

A2Dominion

Bicester Eco Development

Energy Strategy Implementation Plan

Hyder Consulting (UK) Limited 2212959 5th Floor The Pithay All Saints Street Bristol BS1 2NL United Kingdom Tel: +44 (0)117 372 1200 Fax: +44 (0)117 37 www.hyderconsulting.com

A2Dominion

Bicester Eco Development

Energy Strategy Implementation Plan

Author	Natalia Fernandez Ferro	Agtalia
Checker	Philip Harker	T.Harb
Approver	Philip Harker	T.Harle

Report No 4601-UA004014-UE21R-02-Energy Strategy Implementation Plan

Date 21 December 2012

This report has been prepared for A2Dominion in accordance with the terms and conditions of appointment for Energy Strategy Implementation Plan . Hyder Consulting (UK) Limited (2212959) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

CONTENTS

1	Introd	Juction	1
2	Energ	gy Strategy	2
	2.1	Updates to Energy Strategy	3
3	Exem	nplar Energy Centre Implementation Plan	9
	3.1	Energy Centre and DHN details	10
	3.2	Operational Regime of Energy Centre	19
	3.3	District Heating Network Operation, Efficiency & Installation	20
	3.4	District Heating Pipework Installation	21

1 Introduction

This Energy Strategy Implementation plan is provided as a continuation and update to the Exemplar Sustainable Energy Strategy submitted in March 2011 and in addition, the Updated Zero Carbon Calculation Memorandum submitted in July 2011 relative to the NW Bicester eco development planning application; and in direct response to planning condition No. 4 which states:

"That full details of the measures to achieve zero carbon energy use as defined in PPS 1: Eco Towns, through on site solutions, shall be submitted for approval prior to the commencement of development. Should it be demonstrated to the satisfaction of the local planning authority that it is not possible to achieve zero carbon on site, a scheme for off site mitigation in Bicester shall be provided, prior to the first residential occupation, for that portion of the energy use that cannot be met on site."

This Energy Strategy Implementation Plan includes updated energy model showing the carbon balance for the development. This approach is in keeping with the definition of zero carbon as specified in the PPS1 eco-towns supplement; which states in paragraph ET 7.1:

"The definition of zero carbon in eco-towns is that over a year the net carbon dioxide emissions from all energy use within the buildings on the eco-town development as a whole are zero or below. The initial planning application and all subsequent planning applications for the development of the eco-town demonstrate how this is to be achieved."

It is clarified in the PPS1 eco-towns supplement that the "definition of zero carbon applies solely in the context of eco-towns, and applies to the whole development rather than to individual buildings."

2 Energy Strategy

This Energy Implementation Plan should be read in conjunction with the original Exemplar Sustainable Energy Strategy submitted in March 2011 and in addition, the Updated Zero Carbon Calculation Memorandum submitted in July 2011.

The zero carbon energy strategy remains unchanged from that originally proposed; following the energy hierarchy of reducing demand through exemplar fabric energy efficiency (designed to meet CfSH level 5/6) and efficient mechanical and electrical systems, followed by using low and zero carbon technology including a district heat network and building mounted photovoltaics.

However, a number of detailed changes have resulted from the direct involvement of the preferred ESCo operator (SSE Utility Solutions) and their specialist subcontractors (Vital Energi) who are engaged by A2Dominion at a group level. The key drivers for implementation of the changes are the need to optimise the ESCo operation, reduce operational and financial risk, facilitate a further reduction in CO_2 emissions and improve the fiscal performance of the scheme.

The following sections identify the progression of the energy strategy and how it will be implemented to the scheme

2.1 Updates to Energy Strategy

As mentioned above; a number of detailed changes have occurred during the continued building design including updated SAP analysis and through the involvement of the preferred ESCo operator. These changes are identified in the table 2.1 below

Ref.	Energy Strategy Aspect	Original Strategy	Changes to Strategy
1	Domestic floor areas	The average dwelling floor area used in the original submitted version of zero carbon modelling was 110.12 m ² .	The dwelling floor areas have been reduced during detailed design. The calculated dwelling floor area used in the updated zero carbon model is based on the weighted average floor areas of all dwelling types. The calculated dwelling floor area used in the updated energy model is 95.24 m ² .
2	Fabric Energy Efficiency	Original strategy specified the following FEE standards (U values Wm2K):	There is very little change to the proposed FEE standards, as shown below (only front door which will have minimal effect):
		Ground floor; 0.15	• Ground floor; 0.15
		• External wall: 0.15	• External wall: 0.15
		• Roof; 0.13	• Roof; 0.13
		• Windows: 0.8	• Windows: 0.8
		• Front door:0.8	• Front door:1.1
		• Air perm: 3 m3/(hr.m2)	• Air perm: 3 m3/(hr.m2)
		• 0.04 y-value	• 0.04 y-value
3	District heating – biomass boiler	The submitted energy strategy proposed installation of a biomass boiler and gas CHP (back up by gas boilers).	The proposed changes omit the biomass boiler due to potential operational issues. These include concerns regarding the uncertainty of biomass quality, costs and security of supply. The ESCo operator has proposed an approach which achieves the carbon savings through use of a more efficient CHP engine (see item 3 below)
4	District heating – CHP engine	The submitted energy strategy proposed installation of a CHP engine sized to meet all the required thermal energy demand between June and September without the need to operate the	The proposed changes suggest a larger and more efficient CHP engine to supply 90% of the total annual heat demand. The remaining 10% heat demand will be supplied by the gas-fired top-up/back-up boilers. The 38.5% electrical and 39.5%

Table 2.1 Updates to Energy Strategy

Bicester Eco Development — Energy Strategy Implementation Plan

Hyder Consulting (UK) Limited-2212959

 $http://ukr.hybis.info/projects/ln/awarded/ua001881/f_reports/energy strategy implementation plan/4601-ua004014-ue21r-02-energy strategy implementation plan.doc$

Ref.	Energy Strategy Aspect	Original Strategy	Changes to Strategy
		biomass boiler or the gas-fired top-up/back-up boilers. The 33% electrical and 52% thermal CHP engine efficiencies were used in the zero carbon modelling.	thermal CHP engine efficiencies are used in the updated zero carbon model; which are based on the efficiencies of the 844 kWe Janbacher CHP engine (see Appendix 1 data sheet) or similar engine.
5	District heating – Gas boilers	The submitted zero carbon modelling assumed 90% energy efficient boilers.	The updated zero carbon model uses gas boiler efficiency of 90%. This was based on weighted efficiency of the proposed condensing and non-condensing boilers, taking into account their heat supply contribution.
6	District heating losses	The submitted zero carbon modelling assumed 20% district heating system losses.	The updated zero carbon model uses 28% district heating system losses. The 28% loss figure relates to the Logstor Conti Series 2 pipework specified for the project. The heat loss figure is provided by Logstor using their online calculation tools.
7	Domestic buildings energy benchmarks	The energy benchmark relating to the domestic buildings was derived from the initial sample SAP assessments of the proposed 9 dwelling types.	The design stage SAP assessments have been provided by PRP Architects. These updated figures take into account the building fabric efficiency, changes in floor areas and the changes in ventilation strategy (see item 3 below). Table 2 in Appendix 2 present the SAP results. It is estimated that under the current proposal, the average space heating demand, water heating demand (Box 45) for each dwelling are 28.12 kWh/year and 16.48 kWh/year respectively.
8	Ventilation strategy	Original strategy assumed the use of MVHR throughout all dwellings.	The figures included in the design stage SAP assessment take into account the use of MEV system, with trickle vents, for private tenure and shared ownership dwellings and the use of MVHR for rented dwellings. This will enable a direct comparison of the differing ventilation strategies available, Monitoring of the performance of each ventilation strategy, including occupant surveys relative to use and comfort.
9	Energy savings – appliances energy efficiency	The submitted energy strategy assumed energy efficient appliances (white goods and induction hobs) in all private,	The current proposals suggest the installation of energy efficient white goods (A++ rated fridges, freezers, washing machines and ovens and A+ rated ovens)

Bicester Eco Development —Energy Strategy Implementation Plan Hyder Consulting (UK) Limited-2212959 http://ukr.hybis.info/projects/ln/awarded/ua001881/f_reports/energy strategy implementation plan/4601-ua004014-ue21r-02-energy strategy implementation plan.doc

Ref.	Energy Strategy Aspect	Original Strategy	Changes to Strategy
		shared ownership and rented dwellings. It was estimated that the energy efficient white goods may reduce the total energy demand associated with lighting and appliances by circa 18%. It was also estimated that use of induction hob technology would further reduce the total electric demand associated with cooking by 33%.	 in private and shared ownership dwellings; A2D will launch a promotion of energy efficiency white goods and financial incentive scheme to all rented dwellings (meeting CSH requirements). However, as a conservative approach the energy model now assumes that no additional efficiency savings will be generated from the rented dwellings. It is estimated that under the current proposal, the energy efficient white goods will reduce the total energy demand associated with lighting and appliances by circa 13%.
10	Gas cooking	The submitted proposals assumed gas cooking only for the eco pub / restaurant under the non-domestic buildings category.	The current proposals assume gas cooking for the eco pub / restaurant and for the school.
11	Electric cooking	The submitted proposals assumed electric cooking for all dwellings. It was estimated that the use of induction hobs could reduce the total electric demand associated with cooking by 33%.	The current proposals assume the installation of electric cooking using induction hobs in private and shared ownership tenure dwellings; and the promotion of energy efficiency electric hobs to rented tenure dwellings. It is estimated that under the current proposal, the use of induction hobs can reduce the total electric demand associated with cooking by circa 25%.
12	Domestic and non-domestic roof areas available for PV installation	South facing roof area of each dwelling used in the zero carbon modelling was calculated based on the architectural drawings provided by Farrells. It was estimated that school has circa 2,520 m ² of roof area of which 60% was available to PV. All other non-domestic buildings estimated to have a total roof area of circa 3,602 m ² of which 70% was available to PV.	South facing roof areas provided by PRP Architects for the Phase 1 dwellings indicate that there is marginal difference between the previous and current total roof areas available to PV (see Appendix 2). Design of roof areas for dwellings post Phase 1 are yet to be finalised by PRP Architects. However, based on the Phase 1 roof area it is anticipated that the differences between the original and updated roof areas will be marginal. It is estimated that the dwellings have circa 15,902 m ² of total south facing roof area. It is estimated that of this total roof area a maximum of 10.385 m ² (65% of the total

Bicester Eco Development —Energy Strategy Implementation Plan Hyder Consulting (UK) Limited-2212959 http://ukr.hybis.info/projects/ln/awarded/ua001881/f_reports/energy strategy implementation plan/4601-ua004014-ue21r-02-energy strategy implementation plan.doc

Ref.	Energy Strategy Aspect	Original Strategy	Changes to Strategy
			south facing roof area) will be available for PV installation due to the estimated 500mm clearance between the PV panels and the edge of the roofs. However, to balance the carbon model only 9,700 m ² will be utilised for PV installation (61% of the total south facing roof area).
			The west/south/east facing roof areas of the school and the other non-domestic buildings remain as previously estimated based on the outline designs. However, current proposal assumes that only 60% of the non domestic roof area and 35% of the school roof area will either be available for or be installed with PV.
13	PV Strategy	The submitted proposals assumed a PV peak output of 1.25 kWp and an average annual PV output per 1kWp of 850 kWh/year for all buildings.	The current proposal takes into consideration the use of four types of PV panels for the dwellings with an average of 1.41 kWp per 10m ² based on proposed distribution of PV types across the units. The average PV peak output per 10m ² has been based on the use of the following PV panels:
			• Type A:1.26 kWp per 10m ²
			• Types B, C and D: 1.47 kWp per 10m ²
			This average PV peak output has been applied to calculate the dwellings and the non-domestic buildings total annual output from PV respectively.
			The PV peak output for the school remains as previously estimated based on the outline design.
14	Overshadowing	The overshadowing effect caused by adjoining roofs and buildings was taken into consideration during monthly solar energy output calculations. Some roofs were overshadowed for a short period of time in the winter months, the effect was minimal on the solar panels as the solar flux intensity during this period is low. For the rest of the year the roofs were clear of	The current proposal takes into consideration the impact on PV output from overshadowing. As a conservative approach the energy model assumes, from year 1, the predicted shade cast by the trees when they reach maturity (20 years). The tree shadows cast have been calculated at monthly intervals throughout the year and at 12:00 pm when the sun is between 14° and 62° in elevation. Each monthly figure has then been analysed to show which area of will be in shadow throughout the day.
			Overshadowing of gables and saw tooth

Bicester Eco Development —Energy Strategy Implementation Plan Hyder Consulting (UK) Limited-2212959 http://ukr.hybis.info/projects/ln/awarded/ua001881/f_reports/energy strategy implementation plan/4601-ua004014-ue21r-02-energy strategy implementation plan.doc

Ref.	Energy Strategy Aspect	Original Strategy	Changes to Strategy
		shadows. The overshadowing study showed a 4% overshadowing effect reduction on the total annual energy production.	roofs has also been considered, as has the dwelling orientation and roof angle. It is estimated that circa 20% of the roof area available to PV of dwellings with gables and saw tooth will be overshadowed. The orientations of the residential dwellings have been measured from CAD drawings and applied on intervals of 15° (west/south/ east). The roofs angles have been provided by PRP Architects. An overshadowing reduction of 5.28% on average from maximum annual PV output installed (based on building roof types and tree overshadowing, building orientation and roof inclination) is currently estimated.
			other building shadow – but may be slightly affected by the flue.

The updated zero carbon model shows a reduction in the total electricity demand and an increment on total heat demand. This is primarily due to a reduction in the floor area of the dwellings and improved accuracy in the SAP calculations derived from using site specific unit type data; as opposed to generic data.

The updated zero carbon model shows an improvement in the district heating system carbon balance. This is primarily achieved through changes to the heat generation strategy, which omits the biomass boiler and utilises a larger CHP engine with greater electrical efficiency. The above strategy will also assist in eliminating the risks associated with operation of the biomass boiler, improve financial viability of the ESCo model and reduce charges to residents associated with the heat supply.

The total CO_2 emissions to be offset by PV has reduced; primarily due to reduction in the total energy demand. The detailed design, sizing and CO_2 reduction modelling of the PV systems is being completed by Willmott Dixon Housing. Final confirmation of achieving zero carbon target will only be possible once the PV system design has been finalised with accompanying CO_2 reduction modelling.

However, a reduction in CO_2 emissions derived the modelled total energy demand; due to changes to the dwelling specification and DHN, indicate that the development is able to accommodate a sufficient amount of PV panels to offset the remaining CO_2 emissions.

This means that the zero carbon target can still be achieved through on-site measures. The updated zero carbon calculations are provided in a series of tables which are attached in Appendix 3. These include:

- Table 1 Baseline energy demand
- Table 2 Results of SAP analysis

- Table 3 Advance Practice Energy Efficiency (APEE) demand
- Table 4 Energy demand profiles
- Table 5 Energy Strategy carbon balance
- Table 6 Solar PV

3 Exemplar Energy Centre Implementation Plan

The District Heating (DH) scheme has been based around a gas fired CHP selected for lowest CO_2 emissions. The low emissions are achieved through efficient conversion of gas to electricity. Heat is a by product of this process and the CHP installation is designed to recover the maximum amount of heat, eg condensing heat recovery from the flue gases.

The operating philosophy is for the CHP to operate at times of highest electricity price to maximise the CHP economics. All heat1 from the CHP is either used immediately by the heat loads on the DH network or is stored in the thermal stores. When the CHP is not operating the DH heat loads are served by heat stored in the thermal stores. When the thermal stores are empty the CHP is restarted to supply the DH heat loads and to replenish the thermal stores. In this way the CHP can provide 90% of the total heat demand. Gas boilers provide the other 10% of heat and operate when the heat demands exceed the capacity of the CHP and thermal stores to provide and when the CHP is off for maintenance and repair. A gas engine CHP is expected to have an annual availability of 93% ie it will be unavailable for operation 3-4weeks per year. The design strategy allow for this CHP down time.

The installed plant will be:

CHP 800 - 850kWe gross electrical efficiency of over 38% Heat efficiency over 40%

Boilers - 1600kW condensing boiler gross efficiency up to 97%

Back up Shell and tube boiler of 1600kW gross efficiency of 84%

80m3 of thermal storage

The district heating design use high quality steel and Aluflex pipe. The pipe selection has higher than standard insulation levels with additional elements within the construction to ensure continued long term maintenance of the as manufactured insulation performance. The steel pipe and jointing design, post construction testing and alarm system will ensure a long 60 year + design life. Aluflex is hybrid PEX / Aluminum preinsulated pipe which at the Bicester Exemplar operating temperature and pressures should be expect to have a similar life as for the steel DH pipe. Aluflex is used on the final connect to houses where the flexibility and availability of long continuous lengths of pipe reduce installation costs and removes the need for any pipe joining under the houses.

A water treatment system will continually monitor and adjust the pH and levels of inhibitor of the water in the DH system to ensure longest life of the plant and DH pipe. Continual fine filtration of the DH water assists in the maintenance of good water quality and prevention of the build up of larger particles within the flow that could impact upon the operation of energy centre plant or HIUs in houses.

The energy centre plant will be controlled by a BMS (Building Management System – in this case just controlling Energy Centre plant). The BMS controls pumps, boiler, and operation of CHP. The BMS monitors fire alarms, gas alarms, all plant and DH operating parameters. The BMS notes alarms and faults and relays this information in real time to maintenance staff via text message / email. The BMS allows remote access to all this information so many plant

¹ Some heat from the CHP intercooler circuit at 40C is rejected – this is too low a temperature to be utilised in the DH network. The CHP heat recovery design has reduced this heat rejection to below the usual amount.

control actions can be acted on remotely to address any fault arsing. Remote access is possible via any internet connected PC. The BMS is programmed to automatically operate back up plant should there be an alarm/fault on operating plant. This level of automation and remote monitoring and control allow the Energy Centre to operate in the main as an un manned site.

3.1 Energy Centre and DHN details

The energy centre will be designed to be fuelled by natural gas and comprise of all the necessary equipment to control, monitor and operate the system to generate the LTHW heat and distribute it around the district heating circuit to allow operation of the HIUs at each point.

Equipment will be positioned to allow for maintenance and access.

3.1.1 Energy Centre Equipment and Phasing

The energy centre (EC) will consist of the following main equipment:

- a) 1 No (1600kW) gas fired LTHW shell and tube boiler Phase 1
- b) 2 No (1600kW) gas fired LTHW shell and tube boilers Phase 2
- c) 2 No (800Kw) gas fired condensing LTHW boilers Phase 1
- d) 1No (~800kWe) gas CHP for LV generation Phase 1
- e) 2 x No 40000ltr Thermal Stores (80,000ltr Total) Phase 1
- f) New Flue/Chimney System Phase 1
- g) Main Pressurisation Unit, water softener and chemical dosing equipment and all ancillary plant equipment for the system **Phase 1**
- h) Supply, installation and commissioning of gas distribution system within the Energy Centre for the CHP and gas fired boilers **Phase 1**
- i) Building management system (BMS) Phase 1
- j) LV electrical supplies and controls to the new boilers and ancillaries from the LV switchboard / BMS panels and field wiring of all plant items and equipment within the boundary of the Energy Centre. - Phase 1
- k) LV transformer Installation and associated containment and cabling Phase 1
- I) Small power and lighting within the energy centre Phase 1
- m) Fire and gas alarms within the energy centre Phase 1
- n) Ventilation system within the energy centre Phase 1

3.1.2 Shell & Tube Boilers

The shell and tube boilers will have their own 3 port control valve and single shunt pump. Each boiler will also have its own expansion vessel and expansion relief valve. Each boiler will have its own separate flue.

Boiler/Burner shall be single fuel Natural Gas designed to generate low temperature hot water. This boiler system shall include all equipment to allow safe generation of the hot water. The boiler will be low NOx emissions.

The Equipment which forms the boiler system will generally comprise of:

- Boiler (Shell and connections) pre-insulated
- Modulating Gas Burner with control panel
- A Boiler Control panel with appropriate control sensors that communicates with the burner panel.

- Double High pressure and temperature switches connected to the boiler panel to allow compliance with BSEN 12828
- Low Pressure and Low water switches wired direct to the boiler/burner panel for protection of the boiler
- Temperature Gauges and Pressure gauges.
- Safety valve/s rated for the System design pressure. All Safety Devices shall comply with BS5978

Boiler shall be of three pass type design for high efficiency and designed to BS2790/BSEN 12953,

The boilers shall be of the following specification at least:

- Minimum number of Units: 1 unit for phase 1 (1600Kw) and 2 x (1600Kw) Phase 2
- Total Thermal Output: equal to or exceeding the design peak load for the district heating system
- Minimum thermal efficiency (NCV basis): 90%
- Test pressure: 1.5 x design pressure
- Fuel type: mains natural gas
- Water quality: treated to BS6880
- Burner turndown ration: minimum 2:1
- Maximum NOx emissions: between 60 -115mg/kwh
- Maximum noise emissions: 72dB(A) at 1m
- Boiler/Burner shall be single fuel Natural Gas designed to generate low temperature hot water.

Shell and tube Boiler Flue

A new flue will be constructed taking the exhaust gas from the boiler and releasing it outside in a safe and environmentally friendly manner. Flues will be of twin walled insulated, stainless steel design. They will be manufactured to BSEN1856-1 and Building regulations Document J. The flues will pass through the boiler house and run vertical externally. They will form a single flue run, supported internally and locally (from wall and/or ground). The chimney will be an extended part of the flue and form a three flue supported system fixed to the building. The flue shall be rated to a max temperature 200°C.

Boiler Shunt Pumps and Control valve

The shunt pumps will be variable speed pumps with a built in inverter, controlled from the BMS the back end protection three port valve will be a spring return electric valve powered and modulated from the BMS panel.

3.1.3 Condensing Boiler Specification

This boiler system shall include all equipment to allow safe generation of the hot water. Boiler will be low NOx.

The Equipment which forms the boiler system will generally comprise of:

- Boiler pre-insulated
- Modulating Gas Burner with control panel
- A Boiler Control panel with appropriate control sensors that communicates with the burner panel.
- Double High pressure and temperature switches connected to the boiler panel to allow compliance with BSEN 12828
- Low Pressure and Low water switches wired direct to the boiler/burner panel for protection of the boiler
- Temperature Gauges and Pressure gauges.
- Safety valve/s rated for the System design pressure. All Safety Devices shall comply with BS5978

Boiler shall be of condensing type design for high efficiency and designed to BS2790/BSEN 12953. The boilers shall be of the following specification at least:

- Minimum number of Units: 2 unit for phase 1 (800Kw)
- Total Thermal Output: equal to or exceeding the design peak load for the district heating system
- Minimum thermal efficiency (NCV basis): 105%
- Test pressure: 1.5 x design pressure
- Fuel type: mains natural gas 20 mbar
- Water quality: treated to BS6880
- Burner turndown ration: minimum 5:1
- Maximum NOx emissions: 40mg/Nm3 approx
- Maximum noise emissions: 72dB(A) at 1m
- Boiler/Burner shall be single fuel Natural Gas designed to generate low temperature hot water.

Boiler Shunt Pumps and Control valve

The shunt pumps will be variable speed pumps with a built in inverter, controlled from the BMS The back end protection three port valve will be a spring return electric valve powered and modulated from the BMS panel.

3.1.4 Pumps

Boiler Shunt Pumps

Each boiler has its own single shunt pump designed for full flow rate through the boiler. The pumps are inline and with inbuilt inverters to allow external modulation of the pump speed.

Pumps will include necessary equipment to minimise vibration (where required), this possibly includes inertia base and flexible or special pumps designed for pipe-mounting.

DH Pumps

Inverter driven distribution pumps, with a standby facility fitted with appropriate strainer, check valves and isolation.

Phase 1 - 2 pumps duty stand by

Phase 2 - extra pump fitted and then duty / assist / standby

The pumps will have a differential pressure switch and sensor fitted across them for monitoring. Pumps will include necessary equipment to minimise vibration (where required), this possibly includes inertia base and flexible or special pumps designed for pipe-mounting.

CHP System

Overall there will be no permanent HT dump facility for the engine and when the thermal store is fully charged the CHP will switch off.

The CHP system comprises all elements for control and operation of the CHP engine and alternator.

The system will allow generation of Low Voltage electricity, recovery of the LTHW heat and disposable of low temperature intercooler heat. The CHP is fitted with an exhaust exchanger to allow recovery exhaust gas to the LTHW circuit along with Jacket water. The CHP is to have a flue gas heat recovery heat exchanger; this is recover the heat from the exhaust system of the CHP.

The CHP acoustic enclosure is to be designed and manufactured to maintain a noise level of 65dBA at 1m from the unit.

CHP Engine and Alternator The engine shall be designed for high efficiency. Engine will be located on a bedplate to accommodate flexibly coupled engine/alternator

Complete with 24 DC starter Motor. CHP is not designed for island mode or black start

Alternator: 50Hz, synchronous, IP23, Class H insulation, Class F temperature rises.

Unit to be suitable to be connected to mains distribution via appropriate G59 protection

CHP Enclosure The CHP engine shall be installed in an acoustic enclosure with the required ventilation, designed to reduce the overall noise level to less than 65 dB(A) measured at 1m from the enclosure and ventilation inlet/outlet louvers.

Lifting beam/s shall be installed in the enclosure to accommodate maintenance of the CHP (Note: if required)

The enclosure will be designed to allow for access around the engine.

The CHP enclosure will have maintenance access to enable safe replacement of the air inlet filters and maintenance of the ventilation inlet fan.

The enclosure will be fitted with a fire and natural gas detection system. The system will comply with IGE UP 3.

Enclosure Ventilation: To supply combustion and ventilation air to maintain a maximum working temperature of about 40dgc for the engine.

This will consist of an inlet duct taking air from external, fan and attenuator located near to the enclosure. The fan will operate to maintain temperature. The outlet duct will come from a separate connection positioned to allow flow across the engine. It will exit via attenuator/s to ducting taking the air to external

Inter Cooler Circuit: A cooler circuit is required to remove the heat from the CHP intercooler and will operate continuously during CHP operation. The circuit will be filled with a glycol/additive mix to allow operation in sub-zero temperatures and through the engine.

The cooler circuit will consist of single circulation pump suitable for operation with glycol mix fluid, three port electric control valve, dry air cooler and associated pipe-work and ancillaries. Pipe-work and ancillaries will be of the same type specified in the previous section.

Dry Air Coolers: The LT dry air cooler will be positioned outside the energy centre. It will remove the heat for the Low temperature cooling circuit for the engine.

The cooler will be an air blast radiator type and shall be designed and constructed such that the genset shall operate when there is an ambient temperature of 30-35dgc and the circuit contains glycol mix for operation in potential freezing ambient conditions. The fans will be inverter controlled to help limit maximum noise level and give better temperature control. These will be controlled from the CHP system.

HT Cooler : The CHP shall incorporate an connection for a high temperature cooler, the connection for the high temperature cooler shall be incorporated at commissioning stage only. This is to get the CHP to operate, using potential load.

HT Cooling Circuit Engine cooling that can accept DH System return temperatures is to be utilised within the district heating system. This will mainly consist of the jacket water cooling, lube oil and HT intercooler. This circuit will be filled with a glycol/additive to operate through the engine.

The Circuit will include circulation shunt pump, electric heater for start-up water heating, expansion vessel and plate heat exchanger.

Electric Heater: Fitted on the return of the engine to limit low temperatures entering engine on start up.

Expansion: System will be a closed circuit so a single expansion vessel is fitted with relief valve.

Plate Heat Exchanger: The plate heat exchanger will act as interface between the CHP cooling circuit and the CHP LTHW circuit which is connected directly in to the energy centre/DH circuit. This allows the CHP cooling circuit pressure and fluid to be independent from the main circuit. This then allows higher pressures and fluids to be distributed without the limitations of the CHP.

The Plate heat exchangers will be sized to allow full transfer of heat based for the appropriate worse case temperatures (lowest LMTD)

Engine Exhaust Exchanger: The engine will be supplied with a specifically designed and manufactured (by CHP manufacturer) waste heat exchanger (exhaust gas to LTHW). Unit will be designed for direct connection into the LTHW energy centre circuit. Controls will be

integrated into the CHP for safe operation. It will be fitted appropriately sized and rated. Exchanger will be fully insulated

Exhaust System: The exhaust system will exit the engine with stainless steel flue section and enter the exhaust exchanger positioned locally to the CHP. After the exchanger the flue duct will enter a silencer. The silencer will be designed to limit noise output from the engine exhaust. The engine will be connected to the exhaust flue by flexible bellows to remove vibration.

Between the engine and exhaust exchanger will be fitted a purge system and explosion relief.

Purge system: If required an air purged system will be designed to IGE UP 3 requirements. However due to the low output of the engine and location close to the chimney, this would possibly not be required.

This would consist of high temperature damper, purge fan, duct work and controls. It will allow full purging of the CHP line before start-up.

Flue Gas Condensing Heat Exchanger: The CHP shall incorporate a flue gas condensing heat exchanger, this is to recover heat from the flue, and input the recover LTHW from the flue gas and introduce them into the system. The flue gas condensing heat exchanger shall incorporate sufficient vent and drain lines, to make a correct operation occurs of the flue gas condensing occurs.

Exhaust Flue Duct: Before Exhaust Exchanger - The exhaust ducting shall be sized to minimum pressure drop, and will be capable of handling exhaust gases up to a temperature of 500°C continuous running this will be supplied as part of the CHP package.

The exhaust silencer and ductwork to exchanger will be fully insulated and clad. Insulation will be designed for three purposes; to limit heat gain/lost into the area, protection of personnel from injury and sound reduction for duct work prior to silencer (only where duct works is external to acoustic enclosure).

After Exchanger and Flue Stack - Due to the reduced temperatures the duct work will be thin walled stainless steel suitable for use expected temperatures and pressures. The flue duct will run from the silencer to the new individual chimney

Explosion relief: An explosion relief will be fitted on the duct work after the engine to relieve pressure due to explosion should it occur. This shall be of the re-settable valve type.

Lubrication Oil System: Dirty and Clean oil tanks are to be supplied connected to the CHP system as part of the CHP automatic and manual maintenance procedures. They are fitted with oil pump and solenoids linked into the CHP control system. The lubricating oil tanks shall be located local to the CHP system and close together and both bunded. The tanks will be sized to allow for engine operation change over and maintenance cycles.

A fill cabinet shall be installed for safe filling by oil suppliers. Final operation of fill system to be determined at detailed design. A separate oil pump will be connected on the dirty oil tank and control linked to the fill cabinet to allow the tank to emptied.

CHP Control System:

The CHP will consist of a control suite consisting of three main sections. These include:

Engine Manufacturers generator: control system designed to control and regulate all engine functions which are required for a safe and reliable operation of the genset,

Power section housing the main 3 pole withdrawable synchronising breaker, CTs for monitoring the generator load current and circuit breaker. Metering and external power connection

Auxiliary Power and Control Section: Includes for additional control and I/Os for the auxiliary equipment surrounding the engine, pumps, fans control valve, external monitoring. It will also include all power supplies for the auxiliary equipment plus any extra external communication equipment. The auxiliary power is fed direct from the Power Section.

These will be fitted in a panel or panels to form the control suite for full CHP system operation, monitoring synchronising and ancillaries' control. A graphical interface will be fitted to allow interrogation and monitoring of the system.

The panels will be positioned local to the engine with easy access for operation. Final panel supply will depend on detailed design and alterations in CHP design and operation

Power and Control Cabling: All power and control cabling for the CHP will be completed for operation of the CHP system. The power cable will terminate within the Switch board.

Gas System: A CHP specific safety shut-off valve shall be fitted in the branch off line to the CHP. This will be In addition to the main building gas isolation valve. The CHP will come complete with low pressure gas booster, to boost the gas up the required level for the CHP

The engine is supplied by the manufacturer with its own gas train system. 80Mbar is required, the CHP system will come with a gas booster to achieve this.

Condensing LTHW Circuit This circuit will transfer the heat from the HT Cooling exchanger and Exhaust Heat Exchanger to the thermal store. It will run from the thermal store return connection to the plate heat exchanger and then to the Exhaust heat Exchanger. It will consist of circulating pump & three port control valve to limit minimum return to the HT heat exchanger.

Circulating Pumps (LT, HT cooling and LTHW Circuit): Single fixed speed pump designed to transfer heat from the HT Cooling circuit of the engine to the Plate Heat Exchanger/System CHP LTHW Circuit.

Pumps will include necessary equipment to minimise vibration where required, this possibly includes inertia base and flexible or special pumps designed for pipe-mounting.

3.1.5 Thermal Store

A total of 80m3 of thermal store volume will be supplied; comprising 2 x 40m3 thermal stores will be installed.

Standard thermal stores are low pressure vessels vented to atmosphere. The thermals stores are at the DH system operating pressures. The water within the thermal store (stored water) will be heated by a CHP unit utilising surplus heat from electrical generation.

Thermal Stores are fully PED compliant and designed generally to BS853 or equivalent design code. The vessel will have a suitably sized man way as per the design code. It will be fitted with sensors for monitoring and pressure gauge for operational indication. All vessels will be fitted with a relief valve.

The unit will be fully insulated and clad. The thickness of the insulation shall be in keeping BS 5970 Code of Practice and materials used in accordance with BS EN 13163:2001. Minimum insulation thickness to be 200mm. Insulation shall be water resistant. Cladding shall be resistant against corrosion and weathering and the exterior appearance shall be as agreed with the local planning authority and shown in the approved plans.

3.1.6 Chimney

The chimney will consist of 5 runs of flues for the boilers for phase 1 &2 and 1 flue stack for the CHP. In the initial phase 1 there will be 3 x flues installed for the boilers 1 x flue installed for the CHP. In phase 2 there will 2 x flue installed for the boilers. All of the flues will connect to a chimney which will rise to 12m approx from ground level.

Access points for emissions monitoring (Particulates and Nitrous oxides) will be provided in straight, vertical flue sections for the insertion of monitoring probes.

3.1.7 Ventilation

Appropriately sized and located ventilation will be installed within the building to supply air for cooling and combustion. At this stage it is envisaged that the ventilation will be a natural ventilation strategy.

Following the guidance in BS 6644 for naturally ventilated plant rooms the required free area would be 2.95 m2 at low level and 2.22 m2 at high level for boilers and 2.50 m2 at inlet and 6.25 m2 at outlet for CHP.

Louvers should have mullions into which blades are fitted and designed to withstand wind loads. Louvres shall provide suitable resistance to rain ingress.

Steel Construction: Casing of 1.5mm galvanised steel. Galvanised louvre blades of aerodynamic section set it approximately 45° on 150mm pitches. A raised lip shall be incorporated at the rear of each blade to minimise rain ingress. The bird screen shall consist of 12mm × 12mm × 1mm galvanised after manufacture wire mesh.

Aluminium Construction: Casing of 1.5mm aluminium. Aluminium louvre blades of aerodynamic section set at approximately 45°, on 150mm pitches. A raised lip shall be incorporated at the rear of each blade to minimise rain ingress. The bird screen shall consist of 12mm × 12mm × 1mm galvanised after manufacture core mesh.

Finishes: The louvres shall be polyester powder painted to a suitable BS 4800 or RAL colour agreed with the architect/client.

3.1.8 Water Softener

An appropriate sized water softener will be fitted in the feed line to the pressurisation unit. This will be of the duplex type to allow operation during charging. It will be supplied with Brine tank. The control of the water softener will be automatic, recharging on volume used. The softener will be sized for make up only and will sit on the cold feed make up line.

3.1.9 Side Stream Filter and Dosing

A side stream filter will be fitted on the flow side of the Distribution system prior to the main DH pump. It will be fitted with its own pump to generate the flow across it

3.1.10 De-aerator and Dirt Separator

A De-aerator is to be fitted in high level pipe-work on the Flow side prior to the pumps. The unit will be fitted with automatic air vent piped to low level.

A dirt separator will be fitted on the return leg of the district heating line. The unit will be of the demountable type for easy maintenance. As the system will be new the unit will not require a magnet.

3.1.11 Pressurisation and Expansion

This will be a Open spill type system to minimise floor area.

The unit will be supplied with electronic level control to allow correct operation of the water softener. Feed pumps will be duty/standby with pressure switches and electronic controller. The control will include hard wired pressure switches for alarm indication

The spill tank will have level indication on the outside and come complete with overflow and low level detection. The unit will have a suitably sized expansion/control vessel to limit spill valve operation during normal operation pressure changes. The unit will also include an expansion relief valve discharging back to the spill tank.

The make up valves will be solenoid fully open/close type to maintain a constant flow during filling

3.1.12 Electrical systems

To accommodate the CHP generated power 800kWe a HV connection is required back to the HV supply. A transformer is to be installed in the switch room for connection back to the DNO HV supply connection point (to be confirmed after application).

An LV switchboard will be installed to feed the essential services control panel, BMS control panel and the various items of Plant in the energy centre. Including the Boilers, DH Pumps and Shunt pumps

The Essential Services Distribution Board will supply power to the internal and external lighting, energy centre small power, gas & fire detection systems, CCTV and intruder alarm (Gas & Fire, CCTV and Intruder by others).

Final confirmation of panels, distribution, connections and configuration shall be determined at detail design stage

The power supply requirements will be 3 Phase and Neutral 400V @ 50Hz, with single Phase and neutral 230V for some small equipment and panels. Where possible the control voltages will be 24Vac except for the gas isolation valve which will 230V to enable possible link to safety circuits.

The new BMS control panel will be supplied power from the LV Switchboard. This will Monitor and control the various equipment within the plant room and allow full control of the energy centre as detailed in the operating and control philosophies. The panel will allow local and remote monitoring with the use of relevant software.

DH Monitoring: The District Heating is monitored by a leak detection system within the pipe linking to a local monitoring system in the energy centre and linked to the BMS controller for remote alarms.

Small power internal / external lighting and equipotential bonding / earthing will be installed by VE within the boiler house area. Lighting will be installed to achieve generally 250Lux. Emergency lighting will be fitted to achieve approximately 2Lux.

All power and connections will be designed and installed in accordance with BS7671:2008 Requirements for Electrical Installations

Emergency Stops: An Emergency stop will be located on the main BMS Panel. Emergency Stops will be located near the motor equipment, and pumps. Gas Isolation Buttons will be located at appropriate exits. A full assessment to be carried out at detailed design stage

3.2 Operational Regime of Energy Centre

The DH scheme has been based around a gas fired CHP selected for lowest CO_2 emissions. The low emissions are achieved through efficient conversion of gas to electricity. Heat is a by product of this process and the CHP installation is designed to recover the maximum amount of heat, eg condensing heat recovery from the flue gases.

The operating philosophy is for the CHP to operate at times of highest electricity price to maximise the CHP economics. All heat from the CHP is either used immediately by the heat loads on the DH network or is stored in the thermal stores. When the CHP is not operating the DH heat loads are served by heat stored in the thermal stores. When the thermal stores are empty the CHP is restarted to supply the DH heat loads and to replenish the thermal stores. In this way the CHP can provide 90% of the total heat demand. Gas boilers provide the other 10% of heat and operate when the heat demands exceed the capacity of the CHP and thermal stores to provide and when the CHP is off for maintenance and repair. A gas engine CHP is expected to have an annual availability of 93% ie it will be unavailable for operation 3-4weeks per year. The design strategy allow for this CHP down time.

Some heat from the CHP intercooler circuit at 40C is rejected – this is too low a temperature to be utilised in the DH network. The CHP heat recovery design has reduced this heat rejection to below the usual amount.

The energy centre plant is controlled by a BMS (Building Management System – in this case just controlling Energy Centre plant). The BMS controls pumps, boiler, and operation of CHP. The BMS monitors fire alarms, gas alarms, all plant and DH operating parameters. The BMS notes alarms and faults and relays this information in real time to maintenance staff via text message / email. The BMS allows remote access to all this information so many plant control actions can be acted on remotely to address any fault arsing. Remote access is possible via any internet connected PC. The BMS is programmed to automatically operate back up plant should there be an alarm/fault on operating plant. This level of automation and remote monitoring and control allow the Energy Centre to operate in the main as an un manned site.

3.3 District Heating Network Operation, Efficiency & Installation

The district heating design use high quality steel and Aluflex pipe. The pipe selection has higher than standard insulation levels with additional elements within the construction to ensure continued long term maintenance of the as manufactured insulation performance. The steel pipe and jointing design, post construction testing and alarm system will ensure a long 60 year + design life. Aluflex is hybrid PEX / Aluminum pre-insulated pipe which at the Bicester Exemplar operating temperature and pressures should be expect to have a similar life as for the steel DH pipe. Aluflex is used on the final connect to houses where the flexibility and availability of long continuous lengths of pipe reduce installation costs and removes the need for any pipe joining under the houses.

A water treatment system will continually monitor and adjust the pH and levels of inhibitor of the water in the DH system to ensure longest life of the plant and DH pipe. Continual fine filtration of the DH water assists in the maintenance of good water quality and prevention of the build up of larger particles within the flow that could impact upon the operation of energy centre plant or HIUs in houses.

Below are the design parameters of the district heating network.

3.3.1 District Heating Design Parameters

Primary District Heating

The design conditions of the District Heating (DH) system are:

Flow Temperature in winter (normal) 85C

Return Temperature in winter (normal)40C

Maximum flow temperature	90C
Maximum working pressure	6 bar g
Minimum working pressure	0.7 bar g
Test pressure	9 bar g
Maximum differential pressure	3.5 bar
Minimum differential pressure	0.5 bar

The minimum flow temperature in summer shall be used when sizing the plate heat exchanger for domestic hot water production

Heating Circuit

It is required that the heating system in houses and that non domestic heat connections are designed to the following parameters:

Flow Temperature in winter (normal) 70C

Return temperature in winter (normal) 40C

Maximum	working pressure	6 bar g
---------	------------------	---------

Test pressure	9 bar g
---------------	---------

Domestic Hot Water Service

The domestic hot water service (DHWS) shall be designed to the following parameters:

Minimum DH flow temperature	75C	
DH return temperature at maximum hot water supp	oly	25C
DHWS maximum required flow rate	0.3 liti	res/sec
DHWS design cold feed temperature	10C	
DHWS supply temperature	48C	
DHWS supply temperature (non domestic connect	ions)	55C
Minimum cold water supply pressure	0.5 ba	ar
Maximum cold water supply pressure	3.0 ba	ar

Note: Where cold water supply pressures are found to be less than the minimum required by the HIU, a solution for operating the HIU shall be and agreed with SSE/Vital. Pressure-reducing valves shall be installed where supply pressures are observed or likely to be in excess of the maximum for the HIU. The Supplier shall provide the solution for low and high pressure situations.

It is import that these parameters of the district heating network are adhered to, as a change to these parameters will affect the thermal efficiency of the system. If the system is to operate at a higher temperature, this generates more heat losses in the distribution system, this then decreases the thermal efficiency of the system, as the equipment used to produce the energy within the network has to increase in terms of hours of operation, to produce the energy required for the increased heat losses on the network.

At present the network is proposed to operate at the following parameters:

Flow Temperature in winter (normal) 85C

Return Temperature in winter (normal)40C

Maximum flow temperature 90C

This would at present give 28% (approx.) thermal losses on the network. This is based on using a district heating design use high quality steel and Aluflex pipe. The DH pipe has increased insulation thickness (Series 2) and a vapour barrier over insulation to ensure long term maintenance of the thermal performance of the pipe insulation.

3.4 District Heating Pipework Installation

The district heating network is typically installed using the following procedures

- A trench is dug using the parameters set out below 1
- 2 Pipework is welded/jointed together above trench using the parameters set out below
- 3 Pipework is then lowered into trench using the parameters set out below
- 4 Trench is then back filled using the parameters set out below

The min. dimensions, stone less sand layer, distance between the outer casings and the cover of the pipes, required for a correct system function, appear from the trench profile.

The minimum cover of 400 mm allows a maximum surface load of 800-900 kPa (0.8-0.9N/mm2). In areas with heavy traffic 400 mm are measured from the top of the pipes to the bottom of the road layer.

In areas with no traffic 400 mm are measured to the top of the area (1).

In connection with pipe dimensions larger than ø 609.6/780 mm the necessary installation depth and pipe distance are determined in each case.

At branches the 400 mm are measured from the top of the branch pipe.

If the cover is less than 400 mm the pipes must be secured against overloading - e.g.by means of a reinforced concrete plate.

Excavation of trench: The Contractor pipes are installed in trenches in accordance with the minimum dimensions appearing from the table.

Installation in trench

The pipes can be installed in the trench, supported by cushions of sand or sleeperswhich are removed before the trench is filled with sand.

In case of joints it is recommended to increase the trench width and depth to 250-300 mm to ensure good space for welding and installation of the muffs.

Connection above trench

A simple and quick installation is achieved by connecting several pipes above or alongside the trench.

Support the pipes by sleepers, made from square timber e.g. 100 x 100 mm, with suitable distance between them.

Bicester Eco Development — Energy Strategy Implementation Plan Hyder Consulting (UK) Limited-2212959 http://ukr.hybis.info/projects/ln/awarded/ua001881/f_reports/energy strategy implementa strategy implementation plan.doc

Sleepers must also be used, if several pipe lengths are installed alongside the edge of the trench.

When installing pipes with built-in surveillance system place the pipes so that there is only one label at each joint.

This is necessary for the surveillance system to function.

Lowering into trench

When a pipe length has been welded together, the pressure test has been carried out and the muffs installed and insulated, lower the section into the trench with wide straps by means of cranes. The number of straps and cranes depends on the length and dimension of the pipe section. When utilizing this installation technique, it is important to keep the pressure limitation of max. 300 kPa on the outer casing. Deflections may not result in tensile stresses >

200 kPa, corresponding to a material strain of approx. 0.1%. See curved pipes, section 2, elastic radius.

Backfilling

Level the bottom of the trench with a min. 100 mm stone free sand layer which is compacted.

Remove all sleepers after installation of the pipes and cover with 100 mm stone free sand.

Place the warning tapes on the sand surface and make final backfilling with an optional stone free material.

The sand surrounding the pipes is important - not just to protect the pipes, but also to ensure the friction between the outer casings and the sand which restrains the expansion of the pipes as provided in the installation rules.

Appendix 1

CHP Engine Specification

08/2012

Technical Description

Cogeneration Unit

JMS 412 GS-N.L

For Information

Electrical output

844 kW el.

Thermal output

865 kW

Emission values NOx < 500 mg/Nm³ (5% O2)

0.01 Technical Data (at module)	3
Main dimensions and weights (at module)	4
Connections	4
Output / fuel consumption	4
0.02 Technical data of engine	5
Thermal energy balance	5
Exhaust gas data	5
Combustion air data	5
Sound pressure level	6
Sound power level	6
0.03 Technical data of generator	7
Reactance and time constants (saturated)	7
0.04 Technical data of heat recovery	8
General data - Hot water circuit	8
Mixture Intercooler (1st stage)	8
Mixture Intercooler (2nd stage) (Intercooler separate)	8
Heat exchanger lube oil	8
Heat exchanger engine jacket water	8
Exhaust gas heat exchanger	8
connection variant F	9
0.10 Technical parameters	10

0.01 Technical Data (at module)

Data at:				Full	Part Loa	d
				load		
Fuel gas LHV		kWh/Nm³		9.5		
				100%	75%	50%
Energy input		kW	[2]	1,977	1,525	1,074
Gas volume		Nm³/h	*)	208	161	113
Mechanical output		kW	[1]	871	653	435
Electrical output		kW el.	[4]	844	631	418
Recoverable thermal output						
~ Intercooler 1st stage		kW		164	83	24
~ Lube oil		kW		110	95	79
~ Jacket water		kW		217	188	158
~ Exhaust gas cooled to 120 ℃		kW		374	311	234
Total recoverable thermal output		kW	[5]	865	677	495
Total output generated		kW total		1,709	1,308	912
Heat to be dissipated						
~ Intercooler 2nd stage		kW		53	44	29
~ Lube oil		kW		~	~	~
~ Surface heat	ca.	kW	[7]	69	61	55
Spec. fuel consumption of engine		kWh/kWh	[2]	2.27	2.34	2.47
Lube oil consumption	ca.	kg/h	[3]	0.26	~	~
Electrical efficiency		%		42.7%	41.4%	38.9%
Thermal efficiency		%		43.8%	44.4%	46.0%
Total efficiency		%	[6]	86.4%	85.8%	84.9%
Hot water circuit:						
Forward temperature		C		90.0	85.7	81.4
Return temperature		C	_	70.0	70.0	70.0
Hot water flow rate		m³/h		37.1	37.1	37.1

*) approximate value for pipework dimensioning [_] Explanations: see 0.10 - Technical parameters

All heat data is based on standard conditions according to attachment 0.10. Deviations from the standard conditions can result in a change of values within the heat balance, and must be taken into consideration in the layout of the cooling circuit/equipment (intercooler; emergency cooling; ...). In the specifications in addition to the general tolerance of +/- 8% on the thermal output a further reserve of 10% is recommended for the dimensioning of the cooling requirements.

Main dimensions and weights (at module)

Length	mm	~ 6,000
Width	mm	~ 1,800
Height	mm	~ 2,200
Weight empty	kg	~ 14,200
Weight filled	kg	~ 14,900

Connections

Hot water inlet and outlet	DN/PN	80/10
Exhaust gas outlet	DN/PN	300/10
Fuel gas (at gas train)	DN/PN	125/16
Fuel Gas (at module)	DN/PN	125/10
Water drain ISO 228	G	1⁄2"
Condensate drain	DN/PN	50/10
Safety valve - jacket water ISO 228	DN/PN	1½"/2,5
Safety valve - hot water	DN/PN	40/16
Lube oil replenishing (pipe)	mm	28
Lube oil drain (pipe)	mm	28
Jacket water - filling (flex pipe)	mm	13
Intercooler water-Inlet/Outlet 1st stage	DN/PN	80/10
Intercooler water-Inlet/Outlet 2nd stage	DN/PN	65/10

Output / fuel consumption

ISO standard fuel stop power ICFN	kW	871
Mean effe. press. at stand. power and nom. speed	bar	19.00
Fuel gas type		Natural gas
Based on methane number Min. methane number	MZ d)	94 70
Compression ratio	Epsilon	12.50
Min./Max. fuel gas pressure at inlet to gas train	mbar	80 - 200 c)
Allowed Fluctuation of fuel gas pressure	%	± 10
Max. rate of gas pressure fluctuation	mbar/sec	10
Maximum Intercooler 2nd stage inlet water temperature	C	40
Spec. fuel consumption of engine	kWh/kWh	2.27
Specific lube oil consumption	g/kWh	0.30
Max. Oil temperature	Ĵ	85
Jacket-water temperature max.	Ĵ	95
Filling capacity lube oil (refill)	lit	~ 315

c) Lower gas pressures upon inquiryd) based on methane number calculation software AVL 3.1 (calculated without N2 and CO2)

0.02 Technical data of engine

Manufacturer		GE Jenbacher
Engine type		J 412 GS-B05
Working principle		4-Stroke
Configuration		V 70°
No. of cylinders		12
Bore	mm	145
Stroke	mm	185
Piston displacement	lit	36.66
Nominal speed	rpm	1,500
Mean piston speed	m/s	9.25
Length	mm	3,200
Width	mm	1,495
Height	mm	2,085
Weight dry	kg	5,200
Weight filled	kg	5,695
Moment of inertia	kgm²	9.42
Direction of rotation (from flywheel view)		left
Radio interference level to VDE 0875		Ν
Starter motor output	kW	7
Starter motor voltage	V	24
Thermal energy balance		
Energy input	kW	1,977
Intercooler	kW	217
Lube oil	kW	110
Jacket water	kW	217
Exhaust gas total	kW	501
Exhaust gas cooled to 180 °C	kW	293
Exhaust gas cooled to 100 ℃	kW	401
Surface heat	kW	42
Exhaust gas data		
Exhaust gas temperature at full load	°C [8]	390
Exhaust gas temperature at bmep= 14.3 [bar]	C	~ 412
Exhaust gas temperature at bmep= 9.5 [bar]	C	~ 435
Exhaust gas mass flow rate, wet	kg/h	4,494
Exhaust gas mass flow rate, dry	kg/h	4,175
Exhaust gas volume, wet	Nm³/h	3,551
Exhaust gas volume, dry	Nm³/h	3,167
Max.admissible exhaust back pressure after engine	mbar	60
Combustion air data		
Combustion air mass flow rate	kg/h	4,352
Combustion air volume	Nm³/h	3,367
Max, admissible pressure drop at air-intake filter	mbar	10

Sound pressure level

Aggrega	ate b)	dB(A) re 20µPa	95
31,5	Hz	dB	87
63	Hz	dB	88
125	Hz	dB	95
250	Hz	dB	95
500	Hz	dB	94
1000	Hz	dB	90
2000	Hz	dB	86
4000	Hz	dB	84
8000	Hz	dB	86
Exhaust	gas a)	dB(A) re 20µPa	117
Exhaust 31,5	gas a) Hz	dB(A) re 20µPa dB	117 105
Exhaust 31,5 63	gas a) Hz Hz	dB(A) re 20µPa dB dB	117 105 120
Exhaust 31,5 63 125	gas a) Hz Hz Hz	dB(A) re 20µPa dB dB dB	117 105 120 115
Exhaust 31,5 63 125 250	gas a) Hz Hz Hz Hz	dB(A) re 20µPa dB dB dB dB dB	117 105 120 115 113
Exhaust 31,5 63 125 250 500	i gas a) Hz Hz Hz Hz Hz	dB(A) re 20µPa dB dB dB dB dB dB	117 105 120 115 113 113
Exhaust 31,5 63 125 250 500 1000	igas a) Hz Hz Hz Hz Hz Hz	dB(A) re 20µPa dB dB dB dB dB dB dB dB	117 105 120 115 113 113 113 111
Exhaust 31,5 63 125 250 500 1000 2000	gas a) Hz Hz Hz Hz Hz Hz Hz	dB(A) re 20µPa dB dB dB dB dB dB dB dB dB	117 105 120 115 113 113 111 108
Exhaust 31,5 63 125 250 500 1000 2000 4000	gas a) Hz Hz Hz Hz Hz Hz Hz Hz	dB(A) re 20µPa dB dB dB dB dB dB dB dB dB dB dB	117 105 120 115 113 113 113 111 108 109

Sound power level

Aggregate	dB(A) re 1pW	115
Measurement surface	m²	95
Exhaust gas	dB(A) re 1pW	125
Measurement surface	m²	6.28

a) average sound pressure level on measurement surface in a distance of 1m according to DIN 45635, precision class 2.

b) average sound pressure level on measurement surface in a distance of 1m (converted to free field) according to DIN 45635, precision class 3.

The spectra are valid for aggregates up to bmep=19 bar. (for higher bmep add safety margin of 1dB to all values per increase of 1 bar pressure).

For operation with 1200 rpm see above values, for operation with 1800 rpm add 3 dB to the above values. Engine tolerance \pm 3 dB

0.03 Technical data of generator

Manufacturer		STAMFORD e)
Туре		PE 734 B e)
Type rating	kVA	1,305
Driving power	kW	871
Ratings at p.f. = 1,0	kW	844
Ratings at p.f. = 0.8	kW	835
Rated output at p.f. = 0.8	kVA	1,044
Rated current at p.f. = 0.8	А	1,453
Frequency	Hz	50
Voltage	V	415
Speed	rpm	1,500
Permissible overspeed	rpm	2,250
Power factor lagging		0,8 - 1,0
Efficiency at p.f. = 1,0	%	96.9%
Efficiency at p.f. = 0.8	%	95.9%
Moment of inertia	kgm²	31.75
Mass	kg	2,710
Radio interference level to VDE 0875		Ν
Construction		B3/B14
Protection Class		IP 23
Insulation class		Н
Temperature (rise at driving power)		F
Maximum ambient temperature	C	40
Total harmonic distortion	%	1.5

Reactance and time constants (saturated)

xd direct axis synchronous reactance	p.u.	2.25
xd' direct axis transient reactance	p.u.	0.14
xd" direct axis sub transient reactance	p.u.	0.10
Td" sub transient reactance time constant	ms	10
Ta Time constant direct-current	ms	20
Tdo' open circuit field time constant	S	2.14

e) GE Jenbacher reserves the right to change the generator supplier and the generator type. The contractual data of the generator may thereby change slightly. The contractual produced electrical power will not change.

0.04 Technical data of heat recovery

General data - Hot water circuit

Total recoverable thermal output	kW	865
Return temperature	ç	70.0
Forward temperature	ç	90.0
Hot water flow rate	m³⁄h	37.1
Nominal pressure of hot water / (operating pressure)	PN/(bar)	10 / (6)
Pressure drop hot water circuit	bar	0.90
Maximum Variation in return temperature	ç	+0/-20
Max. rate of return temperature fluctuation	℃/min	10

Mixture Intercooler (1st stage)

Туре	gilled pipes	
Nominal pressure of hot water / (operating pressure)	PN/(bar)	10 / (6)
Pressure drop hot water circuit	bar	0.30
Hot water connection	DN/PN	80/10

Mixture Intercooler (2nd stage) (Intercooler separate)

Туре	gilled pipes		
Nominal pressure of hot water / (operating pressure)	PN / (bar)	10 / (6)	
Pressure drop hot water circuit	bar	0.80	
Hot water connection	DN/PN	65/10	

Heat exchanger lube oil

Туре	p	late heat exchanger
Nominal pressure of hot water / (operating pressure)	PN/(bar)	10 / (6)
Pressure drop hot water circuit	bar	0.20
Hot water connection	DN/PN	80/10

Heat exchanger engine jacket water

Туре	р	late heat exchanger
Nominal pressure of hot water / (operating pressure)	PN/(bar)	10 / (6)
Pressure drop hot water circuit	bar	0.20
Hot water connection	DN/PN	80/10

Exhaust gas heat exchanger

Туре	s	hell-and-tube
PRIMARY:		
Exhaust gas pressure drop approx	bar	0.02
Exhaust gas connection	DN/PN	300/10
SECONDARY:		
Nominal pressure of hot water / (operating pressure)	PN / (bar)	10 / (6)
Pressure drop hot water circuit	bar	0.20
Hot water connection	DN/PN	80/10

connection variant F JMS412GS-NL J 412 GS-B05

Hot water circuit

0.10 Technical parameters

All data in the technical specification are based on engine full load (unless stated otherwise) at specified temperatures and the methane number and subject to technical development and modifications.

All pressure indications are to be measured and read with pressure gauges (psi.g.).

- (1) At nominal speed and standard reference conditions ICFN according to DIN-ISO 3046 and DIN 6271, respectively
- (2) According to DIN-ISO 3046 and DIN 6271, respectively, with a tolerance of + 5 %. Efficiency performance is based on a new unit (immediately upon commissioning).Effects of degradation during normal operation can be mitigated through regular service and maintenance work.
- (3) Average value between oil change intervals according to maintenance schedule, without oil change amount
- (4) At p. f. = 1.0 according to VDE 0530 REM / IEC 34.1 with relative tolerances
- (5) Total output with a tolerance of +/- 8 %
- (6) According to above parameters (1) through (5)
- (7) Only valid for engine and generator; module and peripheral equipment not considered
- (8) Exhaust temperature with a tolerance of +/- 8 %

Radio interference level

The ignition system of the gas engines complies the radio interference levels of CISPR 12 and EN 55011 class B, (30-75 MHz, 75-400 MHz, 400-1000 MHz) and (30-230 MHz, 230-1000 MHz), respectively.

Definition of output

• ISO-ICFN continuous rated power:

Net break power that the engine manufacturer declares an engine is capable of delivering continuously, at stated speed, between the normal maintenance intervals and overhauls as required by the manufacturer. Power determined under the operating conditions of the manufacturer's test bench and adjusted to the standard reference conditions.

- Standard reference conditions: Barometric pressure: 1000 mbar (14.5 psi) or 100 m (328 ft) above sea level Air temperature: 25℃ (77年) or 298 K Relative humidity: 30 %
- Volume values at standard conditions (fuel gas, combustion air, exhaust gas) Pressure: 1013 mbar (14.7 psi) Temperature: 0℃ (32年) or 273 K

Output adjustment for turbo charged engines

Standard rating of the engines is for an installation at an altitude \leq **500 m** and an air intake temperature \leq **30 °C** (T1)

Maximum room temperature: 50℃ (T2) -> engine stop

If the actual methane number is lower than the specified, the knock control responds. First the ignition timing is changed at full rated power. Secondly the rated power is reduced. These functions are carried out by the engine management system.

Exceedance of the voltage and frequency limits for generators according to IEC 60034-1 Zone A will lead to a derate in output.

Parameters for the operation of GE Jenbacher gas engines

The genset fulfills the limits for mechanical vibrations according to ISO 8528-9.

If possible, railway trucks must not be used for transport (TI 1000-0046).

The following "Technical Instruction of GE JENBACHER" forms an integral part of a contract and must be strictly observed: **TI 1100-0110, TI 1100-0111, and TI 1100-0112.**

Parameters for the operation of control unit and the electrical equipment

Relative humidity 50% by maximum temperature of 40°C. Altitude up to 2000m above the sea level.

PV Roof Area Information

BICESTER ECO TOWN EXEMPLAR SITE ACCOMMODATION SCHEDULE

Plot No.	PRP GIA Affordable [m ²]	PRP GIA Private [m²]		difference in GIA between Tender & PRP current	No. of storeys	TENURE	ТҮРЕ	MATERIAL - WALL	ROOF TYPE	MATERIAL - ROOF	PRP - LOFT FARRELLS - LOFT ADAPTABLE LABC ADAPTIONS TYPE COMPLIANT IN CONSENT	ENRICHED UNITS ROOM IN ROOF AS CONSENT BASE DESIGN	UNITS WITH HOME OFFICE (POTENTIAL ROOF ADAPTION/G ARAGE OR IN BASEBUILD)	HOME OFFICE	PV TYPE	OF AREA South facing	OF AREA AS REPORTED BY DBR	RDEN ROOM South facing	Farrells Drg. No. BIMP2_PA _05_xxx	PRP Drg. No. AA2699/1.0/xxx	IENT APPROVAL STATUS
1		150.9	4 589P 1	1 -13.86	Detached 2	Private	5	Bekstone	Linear	Slate	NA S	N	1	YES	B	RC	46.31	<i>i</i> g	092.0	AA2699C / 1.3 /048	5
3		119.3	2 4B6P 1 2 4B6P 1	1 5.92	Detached 2 Detached 2 Detached 2	Private Private	5	Bekstone Bekstone	Gable	Bekstone	N S	N .	1	POT G POT G	с с		44.44		092-0	AA2699C / 1.3 /045 AA2699C / 1.3 /045	
5		119.3 92.7	2 486P 1 6 385P 1	1 8.62 1 0.76	Detached 2 nd Terrace 2	Private Private	5	Brick [red] Brick [red]	Gable Linear	Slate Alternative	N S Y S		1	POT G POT L	B	35.39	44.53 36.06			AA2699C / 1.3 /045 AA2699C / 1.3 /043	
7 8		83.0	2B4P 1 2B4P-crank 1	1.10 1.10 1.10	Mid Terrace 2 Mid Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	31.89	34.40 36.06			AA2699C / 1.3 /040	
9 10		92.7 92.7	6 3B5P 1 6 3B5P 1	1 0.76 E	nd Terrace 2 nd Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Slate	Y S Y S		1 1	POT L POT L	B	35.39 35.39	36.06 35.84			AA2699C / 1.3 /043 AA2699C / 1.3 /043	
11		85.84	2B4P-crank 1 0 2B4P 1	2.74	Aid Terrace 2 Aid Terrace 2 and Terrace 3	Private Private	5	Brick [red] Brick [red]	Linear Linear	Slate	N Y S		1	YES	B	31.89	35.95			AA2699C / 1.3 /040	
14		119.3	2 4B6P 1 2 4B6P 1	5.92	Detached 2 Detached 2	Private	5	Bekstone Brick [red]	Gable	Slate	N S		0	NO	B		44.53			AA2699C / 1.3 /045 AA2699C / 1.3 /045 AA2699C / 1.3 /045	
16		159.20	4B6P 1 2 4B6P 1	1 0.00 I 1 5.92 I	Detached 2.5 Detached 2	Private Private	E1 - [HY] 3	Timber	Monopitch Gable	Slate	N S	Y	1	YES POT G	B		39.24		073-A	AA2699C / 1.3 /045 AA2699C / 1.3 /045	
18 19		119.3 119.3	2 486P 1 2 486P 1	1 5.92 1 1 5.92 1	Detached 2 Detached 2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N S N S		1	POT G POT G	B B		44.37 44.37			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
20		92.7	6 385P 1 0 284P 1	1 -2.74 1 1.10	nd Terrace 2 Mid Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Slate Alternative	Y 5 Y 5		1	POT L POT L	B	35.39 31.89	41.06 34.40			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
22		81.7 81.7 81.7	8 2B4P 1 8 2B4P 1	-0.12	nd Terrace 2 nd Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative	Y S Y S		1	POT L POT L	B	31.89 31.89	32.18			AA2699C / 1.3 /040 AA2699C / 1.3 /040	
24 25 26		92.7	6 385P 1	-2.74	nd Terrace 2 nd Terrace 2 Detached 2	Private Private	1	Brick [red] Brick [red] Bender [White]	Linear Cable	Alternative	Y 5 Y 5		1	POT L POT L	B	31.89	41.06			AA2699C / 1.3 /040 AA2699C / 1.3 /043 AA2699C / 1.3 /045	
20		119.3	2 4B6P 1 2 4B6P 1	5.92	Detached 2 Detached 2 Detached 2	Private	5	Render [White] Render [White]	Gable	Bekstone	N S		1	POT G	c c		44.37			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
29 30		119.3 196.10	2 4B6P 1 5B10P 1	1 5.92 I 1 0.00 I	Detached 2 Detached 2	Private Private	5 E2 - [PH]	Render [White] Brick [red]	Gable Linear	Bekstone Slate	N S	N	1 0	POT G NO	C B		44.37 43.09		092-D	AA2699C / 1.3 /045	
31 32		119.3 119.3	2 4B6P 1 2 4B6P 1	1 5.92 1 1 5.92 1	Detached 2 Detached 2	Private Private	5	Render [White] Render [White]	Gable Gable	Bekstone Bekstone	N S N S		1	POT G POT G	B		44.24 44.24			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
33		119.3 150.9	2 486P 1 4 589P 1	1 5.92 1 1 -13.86 1	Detached 2 Detached 2	Private Private	5	Render [White] Brick [red]	Gable Gable	Slate	N S NA S		1	POT G YES	B		44.49			AA2699C / 1.3 /045 AA2699C / 1.3 /048	
35		150.9	2 486P 1	1 -13.86 I 5.92 I	Detached 2 Detached 2 Detached 2	Private Private	5	Brick [red] Bekstone Bekstone	Gable	Slate	NA S N S		1	POT G	B		46.31			AA2699C / 1.3 /048 AA2699C / 1.3 /045 AA2699C / 1.3 /045	
38	89.54 3B5P 77.24 2B4P	1 End Terrace 1 Mid Terrace		-5.96	2	Affordable [Rent] Affordable [Rent]	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y L		1	POT L POT L	B	34.20 29.27	38.28 34.40			AA2699C / 1.3 /036 AA2699C / 1.3 /035	
40 41	76.02 2B4P	1 End Terrace 81.7	8 2B4P 1	-5.88 1 -0.12	nd Terrace 2	Affordable [Rent] Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y L Y S		1 1	POT L POT L	B	29.27 31.89	32.18 32.18			AA2699C / 1.3 /035 AA2699C / 1.3 /040	
42		83.0 92.7	284P 1 6 385P 1 2 486P	1.10 1.2.74	nd Terrace 2 nd Terrace 2	Private Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Slate	Y S Y S		1	POT L POT L	B B	31.89 35.39	34.40 38.28			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
44		119.3 119.3 119.3	2 486P 1 2 486P 4	5.92 5.92	Detached 2 Detached 2	Private	3	Timber	Gable	Slate	N S		1	POT G	B	<u> </u>	44.49		 	AA2699C / 1.3 /045 AA2699C / 1.3 /045	
47		119.3	2 486P 1 2 486P 1	1 5.92 1 1 5.92 1	Detached 2 Detached 2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N 5 N 5		1	POT G POT G	B	E	44.49		E	AA2699C / 1.3 /045 AA2699C / 1.3 /045	
49 50		183.00 150.9	5B9P 1 4 5B9P 1	1 0.00 1 1 -13.86 1	Detached 2.5 Detached 2	Private Private	E1 - [HY] 1	Brick [red] Brick [red]	Sawtooth / Linear Gable	Slate Slate	NA S	Y	1	YES YES	B B		67.13 44.49		074-C	AA2699C / 1.3 /048 AA2699C / 1.3 /048	
51 52		119.3 119.3	2 486P 1 2 486P 1	5.92	Detached 2 Detached 2	Private Private	5	Render [White] Render [White]	Gable Gable	Bekstone Bekstone	N S		1	POT G POT G	B	<u> </u>	44.49			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
53	<u> </u>	119.3 119.3 118.70	2 486P 1 385P 1	5.92 I 5.92 I	Detached 2 nd Terrace 2	Private Private	5 5 E1 - (HV1	Render [White] Timber	Gable Saw tooth	Bekstone	N S	v	1 1 1	POT G POT G YES	B	—	44.49 44.49 44.07		070-6	AA2699C / 1.3 /045	
56	89.54 3B5P 89.54 3B5P	1 End Terrace		-7.96	2.5	Affordable [Rent] Affordable [Rent]	5	Brick [red] Brick [red]	Linear Linear	Slate	Y S		1	POT L	B	34.20 34.20	40.36			AA2699C / 1.3 /036 AA2699C / 1.3 /036	
58	89.54 3B5P 89.54 3B5P	1 Mid Terrace 1 End Terrace		-7.96 -7.96	2	Affordable [Rent] Affordable [Rent]	5 5	Brick [red] Brick [red]	Linear Linear	Slate Slate	Y S Y S		1	POT L POT L	B B	34.20 34.20	40.36 40.36			AA2699C / 1.3 /036 AA2699C / 1.3 /036	
60 61	89.54 3B5P 77.24 2B4P	1 End Terrace 1 Mid Terrace		-7.96	2	Affordable [Rent] Affordable [Rent]	5	Render [White] Render [White]	Gable Gable	Slate	N S N L		0	NO NO	B	36.39 32.38	35.97 31.10			AA2699C / 1.3 /036 AA2699C / 1.3 /035	
62 63	76.02 2B4P	1 End Terrace 81.7	8 2B4P 1	-8.38	nd Terrace 2 Aid Terrace 3	Affordable [Rent] Private	5	Render [White] Render [White]	Gable Gable	Slate Slate	N L N L		0	NO NO	B	32.38 33.26	35.43 31.10			AA2699C / 1.3 /035 AA2699C / 1.3 /040	
65	119.48 4B7P	92.7 1 Semi Detached	6 3B5P 1	-1.40	nd Terrace 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Private Affordable [Rent]	5	Render [White] Render [White]	Gable Gable	Slate	N 5 N L		0	NO POT G	B	37.41	40.20			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
67 68	76.02 2B4P 76.02 2B4P	1 Semi Detached 1 Semi Detached		-8.38 -8.38	2	Affordable [Rent] Affordable [Rent]	3	Render [White] Render [White]	Linear Linear	Slate Slate	Y L Y L		1	POT L POT L	B B	29.27 29.27	35.49 33.27			AA2699C / 1.3 /035 AA2699C / 1.3 /035	
69 70	128.60 3B5P 101.00 3B5P	1 End Terrace 1 Mid Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] E1 - [HY]	Timber Timber	Saw tooth Saw tooth	Slate Slate		Y Y	1 1	YES YES	A A		45.81 45.81		071-G 071-G		
71	101.00 3B5P 119.48 4B7P	1 End Terrace 1 Semi Detached		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] 3	Timber Timber	Saw tooth Linear	Slate	Y L	Y	1	YES POT G	A A		49.36 43.93		071-G		
73	119.48 487P	1 Semi Detached 81.7	8 2B4P 1	-0.02	nd Terrace 2 Mid Terrace 2	Affordable [Rent] Private Private	3	Brick [red]	Linear Linear	Alternative	Y L Y S V S		1	POT L POT L	A B	31.89	46.42 34.40 38.28			AA2699C / 1.3 /040	
76	119.48 4B7P	92.7 1 Semi Detached	6 385P 1	-0.02	nd Terrace 2 2	Private Affordable [Rent]	1 3	Brick [red] Render [White]	Linear Gable	Alternative	Y S N S		1 1	POT L POT G	B	35.39	38.56			AA2699C / 1.3 /043	
78 79		81.7 93.1	8 2B4P 1 2 3B5P 1	1 -3.52 F	nd Terrace 2 Mid Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	31.89 35.39	34.62 38.28			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
80 81		83.0 93.1	0 2B4P 1 2 3B5P 1	1.10 1.12	Mid Terrace 2 Mid Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	31.89 35.39	32.18 34.40			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
82		81.7 152.70	8 2B4P 1 4B6P 1	-0.12	nd Terrace 2 Detached 2.5	Private Private	1 E1 - [HY]	Brick [red] Timber	Linear Saw tooth	Alternative Slate	Y S	Y	1	YES	B	31.89	34.40 59.64		073-A	AA2699C / 1.3 /040 AA2699C / 1.3 /045	
85		92.7	6 3B5P 1 2 3B5P 1	1 0.76 I 1 1.12	nd Terrace 2 Mid Terrace 2	Private Private	3	Timber Timber	Gable Gable	Slate	N 5 N 5		0	NO	B	37.41	49.93			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
87		83.0 81.7	0 2B4P 1 8 2B4P 1	1.10 I -0.12 I	Aid Terrace 2 nd Terrace 2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N L N L		0	NO	B	33.26 33.26	39.95 39.95			AA2699C / 1.3 /040 AA2699C / 1.3 /040	
89 90		95.30 81.90	3B5P 1 2B4P 1	1 0.00 I 1 0.00 I	nd Terrace 2 Mid Terrace 2	Private Private	E1 - [HY] E1 - [HY]	Timber Timber	Saw tooth Saw tooth	Slate Slate		N N	0	NO NO	B		44.07 35.33		070-G 070-G		
91		92.7	6 385P 1 8 284P 1	-2.74	nd Terrace 2 nd Terrace 2	Private Private	3	Timber Brick [red]	Gable Linear	Slate Alternative	N S Y S		0	POT L POT L	B	37.41 31.89	44.83 32.18			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
95		93.1	2 3B5P 1 0 2B4P 1	1.10	And Terrace 2 And Terrace 2 And Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative	Y S		1 1	POT L POT L	B	35.39	38.28			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /040	
96 97		92.7	6 385P 1 8 284P 1	1 0.76 I 1 -0.12 I	nd Terrace 2 nd Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	35.39 31.89	38.28 34.40			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
98 99		93.1 81.7	2 3B5P 1 8 2B4P 1	1.12 1.12	Aid Terrace 2 nd Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	35.39 31.89	38.28 32.18			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
100		92.7 93.1	2 385P 1 2 385P 1	1.12	nd Terrace 2 Mid Terrace 2 and Terrace 3	Private Private	3	Timber Timber	Gable	Slate	N S N S		0	NO NO	A A	37.41	44.39 33.84			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
101		92.7	6 385P 1 0 284P 1	1 0.76 1 1.10	nd Terrace 2 Mid Terrace 2	Private Private	3	Timber Timber	Gable	Slate	N S N L		0	NO	A	37.41 33.26	33.84 31.07			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /040	
105 106	76.02 2B4P	1 End Terrace 92.7	6 3B5P 1	-2.74	nd Terrace 2	Private Affordable [Rent]	3 1	Timber Brick [red]	Gable Linear	Slate Slate	N S Y L		0	NO POT L	A B	37.41 29.27	38.28 35.76			AA2699C / 1.3 /043 AA2699C / 1.3 /035	
107	89.54 385P 89.54 385P	1 Mid Terrace 1 Mid Terrace		-7.96	2	Affordable [Rent] Affordable [Rent]	1	Brick [red] Brick [red]	Linear Linear	Slate	Y S Y S		1	POT L POT L	B	34.20	40.36			AA2699C / 1.3 /036 AA2699C / 1.3 /036	
109	89.54 385P 89.54 385P	1 End Terrace	0 2B4P *	-7.96	emi Detached	Affordable [Rent] Private	1 1	Brick [red] Brick [red]	Linear Linear	Slate	т S Y S Y c		1 1 1	POT L	B	34.20 34.20	38.20 38.20 34 69			AA2699C / 1.3 /036 AA2699C / 1.3 /036 AA2699C / 1.3 /040	
112		83.0	0 2B4P 1 3B5P 1	1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	emi Detached 2 nd Terrace 2	Private Private	1 E2 - [PH]	Brick [red] Timber	Linear Gable (Asymetric)	Slate Slate	Y S	N	1	POT L NO	B	31.89	34.40 33.86		090-C	AA2699C / 1.3 /040	
114 115		81.90 92.00	2B4P 1 3B5P 1	1 0.00 I	Mid Terrace 2 nd Terrace 2	Private Private	E2 - [PH] E2 - [PH]	Timber Timber	Gable [Asymetric] Gable [Asymetric]	Slate Slate		N N	0	NO NO	B		26.50 29.94		090-C 090-C		
116		92.7 92.7	6 385P 1 8 284P	0.76	emi Detached 2 emi Detached 2 nd Terrace	Private Private	3	Timber Timber	Gable Gable	Slate	N S		0	NO NO	B B	37.41	49.93 45.50			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
110		83.0	0 2B4P 1 6 3B5P 1	1.10	Mid Terrace 2 nd Terrace 2	Private Private	3	Timber	Gable Linear	Slate	N L Y S		0	NO POT L	B	33.26	39.95			AA2699C / 1.3 /040 AA2699C / 1.3 /040 AA2699C / 1.3 /043	
121		93.1	2 385P 1 2 385P 1	1 1.12 1 1.12	Aid Terrace 2 Mid Terrace 2	Private Private	1	Timber Timber	Linear Linear	Slate Slate	Υ <u>5</u> Υ 5		1	POT L POT L	B	35.39	36.06 38.28			AA2699C / 1.3 /043 AA2699C / 1.3 /043	
123 124	118.40 3B5P	1 End Terrace	8 2B4P 1	1 -3.52 I 0.00	nd Terrace 2 2.5	Private Affordable [Rent]	1 E1 - [HY]	Brick [red] Brick [red]	Linear Saw tooth	Slate Slate	Y L	Y	1	POT L POT L	B	31.89	34.40 51.70		071-G	AA2699C / 1.3 /040	
125	118.40 3B5P 88.00 2B4P	1 Mid Terrace 1 Mid Terrace 1 Mid Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] E2 - [PH]	Brick [red] Brick [red]	Saw tooth Linear	Slate		Y N	0	NO	B		48.86		071-G 091-C		
127	112.40 3B5P 112.40 3B5P	1 End Terrace 1 End Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E2 - [PH] E2 - [PH]	Brick [red] Brick [red]	Linear Linear	Slate Slate		N	0	NO	B	34.20 34.20	55.31		091-C 091-C		
130	88.00 2B4P 88.00 2B4P	1 Mid Terrace 1 End Terrace		0.00	2	Affordable [Rent] Affordable [Rent]	E2 - [PH] E2 - [PH]	Brick [red] Brick [red]	Linear Linear	Slate Slate		N N	0	NO NO	B		48.41 51.39		091-C 091-C		
132 133	101.00 3B5P 101.00 3B5P	1 End Terrace 1 Mid Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] E1 - [HY]	Brick [red] Brick [red]	Saw tooth Saw tooth	Slate Slate		Y Y	1	POT L POT L	B		38.34 38.34		071-G 071-G		
134 135	101.00 3B5P	1 End Terrace 92.7	6 3B5P 1	0.00	2.5 emi Detached 2	Affordable [Rent] Private	E1 - [HY]	Brick [red] Brick [red]	Saw tooth Linear	Slate Slate	Y 5	Y	1	POT L POT L	B	35.39	38.34 36.06		071-G	AA2699C / 1.3 /043	
136		92.7 119.3 119.3	2 4B6P 1 2 4B6P 1	1 -33.38 I	Detached 2 Detached 2 Detached 2	Private	3	Brick [red] Brick [red]	Linear Gable	Slate	N S		0	NO	B	35.39	40.92 43.90			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
139	128.60 3B5P 118.40 3B5P	1 End Terrace 1 Mid Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] E1 - [HY]	Brick [red] Brick [red]	Saw tooth Saw tooth	Slate Slate		Y Y	1	POT L POT L	B		43.00		071-G 071-G		
141 142	118.40 3B5P 118.40 3B5P	1 Mid Terrace 1 End Terrace		0.00	2.5	Affordable [Rent] Affordable [Rent]	E1 - [HY] E1 - [HY]	Brick [red] Brick [red]	Saw tooth Saw tooth	Slate Slate		Y Y	1	POT L POT L	B B		43.00 43.00		071-G 071-G		
143 144	89.54 385P 89.54 385P	1 Semi Detached 1 Semi Detached	0 20 40	-11.16 -7.96	2	Affordable [Shared ov Affordable [Shared ov	3	Render [White] Render [White]	Gable Gable	Slate	N 5 N 5		0	NO	B	36.39 36.39	35.76			AA2699C / 1.3 /036 AA2699C / 1.3 /036	
145		83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0	0 2B4P 1 8 2B4P 4	-12.30	emi Detached 2 emi Detached 2 nd Terrace 2	Private Private	1 1	Brick [red] Brick [red]	Linear Linear	Alternative	т <u>S</u> Y S Y с		1 1	POTL	B	31.89 31.89 31.90	34.68 34.40 34.40			AA2699C / 1.3 /040 AA2699C / 1.3 /040 AA2699C / 1.3 /040	
147		93.1	2 385P 1 8 284P 1	1.12 1.12	Aid Terrace 2 Ind Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative	Y S		- 1 1	POT L	B	35.39	33.84			AA2699C / 1.3 /043 AA2699C / 1.3 /043	
150		81.7 93.1	8 2B4P 1 2 3B5P 1	-0.12 1.12	nd Terrace 2 Mid Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative Alternative	Y S Y S		1	POT L POT L	B	31.89 35.39	34.40 33.84			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
152 153	119.48 4B7P	1 End Terrace	8 2B4P 1	-0.12	nd Terrace 2	Private Affordable [Rent]	1	Brick [red] Timber	Linear Gable	Alternative	Y S N L		1	POT L POT G	A A	31.89	34.40 46.41			AA2699C / 1.3 /040	
154	119.48 487P 119.48 487P 76.02 784P	I End Terrace Fnd Terrace Fnd Terrace		-0.02	2	Affordable [Rent] Affordable [Rent]	3	Timber Timber	Gable Gable	Slate Slate	N L N L		1 1 0	POT G POT G	A	27.20	41.43 41.43 35.42			AA2699C / 1 2 /02F	
156	77.24 284P 89.54 385P	1 Mid Terrace		-8.38 -7.16 -7.96	2	Affordable [Rent] Affordable [Rent]	3	Timber	Gable	Slate	N L N I		0	NO	A	32.38	31.10 35.76			AA2699C / 1.3 /035 AA2699C / 1.3 /035 AA2699C / 1.3 /036	
159		118.70	3B5P 1 8 2B4P 1	1 0.00 1 1 -0.12	nd Terrace 2.5 nd Terrace 2	Private Private	E1 - [HY]	Timber Brick [red]	Saw tooth Linear	Slate Alternative	Y 5	Y	1	YES POT L	A A	31.89	44.17 32.18		070-G	AA2699C / 1.3 /040	
161 162		83.0	0 2B4P 1 6 3B5P 1	1.10 0.76	Aid Terrace 2 nd Terrace 2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Alternative	Y S Y		1	POT L POT L	A A	31.89 35.39	32.18 38.28			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
163		92.7 83.0 100.2	0 2B4P 1 2 4B6P	-2.74	iemi Detached 2 Detached 2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N L		0	NO	B	37.41 33.26	44.83 44.39			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
165		119.3 119.3 152.70	2 4B6P 1 4B6P 1	5.92 I 5.92 I 0.00	Detached 2 Detached 25	Private	3 E1 - [HY]	Timber	Gable Saw tooth	Slate	N S	Y	0	NO	B		44.37		073-A	AA2699C / 1.3 /045 AA2699C / 1.3 /045	
168	76.02 2B4P 76.02 2B4P	1 Semi Detached 1 Semi Detached		-8.38	2	Affordable [Rent] Affordable [Rent]	1 1	Brick [red] Brick [red]	Linear Linear	Slate Slate	Y L Y L		1	POT L POT L	B	29.27 29.27	33.13 35.13			AA2699C / 1.3 /035 AA2699C / 1.3 /035	

BICESTER ECO TOWN EXEMPLAR SITE ACCOMMODATION SCHEDULE

						difference in										ENRICHED	UNITS WITH HOME OFFICE			acing	TED BY	th facing	Formelle		TATUS
Plot No.	PRP GIA Affordable [m ²]			PRP GIA Private [m ²]		GIA between Tender & PRF	•	No. of storeys	TENURE	ТҮРЕ	MATERIAL - WALL	ROOF TYPE	MATERIAL - ROOF	PRP - LOFT ADAPTABLE LABC COMPLIANT	FARRELLS - LOFT ADAPTIONS TYPE IN CONSENT	UNITS ROOM IN ROOF AS CONSENT	(POTENTIAL ROOF ADAPTION/G	HOME OFFICE	PV TYPE	A South fe	A AS REPOR	nos MOC	Drg. No. BIMP2_PA	PRP Drg. No. AA2699/1.0/xxx	PROVAL S
	[]					current										BASE DESIGN	ARAGE OR IN BASEBUILD)			OF ARE/	OF ARE#	RDEN RC	_05_xxx		IENT APP
170	76.02	2B4P	1 Semi Detached		 	-8.3	8	2	Affordable [Rent]	1	Brick [red]	Linear	Slate	Y	L		1	POT L	B	29.27 29.27	33.32 35.22	GА		AA2699C / 1.3 /035	- 5
172 17				92.00 85.84	3B5P 1 2B4P-crank 1	1 0.0 1 3.9	0 End Terrace 4 Mid Terrace	2	Private E Private E	2 - [PH] 2 - [PH]	Timber Timber	Gable [Asymetric] Gable [Asymetric]	Slate Slate			N N	0	NO NO	A A		41.40 37.70		090-C 090-C		
174 175 176				92.00 92.76 93.12	3B5P 1 3B5P 1 3B5P 1	1 0.0 1 0.7 1 1.1	6 End Terrace 6 End Terrace 2 Mid Terrace	2	Private E. Private Private	2 - [PH] 3 3	Timber Timber Timber	Gable [Asymetric] Gable Gable	Slate Slate Slate	N	S S	N	0	NO NO NO	A A A	37.41 37.41	49.93 45.50		090-C	AA2699C / 1.3 /043 AA2699C / 1.3 /043	-
177				83.00 92.76	2B4P 1 3B5P 1	1 1.1 1 0.7	0 Mid Terrace 6 End Terrace	2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N	S S		0	NO NO	A A	33.26 37.41	39.84 45.50			AA2699C / 1.3 /040 AA2699C / 1.3 /043	
1/9 180 181	89.54	3B5P	1 End Terrace	95.30 81.90	2B4P 1	1 0.0 1 0.0 -7.9	0 End Terrace 0 Mid Terrace 6	2	Private E Private E Affordable [Rent]	1 - [HY] 1 - [HY] 1	Timber Timber Brick [red]	Saw tooth Saw tooth Linear	Slate Slate Slate	N	L	N	0	NO NO POT L	A A B	34.20	44.17 39.26 40.36		070-G 070-G	AA2699C / 1.3 /036	-
182	89.54 89.54	385P 385P	1 Mid Terrace 1 End Terrace	440.33	1050	-7.9	6 6	2	Affordable [Rent] Affordable [Rent]	1	Brick [red] Brick [red]	Linear Linear	Slate Slate	Y Y	L		1	POT L POT L	B	34.20 34.20	38.20 38.20			AA2699C / 1.3 /036 AA2699C / 1.3 /036	-
184				119.32 119.32 119.32	486P 1 486P 1 486P 1	1 5.9 1 5.9 1 5.9	2 Detached 2 Detached 2 Detached	2	Private Private Private	3	Timber Timber Timber	Gable Gable Gable	Slate Slate Slate	N N N	5 5 5		1 1 1	POT G POT G POT G	B B		45.89 43.86 43.86			AA2699C / 1.3 /045 AA2699C / 1.3 /045 AA2699C / 1.3 /045	-
187				119.32 95.30	4B6P 1 3B5P 1	1 5.9 1 0.0	2 Detached 0 Semi Detached	2	Private Private E	3 1 - [HY]	Timber Brick [red]	Gable Gable	Slate Slate	N	S	N	1	POT G NO	B A		43.86 40.24		072-B	AA2699C / 1.3 /045	
189 190 191	119.48 119.48	4B7P 4B7P	1 Semi Detached	95.30	385P	-0.0	0 Semi Detached	2	Affordable [Rent]	1 - [HY] 3 3	Brick [red] Brick [red] Brick [red]	Gable Linear Linear	Slate Slate Slate	Y Y	L	N	1	POT G POT G	A A A		44.17 46.42 43.93		072-8		_
192 193	89.54 89.54	385P 385P	1 End Terrace 1 Mid Terrace			-7.9	6 6	2	Affordable [Shared ov Affordable [Shared ov	3	Timber Timber	Linear Linear	Slate Slate	Y Y	L		1	POT L POT L	A A	34.20 34.20	40.09 35.76			AA2699C / 1.3 /036 AA2699C / 1.3 /036	-
194 195 196	89.54	3B5P	1 End Terrace	183.00	5B9P 1 4B6P 1	-7.9 1 0.0 1 5.9	6 0 Detached 2 Detached	2.5	Affordable [Shared ov Private E: Private	3 1 - [HY] 5	Timber Timber Render (White)	Linear Saw tooth Gable	Slate Slate Bekstone	Y N	L S	Y	1 1 1	POT L YES POT G	A B C	34.20	35.76 67.13 44.37		074-C	AA2699C / 1.3 /036 AA2699C / 1.3 /048 AA2699C / 1.3 /045	-
197 198				119.32 119.32	4B6P 1 4B6P 1	1 5.9 1 5.9	2 Detached 2 Detached	2	Private Private	5	Render [White] Render [White]	Gable Gable	Bekstone Bekstone	N	s s		1	POT G POT G	c c		44.37 44.37			AA2699C / 1.3 /045 AA2699C / 1.3 /045	
200				83.00	2B4P 1 3B5P 1	1 5.9 1 -2.3 1 10.8	O Semi Detached Semi Detached Semi Detached	2	Private Private	1	Brick [red] Brick [red]	Linear Linear	Slate Slate	Y Y Y	5 5 5		1 1	POT G POT L POT L	B B	31.89 35.39	44.37 38.28 34.68			AA2699C / 1.3 /045 AA2699C / 1.3 /040 AA2699C / 1.3 /043	-
202 203				92.76 83.00	3B5P 1 2B4P 1	1 0.7	6 End Terrace 0 Mid Terrace	2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N	S L		0	NO NO	B	37.41 33.26	49.93 39.84			AA2699C / 1.3 /043 AA2699C / 1.3 /040	
204				92.76 119.32 119.32	4B6P 1 4B6P 1	1 0.7 1 5.9 1 8.6	2 Detached 2 Detached	2	Private Private Private	3	Timber Timber Timber	Gable Gable	Slate Slate Slate	N N	5 5 5		1	POT G POT G	B B	37.41	45.50			AA2699C / 1.3 /043 AA2699C / 1.3 /045 AA2699C / 1.3 /045	-
207				119.32 150.94	4B6P 1 5B9P 1	1 8.6 1 -13.8	2 Detached 6 Detached	2	Private Private	3	Timber Render [White]	Gable Gable	Slate Bekstone	N NA	S S		1	POT G YES	B C		44.49 46.26			AA2699C / 1.3 /045 AA2699C / 1.3 /048	-
205				150.94 150.94	589P 1 589P 1 589P 1	1 -13.8 1 -13.8 1 -13.8	6 Detached 6 Detached 6 Detached	2	Private Private Private	5	Bekstone Brick [red]	Gable Linear	Slate Bekstone Slate	NA NA NA	5 5 5		1 1	YES	B		46.31 46.26 46.31			AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2699C / 1.3 /048	-
212				119.32 119.32	4B6P 1 4B6P 1	1 5.9 1 5.9	2 Detached 2 Detached	2	Private Private	5	Brick [red] Render [White]	Gable Gable	Slate Bekstone	Y N	S S		1	POT G POT G	B C		43.86 43.86			AA2699C / 1.3 /045 AA2699C / 1.3 /045 AA2699C / 1.3 /048	
219				119.32 119.32	4B6P 1 4B6P 1	1 5.9 1 5.9	2 Detached 2 Detached	2	Private Private	3	Timber Brick [red]	Gable Linear	Slate Slate	N Y	S S		1	POT G POT G	B		44.37			AA2699C / 1.3 /045 AA2699C / 1.3 /045	-
217				150.94 171.80	589P 1 589P 1	1 -13.8 1 0.0	6 Detached 0 Detached 6 Detached	2.5	Private E: Private E:	1 1 - [HY] 1	Brick [red] Brick [red] Bekstone	Linear Saw tooth Linear	Slate Bekstone Slate	NA	S S	Y	1 1	YES YES	B B		46.31 72.02		074-C	AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2699C / 1.3 /048	
219				150.94 150.94 119.32	5B9P 1 4B6P 1	15.8 1 -13.8 1 5.9	6 Detached 2 Detached	2	Private Private	1	Bekstone Timber	Linear Linear	Slate Slate	NA Y	S S		1 1	YES POT G	B B		46.31			AA2699C / 1.3 /048 AA2699C / 1.3 /045	
222				119.32 119.32	4B6P 1 4B6P 1 4B6P 1	1 5.9 1 5.9 1 5.9	2 Detached 2 Detached 2 Detached	2	Private Private Private	3	Timber Timber Timber	Gable Gable Linear	Slate Slate Slate	N N V	S S		1 1	POT G POT G	B B B		44.49 44.49			AA2699C / 1.3 /045 AA2699C / 1.3 /045 AA2699C / 1.3 /045	
225				150.94 196.10	5B9P 1 5B10P 1	1 -13.8 1 0.0	6 Detached 0 Detached	2	Private E	5 2 - [PH]	Bekstone Bekstone	Gable Linear	Slate Slate	NA	S S	N	1 0	YES	B A		46.26		092-D	AA2699C / 1.3 /048	
227				196.10 150.94	5B10P 1 5B9P 1	1 0.0 1 -13.8	0 Detached 6 Detached 6 Detached	2	Private E. Private	2 - [PH] 5	Bekstone Bekstone	Linear Gable	Slate Bekstone	NA	S S	N	0	YES	A B		46.99		092-D	AA2699C / 1.3 /048	-
230				150.94	589P 1 589P 1	1 -13.8 1 -13.8 1 -13.8	6 Detached 6 Detached 6 Detached	2	Private Private	5	Render [White] Render [White]	Gable Gable	Slate	NA NA NA	5 5 5		1 1	YES	B B		46.26			AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2699C / 1.3 /048	-
232				150.94 150.94	5B9P 1 5B9P 1	1 -13.8 1 -13.8	6 Detached 6 Detached	2	Private Private	5	Bekstone Bekstone	Gable Gable	Bekstone Bekstone	NA NA	S S		1	YES	B		46.26 46.31			AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2609C / 1.3 /048	
234				150.94 150.94 83.00	5B9P 1 5B9P 1 2B4P 1	1 -13.8 1 -13.8 1 1.1	6 Detached 0 Mid Terrace	2	Private Private	5	Render [White] Brick [red]	Gable Gable	Slate Slate	NA NA N	S L		1 0	YES	A A A	33.26	46.26			AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2699C / 1.3 /040	-
237				83.00 92.76	2B4P 1 3B5P 1	1 1.1 1 -2.7	0 Mid Terrace 4 End Terrace 5 End Terrace (Ray)	2	Private Private	3	Brick [red] Brick [red]	Gable Gable	Slate Slate	N N	L S		0	NO NO	A A	33.26 37.41	44.39			AA2699C / 1.3 /040 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
240				95.66 85.84	3B5P 1 2B4P-crank 1	1 0.1 1 0.1 1 2.3	6 End Terrace [Bay] 6 End Terrace [Bay] 4 Mid Terrace	2	Private Private	3	Timber Timber	Gable Gable	Slate Slate	N N	S L		0	NO	A A	37.41	50.82 39.84			AA2699C / 1.3 /043 AA2699C / 1.3 /043	_
242				92.76	3B5P 1 3B5P 1	1 0.7 1 0.7	6 End Terrace 6 End Terrace 9 Mid Terrace	2	Private Private	3	Timber Brick [red]	Gable Linear	Slate Slate	N Y	S S		0	POT L	A A	37.41	49.93 36.06			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /040	
244				83.00	2B4P 1 3B5P 1	1 1.1 1 1.1 1 0.7	0 Mid Terrace 6 End Terrace	2	Private Private	3	Brick [red] Brick [red]	Linear Linear	Slate Slate	Y	S S		1 1	POT L POT L	A A	31.89	34.40			AA2699C / 1.3 /040 AA2699C / 1.3 /040 AA2699C / 1.3 /043	
247				92.76 83.00 83.00	3B5P 1 2B4P 1 2B4P 1	1 0.7 1 1.1 1 1.1	6 End Terrace 0 Mid Terrace 0 Mid Terrace	2	Private Private	3	Brick [red] Brick [red] Brick [red]	Linear Linear	Slate Slate	Y Y Y	S S		1	POT L POT L	A A	35.39 31.89 31 89	36.06 32.18 34.40			AA2699C / 1.3 /043 AA2699C / 1.3 /040 AA2699C / 1.3 /040	-
250				92.76	3B5P 1 3B5P 1	1 0.7 1 -2.7	6 End Terrace 4 End Terrace	2	Private Private	3	Brick [red] Brick [red]	Linear Gable	Slate Slate	Y	S S		1 0	POT L NO	A A	35.39 37.41	36.06			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
252				85.84 83.00 92.76	2B4P-crank 1 2B4P 1 3B5P 1	1 2.3 1 1.1 1 0.7	4 Mid Terrace 0 Mid Terrace 6 End Terrace	2	Private Private	3	Brick [red] Brick [red] Brick [red]	Gable Gable	Slate Slate Slate	N N	L		0	NO NO	A A A	33.26	39.95 44.39 45.50			AA2699C / 1.3 /040	-
255				95.30 85.84	3B5P 1 2B4P-crank 1	1 0.0 1 3.9	0 End Terrace 4 Mid Terrace	2	Private E Private E	1 - [HY] 1 - [HY]	Timber Timber	Saw tooth Saw tooth	Slate Slate			N	0	NO NO	A A		44.17 39.26		070-G 070-G		
257				118.70 118.70 85.84	3B5P 1 3B5P 1 2B4P-crank 1	1 0.0 1 0.0 1 3.9	0 End Terrace 0 End Terrace 4 Mid Terrace	2.5	Private E: Private E: Private E	1 - [HY] 1 - [HY] 1 - [HY]	Timber Timber Timber	Saw tooth Saw tooth	Slate Slate Slate			Y Y N	1	YES	A A A		39.26 35.33 35.33		070-G 072-B 072-B		-
260 261				81.90 95.30	2B4P 1 3B5P 1	1 0.0 1 0.0	0 Mid Terrace 0 End Terrace	2	Private E Private E	1 - [HY] 1 - [HY]	Timber Timber	Saw tooth Saw tooth	Slate Slate			N	0	NO NO	A A		35.33 44.17		072-B 072-B		
262 263 264				92.76 85.84 92.76	3B5P 1 2B4P-crank 1 3B5P 1	1 0.7 1 2.4 1 -2.7	6 End Terrace 4 Mid Terrace 4 End Terrace	2	Private Private Private	3	Brick [red] Brick [red] Brick [red]	Linear Linear Linear	Slate Slate Slate	Y Y Y	S S		1 1 1	POT L POT L POT L	A A A	35.39	36.06 36.06 38.28			AA2699C / 1.3 /043 AA2699C / 1.3 /043	_
265				95.30 118.70	3B5P 1 2B4P 1	1 0.0	0 Semi Detached 0 Semi Detached	2.5	Private E Private E	1 - [HY] 1 - [HY]	Timber Timber	Gable Gable	Slate Slate			N Y	0	NO YES	A A	25.20	39.26 39.26		072-B 072-B		-
268	8			93.12	3B5P 1 5B9P 1	1 3.6 1 1.1 1 -18.8	2 Mid Terrace 6 Detached	2	Private Private	3	Brick [red] Bekstone	Linear Linear	Slate Slate	Y NA	5 5 5		1 1	POT L YES	B A	35.39	38.28			AA2699C / 1.3 /043 AA2699C / 1.3 /043 AA2699C / 1.3 /048	-
270				150.94 150.94	5B9P 1 5B9P 1	1 -18.8 1 -18.8	6 Detached 6 Detached	2	Private Private	1	Brick [red] Bekstone	Linear Linear	Slate Slate	NA NA	S S		1	YES	A A		46.31 46.31			AA2699C / 1.3 /048 AA2699C / 1.3 /048 AA2699C / 1.3 /048	
272				95.66	3B5P 1 2B4P 1	1 -18.8 1 3.6 1 -9.0	6 End Terrace [Bay] 0 Mid Terrace	2	Private Private	3	Brick [red] Brick [red]	Gable	Slate Slate	NA N N	S L		0	NO NO	A A A	37.41 33.26	44.50			AA2699C / 1.3 /048 AA2699C / 1.3 /043 AA2699C / 1.3 /040	_
275	81.64	2B4P-BUNG	1 Detached	92.76	3B5P 1	1 -2.7	4 End Terrace	2	Private Affordable [Rent]	3	Brick [red] Bekstone	Gable Gable	Slate Bekstone	N	S BUNG		0	NO NO	A B	37.41 108.07	49.93 67.27			AA2699C / 1.3 /043 AA2699C / 1.3 /037 AA2699C / 1.3 /037	-
278				92.76 83.00	3B5P 1 2B4P 1	1 -2.7 1 1.1	4 End Terrace 0 Mid Terrace	2	Private Private	1	Bekstone Bekstone	Linear Linear	Slate Slate	Y Y	S		1	POT L POT L	A A	35.39 31.89	40.72 34.40			AA2699C / 1.3 /043 AA2699C / 1.3 /040	_
280				92.76 105.30 103.50	3B5P 1 3B5P 1 2B4P 1	1 -2.7 1 0.0	4 End Terrace 0 End Terrace 0 Mid Terrace	2	Private E Private E	1 2 - [PH] 2 - [PH]	Bekstone Brick [red] Brick [red]	Linear Gable (Asymetric)	Slate Slate Slate	Y	S S	N	0	NO	A A	35.39	38.51 39.64 35.23		090-C	AA2699C / 1.3 /043	-
283				103.50 92.76	385P 1 385P 1	1 0.0 1 0.7	0 End Terrace 6 End Terrace	2	Private E	2 - [PH] 3	Brick [red] Brick [red]	Gable [Asymetric] Gable	Slate Slate	N	S S	N	0	NO NO	A A	37.41	36.11 49.93		090-C	AA2699C / 1.3 /043	
285	, ,			83.00 92.76 92.76	284P 1 385P 1 385P 1	1 1.1 1 0.7 1 0.7	u Mid Terrace 6 End Terrace 6 End Terrace	2	Private Private Private	3 3 3	Brick [red] Brick [red] Brick [red]	Gable Gable	Slate Slate Slate	N N N	L S S	ļ	0	NO NO	A A A	33.26 37.41 37.41	39.95 45.50 51.04			AA2699C / 1.3 /040 AA2699C / 1.3 /043 AA2699C / 1.3 /043	
288	98.31 98.31	3B5P-BUNG 3B5P-BUNG	1 Detached 1 Detached		2050	0.7	1	1	Affordable [Rent] Affordable [Rent]	8	Bekstone Bekstone	Saw tooth Saw tooth	Bekstone Bekstone	N	BUNG		0	NO NO	B B	126.72 126.72	67.27			AA2699C / 1.3 /038 AA2699C / 1.3 /038	
290 291 292	81.64	2B4P-BUNG	1 Detached	92.76 83.00	2B4P 1	10.8	Semi Detached Semi Detached	2	Private Affordable [Rent]	3	Brick [red] Render/Timber	Gable Saw tooth	Slate Slate / Green	N N N	L BUNG		0	NO NO	A B	37.41 33.26 108.07	34.40			AA2699C / 1.3 /043 AA2699C / 1.3 /040 AA2699C / 1.3 /037	
29 294				95.66 83.00	3B5P 1 2B4P 1 2B4P	1 3.6 1 1.1	6 End Terrace [Bay] 0 Mid Terrace	2	Private Private	3	Brick [red] Brick [red]	Linear Linear	Slate Slate	N	S S		0	NO	B B	35.39 31.89	36.06 32.18			AA2699C / 1.3 /043 AA2699C / 1.3 /040 AA2699C / 1.3 /040	
295	63.00	182P-F 182P-F	1 Flat 1 Flat	64.08		0.6 4.5 4.5	0 0	1	Affordable [Rent] Affordable [Rent]	7	Render / Timber	Flat	Green	14	3		0	NO NO	- D	31.89	34.40 37.00 37.00				
298	70.98 70.98	2B4P-F 2B4P-F	1 Flat 1 Flat	150.0*	SB9P	-1.0	2 2 6 Detached	1	Affordable [Rent] Affordable [Rent] Private	,	Rekstone	Gable	Rekstonn	NA			0	NO NO	В		37.00 37.00			AA2699C /1.2 /042	
301	89.54	3B5P 2B4P	1 Semi Detached 1 Semi Detached	130.34		-13.8	6 8	2	Affordable [Rent] Affordable [Rent]	1	Brick [red] Brick [red]	Linear Linear	Slate	Y Y	L	ļ	1 1	POT L POT L	B B	34.20 29.27	40.26			AA2699C / 1.3 /048 AA2699C / 1.3 /036 AA2699C / 1.3 /035	
303 304	89.54	385P 385P 284P	1 Semi Detached 1 Semi Detached 1 Semi Detached			-7.9	6 6 8	2	Affordable [Rent] Affordable [Rent]	1	Bekstone Bekstone	Linear Linear	Bekstone Bekstone	Y Y V	L		1	POT L POT L	c c	34.20 34.20	40.36			AA2699C / 1.3 /036 AA2699C / 1.3 /036 AA2699C / 1.3 /036	
305	89.54	3B5P	1 Semi Detached	150.94	5B9P 1	-8.3 -7.9 1 -13.8	6 Detached	2	Affordable [Shared ov Private	1 1	Bekstone Brick [red]	Linear Linear	Bekstone Slate	Y Y NA	L L S	<u> </u>	1 1	POT L YES	C B	29.27 34.20 77.00	35.49 37.92 46.03			AA2699C / 1.3 /035 AA2699C / 1.3 /036 AA2699C /1.3 /048	
308	8 9			150.94 150.94	5B9P 1 5B9P 1	1 -13.8 1 -13.8	6 Detached 6 Detached	2	Private Private	5	Bekstone Brick [red]	Linear Linear	Bekstone Slate	NA NA	S S		1	YES	C B	77.00	46.03			AA2699C /1.3 /048 AA2699C /1.3 /048	<u> </u>
310 311 312				150.94 150.94 150.94	5B9P 1 5B9P 1	-13.8 1 -13.8 1 -13.8	6 Detached	2	Private Private	1	Bekstone Brick [red]	Linear Linear	Bekstone Slate	NA NA	5 5 5	<u> </u>	1 1	YES	C B	77.00	46.03			AA2699C /1.3 /048 AA2699C /1.3 /048	
313				196.10 150.94	5B10P 1 5B9P 1 7B4P	1 0.0 1 -13.8	0 Detached 6 Detached 2 Semi Detached (2)	2	Private E	2 - [PH] 1	Brick [red] Bekstone Bekstone	Linear Gable	Slate Slate	NA	S	N	0	NO YES	B B	52.14 58.14	52.14 43.79		092-D	AA2699C / 1.3 /048	
316	i 7			84.68 83.00 92.76	2B4P [v2] 1 3B5P 1		0 Semi Detached 6 Semi Detached	2	Private	5	Bekstone Bekstone	Linear Linear	Slate Slate	Y Y Y	5 5 5	<u> </u>	1 1	POT L POT L	A A	31.89 31.89 35.39	32.03 38.28			AA2699C / 1.3 /040 AA2699C / 1.3 /042 AA2699C / 1.3 /043	
318		1829 5	1 Flat	92.76 150.94	3B5P 1 5B9P 1	1 -2.7	4 Semi Detached 6 Detached	2	Private Private Affordable (Peet)	5	Bekstone Bekstone	Linear Linear	Slate Slate	Y NA	S S		1	POT L YES	A A	35.39 77.00	38.28 46.31	23.00		AA2699C / 1.3 /043 AA2699C / 1.3 /046 AA2699C / 1.3 /046	
320	61.84 61.84	2B3P-F 2B3P-F	1 Flat			-16.5	4 6	1	Affordable [Rent] 7- Affordable [Rent] 7-	[A2-A] [A2-B]	Render / Timber	Flat	Single Ply				0	NO NO	D	145.55	23.00 23.00 23.00			AA2699C / 1.1 /020 AA2699C / 1.1 /020 AA2699C / 1.1 /020	
32	61.84	2B3P-F 2B3P-F 2B3P-F	1 Flat 1 Flat 1 Flat			-5.9	6 6	1	Affordable [Rent] 7-[Affordable [Rent] 7-[Affordable [Rent] 7-[[A2-B] [A2-B]			Membrane				0	NO NO	-	140.00	23.00 23.00			AA2699C / 1.1 /020 AA2699C / 1.1 /020 AA2699C / 1.1 /020	
326	61.84			92.76 83.00	3B5P 1 2B4P [v2] 1	-5.9 1 0.7 1 1.1	6 End Terrace 0 Mid Terrace	2	Private Private	3	Render [White] Render [White]	Gable Gable	Slate Slate	N N	S L	<u> </u>	0	NO NO	B B	37.41 33.26	38.28 29.96			AA2699C / 1.3 /043 AA2699C / 1.3 /042	
328				92.76 150.94	385P 1 589P 1 589P	1 -2.7 1 -13.8 1 .12.9	4 End Terrace 6 Detached 6 Detached	2	Private Private Private	3	Render [White] Brick [red] Brick [red]	Gable Linear Linear	Slate Slate Slate	N NA NA	5 5 5		0	NO YES YES	B B B	37.41	43.28 44.01			AA2699C / 1.3 /043 AA2699C / 1.3 /048 AA2699C / 1.3 /048	
331				92.76	3B5P 1 2B4P 1	15.8 1 -2.7 1 1.1	4 End Terrace 0 Mid Terrace	2	Private Private	1	Bekstone	Linear Linear	Slate Slate	Y Y	S S		1 1	POT L POT L	A A	35.39	38.84			AA2699C / 1.3 /048 AA2699C / 1.3 /040	
333	78.94	2B4P 2B4P	1 End Terrace [Bay]	81.78	2B4P 1	1 -0.1 -8.8	2 End Terrace [Bay] 6	2	Private Affordable [Shared ov Affordable [Shared ov	1 1	Bekstone Bekstone Bekstone	Linear Linear Linear	Slate Slate Slate	Y Y Y	L I		1 1	POT L POT L POT J	A A A	31.89 29.27 29.77	32.18 35.76 33.37			AA2699C / 1.3 /040 AA2699C / 1.3 /035 AA2699C / 1.3 /035	
330	76.02	2B4P	1 End Terrace	92.76	3B5P [v] 1	-7.1 -8.3 1 0.7	8 6 End Terrace	2	Affordable [Shared ov Private	1	Bekstone Brick [red]	Linear Gable	Slate Slate	Y N	L		1 0	POT L	A B	29.27 37.41	35.49			AA2699C / 1.3 /035 AA2699C / 1.3 /044	
338	1	1	1	93.12	385P [V]	1.1	Z Mid Terrace	1 2	Private	1	Brick [red]	reaple	slate	N	1 S	1	0	NO	в	37.41	45.50	J.	1 1	AA2699C / 1.3 /044	

BICESTER ECO TOWN EXEMPLAR SITE ACCOMMODATION SCHEDULE

Plot No.	PRP GIA Affordable [m ²]	e		PRP GIA Private [m ²]		1	difference in GIA between Tender & PRP current		No. of storeys	TENURE	TYPE	MATERIAL - WALL	ROOF TYPE	MATERIAL - ROOF	PRP - LOFT ADAPTABLE LABC COMPLIANT	FARRELLS - LOFT ADAPTIONS TYPE IN CONSENT	ENRICHED UNITS ROOM IN ROOF AS CONSENT BASE DESIGN	UNITS WITH HOME OFFICE (POTENTIAL ROOF ADAPTION/G ARAGE OR IN BASEBUILD)	HOME OFFICE	PV TYPE	ROOF AREA South facing	ROOF AREA AS REPORTED BY HYDER	GARDEN ROOM South facing	Farrells Drg. No. PRP Drg. No. No. BIMP2_PA _05_xxx	CLIENT APPROVAL STATUS
339				92.76	6 3B5P [v]	1	-2.74	End Terrace		2 Private	1	Brick [red]	Gable	Slate	N	S S		0	NO	B	37.41	45.50		AA2699C / 1.3 /044	
340				92.70	0 284P [v]	1	83.00	End Terrace		2 Private	3	Render [White]	Gable	Slate	N	3	· · · · · ·	0	NO	B	37.41	45.50		AA2699C / 1.3 /044	
342		-		92.76	6 385P [v]	1	0.76	End Terrace		2 Private	3	Render [White]	Gable	Slate	N	s		0	NO	В	37.41	49.93		AA2699C / 1.3 /044	
343	56.	35 1B2P-F	1 Flat				-1.55			1 Affordable [Shared or	7-[A1-B]			1			1	1	YES			24.00		AA2699C / 1.1 /022	
344	56.	35 1B2P-F	1 Flat				-11.45			1 Affordable [Shared or	7-[A1-B]							1	YES			24.00		AA2699C / 1.1 /022	
345	67.	48 2B4P-F	1 Flat	. [-0.32			1 Affordable [Shared or	7-[A2-C]	Render / Timber	Flat	Single Ply				0	NO	D	161.29	24.00		AA2699C / 1.1 /022	
346	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Shared or	7-[A2-C]	- Render / Timber		Membrane				0	NO	5	101.2.	24.00		AA2699C / 1.1 /022	
347	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Shared or	7-[A2-C]	_						0	NO			24.00		AA2699C / 1.1 /022	
348	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Shared on	7-[A2-C]							0	NO			24.00		AA2699C / 1.1 /022	
349	56.	35 182P-F	1 Flat				-1.55			1 Affordable [Rent]	7-[A1-B]	-		1				1	YES			24.00		AA2699C / 1.1 /022	
350	50.	48 2B4P-F	1 Flat	· · · · ·			-11.45			1 Affordable [Rent]	7-[A1-B]	-		Single Ply				0	NO			24.00		AA2699C / 1.1 /022	
352	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Rent]	7-[A2-C]	Render / Timber	Flat	Membrane				ő	NO	D	161.25	24.00		AA2699C / 1.1 /022	
353	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Rent]	7-[A2-C]	-						0	NO			24.00		AA2699C / 1.1 /022	
354	67.	48 2B4P-F	1 Flat				-0.32			1 Affordable [Rent]	7-[A2-C]	1						0	NO			24.00		AA2699C / 1.1 /022	
355	81.	64 2B4P-BUNG	1 Semi Detached				-0.96			1 Affordable [Rent]	8	Render/Timber	Saw tooth	Slate / Green	N	BUNG		0	NO	В	108.07	51.61		AA2699C / 1.3 /037	
356	81.	64 2B4P-BUNG	1 Semi Detached				-0.96			1 Affordable [Rent]	8	Render/Timber	Saw tooth	Slate / Green	N	BUNG	ļ	0	NO	В	108.07	51.61		AA2699C / 1.3 /037	
357	76.	02 2B4P	1 End Terrace				-21.58			2 Affordable [Rent]	3	Render [White]	Gable	Slate	N	L		0	NO	В	32.38	43.34		AA2699C / 1.3 /035	
358		24 2849	1 Mid Terrace				-7.16			2 Affordable [Rent]	3	Render [White]	Gable	Slate	N	L	· · · · · ·	0	NO	в	32.38	39.01		AA2699C / 1.3 /035	
359	89.	54 385P	1 End Terrace				-4.96			2 Affordable [Rent]	3	Render [White]	Gable	Slate	N	L	ł	0	NO	B	36.35	44.43		AA2699C / 1.3 /036	
261	70.	04 2848	1 Somi Dotachod (Pav)		1		-11.76			2 Affordable [Shared of	1	Bekstone	Linear	Slate	v v	L .	<u> </u>	1	POTL	B	29.27	25.49		AA2699C / 1.3 /035	
362	/0.	34 204F	1 Senn Detached [Day]	81.78	8 2B4P (v2)	1	-0.12	End Terrace (Bay)		2 Private	1	Bekstone	Linear	Slate	Y	S		1	POTI	B	31.89	34.40		AA2699C / 1.3 /033	
363				83.00	0 2B4P [v2]	1	1.10	Mid Terrace		2 Private	1	Bekstone	Linear	Slate	Y	S		1	POTL	в	31.89	32.18		AA2699C / 1.3 /042	
364				92.76	6 3B5P	1	-2.74	End Terrace		2 Private	1	Bekstone	Linear	Slate	Y	S	1	1	POT L	В	35.39	36.06		AA2699C / 1.3 /043	
365	76.	02 2B4P	1 Semi Detached				-8.38			2 Affordable [Shared or	1	Brick [red]	Linear	Slate	Y	L		1	POT L	В	29.27	31.10		AA2699C / 1.3 /035	
366	76.	02 2B4P	1 Semi Detached				-8.38			2 Affordable [Shared or	1	Brick [red]	Linear	Slate	Y	L		1	POT L	В	29.27	35.43		AA2699C / 1.3 /035	
367				92.76	6 385P [v]	1	0.76	End Terrace		2 Private	3	Render [White]	Linear	Slate	Y	S	ļ	1	POT L	В	35.39	38.28		AA2699C / 1.3 /044	
368				83.00	0 2B4P [v1]	1	1.10	Mid Terrace		2 Private	3	Render [White]	Linear	Slate	Y	S	<u> </u>	1	POTL	B	31.89	29.96		AA2699C / 1.3 /041	• • • • •
369	F1	37 1030 5	1 Flat	92.76	6 385P [V]	1	-2.74	End Terrace		2 Private	3	Render (White)	Linear	Slate	Ŷ			1	PUTE	в	35.35	41.06		AA2699C / 1.3 /044	
271	61	84 283P-F	1 Flat		+		-10.55		+ • • •	1 Affordable [Rent]	7 [A1-A]	-		1				0	NO			23.60		AA2699C / 1.1 /021	·
372	61	84 2B3P-F	1 Flat	-			-5.96			1 Affordable [Rent]	7-[A2-A]			Single Ply				0	NO			23.60		AA2699C / 1.1 /021	
373	61.	84 2B3P-F	1 Flat	-			-5.96			1 Affordable [Rent]	7-[A2-B]	Render / Timber	Flat	Membrane				ō	NO	D	154.60	23.60		AA2699C / 1.1 /021	
374	61.	84 2B3P-F	1 Flat	-			-5.96			1 Affordable [Rent]	7-[A2-B]	-		1				0	NO			23.60		AA2699C / 1.1 /021	
375	61.	84 2B3P-F	1 Flat				-5.96			1 Affordable [Rent]	7-[A2-B]						<u> </u>	0	NO			23.60		AA2699C / 1.1 /021	
376				119.32	2 4B6P	1	-45.48	Detached		2 Private	1	Bekstone	Linear	Slate	N	S		1	POT G	В	51.16	46.03		AA2699C / 1.3 /045	
377				92.76	6 3B5P	1	-2.74	End Terrace		2 Private	3	Render / Timber	Gable	Slate	N	S	ļ	0	NO	В	37.41	45.50		AA2699C / 1.3 /043	
378				83.00	0 284P	1	1.10	Mid Terrace		2 Private	3	Render / Timber	Gable	Slate	N	L	l	0	NO	В	33.26	39.95		AA2699C / 1.3 /040	
3/9				83.00	0 284P	1	1.10	Mid Terrace		2 Private	3	Render / Timber	Gable	Slate	N	L		0	NO	B	33.26	39.95		AA2699C / 1.3 /040	
201				92.76	6 385P	1	-2.74	End Terrace	+ • • •	2 Private	3	Render / Timber	Gable	Slate	N	5	+ · · · · ·	0	NO	B	37.41	49.93		AA2699C / 1.3 /043	·
387	89.	54 3B5P	1 End Terrace	52.10			-7.96		+	2 Affordable [Rent]	3	Render / Timber	Linear	Slate	Y	s	+	1	POT L	B	34.20	38.20		AA2699C / 1.3 /043	• • •
383	77.	24 2B4P	1 Mid Terrace	· · · · ·	1		-7.16			2 Affordable [Rent]	3	Render / Timber	Linear	Slate	Y	s	<u> </u>	1	POT L	В	29.27	35.49		AA2699C / 1.3 /035	•
384	89.	54 3B5P	1 End Terrace		1		-7.96		1	2 Affordable [Rent]	3	Render / Timber	Linear	Slate	Y	S	1	1	POT L	В	34.20	38.20		AA2699C / 1.3 /036	
385				92.76	6 3B5P [v]	1	-2.74	End Terrace		2 Private	1	Bekstone	Gable	Bekstone	N	S		0	NO	A	37.41	43.28		AA2699C / 1.3 /044	
386				83.00	0 2B4P	1	1.10	Mid Terrace		2 Private	1	Bekstone	Gable	Bekstone	N	L		0	NO	A	33.26	26.63		AA2699C / 1.3 /040	
387				92.76	6 385P [v]	1	-2.74	End Terrace		2 Private	1	Bekstone	Gable	Bekstone	N	S	ļ	0	NO	A	37.41	33.84		AA2699C / 1.3 /044	
388	89.	54 3B5P	1 End Terrace		1		-7.96			2 Affordable [Shared or	3	Render / Timber	Gable	Slate	N	L	ļ	0	NO	A	36.39	44.43		AA2699C / 1.3 /036	
389	17.	24 2B4P	1 Mid Terrace				-7.16			2 Attordable [Shared or	3	Render / Timber	Gable	Slate	N	L	l	0	NO	A	32.38	39.01		AA2699C / 1.3 /035	
390	/6.	54 3850	1 End Terrace				-8.38			2 Affordable [Shared 0]	3	Render / Timber	Gable	Slate	N	L		0	NO NO	Δ	32.38	43.34		AA2699C / 1.3 /035	_
391	77	24 2B4P	1 Mid Terrace	· · · · ·	1		-7.90		+	2 Affordable [Rept]	3	Render / Timber	Gable	Slate	N	1	+	0	NO	A	30.55	39.01		AA2699C / 1.3 /035	
392	89.	54 3B5P	1 End Terrace	•	1		-7.96		+	2 Affordable [Rent]	3	Render / Timber	Gable	Slate	N	L	<u> </u>		NO	A	36.39	48.76		AA2699C / 1.3 /035	
333	- 05.			1	1		-7.50			- in a second fillering		Internet / Thirden	1	1							50.55	10.70		1.1.20090 / 1.5 / 050	

240 Percentage of development 61.07% home office, either in base design or by adaption

STRATEGY FOR DISTRIBUTION OF PHOTO VOLTAIC COLLECTORS [Reference letter located on south facing roof slope]

A - GREY ROOF SLATE WITH INTEGRATED LINEAR PV SLATES -

Used where roof slopes face the principle spine road

B - GREY ROOF SLATE or STONE ROOF SLATE WITH 'SET IN' PV PANELS - Used for dwellings on secondary roads with roof slopes which face the street

C - STONE ROOF SLATES WITH 'SURFACE FIXED' PV PANELS - Used for dwellings with roof slopes which do not face the public realm / street

D - FLAT ROOF WITH PV PANELS ON ANGLED METAL FRAMEWORK -Flats

 \odot

NOTES: Red line denotes land ownership title boundary. This differs from consented rer line planning application boundary and is covered by a separate application to cover this change.

A state

Ī

K

FUTURE ACCESS TO ADJ. LAND PARCEL

BICESTER ECO TOWN EXEMPLAR SITE

drawing Overall Site Roof Plan indicating PV provision strategy PHASES 1-4

drawing no AA2699C/1.1	/103	^{rev}
drawn jSW	checked	
scale @ A1 1:1250	date Feb	2012
PRP Architects © 10 Lindsey Street Smithfield London EC1A 9HP T +44 (0)20 7653 1200 F +44 (0)20 7653 1201 Ion_pr0Pproprachitects.co.uk	PRI	\supset

曲

notes

- The contractor is responsible for checking dimensions, tolerances and references. Any discrepancy to be verified with the Architect before proceeding with the works.
- Where an item is covered by drawings to different scales the larger scale drawing is to be worked to.
 Do not scale drawing. Figured dimensions to be worked to in all cases.

CDM Regulations 2007

ALL current drawings and specifications for the project must be read in conjunction with the Designer's Hazard and Environmental Assessment Record

Updated Energy Model Calculation Tables

Table 1 – Baseline energy demand

Boiler 85% efficency

Use Class Sub Use	Description		GIA (m²)	assumed building type	% of GIA	basis of benchma	ark			good energy/FF (kWh	practice ⁻ benchmark n/m²/yr)	τ.	good energy b (kWh	practice enchmark /m²/yr)		Energy Us	se (kWh/year)		t (K)	otal /h/yr)	to (kW	tal ħ/yr)	carbor em (kg	n dioxide ission _I CO _{2/yr})
								(m²)	space	water	L&A	cooking	Fossil Fue	Electricity	space	water	L&A	cooking	Energy	Electricity	Fossil Fuel	Electricity	Fossil Fuel	Electricity
	5.1 Retail (Use Class A)		960																					
A1 (a)	Food Store		385	Small food store - Co-operative	100%	CIBSE TM46 (Small food store)	gross floor area	385	-	-	355	-	(355	6) (136,675		0 0	136,675	0	136,675	0	70,661
A1 (a)	Convenience Retail		385	Shops/stores: non-food stores (hairdressers)	100%	CIBSE TM46 (General retail	gross floor area	385	-	-	165	-	(165	6) (63,525		0 0	63,525	0	63,525	0	32,842
A3	Restaurants & Café's		190	ECO-PUB Restaurants (with bar) and cafe	100%	CIBSE TM46 (Restaurant)	gross floor area	190	40	120	90	210	370	90	6,460	19,38	17,100	39,90	0 65,740	17,100	70,300	17,100	13,919	8,841
	5.2 Business (Use Class B)		3,275					-																
B1 (a)	ECO-Business Centre		1,800	Office, air conditioned (standard)	100%	CIBSE TM46 (General office)	gross floor area	1,800	70	50	95	-	120) 95	107,100	76,50	171,000)	0 183,600	171,000	216,000	171,000	42,768	88,407
B1 (c)	Offices		1,100	Office, air conditioned (prestige)	100%	CIBSE TM46 (General office)	gross floor area	1,100	70	50	95	-	120) 95	65,450	46,75	104,500)	0 112,200	104,500	132,000	104,500	26,136	54,027
B1 (c)	Light Industrial		-	Light manufacturing	100%	BSRIA Rules of Thumb	gross floor area	-	49	-	31	-	49	31	. () () (0 0	0	0	0	0	0
B1 (c)	Eneray Centre		375	Workshops	100%	CIBSE TM46 (Workshop -electricity only)	gross floor area	375	-	-	35	-	() 35) (13.125		0 0	13.125	0	13.125	0	6.786
							Ŭ	-															1	-
	5.3 Hotels & Residential Institutions (Use Class C)		-																				1	-
C1	Mid-range Hotel		-	Hotels: small	100%	CIBSE TM46 (Hotel)	gross floor area	-	165	110	105	55	33() 105	() (0 0	0	0	0	0	0
C1	Country Club (Golf) Hotel		-	Hotels: business/holiday	100%	CIBSE TM46 (Hotel)	gross floor area	-	165	110	105	55	33(105					0 0	0	0	0	0	0
C2	Assisted Living		-	Residential and nursing homes	100%	CIBSE TM46 (Long Term Resi)	gross floor area	-	200	120	65	100	420) 65					0 0	0	0	0	0	0
02	housed prints			Residential and harsing homes	100/0		g.000 11001 0100		200	120			120						<u> </u>		Ű			
	5.4 Residential Dwellings (Use Class C)	95.24 393	37,430			Approved Document L1A 2006	gross floor area	37,430	37<>43	36< >46	34< >36	13< >19	75	7	1,279,434	1,210,81	1 1,301,331	542,76	8 3,033,0	4 1,301,331	3,472,469	1,301,331	687,54	9 672,788
	5.5 Non Residential Institutions (Use Class D)		3,220																					
D1 (c)	Primary Schools		2,520	Primary school	100%	CIBSE TM46	gross floor area	2,520	83	53	40	15	150	40	176,715	5 112,45	5 100,800	37,80	0 326,970	100,800	378,000	100,800	74,844	52,114
D1 (c)	Secondary School		-		100%	CIBSE TM46	gross floor area	-	66	45	40	39	150	40) () () ()	0 0	0	0	0	0	0
D1 (c)	Further Education Institution		-	Further & Higher Education - Teaching	100%	BSRIA Rules of Thumb	gross floor area	-	-	-	-	-	(0 0) () () ()	0 0	0	0	0	0	0
D1 (c)	Community Centre		350	Local authority buildings - community centres	100%	CIBSE TM46 (public buildings with light use)	net lettable items	350	85	20	20	-	105	5 20	25,288	3 5,95	7,000		0 31,238	7,000	36,750	7,000	7,277	3,619
D1 (c)	Office		-	Emergency services	100%	CIBSE F	treated floor area	-	80	50	95	-	130) 95	6 () () ()	0 0	0	0	0	0	0
D1 (c)	Nursery		350	Primary health care (general practitioners' surgeries and dental practices)	100%	CIBSE TM46 Clinic	gross floor area	350	115	85	70	-	200) 70	34,213	3 25,28	3 24,500)	0 59,500	24,500	70,000	24,500	13,860	12,667
D1 (c)	Private Hospital		-	Hospitals: acute	100%	CIBSE F	heated floor area	-					() 0) () () ()	0 0	0	0	0	0	0
D1 (c)	Outdoor Market		-		100%	CIBSE F								0)							1		
D1 (c)														0)									
			1		1			İ						0)	1	İ	1			1	1	<u> </u>	1
	5.6 Assembly & Leisure Facilities (Use Class D)		-		1									0		1	1	1	1	1	1	1	t	1
D2	Equestrian Centre			Sports and recreation: dry sports centre	100%	CIBSE F	treated floor area	-	-	-			() 0) () (0 0	0	0	0	0	0
D2	Tennis Academy			Sports and recreation: dry sports centre	100%	CIBSE F	treated floor area	-	-	-	-	-	() 0					0 0	0	0	0	0	0
	· · · · · · · · · · · · · · · · · · ·						dict dict							0	Ì	1				1	1	<u> </u>	<u> </u>	1
			1	Total	s		1	82.316						Ť	2.974.093	2,707,945	3.240.888	1.163.237	6.845.27	5 3.240.888	7,847,988	3.240.888	1,553,902	1.675.539
			1				i	1	i	1	1	1	1	1	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,201			1,11,000		.,,	1,111,500

Notes 1 good practice benchmarks can be assumed upper limits for new build 2 where no good practice benchmarks available, typical practice benchmarks used 3 fossil fuel taken to be gas (fossil-thermal energy) 4 benchmark figures include cooling, as applicable to building type 5 calculations are for EXEMPLAR build

carbon emissions factor (gas) 0.198 kgCO₂/kWh

carbon emissions factor (electricity) 0.517 kgCO₂/kWh

Table 2 – Results of SAP Analysis

MVHR Affordable

MEV Private and rented

											Post CHP								
Property Type	Built Form	Plot nos	No	TFA	TER	DER CHP	Ene1 CHP	DER EE	Ene1 EE	FEE	(DER worksheet Box 98)	Post CHP Space Heating /m ²	Post CHP Water (box 64)	Post CHP Water (Box 45)	Post CHP Pumps & Fan	Post CHP Lighting		Space Heating Demand	Water H Demand (
				m2	CO2/m2/yr	CO2/m2/yr	%	CO2/m2/yr	%	kWh/m²/year	kWh/yr	kWh/m2/yr	kWh/yr	kWh/yr	kWh/yr	kWh/yr		kWh/m²/yr	kWh/n
House	End Terrace	156	2	2 76.8	19.08	3.81	80.00%			39.71	1522.37	19.82	2426.36	1438.12	215.45	351.06	6	19.82	I
House	Mid Terrace	182	4	93.2	16.63	3.87	76.70%			35.28	1600.84	17.18	2292.59	1538.39	294.15	404.16	5	17.18	
House	Semi Detached	191	12	2 113.34	18.54	3.63	80.40%			44.82	3015.12	26.6	2588.97	1600.73	357.71	438.04		26.60	
Bungalow	Detached	288	2	97.54	19.58	3.47	82.30%	-		48.27	2957.02	30.32	2544.8	1556.56	250.61	403.41		30.32	
Bungalow	Detached	292		62.63	20.61	3.6	82.50%			48.83	2481.13	30.03	2468.13	1479.89	212.3	363.79		30.03	
Flat	Flat	290		2 70.98	18.56	3.66	80.30%			40.07	1576.65	20.20	2301.04	1389.55	186.27	205.01		20.20	(
House	Semi Detached	304	3	89.6	18.4	3.89	78.90%			39	1827.9	20.4	2509.09	1520.85	282.78	391.91		20.40	í.
Bungalow	Semi Detached	355	7	82.63	19.85	3.6	81.90%			46.8	2321.35	28.09	2468.13	1479.89	212.3	362.92	2	28.09	í.
Bungalow	Semi Detached	356	1	82.63	19.85	3.64	81.70%			46.8	2318.72	28.06	2468.13	1479.89	212.3	369.44	l l	28.06	í l
House	End Terrace	357	1	76.8	19.08	3.81	80.00%			39.71	1522.37	19.82	2426.36	1438.12	215.45	351.06	6	19.82	
House	Mid Terrace	358	1	1 77.24	17.26	3.76	78.20%			34.93	1166.46	15.1	2429.75	1441.51	216.69	345.75	5	15.10	í –
Flat	Flat	370	5	5 55.23	21.83	3.73	82.90%			46.68	1437.07	26.02	2218.38	1230.14	144.94	253.13	8	26.02	
House	End Terrace	384	12	93.2	18.08	3.87	78.60%			39.73	1967.63	21.11	2292.59	1538.39	294.15	404.16	5	21.11	I
House	Mid Terrace	392	13	3 77.24	17.26	3.76	78.20%			35.47	1193.62	15.45	2429.75	1441.51	216.69	345.75	5	15.45	
House	End Terrace	393	23	89.54	18.43	3.81	79.30%			39.12	1791.28	20.01	2508.77	1520.53	251.19	407.91		20.01	1
House	Detached	50	2	2 151	17.74	2.18	87.70%	-		46.31	5569.51	36.88	2627.28	1639.04	123.9	511.65	2	36.88	1
House	Mid Terrace	98	1	93.2	10.03	2.68	83.90%			35.58	2506.08	20.89	2292.59	1538.39	79.31	404.16		26.89	
House	Mid Terrace	101	1	93.2	17.26	2.68	84.40%			33.38	2306.08	20.09	2292.39	1336.39	79.31 56.34	404.18	2	20.69	r
House	End Terrace	104		03.2	18.08	2.09	85 20%			39.72	2760.83	29.62	2423.73	1538 39	70.31	404.16		29.54	r
House	Mid Terrace	151		93.2	16.63	2.68	83.90%	-		35.28	2472.55	26.53	2292.59	1538.39	79.31	404.16	-	26.53	
House	End Terrace	152	5	81.78	18.91	2.74	85.50%			39.86	2397.73	29.32	2462.48	1474.24	69.59	363.72		29.32	í.
House	End Terrace	160	10	81.78	18.91	2.74	85.50%	1		39.03	2339.61	28.61	2462.48	1474.24	69.59	363.72		28.61	í l
House	Semi Detached	164	. 4	81.78	18.91	2.74	85.50%			39.03	2339.61	28.61	2462.48	1474.24	69.59	363.72	2	28.61	
House	Mid Terrace	176	1	93.2	16.63	2.68	83.90%			33.99	2383.71	25.58	2292.59	1538.39	79.31	404.16	6	25.58	í
House	Mid Terrace	193	7	93.2	16.63	2.68	83.90%			34.47	2414.35	25.91	2292.59	1538.39	79.31	404.16	6	25.91	
House	Detached	198	2	113.34	18.54	2.44	86.80%			44.88	3896.1	34.38	2588.97	1600.73	96.45	438.04	l	34.38	I
House	Detached	206	1	113.34	18.54	2.44	86.80%			44.33	3839.38	33.87	2588.97	1600.73	96.45	438.04	6	33.87	
House	Detached	207	30	113.34	18.54	2.44	86.80%	-		43.92	3800.51	33.53	2588.97	1600.73	96.45	438.04		33.53	1
House	Detached	210	1	151	17.74	2.18	87.70%			46.19	5554.47	36.78	2627.28	1639.04	123.9	511.65	2	36.78	
House	Detached	221	10	112.34	10.34	2.44	96.90%			45.02	3900.44	34.40	2500.97	1600.73	96.45	438.04	2	24.40	
House	Detached	223	7	7 113.34	18.54	2.44	86.80%			44.30	3823.47	33.73	2588.97	1600.73	96.45	438.04		33.73	1
House	Mid Terrace	249	2	77.24	17.26	2.69	84.40%	-		34.93	1895.32	24.54	2429.75	1441.51	56.34	345.75	5	24.54	
House	End Terrace	250	2	93.2	18.08	2.68	85.20%			39.42	2720.93	29.19	2292.59	1538.39	79.31	404.16	5	29.19	
House	Semi Detached	265	5	5 93.2	18.08	2.68	85.20%			39.73	2753.76	29.55	2292.59	1538.39	79.31	404.16	6	29.55	
House	Mid Terrace	268	2	93.2	16.63	2.68	83.90%]		34.47	2414.35	25.91	2292.59	1538.39	79.31	404.16	6	25.91	
House	Detached	272	2	2 151	17.74	2.18	87.70%			46.55	5608.44	37.14	2627.28	1639.04	123.9	511.65	5	37.14	
House	Semi Detached	290	1	89.6	18.4	2.7	85.30%			39.6	2635.12	29.41	2509.09	1520.85	76.25	391.91		29.41	1
House	Semi Detached	291	1	81.78	18.91	2.74	85.50%			39.71	2379.57	29.1	2462.48	1474.24	69.59	363.72	2	29.10	
House	End Terrace [Bay]	293	2	2 89.6	18.4	2.7	85.30%			39	2588.56	28.89	2509.09	1520.85	76.25	391.91		28.89	
House	Mid Terrace	294	2	2 //.24	17.26	2.69	84.40%	-		35.42	1927.47	24.95	2429.75	1441.51	56.34	345.75	2	24.95	
House	Detached	307	40	151	17.74	2.18	87.70%	4		45.86 4F 70	5514.12	36.52	2627.28	1639.04	123.9	511.65		36.52	()
House	Semi Detached (Bav)	314	10	70	10.74	2.18	85 90%	1		40.78	2303.58	30.45 20.15	2027.28	1454 7	123.9	353.26		29.15	
House	Semi Detached	313	12	2 89.6	18.4	2.03	85.30%	1		39.84	2647.09	29.54	2509.09	1520.85	76.25	391.91		29.54	
House	Detached	319	5	5 151	17.74	2.18	87.70%	1		46.46	5592.91	37.04	2627.28	1639.04	123.9	511.65	5	37.04	
House	End Terrace	326	7	93.2	18.08	2.68	85.20%	1		39.73	2753.76	29.55	2292.59	1538.39	79.31	404.16	6	29.55	1
House	Detached	329	4	151	17.74	2.18	87.70%]		46.54	5603.63	37.11	2627.28	1639.04	123.9	511.65	i	37.11	i
House	End Terrace [Bay]	334	3	3 79	19.07	2.69	85.90%			40.14	2303.17	29.15	2442.94	1454.7	57.62	353.26	ŝ	29.15	I
House	Mid Terrace	335	15	5 77.24	17.26	2.69	84.40%	4		34.93	1895.32	24.54	2429.75	1441.51	56.34	345.75	i i	24.54	I
House	Mid Terrace	338	6	§ 93.2	16.63	2.68	83.90%	4		35.58	2506.08	26.89	2292.59	1538.39	79.31	404.16	ŝ	26.89	I
Flat	Flat	346	2	67.08	17.15	2.68	84.40%	4		33	1496.84	22.31	2341.65	1353.41	45.77	302.29	2	22.31	I
Flat	Flat	348		67.08	18.93	2.68	85.80%	4		41.85	2039.3	30.4	2341.65	1353.41	45.77	302.29	4	30.40	
House	End Terrace [Bay]	362	10	a 81./8	18.91	2.74	85.50%	4		39.03	2339.61	28.61	2462.48	14/4.24	09.59 70.21	363.72		28.61	()
House	Semi Detached	304	46	93.2	10.08	2.68	85 9/10/2	1		30.02	2004.75	28.59	2292.59	1038.39	19.31	404.10		26.59	(
House	Mid Terrace	368	10	81 0.4	17 16	2.09	84 00%	1		35.70	2066 72	20.94	2442.94	1475 31	69.73	364 38		20.94	í
House	Detached	376		113.34	18.54	2 44	86.80%	1		44.82	3886.5	34.29	2588 97	1600 73	96.45	438.04		34,29	1
House	Mid Terrace	380	11	77.24	17.26	2.69	84.40%	1		35.47	1922.63	24.89	2429.75	1441.51	56.34	345.75	5	24.89	
House	End Terrace	381	18	3 93.2	18.08	2.68	85.20%	1		38.62	2664.75	28.59	2292.59	1538.39	79.31	404.16	5	28.59	1
House	End Terrace	388	4	89.54	18.43	2.73	85.20%]		39.12	2592.07	28.95	2508.77	1520.53	65.31	407.91	Ĩ	28.95	i
House	Mid Terrace	389	4	1 77.24	17.26	2.69	84.40%	1		35.42	1927.47	24.95	2429.75	1441.51	56.34	345.75	i	24.95	
House	End Terrace	390	3	3 79	19.07	2.69	85.90%			40.47	2332.47	29.52	2442.94	1454.7	57.62	353.26	6	29.52	
			393	3															

Space Heating Demand	Water Heating Demand (box 45)	Water Heating Demand (box 64)	Pumps & Fans	Lighting	
kWh/m²/yr	kWh/m²/yr	kWh/m²/yr	kWh/m ² /yr	kWh/m²/yr	1
19.82	18.73	31.59	2.81	4.57	
17.18	16.51	24.60	3.16	4 34	
26.60	14.12	29.00	2.16	2.96	
20.00	15.00	26.00	3.10	4.14	
30.32	15.90	20.09	2.57	4.14	
30.03	17.91	29.87	2.57	4.40	
26.28	20.84	36.53	2.62	4.53	
22.21	19.58	33.50	2.62	4.45	
20.40	16.97	28.00	3.16	4.37	
28.09	17.91	29.87	2.57	4.39	
28.06	17.91	29.87	2.57	4.47	
19.82	18.73	31.59	2.81	4.57	
15.10	18.66	31.46	2.81	4 48	
26.02	22.27	40.17	2.62	4 58	
20.02	16.51	34.60	2.02	4.30	
21.11	10.51	24.00	5.10	4.54	
15.45	18.66	31.46	2.81	4.48	
20.01	16.98	28.02	2.81	4.56	
36.88	10.85	17.40	0.82	3.39	
26.89	16.51	24.60	0.85	4.34	
26.89	16.51	24.60	0.85	4.34	
24.54	18.66	31.46	0.73	4.48	
29.62	16.51	24.60	0.85	4.34	
26.53	16.51	24.60	0.85	4,34	
20.00	10.01	30.11	0.05	A 45	
29.52	18.03	20.11	0.85	4.45	
28.01	18.03	30.11	0.05	4.45	
28.01	18.05	50.11	0.65	4.45	
25.58	16.51	24.60	0.85	4.34	
25.91	16.51	24.60	0.85	4.34	
34.38	14.12	22.84	0.85	3.86	
33.87	14.12	22.84	0.85	3.86	
33.53	14.12	22.84	0.85	3.86	
36.78	10.85	17.40	0.82	3.39	
34.48	14.12	22.84	0.85	3.86	
24.09	14.12	22.01	0.95	2.96	
34.08	14.12	22.04	0.05	3.00	
33.75	14.12	22.64	0.85	5.60	
24.54	18.66	31.46	0.73	4.48	
29.19	16.51	24.60	0.85	4.34	
29.55	16.51	24.60	0.85	4.34	
25.91	16.51	24.60	0.85	4.34	
37.14	10.85	17.40	0.82	3.39	
29.41	16.97	28.00	0.85	4.37	
29.10	18.03	30.11	0.85	4.45	
28,89	16.97	28.00	0.85	4,37	
24.05	19 66	31 //6	0.72	A 40	
24.93	10.00	17.40	0.75	9.40	
30.52	10.85	17.40	0.82	5.39	
30.45	10.85	17.40	0.82	3.39	
29.15	18.41	30.92	0.73	4.47	
29.54	16.97	28.00	0.85	4.37	
37.04	10.85	17.40	0.82	3.39	
29.55	16.51	24.60	0.85	4.34	
37.11	10.85	17.40	0.82	3.39	
29.15	18.41	30.92	0.73	4.47	
24.54	18.66	31.46	0.73	4.48	
26.89	16.51	24.60	0.85	4.34	
20.05	20.31	3/ 01	0.60		
22.31	20.18	34.91	0.00	4.51	
30.40	20.18	54.91	0.05	4.51	
28.61	18.03	30.11	0.85	4.45	
28.59	16.51	24.60	0.85	4.34	
28.94	18.41	30.92	0.73	4.47	
25.22	18.00	30.07	0.85	4.45	
34.29	14.12	22.84	0.85	3.86	
24.89	18.66	31.46	0.73	4.48	
28.59	16.51	24.60	0.85	4,34	
28.95	16.98	28.02	0.73	4.56	
24.95	18.56	31.46	0.73	4.48	
29.53	10.00	30.07	0.73	4.40	
23.32	10.41	30.92	0.75	4.47	TC
					- I O

TFA	Space Heating Demand	Water Heating Demand (box 45)	Water Heating Demand (box 64)	Pumps & Fans	Lighting
m²	kWh/m²/yr	kWh/m²/yr	kWh/m²/yr	kWh/m²/yr	kWh/m²/yr
153.6	39.65	37.45	63.19	5.61	9.14
372.8	68.71	66.03	98.39	12.62	17.35
1360.08	319.23	169.48	274.11	37.87	46.38
195.08	60.63	31.92	52.18	5.14	8.27
413.15	150.13	89.55	149.35	12.85	22.01
188.97	78.84	62.52	109.59	7.87	13.60
141.96	44.43	39.15	67.00	5.25	8.90
268.8	61.20	50.92	84.01	9.47	13.12
578.41	196.65	125.37	209.09	17.98	30.74
82.63	28.06	17.91	29.87	2.57	4.47
76.8	19.82	18.73	31.59	2.81	4.57
77.24	15.10	18.66	31.46	2.81	4.48
276.15	130.10	111.37	200.83	13.12	22.92
1118.4	253.34	198.08	295.18	37.87	52.04
1004.12	200.89	242.62	408.94	36.47	58.19
2059.42	460.12	390.58	644.42	64.52	104.78
302	73.77	21.71	34.80	1.64	6.78
93.2	26.89	16.51	24.60	0.85	4.34
93.2	26.89	16.51	24.60	0.85	4.34
//.24	24.54	18.66	31.46	0.73	4.48
372.8	118.49	66.03	98.39	3.40	17.35
838.8	238.77	148.56	221.39	7.66	39.03
408.9	146.60	90.13	201.11	4.25	22.24
817.8	286.09	180.27	301.11	8.51	44.48
327.12	114.45	16.51	120.44	5.40	17.79
93.2	191 24	115.51	172.10	0.65	4.34
22.4	69.75	29.25	172.19	1.70	7 72
113 34	33.87	14.12	22.84	0.85	3.86
3400.2	1005.96	423.70	685.28	25.53	115.94
151	36.78	10.85	17.40	0.82	3.39
906.72	275.87	112.99	182.74	6.81	30.92
1133.4	340.79	141.23	228.43	8.51	38.65
793.38	236.14	98.86	159.90	5.96	27.05
154.48	49.08	37.33	62.91	1.46	8.95
186.4	58.39	33.01	49.20	1.70	8.67
466	147.73	82.53	122.99	4.25	21.68
186.4	51.81	33.01	49.20	1.70	8.67
302	74.28	21.71	34.80	1.64	6.78
89.6	29.41	16.97	28.00	0.85	4.37
81.78	29.10	18.03	30.11	0.85	4.45
179.2	57.78	33.95	56.01	1.70	8.75
154.48	49.91	37.33	62.91	1.46	8.95
1359	328.66	97.69	156.59	7.38	30.50
1510	364.48	108.55	1/3.99	8.21	33.88
1075 2	291.54	184.14	309.23	10.29	44.72
10/5.2	105 20	203.09 EA 37	97.00	10.21	16.04
652.4	206.83	115 54	172.19	5.96	30.36
604	148 44	43.47	69.60	3.78	13.55
237	87.46	55.24	92.77	2.19	13.41
1158.6	368.07	279.94	471.86	10.94	67.14
559.2	161.34	99.04	147.59	5.11	26.02
134.16	44.63	40.35	69.82	1.36	9.01
603.72	273.61	181.58	314.17	6.14	40.56
817.8	286.09	180.27	301.11	8.51	44.48
838.8	257.33	148.56	221.39	7.66	39.03
1185	434.06	276.21	463.85	10.94	67.07
409.7	126.11	90.02	150.33	4.25	22.23
340.02	102.87	42.37	68.53	2.55	11.59
849.64	273.81	205.29	346.03	8.02	49.24
1677.6	514.65	297.11	442.77	15.32	78.06
358.16	115.79	67.93	112.07	2.92	18.22
308.96	99.82	/4.65	125.83	2.92	17.91
23/	88.57	55.24	92.77	2.19	15.41
5/450.29	11049.80	04/7.82	10517.27	510.20	1005.12

Domestic Boiler efficency 90%

Non-domestic benchmark adjustmer 75%

Non-domestic Boiler 85% efficiency

Jse Class	so pescription			GIA (m²)	assumed building type	% of GIA	basis of benchn	nark			good p energy/FF I (kWh/r	ractice benchmark m²/yr)		good energy (kW	l practice benchmark 'h/m²/yr)		Energy Use (kWh/year)		t (kV	otal /h/yr)	ta (kW	tal h/yr)	carbon emis (kgC	dioxide sion 0 _{2/y} r)
									(m ²)	space	water	L&A	cooking	Fossil Fuel	Electricity	space	water	L&A	cooking	Energy	Electricity	Fossil Fuel	Electricity	Fossil Fuel	Electricity
	5.1 Retail (Use Class A)			1,250																					
A1 (a	a) Food Store			750	Small food store - Co-operative	100%	CIBSE TM46 (Small food store)	gross floor area	750	-	-	266	-	0	266	5 0	0	199,688	0	0	199,688	0	199,688	0	103,238
A1 (a	a) Convenience Retail			253	Shops/stores: non-food stores (hairdressers)	100%	CIBSE TM46 (General retail	gross floor area	253	-	-	124	-	0	124	4 0	0	31,309	0	0	31,309	0	31,309	0	16,187
A3	Restaurants & Café's			247	ECO-PUB Restaurants (with bar) and cafe	100%	CIBSE TM46 (Restaurant)	gross floor area	247	30	90	68	158	278	68	6,308	18,925	16,699	38,964	64,198	16,699	68,651	16,699	13,593	8,633
															()									
	5.2 Business (Use Class B)			1,540					-						()									
B1 (a	a) ECO-Business Centre			495	Office, air conditioned (standard)	100%	CIBSE TM46 (General office)	gross floor area	495	53	38	71	-	90	7:	1 22,089	15,778	35,269	0	37,868	35,269	44,550	35,269	8,821	18,234
B1 (c	c) Offices			745	Office, air conditioned (prestige)	100%	CIBSE TM46 (General office)	gross floor area	745	53	38	71	-	90	7	1 33,266	23,761	53,113	0	57,027	53,113	67,091	53,113	13,284	27,460
B1 (c	c) Light Industrial			-	Light manufacturing	100%	BSRIA Rules of Thumb	gross floor area	-	37	-	23	-	37	2	3 0	0	0	0	0	0	0	0	0	0
B1 (c	c) Energy Centre			300	Workshops	100%	CIBSE TM46 (Workshop -electricity only)	gross floor area	300	-	-	26	-	0	26	5 0	0	7,875	0	0	7,875	0	7,875	0	4,071
															(0								0	
	5.3 Hotels & Residential Institutions (Use Class C)			-											(0									
C1	Mid-range Hotel			-	Hotels: small	100%	CIBSE TM46 (Hotel)	gross floor area	-	124	83	79	41	206	120	0 0	0	0	0	0	0	0	0	0	0
C1	Country Club (Golf) Hotel			-	Hotels: business/holiday	100%	CIBSE TM46 (Hotel)	gross floor area	-	124	83	79	41	206	120	0 0	0	0	0	0	0	0	0	0	0
C2	Assisted Living			-	Residential and nursing homes	100%	CIBSE TM46 (Long Term Resi)_	gross floor area	-	150	90	49	75	240	124	4 0	0	0	0	0	0	0	0	0	0
															()									
	5.4 Residential Dwellings (Use Class C)		393	74,861																					
C3									-						()									
	Average house (Refer to 2b.1 SAP calcs input for detailed																								
	information)	95.24	393	37,430		100%	Approved Document L1A 2006	gross floor area	37,430	28.12	16.48	20.19	3.32	357	188	3 1,052,410	616,964	755,677	124,222	1,669,374	879,900	1,854,860	879,900	367,262	454,908
	5.5 Non Residential Institutions (Use Class D)			3,220											()									
D1 (c	c) Primary Schools			2,520	Primary school	100%	CIBSE TM46	gross floor area	2,520	62	39	30	11	113	30	132,536	84,341	75,600	28,350	216,889	75,600	283,500	75,600	56,133	39,085
D1 (c	c) Secondary School			-		100%	CIBSE TM46	gross floor area	-	50	34	30	29	83	59	9 0	0	0	0	0	0	0	0	0	0
D1 (c	c) Further Education Institution			-	Further & Higher Education - Teaching	100%	BSRIA Rules of Thumb	gross floor area	-	-	-	-	-	0	(0 0	0	0	0	0	0	0	0	0	0
D1 (c	c) Community Centre			350	Local authority buildings - community centres	100%	CIBSE TM46 (public buildings with light use)	net lettable items	350	64	15	15	-	79	1	5 18,966	4,463	5,250	0	23,428	5,250	27,563	5,250	5,457	2,714
D1 (c	c) Office			-	Emergency services	100%	CIBSE F	treated floor area	-	60	38	71	-	98	7	1 0	0	0	0	0	0	0	0	0	0
D1 (c	c) Nursery			350	Primary health care (general practitioners' surgeries and dental practices)	100%	CIBSE TM46 Clinic	gross floor area	350	86	64	53	-	150	5	3 25,659	18,966	18,375	0	44,625	18,375	52,500	18,375	10,395	9,500
D1 (c	c) Private Hospital			-	Hospitals: acute	100%	CIBSE F	heated floor area	-	-	-	-	-	0	(0 0	0	0	0	0	0	0	0	0	0
D1 (c	c) Outdoor Market			-		100%	CIBSE F								(
D1 (C		<u> </u>																							
\vdash	E.C. Assembly, & Leisure Facilities (Use Oleas D)	<u> </u>																							
0.2	5.0 Assembly & Leisure Facilities (Use Glass D)			•	Coasts and regrestion: dougnosts control	100%		treated floor area												0	0	0	0	0	0
D2	Equestrian Centre				Sports and recreation: dry sports centre	100%		treated floor area	-	-	-	-	-	0			0	0	0	0	0	0	0	0	0
52	Termis Academy				sports and recreation, dry sports centre	100%	CIDSE F	u caleu nuur area	-		-		-	0			0	U	0	U	U	U	U	U	U
					Totale				80 874						· · · ·	3 306 055	2 017 126	2 710 200	130 001	5 452 156	3 082 976	6 108 422	3 082 976	1 200 470	1 503 847
\vdash					Totals				00,071					1		3,330,033	2,017,120	2,710,205	-00,001	3,752,130	5,002,070	0,100,433	5,002,070	1,203,470	1,000,047
														-	-	-									

Notes
1 good practice benchmarks can be assumed upper limits for new build
2 where no good practice benchmarks available, typical practice benchmarks used
3 fossil fuel taken to be gas (fossil-thermal energy)
4 benchmark figures include cooling, as applicable to building type
5 calculations are for EXEMPLAR build

0.198 kgCO₂/kWh

carbon emissions factor (gas)

0.517 kgCO₂/kWh

carbon emissions factor (electricity)

Table 4 – Energy demand profiles

ENERGY BASELINE Hot water and space heating calcs

	Average Floor Area from SAP	Hot water demand	Space Heating demand	Number of Units	Total Hot water demand	Total Sapce heating demand
Domesctic					1210811	1279434
Non-Domestic					173868	238510
School					112455	176715
Total					1497134	1694659

_												
					Weighted space heating							
	0.156	0.141	0.124	0.095	0.056	0.027	0.014	0.014	0.031	0.068	0.119	0.15
Jan		Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
kWł	n/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month
i T	199873	180749	159158	122145	71559	35163	17273	17273	39481	86982	151755	198022
	37260	33695	29670	22770	13340	6555	3220	3220	7360	16215	28290	36915
	27606	24965	21983	16871	9884	4857	2386	2386	5453	12014	20960	27351
	264739	239409	210811	161785	94783	46575	22879	22879	52294	115211	201006	262288
lon	0.104	0.091	0.094	0.082	0.078	0.068	0.063	0.072	0.073	0.085	0.093	0.100
Jan		reb	War	Apr	way	Jun	Jui	Aug	Sep	Oct	NOV	Dec
kWł	n/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month
Ĺ	125517	109781	113283	98765	94768	81772	75773	86955	87991	102549	112097	121559
	18024	15764	16267	14182	13608	11742	10881	12486	12635	14726	16097	17455
í.	11657	10196	10521	9173	8802	7595	7038	8076	8172	9524	10411	11290
	155198	135741	140071	122120	117178	101109	93692	107517	108799	126799	138605	150305
1 -	419937	375151	350882	283905	211961	147684	116570	130396	161093	242010	339611	41259

APEE ENERGY ENERGY BASELINE Hot water and space heating calcs

ποι	water	anu	space	neating	Calcs

	Average Floor Area from SAP	Hot water demand	Space Heating demand	Number of Units	Total Hot water demand	Total Sapce heating demand
Domesctic					616964	1052410
Non-Domestic					81893	106289
School					84341	132536
Total					783198	1291235

	Weighted space heating														
0.156	0.141	0.124	0.095	0.056	0.027	0.014	0.014	(
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep							
kWh/month	month kWh/month														
164407	7 148677	130917	100471	58862	28924	14208	14208								
16604	4 15016	13222	10147	5945	2921	1435	1435								
20705	5 18724	16487	12653	7413	3643	1789	1789								
201717	7 182416	160626	123271	72219	35487	17432	17432								

		Weighted hot water														
	0.104	0.091	0.094	0.082	0.078	0.068	0.063	0.072								
Jai	n	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep							
kW	/h/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month	kWh/month							
	63957	55938	57723	50325	48289	41667	38610	44307								
	8489	7425	7662	6680	6410	5531	5125	5881								
	8743	7647	7891	6880	6601	5696	5278	6057								
	81189	71010	73276	63885	61299	52893	49013	56246								

0.031	0.068	0.119	0.155
	Oct	Nov	Dec
	kWh/month	kWh/month	kWh/month
32476	71548	124828	162885
3280	7226	12607	16451
4090	9010	15720	20513
39845	87784	153155	199849
		•	
0.073	0.085	0.093	0.100
	Oct	Nov	Dec
	kWh/month	kWh/month	kWh/month
44836	52254	57119	61940
5951	6936	7582	8222
6129	7143	7808	8467
56916	66333	72509	78629
		•	•
96761	154117	225664	278478

DOMESTIC ENERGY DEMAND PROFILE

Month		1	leat Demand (kWh)			Fossil Fuel (Gas) Demand (kWh)		Electricity De	mand (kWh)			
	BAS	ELINE			APEE		BASELINE		AP	EE	BASELINE	APEE
	Hot Water	Space heating	Cooking	Hot Water	Space heating	Hot Water	Space heating	Cooking	Hot Water	Space heating	Electricity	Electricity
Jan	125517	199873	45231	63957	164407	139463	222081	50256	71063	182675	108444	73325
Feb	109781	180749	45231	55938	148677	121979	200833	50256	62154	165197	108444	73325
Mar	113283	159158	45231	57723	130917	125870	176842	50256	64137	145463	108444	73325
Apr	98765	122145	45231	50325	100471	109738	135716	50256	55917	111635	108444	73325
Мау	94768	71559	45231	48289	58862	105298	79511	50256	53654	65402	108444	73325
Jun	81772 35163 45231		41667	28924	90858	39070	50256	46296	32137	108444	73325	
Jul	75773	17273	45231	38610 1420		84193	19192	50256	42900	15787	108444	73325
Aug	86955	17273	45231	44307	14208	96617	19192	50256	49231	15787	108444	73325
Sep	87991	39481	45231	44836	32476	97768	43868	50256	49817	36084	108444	73325
Oct	102549	86982	45231	52254	71548	113944	96646	50256	58059	79497	108444	73325
Nov	112097	151755	45231	57119	124828	124553	168617	50256	63465	138698	108444	73325
Dec	121559	198022	45231	61940	162885	135066	220025	50256	68822	180983	108444	73325
Total	1,210,811	1,279,434	542,768	616,964	1,052,410	1,345,346	1,421,593	603,076	685,515	1,169,344	1,301,331	879,900

NON-DOMESCTIC ENERGY PROFILE

Month		ŀ	leat Demand (kWh)		F	ossil Fuel (Gas) Demand (kWh)					Electricity Demand (kWh)	
	BASEL	INE			APEE		BASELINE		APE	E	BASELINE	APEE
	Hot Water	Space heating	Cooking	Hot Water	Space heating	Hot Water	Space heating	Cooking	Hot Water	Space heating	Electricity	Electricity
Jan	18024	37260	3325	8489	16604	20026	41400	3694	9433	18449	44785	30631
Feb	15764	33695	3325	7425	15016	17516	37439	3694	8250	16684	44785	30631
Mar	16267	29670	3325	7662	13222	18074	32967	3694	8513	14691	44785	30631
Apr	14182	22770	3325	6680	10147	15758	25300	3694	7422	11275	44785	30631
May	13608	13340	3325	6410	5945	15120	14822	3694	7122	6605	44785	30631
Jun	11742 6555 3325		5531	2921	13047	7283	3694	6145	3246	44785	30631	
Jul	10881	3220	3325	5125 14		12090	3578	3694	5694	1594	44785	30631
Aug	12486	3220	3325	5881	1435	13874	3578	3694	6535	1594	44785	30631
Sep	12635	7360	3325	5951	3280	14039	8178	3694	6613	3644	44785	30631
Oct	14726	16215	3325	6936	7226	16362	18017	3694	7707	8029	44785	30631
Nov	16097	28290	3325	7582	12607	17885	31433	3694	8424	14008	44785	30631
Dec	17455	36915	3325	8222	16451	19395	41017	3694	9135	18278	44785	30631
Total	173,868	238,510	39,900	81,893	106,289	193,186	265,011	44,333	90,992	118,098	537,425	367,577

SCHOOL ENERGY PROFILE

Month		I	leat Demand (kWh)		F	ossil Fuel (Gas) Demand (kWh)					Electricity Demand (kWh)	
	BASEL	INE			APEE		BASELINE		APE	E	BASELINE	APEE
	Hot Water	Space heating	Cooking	Hot Water	Space heating	Hot Water	Space heating	Cooking	Hot Water	Space heating	Electricity	Electricity
Jan	11657	27606	3150	8743	20705	12953	30674	3500	9715	23005	8400	6300
Feb	10196	24965	3150	7647	18724	11329	27739	3500	8497	20804	8400	6300
Mar	10521 21983 9173 16871		3150	7891	16487	11690	24425	24425 3500		18319	8400	6300
Apr	9173 16871 8802 9884		3150	6880	12653	10192	18745	3500	7644	14059	8400	6300
Мау	8802	9884	3150	6601	7413	9780	10982	3500	7335	8236	8400	6300
Jun	7595 4857		3150	5696	3643	8439	5396	3500	6329	4047	8400	6300
Jul	7038	2386	3150	5278	1789	7819	2651	3500	5865	1988	8400	6300
Aug	8076	2386	3150	6057	1789	8973	2651	3500	6730	1988	8400	6300
Sep	8172	5453	3150	6129	4090	9080	6059	3500	6810	4544	8400	6300
Oct	9524	12014	3150	7143	9010	10583	13349	3500	7937	10012	8400	6300
Nov	10411	20960	3150	7808	15720	11568	23289	3500	8676	17467	8400	6300
Dec	11290	27351	3150	8467	20513	12544	30390	3500	9408	22792	8400	6300
Total	112,455	176,715	37,800	84,341	132,536	124,950	196,350	42,000	93,713	147,263	100,800	75,600

Table 5 – Energy Strategy – carbon balance

	DOMESTIC CARBON BALANCE																		<u>.</u>		
Image: product of the sector of the sect			JANUARY	31	FEBRUARY 28	MARCH	31	APRIL	30	MAY	602 eest 602 ee	JUNE	30	JULY 31	AUGUST 31	SEPTEMBER 30	OCTOBER 31	NOVEMBER 30	DECEMBER 31	TOTAL	CO2 cost CO2 coving
and <th>BASELINE 2006</th> <th></th> <th>Demanu</th> <th>CO2 COSt CO2 Savin</th> <th>ig Demand CO2 cost CO2 sav</th> <th>ng Deman</th> <th></th> <th>ing Demand</th> <th>CO2 COSC CO2 Saving</th> <th>Demand</th> <th>CO2 COSC CO2 Sa</th> <th>ning Deman</th> <th>u coz cost coz savin</th> <th>g Demand CO2 Cost CO2 saving</th> <th>g Demand CO2 Cost CO2 savin</th> <th>g Demand CO2 Cost CO2 saving</th> <th>g Demand CO2 Cost CO2 saving</th> <th>Demand CO2 Cost CO2 saving</th> <th>Demand CO2 Cost CO2 saving</th> <th>Demanu</th> <th>CO2 COSC CO2 Saving</th>	BASELINE 2006		Demanu	CO2 COSt CO2 Savin	ig Demand CO2 cost CO2 sav	ng Deman		ing Demand	CO2 COSC CO2 Saving	Demand	CO2 COSC CO2 Sa	ning Deman	u coz cost coz savin	g Demand CO2 Cost CO2 saving	g Demand CO2 Cost CO2 savin	g Demand CO2 Cost CO2 saving	g Demand CO2 Cost CO2 saving	Demand CO2 Cost CO2 saving	Demand CO2 Cost CO2 saving	Demanu	CO2 COSC CO2 Saving
	Gas demand		411.801	81.537	373.068 73.867	352.96	69.888	295.711	58.551	235.064	46.543	180.18	4 35.677	153,641 30,421	166.065 32.881	191.892 37.995	260.846 51.648	343,426 67,998	405,347 80,259	3.370.015	667.263
matrix ma	Electricity demand		108,444	56,066	108,444 56,066	108,44	56,066	108,444	56,066	108,444	56,066	108,44	4 56,066	108,444 56,066	108,444 56,066	108,444 56,066	108,444 56,066	108,444 56,066	108,444 56,066	1,301,331	672,788
Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix Main and matrix <t< td=""><td>APEE ENERGY BASELINE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	APEE ENERGY BASELINE																				
meta definition meta defi	APEE gas demand		253,738	50,240	227,351 45,015	209,60	41,501	167,551	33,175	119,056	23,573	78,43	4 15,530	58,687 11,620	65,017 12,873	85,901 17,008	137,557 27,236	202,163 40,028	249,806 49,462	1,854,860	367,262
and <th>APEE elec demand</th> <th></th> <th>73,325</th> <th>37,909</th> <th>73,325 37,909</th> <th>73,32</th> <th>5 37,909</th> <th>73,325</th> <th>37,909</th> <th>73,325</th> <th>37,909</th> <th>73,32</th> <th>5 37,909</th> <th>73,325 37,909</th> <th>73,325 37,909</th> <th>73,325 37,909</th> <th>73,325 37,909</th> <th>73,325 37,909</th> <th>73,325 37,909</th> <th>879,900</th> <th>454,908</th>	APEE elec demand		73,325	37,909	73,325 37,909	73,32	5 37,909	73,325	37,909	73,325	37,909	73,32	5 37,909	73,325 37,909	73,325 37,909	73,325 37,909	73,325 37,909	73,325 37,909	73,325 37,909	879,900	454,908
MO <td>APEE heat demand</td> <td></td> <td>228,364</td> <td></td> <td>204,616</td> <td>188,64</td> <td>0</td> <td>150,796</td> <td></td> <td>107,150</td> <td></td> <td>70,59</td> <td>0</td> <td>52,818</td> <td>58,516</td> <td>77,311</td> <td>123,801</td> <td>181,947</td> <td>224,825</td> <td>1,669,374</td> <td></td>	APEE heat demand		228,364		204,616	188,64	0	150,796		107,150		70,59	0	52,818	58,516	77,311	123,801	181,947	224,825	1,669,374	
non-single free bias in the second of the seco	GAS CHP																				
	Heat output of Gas CHP system	kWth	866		866	866		866		866		866	i	866	866	866	866	866	866	866	
Main and the set of t	Electricity output of Gas CHP system	kWe	844		844	844		844		844		844	k	844	844	844	844	844	844	844	
Main with the set of	Efficiency of Gas CHP		78%		78%	785	6	78%		78%		785	6	78%	78%	78%	78%	78%	78%	78%	
Indiand <td>Heat to power ratio of CHP system</td> <td></td> <td>1.03</td> <td></td> <td>1.03</td> <td>1.0</td> <td>3</td> <td>1.03</td> <td></td> <td>1.03</td> <td></td> <td>1.0</td> <td>3</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td></td>	Heat to power ratio of CHP system		1.03		1.03	1.0	3	1.03		1.03		1.0	3	1.03	1.03	1.03	1.03	1.03	1.03	1.03	
Difference<	Heat demand	kWh	205,528		184,154	169,776		135,717		96,435		63,531		47,536	52,664	69,580	111,421	163,752	202,343	1,502,436	
Max matrix <td>Efficiency of heat distribution system</td> <td></td> <td>72%</td> <td></td> <td>72%</td> <td>729</td> <td>6</td> <td>72%</td> <td></td> <td>72%</td> <td></td> <td>729</td> <td>6</td> <td>72%</td> <td>72%</td> <td>72%</td> <td>72%</td> <td>72%</td> <td>72%</td> <td>72%</td> <td></td>	Efficiency of heat distribution system		72%		72%	729	6	72%		72%		729	6	72%	72%	72%	72%	72%	72%	72%	
name 1	Heat output from Gas CHP		285,455		255,769	235,800		188,495		133,938		88,238	1	66,023	73,144	96,639	154,751	227,433	281,031	2,086,717	
number number<	hours/d		11		11	9		7		5		3	4 - Contra 1997 - Contra 1997 - Contra 1997 - Contra 1997 - Contra 1997 - Contra 1997 - Contra 1997 - Contra 19	2	3	4	6	9	10	7	
	Hours of operation	hrs	330		296	272		218		155		102	1	76	85	112	179	263	325	2,411	
Table 1 and	Gas consumption of CHP	kW/hrs	2191		2191	219	L	2191		2191		219	1	2191	2191	2191	2191	2191	2191	26,294	
decide deci	Total gas consumption of CHP	kWh	722,671	143,089	647,517 128,208	596,962	118,198	477,203	94,486	339,084	67,139	223,387	44,231	167,146 33,095	185,176 36,665	244,656 48,442	391,776 77,572	575,780 114,005	711,472 140,871	5,282,829	1,046,000
	Electricity output	kWh	278,228	147,183	3 249,294 131,8	229,830	121,5	80 183,723	97,190	130,547	69,0	86,004	45,496	64,351 34,042	2 71,293 37,714	94,192 49,828	150,834 79,791	221,675 117,266	273,917 144,902	2,033,889	1,075,927
	GAS BOILER																				
iffered iffered	Heat output of Gas Boiler	kWth																			
	Efficiency of Boiler		87%		87%	875	6	87%		87%		875	6	87%	87%	87%	87%	87%	87%	87%	
	Heat Demand		22,836		20,462	18,864		15,080		10,715		7,059)	5,282	5,852	7,731	12,380	18,195	22,483	166,937	
	Efficiency of heat distribution system		72%		72%	729	6	72%		72%		725	6	72%	72%	72%	72%	72%	72%	72%	
Total grading No. Sale data	Heat output from biomass boiler		31,717		28,419	26,200		20,944		14,882		9,804	l i i i i i i i i i i i i i i i i i i i	7,336	8,127	10,738	17,195	25,270	31,226	231,857	
P P 1,71 1,72 1,72 1,72 1,72 1,72 1,73 1,72 1,72 1,73 1	Total gas consumption	kWh	36,448.19	7,217	32,658 6,466	30,108	5,961	24,068	4,765	17,102	3,386	11,267	2,231	8,430 1,669	9,339 1,849	12,339 2,443	19,759 3,912	29,040 5,750	35,883 7,105	266,442	52,755
ice opt ice opt	PV Elec capacity	kWo	1 371		1 371	1 371		1 371		1 371		1 371		1 371	1 371	1 371	1 371	1 371	1 371	1 371	
Total valuable het generated (extrict) 31,12 264,188 262,000 209,039 148,80 98,042 73,358 81,272 107,077 171,960 252,704 31,257 31,357 Heart deterrict) 31,415 30,004 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 30,0103 31,357 31,357 30,0103 31,357 31	Elec output	kWh/mo	35.187	18.614	4 52.780 27. 9	1 87.967	46.5	34 105.560	55.841	127.552	67.4	140,747	74.455	136.348 72.128	3 127.552 67.475	114.357 60.495	87.967 46.534	52,780 27,921	35.187 18.614	1.103.982	584.006
Non-control Control Control Control 	Total available heat generated	kWb	217 172		294.199	262.000		200,420		149 920		98.047		72 259	91 272	107 277	171.946	252 704	212 257	2 219 575	
Operation Signed Signed <td>Consistent electricity</td> <td>NVIII</td> <td>317,172</td> <td></td> <td>209,100</td> <td>202,000</td> <td></td> <td>203,433</td> <td></td> <td>358,000</td> <td></td> <td>226 751</td> <td>•</td> <td>200.600</td> <td>100.044</td> <td>209.540</td> <td>228 800</td> <td>232,704</td> <td>300 103</td> <td>2,310,373</td> <td></td>	Consistent electricity	NVIII	317,172		209,100	202,000		203,433		358,000		226 751	•	200.600	100.044	209.540	228 800	232,704	300 103	2,310,373	
Hat CO2 cost at 2006 baseline SB,557 SB,650 SB,550 SB,550 SB,550 SB,550 SB,550 SB,550 SB,550 SB,560 SB,560 SB,560 SB,560 SB,560 SB,560 SB,560 SB,570 SB,560 SB,570 SB,560 SB,570 SB,560 SB,570 SB,560 SB,570	Generated electricity		515,415		302,074	517,797		209,205		238,099		220,751		200,699	130,044	208,549	238,800	274,433	509,105	5,157,671	
Elec CQ2 cost 3 2006 baseline 56,066 56,066 56,066 56,066 56,066 56,066 56,066 56,066 56,066 672,788 Col 2 2020 baseline CO2 emission from option 137,602 129,933 125,544 114,616 102,068 91,742 86,487 88,947 94,060 107,713 124,064 136,24 1,340,051 CO2 emission from option 30% 30% 105% 127% 139% 139% 128% 128% 106% 90% 136,24 136,24 1,340,051 106,200 106% </td <td>Heat CO2 cost at 2006 baseline</td> <td></td> <td></td> <td>81,537</td> <td>73,867</td> <td></td> <td>69.888</td> <td></td> <td>58,551</td> <td></td> <td>46.543</td> <td></td> <td>35.677</td> <td>30.421</td> <td>32,881</td> <td>37,995</td> <td>51.648</td> <td>67,998</td> <td>80.259</td> <td></td> <td>667,263</td>	Heat CO2 cost at 2006 baseline			81,537	73,867		69.888		58,551		46.543		35.677	30.421	32,881	37,995	51.648	67,998	80.259		667,263
$\frac{1}{102} = \frac{1}{102} + \frac{1}$	Elec CO2 cost at 2006 baseline			56.066	56,066		56.066		56.066		56.066		56.066	56,066	56.066	56.066	56.066	56.066	56.066		672,788
137,602 129,333 129,334 125,554 114,616 102,608 91,742 86,847 98,947 22,158 107,133 124,064 136,324 1,340,051 22,2418 12,760 12,760 105% 158,706 139,% 139,% 139,% 139,% 128,% 128,% 129,801 129,901				,			,		,		,										
CO2 emission from option 22,418 12,786 - 6,046 - 15,870 - 28,101 - 35,581 - 33,497 - 28,766 - 21,528 - 6,932 12,476 22,370 - 106,270 84% 90% 105% 114% - 27,528 - 106,270 90% - 106,270 - 106,2	Total CO2 at 2006 baseline			137,602	129,933		125,954		114,616		102,608		91,742	86,487	88,947	94,060	107,713	124,064	136,324		1,340,051
84% 30% 105% 114% 127% 139% 139% 132% 106% 90% 84% 108% C2 based on monthly outputs	CO2 emission from option			22,418	12,786		- 6,046		- 15,870	-	28,101		- 35,581	- 33,497	- 28,766	- 21,528	- 6,932	12,476	22,370	-	106,270
CO2 based on monthly outputs 1,340,051 kgCO2/year total CO2 at 2006 baseline - 106,270 kgCO2/year CO2 emission from option 10855				84%	90%		105%		114%		127%		139%	139%	132%	123%	106%	90%	84%		108%
CO2 based on monthly outputs 1,340,051 kgCO2/year total CO2 at 2006 baseline - 106,270 kgCO2/year CO2 emission from option 10655																					
total CO2 at 2006 base of the second se																			CO2 based on monthly outputs		1 240 051 kaCO2/woor
Collemission from option																			total CO2 at 2006 baseline		106.270 kgCO2/year
																			CO2 emission from ontion	-	108%
																			COL CHIISSION HOM OPTION		

NON-DOMESTIC CARBON BALANCE

		JANUARY	31	FEBRUARY 28		MARCH	31	APRIL	APRIL 30 MAY		MAY 31		30	ſ	JULY 31	AU	GUST 31	SEPTEMBER 30		OCTOBER 31		NOVEMBER 30		DECEMBER 31		TOTAL	
		Demand	CO2 cost CO2 savin	g Demand C	O2 cost CO2 saving	Demand	CO2 cost CO2 sa	ving Dema	nd CO2 cost CO2 sa	ving Demand	CO2 cost CO2 sav	ving Demand	d CO2 cost CO2	2 saving	Demand CO2 cost CO2	2 saving	Demand CO2 cost CO2 savin	g Demand CO2 co	ost CO2 saving	Demand CO2	cost CO2 saving	Demand CO2 cos	ost CO2 saving	Demand CC	02 cost CO2 saving	Demand	CO2 cost CO2 saving
BASELINE 2006																											
Gas demand		65,121	12,894	58,649	11,613	54,736	10,838	44,5	52 8,861	33,637	6,660	24,025	5 4,757		19,362 3,834		21,146 4,187	25,911 5,13	0	38,073 7,5	538	53,013 10,497	7	64,106 1	2,693	502,531	99,501
Electricity demand		44,785	23,154	44,785	23,154	44,785	23,154	44,5	85 23,154	44,785	23,154	44,785	5 23,154		44,785 23,154		44,785 23,154	44,785 23,15	4	44,785 23,1	154	44,785 23,154	4	44,785 2	3,154	537,425	277,849
APEE ENERGY BASELINE																											
APEE gas demand		27,882	5,521	24,934	4,937	23,204	4,594	18,6	97 3,702	13,727	2,718	9,391	1 1,859		7,289 1,443		8,129 1,610	10,257 2,03	1	15,735 3,1	116	22,432 4,442	2	27,414	5,428	209,090	41,400
APEE elec demand		30,631	15,836	30,631	15,836	30,631	15,836	30,6	31 15,836	30,631	15,836	30,631	1 15,836		30,631 15,836		30,631 15,836	30,631 15,83	6	30,631 15,8	836	30,631 15,836	6	30,631 1	5,836	367,577	190,037
APEE heat demand		25,094		22,441		20,884		16,8	27	12,354		8,452	2		6,560		7,316	9,231		14,162		20,189		24,672		188,181	
GAS CHP																											
Heat output of Gas CHP system	kWth	866		866		866		8	36	866		866			866		866	866		866		866		866		866	
Electricity output of Gas CHP system	kWe	844		844		844		8	14	844		844			844		844	844		844		844		844		844	
Efficiency of Gas CHP		78%		78%		78%		7	8%	78%		789	6		78%		78%	78%		78%		78%		78%		78%	
Heat to power ratio of CHP system		1.03		1.03		1.03		1	03	1.03		1.0:	3		1.03		1.03	1.03		1.03		1.03		1.03		1.03	
Heat demand	kWh	22,584		20,197		18,795		15,1	14	11,119		7,607			5,904		6,584	8,308		12,746		18,170		22,205		169,363	
Efficiency of heat distribution system		/2%		72%		72%			2%	/2%		/2%	6		72%		72%	/2%		72%		72%		/2%		72%	
Heat output from Gas CHP		31,367		28,051		26,105		21,0	34	15,443		10,565			8,200		9,145	11,539		17,702		25,236		30,840		235,227	
nours/d	1	1		1		1			1	1		0			U			0		1		1		1		1	
Hours of operation	nrs	36		32		30			24	18		12			9		11	13		20		29		36		2/2	
Gas consumption of CHP	KW/nrs	2191	15 733	71.015	14.051	2191	12.095	52.2	91	2191	7 741	2191	1 F 20C		2191		2191	2191		2191	074	2191		2191	F 450	26,294	117.011
Electricity output	kwiii kath	79,410	15,725	71,015	14,001	25,444	15,065	35,2	10,344	15,050	7,741	20,740	5,250	5 447	20,739 4,110	4 330	23,132 4,304	29,212 5,76	F 050	44,010 0,0	0 1 2 7	24 507	12 012	78,077 1	5,455	220,211	117,511
CAS BOILER	KWII	50,575	10,175	27,541	14,405	25,444	15	400 20,5	10,	15,052	7,3	10,297		5,447	1,392	4,220	6,914 4,71	11,247	5,550	17,254	9,127	24,397	15,012	50,000	15,502	229,272	121,205
GAS BOILER	Land																										
Efficiency of Boiler	KWUI	97%		97%		97%			79/	97%		979	<i>.</i>		97%		97%	97%		97%		97%		9.7%/		97%	
Heat Demand		3 500		2 244		2,000		10	7.0	1 3 3 5		0//			6770		222	0770		1 410		2 010		2 467		10.010	
Efficiency of heat distribution system		2,505		77%		2,000		1,0	,5 79/	72%		729	ć		73%		7.32	729/		77%		2,015		2,407		10,010	
Heat output from biomacs boiler		2 495		2 117		2 901			270	1 716		1 174	•		011		1.016	1 292		1 967		2 904		2 427		76 126	
Total gas consumption	kWb	4 005	793	3 587	709	3 3 3 3	660	2,5	% 532	1,710	390	1 349	267		1 047 207		1 168 231	1,202	12	2 260 4	448	3 777 638	8	3,928	780	30.035	5 947
PV		4,005	755	5,502	105	5,555	000	2,0		2,572	350	2,545	207		2,047 207		1,100 201	2,475 25	-	2,200 4	140	5,222 050	0	5,550	700	50,055	5,547
Fler canacity	kWp	217		217		217		2	17	217		217			217		217	217		217		217		217		217	
Elec output	kWh/mor	5 879	3 110	8 818	4 665	14 696	7	774 17.6	5 16 91	29 21 310	11.7	73 23 514		12 439	22 779 1	12.050	21 310 11 27	19 105	10 107	14 696	7 774	8 818	4 665	5.879	3 110	184 440	97 569
COOKING (gas)	kWh/mor	3,247	643	3.247	643	3,247	643	3.2	17 643	3.247	643	3.247	643	12,755	3.247 643	12,000	3,247 643	3,247 64	3	3.247 6	643	3.247 643	3	3,247	643	38.964	7,715
Total available beat generated	kWb	24 95 7		21.169		20.005		22.2	71	17 150		11 720			9.111		10.161	12 921		10 660		28.040		24 267		761 262	.,
Conserve de la statistica de la statisti	KWIII	34,032		31,100		23,005		20,0	-	26,262		22,044			3,111		20,222	20,252		15,005		20,040		34,207		201,505	
denerated electricity		50,452		50,159		40,140		50,1	57	30,302		55,611			30,772		50,225	50,552		51,951		33,413		55,956		415,711	
Heat CO2 cost at 2006 baseline			12 904		11 612		10.929		9 961		6 660		4 757		2 924		4 197	E 12		7.0	- 20	10.49	7		2 602		00 501
Floc CO2 cost at 2000 baseline			22 154		72 154		22 154		22 154		22 154		22 154		22 154		22 154	22.15		22.1	154	22 15/		1	2,055		277 949
Liet CO2 COSt at 2000 baseline			23,134		23,134		23,134		23,134		23,134		23,134		23,134		23,134	23,13	~	23,1		23,134	~	-	3,134		277,045
Total CO2 at 2006 baseline			36.048		34 767		33 997		32 015		29.814		27 911		26 988		27 341	28.28	5	30.6	693	33.651	1	3	5 847		377 350
CO2 emission from ontion			12 712		17 177		9 001		7 290		5 275		4 156		4 510		5 207	6.40		0.0	800	12 001	1		2 707		102 757
CO2 emission nom option		-	62%		65%		74%		77%		87%		85%		83%		<u></u>		196		71%	64	1%		62%	-	73%
		-		_		-				-									<u> </u>				-				
																								CO2 based on monthly o	outputs		377.350 keCO2/vear
																								total CO2 at 2006 base	line		102.757 kgCO2/year
																								CO2 emission from onti	ion		73%
																								of the second seco			

Hyder Consulting (UK) Ltd

SCHOOL CARBON BALANCE

	I	JANUARY 3	1	FEBRUARY	28	MARCH	31	AF	RIL 30		MAY 31		JUNE	30	JULY	31	AUGUST 31		SEPTEMBER 30		OCTOBER 31	NOVEMBER 30	DECEMBER 31	TOTAL	
		Demand	CO2 cost CO2 savir	ng Demand	CO2 cost CO2 savin	e Demand	CO2 cost	CO2 saving	Demand	CO2 cost CO2 saving	Demand	CO2 cost CO2 savin	Demand	CO2 cost CO2 savi	ving Demand	d CO2 cost CO2 savi	ing Demand CO	2 cost CO2 saving	e Demand CO2 co	st CO2 saving	Demand CO2 cost CO2 saving	Demand CO2 cost CO2 sa	ving Demand CO2 cost CO2 saving	Demand	CO2 cost CO2 saving
BASELINE 2006				Ŭ,													u								
Gas demand		47.127	9.331	42.568	8.428	39.616	7.844		32,437	6.423	24.262	4.804	17.335	3.432	13.970	2.766	15.124	2.995	18.639 3.69	1	27.431 5.431	38.357 7.595	46.434 9.194	363.300	71.933
Electricity demand		8,400	4.343	8.400	4.343	8.400	4.343		8,400	4.343	8,400	4.343	8,400	4.343	8.400	4.343	8.400	1 343	8.400 4.34	3	8.400 4.343	8,400 4,343	8.400 4.343	100,800	52,114
APEE ENERGY BASELINE		5,155		5/100		0,	,,= .=		5/155		6/100												5,100 1,010		
APEE gas demand		32,720	6.479	29.301	5 802	27.087	5,363		21,703	4.297	15.571	3.083	6.329	1.253	5.865	1.161	8,718	1.726	11.354 2.24	8	17.949 3.554	26.143 5.176	32,201 6 376	240.975	47.713
APEE elec demand		6.300	3,257	6,300	3.257	6,300	3,257		6,300	3,257	6,300	3.257	6,300	3,257	6.300	3,257	6,300	3,257	6.300 3.25	7	6300 3.257	6 300 3 257	6.300 3.257	75.600	39.085
		5/555	-,		-,		-,			-,		-,				-,					-,		0,000		,
APEE heat demand		29,448		26,371		24,378			19,533		14,014		9,339		7,067	7	7,846		10,219		16,154	23,529	28,981	216,878	
GAS CHP																								(
Heat output of Gas CHP system	kWth	866		866		866			866		866		866		866		866		866		866	866	866	866	
Electricity output of Gas CHP system	kWe	844		844		844			844		844		844		844		844		844		844	844	844	844	
Efficiency of Gas CHP		78%		78%		78%			78%		78%		78%		789	6	78%		78%		78%	78%	78%	78%	
Heat to power ratio of CHP system		1.03		1.03		1.03			1.03		1.03		1.03		1.0	3	1.03		1.03		1.03	1.03	1.03	1.03	
Heat demand	kWh	26,503		23,734		21,940			17,579		12,613		8,405		6,361		7,062		9,197		14,538	21,176	26,082	195,190	
Efficiency of heat distribution system		72%		72%		72%			72%		72%		72%		729	6	72%		72%		72%	72%	72%	72%	
Heat output from Gas CHP		36,810		32,963		30,473			24,416		17,518		11,673		8,834		9,808		12,774		20,192	29,411	36,226	271,097	
hours/d		1		1		1			1		1		0		0		0		0		1	1	1	1	
Hours of operation	hrs	43		38		35			28		20		13		10		11		15		23	34	42	313	
Gas consumption of CHP	kW/hrs	2191		2191		2191			2191		2191		2191		2191	L	2191		2191		2191	2191	2191	2191	
Total gas consumption of CHP	kWh	93,190	18,452	83,452	16,523	77,146	15,275		61,812	12,239	44,348	8,781	29,552	5,851	22,365	4,428	24,830	4,916	32,339 6,40	3	51,119 10,122	74,458 14,743	91,711 18,159	686,321	135,892
Electricity output	kWh	35,878	18,97	9 32,129	16,99	29,701		15,712	23,798	12,589	17,074	9,032	2 11,378	6,0:	19 8,611	4,55	55 9,560	5,057	12,450	6,586	19,681 10,411	28,666 15,:	164 35,309 18,678	264,234	139,780
GAS BOILER																								1 1	
Heat output of Gas Boiler	kWth																							1 1	
Efficiency of Boiler		87%		87%		87%			87%		87%		87%		879	6	87%		87%		87%	87%	87%	87%	
Heat Demand		2,945		2,637		2,438			1,953		1,401		934		707		785		1,022		1,615	2,353	2,898	21,688	
Efficiency of heat distribution system		72%		72%		72%			72%		72%		72%		729	6	72%		72%		72%	72%	72%	72%	
Heat output from biomass boiler		4,090		3,663		3,386			2,713		1,946		1,297		982		1,090		1,419		2,244	3,268	4,025	30,122	
Total gas consumption	kWh	4,700	931	4,209	833	3,891	770		3,118	617	2,237	443	1,490	295	1,128	223	1,252	248	1,631 32	3	2,578 510	3,755 744	4,625 916	34,615	6,854
PV																									
Elec capacity	kWp	110		110		110			110		110		110		110		110		110		110	110	110	110	
Elec output	kWh/moi	2,987	1,58	0 4,480	2,370	7,467		3,950	8,961	4,740	10,827	5,728	B 11,947	6,3	20 11,574	6,12	23 10,827	5,728	9,707	5,135	7,467 3,950	4,480 2 ,3	370 2,987 1,580	93,713	49,574
COOKING (gas)	kWh/moi	2,363	468	2,363	468	2,363	468		2,363	468	2,363	468	2,363	468	2,363	468	2,363	468	2,363 46	8	2,363 468	2,363 468	2,363 468	28,350	5,613
Total available heat generated	kWh	40,900		36,626		33,858			27,129		19,464		12,970		9,816		10,898		14,193		22,436	32,679	40,251	301,219	
Generated electricity		38.865		36.609		37,168			32,758		27.901		23.325		20.185		20.387		22.158		27.148	33.147	38.295	357.946	
Heat CO2 cost at 2006 baseline			9,331		8,428		7,844			6,423		4,804		3,432		2,766		2,995	3,69	1	5,431	7,595	9,194	(71,933
Elec CO2 cost at 2006 baseline			4,343		4,343		4,343			4,343		4,343		4,343		4,343		4,343	4,34	3	4,343	4,343	4,343	(52,114
																								(
Total CO2 at 2006 baseline			13,674		12,771		12,187			10,765		9,147		7,775		7,109		7,337	8,03	3	9,774	11,938	13,537	(124,047
CO2 emission from option		_	2,548		1,715	-	108		<u>-</u>	748	<u>-</u>	1,811		2,468		- 2,301	· ·	1,895	- 1,27	1	<u>- 4</u>	1,677	2,541	(<u> </u>	1,910
		_	81%		87%	_	99%		_	107%	_	120%		132%		132%		126%	116	<u>%</u>	100%	86%	81%	(=	102%
																							CO2 based on monthly outputs		124,047 kgCO2/year
																							total CO2 at 2006 baseline		1,910 kgCO2/year
																							CO2 emission from option		102%
CARBON BALANCE - DOMESCTIC																							CARBON BALANCE - DOMESTIC	·	106,270 kgCO2/year
CARBON BALANCE - DOMESCTIC & NON-DOMESTIC																							CARBON BALANCE - DOMESTIC & NON-DOM	ESTIC -	3,513 kgCO2/year
CARBON BALANCE - DOMESCTIC, NON-DOMESTIC & SCHOO	L																						CARBON BALANCE - DOMESTIC, NON-DOME	TIC & SCHOOL -	5,423 kgCO2/year

	CARBON BALANCE - DOMESCTIC	
	CARBON BALANCE - DOMESCTIC & NON-DOMESTIC	
	CARBON BALANCE - DOMESCTIC, NON-DOMESTIC & SCHOOL	
	NOTES	
1	CO2 factors	
	Gas	0.198 from mains
	Electricity	0.517 from mains
	Displaced Electricity	0.529
	woodchip	0.009
2	Solar Photo-Voltaic (PV)	
	PV peak output	kWp output per 0 m2
3	Gas CHP	
	39.5%	Thermal efficiency
	38.5%	Electrical efficiency
	78%	efficiency
	1.03	Heat/Power Ratio
	0.90	% of total heat supply
6	Gas Boiler	
	87%	efficiency
	0.10	% of total heat supply
-		

7 Heat Distribution System (Including Storage)
72.0% efficiency

Table 6 – Solar PV system output

INPUTS - DOMESTIC

Solar Photo-Voltaic (PV)											
Annual PV output per 1kWp	850	kWh/year									
PV peak output	1.41	kWp output per	10	m2							
Total available roof area - domestic	15,902										
% of total non-domestic roof area allocated to	61%										
Total available PV area - domestic	9,700		15901.9	9							
Total PV Installed capacity	1,371	kW									
Total annual output from PV	1,165,485	kWh/year									

SOLAR ENERGY PROFILE

40	60	100	120	145	160	155	145	130	100	60	40
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
45	68	113	135	163	180	175	163	146	113	68	45
0.032	0.048	0.080	0.096	0.116	0.127	0.124	0.116	0.104	0.080	0.048	0.032
37,147	55,720	92,867	111,441	134,658	148,588	143,944	134,658	120,728	92,867	55,720	37,147
35,187	52,780	87,967	105,560	127,552	140,747	136,348	127,552	114,357	87,967	52,780	35,187

INPUTS - NON DOMESCTIC

Solar Photo-Voltaic (PV)											
Annual PV output per 1kWp	850	kWh/year									
PV peak output	1.41	kWp output per	10	m2							
Total available roof area - non-domestic	2,791	m2									
% of total non-domestic roof area allocated to	55%										
Total available PV area - non-domestic	1,535										
Total PV Installed capacity	217	kW									
Total annual output from PV	184,440	kWh/year									

SOLAR ENERGY PROFILE

40	60	100	120	145	160	155	145	130	100	60	40
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
45	68	113	135	163	180	175	163	146	113	68	45
0.032	0.048	0.080	0.096	0.116	0.127	0.124	0.116	0.104	0.080	0.048	0.032
5,879	8,818	14,696	17,636	21,310	23,514	22,779	21,310	19,105	14,696	8,818	5,879

INPUTS - SCHOOL

	Solar Photo-Volt	aic (PV)									
Annual PV output per 1kWp	850	kWh/year									
PV peak output	1.25	kWp output per		10	m2						
Total available roof area - non-domestic	2,520	m2									
% of total non-domestic roof area allocated to	35%										
Total available PV area - non-domestic	882										
Total PV Installed capacity	110	kW									
Total annual output from PV	93,713	kWh/year									
	2116	kW									
SOLAR ENERGY PROFILE											
40.00	60.00	100.00	120.00	145.00	160.00	155.00	145.00	130.00	100.00	60.00	40.00
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
40	60	100	120	144	159	154	144	129	100	60	40
0.032	0.048	0.080	0.096	0.116	0.127	0.124	0.116	0.104	0.080	0.048	0.032
2,987	4,480	7,467	8,961	10,827	11,947	11,574	10,827	9,707	7,467	4,480	2,987