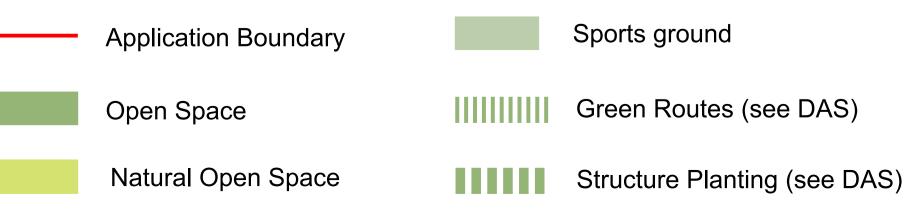
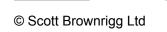


B. Development Proposals


© Scott Brownrigg Ltd

Surface Water Attenuation Feature

(precise number, location and dimension to be determined)



Green Infrastructure Parameter Plan

Upper Heyford

02 September 2010 14272 • 01 - DW - 411 - 029 C

C. Correspondence

Tarran, Sophie G

From: Thames West, Customer Contact [thwest@environment-agency.gov.uk]

Sent: 13 May 2010 14:41 **To:** Tarran, Sophie G

Subject: RE: WIR33071: Upper Heyford Airport Flood Risk Enquiry Letter

Attachments: 33071 flood map.pdf; 33071 receipt.pdf; 33071 watercourse map2.pdf; 33071

watercourse map1.pdf; UpperHeyford PS.xls; EA Standard Notice (Commercial).pdf

Dear Ms Tarran

WIR33071: Upper Heyford Airport Flood Risk Enquiry Letter

Thank you for your data request and payment.

Please now find attached:

Flood Zones Map – confirming that the site lies within flood zone 1, the area with a chance of flooding of less than 1 in 1000 in any year.

Watercourse maps – showing the location of secondary and tertiary watercourses on or near the site. Please note that the closest Main River is the River Cherwell, approximately 1 kilometre west of the site.

History of flooding: the above site is not within the Environment Agency's records of historic flood event from rivers, the sea or groundwater. However, please note that this does not necessarily mean that flooding has not occurred here in the past, as our records are not comprehensive. We would therefore advise that you make further enquiries locally with specific reference to flooding at this location.

Groundwater Information

This is based on a 1km search radius at OX25 5TD (NGR 451202, 225749). Our Groundwater team have included background and any additional information that may be useful:

Geology

The solid geology beneath the site is the Great Oolite group. This rock formation is classed as a Principal Aquifer. There are no drift deposits within the search radius.

• Protected Rights and Source Protection Zones

There are no groundwater abstractions (licensed or deregulated) or private water supplies within the 1km search radius. There are no Source Protection Zones within the area.

Groundwater Levels

Groundwater levels at the site are approximately 103.9mAOD - this is a rest water level associated with the drilling of BH SP52/041B which is approximately 700m east from the NGR reference given above. There is an EA closed groundwater monitoring point approximately 1.2km west of the site. I have attached the groundwater level information. Please note that the groundwater levels are only an indication of levels at the site. The elevation of the monitoring BH 10 metres lower than the site.

Groundwater Flooding

There are no historical flooding events within a 1km radius of the site. Approximately 3.8km west of the site we have a record of a cellar flooded in mid January 2001. Please note that we only hold data on groundwater flooding events from 2000 onwards. There may have been previous groundwater events prior to this date that we do not have records for. We hold groundwater emergence maps (GEM) that show where during exceptionally wet winters, groundwater levels may be close to or at surface. There are no areas of GEM within the search radius.

A VAT receipt and our standard notice for the supply of Environment Agency information are also attached for your reference.

I trust this now completes your enquiry, please don't hesitate to contact us again if we can be of any more assistance.

Regards Nicola

Nicola Cook

External Relations Officer Direct Dial: 01491 828 352

External Relations
Planning and Corporate Services
Environment Agency
Thames Region, West Area
Red Kite House, Howbery Park, Wallingford, OX10 8BD

Please be aware that the Environment Agency has updated the way it responds to requests for flood risk information, including Flood Risk/Consequence Assessments (FRA/FCA).

If you are conducting a Flood Risk/Consequence Assessments (FRA/FCA) please check the "New Flood Risk Standing Advice for England – PPS25 National Version 2.0" web pages for the FRA/FCA 'product' you require.

The FRA/FCA 'product' can then be ordered from the External Relations team by emailing us at thwest@environment-agency.gov.uk

From: Thames West, Customer Contact

Sent: 06 May 2010 15:43 **To:** 'Tarran, Sophie G'

Subject: WIR33071: Upper Heyford Airport Flood Risk Enquiry Letter

Dear Ms Tarran

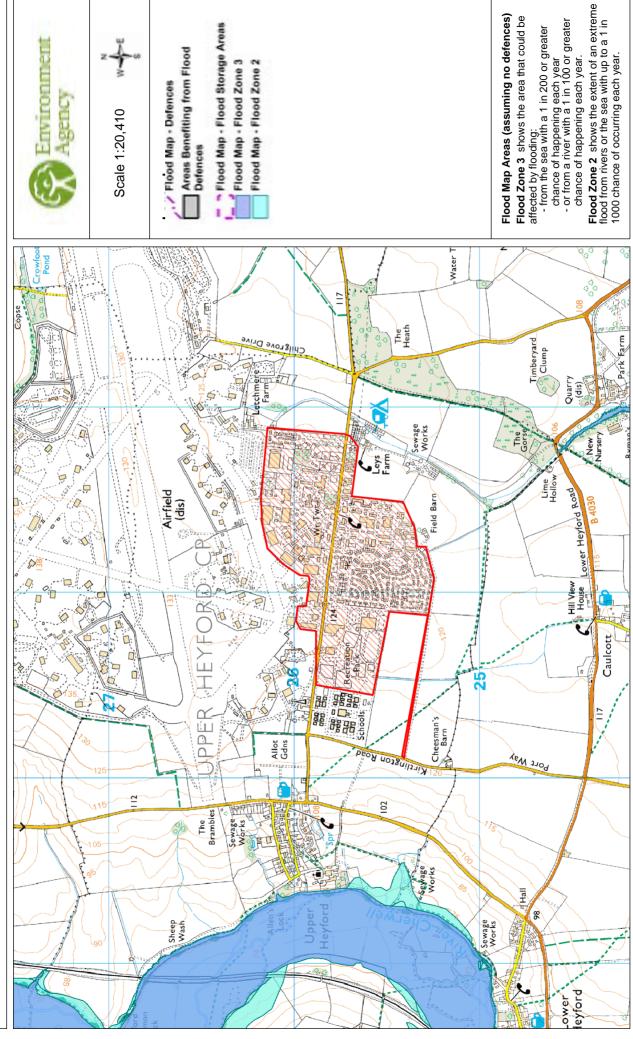
WIR33071: Upper Heyford Airport Flood Risk Enquiry Letter

Thank you for your enquiry (WIR33071). Before we can supply you with information, we require payment. Our charges were revised from 1 July 2009 and those requests including licensing your use of information are calculated as follows:

- i) the time spent by our staff in providing you with the information requested, current rates being £25.00 per hour. These charges are not subject to VAT.
- ii) a standard charge of £10 for the extra permission to use our information commercially. VAT is applicable to this charge. VAT has reverted to 17.5% from 1 January 2010.

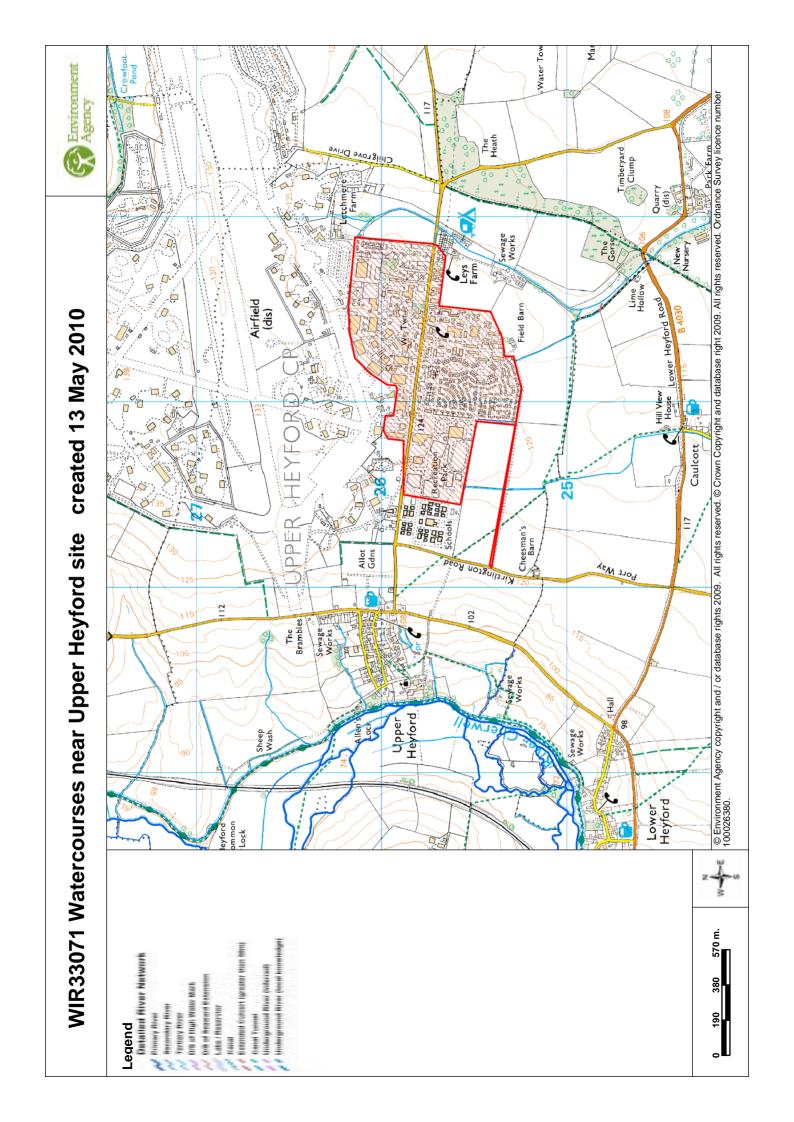
The information you have requested will cost £41.75 to supply. This charge has been determined as follows:-

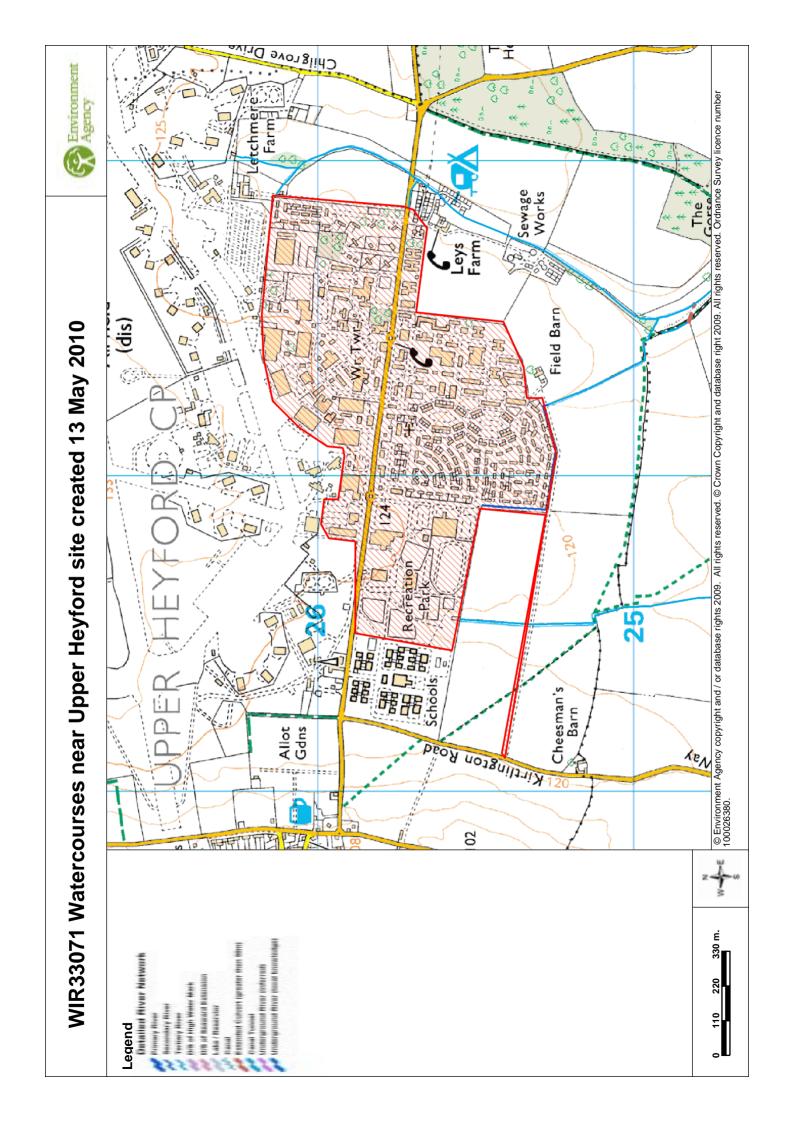
Hour(s) of staff time at £25.00 per hour	£25.00
Payment processing cost	£5.00
Commercial re-use charge	£10.00
VAT	£1.75
Total cost	£41.75


VAT Registration Number: GB 662 4901 34

If you wish to make payment over the phone please quote reference WIR33071. Please note that for security reasons we ask only the Cardholder call for telephone payment. Representatives calling on behalf of the Cardholder will be denied the option of telephone payment. Please call our External Relations Team on **01491 828352** for telephone payment.

However, if you wish to pay by cheque, the processing cost will be £25.00, making the total cost £61.75. Please make your cheque payable to the Environment Agency and send it to this office at the address below. We will process your request when we receive your payment.


Please let us know if you require a VAT receipt.


created 13 May 2010 WIR33071 Flood Map centred on Upper Heyford site

© Environment Agency copyright and / or database rights 2009. All rights reserved. © Crown Copyright and database right 2009. All rights reserved. Ordnance Survey licence number 100026380.

Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 08708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Ms Sophie Tarran **Our ref**: WA/2010/108040/01-L01

Waterman Transport & Development Ltd Your ref: 11234 WTD

Pickfords Wharf

Clink Street Date: 24 May 2010

London SE1 9DG

Dear Ms Tarran

PROPOSED RESIDENTIAL LED MIXED USE SCHEME. UPPER HEYFORD AIRPORT, UPPER HEYFORD, OX25 5TD. (CHERWELL).

Thank you for your email dated 05 May 2010 regarding the above site.

Your email includes:

- a pre-application enquiry form
- a letter dated 30 April 2010 from Waterman
- a plan showing the site boundary

We have read the letter dated 30 April 2010 regarding flood risk and have the following comments to make:

- We confirm that the entire site lies within Flood Zone 1, but a Flood Risk Assessment (FRA) will be required due to the size of the site. FRAs are required for sites greater than 1 hectare in size in accordance with Planning Policy Statement 25: Development and Flood Risk (PPS25).
- 2. There are no main rivers on the site. We do not have comprehensive records of ordinary watercourses (all watercourses not classified as main rivers). The Local Planning Authority are likely to have more detailed records of the locations of ordinary watercourses and culverted sections, but they are not necessarily recorded anywhere. The term watercourse includes all open, bridged, culverted or piped rivers, streams, ditches, drains, cuts, dykes, sluices and passages through which water flows. It is the responsibility of the applicant to identify all watercourses as part of the baseline assessment of the onsite drainage characteristics, in the PPS 25 compliant FRA.
- 3. As a minimum, it must be demonstrated in the FRA that existing surface water

Environment Agency

Red Kite House Howbery Park, Wallingford, Oxfordshire, OX10 8BD.

Customer services line: 08708 506 506

Email: enquiries@environment-agency.gov.uk

www.environment-agency.gov.uk

Cont/d..

discharge rates will not be exceeded across a range of storm events up to and including the 1 in 100 year storm event with an allowance for climate change. The FRA should include a calculation of existing runoff rates and as well as greenfield rates for the site. The proposed discharge rates should be as close to the greenfield rates as possible, to ensure that the development offers a significant reduction in flood risk, in accordance with the guidance of PPS 25. The suggested methods for calculating runoff from hardstanding and greenfield areas are acceptable. Any surface water drainage scheme should utilise sustainable drainage techniques, offering ecological, water quality and amenity benefits wherever possible, in accordance with the SUDS Management Train (Ciria C609) and the SUDS Manual (Ciria C697). To summarise, the surface water scheme should clearly show that:

- peak discharge rates from the site will be reduced as a result of the proposed development, across a range of storm events, up to and including the 1 in 100 year storm with a suitable allowance for climate change (the design storm event)
- discharge volumes from the site will not increase as a result of the proposed development, across a range of storm events, up to and including the design storm event
- the site will not flood from surface water up to and including the design storm event or any surface water flooding beyond the 1 in 30 year storm event, up to and including the design storm event can be safely contained on site;
- the likely flood flow routes and the impact of a storm that exceeds the capacity of the system has been considered.
- the future management and/or adoption of the system has been fully explored.

Any works that will impede the flows of an ordinary watercourse, such as culverting, requires the prior written approval of the local authority under the Public Health Act 1936, and the prior written consent of the Environment Agency under the terms of the Land Drainage Act 1991/Water resources Act1991. The Environment Agency seeks to avoid culverting, and its consent for such works will normally be withheld.

Please have regard to policy NRM4 (Sustainable flood risk management) of the South East Plan dated May 2009.

Yours sincerely

Ms Michelle Kidd Planning Liaison Officer

Direct dial 01491 828455
Direct fax 01491 834703
Direct e-mail michelle.kidd@environment-agency.gov.uk

End 2

MEETING NOTES

Project: Upper Heyford

Subject: Environment Agency Meeting

Date: 19 July 2010

Present: Michelle Kidd (MK), Environment Agency

Ian Norriss (IN), Environment Agency Gavin Angell (GA), Dorchester Holdings Bruce Calton (BC), Scott Brownrigg Brendan McCarthy (BM), Waterman Sophie Tarran (ST), Waterman

ITEM	MATTERS ARISING	ACTION
1.0	Introduction	
1.1	BM thanked everyone for attending and tabled the agenda for the	
	meeting. All parties were introduced.	
2.0	Masterplan and Planning Background	
2.1	GA stated that the previous scheme was consented in January 2010, and	
	that the new Masterplan built on the parameters of this scheme.	
2.2	BC described the development of the new Masterplan, noting the	
	sustainable approach which retained the existing housing stock, and the	
	requirement from the Council to retain the Parade Ground, some existing	
	buildings and the open space throughout the Site.	
2.3	BC explained that the retention of the existing housing, which is of low	
	density, means that the remainder of the Site needs to be developed more	
	densely to provide the number of dwellings consented by the previous	
	planning application. This has led to certain areas of the Site becoming	
	spatially constrained, with amenity space, protection of ecology and	
	drainage requirements all needing to be incorporated into the Masterplan.	
3.0	Flood Risk to the Site	
3.1	ST noted that the site was at a low risk of flooding from all sources. This	
	was due in part to the topography of the Site, being located on a plateau	
	and therefore above any watercourse. Furthermore, consultation with the	
	Council and the Environment Agency (EA) had not noted any historical	
	flooding in the vicinity as a direct result of the Site, and no on-site flooding	
	had been reported.	
3.2	Due to the low risk of flooding at the Site, ST noted that the primary focus	
	of the Flood Risk Assessment (FRA) would be the management of surface	
	water runoff resultant from the Site.	

3.3	IN recalled that in the previous assessment undertaken at the Site, it was noted that local residents had reported flooding which was potentially due to runoff from the Site. No knowledge of this incident had been reported to Waterman and ST requested a copy of this information.	
	Action: IN to circulate reports of historic flooding to BM and ST	Environment Agency
4.0	Surface Water Drainage Strategy	
4.1	Further to circulation of the indicative drainage strategy (16 th July) ST outlined the main aspects of the proposed strategy. This strategy would focus on source control methods of attenuation, restricting flows to the existing rate allowing for 30% climate change. The rate of discharge was calculated through the Modified Rational Method and IH124, which was agreed in previous correspondence with the EA.	
4.2	IN noted that although this was acceptable in principle, as it met the minimum requirements of PPS25, the restriction in discharge was less than that accepted in the previous application and he would like to see some degree of betterment over the existing situation.	
	Action: Waterman to investigate whether an increase in storage could be accommodated within the scheme. Waterman to take into consideration IN's reference to historic flooding.	Waterman
4.3	ST stated that the current scheme was precautionary and presumed no infiltration. IN agreed that infiltration would go towards betterment as the volume of surface water runoff would be decreased, not simply the peak discharge rate. IN confirmed that if infiltration measures were utilised, soakage tests would be required. If existing soakaways were located IN confirmed that indicative soakage rates obtained from these features could be utilised for planning purposes.	
4.4	IN confirmed that the SuDS techniques incorporated within the indicative drainage strategy were acceptable due to the existing urban nature of the Site. IN welcomed the inclusion of ponds as this provides betterment in terms of ecology over the existing situation.	
4.5	MK asked whether water butts were going to be considered for inclusion within the scheme. BC and GA confirmed that these would be incorporated within the new housing stock to satisfy Code for Sustainable Homes, and could potentially be retrofitted on the existing houses. BC stated that rainwater harvesting would also be considered for the school; however GA confirmed that this would be a detail for Oxfordshire County Council to agree at the design stage, as the developer would not have control over this area of the development. IN clarified that the volumes collected through rainwater harvesting could not be quantified as additional attenuation storage.	

4.6	MK asked whether we would be submitting the FRA and drainage strategy to the EA prior to planning submission. BM stated that he hoped to submit these documents, but that if timescales proved that this was unachievable, Waterman would re-consult regarding the surface water drainage strategy to agree this aspect of the proposals.	
4.7	BM queried whether the EA would accept additional attenuation in the balancing pond downstream of the Site if its capacity was increased. IN stated that the capacity of the pond to deal with the existing flows would need to be confirmed before he would consider this, but that this feature would provide water quality benefits and could be considered as an element of the SuDS treatment train for the drainage system.	
4.8	BM questioned how best to produce the drainage schematic for outline planning purposes, while ensuring that information was sufficient for the EA to accept the development proposals. IN and BM agreed that it would be acceptable to show the proposed discharge rates and attenuation volumes for each catchment across the Site included within the Parameter Plans. IN stated that he would like to visually see the placement of above ground pond features within the submitted plans, but that there could be flexibility regarding the placement of below ground attenuation and that it would be acceptable to show broad areas where permeable paving and underground tanks were proposed.	

Outcome

1. Further investigations to be undertaken of the potential to increase the volume of storage, on receipt of further information from the EA.

Tarran, Sophie G

From: Tarran, Sophie G
Sent: 04 August 2010 14:47

To: 'lan.Norriss@environment-agency.gov.uk'

Subject: FW: C11234 100802 STIN surface water attenuation proposals

Attachments: Figure 1.2 Site Boundary Plan.pdf; Indicative Surface Water Strategy 2.pdf

Good afternoon lan,

Further to our verbal conversation, please could you confirm that you are happy with the intended surface water strategy as it stands, on submission of the additional information as set out below.

I will ensure that these proposals are acceptable to the team within the additional meeting scheduled for Tuesday, and leading on from this hope to issue a copy of the FRA after receiving sign off from the client prior to planning submission if timescales allow.

If you have any questions in the interim please feel free to get in contact.

Kind Regards,

Sophie

From: Tarran, Sophie G Sent: 02 August 2010 17:44

To: 'lan.Norriss@environment-agency.gov.uk'

Subject: C11234 100802 STIN surface water attenuation proposals

Good afternoon lan,

Many thanks for sending through the additional information. I have had chance this afternoon to assess this and taken new information into consideration while reassessing the proposed surface water strategy.

Flooding in Caulcott associated with Gallos Brook, Letter from James Macnamara

Regarding this location, please note that the Site boundary is such (as seen in attached Figure 1.2) that the proposed development will not drain through this section of the watercourse. Therefore, the development would not affect surface water runoff in this location and there is no scope to provide attenuation in relation to this.

Anecdotal evidence reported by Environment Agency staff member

This report of flooding is unsubstantiated. However, to provide a level of betterment it is proposed to limit the rate of discharge over the existing situation within this stretch of watercourse and provide a greater extent of attenuation where appropriate.

Surface water drainage proposal

The catchment areas draining into this section of watercourse are namely Areas 3 and 4. It is proposed to limit surface water entering this section of watercourse (i.e. from Catchments 3 and 4) by an additional 10% over the existing situation, while accounting for the affects of climate change.

Area 3 (delineated in black) is a constrained central area of the Site which has many functions to perform. It would therefore not be appropriate to provide additional storage in this location. As there is no scope within Area 3 it is proposed to offset the allowable rate of discharge within Area 4. This would require discharge from Area 4 to be

restricted to 82 l/s and necessitate an additional storage volume of approximately 166m3 (please see attached sketch).

As discussed within our meeting the Site is greatly constrained with regard to space, and available above ground locations have been maximised where possible, taking into consideration all other aspects required of the scheme. It is therefore proposed to accommodate this additional volume within a sub-surface attenuation tank, located to the south of proposed pond 4a. This will ensure that the required area of play can still be incorporated at ground level.

These measures would ensure that discharge in the section of watercourse flowing past the caravan site is restricted and would aid in alleviating any issues as suggested by anecdotal evidence.

If you would like to discuss this matter further please do not hesitate to get in contact. As previously mentioned I have a team meeting tomorrow afternoon, and if we could reach agreement of the intended strategy before this time it would be greatly appreciated.

Kind Regards,

Sophie

From: Norriss, Ian [mailto:Ian.Norriss@environment-agency.gov.uk]

Sent: 02 August 2010 14:30

To: Tarran, Sophie G

Subject: RE: C11234 100802 STIN upper heyford surface water attenuation

Hi Sophie

I've attached the letter from James Macnamara, District Councillor of Astons and Heyfords Ward, dated 19th August 2008. I draw your attention to the bottom of the fifth page for his comments on flooding in Caulcott.

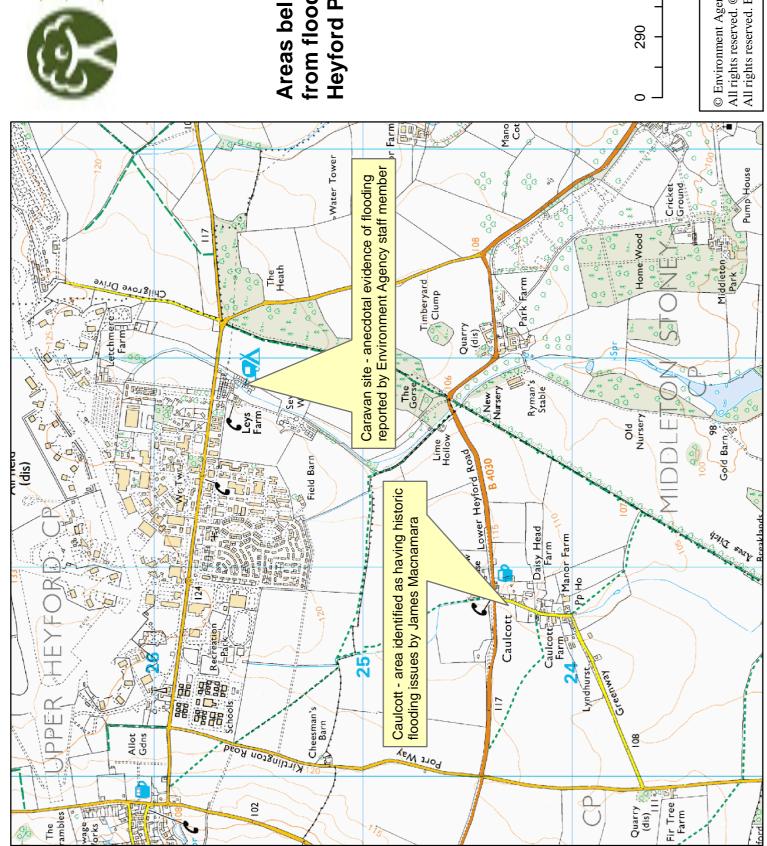
I have also attached a plan which identifies Caulcott and the caravan park at which my colleague has suggested there has been historic flooding.

The Heyford Hill site includes large areas of impermeable surfaces and is upstream of both Caulcott and the caravan park, on different tributaries of the Gallos Brook. With the anecdotal historic flooding in mind, I think it is reasonable to expect a reduction in surface water discharge rates from the baseline.

I look forward to receiving further details of the scheme. Any questions please don't hesitate to get in contact.

Kind Regards

Ian Norriss


Development and Flood Risk Engineer

Environment Agency

Internal tel: 7 25 8309

External tel: 01491 828309

Please be aware that the Environment Agency is updating the way it responds to requests for flood risk information, including Flood Risk/Consequence Assessments (FRA/FCA), from 3^{rd August 2009.}

Areas believed to have suffered from flooding downstream of Heyford Park

© Environment Agency copyright and / or database rights 2010. All rights reserved. © Crown Copyright and database right. All rights reserved. Environment Agency, 100026380, 2010.

,160 Meters

northwestern group of HAS's (3052-5) should be enacted as these both overdominate the houses at Aston View (in Somerton parish) and, if used for employment, could damage their amenity through noise and industrial activity. Given the total numbers of HAS's and EH's concurrence with the RCPB, preserving this small and unimportant group has no conservation value.

In general, it would be good to see minor structures which do not contribute to the perceived historic value of the Base removed. A particular (though invisible) concern is with the capacity for further pollution from the POL system, if not removed.

Employment uses on the flying field (mainly in the HAS's) need to respect EH's intentions to preserve the Cold War ambience, since this is the sole justification for preserving these intrusive structures. It seems completely illogical to preserve them to memorialise the Cold War and then turn them into a haphazard industrial estate which looks nothing like a Cold War air base. I cannot think of any grounds on which industrial development would have been permitted on this site if the air base had not been here, so employment uses should only be allowed if they do not impinge at all on this primary purpose.

This implies tight restrictions on vehicle movements and parking, external storage, lighting, signage, external decoration and security measures. Benign uses which seem particularly appropriate are data storage and library stacks, which can be installed and dismantled without touching the HAS's, inside or out, and fireworks storage in the Bomb Stores. Since I carry no torch for the Cold War heritage cause, I would be happy to see the use of the QRA, where the retention of the fence is important to EH, for secure storage.

Employment uses in the technical area: a hotel and conference facility seem inappropriate to the size of settlement and will generate additional traffic. Given the existence of such facilities within a narrow radius at Hopcrofts Holt, Middle Aston, Middleton Stoney and Weston on the Green, this may be damaging to existing local employment. Planning permission already exists for such a facility at a sustainable location on the south edge of Bicester.

Employment numbers should be limited to those sustainable from the agreed housing totals, in the interests of sustainability and the amenity of surrounding villages, and not derived from maximising usage of existing buildings. Population should determine employment and not vice versa, in accordance with the RCPB methodology. A permanent cap on numbers would also serve to limit unplanned future growth without completely removing flexibility between buildings and use classes.

Water, finally, raises two issues:

 Supply: prior to the last two wet summers, surrounding villages have experienced issues with water supply and need assurance that the additional demands of both residential and business uses have been taken care of before they are occupied.

Run-off: the Gallos Brook through Caulcott has caused flooding at the lower end of the village. Residents need assurance that run-off from the development will not exacerbate this.

Tarran, Sophie G

From: Norriss, lan [lan.Norriss@environment-agency.gov.uk]

Sent: 04 October 2010 13:32
To: Tarran, Sophie G

Subject: RE: C11234 100921 STIN confirmation prior to submission

Follow Up Flag: Follow up Flag Status: Flagged

Hi Sophie

Sorry for the delay in my response. I have been away.

All formal site specific comments from me should really go out through our planning liaison team to ensure constitency.

I can say that as a good practice measure we would like to see attenuation devices retrofitted in areas of the development site to only be refurbished (to achieve a betterment), but we will not require this on this development site.

Kind Regards

Ian Norriss

Development and Flood Risk Engineer

Environment Agency

Internal tel: 7 25 8309

External tel: 01491 828309

From: Tarran, Sophie G [mailto:s.g.tarran@waterman-group.co.uk]

Sent: 21 September 2010 16:59

To: Norriss, Ian

Subject: C11234 100921 STIN confirmation prior to submission

Click here to report this email as spam.

Good afternoon Ian.

The FRA is being issued to the client for sign off before being submitted for planning. To tie up loose ends I wanted to include our verbal agreement that the drainage strategy only needs to attenuate flows from developed areas of the Site.

As previously agreed, areas which are only intended to be refurbished (i.e. no changes in hard/soft landscaping, facade alterations such as new windows and repainting) would not need to be attenuated as the infrastructure would remain as existing.

If you could respond confirming this in writing it would be greatly appreciated.

Many thanks.

Kind Regards,

Sophie

Sophie TarranWaterman Transport & Development Ltd

Pickfords Wharf Clink Street London SE1 9DG t +44 20 7928 7888 f +44 20 7902 0992 www.watermangroup.com

Please consider the environment before printing this e-mail. Thank you

The contents of this e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom it is addressed. Any views stated herein do not necessarily represent the view of the company and are those of the individual sender, except where it specifically states them to be the views of the Company.

No confidentiality or privilege is waived or lost by any mis-transmission. If you have received this e-mail in error please delete it and all copies and e-mail a notification to the sender. Any dissemination, distribution or copying of this e-mail is strictly prohibited and may constitute a breach of confidence.

All reasonable precautions have been taken to see that no viruses are present in this e-mail. Waterman Group cannot accept liability for loss, disruption or damage however caused, arising from the use of this e-mail or attachments and recommend that you subject these to virus checking procedures prior to use.

E-mail messages may be monitored and by replying to this message the recipient gives their consent to such monitoring.

c 2010 Waterman Group plc

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else.

We have checked this email and its attachments for viruses. But you should still check any attachment before opening it.

We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes.

If we have sent you information and you wish to use it please read our terms and conditions which you can get by calling us on 08708 506 506. Find out more about the Environment Agency at www.environment-agency.gov.uk

D. Surface Water Management Calculations

Company: WTDL Office: London
Sheet No: 1 of 4 Project No: C11234

By S. Tarran Date 20.09.10 Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 1

Calculations Title Surface Water Management - Summary Sheet

water	disch								cordance	e wit	h PPS	S25 re	quire	mer	nts, i	.e. su	rface	<u> </u>	
		arge r	estrict	ed to	o the	ovicti									,				
Exist						CVIOL	ng ra	te pl	us 30%	clma	ite ch	ange.							
Exist	•																		
	ing si	urface	wate	r dis	cha	rge re	gime	:											
	Ĭ				a (h				tion met	hod		Dis	charg	ae R	ate			1	
Н	lard la	ndsca	ped		6.34	-			ford (Pa					5.3				_	
		ndscap	•		4.23				l (Page	_	,			5.3				+	+-+
	ort iai	laccap			0		101		i (i ago						., 0			-	+ +
N	lavimi	ım əlle	owable	die.	char	ne rate	o for 1	l in '	100 yeai	etor	m –		760	0.6	I/e			+	+
IV	Ιαλίπτι	uiii aii	Jwabie	uis	Cilai	ge rait	5 101		l oo yeal	3101			70	0.0	1/3			_	+
																		+	+
D					.														\vdash
Prop	osea	Surrac	e wa	er a	ISCI	narge ı	egiii	ie:										_	
1)	l !	الم	la r -	1				0.04	la c				2.4	h =			+	+
		ed har							6.34				ъ.	34	na			+	+
		ed sof					/*		4.23					00				+	+
C	ontrib	uting s	soft la	ndsc	apın	g (10%	6)*		0.423	ha			0.4	23	na			4	\vdash
															_			_	\vdash
						scharg							6.7	63	ha			_	$\perp \perp \downarrow$
(ł	nard la	andsca	ping -	- cor	ntrib	uting s	oft la	ndsc	aping)										
	.o oqo					landsc	арg												
Intial	atten	uation	n estii	nate	<u> </u>													+	
-						ume of	f surf	ace v	water at	enu	ation	has he	en III	nde	rtake	n us	ina		
									pplication								_	∍ —	
		ed on F										,							
																		+	+-+
т	he pro	limina	arv oct	imat	Δ Of	curfac	A Wat	or o	ttenuatio	n ie			16	49	m ³			+	++
						discha				760			.0	73	111			+	++
		ard la					ig e oi			763								+	+
	Αſ	iaiù iài	iusca	pea	area	OI.			0.	100	ııa							+	+
																		+	+
																		\bot	+
																		_	\sqcup
												1							

Company: WTDL Office:

 Sheet No:
 2 of 4
 Project No:
 C11234

 By
 S. Tarran
 Date 20.09.10

London

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 1

Calculations Title Surface Water Management - Modified Rational Method

LOCATION										C	ALC	UL	ATI	ONS	3									(OPT	ON	s
	Cal	cula	tions	s bas	sed c	n:	Desi	gn an	d A	naly	/sis (of ι	urba	ın st	orm	dra	inag	je. T	he V	Valli	ngfo	ord					
	Pro	ced	ure,	Volu	me 1	1 Pi	rincip	les n	eth	nods	and	d pr	racti	ice.													
	Use	er In	put	Data	1																						
	Exi	sitin	g ha	rd la	ndsc	ape	ed ar	ea												6	ha						
	SA	AR (Fror	n FE	H/\	/Vin	des)													691							
	M5	_60	(Fro	m W	inde	s)														20							
	Rat	io R	(Fr	om W	/inde	es)													0.	405							
	PIN	1P (9	% im	perv	ious)													100	.0%							
	Soi	ΙТур	ре																().40							
	Ver	y Lo	w R	unof	f (we	ell d	raine	d sar	ndy,	, loa	my o	or e	eartl	hy p	eat s	soils	s)		().15							
	Lov	v Ru	noff	(Ver	у ре	rme	eable	soils	(e.	.g. g	rave	el, s	sanc	(k					C	0.30							
	Мо	dera	te (\	√ery '	fine	sar	ids, s	ilts a	nd s	sedi	men	ıtar	y cl	ays)).40							L
	Hig	h Rı	unof	f (Cla	ayey	or l	loam	y soil:	s)										C).45							
	Ver	y Hi	gh F	Runof	ff (So	oils	of th	e we	up	lanc	ds)								C).50							
Fig. 9.7	UC	WI (Fror	n Fig	ure	9.7	of W	'alling	for	d M	etho	d)								65							
Fig 6.3a/b	Z1	(Fro	m Fi	igure	6.3	a or	6.3b)											1	.00							L
Tab 6.2/6.3	Z2	(Fro	m Ta	able	6.2 8	& Т	able	6.3)											2	2.02							
Eqn. 13	<u> </u>		ak di					Cv Cl	R i ∕																		
	Wh	ere:		Qp (Pea	k D	ischa	arge)		į	= ra	infa	all ir	nten	sity			A =	Tot	al A	rea						
		Cal						ısity (
Eqn 6.4			MT-				•	5-60n	nin))																	
					M5_6						<u>7</u> 1 1	.00)			Z2	2.0	2									
			Thu	ıs M1	100_	60	is:	40.	4 m	nm																	
Eqn 7.20	С٧	= PF																						<u> </u>			
Eqn 7.3								.0 SC																<u> </u>			L
			PIM					cato						per\	ious	s)		0.00									L
Page 52								not b				40	%					10.0							<u> </u>		
								MP to									10	0.00	%					<u> </u>	<u> </u>		
				Soil:		0.4	40		L	JCW	/I:	6	5												<u> </u>		
		PR																	7.27					<u> </u>	<u> </u>		
	-	ıs C																().77					<u> </u>	<u> </u>		
Sec 7.10	CR	(Re	com	men	ded	for	simu	lation	an	d de	esigr	n)							1.3					$oxed{oxed}$	\perp		
																								<u> </u>	<u> </u>		
	Qр	for :	1 in	100 y	/ear	60	minu	ıte dı	ırat	tion	=				71	5.3	l/s	or	11	2.8	l/s/ł	na		<u> </u>	<u> </u>		

 WTDL London Company: Office: 3 of 4 C11234 Sheet No: Project No: S. Tarran 20.09.10 Ву Date S.Brown 20.09.10 Checked: Date

Project Title Upper Heyford, Catchment Area 1

Calculations Title Surface Water Management - IoH 124

LOCATION									(CAL	CUL	OITA	NS								OI	PTION	IS
	the rund are An	Win off h sho area ch th	ides as b wn l	Mico been belov 50ha	rodi cal w; a ha	raina cula s be	rate of age vers ted usin en used od can	ion in t	W.1: e Iol	2.4 S H 12 calcu	Source 4 Me	e Co thod ns as	ontrol nology,	nodu the the	ule has input a	s beer and o est ca	n util utpu atchn	sed. data	Rur a for area	al which			
			H124		Peak	Flow	, ICP SUDS	Sand	ADAS	345 (alcula	tor					E		XI				
			Hago De Hij		R A S	nea (ha) AAR (m	eriod (Yearn) m) Map	50.0 50.0 691 0.40	000		Urban	Urbani Regio	-	000	QBAR)		AR rural 167.6 R urban 167.6						
					R	eturn l	Penod Flood	_															
			IH 12	14		- 1	Region		QB/ (I/s			Oyrs)	Q (1 y (l/s)		Q (2 yr (l/s)		Q (5 yr (Us)	5) ^					
		1	CP SU	DS		egion s egion é	i/Region 7			167.6 167.6		596.5 534.5		45.8 142.4		49.7 47.6		16. <u> </u>					
			ADAS:	100		gion 8 aion 9				167.6 167.6		405.5 365.3		130.7		48.1 55.6		06. 02. ≚					
			-		(800	-								ок	C	ancel	Н	elp	Ī				
								Ente	r Urbar	n betwe	en 0.00	0 and 0	750						4				
_																							
		Qba	ar (1	in 2	.33	3)	167.6	I/s/5	 50ha] 3	3.4	4 I/	s/ha										
															1 1								

Company: WTDL Office: London
Sheet No: 4 of 4 Project No: C11234

By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 1

Calculations Title Preliminary surface water attenuation volume.

LOCATION	CALCULATIONS	OPTIONS
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version W.12.4, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;	
nput:	/ Quick Storage Estimate	
	Variables	
	FSR Rainfall Cv (Summer) 0.750	
	Return Period (years) 100 Cv (Winter) 0.840	
	Impermeable Area (ha) 6,763	
	Variables Region England and Wales Maximum Allowable Discharge 760.0	
	Results Map M5-60 (wm) 20,000	
	Design Ratio R 0.405 Infiltration Coefficient (m/hr) 0.00000	
	Overview 2D Safety Factor 2.0	
	Overview 3D Climate Change (%) 30	
	Vt.	
	Analyse OK Cancel Help	
	Enter Climate Change between -100 and 600	
Output:		
Output:	/ Quick Storage Estimate	
Output:	Quick Storage Estimate Results Results	
Output:	/ Quick Storage Estimate	
Output:	Quick Storage Estimate Results Global Variables require approximate storage	
Output:	Quick Storage Estimate Results Global Variables require approximate storage of between 1142 m² and 2156 m².	
Output:	Results Global Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes.	
Output:	Results Global Variables require approximate storage of between 1142 m² and 2156 m³. These values are estimates only and should not be used for design purposes.	
Output:	Results Clobal Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes. Variables Results	
Output:	Results Global Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D	
Output:	Results Global Variables require approximate storage of between 1142 m² and 2156 m³. These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D	
Output:	Quick Storage Estimate Results	
Output:	Results Global Variables require approximate storage of between 1142 m² and 2156 m³. These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D	
Output:	Quick Storage Estimate Results Global Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D Vt. Analyse OK Cancel Help	
Dutput:	Results Global Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D Vs. Analyse OK Cancel Help Enter Climate Change between -100 and 600	
Dutput:	Results Global Variables require approximate storage of between 1142 m² and 2156 m² These values are estimates only and should not be used for design purposes. Variables Results Design Overview 3D Vi Enter Climate Change between -100 and 600 As Windes Quick Storage Estimate provides a range of attenuation volumes it is considered	
Dutput:	Results Global Variables require approximate storage of between 1142 m² and 2156 m². These values are estimates only and should not be used for design purposes. Variables Results Design Overview 3D VI Analyse OK Cancel Help Enter Climate Change between -100 and 600 As Windes Quick Storage Estimate provides a range of attenuation volumes it is considered that an average value of the range is suitable for preliminary design sizing.	
Dutput:	Results Global Variables require approximate storage of between 1142 m² and 2156 m² These values are estimates only and should not be used for design purposes. Variables Results Design Overview 3D Vi Enter Climate Change between -100 and 600 As Windes Quick Storage Estimate provides a range of attenuation volumes it is considered	

 WTDL Company:

London Office:

Sheet No: Ву

1 of 4 S. Tarran

C11234 Project No: 20.09.10 Date

S.Brown 20.09.10 Checked: Date

Project Title Upper Heyford, Catchment Area 2

Calculations Title **Surface Water Management - Summary Sheet**

LOCATION										C	ALC	CUL	ATI	ONS	3									OPT	ION:	s
																	S25 re	quiren	ner	ıts, i.	e. su	rfac	е			
	wat	er d	isch	arge	res	trict	ed to	o the	e exist	ing	rate	e plu	us 3	30%	clma	e ch	ange.									
	Exi	stin	g sı	ırfac	ce w	ate	r dis	cha	rge re	egiı	me:															
							Are	a (h	a)	(Calc	ulat	tion	met	hod		Disc	charge	R	ate						
		Har	d la	ndso	cape	ed		9.11		٧	Nall	ingf	ford	(Pa	ge 2)			1027.	8	/s						
		Sof	t lan	ndsc	ape	d		3.91		I	οΗ	124	(Pa	age :	3)			41.	8	/s						
		Max	ximu	ım a	llow	able	disc	char	ge rat	e fo	or 1	in 1	00	year	storr	n =		1069.	.6 I	/s						
	Pro	pos	ed :	surf	ace	wat	er d	iscl	narge	reg	gime	e (6	0/4	0 ins	stead	of 7	'0/30):									
		Pro	pos	ed h	ard	land	sca	ped	area				7	7.81	ha			7.8	1 H	na						
		Pro	pos	ed s	oft la	ands	scap	ed a	area				5	5.21	ha											
		Cor	ntrib	utino	g so	ft la	ndsc	apir	ıg (10	%)*			0.	521	ha			0.52	1 I	na						
		Tot	al A	rea o	cont	ribu	ting	to di	schar	ge :	=							8.33	1	na						
		(ha	rd la	nds	capi	ng +	- cor	ntrib	uting s	oft	lan	dsc	apir	ng)												
																		,								
		* =	Турі	ical (cont	ribu	ting	disc	harge	fro	m s	oft l	and	Isca	ping i	s ap	proxim	ately '	10%	6 of						
		the	equ	ivale	ent a	area	of h	ard	lands	сар	ing.				_											
	Inti	al a	tten	uati	on e	estir	nate)																		
		An	initia	al es	tima	ate o	of the	e vol	ume c	of si	urfa	ce v	vate	er at	tenua	tion	has be	en un	de	rtake	en. us	ina				-
																	mary o						е			-
		pro	vide	d on	Pa	ge 4	١.										-									
		The	pre	elimii	narv	est	imat	e of	surfac	ce v	vate	er at	ten	uatio	n is :			189	3 1	n ³						
									discha						069 I											
							ped								331 h											
																			\dagger							
	1																									\vdash

Company: WTDL Office: London
Sheet No: 2 of 4 Project No: C11234

By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 2

Calculations Title Surface Water Management - Modified Rational Method

LOCATION										CAL	CUL	_ATI	ONS	3									0	PTIC	DNS
								gn and						orm	dra	inag	e. T	he V	Vall	ngfo	ord				
	Pro	ced	ure,	Vol	ume	1 P	rincip	les m	etho	ds ar	nd p	ract	ice.												
	Use	er In	put	Dat	a																				
	-				_	scap	ed ar	ea											9	ha					
			•				ides)												691						
	M5	60	(Fro	m V	Vind	les)	ĺ												20						
			•			des)												0.	405						
	PIN	1P (9	% im	nper	viou	s)												100	.0%						
	Soi	l Typ	ре			ĺ												(0.40						
				uno	ff (w	ell c	Iraine	d san	dy, I	oamy	or /	eart	hy p	eat s	soils	5)		().15						
		•						soils										C	0.30						
								silts ar										C).40						
								y soils					. ,					C).45						
	Ŭ			_ `		•		e wet	,	inds)								C	0.50						
					Ì																				
Fig. 9.7	UC	WI (Fror	m Fi	gure	9.7	of W	/alling	ford	Meth	nod)								65						
Fig 6.3a/b	Z1	(Fro	m F	igur	e 6.3	3a o	r 6.3b	p)										1	.00						
Tab 6.2/6.3		- "					able											2	2.02						
Eqn. 13	Qр	(pea	ak d	isch	arge	e) = 2	2.78	Cv CR	liΑ																
	Wh	ere:		Qр	(Pe	ak D	ischa	arge)		i = 1	raint	fall in	nten	sity			A =	Tot	al A	rea					
														-											
		Cal	cula	ting	Rai	nfall	Inter	nsity (i)																
Eqn 6.4			MT	-D =	Z1 >	x Z2	x (M:	5-60m	in)																
					M5_	_60	20			Z1	1.0	0			Z2	2.0	2								
			Thu	ıs M	1100	_60	is:	40.4	1 mr	n															
Eqn 7.20	Cv	= PF	R/10	00																					
Eqn 7.3		PR	= (0	0.82	9 PII	MP)	+ (25	.0 SO	IL) -	+ (0.0	78	UCV	VI) -	20.7	7										
								f catch								10	0.0	%							
Page 52				1				not be								4	10.0	%							
				Thu	ıs va	alue	of PI	MP to	be ı	used						10	0.0	%							
				Soi	l:	0.	40		UC	:WI	6	35													
		PR	=														77	7.27							
	Thu	ıs C	v =														().77							
Sec 7.10	CR	(Re	com	me	nded	d for	simu	lation	and	desi	gn)							1.3							
	Qр	for :	1 in	100	yea	r 60	minu	ıte du	ratio	on =			1	,027	7.8	l/s	or	11	2.8	l/s/l	na				

 Company:
 WTDL
 Office:
 London

 Sheet No:
 3 of 4
 Project No:
 C11234

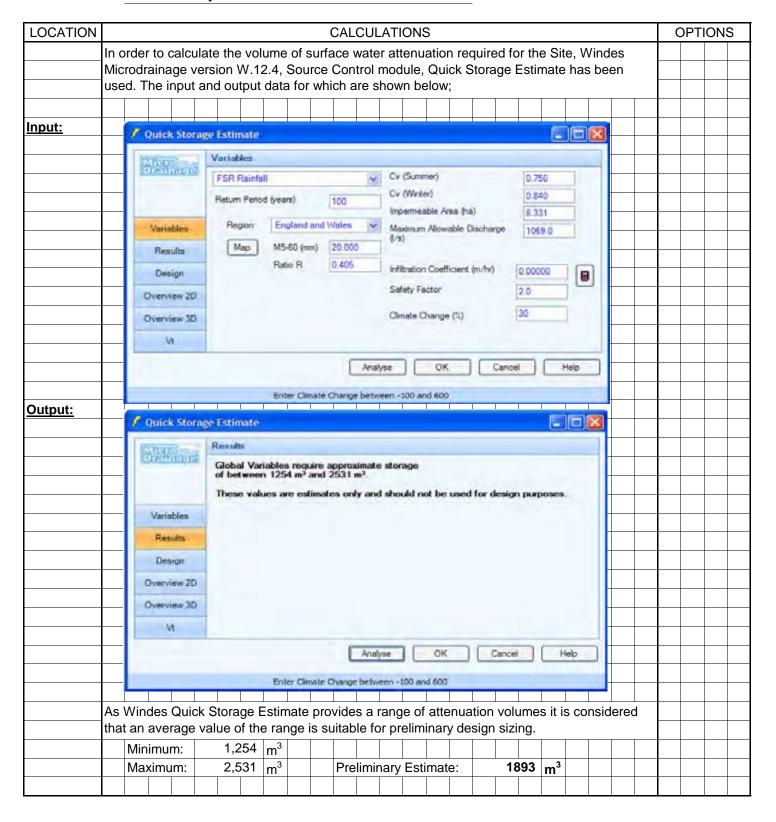
 By
 S. Tarran
 Date
 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 2

Calculations Title Surface Water Management - IoH 124

LOCATION									(CALC	CULA	TIO	NS								OPTI	ONS	
	the value of the same of the s	Win off h show area ch th	des as b wn b	Mic been belov 50ha	rodi cal w; a ha	raina Icula Is be	rate of age vers ted usir en used od can	ion \ ig the	W.12 e Iol he c	2.4 S H 12	Sourc 4 Me latior	e Co thod	ntrol mology,	nodu the i the	ile has input a	s bee and o	n util utpu atchr	lised t dat nent	I. Ru ta fo	ural r whic a			
																							_
																							_
		_	1124		Peak	Flow	, ICP SUDS	and.	ADAS	345 0	alcula	tor					E		×				
			lugo gran	inis.	R A S	1 124 Interest (m) AAR (m) oil irowth C	eriod (Yearn) m) Map	50.0 50.0 691 0.40	00		Urban	Regio	_	000	2BAR)		AR rural 167.6 R urban 167.6						
					R	eturn l	Penad Flood	_															_
			IH 12	4			Region		QBA (I/s		Q (10 (I)		Q (1 yr (l/s)		Q (2 yr (l/s)		Q (5 y (Us)						_
		10	CP SU	DS		egion : egion i	3/Region 7	+		167.6 167.6		596.5 534.5		45.8 42.4		49.7 47.6		216. <u> </u>	1				
		Α.	DAS:		-	egion 8 egion 9				167.6 167.6		405.5 365.3		30.7 47.5		48.1 55.6		206. 202. ≚	6		+		_
					7.85	2								ок	Ca	incel		telp	7				_
								Ente	Urbar	betwe	en 0.00	and 0.	750						4				_
																							_
																							_
																							_
		Oho	or (1	in 2	22	2)	167.6	1/0/5	Obo												 \perp		_
		QD6	ו) וג	111 2	აა	ა)	107.0	I/S/5	20115	l	3	3.4 1/5	s/ha										


Company: WTDL Office: London
Sheet No: 4 of 4 Project No: C11234

By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 2

Calculations Title Preliminary surface water attenuation volume.

Company: WTDL Office: London

 Sheet No:
 1 of 4
 Project No:
 C11234

 By
 S. Tarran
 Date
 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 3

Calculations Title Surface Water Management - Summary Sheet

LOCATION	Π									(CAL	CUL	ATI	ONS	<u></u>									10	PTIO	NS
	Sur	face	wa	ter a	at the	e Sit	e wi	ll be	mar	nag	ed ir	ac	cord	anc	e with	PP:	S25 re	equire	eme	nts,	i.e. s	urfa	асе			
																	nange.									
	<u> </u>	<u> </u>	<u> </u>																							\perp
	Exi	stin	g sı	ırfac	ce w	<i>r</i> ate			ırge	reg	1				\sqcup											
	lacksquare						-	a (h							thod		Dis	char	_					_		
				ndso				7.81							ige 2)				1.2							
	ـــــ	Sof	t lan	ndsc	ape	d		3.35	5		loH	124	· (Pa	age	3)			3	5.9	l/s			\dashv	_	_	
	╀	Ma	vimi	ım a	llow	able	dica	char	oo r	ato.	for 1	in 1	100 3	VOOI	r storr	n –		01	7.1	I/e			\dashv	+	+	\perp
	\vdash	IVIA	XIIII C	IIII a	IIOW	abic	uis	onai	ge i	110	101 1		100	yeai	31011	'' <i>-</i>			7.1	1/3			+	+		+
	\vdash																						\dashv	+		
	Pro	pos	ed :	surf	ace	wat	er d	iscl	narg	e re	gim	e:														
			•						area	ì				7.81				7	.81	ha						
			•	ed s			•							3.35												
	_	Cor	ntrib	utinç	g so	ft laı	ndsc	apir	ng (1	0%))*		0.3	335	ha			0.0	335	ha			_	_		
	₩	T-4				ا حانس	4:	ام ما										0 1	1 4 5	L -			\dashv	_		
	-								scha					\				8.	145	na				_	+	
	-	(na	ra ia	inas	capi	ing -	- cor	ntrib	uting	SO	π ıar	nasc	apır	ng)									+	+		_
	-																						+	-	-	-
	-	* =	Tvpi	ical (cont	ribu	tina	disc	harq	e fr	om s	soft	land	lsca	pina i	s an	proxin	natel	v 10)% o	f		+	+		+
	1								land					.000	ping i	o up	p. 07	ilutoi,	,	,,,,			+	+		+
-																										
	Inti	al a	ten	uati	on e	estir	nate)																		
		An	initia	al es	itima	ate c	of the	e vol	ume	of :	surfa	ace	wate	er at	tenua	tion	has b	een ι	und	ertak	ken, ι	ısin	g			
							_	Esti	mate	so	ftwa	re a	pplic	catio	n. A	sumi	mary o	of the	se	calcu	ulatio	ns a	are			
		pro	vide	d on	ı Pa	ge 4	١.							,												
	L		L																				\perp			
	_	The											ttenı		on is :			19	986	m³			_			
									disch	narç	ge of	:			917 1/											
			A h	ard l	land	Isca	ped	area	a of:					3	3.15 h	na							\dashv	\perp	\perp	\perp
	₩			<u> </u>																	_		\dashv	\dashv	\dashv	\perp
	₩			<u> </u>																		\downarrow	\dashv	\dashv	+	\perp
	₩	<u> </u>	<u> </u>																				\dashv	\dashv	\perp	\perp

 WTDL London Company: Office: 2 of 4 Sheet No: Project No:

S. Tarran 20.09.10 Ву Date

C11234

S.Brown 20.09.10 Checked: Date

Project Title Upper Heyford, Catchment Area 3

Calculations Title Surface Water Management - Modified Rational Method

LOCATION										(CAL	CUL	_AT	IONS	3									OPT	ION	S
	Cal	cula	tions	s bas	sed (on:	Desi	gn a	and	Ana	alysis	s of	urba	an st	orm	dra	inag	e. T	he V	Valli	ngfo	ord				
				Volu																1						
	Use	er In	put	Data	<u>a</u>																					
	Exi	siting	g ha	rd la	nds	сар	ed ar	ea											7	7.81	ha					
	SA	AR (Fror	n FE	Η/	Wir	ides)													691						
	M5	_60	(Fro	m W	inde/	es)														20						
	Rat	io R	(Fr	om V	Vind	les)													0.	405						
	PIM	IP (%	% im	perv	ious	s)													100	.0%						
	Soi	Тур	е																C).40						
	Ver	y Lo	w R	unof	f (we	ell d	Iraine	ed s	and	ly, Ic	oamy	or or	eart	hy p	eat	soils	s)		C).15						
	Lov	/ Ru	noff	(Ver	ry pe	erm	eable	e so	ils (e.g.	grav	∕el,	san	d)					C	0.30						
	Мо	dera	te (\	√ery	fine	sar	nds, s	silts	and	d se	dime	enta	ry c	lays)					C).40						
	Hig	h Ru	unof	f (Cla	ayey	or or	loam	y so	oils)										C).45						
	Ver	y Hi	gh F	Runot	ff (S	oils	of th	ne w	et u	ıpla	nds)								().50						
Fig. 9.7	UC	WI (Fror	n Fig	gure	9.7	of W	/alli	ngfo	ord I	Meth	od)								65						
Fig 6.3a/b	Z1	(Fro	m Fi	igure	6.3	a o	r 6.3l	o)											1	.00						
Tab 6.2/6.3	Z2	(Fro	m Ta	able	6.2	& T	able	6.3)										2	2.02						
Eqn. 13	Qр	(pea	ak di	ischa	arge)) = 2	2.78	Cv	CR	iΑ																
	Wh	ere:		Qp ((Pea	ak D	ischa	arge	∍)		i = 1	ainf	fall i	nten	sity			A =	Tot	al A	rea					
		Cal	cula	ting I	Rair	nfall	Inter	nsity	/ (i)																	
Eqn 6.4			MT-	-D =2	Z1 x	Z2	x (M	5-6	0mir	n)																
				N	M5_	60	20				Z1	1.0	0			Z2	2.0	2								
			Thu	ıs M1	100_	_60	is:	4	0.4	mm	1															
Eqn 7.20	Cv	= PF	R/10	0																						
Eqn 7.3		PR	= (0	.829	PIN	/IP)	+ (25	5.0	SOI	L) +	(0.0	78	UC\	NI) -	20.7	7										
			PIM	1P (P	erce	enta	age o	f ca	tchi	men	it wh	ich	is in	nperv	/ious	s)	10	0.0	%							
Page 52				Note	e: PI	IMP	can	not	be	less	tha	n 40)%				4	10.0	%							
				Thus	s va	lue	of PI	MP	to b	oe u	sed						10	0.0	%							
				Soil:		0.	40			UC	WI:	6	55													
		PR	=															77	7.27							
	Thu	ıs C	v =															().77							
Sec 7.10	_			men	ded	for	simu	ılati	on a	and	desi	gn)							1.3							
		•																								
	Qр	for :	1 in	100 y	year	r 60	min	ute	dur	atio	n =				88	1.2	l/s	or	11	2.8	l/s/l	na				
	t "																								<u> </u>	<u> </u>

Company: WTDL Office: London Sheet No: 3 of 4 Project No: C11234 By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 3

Calculations Title Surface Water Management - IoH 124

LOCATION									C	ALC	ULA	ΠΟΝ	IS										(OPT	ION	S
	In orde the W runoff are sh An are which 124.	indes has l own ea of	Mic beer belo 50ha	rodr n cal w; a ha	aina cula s be	ige v ted u en u	ersions ersing	on W the in th	/.12. loH e ca	4 So 124 Icula	ource Meth	Cor nodo	ntrol r logy, this is	modu the	ule h inpu	nas b ut an alles	eer d oo t ca	uti utpu utchr	ised t da nen	d. F ta fo t are	Rura or w ea	l hich				
	-	IH124	, FEH	Peak	Flow	, ICP S	uos a	and Al	DAS 3	45 Cal	iculato	r						10		×						
		100																								
	1.			IH 1	24																					
			ापाद)	in	124 1	put											Resul	ь								
				Re	ntum Pe	riod (Yo	am)	100		Pa	ertly Ur	banise	d Calch	ment (C	(RAR)		QBA	Rrural	(l/s)							
				An	ea (ha)			50.000		0	liban		0.	.000				167,6		Ш						
					VAR (mr		Map	691		F	Region	Region	6		¥ [QBAR	urban	(1/5)	Ш						
				So				0.400						-		5111		167.6		Ш						
														Ca	icustate											
				Gr	owth C	urve				0	ione)			Ca	lculate											
				Gir	owth C	urve				0	ione)			Ca	iculate											
				Gr	owth Ci	urve				()	lorie)			Ca	lculate											
						enod F	loud			0	iorie)			Co	iculate											
					eturn F				QBAR (I/s)		Q (100y (l/s)	75)	Q (1 y	rs)	90	2 yrs)		Q (5 yr	's) *							
		DH 12		Re	eturn F	Penad F			(I/s)		Q (100y (l/s)	96.5	(1/5)	rs)	90	2 yrs)		(Us)	(S) (2)							
		ICP SU	DS	Re	eturn F F gion 5 gion 6	Penod F Region			(l/s) 16 16	7.6	Q (100y (l/s)	96.5 34.5	(l/s)	TS)) 145.8 142.4	90	2 yrs) l/s) 149	7	(Us)	16.							
			DS	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio			(l/s) 16 16	7.6 7.6 7.6	Q (100y (l/s) 5	96.5 34.5 05.5	(l/s)	rs)) 145.8 142.4 130.7	90	2 yrs) l/s) 149 147	7 6 1	(l/s)	16.							
		ICP SU	DS 345	Re Re Re	eturn F F gion 5 gion 6	Penud F Region /Regio			(l/s) 16 16	7.6	Q (100y (l/s) 5	96.5 34.5	(l/s)	TS)) 145.8 142.4	90	2 yrs) l/s) 149	7 6 1	(l/s)	16.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio			(l/s) 16 16	7.6 7.6 7.6	Q (100y (l/s) 5	96.5 34.5 05.5	(l/s)	rs)) 145.8 142.4 130.7	90	2 yrs) l/s) 149 147	7 6 1 6	(Us)	16.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (l/s) 5	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	DS 345	Re Re Re	gion 5 gion 8 gion 8	Penud F Region /Regio	n 7		(l/s) 16 16 16 16	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 5 4	96.5 34.5 05.5 65.3	(l/s)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	345	Re Re Re Re Re	gion 5 gion 6 gion 8	enod F	n7	Enter ((I/s) 18 18 18 18 18	7.6 17.6 17.6 17.6	Q (100y (I/s) 5 4 3	96.5 34.5 05.5 665.3	(0.5)	145.8 142.4 130.7 147.5	90	2 yrs) l/s) 149 147 148 155	7 6 1 6	(Us)	216. 214. 206. 202.							
		ADAS:	in 2	Re Re Re Re Re	gion 5 gion 6 gion 8	Region	7.6		(I/s) 166 166 166 166 166 166 166 166 166 16	7.6 17.6 17.6 17.6	Q (100y (l/s) 5 5 5 4 3 3 9 0.000 8	96.5 34.5 05.5 65.3	/ha	145.8 142.4 130.7 147.5	90	2 yrs) 1/s) 149 147 148 155 Canon	7 6 1 6	(Us)	216. 214. 206. 202.							

 Company:
 WTDL
 Office:
 London

 Sheet No:
 4 of 4
 Project No:
 C11234

 By
 S. Tarran
 Date
 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 3

Calculations Title Preliminary surface water attenuation volume.

LOCATION	1								(SALCI	JLAT	rion:	S								(OPTI	ONS	
	Micr	odra	ainage	ver	sion	W.1	2.4	, Sour	се	ace wa	l mo	dule,	Quic											_
	used). II	ne inpi	ut ai	na ol	ıtput	aa	ita for	wni	ch are	snov	wn be	elow;											
Innut			Water Co														(EC)		0					
Input:			uick St	or ag													-		X					
		1	ligo central	14	Varia	er terretieten					mr. w					yerror			4					_
					100	Rainfa		0073	1/4			v (Sumr				0.75								_
					Hetu	n Peric	od bre	ears)	1	100	- In	npermea	ble Area	(ha)		0.15								
			Variable		R	ngion	E	England a	and W	lales		Assimum /s)	Allowab	e Disch	harge	917	0							_
		di.	Results			Мар		45-60 (mm	7	20.000		29												
	+		Design	¥			R	Ratio R	1	0.405	in	fitration	Coeffici	ent (m/	hr)	0.000	00	8						
	+	C	verview	20							S	afety Fa	octor			2.0								
		0	verview	3D							0	limate C	hange (1)		30								_
			Vt																					
										To A	navae	10	ОК	10	Cano	al	Н	ielp	7					
										1				-1	- Section 14		-	-						_
						1	B	inter Clim	ate C	hange be	tween	-100 ar	nd 600			_								
Output:		10	uick St	orag	e Esti	mate	B	inter Clim	ate C	hange be	tween	-100 ar	nd 600						3					
Output:					e Esti		В	inter Clim	ate C	hange be	tween	-100 ar	nd 600	+					3					_
Output:			nick St		Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r densir	TO OUR			3					
Output:		130		ië.	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima	de sto	orage		ed for	r desig	on purp								
Output:		130	Topai Orthog	ië.	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r desig	an purp			3					
Output:		130	Proposi On Prim p Variables	ië.	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r desig	on purp								
Output:			Variables Hesults	i i	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r desig	an purp								
Output:		0	Variables Results	112	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r desig	gn purp								
Output:		0	Variables Results Design	112	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³.	de sto	orage		ed for	r desig	jn purp								
Output:		0	Variables Results Design verview	112	Glob of be	lls al Var stweer	riable n 13	es requi	re aç	oproxima 597 m³. s only a	de sto	orage	ot be us	ed for			oses.							
Output:		0	Variables Results Design verview	112	Glob of be	lls al Var stweer	n 13	es requi 175 m² a are esti	re apnd 2	pproxima 597 m³. s only a	ate state and shall also also also also also also also a	orage ould no	ot be us	ed for	r desig		oses.							
Dutput:		0	Variables Results Design verview	112	Glob of be	lls al Var stweer	n 13	es requi 175 m² a are esti	re apnd 2	oproxima 597 m³. s only a	ate state and shall also also also also also also also a	orage ould no	ot be us	ed for			oses.							
Output:		0	Variables Resulta Design verview Vt	100	Glob of be	al Variativeers	Er	es requi 175 m² a are esti	re aprod 2 mail e	pproxima 597 m³. s only a	ale sto	orage ould re	OK).C	Cano	ď	oses.	elp						
Output:		Vinc	Variables Results Design verview Vt	and leaves	Glob of be Thes	al Variativeer value value	Erti	es requi 175 m² a ara esti	re aprind 2	pproxima 597 m³. s only a	alle store	orage ould no	OK.	J E	Canc On VC	olume	oses.	elp		ered				
Output:	that	Wind	Variables Resulta Design verview Vt	and leaves	Glob of be These Stora	al Variativeer value val	Esti e ra	es requi 175 m² a are estin imate cange is	re aprind 2	pproxima 597 m³. s only a	alle store	orage ould no	OK.	J E	Canc On VC	olume	oses.	elp		ered				
Output:	that	Windows an a	Variables Results Design verview Vt	aco eco cick de va	Glob of be There	al Variativeer value value	Erti	es requi	provis su	pproxima 597 m³. s only a	a ran	ould no	OK.	uatic	Canco on vo	olume	He s it is	elp		ered				

Company: WTDL Office: London
Sheet No: 1 of 4 Project No: C11234

By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 4

Calculations Title Surface Water Management - Summary Sheet

LOCATION											CAL	CUL	ATI	ONS	3										i	OPT	ION	IS
	wat	er d	scha	arge	rest	trict	ed to	the	exi	stin	g rat	te pl	us 3	30%	e witl clma the e	te c	har	ge.	Furtl	ner					,			
	Evi	ctin	a c	rfoc	20 W	ata	r dic	cha	rao	roc	imo														+	+	+-	╁
	EXI	Sum	y su	IIIac	ce wa	ale		a (ha		reç	1	cula	tion	met	hod			Disc	char	ו בו	Rate	<u> </u>			-		-	-
		Har	d lar	ndsc	cape	d		1.65			_				ge 2)		Disc			l/s	,			-			-
					aped			0.71			-	124				,					l/s				-		-	+
																									1			-
		Max	kimu	m a	llowa	able	disc	char	ge r	ate	for 1	in 1	100	yea	stor	m =			19	3.8	l/s							
	Pro	pos	ed s	surf	ace v	wat	er d	isch	narg	e re	egim	ie (6	0/4	0 ins	stead	of	70/	30):										
																									\perp		<u> </u>	1
					ard l							<u> </u>		1.42					1	42	ha				₩	<u> </u>	<u> </u>	
					oft la						_	<u></u>		0.94					0.0	0.4					igl	_	₩	-
		Cor	itribi	uting	g soft	t lar	ndsc	apın	ıg (1	0%)^		0.	094	na				0.0	94	ha				-	+-	-	_
		Tot	alΛr	.00	contr	ihu	ina	o di	coho	orac									1 5	11	ha				-	-	-	-
					capir							nder	anir	oa)					1.0	14	па				+	-	-	+
		(Hai	u ia	nus	Сарп	19 1	COI	itiibt	عدانا او	<i>j</i> 30	it iai	1030	αριι	19)											-			+
		* =	Tvpi	cal d	contr	ibu	tina	disc	haro	ie fi	om s	soft	land	dsca	ping	is aı	ppro	oxim	atel	10)% c	of			+			+
					ent a										ı y							-			+	+	+	
																									1			
		The	: En	viror	nmen	nt A	geno	y re	quir	e a	10%	rec	ducti	ion i	n dis	chai	rge	to th	ie ea	ste	rn	1						
		wat	erco	urse	e, na	mel	у Са	tchr	men	t Ar	eas	3 ar	nd 4	, to ı	educ	e flo	ood	risk	dow	nst	rea	n.						
		Are	a 3:	allo	wabl	e di	scha	arge	917	7.1 l	/s, 1	0%	=								l/s							
					wabl								=								l/s							
					tion i						_								111		<u> </u>				<u> </u>		<u> </u>	
													j, re	quir	ed re	duc	tion	to b				Area	4		-	_	<u> </u>	Ļ
		Allo	wab	le d	ischa	arge	(19	3.8	- 11	1.0	9) =								8	2.7	l/s				-		-	-
	lm4:	al a4	100		on e	-4i-																			+	+	₩	-
	Inti									- (4			. 4:		- 1						<u> </u>	-	+	-	-
		1													tenua n. A									_			+	+
					Pag		_	_5(1)				. . . u	,,,,	J	, , ,	5411		, 0	0		J410	J.40	٠.١٠	. a.c				+
		-			Ī	-																			+	+	+	+
		The	pre	limir	nary	esti	mate	e of	surf	ace	wat	er a	tten	uatio	on is	:			5	11	m ³				1		1	\dagger
					on ar										82													T
					ands									1.	514	ha												
																									1			T

Company: WTDL Office: London
Sheet No: 2 of 4 Project No: C11234

By S. Tarran Date 20.09.10

Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 4

Calculations Title Surface Water Management - Modified Rational Method

LOCATION										(CAL	CUL	AT	IONS	3										(OPT	ION	S
	Cal	cula	tion	s bas	sed	on:	Desi	gn a	and	Ana	alysis	s of	urba	an st	orm	dra	inag	e. T	he V	Valli	ngfo	ord						
				Volu												ı		,		ı		,	_	ı				
	<u>Use</u>	er In	put	Data	3																							
	Exis	sitin	g ha	ard la	nds	cap	ed ar	ea												2	ha							
	SA	4R (Fro	m FE	Η/	Wir	ides)													691								
	M5_	_60	(Fro	m W	/inde	es)														20								
	Rat	io R	(Fr	om V	Vind	es)													0.	405								
	PIM	1P (9	% im	nperv	ious	s)													100	.0%								
	Soil	Тур	ре																().40								
	Ver	y Lo	w R	Runof	f (we	ell c	Iraine	ed s	and	y, Ic	oamy	or or	eart	hy p	eat	soils	s)		().15								
	Lov	√Ru	noff	(Ver	ry pe	erm	eable	so	ils (e.g.	grav	∕el,	san	d)					(0.30								
			`	Very							dime	enta	ry cl	ays)).40								
	Hig	h Rı	unof	f (Cla	ayey	or or	loam	y so	oils)										C).45								
	Ver	y Hi	gh F	Runot	ff (S	oils	of th	e w	et u	ıpla	nds)								().50								
Fig. 9.7	UC	WI (Fror	m Fig	gure	9.7	of W	/alli	ngfo	ord l	Meth	od)								65								
Fig 6.3a/b	Z1 /	(Fro	m F	igure	6.3	a o	r 6.3l	o)											1	00.1								
Tab 6.2/6.3	Z2 ((Fro	m T	able	6.2	& T	able	6.3)										2	2.02								
Eqn. 13	Qр	(pea	ak d	ischa	arge))=2	2.78	Cv (CR	iΑ																		
	Wh	ere:		Qp ((Pea	ak D	ischa	arge)		i = 1	aint	all i	ntens	sity			A =	Tot	al A	rea							
		Cal	cula	iting I	Rair	nfall	Inter	nsity	/ (i)																			
Eqn 6.4			MT	-D =2	Z1 x	Z2	x (M	5-6	Omir	า)																		
				1	M5_	60	20				Z1	1.0	0			Z2	2.0	2										
			Thu	us M1	100_	_60	is:	4	0.4	mm	1																	
Eqn 7.20	Cv:	= PF	R/10	00																								
Eqn 7.3		PR	= (C).829	PIN	ΛP)	+ (25	5.0	SOI	L) +	(0.0	78	UCV	VI) -	20.7	7												
			PIM	/IP (P	erce	enta	age o	f ca	tchi	nen	t wh	ich	is in	nperv	/ious	s)	10	0.0	%									
Page 52				Note	e: PI	MP	can	not	be	less	tha	n 40)%				4	10.0	%									
				Thu	s va	lue	of PI	MP	to b	oe u	sed						10	0.0	%									
				Soil:		0.	40			UC	WI:	6	55															
		PR	=															77	7.27									
	Thι	ıs C	v =															().77									
Sec 7.10	CR	(Re	com	nmen	ded	for	simu	ılati	on a	nd	desi	gn)							1.3									
	Qp	for :	1 in	100 y	year	60	min	ute	dur	atio	n =				18	6.2	l/s	or	11	2.8	l/s/l	na						
				П	-																					1		

Company: WTDL Office: London Sheet No: 3 of 4 Project No: C11234 By S. Tarran Date 20.09.10

Date

20.09.10

S.Brown

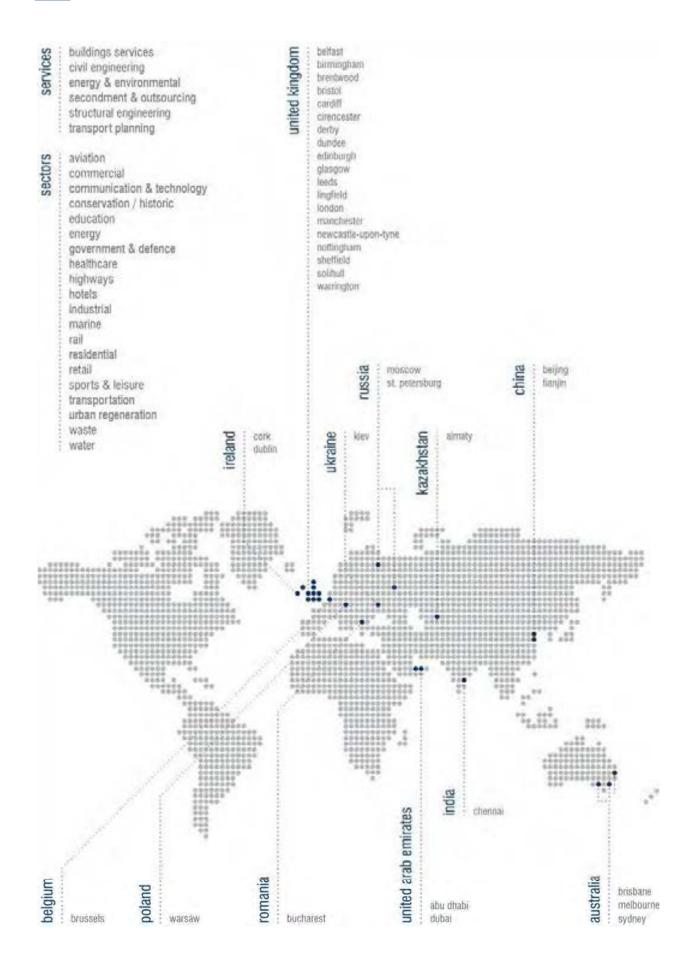
Checked:

Project Title Upper Heyford, Catchment Area 4

Calculations Title Surface Water Management - IoH 124

LOCATION									CAL	CULAT	ION	S								OPT	ION	S
	the \runc are : An a	Win off h sho area ch th	des as b wn l	Mic been belogo 50ha	rodi cal w; a ha	raina cula	ige vers ted usi	sion V ng the d in th	V.12.4 se loH 12	er disch Source (24 Methous ulations ne 50ha	Con odol as t	trol mod ogy, the	ule l inp	nas b ut and alles	eer d ou t ca	util utpu itchr	ised t da nent	I. Ru ta foi t area	ural r whic			
		_	1124		Peak	Flow,	ICP SUD	S and A	DAS 345 (Calculator						E		×				
		-	ingo evire	IPI S	An S/ So	124 in stum Pe ea (ha) VAR (mn	n) Map	50.00	0	Partly Urba Uban Region Re (None)		0.000	UBAR 		1 BAR	8 rural (167.6 urban 167.6						
					Re		enod Floor	d	QBAR	Q (100yrs	1)	Q (1 yrs)	9(2 yrs)	0	2 (5 yr	3) ^					
			IH 12	4	Re	gion 5	Region	4	(l/s) 167.6	(l/s) 591	8.5	(l/s) 145.8		l/s) 149.7		(Us)	16.					
			DAS 3		Re		Region 7		167.6 167.6	53-	4.5	142.4 130.7		147.6		2	14. 06.					
			FEH		Re	aion 9			167.6	36	5.3	147.5		155.6		2	02. ¥					
	Н											ОК		Cancel		Н	elp					
								Enter	Urban betwe	en 0.000 and	0.750)	Ι					4				
		Ohs	ar /1	in 2	3 2 2	3)	167 (6 I/s/5	i0ha	3.4	I/s/	ha										
			100		55		534.5			10.7			or		7.6	I/s						

Company: WTDL Office: London
Sheet No: 4 of 4 Project No: C11234


By S. Tarran Date 20.09.10 Checked: S.Brown Date 20.09.10

Project Title Upper Heyford, Catchment Area 4

Calculations Title Preliminary surface water attenuation volume.

LOCATION	CALCULATIONS	OPTIONS
	In order to calculate the volume of surface water attenuation required for the Site, Windes	
	Microdrainage version W.12.4, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;	
	used. The imput and output data for which are shown below,	
nput:	/ Quick Storage Estimate	
	0.10	
	FSR Rainfall CV (Summer) 0.750	
	Return Period (years) 100 Cv (Winter) 0.840	
	Impermeable Area (ha) 1.514	
	(/a) ME (2 (ma) 20 (00)	
	Ratio R 0.405 Indication Confliction to Aid (in second	
	Design 0.00000 0.00000	
	Overview 20	
	Overview 3D Climate Change (%) 30	
	W. Committee of the com	
	Analyse OK Cancel Help	
	Enter Climate Change between -100 and 600	
)tmt.		
<u> Dutput:</u>	/ Quick Storage Estimate	
	Global Variables require approximate storage	
	of between 392 m³ and 629 m³.	
	These values are estimates only and should not be used for design purposes.	
	Variables	
	Results	
	Design	
	Overview 2D	
	Overview 3D	
	W	
	Analyse OK Cancel Help	
	Enter Climate Change between -100 and 600	
	As Windes Quick Storage Estimate provides a range of attenuation volumes it is considered	
	that an average value of the range is suitable for preliminary design sizing.	
	· · · · · · · · · · · · · · · · · · ·	

™aterman

