 0.60	< 0.60	< 0.60
Total Zinc	ug/l	DETSC 2306*	1.25	110	63	550	140	190
Alkalinity as CaCO3 (Automated)	mg/l	DETS 030	10	430	340	280	210	310
Chloride	mg/l	DETSC 2055	0.1	12	6.6	15	4.7	44
Boron Total	ug/l	DETSC 2306*	12	120	54	96	79	120
Cyanide total	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Cyanide free	ug/l	DETSC 2130	20	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0
Cyanide complex	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Hardness	mg/l	DETSC 2303*	0.1	728	339	314	232	349
Hexavalent Chromium	ug/l	DETSC 2203	10	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	mg/l	DETSC 2207	0.015	0.029	< 0.015	0.037	0.031	0.067
Nitrate as N	mg/l	*	0.1	2.4	2.0	0.94	2.4	2.9
Sulphate as SO4	mg/l	DETSC 2076*	0.01	340	29	100	120	59
Total Organic Carbon	mg/l	DETSC 2033	2	39	18	180	14	26
pH	3	DETSC 2008		7.1	7.7	7.3	7.5	7.3
Aliphatic C5-C6	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	9.5	9.3	< 1.0
Aliphatic C16-C21	ug/l	DETSC 3072*	1		< 1.0	32	< 1.0	< 1.0
Aliphatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	52	< 1.0	< 1.0
Aromatic C5-C7	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	3.9	< 1.0	< 1.0
Aromatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	< 1.0	23	6.1	3.2
Aromatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	48	110	120
Aliphatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	94	< 10	< 10
Aromatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	75	120	120
TPH Ali/Aro	ug/l	DETSC 3072*	10		< 10	170	130	120
Acenaphthene	ug/l	DETS 074*	0.01		< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	ug/l	DETS 074*	0.01		< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	ug/l	DETS 074*	0.01		< 0.01	< 0.01	< 0.01	0.01

			Lab No.	518665	518666	518667	518668	518669
			Sample ID	WS163	WS701	WS160	WS72	WS708
			Depth					
		5	Sample Ref					
			mple Type					
			pling Date	29/05/2013	29/05/2013	29/05/2013	29/05/2013	29/05/2013
		Sam	pling Time					
Test	Units	DETSxx	LOD					
Benzo(a)anthracene	ug/l	DETS 074*	0.01	0.04	< 0.01	< 0.01	< 0.01	0.02
Benzo(a)pyrene	ug/l	DETS 074*	0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	DETS 074*	0.01	0.09	< 0.01	< 0.01	< 0.01	0.08
Dibenzo(a,h)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	DETS 074*	0.01	0.19	< 0.01	< 0.01	< 0.01	0.14
Fluorene	ug/l	DETS 074*	0.01	0.04	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene	ug/l	DETS 074*	0.01	0.05	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	ug/l	DETS 074*	0.01	0.19	< 0.01	< 0.01	< 0.01	0.08
Pyrene	ug/l	DETS 074*	0.01	0.09	< 0.01	< 0.01	< 0.01	0.08
PAH	ug/l	DETS 074*	0.2	0.75	< 0.20	< 0.20	< 0.20	0.42
Benzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol - Monohydric	ug/l	DESTC 2130	100	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

			Lab No.	518670	518671	518672	518673	518674
		S	Sample ID	WS98	WS180	WS162	WS800	WS73A
			Depth					
		Sa	mple Ref					
		San	nple Type					
		Samp	ling Date	29/05/2013	29/05/2013	29/05/2013	29/05/2013	29/05/2013
		Samp	ling Time					
Test	Units	DETSxx	LOD					
Arsenic, Dissolved	ug/l	DETSC 2306	0.16	1.6	0.43	0.38	1.9	1.7
Total Cadmium	ug/l	DETSC 2306*	0.03	3.2	1.6	1.4	2.5	0.26
Chromium, Dissolved	ug/l	DETSC 2306	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Copper, Dissolved	ug/l	DETSC 2306	0.4	5.7	4.7	5.5	2.0	1.0
Lead, Dissolved	ug/l	DETSC 2306	0.09	1.0	1.4	0.70	1.1	0.21
Mercury, Dissolved	ug/l	DETSC 2306	0.01	< 0.010	< 0.010	< 0.010	0.015	< 0.010
Nickel, Dissolved	ug/l	DETSC 2306	0.5	20	13	18	2.7	4.5
Selenium, Dissolved	ug/l	DETSC 2306	0.25	0.36	1.8	2.0	0.51	1.4
Vanadium, Dissolved	ug/l	DETSC 2306	0.6	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60
Total Zinc	ug/l	DETSC 2306*	1.25	200	120	230	1500	92
Alkalinity as CaCO3 (Automated)	mg/l	DETS 030	10	320	640	380	300	280
Chloride	mg/l	DETSC 2055	0.1	36	340	130	10	6.6
Boron Total	ug/l	DETSC 2306*	12	460	3700	950	100	75
Cyanide total	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Cyanide free	ug/l	DETSC 2130	20	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0
Cyanide complex	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Hardness	mg/l	DETSC 2303*	0.1	689	1440	1700	358	233
Hexavalent Chromium	ug/l	DETSC 2203	10	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	mg/l	DETSC 2207	0.015	0.57	1.2	0.26	8.1	2.6
Nitrate as N	mg/l	*	0.1	1.6	0.39	0.27	1.1	< 0.10
Sulphate as SO4	mg/l	DETSC 2076*	0.01	680	2500	2100	24	27
Total Organic Carbon	mg/l	DETSC 2033	2	38	22	44	280	20
pH	•	DETSC 2008		7.0	7.2	7.2	7.3	7.2
Aliphatic C5-C6	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	1.4	< 1.0
Aliphatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	180	< 1.0
Aromatic C5-C7	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	ug/l	DETSC 3072*	1	5.5	2.2	1.9	24	10
Aromatic C21-C35	ug/l	DETSC 3072*	1	170	60	60	270	220
Aliphatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	< 10	180	< 10
Aromatic C5-C35	ug/l	DETSC 3072*	10	170	62	62	290	230
TPH Ali/Aro	ug/l	DETSC 3072*	10	170	62	62	480	230
Acenaphthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	0.02	0.01	< 0.01
	~9 [,] 1	22.007	0.01	- 0.01	- 0.01	0.02	0.01	- 0.01

			Lab No.	518670	518671	518672	518673	518674
		•	Sample ID	WS98	WS180	WS162	WS800	WS73A
			Depth					
		Sa	ample Ref					
		Sar	nple Type					
		Samı	oling Date	29/05/2013	29/05/2013	29/05/2013	29/05/2013	29/05/2013
		Samp	ling Time					
Test	Units	DETSxx	LOD					
Benzo(a)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	0.02	0.03	< 0.01
Benzo(a)pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	0.09	0.08	< 0.01
Dibenzo(a,h)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	0.13	0.10	0.04
Fluorene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	0.11	< 0.01
Pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	0.04	0.03	0.01
PAH	ug/l	DETS 074*	0.2	< 0.20	< 0.20	0.29	0.36	< 0.20
Benzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol - Monohydric	ug/l	DESTC 2130	100	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

		s	Lab No. Sample ID Depth	518675 WS179	518676 WS702	518677 WS707	518678 WS706	518679 WS703
		San Samp	ample Ref nple Type bling Date ling Time	29/05/2013	29/05/2013	28/05/2013	28/05/2013	28/05/2013
Test	Units	DETSxx	LOD					
Arsenic, Dissolved	ug/l	DETSC 2306	0.16	1.3	0.71	0.33	0.32	0.80
Total Cadmium	ug/l	DETSC 2306*	0.03	0.40	4.1	0.18	0.59	1.5
Chromium, Dissolved	ug/l	DETSC 2306	0.25	0.59	< 0.25	< 0.25	< 0.25	< 0.25
Copper, Dissolved	ug/l	DETSC 2306	0.4	9.2	2.4	2.7	1.6	0.90
Lead, Dissolved	ug/l	DETSC 2306	0.09	0.56	0.75	0.71	0.33	0.41
Mercury, Dissolved	ug/l	DETSC 2306	0.01	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Nickel, Dissolved	ug/l	DETSC 2306	0.5	87	4.9	3.3	4.5	3.0
Selenium, Dissolved	ug/l	DETSC 2306	0.25	2.6	19	3.0	< 0.25	0.47
Vanadium, Dissolved	ug/l	DETSC 2306	0.6	< 0.60	1.4	< 0.60	< 0.60	< 0.60
Total Zinc	ug/l	DETSC 2306*	1.25	86	1700	41	95	150
Alkalinity as CaCO3 (Automated)	mg/l	DETS 030	10	500	350	350	360	360
Chloride	mg/l	DETSC 2055	0.1	110	14	34	36	67
Boron Total	ug/l	DETSC 2306*	12	1100	110	760	200	78
Cyanide total	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Cyanide free	ug/l	DETSC 2130	20	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0
Cyanide complex	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Hardness	mg/l	DETSC 2303*	0.1	1370	286	756	805	354
Hexavalent Chromium	ug/l	DETSC 2203	10	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	mg/l	DETSC 2207	0.015	0.77	0.035	0.079	0.49	0.35
Nitrate as N	mg/l	*	0.1	0.29	2.6	0.75	0.54	< 0.10
Sulphate as SO4	mg/l	DETSC 2076*	0.01	1700	88	630	650	24
Total Organic Carbon	mg/l	DETSC 2033	2	52	71	11	25	49
pН		DETSC 2008		7.1	7.5	7.5	7.4	7.6
Aliphatic C5-C6	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	17	< 1.0
Aliphatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	18	< 1.0
Aliphatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C7	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35	ug/l	DETSC 3072*	1	4.4	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	< 10	35	< 10
Aromatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro	ug/l	DETSC 3072*	10	< 10	< 10	< 10	35	< 10
Acenaphthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No.	518675	518676	518677	518678	518679
			Sample ID	WS179	WS702	WS707	WS706	WS703
			Depth					
		S	ample Ref					
			mple Type					
			pling Date	29/05/2013	29/05/2013	28/05/2013	28/05/2013	28/05/2013
			pling Time					
Test	Units	DETSxx	LOD					
Benzo(a)anthracene	ug/l	DETS 074*	0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	DETS 074*	0.01	< 0.01	0.05	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	DETS 074*	0.01	0.03	0.02	< 0.01	< 0.01	< 0.01
Fluorene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	ug/l	DETS 074*	0.01	< 0.01	0.09	< 0.01	< 0.01	< 0.01
Naphthalene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	ug/l	DETS 074*	0.01	0.02	0.04	< 0.01	< 0.01	< 0.01
PAH	ug/l	DETS 074*	0.2	< 0.20	0.23	< 0.20	< 0.20	< 0.20
Benzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol - Monohydric	ug/l	DESTC 2130	100	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

		s	Lab No. Sample ID Depth	518680 WS55	518681 WS54	518682 WS46	518683 WS45a	518684 WS44
		San Samp Samp	ample Ref nple Type bling Date ling Time	28/05/2013	28/05/2013	28/05/2013	28/05/2013	28/05/2013
Test	Units	DETSxx DETSC 2306	LOD	0.00	2.0	0.70	0.20	0.05
Arsenic, Dissolved	ug/l		0.16	0.96 1.4	3.6 0.94	0.79 0.92	0.39 0.73	0.25
Total Cadmium Chromium, Dissolved	ug/l	DETSC 2306* DETSC 2306	0.03 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.88 < 0.25
,	ug/l	DETSC 2306 DETSC 2306	0.25	1.4	0.25	4.2	1.8	< 0.25 56
Copper, Dissolved	ug/l						0.42	
Lead, Dissolved	ug/l	DETSC 2306	0.09	0.45	0.33	0.44		0.29 < 0.010
Mercury, Dissolved	ug/l	DETSC 2306	0.01	< 0.010	< 0.010	< 0.010	< 0.010	
Nickel, Dissolved	ug/l	DETSC 2306	0.5	2.8	7.2	16	3.6	2.0
Selenium, Dissolved	ug/l	DETSC 2306	0.25	0.77	0.46	1.2	0.43	0.33
Vanadium, Dissolved	ug/l	DETSC 2306	0.6	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60
Total Zinc	ug/l	DETSC 2306* DETS 030	1.25	180	120	130	280	200
Alkalinity as CaCO3 (Automated)	mg/l		10	270	390	240	300	300
Chloride Boron Total	mg/l	DETSC 2055	0.1	29 88	34 97	25	19 120	17 110
	ug/l	DETSC 2306*	12	< 40		200 < 40	< 40	< 40
Cyanida frae	ug/l	DETSC 2130	40		< 40			
Cyanide rece	ug/l	DETSC 2130	20	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0
Cyanide complex	ug/l	DETSC 2130	40	< 40	< 40	< 40	< 40	< 40
Hardness	mg/l	DETSC 2303*	0.1	274	434	1180	380	599
Hexavalent Chromium	ug/l	DETSC 2203	10	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	mg/l	DETSC 2207 *	0.015	0.45	1.1	0.10	< 0.015	< 0.015
Nitrate as N	mg/l		0.1	< 0.10	< 0.10	< 0.10	0.72	0.15
Sulphate as SO4	mg/l	DETSC 2076*	0.01	30	64	1200	120	370
Total Organic Carbon	mg/l	DETSC 2033	2	37	19	30	16	27
pH	,,	DETSC 2008	0.4	7.7	7.4	7.2	7.5	7.6
Aliphatic C5-C6	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	15	< 1.0	13	18
Aliphatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	15	< 1.0	8.6	19
Aliphatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C7	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10	ug/l	DETSC 3322	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	6.1
Aromatic C16-C21	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	4.4
Aromatic C21-C35	ug/l	DETSC 3072*	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35	ug/l	DETSC 3072*	10	< 10	30	< 10	21	38
Aromatic C5-C35	ug/l	DETSC 3072*	10	< 10	< 10	< 10	< 10	11
TPH Ali/Aro	ug/l	DETSC 3072*	10	< 10	30	< 10	21	48
Acenaphthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lab No.	518680	518681	518682	518683	518684
			Sample ID	WS55	WS54	WS46	WS45a	WS44
			Depth					
		5	Sample Ref					
		Sa	mple Type					
		Sam	pling Date	28/05/2013	28/05/2013	28/05/2013	28/05/2013	28/05/2013
		Sam	pling Time					
Test	Units	DETSxx	LOD					
Benzo(a)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	DETS 074*	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	DETS 074*	0.01	0.04	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	ug/l	DETS 074*	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	ug/l	DETS 074*	0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01
PAH	ug/l	DETS 074*	0.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene	ug/l	DETSC 3322	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol - Monohydric	ug/l	DESTC 2130	100	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

Sample Comments

DETS cannot be held responsible for the integrity of sample(s) received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note "Guidance on Deviating Samples".

All samples received are listed below. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations.

If no sampled date (soils) or date/time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters), this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

						presence in
				Deviating due to holding time being	Deviating due to inappropriate container for	container for
Lab No.	Sample ID	Date Sampled	Containers Received	exceeded for test(s)	test(s)	test(s)
518665	WS163 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518666	WS701 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518667	WS160 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518668	WS72 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518669	WS708 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518670	WS98 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518671	WS180 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518672	WS162 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518673	WS800 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518674	WS73A WATER	29/05/2013	Glass Jar 500ml (500ml)			
518675	WS179 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518676	WS702 WATER	29/05/2013	Glass Jar 500ml (500ml)			
518677	WS707 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518678	WS706 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518679	WS703 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518680	WS55 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518681	WS54 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518682	WS46 WATER	28/05/2013	Glass Jar 500ml (500ml)			
518683	WS45a WATER	28/05/2013	Glass Jar 500ml (500ml)			
518684	WS44 WATER	28/05/2013	Glass Jar 500ml (500ml)			

Deviating due to headspace

ANALYTICAL TEST REPORT

Contract no: 47627

Contract name: EWR

Client reference: PSL13/0364

Clients name: Professional Soils Laboratory

Clients address: 5-7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 14 March 2013

Analysis started: 14 March 2013

Analysis completed 21 March 2013

Report issued: 22 March 2013

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

 $\label{eq:methods} \mbox{Methods, procedures and performance data are available on request.}$

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, withour prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

 $\ensuremath{\mathsf{M}}$ MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Karan Campbell

L Campbell

John Campbell

Director Director

Chemtech Environmental Limited SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are exclusive of stones.

Lab ref	Sample id	Depth (m)	Soil description	Description of material	% Retained	Moisture
			passing 2mm sieve	retained on 2mm sieve	on 2mm sieve	(%)
47627-1	WS 45B	0.00-1.20	Clay	Gravel	23.0	18.0
47627-2	WS 57B	0.60	Sand	Gravel	20.4	22.2
47627-3	WS 58B	0.60	Loamy Clay	Gravel	15.2	20.9
47627-4	WS 64A	0.20-0.75	Sandy Clay	Gravel	25.0	12.5
47627-5	WS 66	0.30-0.50	Clay	Gravel	14.7	19.3
47627-6	WS 106C	0.25	Clay	N/A	<1	18.4
47627-7	WS 163	0.30	Sand	Stones & Gravel	40.8	8.1
47627-8	WS 163	1.00	Clay	Gravel	5.3	15.9
47627-9	WS 164	0.50	Sandy Clay	Gravel	32.1	8.1
47627-10	WS 164	1.00	Clay	N/A	<1	22.8
47627-11	WS 166	0.80	Clay	Gravel	11.0	20.6
47627-12	WS 181	0.70	Clay	N/A	<1	14.8
47627-13	WS 701	1.00	Sandy Clay	Gravel	9.9	10.1
47627-14	WS 703	0.50	Sand	Gravel	20.4	7.0
47627-15	WS 703	1.40-1.60	Loam	Gravel	10.5	26.4
47627-16	WS 703	3.80-4.00	Sandy Clay	Gravel	31.2	17.0
47627-17	WS 705	0.90	Clay	N/A	<1	17.5
47627-18	WS 705	1.80-2.00	Loam	Gravel	10.0	30.0
47627-19	WS 706	0.50	Sand	Gravel	10.5	9.5
47627-20	WS 706	2.00	Clay	N/A	<1	22.5
47627-21	WS 708	0.50	Sandy Clay	Stones & Gravel	38.0	8.9
47627-22	WS 708	1.00	Clay	Stones & Gravel	10.9	17.5
47627-23	WS 708	2.00-2.50	Clay	N/A	<1	23.7
47627-24	WS 709	0.80	Clay	Gravel	7.6	13.2

Lab number Sample id			47627-1	47627-2	47627-3	47627-4	47627-5	47627-6
			WS 45B	WS 57B	WS 58B	WS 64A	WS 66	WS 106C
Depth (m)			0.00-1.20	0.60	0.60	0.20-0.75	0.30-0.50	0.25
Date sampled	1		-	21/11/2012	21/11/2012	-	-	03/12/2012
Test	Method	Units	7.1	22	0.1	12	0.0	12
Arsenic (total)	CE054 M	mg/kg As	7.1	23	9.1	13	8.0	12
Boron (water soluble)	CE063 ^M	mg/kg B	1.1	1.6	3.3	<0.3	1.3	2.1
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium (VI)	CE050	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	14	172	82	19	14	18
Lead (total)	CE054 ^M	mg/kg Pb	84	34	17	13	88	11
Mercury (total)	CE054	mg/kg Hg	0.7	<0.5	0.7	0.7	0.6	0.7
Nickel (total)	CE054 ^M	mg/kg Ni	21	40	19	19	24	32
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	0.6	<0.3	<0.3	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	59	56	51	58	68	67
рН	CE004 ^M	units	8.2	8.0	8.4	8.7	8.1	8.3
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	4.6	12	13	<1	4.0	6.8
Sulphate (total)	CE062 ^M	mg/kg SO ₄	690	956	942	289	642	590
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	<0.5	-	-	<0.5	-	-
Organic matter content (OMC)	CE005 ^M	% w/w	2.16	7.40	3.42	0.23	2.37	0.84
PAH								
Naphthalene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Acenaphthylene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Acenaphthene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Fluorene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Phenanthrene	CE087	mg/kg	0.2	-	-	0.1	-	-
Anthracene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Fluoranthene	CE087	mg/kg	0.2	-	-	0.1	-	-
Pyrene	CE087	mg/kg	0.1	-	-	0.1	-	-
Benzo(a)anthracene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Chrysene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	-	-	0.1	-	-
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Benzo(a)pyrene	CE087	mg/kg	<0.1	-	-	0.1	-	-
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	-	-	<0.1	-	-
Benzo(ghi)perylene	CE087	mg/kg	<0.1	-	-	0.1	-	-
PAH (total)	CE087	mg/kg	<5	-	-	<5	-	-
BTEX & TPH								
МТВЕ	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-
Benzene	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-
Toluene	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-
Ethylbenzene	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-
m & p-Xylene	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-

				•	•			
Lab number			47627-1	47627-2	47627-3	47627-4	47627-5	47627-6
Sample id			WS 45B	WS 57B	WS 58B	WS 64A	WS 66	WS 106C
Depth (m)			0.00-1.20	0.60	0.60	0.20-0.75	0.30-0.50	0.25
Date sampled			-	21/11/2012	21/11/2012	-	-	03/12/2012
Test	Method	Units						
o-Xylene	CE057 ^U	mg/kg	<0.01	-	-	<0.01	-	-
TPH Aromatic EC5-EC7	CE068	mg/kg	<0.1	-	-	<0.1	-	-
TPH Aromatic EC7-EC8	CE068	mg/kg	<0.1	-	-	<0.1	-	-
TPH Aromatic EC8-EC10	CE068	mg/kg	0.1	-	-	<0.1	-	-
TPH Aromatic EC10-EC12	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aromatic EC12-EC16	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aromatic EC16-EC21	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aromatic EC21-EC35	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aromatic EC35-EC44	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aliphatic EC5-EC6	CE068	mg/kg	<0.01	-	-	<0.01	-	-
TPH Aliphatic EC6-EC8	CE068	mg/kg	<0.01	-	-	<0.01	-	-
TPH Aliphatic EC8-EC10	CE068	mg/kg	<0.01	-	-	<0.01	-	-
TPH Aliphatic EC10-EC12	CE068	mg/kg	<1	-	-	<1	-	-
TPH Aliphatic EC12-EC16	CE068	mg/kg	1	-	-	<1	-	-
TPH Aliphatic EC16-EC35	CE068	mg/kg	15	-	-	5	-	-
TPH Aliphatic EC35-EC44	CE068	mg/kg	<1	-	-	<1	-	-
Subcontracted analysis				·				
Asbestos	\$	-	Chrysotile	NAD	NAD	Amosite	NAD	NAD

Lab number			47627 7	47627.0	47627.0	47627 10	47627 11	47627 12
Lab number Sample id			47627-7 WS 163	47627-8 WS 163	47627-9 WS 164	47627-10 WS 164	47627-11 WS 166	47627-12 WS 181
Depth (m)			0.30	1.00	0.50	1.00	0.80	0.70
Date sampled			-	-	26/11/2012		27/11/2012	
Test	Method	Units						
Arsenic (total)	CE054 ^M	mg/kg As	18	7.6	16	5.2	4.0	11
Boron (water soluble)	CE063 ^M	mg/kg B	<0.3	1.0	0.3	0.9	1.7	3.7
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium (VI)	CE050	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	29	24	27	19	23	13
Lead (total)	CE054 ^M	mg/kg Pb	21	11	14	12	12	13
Mercury (total)	CE054	mg/kg Hg	0.7	0.7	0.6	<0.5	<0.5	0.7
Nickel (total)	CE054 ^M	mg/kg Ni	20	23	17	10	17	32
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	68	66	49	57	106	47
рН	CE004 ^M	units	8.6	8.1	8.6	7.3	8.3	7.8
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	<1	<1	<1	1.8	1.4	4.8
Sulphate (total)	CE062 ^M	mg/kg SO ₄	442	616	651	27700	832	60810
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	-	-	-	-
Organic matter content (OMC)	anic matter content (OMC) CE005 M % w/w		0.45	0.60	0.88	1.63	2.06	0.26
PAH	•	•		-				-
Naphthalene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Acenaphthylene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Acenaphthene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Fluorene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Phenanthrene	CE087	mg/kg	0.2	0.1	-	-	-	-
Anthracene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Fluoranthene	CE087	mg/kg	0.2	<0.1	-	-	-	-
Pyrene	CE087	mg/kg	0.2	<0.1	-	-	-	-
Benzo(a)anthracene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Chrysene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Benzo(a)pyrene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
Benzo(ghi)perylene	CE087	mg/kg	<0.1	<0.1	-	-	-	-
PAH (total)	CE087	mg/kg	<5	<5	-	-	-	-
BTEX & TPH								
МТВЕ	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-
Benzene	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-
Ethylbenzene	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-
m & p-Xylene	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-

Lab number			47627-7	47627-8	47627-9	47627-10	47627-11	47627-12
Sample id			WS 163	WS 163	WS 164	WS 164	WS 166	WS 181
Depth (m)			0.30	1.00	0.50	1.00	0.80	0.70
Date sampled			-	-	26/11/2012	26/11/2012	27/11/2012	03/12/2012
Test	Method	Units						
o-Xylene	CE057 ^U	mg/kg	<0.01	<0.01	-	-	-	-
TPH Aromatic EC5-EC7	CE068	mg/kg	<0.1	<0.1	-	-	-	-
TPH Aromatic EC7-EC8	CE068	mg/kg	<0.1	<0.1	-	ı	-	-
TPH Aromatic EC8-EC10	CE068	mg/kg	0.1	0.1	-	-	-	-
TPH Aromatic EC10-EC12	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aromatic EC12-EC16	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aromatic EC16-EC21	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aromatic EC21-EC35	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aromatic EC35-EC44	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aliphatic EC5-EC6	CE068	mg/kg	<0.01	<0.01	-	1	-	-
TPH Aliphatic EC6-EC8	CE068	mg/kg	<0.01	<0.01	-	-	-	-
TPH Aliphatic EC8-EC10	CE068	mg/kg	<0.01	<0.01	-	-	-	-
TPH Aliphatic EC10-EC12	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aliphatic EC12-EC16	CE068	mg/kg	<1	<1	-	-	-	-
TPH Aliphatic EC16-EC35	CE068	mg/kg	2	<1	-	-	-	-
TPH Aliphatic EC35-EC44	CE068	mg/kg	<1	<1	-	-	-	-
Subcontracted analysis								
Asbestos	\$	-	NAD	NAD	Chrysotile	NAD	NAD	NAD

-13 47627-14	47627-15		47627 47	47627 10
	WS 703	47627-16 WS 703	47627-17 WS 705	47627-18 WS 705
01 WS 703 0.50	1.40-1.60	3.80-4.00	0.90	1.80-2.00
2012 11/12/2012	16/01/2013	16/01/2013	11/12/2012	20/12/2012
9.4	5.6	6.2	12	7.9
<0.3	1.5	1.8	1.5	2.9
2 <0.2	<0.2	3.5	<0.3	<0.3
<1	<1	<1	<1	<1
31	21	16	15	17
9.5	12	9.7	9.7	15
0.7	0.8	0.6	0.6	<0.5
15	16	30	33	26
3 <0.3	<0.3	<0.3	<0.3	<0.3
44	35	339	56	75
8.9	8.0	8.0	8.5	7.7
<1	4.0	5.7	1.8	3.4
388	1739	1580	477	1802
<10	<10	<10	<10	<10
<2	<2	<2	<2	<2
-	-	-	-	-
0.44	4.59	3.06	0.54	6.12
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	ı	•	•
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
	_		_	
-	-	-	_	-
-	-	-	-	-
				-
-	-	-	-	-
	9.4 <0.3 2 <0.2 <1 31 9.5 0.7 15 3 <0.3 44 8.9 <1 388 <10 <2	9.4 5.6 < 0.3 1.5 <a href="</td"><td>9.4</td><td>9.4</td>	9.4	9.4

Lab number			47627-13	47627-14	47627-15	47627-16	47627-17	47627-18
Sample id			WS 701	WS 703	WS 703	WS 703	WS 705	WS 705
Depth (m)			1.00	0.50	1.40-1.60	3.80-4.00	0.90	1.80-2.00
Date sampled			11/12/2012	11/12/2012	16/01/2013	16/01/2013	11/12/2012	20/12/2012
Test	Method	Units						
o-Xylene	CE057 ^U	mg/kg	-	ı	-	-	1	-
TPH Aromatic EC5-EC7	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC7-EC8	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC8-EC10	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC10-EC12	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC12-EC16	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC16-EC21	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC21-EC35	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC35-EC44	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC5-EC6	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC6-EC8	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC8-EC10	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC10-EC12	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC12-EC16	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC16-EC35	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC35-EC44	CE068	mg/kg	-	-	-	-	-	-
Subcontracted analysis								
Asbestos	\$	-	NAD	NAD	NAD	NAD	NAD	NAD
	•							

lah mumban			47627 10	47627.22	47627.21	47627.22	47627.22	47627.24
Lab number Sample id			47627-19 WS 706	47627-20 WS 706	47627-21 WS 708	47627-22 WS 708	47627-23 WS 708	47627-24 WS 709
Depth (m)			0.50	2.00	0.50	1.00	2.00-2.50	0.80
Date sampled			17/12/2012	07/01/2013	17/12/2012	17/12/2012	-	18/12/2012
Test	Method	Units	, ,	, ,	, ,	, ,		, ,
Arsenic (total)	CE054 ^M	mg/kg As	14	11	12	11	12	61
Boron (water soluble)	CE063 ^M	mg/kg B	<0.3	3.4	0.4	1.3	1.5	0.6
Cadmium (total)	CE054 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium (VI)	CE050	mg/kg CrVI	<1	<1	<1	<1	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	28	20	12	12	13	13
Lead (total)	CE054 ^M	mg/kg Pb	12	12	8.5	11	11	17
Mercury (total)	CE054	mg/kg Hg	0.6	0.7	0.9	0.6	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	17	41	22	31	30	38
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	17	41	22	31	30	66
рН	CE004 ^M	units	8.8	7.6	8.9	8.2	7.9	8.4
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	1.1	2.2	<1	<1	2.0	<1
Sulphate (total)	CE062 ^M	mg/kg SO ₄	290	12400	962	271	338	399
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Phenols (total)	CE078	mg/kg PhOH	-	-	-	-	-	-
Organic matter content (OMC)	CE005 ^M	% w/w	0.53	0.37	0.37	0.52	1.20	0.90
АН								
Naphthalene	CE087	mg/kg	-	-	-	-	-	-
Acenaphthylene	CE087	mg/kg	-	-	-	-	-	-
Acenaphthene	CE087	mg/kg	-	-	-	-	1	-
Fluorene	CE087	mg/kg	-	-	-	-	1	-
Phenanthrene	CE087	mg/kg	-	-	-	-	-	-
Anthracene	CE087	mg/kg	-	-	-	-	-	-
Fluoranthene	CE087	mg/kg	-	-	-	-	-	-
Pyrene	CE087	mg/kg	-	-	-	-	-	-
Benzo(a)anthracene	CE087	mg/kg	-	-	-	-	-	-
Chrysene	CE087	mg/kg	-	-	-	-	-	-
Benzo(b)fluoranthene	CE087	mg/kg	-	-	-	-	-	-
Benzo(k)fluoranthene	CE087	mg/kg	-	-	-	-	-	-
Benzo(a)pyrene	CE087	mg/kg	-	-	-	-	-	-
Indeno(123cd)pyrene	CE087	mg/kg	-	-	-	-	ı	-
Dibenz(ah)anthracene	CE087	mg/kg	-	-	-	-	-	-
Benzo(ghi)perylene	CE087	mg/kg	-	-	-	-	ı	-
PAH (total)	CE087	mg/kg	-	-	-	-	ı	-
BTEX & TPH								
МТВЕ	CE057 ^U	mg/kg	-	-	-	-	-	-
Benzene	CE057 ^U	mg/kg	-	-	-	-	-	-
Toluene	CE057 ^U	mg/kg	-	-	-	-	-	-
Ethylbenzene	CE057 ^U	mg/kg	-	-	-	-	-	-
m & p-Xylene	CE057 ^U	mg/kg	-	-	-	-	-	-

Lab number			47627-19	47627-20	47627-21	47627-22	47627-23	47627-24
Sample id			WS 706	WS 706	WS 708	WS 708	WS 708	WS 709
Depth (m)			0.50	2.00	0.50	1.00	2.00-2.50	0.80
Date sampled			17/12/2012	07/01/2013	17/12/2012	17/12/2012	-	18/12/2012
Test	Method	Units						
o-Xylene	CE057 ^U	mg/kg	-	-	-	-	-	-
TPH Aromatic EC5-EC7	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC7-EC8	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC8-EC10	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC10-EC12	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC12-EC16	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC16-EC21	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC21-EC35	CE068	mg/kg	-	-	-	-	-	-
TPH Aromatic EC35-EC44	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC5-EC6	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC6-EC8	CE068	mg/kg	-	-	-		-	-
TPH Aliphatic EC8-EC10	CE068	mg/kg	-	-	-		-	-
TPH Aliphatic EC10-EC12	CE068	mg/kg	-	-	-	1	1	-
TPH Aliphatic EC12-EC16	CE068	mg/kg	-	-	-	-	-	-
TPH Aliphatic EC16-EC35	CE068	mg/kg	-	-	-		-	-
TPH Aliphatic EC35-EC44	CE068	mg/kg	-	-	-	-	-	-
Subcontracted analysis								
Asbestos	\$	-	Amosite	NAD	Amosite	NAD	NAD	NAD

Chemtech Environmental Limited LEACHATES

Lab number			47627-1L	47627-4L	47627-7L	47627-8L	47627-14L	47627-15L
Sample id			WS 45B	WS 64A	WS 163	WS 163	WS 703	WS 703
Depth (m)			0.00-1.20	0.20-0.75	0.30	1.00	0.50	1.40-1.60
Test	Method	Units						
Arsenic (dissolved)	CE055	mg/l As	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Boron (dissolved)	CE063	mg/l B	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (dissolved)	CE055 ^U	mg/l Cr	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Chromium (VI) (dissolved)	CE050	mg/l CrVI	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper (dissolved)	CE055 ^U	mg/l Cu	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Lead (dissolved)	CE055 ^U	mg/l Pb	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Selenium (dissolved)	CE055	mg/l Se	0.002	0.002	0.002	0.004	0.002	0.004
Zinc (dissolved)	CE055 ^U	mg/l Zn	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Hardness (by calculation)	CE055	mg/I CaCO ₃	50	28	35	64	27	55
рН	CE004	units	8.1	8.0	8.3	8.4	8.7	8.1
Ammoniacal Nitrogen	CE012 ^U	mg/l N	0.02	0.06	0.07	0.04	0.08	0.01
Chloride	CE049 ^U	mg/l Cl	1.1	<1	<1	<1	<1	<1
Nitrate	CE049 ^U	mg/l NO ₃	3.4	<1	<1	<1	<1	1.2
Sulphate	CE049 ^U	mg/I SO ₄	<10	<10	<10	12	<10	<10
Cyanide (free)	CE077	mg/I CN	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Organic Carbon	CE071	mg/l C	5.6	2.8	3.4	2.3	2.8	6.1

Chemtech Environmental Limited LEACHATES

Lab number			47627-16L	47627-17L	47627-18L	47627-19L	47627-20L
Sample id			WS 703	WS 705	WS 705	WS 706	WS 706
Depth (m)			3.80-4.00	0.90	1.80-2.00	0.50	2.00
Test	Method	Units					
Arsenic (dissolved)	CE055	mg/l As	<0.001	<0.001	<0.001	0.001	<0.001
Boron (dissolved)	CE063	mg/l B	0.03	<0.03	0.03	<0.03	0.07
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (dissolved)	CE055 ^U	mg/l Cr	<0.003	<0.003	<0.003	<0.003	<0.003
Chromium (VI) (dissolved)	CE050	mg/l CrVI	<0.01	<0.01	<0.01	<0.01	<0.01
Copper (dissolved)	CE055 ^U	mg/l Cu	<0.004	0.007	<0.004	<0.004	<0.004
Lead (dissolved)	CE055 ^U	mg/l Pb	<0.009	<0.009	<0.009	<0.009	<0.009
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (dissolved)	CE055 ^U	mg/l Ni	<0.003	<0.003	<0.003	<0.003	<0.003
Selenium (dissolved)	CE055	mg/l Se	0.002	0.003	0.002	0.003	0.003
Zinc (dissolved)	CE055 ^U	mg/l Zn	<0.020	<0.020	<0.020	<0.020	<0.020
Hardness (by calculation)	CE055	mg/I CaCO ₃	108	44	30	30	1651
рН	CE004	units	7.7	8.0	7.6	8.7	7.8
Ammoniacal Nitrogen	CE012 ^U	mg/l N	0.04	0.01	0.03	0.08	0.62
Chloride	CE049 ^U	mg/l Cl	<1	<1	1.0	<1	<1
Nitrate	CE049 ^U	mg/I NO ₃	<1	<1	2.9	<1	1.4
Sulphate	CE049 ^U	mg/I SO ₄	66	<10	<10	<10	1384
Cyanide (free)	CE077	mg/I CN	<0.02	<0.02	<0.02	<0.02	<0.02
Total Organic Carbon	CE071	mg/l C	2.4	2.7	10.2	3.9	5.1
	•						

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE054	Arsenic (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg As
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.3	mg/kg B
CE054	Cadmium (total)	Aqua regia digest, ICP-OES	Dry	М	0.2	mg/kg Cd
CE050	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE054	Copper (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Cu
CE054	Lead (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Pb
CE054	Mercury (total)	Aqua regia digest, ICP-OES	Dry		0.5	mg/kg Hg
CE054	Nickel (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Ni
CE054	Selenium (total)	Aqua regia digest, ICP-OES	Dry	М	0.3	mg/kg Se
CE054	Zinc (total)	Aqua regia digest, ICP-OES	Dry	М	3	mg/kg Zn
CE055	Hardness (by calculation)	ICP-OES		1	mg/I CaCO	3
CE004	рН	Based on BS 1377, pH Meter	Wet	М	1	units
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	М	100	mg/kg SO ₄
CE079	Sulphide	Extraction, Continuous Flow Colorimetry	Wet		10	mg/kg S ²⁻
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		2	mg/kg CN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	Wet		0.5	mg/kg PhOH
CE005	Organic matter content (OMC)	Based on BS 1377, Colorimetry	Dry	М	0.01	% w/w
CE087	PAH (speciated)	Solvent extraction, GC-MS	Wet		0.1	mg/kg
CE087	PAH (total)	Solvent extraction, GC-MS	Wet		5	mg/kg
CE057	BTEX & MTBE	Headspace GC-FID	Wet	U	0.01	mg/kg
CE068	TPH Aliphatic/Aromatic fractions (C5-C10)	Headspace GC-FID	Wet		0.01-0.1	mg/kg
CE068	TPH Aliphatic/Aromatic fractions (C10-C44)	Solvent extraction, GC-FID	Wet		1	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

Chemtech Environmental Limited METHOD DETAILS

METHOD	LEACHATES	METHOD SUMMARY	STATUS	LOD	UNITS
CE055	Arsenic (dissolved)	ICP-OES		0.001	mg/l As
CE063	Boron (dissolved)	ICP-OES		0.03	mg/l B
CE055	Cadmium (dissolved)	ICP-OES	U	0.001	mg/I Cd
CE055	Chromium (dissolved)	ICP-OES	U	0.003	mg/l Cr
CE050	Chromium VI (dissolved)	Colorimetry		0.01	mg/l CrVI
CE055	Copper (dissolved)	ICP-OES	U	0.004	mg/l Cu
CE055	Lead (dissolved)	ICP-OES	U	0.009	mg/l Pb
CE055	Mercury (dissolved)	ICP-OES		0.001	mg/l Hg
CE055	Nickel (dissolved)	ICP-OES	U	0.003	mg/l Ni
CE055	Selenium (dissolved)	ICP-OES		0.001	mg/l Se
CE055	Zinc (dissolved)	ICP-OES	U	0.020	mg/l Zn
CE004	рН	Based on BS 1377, pH Meter		-	units
CE012	Ammoniacal Nitrogen	Colorimetry	U	0.01	mg/l N
CE049	Chloride	Ion Chromatography	U	1	mg/l Cl
CE049	Nitrate	Ion Chromatography	U	1	mg/l NO ₃
CE049	Sulphate	Ion Chromatography	U	10	mg/I SO ₄
CE077	Cyanide (free)	Distillation, Colorimetry		0.02	mg/I CN
CE071	Total Organic Carbon	TOC analyser		1	mg/l C

Annex B2

Water Eaton

		Screening Criter	ia / mg/kg	T44	T44	T41	T41	T41	T42	T42	T42	S4	S4
Parameter	Units	Value	Source	0.60	1.00	0.30	0.70-0.90	1.00-1.40	0.30	0.60	1.20	0.30	0.60
Arsenic	(mg/kg)	362	ERM MRC	<10	<10	<10	<10	<10	28.6	<10	<10	<10	22.6
Boron (Water soluble) Cadmium	(mg/kg) (mg/kg)	NRP 248	NRP ERM MRC	<2.5 <0.2	<2.5 0.4	<2.5 0.5	<2.5 0.5	3.6 0.6	3.7 0.4	3.7 0.4	<2.5 <0.2	<2.5 0.5	<2.5 0.4
Chromium (Total)	(mg/kg)	3,872	GAC No Veg Uptake	15.9	27.7	42.0	20.4	57.0	22.6	34.9	13.9	44.1	21.6
Copper	(mg/kg)	6,500	GAC No Veg Uptake	9.3	12.8	29.3	57.2	34.9	40.3	18.9	8.9	21.2	64.1
Lead	(mg/kg)	5,197	ERM MRC	20.5	33.1	18.5	36.3	9.3	34.4	13.7	12.5	8.8	25.8
Mercury Nickel	(mg/kg) (mg/kg)	3,067 130	ERM MRC ERM MRC	<2.5 15.3	<2.5 24.6	<2.5 33.8	<2.5 29.3	<2.5 49.1	<2.5 28.1	<2.5 34.0	<2.5 10.6	<2.5 34.8	<2.5 40.1
Selenium	(mg/kg)	596	GAC No Veg Uptake	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Zinc	(mg/kg)	40,432	GAC No Veg Uptake	87.7	63.5	122	160	90.2	119	79.5	34.0	75.6	87.1
ГОС	(%)	NRP	NRP										<u> </u>
Cyanide (Total)	(mg/kg)	n.v	n.v	<1.1	<1.2	<1.2	<1.1	<1.3	<1.1	<1.3	<1.3	<1.2	<1.2
Cyanide (Free)	(mg/kg)	59	GAC No Veg	<1.1	<1.2	<1.2	<1.1	<1.3	<1.1	<1.3	<1.3	<1.2	<1.2
Cyanide (Complex)	(mg/kg)	24,619	GAC No Veg	<1.1	<1.2	<1.2	<1.1	<1.3	<1.1	<1.3	<1.3	<1.2	<1.2
Chromium (Hexavalent)	(mg/kg)	38	GAC No Veg	<1.1	<1.2	<1.2	<1.1	<1.3	<1.1	<1.3	<1.3	12.8	<1.2
SOM	(%)	n.v	n.v	2.9	2.1	6.5	26.1	<1.7	37.7	6.4	3.2	1.9	41.0
Total Sulphate Sulphide	(mg/kg) (mg/kg)	n.v n.v	n.v n.v	1000 22.7	500 7.2	900	1500 34.7	1400 9.6	3800	2700 9.6	600 17.9	800 15.5	1900 32.3
Chloride (Water soluble)	(mg/l)	n.v	n.v	26.0	23.0	12.0	11.0	9.3	9.4	10.0	17.0	29.0	7.1
Н	pH Units	n.v	n.v	8.3	6.9	7.6	7.5	7.7	7.1	7.1	7.0	7.4	7.3
Acenaphthene	(mg/kg)	4,834	GAC No Veg Uptake	1.4	0.2	4.1	<1.0	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	(mg/kg)	4,830	GAC No Veg	<1.0	0.6	0.3	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	(mg/kg)		Uptake GAC No Veg	7.8	1.4	0.9	1.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1
Benzo (a) anthracene	(mg/kg)	24,206	Uptake GAC No Veg	23.8	2.6	2.0	2.7	0.2	1.8	2.5	0.5	<0.1	0.2
Benzo (a) pyrene	(mg/kg)	10 14	Uptake ERM MRC	21.0	2.0	2.4	2.2	<0.1	1.4	1.9	0.3	<0.1	<0.1
Benzo (b) fluoranthene	(mg/kg)	10	GAC No Veg Uptake	29.0	2.6	3.6	4.1	0.2	2.5	2.6	0.5	<0.1	0.3
Benzo (g, h, i) perylene	(mg/kg)	48	GAC No Veg Uptake	16.1	1.5	2.1	2.2	0.1	1.1	1.3	0.3	<0.1	0.2
Benzo (k) fluoranthene	(mg/kg)		GAC No Veg	9.4	0.9	1.2	<1.0	<0.1	0.7	0.9	0.1	<0.1	<0.1
Chrysene	(mg/kg)	26	Uptake GAC No Veg	22.9	2.5	2.3	3.0	0.2	2.3	2.4	0.5	<0.1	0.4
Dibenzo (a,h) anthracene		111	Uptake GAC No Veg	3.3	0.3	0.5	<1.0	<0.1	0.3	0.2	<0.1	<0.1	<0.1
, ,	(mg/kg)	1.0	Uptake GAC No Veg									<u> </u>	
Fluoranthene	(mg/kg)	1,007	Uptake GAC No Veg	55.5	7.1	3.9	6.8	0.5	4.2	5.4	1.0	0.1	0.6
Fluorene	(mg/kg)	3,223	Uptake GAC No Veg	1.6	0.7	2.5	<1.0	<0.1	0.5	<0.1	<0.1	<0.1	0.1
Indeno (1, 2, 3,-cd) pyrene	(mg/kg)	10	Uptake	17.2	1.6	2.4	2.1	<0.1	1.1	1.4	0.3	<0.1	<0.1
Naphthalene Phenanthrene	(mg/kg) (mg/kg)	3.6	ERM MRC GAC No Veg	<1.0 34.2	7.2	17.6 5.4	2.2	0.2	3.2 5.0	0.8 2.1	0.1	<0.1 0.1	0.9 1.2
		1,001	Uptake GAC No Veg										
Pyrene Total PAH (Sum of USEPA	(mg/kg)	2,419	Uptake GAC No Veg	44.7	5.8	3.4	6.7	0.4	3.7	4.5	0.9	0.1	0.5
16) Phenols (Total)	(mg/kg)	n.v. 843	Uptake ERM MRC	290 <1.1	37.4 <1.2	54.5 <1.2	42.8 <1.1	2.9 <1.3	28.4 <1.1	26.6 <1.3	5.4 <1.3	1.7 <1.2	5.0 <1.2
·	(mg/kg)	043	ERIVI IVIRC	\1.1	\1.2	\1.2	\1.1	\1. 5	\1.1	\1. 3	\1. 3	\1.2	\1.2
Aliphatics	((1)		GAC No Veg	10.00	0.05]	0.12	10.00	0.47]	0.02	0.12]
>C ₅ to C ₆	(mg/kg)	35	Uptake GAC No Veg	<0.03	0.05	<0.04	0.12	<0.03	0.16	<0.04	0.03	0.12	<0.03
>C ₆ to C ₈	(mg/kg)	90	Uptake GAC No Veg	0.06	0.07	<0.04	0.16	0.09	0.30	<0.04	0.03	0.05	<0.03
>C ₈ to C ₁₀	(mg/kg)	25	Uptake	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03
>C ₁₀ to C ₁₂	(mg/kg)	2,862	GAC No Veg Uptake	<11	<12	<11	<11	<13	<11	<13	<13	<12	<12
>C ₁₂ to C ₁₆	(mg/kg)	4,322	GAC No Veg Uptake	<11	<12	<11	<11	<13	<11	<13	<13	<12	<12
>C ₁₆ to C ₂₁	(mg/kg)	89,023	GAC No Veg Uptake	12	<12	<11	14	<13	<11	<13	<13	<12	<12
>C ₂₁ to C ₃₅	(mg/kg)	89,023	GAC No Veg Uptake	44	<12	16	59	<13	27	<13	<13	25	12
			'		4					ı		ļ.	
Aromatics $> C_5$ to C_7	(mg/kg)		GAC No Veg	<0.03	<0.03	<0.04	<0.03	<0.03	0.03	<0.04	<0.03	<0.03	<0.03
C_7 to C_8		260	Uptake GAC No Veg	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03
	(mg/kg)	555	Uptake GAC No Veg							1			7
>C ₈ to C ₁₀	(mg/kg)	42	Uptake GAC No Veg	<0.03	<0.03	<0.04	<0.03	<0.03	0.05	<0.04	<0.03	0.06	<0.03
>C ₁₀ to C ₁₂	(mg/kg)	230	Uptake	<11	<12 1	<11	<11	<13	<11	<13	<13	<12	<12
>C ₁₂ to C ₁₆	(mg/kg)	1,578	GAC No Veg Uptake	19	<12	<11	33	<13	<11	<13	<13	<12	<12
>C ₁₆ to C ₂₁	(mg/kg)	1,328	GAC No Veg Uptake	150	<12	12	60	<13	17	<13	<13	<12	<12
>C ₂₁ to C ₃₅	(mg/kg)	1,335	GAC No Veg Uptake	609	<12	56	195	<13	64	<13	<13	42	<12
Bonzano	(ma/1=)		ERM MRC	<0.05	- -0.07	-0.0F	ZO 04	0.0/	<0.0F	- 0.07	~ 0.04	Z0.07	-0.04
Benzene Foluene	(mg/kg) (mg/kg)	1.1 159	ERM MRC	< 0.05	<0.06 <0.06	<0.05 <0.05	<0.04 <0.04	<0.06 <0.06	<0.05 <0.05	<0.06 <0.06	<0.04 <0.04	<0.06 <0.06	<0.04 <0.04
Ethyl Benzene	(mg/kg)	661	ERM MRC GAC No Veg	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05	<0.06	<0.04	<0.06	<0.04
Xylene (meta / para)	(mg/kg)	305,338	Uptake GAC No Veg	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05	<0.06	<0.04	<0.06	<0.04
Xylene (ortho)	(mg/kg)	305,338	Uptake	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05	<0.06	<0.04	<0.06	< 0.04
MTBE	(mg/kg)	10,952	GAC No Veg Uptake	< 0.05	<0.06	< 0.05	< 0.04	<0.06	< 0.05	< 0.06	< 0.04	<0.06	< 0.04

ERM Material Re-use Criteria (MRC) are presented in Annex *

Assumptions for GAC calculations are presented in Annex * NRP- No risk predicted

n.v - No value

NAD - no asbestos detected

- present above detection limit - exceeds ERM MRC

- exceeds residential GAC/SGV

East-West Rail Combined Report Project / Site name: East-West Rail Phase 1

Lab Sample Number		290652	287956	291001	287970	287971		
Sample Reference				TB027	TB030	TB030	TB032	TB032
Sample Number				ES	ES	ES	ES	ES
Depth (m)				0.10-0.20	0.50	0.00-0.35	0.00-0.20	0.50
Date Sampled				Deviating	20/09/2013	Deviating	Deviating	17/09/2013
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	3.3	22	2.5	0.12	7.2
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH Takal Comida	pH Units	N/A	MCERTS	7.5	7.0	8.1	7.8	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1 < 1	< 1	< 1 < 1	< 1
Complex Cyanide	mg/kg	1	NONE					
Free Cyanide Total Sulphate as SO ₄	mg/kg mg/kg	100	NONE ISO 17025	< 1 2000	< 1 640	< 1 240	< 1 630	< 1 190
	•							
Sulphide	mg/kg	1	MCERTS	810	25	7.4	110	1.1
Total Chloride	mg/kg	5	NONE	110	2.0	49 0.4	30	24 < 0.1
Organic Matter Phenols by HPLC	%	0.1	MCERTS				< 0.1	
Catechol	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Resorcinol	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butyl Phenols	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cresols	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthols	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol Trimethylphenol	μg/kg	0.1	NONE NONE	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0
Total Phenols Total Phenols (HPLC)	μg/kg μg/kg	7	NONE	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0
Speciated PAHs	ру/ку	,	NONE	V 7.0				
Naphthalene	mg/kg	0.05	MCERTS	0.26	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	0.52	< 0.20	0.41	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	0.11	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	1.4	< 0.20	0.73	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	1.3	< 0.20	0.75	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	0.60	< 0.20	0.27	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	0.83	< 0.05	0.50	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	0.44	< 0.10	0.47	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.38	< 0.20	0.28	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.27	< 0.10	0.33	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							ī	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	6.2	< 1.6	3.8	< 1.6	< 1.6

East-West Rail Combined Report

Project / Site name: East-West Rail Phase 1

Lab Sample Number				290652	287956	291001	287970	287971
Sample Reference				TB027	TB030	TB030	TB032	TB032
Sample Number				ES	ES	ES	ES	ES
Depth (m)	0.10-0.20	0.50	0.00-0.35	0.00-0.20	0.50			
Date Sampled	Deviating	20/09/2013	Deviating	Deviating	17/09/2013			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids						=		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	14	6.7	1.1	5.4
Boron (water soluble)	mg/kg	0.2	MCERTS	3.6	1.1	0.3	0.5	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	38	16	19	8.9
Copper (aqua regia extractable)	mg/kg	1	MCERTS	43	20	33	18	15
Lead (aqua regia extractable)	mg/kg	2	MCERTS	18	21	21	5.4	16
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	14	23	12	8.9	11
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	56	65	90	37	46
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	45	56	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	45	56	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	1.4	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	4.4	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	13	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	ma/ka	10	MCFRTS	19	< 10	< 10	< 10	< 10

East-West Rail Combined Report Project / Site name: East-West Rail Phase 1

Lab Sample Number		287972	287960	287961	287962	287963		
Sample Reference				TB034	TB037	TB037	TB040	TB040
Sample Number				ES	ES	ES	ES	ES
Depth (m)				0.00-0.50	0.00-0.45	0.50	0.00-0.25	0.40
Date Sampled				Deviating	Deviating	18/09/2013	Deviating	18/09/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	<u>c</u>	Lin deta	Accrei					
(Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	0.08	3.4	9.2	0.64	5.3
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	7.9	7.8	8.0	7.9	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	340	820	990	560	640
Sulphide	mg/kg	1	MCERTS	13	170	190	2.8	440
Total Chloride	mg/kg	5	NONE	18	45	8	37	20
Organic Matter	%	0.1	MCERTS	< 0.1	1.9	0.4	0.1	1.4
Phenols by HPLC							_	
Catechol	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Resorcinol	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butyl Phenols	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cresols	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthols	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol	μg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Trimethylphenol	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols								
Total Phenols (HPLC)	μg/kg	7	NONE	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.30	< 0.05	< 0.05	0.36
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	0.36	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	1.6	0.32	< 0.20	6.0
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.65	< 0.10	< 0.10	0.70
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	8.7	1.2	< 0.20	9.4
Pyrene	mg/kg	0.2	MCERTS	< 0.20	7.2	1.2	< 0.20	8.4
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	2.0	0.37	< 0.20	2.1
Chrysene	mg/kg	0.05	MCERTS	< 0.05	4.2	0.55	< 0.05	2.9
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	3.1	0.63	< 0.10	2.6
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	1.5	0.35	< 0.20	1.4
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	1.6	0.41	< 0.10	1.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	0.74	0.27	< 0.20	0.75
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.86	0.31	< 0.05	0.81
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	33	5.6	< 1.6	37

East-West Rail Combined Report

Project / Site name: East-West Rail Phase 1

Lab Sample Number				287972	287960	287961	287962	287963
Sample Reference				TB034	TB037	TB037	TB040	TB040
Sample Number				ES	ES	ES	ES	ES
Depth (m)	0.00-0.50	0.00-0.45	0.50	0.00-0.25	0.40			
Date Sampled	Deviating	Deviating	18/09/2013	Deviating	18/09/2013			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	1.4	13	34	7.7	24
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	3.0	< 0.2	0.6	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.9	29	23	7.5	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.8	140	51	13	67
Lead (aqua regia extractable)	mg/kg	2	MCERTS	4.3	32	22	12	38
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	5.8	31	34	5.5	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	47	150	120	82	130
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	2.9
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	9.7	< 8.0	13
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	93	84	29	31	40
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	93	84	39	31	57
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	3.9
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	47	13	< 10	70
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	110	34	< 10	93
TPH-CWG - Aromatic (EC5 - EC35)	ma/ka	10	MCFRTS	< 10	160	47	< 10	170

G13066-D/001 Project Reference - East West Rail, Water Eaton Parkway Analytical Test Results - Basic Suite

NCA Reference			13-16214	13-16215	13-16216	13-16217	13-16218
Client Sample Location			T44	T44	T41	T41	T41
Client Sample Reference			E3	E5	E1	E3	B4
Depth (m)			0.60	1.00	0.30	0.70-0.90	1.00-1.40
Date of Sampling			11.07.2013	11.07.2013	11.07.2013	11.07.2013	11.07.2013
Time of Sampling			AM	AM	AM	AM	AM
Sample Matrix			Sand	Clay	Clay	Loam	Clay
Determinant	Units	Accreditation					
Arsenic	(mg/kg)	MCERTS	<10	<10	<10	<10	<10
Boron (Water soluble)	(mg/kg)	None	<2.5	<2.5	<2.5	<2.5	3.6
Cadmium	(mg/kg)	MCERTS	<0.2	0.4	0.5	0.5	0.6
Chromium (Total)	(mg/kg)	MCERTS	15.9	27.7	42.0	20.4	57.0
Copper	(mg/kg)	MCERTS	9.3	12.8	29.3	57.2	34.9
Lead	(mg/kg)	MCERTS	20.5	33.1	18.5	36.3	9.3
Mercury	(mg/kg)	UKAS	<2.5	<2.5	<2.5	<2.5	<2.5
Nickel	(mg/kg)	MCERTS	15.3	24.6	33.8	29.3	49.1
Selenium	(mg/kg)	None	<8	<8	<8	<8	<8
Zinc	(mg/kg)	MCERTS	87.7	63.5	122	160	90.2
Cyanide (Total)	(mg/kg)	MCERTS	<1.1	<1.2	<1.2	<1.1	<1.3
Cyanide (Free)	(mg/kg)	MCERTS	<1.1	<1.2	<1.2	<1.1	<1.3
Cyanide (Complex)	(mg/kg)	MCERTS	<1.1	<1.2	<1.2	<1.1	<1.3
Chromium (Hexavalent)	(mg/kg)	None	<1.1	<1.2	<1.2	<1.1	<1.3
SOM	(%)	MCERTS	2.9	2.1	6.5	26.1	<1.7
Total Sulphate	(mg/kg)	None	1000	500	900	1500	1400
Sulphide	(mg/kg)	None	22.7	7.2	23.9	34.7	9.6
Chloride (Water soluble)	(mg/l)	None	26.0	23.0	12.0	11.0	9.3
рН	pH Units	MCERTS	8.3	6.9	7.6	7.5	7.7
Asbestos	-	None	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

G13066-D/001 Project Reference - East West Rail, Water Eaton Parkway Analytical Test Results - Basic Suite

NCA Reference			13-16219	13-16220	13-16221	13-16222	13-16223
Client Sample Location			T42	T42	T42	S4	S4
Client Sample Reference			E2	E4	E6	E1	E2
Depth (m)			0.30	0.60	1.20	0.30	0.60
Date of Sampling			11.07.2013	11.07.2013	11.07.2013	12.07.2013	12.07.2013
Time of Sampling			PM	PM	PM	AM	AM
Sample Matrix			Loam	Clay	Clay	Clay	Loam
Determinant	Units	Accreditation					
Arsenic	(mg/kg)	MCERTS	28.6	<10	<10	<10	22.6
Boron (Water soluble)	(mg/kg)	None	3.7	3.7	<2.5	<2.5	<2.5
Cadmium	(mg/kg)	MCERTS	0.4	0.4	<0.2	0.5	0.4
Chromium (Total)	(mg/kg)	MCERTS	22.6	34.9	13.9	44.1	21.6
Copper	(mg/kg)	MCERTS	40.3	18.9	8.9	21.2	64.1
Lead	(mg/kg)	MCERTS	34.4	13.7	12.5	8.8	25.8
Mercury	(mg/kg)	UKAS	<2.5	<2.5	<2.5	<2.5	<2.5
Nickel	(mg/kg)	MCERTS	28.1	34.0	10.6	34.8	40.1
Selenium	(mg/kg)	None	<8	<8	<8	<8	<8
Zinc	(mg/kg)	MCERTS	119	79.5	34.0	75.6	87.1
Cyanide (Total)	(mg/kg)	MCERTS	<1.1	<1.3	<1.3	<1.2	<1.2
Cyanide (Free)	(mg/kg)	MCERTS	<1.1	<1.3	<1.3	<1.2	<1.2
Cyanide (Complex)	(mg/kg)	MCERTS	<1.1	<1.3	<1.3	<1.2	<1.2
Chromium (Hexavalent)	(mg/kg)	None	<1.1	<1.3	<1.3	12.8	<1.2
SOM	(%)	MCERTS	37.7	6.4	3.2	1.9	41.0
Total Sulphate	(mg/kg)	None	3800	2700	600	800	1900
Sulphide	(mg/kg)	None	16.7	9.6	17.9	15.5	32.3
Chloride (Water soluble)	(mg/l)	None	9.4	10.0	17.0	29.0	7.1
рН	pH Units	MCERTS	7.1	7.1	7.0	7.4	7.3
Asbestos	-	None	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

G13066-D/001

Project Reference - East West Rail, Water Eaton Parkway

Analytical Test Results - Basic Suite

NCA Reference

Client Sample Location

Client Sample Reference

Depth (m)

Date of Sampling

Time of Sampling

Sample Matrix

Determinant	Units	Accreditation
Arsenic	(mg/kg)	MCERTS
Boron (Water soluble)	(mg/kg)	None
Cadmium	(mg/kg)	MCERTS
Chromium (Total)	(mg/kg)	MCERTS
Copper	(mg/kg)	MCERTS
Lead	(mg/kg)	MCERTS
Mercury	(mg/kg)	UKAS
Nickel	(mg/kg)	MCERTS
Selenium	(mg/kg)	None
Zinc	(mg/kg)	MCERTS
Cyanide (Total)	(mg/kg)	MCERTS
Cyanide (Free)	(mg/kg)	MCERTS
Cyanide (Complex)	(mg/kg)	MCERTS
Chromium (Hexavalent)	(mg/kg)	None
SOM	(%)	MCERTS
Total Sulphate	(mg/kg)	None
Sulphide	(mg/kg)	None
Chloride (Water soluble)	(mg/l)	None
рН	pH Units	MCERTS
Asbestos	-	None

G13066-D/001 Project Reference - East West Rail, Water Eaton Parkway Analytical Test Results - Advanced Suite

NCA Reference			13-16214	13-16215	13-16216	13-16217	13-16218	13-16219
Client Sample Reference			T44	T44	T41	T41	T41	T42
Client Sample Location			E3	E5	E1	E3	B4	E2
Depth (m)			0.60	1.00	0.30	0.70-0.90	1.00-1.40	0.30
Date of Sampling			11.07.2013	11.07.2013	11.07.2013	11.07.2013	11.07.2013	11.07.2013
Time of Sampling			AM	AM	AM	AM	AM	PM
Sample Matrix			Sand	Clay	Clay	Loam	Clay	Loam
Determinant	Units	Accreditation						
Acenaphthene	(mg/kg)	MCERTS	1.4	0.2	4.1	<1.0	<0.1	0.1
Acenaphthylene	(mg/kg)	UKAS	<1.0	0.6	0.3	<1.0	<0.1	<0.1
Anthracene	(mg/kg)	UKAS	7.8	1.4	0.9	1.1	<0.1	0.5
Benzo (a) anthracene	(mg/kg)	MCERTS	23.8	2.6	2.0	2.7	0.2	1.8
Benzo (a) pyrene	(mg/kg)	MCERTS	21.0	2.0	2.4	2.2	<0.1	1.4
Benzo (b) fluoranthene	(mg/kg)	MCERTS	29.0	2.6	3.6	4.1	0.2	2.5
Benzo (g, h, i) perylene	(mg/kg)	MCERTS	16.1	1.5	2.1	2.2	0.1	1.1
Benzo (k) fluoranthene	(mg/kg)	MCERTS	9.4	0.9	1.2	<1.0	<0.1	0.7
Chrysene	(mg/kg)	MCERTS	22.9	2.5	2.3	3.0	0.2	2.3
Dibenzo (a,h) anthracene	(mg/kg)	MCERTS	3.3	0.3	0.5	<1.0	<0.1	0.3
Fluoranthene	(mg/kg)	MCERTS	55.5	7.1	3.9	6.8	0.5	4.2
Fluorene	(mg/kg)	MCERTS	1.6	0.7	2.5	<1.0	<0.1	0.5
Indeno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	17.2	1.6	2.4	2.1	<0.1	1.1
Naphthalene	(mg/kg)	MCERTS	<1.0	0.6	17.6	2.2	0.2	3.2
Phenanthrene	(mg/kg)	MCERTS	34.2	7.2	5.4	4.7	0.4	5.0
Pyrene	(mg/kg)	MCERTS	44.7	5.8	3.4	6.7	0.4	3.7
Total PAH (Sum of USEPA 16)	(mg/kg)	UKAS	290	37.4	54.5	42.8	2.9	28.4
Phenols (Total)	(mg/kg)	MCERTS	<1.1	<1.2	<1.2	<1.1	<1.3	<1.1
Aliphatics								
>C ₅ to C ₆	(mg/kg)	None	<0.03	0.05	<0.04	0.12	<0.03	0.16
>C ₆ to C ₈	(mg/kg)	None	0.06	0.07	<0.04	0.16	0.09	0.30
>C ₈ to C ₁₀	(mg/kg)	None	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03
>C ₁₀ to C ₁₂	(mg/kg)	None	<11	<12	<11	<11	<13	<11
>C ₁₂ to C ₁₆	(mg/kg)	None	<11	<12	<11	<11	<13	<11
>C ₁₆ to C ₂₁	(mg/kg)	None	12	<12	<11	14	<13	<11
>C ₂₁ to C ₃₅	(mg/kg)	None	44	<12	16	59	<13	27
Aromatics								
>C ₅ to C ₇	(mg/kg)	None	<0.03	<0.03	<0.04	<0.03	<0.03	0.03
>C ₇ to C ₈	(mg/kg)	None	<0.03	<0.03	<0.04	<0.03	<0.03	<0.03
>C ₈ to C ₁₀	(mg/kg)	None	<0.03	<0.03	<0.04	<0.03	<0.03	0.05
>C ₁₀ to C ₁₂	(mg/kg)	None	<11	<12	<11	<11	<13	<11
>C ₁₂ to C ₁₆	(mg/kg)	None	19	<12	<11	33	<13	<11
>C ₁₆ to C ₂₁	(mg/kg)	None	150	<12	12	60	<13	17
>C ₂₁ to C ₃₅	(mg/kg)	None	609	<12	56	195	<13	64
Benzene	(mg/kg)	MCERTS	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05
Toluene	(mg/kg)	MCERTS	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05
Ethyl Benzene	(mg/kg)	MCERTS	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05
Xylene (meta / para)	(mg/kg)	MCERTS	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05
Xylene (ortho)	(mg/kg)	MCERTS	<0.05	<0.06	<0.05	<0.04	<0.06	<0.05
MTBE	(mg/kg)	MCERTS	< 0.05	<0.06	<0.05	<0.04	<0.06	< 0.05

G13066-D/001
Project Reference - East West Rail, Water Eaton
Parkway
Analytical Test Results - Advanced Suite

NCA Reference			13-16220	13-16221	13-16222	13-16223
Client Sample Reference			T42	T42	S4	\$4
Client Sample Location			E4	E6	E1	E2
Depth (m)			0.60	1.20	0.30	0.60
Date of Sampling			11.07.2013	11.07.2013	12.07.2013	12.07.2013
me of Sampling			PM	PM	AM	AM
mple Matrix			Clay	Clay	Clay	Loam
eterminant	Units	Accreditation				
cenaphthene	(mg/kg)	MCERTS	<0.1	<0.1	<0.1	<0.1
cenaphthylene	(mg/kg)	UKAS	<0.1	<0.1	<0.1	<0.1
nthracene	(mg/kg)	UKAS	0.4	<0.1	<0.1	<0.1
nzo (a) anthracene	(mg/kg)	MCERTS	2.5	0.5	<0.1	0.2
nzo (a) pyrene	(mg/kg)	MCERTS	1.9	0.3	<0.1	<0.1
nzo (b) fluoranthene	(mg/kg)	MCERTS	2.6	0.5	<0.1	0.3
enzo (g, h, i) perylene	(mg/kg)	MCERTS	1.3	0.3	<0.1	0.2
enzo (k) fluoranthene	(mg/kg)	MCERTS	0.9	0.1	<0.1	<0.1
rysene	(mg/kg)	MCERTS	2.4	0.5	<0.1	0.4
benzo (a,h) anthracene	(mg/kg)	MCERTS	0.2	<0.1	<0.1	<0.1
uoranthene	(mg/kg)	MCERTS	5.4	1.0	0.1	0.6
uorene	(mg/kg)	MCERTS	<0.1	<0.1	<0.1	0.1
deno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	1.4	0.3	<0.1	<0.1
phthalene	(mg/kg)	MCERTS	0.8	0.1	<0.1	0.9
enanthrene	(mg/kg)	MCERTS	2.1	0.4	0.1	1.2
rene	(mg/kg)	MCERTS	4.5	0.9	0.1	0.5
al PAH (Sum of USEPA 16)	(mg/kg)	UKAS	26.6	5.4	1.7	5.0
nols (Total)	(mg/kg)	MCERTS	<1.3	<1.3	<1.2	<1.2
phatics	e =/					
c ₅ to C ₆	(mg/kg)	None	<0.04	0.03	0.12	<0.03
C ₆ to C ₈	(mg/kg)	None	<0.04	0.03	0.05	<0.03
8 to C ₁₀	(mg/kg)	None	<0.04	<0.03	<0.03	<0.03
₁₀ to C ₁₂	(mg/kg)	None	<13	<13	<12	<12
1 ₁₂ to C ₁₆	(mg/kg)	None	<13	<13	<12	<12
12 to C ₁₆	(mg/kg)	None	<13	<13	<12	<12
₁₁ to C ₃₅	(mg/kg)	None	<13	<13	25	12
omatics	1000		-15	15	_5	
C ₅ to C ₇	(mg/kg)	None	<0.04	<0.03	<0.03	<0.03
C ₇ to C ₈	(mg/kg)	None	<0.04	<0.03	<0.03	<0.03
C ₈ to C ₁₀	(mg/kg)	None	<0.04	<0.03	0.06	<0.03
C ₁₀ to C ₁₂			<13	<13	<12	<12
C ₁₂ to C ₁₆	(mg/kg)	None	<13	<13	<12	<12
2 ₁₆ to C ₂₁	(mg/kg) (mg/kg)	None			<12	
		None	<13	<13		<12 <12
C ₂₁ to C ₃₅	(mg/kg)	None	<13	<13	42	<12
enzene	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04
oluene	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04
hyl Benzene	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04
rlene (meta / para)	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04
ylene (ortho)	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04
MTBE	(mg/kg)	MCERTS	<0.06	<0.04	<0.06	<0.04

Annex C

Human Health Quantitative Risk Assessment Methodology

1.1 GENERAL RATIONALE

ERM GAC have been developed in general accordance with the guidance published by the Environment Agency for undertaking the assessment of chronic risks to human health from land contamination collectively commonly referred to as the 'CLEA framework' as contained in the following documents:

- Updated technical background to the CLEA model (SR3), Environment Agency, January 2009;
- Human health toxicological assessment of contaminants in soil (SR2), Environment Agency, January 2009;
- Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (SR7), November 2008; and
- CLEA software (version 1.06) and handbook (SR4 version 1.05), Environment Agency, September 2009.

During 2009, the Environment Agency published a number of Soil Guideline Values (SGVs) using the 'CLEA Framework'. The SGVs are an example of authoritative generic assessment criteria used in the preliminary evaluation of the risk to human health from long term exposure to chemicals in soil. However, only a limited number of SGVs have been published to date, (As, Cd, Hg, Ni, Se, benzene, toluene, ethylbenzene, phenol, Dioxins/Furans & Dioxin like PCB's).

Environment Agency document "Using Soil Guideline Values" published in March 2009 states that in the absence of an SGV the simplest option might be to derive a generic assessment criterion using (where appropriate) the generic models used to define SGVs, and based on appropriately sourced physical-chemical and toxicity data.

Due to the limited number of published SGVs, ERM has developed an expanded set of Generic Assessment Criteria (GACs) in accordance with the techniques and protocols set out in the CLEA Framework of publications detailed above. The intention is that these GACs are used in an equivalent way to SGVs in terms of being applicable to the majority of sites and a means of undertaking a generic assessment of chronic risks to human health and help refine any requirement for further DQRA.

The SGVs and ERMs GACs are considered to represent "cautious estimates of levels of contaminants in soil at which there is considered to be no risk to health or, at most, a minimal risk to health" (1). SGVs and GACs are not levels which indicate a significant possibility of significant harm or levels which describe the boundary between categories 3 and 4, as detailed within the statutory Guidance (1), neither are they indicators of levels of contamination above which detailed risk assessment would automatically be required under Part 2a. SGV's and GAC do however describe levels of contamination which are comfortably within category 4 of the statutory guidance.

The CLEA framework does not currently include specific guidance for assessing the potential risks to human health via the inhalation of groundwater-derived vapours. In the absence of UK specific guidance ERM has followed the spirit of the methodology to derive a set of GAC_{GW} for groundwater adopting where applicable the same standard land use assumptions detailed within SR3 and the fate and transport algorithms adopted within the software RISC V4.5.

The SGVs and GACs rely on predicting the concentration of vapours within the unsaturated zone using partitioning equations. However, due to the inherent uncertainty with estimating vapour partitioning there is growing international consensus that when assessing vapour inhalation risks from land contamination less reliance is placed on predicting contaminant partitioning and greater emphasis on directly measured soil vapour concentrations. Therefore, ERM has also produced Soil Vapour GACs (GACsV) with respect to assessing the vapour

(1) Environmental Protection Act 1990: Part 2A, Contaminated Land Statutory Guidance, DEFRA, April 2012.

inhalation pathway. The GAC_{SV} have been based on the standard land use assumptions detailed within SR3 and modelling the migration of vapours through the unsaturated zone and subsequent flow inside buildings and into ambient air. The GAC_{SV} enable a tiered approach to assessing vapour inhalation to be adopted involving an initial assessment based on calculating partitioning from soil and groundwater phases, supplemented where appropriate by the assessment of directly measured soil vapour concentrations. This tiered approach to the assessment of vapour inhalation is consistent with the approach suggested within DEFRA way forward publication CLAN 6/06 and CIRIA C682 (The VOC Handbook).

1.2 CONCEPTUAL EXPOSURE MODEL

Harmful effects from exposure to hazardous substances may occur as a result of either short-term exposure (acute effects) or long-term exposure (chronic effects). Generally for the vast majority of contaminants the long-term exposure to relatively low levels of the substance is of greatest concern since short-term effects generally occur at much higher concentrations. Any assessment based on the effects of long-term exposure is also likely to be overly protective with respect to the effects from short-term exposure. The assessment of risks to human health for the vast majority of the contaminants of concern is, therefore, based on the assessment of chronic exposure. However, free cyanide may elicit harmful effects from short-term exposure at relatively low concentrations. Therefore, GAC for free cyanide have been derived for both chronic and acute exposure.

The land use behaviour will significantly influence the exposure of end users to soil contaminants and should be reflected in any site specific assessment of those contaminants which represent a hazard as a result of chronic exposure. Influencing factors include: the age and gender of site users; the number of visits to the site; the duration of each visit; and the likely activities that could bring about contact with soil contamination. In the derivation of ERM's GACs three types of 'generic' land use have been included:

- Residential including Consumption of Home-grown Vegetables;
- Residential excluding the Consumption of Home-grown Vegetables; and
- Commercial/Industrial.

The generic land use conceptual exposure models presented within SR3 have been adopted in the derivation of the GAC. *Table 1* presents the exposure pathways included in the derivation of ERMs GAC for each land use.

Table 1 Exposure Pathways Included For Land Use

	Residential Land Use with Gardens	Residential Land Use without Gardens	Commercial Land Use						
GAC _{Soil} - Exposure from Substances Prese	nt in Soils								
Ingestion of Soil and Dust	✓	✓	✓						
Ingestion of Home grown Vegetables	✓	-	-						
Ingestion of Soil Attached to Vegetables	✓	-	-						
Inhalation of Fugitive Dust – Indoors	✓	✓	✓						
Inhalation of Fugitive Dust – Outdoors	✓	✓	✓						
Inhalation of Vapours - Indoors	✓	✓	✓						
Inhalation of Vapours – Outdoors	✓	✓	✓						
Dermal contact – Indoors	✓	✓	✓						
Dermal contact – Outdoors	✓	✓	✓						
GAC _{GW} - Exposure from Substances Prese	nt in Groundwaters								
Inhalation of Vapours – Indoors	✓	✓	✓						
Inhalation of Vapours – Outdoors	✓	✓	✓						
GAC _{SV} - Exposure from Substances Present in Soil Vapours									
Inhalation of Vapours – Indoors	✓	✓	✓						
Inhalation of Vapours – Outdoors	✓	✓	✓						

The generic human exposure assumptions and building parameters detailed within SR3 for each standard land use have been adopted in the derivation of the GAC.

1.3 CONTAMINANT SPECIFIC PROPERTIES

Toxicological Parameters

Health criteria values (HCV) used to benchmark exposure have been compiled from a review of the scientific and technical literature. Where several health criteria values have been identified, preference has been given to authoritative UK sources where available, as per SR2. In the absence of any appropriate authoritative UK sources, the selection of the most appropriate value has been made with consideration of the following hierarchy:

- 1. Authoritative UK Sources (e.g. Environment Agency TOX reports, UK Drinking Water Inspectorate, UK Air Quality Strategy);
- 2. European/International Authoritative Sources (e.g. WHO Drinking Water Guidelines (underlying toxicological data), WHO Air Quality Guidelines for Europe, International Programme on Chemical Safety (IPCS) Environmental Health Criteria Monographs (EHC), IPCS Concise International Chemical Assessment Documents (CICADs));
- 3. Other National Organisations (e.g. USEPA, RIVM)

In deriving HCVs for non threshold substances, preference was given to the use of an Index Dose (ID) where these were available. Where ID were not available slope factors have been used and amended by multiplying by an appropriate level of excess lifetime cancer risk. SR2 states that, when using human data, the ID is based on estimates of the daily dose corresponding to an excess lifetime cancer risk of 1 in 100,000. This has been used, where required for slope factors in the absence of an ID.

In the absence of appropriate dermal or inhalation HCVs, extrapolated oral values have been adopted as described within SR2. Where available, the dermal absorption fractions presented within SR3 have been adopted. In their absence the default approach adopted within the CLEA model, as outlined within SR3, has been adopted (0.1 for all organic chemicals and zero for inorganic chemicals).

Where required, inhalation HCVs have been converted from reference concentrations quoted in mg/m^{-3} unit risk factors by assuming a 70kg adult typically inhales $20m^3$ of air per day.

Where available, the mean daily intakes (MDI) have been sourced from UK diet studies and the Food Standard Agency. In the absence of any UK sources, the IPCS EHC and CICADs have been reviewed to help determine potential background exposure. In accordance with SR2, if no data or information on background information are available, background exposure is considered to be negligible and MDI set to zero for all age groups. If qualitative information is available suggesting background exposure may significantly contribute to overall exposure the pragmatic default outlined within SR2, that land should be allowed to contribute at least half the tolerable daily intake (TDI), has been applied.

Toxicological Equivalents

For non threshold PAHs the index dose has been calculated from published⁽¹⁾ estimated relative potencies to benzo(a)pyrene, and calculated from the ID for benzo(a)pyrene detailed within the DEFRA/EA toxicity report.

Polychlorinated Biphenyls (PCBs) have been assessed according to the Toxicity Equivalency Factor (TEF) approach⁽²⁾ for dioxin-like PCBs (the PCBs considered to represent the greatest health risk). Each of the PCBs toxicity is related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,8,8)).

⁽¹⁾ Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. USEPA, July 1993

⁽²⁾ Environment Agency 'Contaminants In Soil: Updated collation of toxicological data and intake values for humans. Dioxins, furans and dioxin-like PCBs'. SC050021/TOX 12. September 2009.

TCDD), which is considered to be the most carcinogenic dioxin, using a multiplication factor (the TEF). The concentration of each PCB is multiplied by its respective TEF giving a 2,3,7,8-TCDD toxic equivalent (TEQ). The total TEQ for the mixture is compared with the GAC for 2,3,7,8-TCDD.

The toxicity assumptions presented within the TPH Criteria Working Group have been adopted in the derivation of the GAC for aliphatic and aromatic TPH fractions. The TPH fractions are therefore protective of threshold human health effects and indicator compounds are used to assess non-threshold health effects (in line with Environment Agency publication on assessing petroleum hydrocarbons). An attenuation factor of 10 has been adopted for petroleum hydrocarbons in accordance with the recommendations contained within SR3.

Physico-chemical Parameters

Physico-chemical properties have been compiled from a review of the scientific and technical literature. Where available, the physico-chemical properties have been adopted from the Environment Agency Report SR7 ⁽¹⁾. In their absence, parameters have been sourced from the references detailed within SR7, where available.

Many of the references present a range of values from numerous scientific studies, with the same studies being presented within each reference. Based upon the values presented within the studies and their own professional expertise, Mackay et al ⁽²⁾ provide recommended values for many parameters and have been adopted where available.

Where a range of values have been sourced, consideration has been given to the selection hierarchy detailed within SR7:

- 1. If all values the same, select this value;
- 2. Select Value from consistent range;
- 3. Central value from consistent range;
- 4. Newest value (if there is no consistent range or no single central value)

Where available, parameters have been sourced at 10° C, which is the assumed annual average temperature of UK soils (SR3) and required for the CLEA model.

Where chemical data was unavailable in the literature, or adjustments needed for temperature (i.e. literature source not at 10° C), property estimation methods and adjustment calculations detailed within SR7 have been used.

1.4 SOIL PROPERTIES

ERM GAC have been developed using a generic set of soil properties which are considered to represent a reasonable conservative scenario. SR3 states that although the sand soil type represents the most conservative choice for modelling diffusion and advection transport processes, it is not geographically widespread. Most common UK sandy soils are closer to a sandy loam and it is this default soil type that is used in the derivation of SGVs by the Environment Agency and has been adopted in the derivation of ERM GAC.

In deriving SGVs, the Environment Agency, have adopted a soil organic matter content of 6%. ERM do not consider this value to be sufficiently conservative for the production of GAC. Therefore, a SOM of 1% (or TOC 0.58%) has been adopted in the derivation of ERM GAC.

Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (SR7). Environment Agency, November 2008.

⁽²⁾ Handbook of Physical-Chemical Properties and Environmental fate for Organic Chemicals. 2nd edition. Mackay et al, 2006.

1.5 MODELLING APPROACH

In deriving human health GAC for soils, ERM have adopted the CLEA software version 1.06, which implements the modelling approach detailed within SR3 and is used by the Environment Agency to derive Soil Guideline Values.

The ERM soil vapour GAC (GAC_{SV}) have been back calculated from the indoor and outdoor vapour inhalation soil criteria derived using the CLEA software using the soil to soil vapour partioning approach detailed within Section 5 of SR3. The results have been directly compared to the soil gas media concentration provided within the CLEA outputs when running the model for vapour inhalation pathways only, to ensure parity.

The ERM GAC for groundwater derived vapours (GAC $_{\rm GW}$) have been calculated using the groundwater vapour transport algorithms developed by the ASTM (E1739), used by RISC V4.05 and outlined within Appendix E of the RISC user manual. Where applicable the standard CLEA receptor, soil and building properties have been utilised.

For acute exposure to free cyanide the conceptual exposure model assumes a one off ingestion of 2000mg of soil by a 1 to 2 year old female child using the algorithms presented by Beck et al 2006 $^{(1)}$ and SNIFFER 2000 $^{(2)}$.

1.6 ESTIMATING COMBINED EXPOSURE FROM ALL RELEVANT PATHWAYS

For some chemicals, intake and/or uptake via different routes (via the nose, mouth, or through the skin) may lead to different local effects or may affect different organs. People using a contaminated site may be exposed to the same chemical via all three routes of exposure. If the contaminant exhibits systemic toxicity (i.e. reaches the main blood circulation system unchanged following absorption), each route of exposure may contribute to an aggregate total systemic load that results in adverse systemic effects. The ERM GAC takes this possible effect into account by automatically adopting the methodology used by the CLEA software and the Environment Agency, and combining the reciprocal from each relevant exposure pathway. This helps ensure that the assessment criteria is set at a concentration where the total risk via all relevant routes of entry into the body is mathematically no greater than the risk due to exposure by any single route of entry. The only exception is where an Environment Agency Soil Guideline Value (SGV) report identifies that a single exposure route is more appropriate for an individual contaminant, in such cases the same exposure routes used by the Environment Agency in deriving the SGV have been adopted by ERM in deriving the GAC for the same contaminant.

Environment Agency report SR4, states that an important assumption used in the CLEA model is that of simple linear partitioning of a chemical in the soil between the sorbed, dissolved, and vapour phases. The theoretical upper boundaries to this behaviour are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. Environment Agency report SR3 presents equations for using these chemical properties to estimate the saturated soil concentrations where these limits are reached. These boundaries are important when considering vapour phase transport of chemicals into ambient and indoor air.

The CLEA software uses a traffic-light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous or vapour based saturation limit.

In instances where the combined assessment criteria of all relevant pathways outputted from the CLEA software is highlighted green or amber and the vapour pathway is not an important contributor, these have been adopted as ERM GAC.

⁽¹⁾ Human Health Risk Assessment of Cyanide in Water and Soil. Beck et al. *Published in Cyanide in water and Soil, Chemistry Risk and Management, Dzombak et al* 2006.

⁽²⁾ Framework for Deriving Numeric Targets to Minimise the Adverse Human Health Effects of Long-term Exposure to Contaminants in Soil. SR99(02)F. SNIFFER April 2000.

Where the combined assessment criteria exceeds the theoretical saturation limits (aqueous or vapour based) and the vapour pathway is an important contributor to exposure, the methodology detailed within the CLEA Software Handbook for such circumstances has been adopted:

- 1. Determining the relevant inhalation ADE/HCV ratio at the lower saturation limit;
- 2. Estimate relevant contribution required from other pathways by subtracting this value by 1 (since the contribution from the vapour pathway is capped at the saturation limit);
- 3. Determine the soil concentration at which the relevant combined HCV/ADE ratio is equal to the value calculated in (2) without the vapour inhalation pathways.

1.7 Assessing Mixtures

Knowledge about the toxicology of a chemical comes, in the main, from studies involving the exposure of relatively large doses to a single substance. In contrast, an individual may be exposed to many different chemicals every day, including priority soil contaminants. The possibility exists, therefore, that the mixture of chemicals to which any one individual may be exposed may have a greater cumulative effect on health than that predicted by toxicological risk assessment of individual chemicals. Environment Agency report SR2 states that 'where there is evidence for chemical interaction, this should be taken into account: when such evidence is not available, each chemical should be assumed to be acting independently. SR2 goes on to identify that interactions between chemicals are however unlikely at exposures below the HCVs.

Environment Agency Guidance does however identify two groups of similar substances where additive affects should be considered:

1.7.1 Dioxins Furans & Dioxin Like PCBs

The assessment of Dioxin like PCB's assumes the effect from exposure to any individual dioxin like PCB will potentially be additive to exposure to other dioxin like PCB's (as well as similarly acting dioxins/furans) and therefore when assessing risks to human health the 12 congeners should be considered as a mixture rather than isolated substances ⁽¹⁾. The assessment of the PCB mixture is undertaken by calculating the Hazard Quotient (HQ) for each individual congener (ratio of soil concentration and congener specific GAC) and summing the individual HQ to derive a Hazard Index (HI) for the mixture. Where the HI for the mixture is greater than 1 a potentially significant risk may arise and further investigation and or assessment is likely to be required.

1.7.2 Petroleum Hydrocarbons

When assessing the significance of petroleum hydrocarbon mixtures the assessment should consider both indicator compounds and petroleum fractions. Environment Agency report P5-080/TR3 $^{(2)}$ identifies 16 Petroleum Hydrocarbon fractions for use in UK human health risk assessments based on equivalent carbon numbers corresponding to the 13 fractions proposed by the TPHCWG $^{(3)}$ up to EC35 but with the addition of 3 further heavier hydrocarbon fractions (pending further review/evaluation). When assessing petroleum hydrocarbon fractions P5-080/TR3 also identifies the potential for additivity across fractions and that a Hazard Index approach should be adopted for fractions exhibiting similar toxicological properties and that further guidance would be published on this issue. The TPHCWG identified 6 toxicological fractions between C5 - C35 and pending the release of the further guidance ERM

⁽¹⁾ Environment Agency, October 2009. Soil Guideline values for dioxins, furans and dioxin like PCBs in soil. Science Report SC050021/Dioxins SGV.

 $⁽²⁾ Environment Agency, February 2005. \ The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. Science Report P5-080/TR3.$

⁽³⁾ Total Petroleum Hydrocarbon Criteria Working Group Series Volumes 1 to 5.

approach to Petroleum Hydrocarbon mixtures will be to treat the 13 TPH fractions as essentially 6 Petroleum Hydrocarbon mixtures based on the 6 toxicological fractions.

The assessment of each Petroleum Hydrocarbon mixture is undertaken by calculating the Hazard Quotient (HQ) for each individual fraction (ratio of soil concentration and fraction specific GAC) and summing the relevant individual HQ within each mixture to derive a Hazard Index (HI) for each mixture. Where the HI for the mixture is greater than 1 a potentially significant risk may arise and further investigation and or assessment is likely to be required.

1.8 UNCERTAINTY

As with any form of modelling of the interaction between humans and the wider environment, there is a substantial amount of uncertainty involved. This relates both to the way in which the interaction is modelled (the pathway algorithms) and the input parameters defining the substances, the pathways and the receptors. The CLEA model is deterministic, meaning that in any calculation a single value is assigned to each variable. Many of these values are assigned on the basis of average or conservative (the most health protective) measurements and by expert judgement.

Historically, in dealing with parameter uncertainty and variability in a deterministic model, it has been good practice to select values representative of a worst case exposure scenario. This has the assumed comfort of being more protective against an unforeseen situation or risks to sensitive individuals. However, the problem with this approach can be that such choices, however defensible individually, tend to be implausible collectively.

Over the recent years there has been an increasing desire on the part of authoritative bodies to move away from modelling a worst case individual to more realistic or reasonable exposure scenarios. This is the approach adopted by the CLEA model and takes into account not only the degree of conservatism from individual choices, but also the collective effect of these choices.

It should be noted that ERM's GACs are not a static set of values, but are reviewed on a regular basis and reissued as more guidance is made available by the Environment Agency, or when improved knowledge of toxicity is published.

ERM has over 140 offices across the following countries worldwide

New Zealand Argentina Australia Panama Belgium Peru Brazil Poland Canada Portugal China Puerto Rico Colombia Romania France Russia Germany Singapore South Africa Hong Kong Hungary Spain India Sweden Taiwan Indonesia Ireland Thailand

Italy The Netherlands
Japan United Arab Emirates
Kazakhstan United Kingdom
Korea United States
Malaysia Vietnam

Mexico

ERM's Oxford Office

Eaton House Wallbrook Court North Hinksey Lane Oxford OX2 0QS

T: 018653844800

www.erm.com

