Land east of Junction 11 of the M40, Banbury

Transport Assessment

Transport Planning Consultants

Land east of Junction 11 of the M40, Banbury

Transport Assessment

$4^{\text {th }}$ December 2023
SJT $\backslash R T \backslash 23457-09 b$ Transport Assessment

Prepared by:

David Tucker Associates
Forester House, Doctors Lane, Henley-in-Arden, Warwickshire B95 5AW

Tel: 01564793598
Fax: 01564793983
inmail@dtatransportation.co.uk www.dtatransportation.co.uk

Prepared For:

Greystoke CB

© David Tucker Associates

No part of this publication may be reproduced by any means without the prior permission of David Tucker Associates

Table of Contents

Page
1.0 INTRODUCTION 1
2.0 NATIONAL AND LOCAL POLICY 3
2.1 National Planning Policy Framework (September 2023) 3
2.2 DfT Circular 01/2022 (2022) 5
2.3 Decarbonising Transport (2020) 5
2.4 Future of Freight Plan (2022) 5
2.5 Gear Change: a bold vision for cycling and walking (2020) 6
2.6 Local Transport Note 1/20 6
2.7 Cherwell Local Plan 2011-2031 6
2.8 Oxfordshire Local Transport and Connectivity Plan (2022) 7
2.9 OCC LTCP Freight and Logistics Strategy 2022 - 2050 (2022) 8
2.10 Implementing 'Decide and Provide': Requirements for Transport Assessments 8
3.0 THE TRANSPORT VISION (DECIDE AND PROVIDE) 9
3.1 Introduction 9
3.2 Vision 9
3.3 Meeting the Vision 10
4.0 EXISTING CONDITIONS 11
4.1 Site Location 11
4.2 Local and Wider Road Network 11
4.3 Existing Traffic Flows 11
4.4 Personal Injury Collision Data 13
4.5 Public Transport Provision 16
4.6 Walking and Cycling 17
4.7 Local Amenities 19
5.0 DEVELOPMENT PROPOSALS 20
5.1 Development Description 20
5.2 Site Access 20
5.3 Public Transport Strategy 21
5.4 Parking 21
5.5 Travel Plan 21
6.0 TRAFFIC GENERATION AND DISTRIBUTION 22
6.1 Traffic Generation 22
6.2 Traffic Distribution 24
7.0 OPERATIONAL ASSESSMENT 26
7.1 VISSIM Model 26
7.2 Base Model Development 26
7.3 Forecasting 27
7.4 2026 Reference (2026 Ref) 29
$7.5 \quad 2026$ Do-Minimum (2026 DM) 29
7.62026 Do-Something (2026 DS) 29
7.7 2032 Reference (2032 Ref) 30
$7.8 \quad 2032$ Do-Minimum (2032 DM) 30
7.92032 Do-Something (2032 DS) 30
7.10 Summary 31
7.11 Merge/ Diverge Assessments 31
8.0 CONCLUSION 32
Drawings

23457-07B-GA Proposed Site Access Points and Mitigation

Appendices

Appendix A Illustrative Site Layout
Appendix B Statement of Common Ground
Appendix C Automatic Traffic Count Data
Appendix D Classified Turning Count Data
Appendix E Personal Injury Collision Data
Appendix F Footway/ Cycleway Plans from Frontier Park S106
Appendix G Summary of Committed and Development Traffic Flows
Appendix H TRICS Output - Commercial Warehousing
Appendix I TRICS Output - Parcel Distribution Centre
Appendix J VISSIM Local Model Validation Report
Appendix K VISSIM Forecasting Report
Appendix L Swept Path Analysis
Appendix M Road Safety Audit

1.0 INTRODUCTI ON

1.1 Greystoke CB commissioned David Tucker Associates (DTA) to provide highways and transport advice to support the outline planning application for the construction of up to $140,000 \mathrm{~m}^{2}$ of employment floorspace (use class B8 with ancillary offices and facilities), and servicing and infrastructure including new site accesses, internal roads and footpaths, landscaping including earthworks to create development platforms and bunds, drainage features and other associated works including demolition of the existing farmhouse. All matters of detail (including access) are reserved. The illustrative site layout is included in Appendix A.
1.2 The current challenges for the logistics sector are set out in the 'Future of Freight Plan' (DfT, 2022) and Better Delivery: The Challenge for Freight (NIC, 2019). The DfT report aims for the logistics sector to be cost efficient, reliable, resilient, environmentally sustainable and valued by society. The NIC report identifies the growth in e-commerce, the need to transition to zero emission vehicles and the emergence of disruptive new technology. Decarbonising Transport (DfT, 2022) says that the planning system must contribute to the solution by delivering sufficient and appropriately located sites recognising that many of the existing ones will be unsuitable or no longer fit for purpose.
1.3 This development clearly strikes a balance between providing accessible local employment opportunities for residents within the (Cherwell) District and, the need for efficient freight operations where businesses have access to their markets within the M40 corridor, access to the Strategic Road Network (SRN) and intermodal freight facilities and international gateways (ports and airports). This reflects that the travel demand generated by the development is broader than simply the journey to work trips of employees.
1.4 For Banbury, the principal settlement in Cherwell District, there are few locations that could support commercial warehousing given the structure of the road network and reliance on links such as Hennef Way which constrains sites to the west of the M40, i.e., without prejudicing existing ones. Modelling shows that there are limits to which existing tidality of demand (inbound into Banbury in the AM peak and outbound in the PM peak) can increase without an adverse impact. The development demand does not reinforce this tidality and hence sites to the east of the M40 can support businesses, allow a close spatial relationship with Banbury such that employees will have travel choices and, minimise the increase of commercial traffic on local roads.
1.5 A planning application (LPA reference 22/01488/OUT) was previously made for development of the Site. Several technical issues with respect to the Transport Assessment (TA) were raised by the Local Highway Authority (LHA), Oxfordshire County Council (OCC), the neighbouring LHA West Northamptonshire Council (WNC), and National Highways (NH). During a

Land east of J11 of the M40, Banbury
 Transport Assessment

subsequent appeal (PI reference APP/C3105/W/11/22/3311992), there were significant areas of agreement which were reached including key parameters to be adopted within the Transport Assessment (TA). Detailed modelling work was not completed, and the appeal was ultimately withdrawn. Notwithstanding this, the agreed parameters (Statement of Common Ground, Appendix B) have been taken forward and these have informed the significant additional technical work, which is set out in this updated TA. This includes a new micro-simulation model, which has been developed for the A422 corridor including M40 Junction 11, and an independent road safety audit.
1.6 This TA includes the following headings:

- Chapter 1: Introduction
- Chapter 2: National and Local Policy
- Chapter 3: The Transport Vision (Decide and Provide)
- Chapter 4: Existing Conditions
- Chapter 5: Development Proposals
- Chapter 6: Traffic Generation and Distribution
- Chapter 7: Operational Assessment
- Chapter 8: Conclusions
1.7 This report concludes that the development provides modern warehousing within a strategic corridor where the impact on Oxfordshire communities is minimised in accordance with local policy. Moreover, the over-arching policy aims are met as the proximity to the principal settlement (Banbury) will reduce car-based commuting. Subject to the proposed mitigation, the development will have no material residual operational or safety impact on the local highway network or M40 Junction 11.

Land east of J11 of the M40, Banbury

Transport Assessment

2.0 NATI ONAL AND LOCAL POLICY

2.1 National Planning Policy Framework (September 2023)

2.1.1 In September 2023, the National Planning Policy Framework (NPPF) was updated. The NPPF confirms that the Government encourages sustainable development. This is highlighted in Paragraph 10 which confirms that:
"at the heart of the Framework is a presumption in favour of sustainable development"
2.1.2 In specific relation to transport issues it is confirmed at para 104 and 105 that:

104 Transport issues should be considered from the earliest stages of plan-making and development proposals, so that:
a) the potential impacts of development on transport networks can be addressed;
b) opportunities from existing or proposed transport infrastructure, and changing transport technology and usage, are realised - for example in relation to the scale, location or density of development that can be accommodates;
c) opportunities to promote walking, cycling and public transport use are identified and pursued;
d) the environmental impacts of traffic and transport infrastructure can be identified, assessed and taken into account - including appropriate opportunities for avoiding and mitigating any adverse effects, and for net environmental gains; and
e) patterns of movement, streets, parking and other transport considerations are integral to the design of schemes, and contribute to making high quality places.

The planning system should actively manage patterns of growth in support of these objectives.
105. Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions, and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making."

Land east of J11 of the M40, Banbury
 Transport Assessment

2.1.3 The NPPF sets the following test in relation to development:

110. In assessing sites that may be allocated for development in plans, or specific applications for development, it should be ensured that:
a) appropriate opportunities to promote sustainable transport modes can be - or have been - taken up, giving the type of development and its location;
b) safe and suitable access to the site can be achieved for all users;
c) the design of streets, parking areas, other transport elements and the content of associated standards reflects current national guidance, including the National Design Guide and the National Model Design Code; and
d) any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree.
111. Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network would be severe."
2.1.4 Paragraph 112 of the NPPF goes on to say that:
112. Within this context, applications for development should:
a) give priority first to pedestrian and cycle movements, both within the scheme and with neighbouring areas; and second - so far as possible - to facilitating access to high quality public transport, with layouts that maximise the catchment area for bus or other public transport services, and appropriate facilities that encourage public transport use;
b) address the needs of people with disabilities and reduced mobility in relation to all modes of transport;
c) create places that are safe, secure and attractive - which minimise the scope for conflicts between pedestrians, cyclists and vehicles, avoid necessary street clutter, and respond to local character and design standards;
d) allow for the efficient delivery of goods, and access by service and emergency vehicles; and
e) be designed to enable charging of plug-in and other ultra-low emission vehicles in safe, accessible and convenient locations."

Land east of J11 of the M40, Banbury
Transport Assessment

2.2 DfT Circular 01/ 2022 (2022)

2.2.1 Circular 01/2022 was published in December 2022 by the Department for Transport (DfT) which sets out the way in which National Highways will engage with the development industry to deliver sustainable development and thus economic growth, whilst safeguarding the primary function and purpose of the strategic road network.
2.2.2 Transport Assessments are covered in paragraphs 47 through 54 inclusive with key extracts relevant to the proposed development as follows:
"developers should demonstrate that the development would be located in an area of high accessibility by sustainable transport modes and would not create a significant constraint to the delivery of any planned improvements to the transport network or allocated sites.

A transport assessment for consideration by the company must also consider existing and forecast levels of traffic on the SRN, alongside any additional trips from committed developments that would impact on the same sections (link or junction) as the proposed development. Assumptions underpinning projected levels of traffic should be clearly stated to avoid the default factoring up of baseline traffic.

An opening year assessment to include trips generated by the proposed development, forecasted growth and committed development shall be carried out to establish the residual transport impacts of a proposed development.

Where a transport assessment indicates that a development would have an unacceptable safety impact or the residual cumulative impacts on the SRN would be severe, the developer must identify when, in relation to the occupation of the development, transport improvements become necessary."

2.3 Decarbonising Transport (2020)

2.3.1 Decarbonising Transport is a policy paper of 2020 which sets out a vision of a net zero carbon transport sector. This will be achieved through six priority areas: accelerating modal shift to public and active transport, decarbonisation of road vehicles, decarbonising how we get our goods, place based solutions, UK as a hub for green transport, technology and innovation; and reducing carbon in a global economy.

2.4 Future of Freight Plan (2022)

2.4. Future of Freight is a policy paper of 2022 which sets out a long-term cross modal plan for the freight and logistics sector. The plan sets out a vision for a freight and logistics sector that is
cost efficient, reliable, resilient, environmentally sustainable and valued by society. The plan identifies that the planning system has a crucial role in promoting development that supports the efficient supply of goods by ensuring that sufficient land is being made available in the right places for freight operations.

2.5 Gear Change: a bold vision for cycling and walking (2020)

2.5.1 Gear Change is a policy paper of 2020 which set out the UK government's position on how to increase walking and cycling. The cycling and walking plan sets out the vision for half of all journeys in towns and cities to be made by active travel modes by 2030. All new key cycling infrastructure, such as cycle lanes and parking, must now adhere to the LTN $1 / 20$.

2.6 Local Transport Note 1/20

2.6.1 Local Transport Note $1 / 20$ Cycle Infrastructure Design is guidance to support delivery by local authorities of high-quality cycle infrastructure to support objectives to include cycling and walking levels. The needs of people of all ages and abilities are considered. The core design principles are that networks and routes should be Coherent; Direct; Safe; Comfortable and Attractive.

2.7 Cherwell Local Plan 2011-2031

2.7.1 This document seeks to look to the future and set out proposals to support the local economy and communities up to 2031. It forms part of the statuary Development Plan for Cherwell. The Plan was formally adopted by the Council on 20th July 2015.
2.7.2 The plan addresses several broad parameters, such as:

- A strategy for development in Cherwell;
- Policies for development in Cherwell;
- Policies for Cherwell's places;
- Infrastructure, and
- Delivery

SLE 1: Employment Development

Employment proposals at Banbury, Bicester and Kidlington will be supported if they meet the following criteria:

Have good access, or can be made to have good access, by public transport and other sustainable modes

SLE 4: Improved Transport and Connections

Land east of J11 of the M40, Banbury
 Transport Assessment

All development where reasonable to do so, should facilitate the use of sustainable modes of transport to make the fullest possible use of public transport, walking and cycling.

Saved policy TR1 (Cherwell Local Plan 1996)

Before proposals for development are permitted, the Council will require to be satisfied that new highways, highway improvement works, traffic-management measures, additional public transport facilities or other transport measures that would be required as a consequence of allowing the development to proceed will be provided.

2.8 Oxfordshire Local Transport and Connectivity Plan (2022)

2.8.1 The Oxfordshire Local Transport Plan (LTP5) sets out a vision to deliver 'a net-zero Oxfordshire transport and travel system that enables the county to thrive whilst protecting the environment and making Oxfordshire a better place to live for all residents'.
2.8.2 Headline targets are to:

- reduce 1 in 4 current car trips by 2030;
- deliver a net zero transport network by 2040;
- and have zero, or as close as possible, road fatalities or life changing injuries by 2050.

Policy 36 - We will:
a) Only consider road capacity schemes after all other options have been explored.
b) Where appropriate, adopt a decide and provide approach to manage and develop the county's road network.
c) Assess opportunities for traffic reduction as part of any junction or road route improvement schemes.
d) Require transport assessments accompanying planning applications for new development to follow the County Council's 'Implementing 'Decide \& Provide': Requirements for Transport Assessments' document.
e) Promote the use of the 'decide and provide' approach in planning policy development to support site assessment.

Policy 47 - We will develop and deliver a freight and logistics strategy based around the principles of:

- Appropriate movement
- Efficient movement
- Net-zero movement

Land east of J11 of the M40, Banbury
 Transport Assessment

- Safe movement
- Partnership working

Policy 48 - We will:
a) Promote rail freight as our priority for the long distance movement of goods.
b) Support a range of additional measures to improve the safety and efficiency of long distance goods movement.

2.9 OCC LTCP Freight and Logistics Strategy 2022-2050 (2022)

This strategy addresses some of the challenges associated with the movement of goods in Oxfordshire and sets out the actions required to deliver appropriate, efficient, clean and safe movement. The strategy also outlines how the freight system is essential if we are to meet broader air quality and net-zero objectives, as outlined in the main LTCP.

Action 27 - Seek to influence the location and design of new development

We will seek to influence the location and design of new development, particularly employment sites and any related transport infrastructure, so that these can function well, with appropriate freight access to and from the strategic transport network without adverse impacts on local communities, other road users and the environment. This includes ensuring new developments incorporate the needs of emerging technologies.

2.10 Implementing 'Decide and Provide’: Requirements for Transport Assessments

2.10.1 This guidance expands the expectations for TA for the implementation of a 'decide and provide' approach based on the TRICS guidance.

Land east of J11 of the M40, Banbury
Transport Assessment

3.0 THE TRANSPORT VI SI ON (DECI DE AND PROVI DE)

3.1 Introduction

3.1.1 Responding to the challenges of sustainable development, economic growth, and the climate emergency requires more efficient patterns of travel demand to be planned for, both for our communities and businesses. This is reflected in National Government and Industry support for a vision led approach to transport planning rather than the traditional forecast led approach. For instance, paragraph 48 of Department for Transport Circular 01/22 states that 'where a transport assessment is required, this should start with a vision of what the development is seeking to achieve and then test a set of scenarios to determine the optimum design and transport infrastructure to realise this vision'. This will allow opportunities from technological and behavioural change to be better realised. This approach is also equivalent to the 'decide and provide' approach advocated by OCC for instance within Policy 36 of their LTCP.
3.1.2 The current challenges for the employment sector are set out in the 'Future of Freight Plan' (DfT, 2022) and Better Delivery: The Challenge for Freight (NIC, 2019). The DfT report aims for freight services to be cost efficient, reliable, resilient, environmentally sustainable and valued by society. The NIC report identifies the growth in e-commerce, the need to transition to zero emission vehicles and the emergence of disruptive new technology.
3.1.3 Decarbonising Transport (DfT, 2022) says the planning system must contribute to the solution by delivering sufficient and appropriately located sites recognising that many of the existing ones will be unsuitable or no longer fit for purpose. The development needs, therefore, to strike a balance between providing for efficient freight operations and providing accessible local employment opportunities for the workforce.

3.2 Vision

3.2.1 Our vision is to create a sustainable employment development that will support healthy, active lifestyles by employees and visitors whilst minimising the impact of commercial traffic on the community. The development will provide modern employment units in the strategic M40 corridor, in an accessible location and well connected to the wider community. Our transport strategy for employee travel prioritizes walking, cycling and public transport over private cars. Our transport strategy for commercial vehicles routes traffic directly to the principal road network and avoids unsuitable routes.

Land east of J11 of the M40, Banbury
Transport Assessment

3.3 Meeting the Vision

3.3.1 The appraisal considers whether appropriate connectivity is achieved by all modes and scenarios where higher levels of sustainable travel are achieved and this has informed the Framework Travel Plan. Commercial demand is also considered to ensure that appropriate routeing to the principal road network is achieved.
3.3.2 The location of the site and the level of employee travel demand that will be generated is unlikely to trigger the need for significant reconfiguration of the local transport system. Where interventions are required, these will not be sensitive to mode share. In terms of junction modelling, therefore, this has been based on conservative assumptions based on historical precedent. The resultant demand forecasts are circa 10% higher in employee vehicular trips than targeted by the Vision and as such these performance metrics are worst cases.

Land east of J11 of the M40, Banbury
Transport Assessment

4.0 EXI STI NG CONDI TI ONS

4.1 Site Location

4.1.1 Banbury is the principal urban centre within the Cherwell District of Oxford, with a population of circa 50,000 people. It is located adjacent to the strategic road network; the M40 motorway runs between London and the West Midlands Conurbation. The motorway is accessed from M40 Junction 11 in the northwest of the town.
4.1.2 The Site is located immediately adjacent to and north of the M40 Junction 11 gyratory between the A361 and A422 arms. The Site is approximately 3.2 km north-east of Banbury Town Centre. It is immediately adjacent to the Frontier Park development (ref: 19/00128/HYBRID; 'Frontier Park') which is located between the A361 and M40 North arms.

4.2 Local and Wider Road Network

4.2.1 The site will be accessed from the A361. The A361 is a single carriageway road which measures approximately 7.5 m in width. The road is subject speed limit of 40 mph implemented as part of the Frontier Park development. The A361 runs between the M40/ A422/ A361 Roundabout to the A45 on the south-western boundary of Daventry.
4.2.2 The A422 is a dual carriageway road with each direction separated by a grass central reservation. The road is subject to the national speed limit of 70 mph . The A422 becomes single carriageway and subject to a 50 mph speed limit to the east of the B4525/ A422/ Mansion Hill Roundabout. The A422 runs between Banbury and the A43 to the south of Brackley.
4.2.3 The M40 motorway is a dual three-lane motorway which links London, Oxford, and Birmingham.

4.3 Existing Traffic Flows

4.3.1 To inform the traffic modelling a programme of traffic surveys was commissioned within the A422 corridor. Automatic Traffic Counts (ATC) were undertaken for a two-week period on the following roads from Thursday $22^{\text {nd }}$ June to Wednesday $5^{\text {th }}$ July 2023:

- A361.
- A422.
- Hennef Way (between Wildmere Road and M40 J11).
- Hennef Way (between Wildmere Road and A4260).
- Hennef Way (between A4260 and Southam Road).
4.3.2 The location of the ATCs and the full results can be seen in Appendix C. A summary of the five-day average flows for the peak periods and AADT for the week 1 survey is in Table 1 below. The average mean speeds and 85th percentile speeds are summarised in Table 2.

Land east of J11 of the M40, Banbury
Transport Assessment

Table 1 - Automatic Traffic Count Summary - Week 1

Time Period	Northbound	Southbound	Two-Way
A361			
08:00-09:00	278	499	777
17:00-18:00	562	387	949
AADT	5,083	4,890	9,973
A422			
	Eastbound	Westbound	Two-Way
08:00-09:00	924	1,055	1,979
17:00-18:00	980	940	1,920
AADT	11,166	11,622	22,788
Hennef Way (between Wildmere Road and M40 J11)			
	Eastbound	Westbound	Two-Way
08:00-09:00	1,400	2,132	3,532
17:00-18:00	1,727	1,714	3,441
AADT	21,893	23,295	45,188
Hennef Way (between Wildmere Road and A4260)			
	Eastbound	Westbound	Two-Way
08:00-09:00	1,568	1,838	3,406
17:00-18:00	1,597	2,026	3,623
AADT	22,797	24,997	47,794
Hennef Way (between A4260 and Southam Road)			
	Eastbound	Westbound	Two-Way
08:00-09:00	1,379	1,204	2,583
17:00-18:00	1,332	1,320	2,652
AADT	20,501	18,406	38,907

Table 2 - Average Mean Speeds and 85th Percentile Speeds

	Northbound	Southbound
A361		
Average Mean Speed	44.6	41.6
$85^{\text {th }}$ Percentile Speed	50.7	48.5
A422		
	Eastbound	Westbound
Average Mean Speed	48.7	72.4
85 ${ }^{\text {th }}$ Percentile Speed	56.3	83.6
Hennef Way (between Wildmere Road and M40 J11)		
	Eastbound	Westbound
Average Mean Speed	33.4	36.6
85 ${ }^{\text {th }}$ Percentile Speed	40.7	43.4
Hennef Way (between Wildmere Road and A4260)		
	Eastbound	Westbound
Average Mean Speed	45.1	42.1
85 ${ }^{\text {th }}$ Percentile Speed	53.3	49.4
Hennef Way (between A4260 and Southam Road)		
	Eastbound	Westbound
Average Mean Speed	41.6	39.5
85 ${ }^{\text {th }}$ Percentile Speed	48.0	47.1

4.3.3 In addition to the ATC's, manual classified turning counts and queue length surveys were undertaken at the following locations on Thursday 29th June 2023.

- M40 (N) / A361 / A422 (E)/ M40 (S)/ A422 (W) - M40 Junction 11.
- Wildmere Road / A422 / Ermont Way / A422 Hennef Way roundabout.
- Access Road / Hennef Way / A4260 Concord Avenue / Holman Bridge roundabout.
- Southam Road (N)/ A422 Hennef Way / Southam Road (S) / A422 Roucote Avenue roundabout.
- B4525 Banbury Lane / Mansion Hill / A422 / Unnamed Road / A422 (W) roundabout.
- Wildmere Road (N) / Brookhill Way / Wildmere Road (S) / Wildmere Road.
- A423 Southam Road (N) / A423 Southam Road (S)/ Beaumont Road.
4.3.4 Full results can be seen in Appendix \mathbf{D}.
4.3.5 Pedestrian crossing demand data was collected at the following locations
- A422 Hennef Way, just west of the A422/Wildmere Road/Ermont Way roundabout
- A423 Southam Road, just north of the A422/Southam Road roundabout
- A422 Hennef Way, just east of the A422/Southam Road roundabout
- A422 Ruscote Avenue, just west of the A422/Southam Road roundabout

4.4 Personal Injury Collision Data

4.4.1 The existing road safety performance of the local road network has been assessed in the context of the additional demand that will generated by the proposed development. This has informed the site access design, the appraisal of the transport implications of the development and has been provided to the independent road safety auditors.
4.4.2 Personal Injury Collision (PIC) data was obtained from OCC for the full five-year period preceding the introduction of Covid-19 restrictions up to the most recent PICs published ($1^{\text {st }}$ January 2015 to 31 ${ }^{\text {st }}$ December 2021).
4.4.3 Further PIC data has been obtained from OCC from $31^{\text {st }}$ December 2021 to $16^{\text {th }}$ November 2023 and this is summarised below.
4.4.4 The study area includes the A361 between the M40 J11 gyratory and Banbury Road, the A422 between the M40 J11 gyratory and Banbury Lane, the M40 J11 slip roads, Hennef Way, and approximately 500 m north and south of the Hennef Way/ Southam Road roundabout. The location of the PICs and the full output can be seen in Appendix E.

PIC Data - 1st January 2015 to 31st December 2021

4.4.5 In the five years preceding the introduction of Covid-19 restrictions ($01 / 01 / 2015$ to $31 / 12 / 2019) 83$ PICs occurred in the study area - 70 slight, 11 serious, and 2 fatal. In the most recent five-year period ($01 / 01 / 2017$ to $31 / 12 / 2021$) 79 PICs occurred in the study area 68 slight, 11 serious, and 0 fatal.
4.4.6 As can be seen above, the two time periods have a similar level of PICs split similarly over the three severity classifications. Due to this, the most recent five-year period has been assessed as is standard with Transport Assessments. The fatal PICs which occurred in the years before 2017 have however been assessed in order for the assessment to be robust.
4.4.7 The first fatal PIC occurred on the A422 Hennef Way at the roundabout junction with Ermont Way. It occurred when vehicle 1 (pedal cycle) crossed the roundabout entry from west to central refuge and hit the nearside of vehicle 2 (HGV) travelling north on Ermont Way in the offside lane waiting to enter the roundabout. The PIC was very likely caused by vehicle 1 using a mobile phone, vehicle 1 impaired by drugs (illicit or medicinal), vehicle 1 executing a poor turn or manoeuvre, and vehicle 1 failing to look properly.
4.4.8 The second fatal PIC occurred on Beaumont Road approximately 100 m west of the junction with the A423 Southam Road. It occurred when vehicle 1 (HGV) travelling west along Beaumont Road stopped ahead of an access for delivery. The HGV then started to reverse to the access when a person (stow away/ attempting to enter the country) believed to be alighting from under the HGV sustained a fatal injury. The PIC was very likely caused by the casualty failing to judge the vehicles path or speed.
4.4.9 Due to the nature of the fatal PICs, it is not considered that they would contribute to a significant accident issue within the study area, and it is unlikely to be related to Covid-19 that there were no fatal PICs in the most recent five-year period.
4.4.10 Of the 79 PICs which have occurred since 1st January 2017, 9 have involved vulnerable road users which have been assessed below. There have also been 2 PICs which have 'road layout' listed as a causation factor. On further assessment, it appears that these PICs have occurred more due to driver error than any road layout issues that require mitigation (car in the incorrect lane cutting in front of another car, and excessive speed leading to a junction overshoot).
4.4.11 The first PIC which involved a vulnerable road user was classified as 'slight' in severity and occurred on the A361 Southam Road on the footway on the eastern side of the road approximately 40 m northeast of the junction with Marley Way. It occurred when a mobility scooter was travelling northeast on the footway and hit a pedal cycle travelling southeast also on the footway. The PIC was possibly caused by the mobility scooter being careless/ reckless/
in a hurry, failed to judge other persons path or speed, aggressive driving or passing too close to cyclist and possibly due to the pedal cycle travelling along the pavement.
4.4.12 The second PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on the A422 Hennef Way roundabout at the junction with the A4260 Concorde Avenue. It occurred when vehicle 1 (car) travelling west on the A422 Hennef Way on exiting the roundabout junction with the A4260 Concorde Avenue to continue west, hit a pedestrian crossing from the offside just west of the roundabout. The cause of the PIC was possibly due to the pedestrian failing to look properly and failing to judge the vehicles path or speed.
4.4.13 The third PIC which involved a vulnerable road user was classed as 'serious' in severity and occurred on the A422 Hennef Way roundabout at a toucan crossing approximately 40 m southeast of the junction with the A423 Southam Road. It occurred when vehicle 1 (car) travelling southeast on the A422 in the offside lane failed to stop for a red signal at the toucan crossing and hit a pedestrian. The cause of the PIC was due to the vehicle failing to look properly and disobeying an automatic traffic signal.
4.4.14 The fourth PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on Waterworks Lane at the junction with Grimsbury Green. It occurred when vehicle 1 (car) travelling north on Waterworks Lane from the A422 roundabout turned right to Grimsbury Green but cut the corner and failed to give way to vehicle 2 (pedal cycle) travelling west of Grimsbury Green. The cause of the PIC was due to vehicle 1 being careless/ reckless/ in a hurry.
4.4.15 The fifth PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on the A361 Southam Road roundabout junction with the A422 Ruscote Avenue and Hennef Way. It occurred when vehicle 1 (car) travelling north on the A361 Southam Road overtook vehicle 2 (pedal cycle), also travelling north, intending to continue to the A423 Southam Road on immediate approach to the roundabout. Vehicle 1 went through a puddle suddenly splashing vehicle 2 causing the rider to fall. The cause of the PIC was due to a poor or defective road surface.
4.4.16 The sixth PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on the A422 Ruscote Avenue junction with Banbury Cross Retail Park. It occurred when vehicle 2 travelling east on the A422 Ruscote Avenue hit vehicle 2 (car) also travelling east as both vehicles exited the roundabout to continue east on the A422. Vehicle 2 stopped, and the passenger got out to speak to drive of vehicle 1 but vehicle 1 hit the pedestrian then fled the scene. The cause of the PIC was due to vehicle 1 executing a poot turn or manoeuvre and being careless/ reckless/ in a hurry.
4.4.17 The seventh PIC which involved a vulnerable road user was classed as 'serious' in severity and occurred on the A422 Ruscote Avenue junction with Lockheed Close. It occurred when vehicle 1 (car) travelling west having just exited the roundabout on the A422 Ruscote Avenue hit a pedestrian crossing from north to south pushing a bike across the road between cars. The cause of the PIC was due to vehicle 1 failing to look properly and possibly due to dazzling sun.
4.4.18 The eighth PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on the A361 Southam Road junction with an unclassified road approximately 100 m south of Hennef Way. It occurred when vehicle 1 (car) travelling north, turned right to the A361 failing to see vehicle 2 (pedal cycle) travelling south of the footway and hit vehicle 2 . The cause of the PIC was due to vehicle 1 failing to look properly.
4.4.19 The ninth PIC which involved a vulnerable road user was classed as 'slight' in severity and occurred on Ermont Way roundabout junction with the A422 Hennef Way. It occurred when vehicle 1 (car) travelling north on Ermont Way entered the roundabout to turn left to the A422 but failed to give way to vehicle 2 (pedal cycle) which had entered Ermont Way from the cycle track from Daventry Road then entered roundabout to continue north to Wildmere Road rather than using the toucan crossing.

PIC Data - 31st December 2021 to 16th November 2023
4.4.20 In the most recent period ($31 / 12 / 2021$ to $16 / 11 / 2023$) 11 PICs occurred in the study area -8 slight, 3 serious, and 0 fatal. There was 1 PIC that involved a vulnerable road user. The collision occurred on the Grimsbury Green junction with Link Road from Concorde Avenue roundabout. The collision occurred in 2023.
4.4.21 There were 4 PICs on the A422 Hennef Way, there were 2 PICs at the M40 Junction 11 with one south of the junction and the other on the entry slip road. There were 2 PICs on the A422 with the M40 Junction 11. There was 1 PIC on the A423 Southam Road with Beaumont Road, 1 PIC on Wildmere Road and 1 PIC on Grimsbury Green.
4.4.22 It is considered that there is currently no significant accident issue within the study area that would require intervention and that the proposed development will not be detrimental to the safe operation of the local highway network.

4.5 Public Transport Provision

Bus
4.5.1 A summary of these bus services can be seen in Table $\mathbf{3 4}$ below.

Table 3 - Summary of Bus Services

Service	Route	Frequency		
		Monday-Friday	Saturday	Sunday
132	Banbury - Brackley Tingewick - Buckingham	-	$\begin{gathered} 11: 17 \& 14: 50 \\ \text { Inbound } \\ 11: 22 \& 14: 57 \\ \text { Outbound } \\ \hline \end{gathered}$	-
200	Banbury - Daventry	$\begin{gathered} \hline \text { Hourly } \\ (06: 28-18: 27) \end{gathered}$	$\begin{gathered} \hline \text { Hourly } \\ (07: 52-19: 35) \end{gathered}$	-
500	Banbury - Brackley	$\begin{gathered} \text { Hourly } \\ (05: 55-23: 11) \end{gathered}$	$\begin{gathered} \text { Hourly } \\ (06: 57-23: 35) \end{gathered}$	$\begin{gathered} \text { Hourly } \\ (07: 07-19: 58) \\ \hline \end{gathered}$
B9	Banbury Gateway - Hardwick	$\begin{gathered} 20-30 \mathrm{mins} \\ (06: 34-22: 19) \end{gathered}$	$\begin{gathered} 30 \text { mins } \\ (07: 29-22: 19) \end{gathered}$	09:21, 17:21 \& 18:21 Outbound 09:11, 17:11 \& 18:00 Inbound

4.5.2 Frontier Park has implemented bus stops on the A361 on the site frontage. The bus stops have shelters and up to date timetable information, as well as being fully accessible for all users.
4.5.3 Pedestrian crossing points have been provided. The crossings benefit from dropped kerbs and tactile paving.
4.5.4 The bus stops are be served by the number 200 which currently runs along the A361 in both directions.
4.5.5 There are further stops approximately 1.3 km south on Ermont Way. This stop is serviced by the numbers 132, 200, 500 and B9.

Rail
4.5.6 The closest railway station is Banbury Railway Station is approximately 3.5 km from the centre of the site. This equates to a circa 42-minute walk, a circa 12-minute cycle or 5 minutes on the 200 bus service. There are 63 cycle storage spaces at the station and 978 pay and display car parking spaces, 14 of which are accessible.
4.5.7 The station has the services Chiltern Railways, Cross Country Trains and Great Western Railway. The services go to a variety of other stations such as Birmingham Moor Street, Southampton Central, Newcastle, London Marylebone, Bournemouth and Manchester Piccadilly. The station has parking, bicycle stands and ticket machines.

4.6 Walking and Cycling

4.6.1 As set out in Section 2 reducing car use by increasing active travel is supported by national and local government. Guidance (PPG13) from 2001, now withdrawn and not replaced, considered walking is practical for many trips up to 2 km in length and cycling for trips up to 5 kilometres in length. The similarly dated Guidelines for Providing for Journeys on Foot (IHT, 2000) also

Land east of J11 of the M40, Banbury
 Transport Assessment

recommended a 'preferred maximum' of $2,000 \mathrm{~m}$. Although the evidence basis for this guidance is unclear it is likely to be reliant on data that is now $25-30$ years old whereas more recent data is available.
4.6.2 The Propensity to Cycle tool (http://pct.bike) considers wider factors including the existing cycle demand (from 2011 Census), topography, behavioural change scenarios and technological change scenarios. It shows that topography is not a barrier within most of Banbury. Within the local area circa 4% of residents cycle to work. PCT considers that there is better than average potential for behavioural change where under the DfT Gear Change vision 9% of residents would cycle to work. The Dutch equivalent would however be 26% and the technology (e-bike) scenario 30\%.
4.6.3 The LHA previously raised the importance of integration with local routes and the effect of distance. On integration the time of the previous application, the Frontier Park consents had yet to be implemented. As set out below this are a material consideration. On distance, the site these are a consideration but as demonstrated by the PCT it will reduce with technology within the timeframe of the OCC LCTP.
4.6.4 A pedestrian/cycle link, separate from vehicle traffic to Banbury Gateway Shopping Centre is provided via the Motorway underpass beneath the M40. There are 'Cyclists Dismount' signs either side of the underpass. Frontier Park has provided, a shared use footway/ cycleway along Wildmere Road between the existing cycle facility at Banbury Gateway Retail Park and Hennef Way.
4.6.5 Frontier Park has also provided a 2 m wide footway leading from the northern side of the access and along the western side of the A361 as far as the new bus layby. A dropped kerb and tactile crossing with pedestrian refuge island leading to a 2 m wide footway on the eastern side between the crossing and a new bus layby.
4.6.6 The plan showing the Frontier Park works are attached at Appendix F and the requirements for the provision of this link set out in the Section 106 agreement (from which Appendix F is extracted).
4.6.7 This link is an appropriate pedestrian/cycle link for the employees of Frontier Park, and therefore the employees of the Development to access Banbury.
4.6.8 National Cycle Route (NCR) 5 is approximately 5 km south-west of the site. NCR 5 is a longdistance route which connects Reading and Holyhead via Oxford, Stratford-upon-Avon, Bromsgrove, Birmingham, Stoke-on-Trent, Chester, Colwyn Bay and Bangor.

Land east of J11 of the M40, Banbury
Transport Assessment

4.7 Local Amenities

4.7. 1 Accessibility by foot and cycle to local amenities was determined by measuring the distances from the site access to the local amenities.
4.7.2 The nearest food store, a Marks and Spencer Foodhall, is currently located approximately 800 m west of the site in Banbury Gateway Shopping Park. This equates to a circa 10 -minute walk or a circa 4-minute cycle.
4.7.3 The nearest hospital with an emergency department is Horton General Hospital which is located to the south of the town centre, approximately 3.9 km from the site which equates to a circa 15-minute cycle or a circa 11-minute drive.

Land east of J11 of the M40, Banbury
Transport Assessment

5.0 DEVELOPMENT PROPOSALS

5.1 Development Description

5.1.1 The development proposals are for an outline planning application for the construction of up to $140,000 \mathrm{~m}^{2}$ of employment floorspace (use class B8 with ancillary offices and facilities), and servicing and infrastructure including new site accesses, internal roads and footpaths, landscaping including earthworks to create development platforms and bunds, drainage features and other associated works including demolition of the existing farmhouse. All matters of detail (including access) reserved. The illustrative site layout is included in Appendix A.

5.2 Site Access

5.2.1 Vehicular access would be taken from the A361, and the proposed access arrangement is shown on DTA Drawing 23457-07C-GA.
5.2.2 The horizontal alignment of the A361 is substandard 100 m radius bend prior to the approach to the M40 Junction 11 gyratory. Although the speed limit has been reduced to 40 mph this is still four-step below desirable minimum. The tightness of the horizontal alignment is mitigated by lighting, chevron signs and double centrelines but forward visibility is reduced. As set out in Section 7 queuing on this section is forecast to increase in the reference cases relative to existing conditions.
5.2.3 The site access roundabout has been located on the apex of the bend removing the substandard bend. The directional change in the alignment in the future will occur with the roundabout. The roundabout has been designed in accordance with the Design Manual for Roads and Bridges (DMRB) CD116. No departures from standard have been identified,
5.2.4 A second access will be provided. This will be a ghost island priority junction to the north on the A361, similar in concept and form to the Frontier Park access. The accesses will be connected by internal roads.
5.2.5 The drawing also shows the location of the repositioned location of the bus stops and the pedestrian crossing point.
5.2.6 The interaction of this access in relation to the M40 J11 gyratory is discussed below in respect of the modelling.
5.2.7 On both accesses and the A361 entry onto the M40 Junction 11 gyratory vehicle tracking has been undertaken to demonstrate that the design vehicle (maximum legal articulated lorry $(16.5 \mathrm{~m})$) is accommodated within the proposed horizontal geometry (Appendix \mathbf{L}).
5.2.8 An initial independent Road Safety Audit has been undertaken. This makes recommendations on signing and lighting that will be appropriately addressed at the detailed design stage. The report is attached at Appendix M.

5.3 Public Transport Strategy

5.3.1 Development of land adjacent to the site (Frontier Park) has been consented and found acceptable in terms of public transport accessibility. As part of their mitigation package, they are required to provided bus stops on the A361 and a contribution (of $£ 100 \mathrm{k}$ towards enhanced bus services between the Frontier Park and Banbury town).
5.3.2 The LHA do not consider that the service is currently sustainable at existing levels of demands such that further support would be required to maintain services. At the time of the appeal a contribution of $£ 600 \mathrm{k}$ was requested and this was accepted by the applicant. They remain willing to make a contribution towards public transport improvements.
5.3.3 The proposed development will provide direct connection to those bus stops and hence will benefit from the same transport accessibility as already agreed as acceptable. The LHA has agreed that the public transport infrastructure is appropriate and that no further contribution is required.
5.3.4 As an added benefit, a circular access route within the site will allow for buses to enter the site and that will support the provision of a new bus route between the site and Banbury Town Centre / Railway Station. This could be an improvement to the existing 200 or a wholly new shuttle service.
5.3.5 The estate road area including footpaths can be seen in the parameters plan. These show that the footways can be 2 m in width as required by LHA in the pre-application response.
5.3.6 The strategy for accessing the site focuses on high quality public transport but there is clearly already an approved and accepted strategy for providing cycle and pedestrian access to the Frontier Park development which this site will benefit from.

5.4 Parking

5.4.1 Car parking numbers including accessible and electric vehicles spaces will be confirmed as part of a Reserved Matters application. They will be in line with the parking standards at the time of the application and will be of sufficient size.

5.5 Travel Plan

5.5.1 The site will be covered by a Framework Travel Plan (FTP) which will be agreed by condition.

Land east of J11 of the M40, Banbury
Transport Assessment

6.0 TRAFFI C GENERATI ON AND DISTRI BUTI ON

6.1 Traffic Generation

6.1.1 The current policy requires consideration of uncertainty within the demand estimates. The traditional approach, of termed 'predict and provide', has been to derive demand estimates from similar development sites i.e., by extrapolation of historical precedent. This does not reflect alternative outcomes where travel behaviour changes over time as encouraged by prevailing policy including those set out in the LCTP.
6.1.2 Uncertainty within the demand estimates relate to variability with the operational demand within the proposed land use and the opportunities for behavioural change within the journey to work trips. These have been considered with variability in operational demand tested with respect to parcel distribution use, whereby there are more vans, and with more general commercial warehousing use. Variability in behavioural change terms within the journey to work trips has been considered with respect to targets considered to be achievable in Travel Plan terms. These do not affect however the nature and scale of off-site works to be provided by the development and hence the focus of the reporting of the operational performance of the network is the core scenario as per unadjusted TRiCS demand.
6.1.3 TRICS database contains surveys of the vehicle and multimodal trip generation of a wide variety of sites which are classified by land use and various other attributes. The database was interrogated for multimodal surveys for 'Land Use 02 - Employment/ F - Warehousing (Commercial)', with sites in London, Scotland, Ireland, and Wales manually excluded. The resulting TRICS printout are attached at Appendix \mathbf{H}. These trip rates have been discussed and agreed with both NH and LHA.
6.1.4 The total vehicle and HGV trip rates are shown below in Table 5 with the associated generation in Table 6.

Table 4 - Vehicle and HGV Trip Rates - Warehousing

	Vehicle Trip Rates			HGV Trip Rate		
	In	Out	Total	In	Out	Total
$08: 00-09: 00$	0.161	0.093	0.254	0.051	0.056	0.107
$17: 00-18: 00$	0.068	0.155	0.223	0.042	0.030	0.072
$07: 00-19: 00$	1.223	1.292	2.515	0.472	0.457	0.929

Land east of J11 of the M40, Banbury
Transport Assessment

Table 5 - Vehicle and HGV Generation - Warehousing

	Total Vehicle Generation			HGV Generation		
	In	Out	Total	In	Out	Total
$08: 00-09: 00$	225	130	356	71	78	150
17:00-18:00	95	217	312	59	42	101
$07: 00-19: 00$	1712	1809	3521	661	640	1301

6.1.5 As can be seen above, the proposed development is expected to generate around 356 twoway vehicle movements in the AM peak period and 312 two-way vehicle movements in the PM peak period. This equates to approximately 5-6 two-way vehicle movements every minute.
6.1.6 The TRICS database was also interrogated for multimodal surveys for 'Land Use 02 Employment/ G - Parcel Distribution Centres', with sites in London, Scotland, Ireland, and Wales manually excluded. The resulting TRICS printout are attached at Appendix I. The total vehicle and HGV trip rates are shown below in Table 7.

Table 6 - Vehicle and HGV Trip Rates - Parcel Distribution Centre

	Vehicle Trip Rates			HGV Trip Rate		
	In	Out	Total	In	Out	Total
$08: 00-09: 00$	0.067	0.378	0.445	0.022	0.111	0.133
$17: 00-18: 00$	0.378	0.378	0.756	0.044	0.000	0.044
$07: 00-19: 00$	2.982	3.805	6.787	0.688	0.955	1.643

6.1.7 For robustness it has been assumed that a maximum of 20% of the site could be used as parcel distribution centres and the remainder for B8 as derived above. The modelling has therefore been undertaken based on the following traffic generation.

Table 7 - Vehicle and HGV Generation - Sensitivity

	Total Vehicle Generation			HGV Generation		
	In	Out	Total	In	Out	Total
$08: 00-09: 00$	199	210	409	63	94	157
$17: 00-18: 00$	182	279	461	59	34	93
$07: 00-19: 00$	2205	2512	4717	721	779	1501

6.1.8 As can be seen above, the proposed development is expected to generate around 409 twoway vehicle movements in the AM peak period and 461 two-way vehicle movements in the PM peak period. This equates to approximately 7-8 two-way vehicle movements every minute.

6.2 Traffic Distribution

Light Vehicles
6.2.1 Light vehicles include cars and vans. The light vehicles distribution is based on the existing journey to work pattern reported in the 2011 Census and reported at a middle super output area level (MSOA). All destinations have been assigned between population weighted ward centroids using ARCGIS software. Routes are based on fastest routes based on typical conditions for a weekday (Monday) morning (8am). The resulting assignment is summarised in Appendix G. Note that the trip distribution is not constrained to home trips ends.
6.2.2 The parcel delivery operations include a significant element of servicing by light vehicles which are in practice likely to assign onto the local road network in a pattern more akin to the heavy vehicles. To test this, flow groups have been developed whereby half of the parcel delivery light vehicles are assigned as per the heavy vehicles.

HGVs
6.2.3 The distribution for heavy vehicles on the wider highway network has been derived using data included within the Base Year Freight Matrices (BYFM) published by the Department for Transport (2012). The BYFM consist of the number of vehicles per average day between a set of origin-destination zone pairs for a 2006 base year. These zones are based on all 408 local authority districts, unitary authorities and London Boroughs and point zones for the 88 largest ports, 5 main freight airports and 56 major concentrations of distribution centres. This approach has been accepted by NH and OCC.
6.2.4 The traffic has been distributed between the two access points based on the building locations shown in the illustrative site layout at Appendix A. This indicates that approximately 35% of the GFA is located to the north of the site and would therefore use the northern access. The remaining 65% of the GFA is located more southernly within the site and would therefore use the southern access point.
6.2.5 The distribution of heavy vehicles to each region and the route which the vehicles are expected to take can be seen in Table 9 below.

Land east of J11 of the M40, Banbury

Transport Assessment

Table 8 - BYFM Distribution

Region	Percentage	Routeing				
East of England	11.4%	A422 E				
East Midlands	10.8%	A361 N				
North West of England	3.5%	M40 N				
Scotland	0.6%	M40 N				
South East of England	57.0%	M40 S - 48.1\%				
		A422 E - 7.3\%				
A422 W - 1.7\%			$]$	South West of England	5.5%	M40 S - 1.6%
:---	:---	:---				
Wales	0.3%	M40 N				
West Midlands	7.5%	M40 N				
Yorkshire and the Humber	3.4%	M40 N				

6.2.6 The resulting assignment and development traffic generation by route is presented in Table 10 below.

Table 9 - Proposed Traffic Assignment (Sensitivity Test Flows)

Link	Light Vehicles			HGVs		
	Assignment	AM	PM	Assignment	AM	PM
M40 N	14.2%	36	52	18.3%	29	17
M40 S	13.3%	34	49	50.6%	79	47
A422 E	17.1%	43	63	18.7%	29	17
A422 W	51.3%	129	189	1.7%	3	2
A361 N	4.1%	10	15	10.8%	17	10

7.0 OPERATI ONAL ASSESSMENT

7.1 VI SSIM Model

7.1.1 The development proposals have been tested in the VISSIM model developed by SLR Consulting in liaison with the LHA and NH. The core study area encompasses Banbury Interchange (M40 J11) including the mainline and slip road merges and diverges, A422/B4525/Mansion Hill roundabout to the east, and the three roundabouts to the west up to Ruscote Avenue. The two signalised junctions on Southam Road/Beaumont Road and Wildmere Road/Brookhill Way are also included.
7.1.2 The extent of the study area is shown on Figure $\mathbf{1}$ below.

Figure 1 VISSIM study area

7.2 Base Model Development

7.2.1 SLR report Local Model Validation Report Huscote Farm VISSIM (October 2023), Appendix J, sets out the methodology for developing the base model and presents the results from the Base model calibration and validation. The results show that the model achieves a pass rate of 100% for MCC turn count calibration, and journey times demonstrate a very close correlation to the observed which exceeds the industry standards as defined in WebTAG. This confirms that the model is suitable and appropriate for testing the operational implications of the development.

Land east of J11 of the M40, Banbury
Transport Assessment

7.3 Forecasting

7.3.1 SLR report Forecasting Report Huscote Farm VISSIM (October 2023) sets out the approach taken to forecasting future year Reference Case and Development scenarios.
7.3.2 An opening year assessment has been undertaken for the future year 2026, along with a 2032 assessment representing 10 years after the date of the registration of the application, thereby satisfying the criteria set out in DfT Circular 01/2022.
7.3.3 Therefore, the following scenarios tested within the model are:

- 2026 Reference Case (2026 Ref), AM and PM.
- 2026 Do-Minimum Case (2026 DM), AM and PM.
- 2032 Reference Case (2032 Ref), AM and PM.
- 2032 Do-Minimum Case (2032 DM), AM and PM.
7.3.4 The 2026 and 2032 Reference Cases are comprised of Base demands, Frontier Park committed development demands, and background TEMPro growth. No adjustments have been made to baseline, committed development, or background growth demands following inclusion of development within the Do-Minimum scenarios.
7.3.5 Do-Something scenarios include the Do-minimum demand with off-site mitigation. These are:
- 2026 Do-Something Case (2026 DS), AM and PM.
- 2032 Do-Something Case (2032 DS), AM and PM.
7.3.6 The off-site mitigation comprises the signalisation of the A361 arm of Junction 11 gyratory. Fixed time signals have been added to the A361 and circulatory to create a Do-Something scenario, with the intention of creating set gaps in the circulating traffic to allow trips onto the roundabout from the A361 and reduce queues.
7.3.7 The results of the modelling work are set out SLR Forecasting Report attached at Appendix K.
7.3.8 A summary of the results as set out in the Forecasting Report is provided below. Full details of the journey time variation are presented in the Forecasting Report.

Table 10 AM Peak (07:30-08:30)

	AM Base	$\begin{array}{\|l\|} \hline \text { AM } \\ 2026 \\ \text { Ref } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { AM } \\ & 2026 \\ & \text { DM } \end{aligned}$	$\begin{aligned} & \text { AM } \\ & 2026 \\ & \text { DS } \end{aligned}$	$\begin{aligned} & \text { AM } \\ & 2032 \\ & \text { Ref } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AM } \\ & 2032 \\ & \text { DM } \end{aligned}$	$\begin{aligned} & \text { AM } \\ & 2032 \\ & \text { DS } \end{aligned}$
Average Delay per Vehicle in the Network (s)	53.9	67.1	94.9	79.8	100.4	128.0	108.1
Overall Delay per Vehicle (including time off network) (s)	54.0	67.2	103.4	80.3	112.2	157.3	129.0
Average Speed per Vehicle (mph)	41.2	39.1	35.0	36.9	34.8	31.6	33.6
Vehicles Active in the Network	877	987	1207	1113	1226	1369	1295
Vehicle Trips Completed	11971	12109	12272	12470	12488	12580	12824
Latent Demand at End of Peak Hour	0	0	96	2	171	415	257
Total Peak Hour Input Vehicle Numbers	12848	13096	13575	13585	13885	14364	14376
Total Delay (hrs)	192.3	244.0	355.2	301.0	382.3	495.9	423.7

Table 11 PM Peak (16:30-17:30)

	PM Base	PM 2026 Ref	PM 2026 DM	PM 2026 DS	PM 2032 Ref	PM 2032 DM	PM 2032 DS
Average Delay per Vehicle in the Network (s) Overall Delay per Vehicle (including time off network)	48.2	53.1	62.3	62.9	66.7	82.6	78.9
(s)							
Average Speed per Vehicle (mph)	41.8	40.8	39.1	39.0	38.7	36.2	36.7
Vehicles Active in the Network Vehicle Trips Completed Latent Demand at End of Peak	934	977	1085	1080	1114	1292	1259
Hour	0	1	270	13449	13772	13773	14171
Total Peak Hour Input Vehicle	14144	14427	14884	14886	15358	15810	14428
Numbers							
Total Delay (hrs)							

7.4 2026 Reference (2026 Ref)

7.4.1 Model results show that following the inclusion of Frontier Park and growth to 2026, average delay per vehicle within the modelled area increases by 13 seconds and 5 seconds in the AM and PM respectively compared to the Base scenario.
7.4.2 In the AM, journey times increase on Hennef Way eastbound approaches to Concord roundabout and the Ermont Way roundabout.
7.4.3 In the PM, the largest journey time change is on Ermont Way northbound ($\sim 40 \mathrm{~s}$ increase compared to the Base). Elsewhere around the network, journey time changes are no more than 10 seconds on any one section.

7.52026 Do-Minimum (2026 DM)

7.5.1 With the development demands, average delay per vehicle increases by 28 seconds and 9 seconds compared to the 2026 Ref in the AM and PM respectively.
7.5.2 In the AM, the largest journey time change is on A361 southbound approach to the M40 Junction 11 gyratory. Compared to the 2026 Ref, journey times on this approach to Junction 11 increase by 4 minutes and 41 seconds. In the PM , there is a 40 second increase compared to the Ref.
7.5.3 Journey time changes are also seen in the AM peak on Hennef Way eastbound with queues occasionally propagating back to Southam Road. Overall journey times on Southam Road southbound increase by circa 40 seconds.
7.5.4 Journey time changes of circa 50 seconds compared to the Ref are also present on Ermont Way northbound for the PM peak. There is a small amount of latent demand from here.

7.62026 Do-Something (2026 DS)

7.6.1 The Do-Something scenarios introduce traffic signal control on the A361 entry to address the operational stress evident in the Do-minimum tests. In the AM model shows a reduction in journey times on the A361 approach to the Junction 11 gyratory relative to the Do-Minimum of minus 4 minutes and 40 seconds. There is no residual average delay per vehicle compared to the 2026 Ref Case.
7.6.2 There are still delays on Hennef Way eastbound in 2026 DS, however these are contained within this part of the network, with journey times on Southam Road only increasing by circa 40 seconds for the entire southbound approach and journey times on Ruscote Avenue eastbound approach to the roundabout remaining similar to the Ref value.
7.6.3 The PM model shows an increase in average delay per vehicle of 10 seconds compared to the 2026 Ref Case. The DS performs very similarly to the DM due to the A361 delays in the PM
being minor and so there is less scope for the mitigation to change performance overall. Remaining journey time increases in the DS compared to the Ref are primarily on Ermont Way northbound of around 45 seconds which are insufficient to cause detriment to the surrounding network.

7.7 2032 Reference (2032 Ref)

7.7.1 Average delay per vehicle increases by 47 seconds and 19 seconds in the AM and PM respectively compared to the Base scenario.
7.7.2 Like the 2026 Ref, in the AM journey times increase on Hennef Way eastbound. The queues on Hennef Way block back to Southam Road and cause journey time increases of around 5 minutes for the entire length of Southam Road southbound in the model.
7.7.3 Journey times also increase in the AM by just under 1 minute on A361 southbound compared to the Base. Growth and Frontier Park trips traversing Junction 11 mean there are fewer gaps for those from the A361, which combined with the additional trips arriving from the A361 means longer queues build.
7.7.4 In the PM, the largest journey time increases compared to the Base are on Ermont Way northbound. Average queues also increase on A422 West arm at Junction 11 ($\sim 70 \mathrm{~m}$ average queue length increase compared to the Base). This is due to increased demands on the circulatory meaning the west arm entry is allocated less green time.

$7.8 \quad 2032$ Do-Minimum (2032 DM)

7.8.1 With development demands to 2032, average delay per vehicle increases by 28 seconds and 16 seconds compared to the Ref in the AM and PM respectively.
7.8.2 In the AM, like the 2026 DM, large journey time increases are observed on A361 southbound to Junction 11. In comparison to the Ref, journey times increase by circa 6 minutes due to the development trips adding to the existing queues on the A361. Latent demand exists from the development site accesses due to the trips being unable to enter the queues on the A361.
7.8.3 In the PM , the largest journey time increase is also on A361 southbound. This increase compared to the Ref is circa 1.5 minutes.

7.92032 Do-Something (2032 DS)

7.9.1 The AM model shows a change in average delay per vehicle of 8 seconds compared to the 2032 Ref Case.
7.9.2 The addition of signals on the A361 greatly reduces queues so that journey times on A361 southbound are now circa 30 second lower than those in 2032 Ref. Queueing on this approach is easily accommodated within the link and there is no blocking back to the site access. Similarly
in the northbound direction there is no blocking back from the site access to the M40 Junction 11 gyratory; the maximum reported queue is 19 m .
7.9.3 Delays exist on Hennef Way eastbound and Southam Road southbound, with Southam Road experiencing latent demand. However, this delay is not too dissimilar to Ref values, as 2032 Ref queues are often at their maximum values on Hennef Way.
7.9.4 The PM model shows an increase in average delay per vehicle of 12 seconds compared to the 2032 Ref Case. Introduction of the signals on the A361 means journey times on the A361 halve in comparison to the DM values. Queues on this approach to Junction 11 are now only an average of 55 m in length.

7.10 Merge/ Diverge Assessments

7.10.1 The operation of the M40 Junction 11 Grade Separated Roundabout Junction merges and diverges have seen assessed through the VISSIM modelling. No issues have been identified and no changes to their configuration is proposed.

7.11 Summary

7.11.1 The results show that the introduction of signals on the A361 is successful at resolving existing issues that might occur here and mitigates against the development impacts. Overall, the proposed signals on the A361 are successful at resolving both existing issues that may occur on the A361, and the development impacts. The network is considered to operate at a similar level to the Reference Cases.

8.0 CONCLUSION

8.1 DTA has been commissioned by Greystoke CB to provide highways and transport advice and to prepare a Transport Assessment (TA) report to support the outline planning application for the construction of up to 140,000 sqm of employment floorspace (use class B8 with ancillary offices and facilities), and servicing and infrastructure including new site accesses, internal roads and footpaths, landscaping including earthworks to create development platforms and bunds, drainage features and other associated works including demolition of the existing farmhouse. All matters of detail (including access) reserved.
8.2 The development site will be designed to prioritise foot and cycle movements along desire lines through the development, linking to the external access points. The additional demand from the development will support the continuation of the 200-bus service and the interim support funding of service will be provided.
8.3 The primary vehicle access to the site will be taken from the A361 and will involve the creation of a primary site access roundabout and a secondary standard priority junction.
8.4 The local road network including M40 Junction 11 and the A422 corridor has been modelled in the microsimulation model VISSIM. The model shows:

- This model has been appropriately validated and fully covers the study area agreed with the NH and the LHAs;
- M40 junction 11 gyratory experiences queuing on the A361 approach in the reference case which will extend back to the site access;
- A361 queuing is addressed in full by the introduction of traffic signal control on this entry;
- M40 junction 11 slip roads accommodate the design flows;
- A422 corridor experiences stress during the peak hour periods in the reference case and the design flow scenarios;
- A422-B4525 roundabout accommodates the design flows;
8.5 A review of the latest five-year personal injury collision data for the surrounding area has been undertaken and does not indicate any existing highway safety issues within the study area.
8.6 Overall, the development provides modern warehousing within a strategic corridor where the impact on Oxfordshire communities is minimised in accordance with local policy. Moreover, the arching policy aims are met as the proximity to the principal settlement (Banbury) will reduce car-based commuting. Subject to the proposed mitigation, will has no material residual operational or safety impact on the local highway network or M40 Junction 11.

Appendix A

Illustrative Site Layout

Appendix B

Statement of Common Ground

Land East of J unction 11 of the M40 (OS parcel 5616), South West of Huscote Farm And East of Daventry Road, Banbury, Oxfordshire, OX17
 Highways Statement of Common Ground

PINS Ref: APP/C3105/W/22/3311992

LPA Ref: 22/01488/OUT

Parties and Scope

This Transport Statement of Common Ground (TSOCG) addresses the specific matters relating to transport, access and highways that are agreed between the Appellant, Oxfordshire County Council (OCC) as Local Highway Authority, National Highways (NH) and Cherwell District Council (CDC) the Local Planning Authority.

Reasons for Refusal

In terms of the putative reasons for refusal those that specifically relate to this TSOCG are as follows:

1. The proposed development would be sited in a geographically unsustainable location with poor access to services and facilities and therefore future employees would be highly reliant on the private car to access their workplace, which would not reduce the need to travel and would result in increased car journeys and hence carbon emissions. The proposed development would therefore conflict with policies PSD1, SLE4 and ESD1 of the Cherwell Local Plan 2011-2031 Part 1 and Government guidance in the National Planning Policy Framework. This identified harm would significantly and demonstrably outweigh the benefits associated with the proposed development and therefore the development does not constitute sustainable development when assessed against the National Planning Policy Framework as a whole.
2. The appeal site is located in an unsustainable location for cycling and walking. The proposal is therefore contrary to policies SLE1 and SLE4 contained within the Cherwell Local Plan 2011-2031 Part 1 (CLP 2031 Part 1), saved policy TR1 contained within the Cherwell Local Plan 1996 (CLP 1996) and Government guidance within the National Planning Policy Framework.
3. The proximity of the access roundabout to M 40 Junction 11 is likely to lead to severe congestion and potential safety issues arising from queuing on the M40 off slip. The proposal is therefore contrary to policies SLE1 and SLE4 contained within the Cherwell Local Plan 2011-2031 Part 1 (CLP 2031 Part 1), saved policy TR1 contained within the Cherwell Local Plan 1996 (CLP 1996) and Government guidance within the National Planning Policy Framework.
4. Any further development around Junction 11 of the M 40 will add to the severe congestion and air quality problems on the A422, particularly along Hennef Way. This development does not demonstrate how it would mitigate its impact on these issues through adequate sustainable travel connections or by highway improvements. The proposal is therefore contrary to policies SLE1 and SLE4 contained within the Cherwell Local Plan 2011-2031 Part 1 (CLP 2031 Part 1), saved policies TR1 and ENV7 contained within the Cherwell Local Plan 1996 (CLP 1996) and Government guidance within the National Planning Policy Framework.
5. Safe and suitable operation of affected highway junctions has not been demonstrated by the use of a suitable analysis tool. It has been agreed with the Appellant's transport consultant and National Highways that microsimulation modelling (such as VISSIM) is required to accurately represent the flow of vehicles at all primary local junctions and the interaction between them. Without such analysis and resultant appropriate mitigation, the proposal is contrary to policies SLE1, SLE4 and INF1 contained within the Cherwell Local Plan 2011-2031 Part 1 (CLP 2031 Part 1), saved policy TR1 contained within the Cherwell Local Plan 1996 (CLP 1996) and Government guidance within the National Planning Policy Framework.
6. It has not been demonstrated that a signalised crossing of the A361 Daventry Road for pedestrians and cyclists may be incorporated at a safe and suitable location, and the associated access into the site has not been indicated. The proposal is therefore contrary to policies SLE1 and SLE4 contained within the Cherwell Local Plan 2011-2031 Part 1 (CLP 2031 Part 1), saved policy TR1 contained within the Cherwell Local Plan 1996 (CLP 1996) and Government guidance within the National Planning Policy Framework.

Relevant Planning Policy

PSD1, SLE1, SLE4, ESD1, INF1 of the Cherwell Local Plan 2011-2031 Part 1
Saved policy TR1 contained within the Cherwell Local Plan 1996 (CLP 1996)
The NPPF (July 2021) Paragraphs 104 to 113

Other Relevant / Potential Core Documents

OCC Local Transport and Connectivity Plan - July 2022
'Decide and Provide' guidance - TRICS Consortium 2021
DfT Circular 02/13 - The Strategic Road Network and Delivery of Sustainable Development
[DfT Circular 01/22 - 22nd December 2022 - noting published after appeal lodged]
Future of Freight Plan (DfT - 2022)
2021 DfT Decarbonising transport plan
APP/A0665/W/19/3220360: Land at The Hollies, School Lane, Hartford
APP/A0665/A/12/2179410: Land at Grange Farm, Hartford, Cheshire
APP/A0665/A/12/2179374: Land to the East of School Lane, Hartford, Northwich, Cheshire
Hawkhurst Parish Council, R (On the Application Of) v Tunbridge Wells Borough Council 2020 EWHC 3019

Matters Agreed

1. The application was supported by a transport evidence base which was prepared by DTA Transportation Limited. The reports submitted with the planning application included:

- 23457-02a_Transport Assessment - 16 $6^{\text {th }}$ May 2022
- 23457-05_Framework Travel Plan - $16^{\text {th }}$ May 2022
- 23457-06f_Transport Assessment Addendum - 26 $6^{\text {th }}$ October 2022
- 23457-07c_ Update on Mitigation Design and Inputs to Vissim Modelling- 8th February 2023. (i.e., After the Appeal was lodged)

2. Pre and post application discussions were held with two Highway Authorities (Oxfordshire County Council and National Highways). The DTA pre-application submission and HA responses included:

- 23457-01 Transport Strategy Report - 22 ${ }^{\text {nd }}$ December 2021
- OCC Response - 9 ${ }^{\text {th }}$ February 2022
- AECOM Technical Note $1-18^{\text {th }}$ February 2022

3. The description of existing conditions as described in Section 3 of the TA is agreed, with the following exceptions:

- Table 2 Service 500 now runs hourly Monday to Saturday
- 3.5.5 Banbury Railway Station is approximately 3.5 km from the centre of the site (see Google Earth snip at end of document). This equates to a circa 42-minute walk or a circa 12-minute cycle
- 3.6.4 OCC dispute that the pedestrian/cycle link to Frontier Park is appropriate for the employees of the development to the east of the A361

4. The accident data (as updated in the 23457-07c_ Update on Mitigation Design and Inputs to Vissim Modelling (Appendix F) is agreed.
5. The contributions requested by OCC for the scheme as set out below are agreed, subject to the provision of an appropriate CIL Compliance schedule:
a) Public Transport Services - $£ 600,000$ index-linked
b) Travel Plan Monitoring - $£ 2,563$ index-linked
6. The approach to traffic generation assumptions as set out in Table 7 of the TA are agreed. This assumes up to 20% of the site could be used for parcel distribution and is summarised below.

Table 1 - Vehicle and HGV Generation - Agreed

	Total Vehicle Generation			HGV Generation		
	In	Out	Total	In	Out	Total
$08: 00-09: 00$	199	210	409	63	94	157
$17: 00-18: 00$	182	279	461	59	34	93
$07: 00-19: 00$	2,205	2,512	4,717	721	779	1501

7. The approach to distribution and assignment as described in Section 4 of Update on Mitigation Design and Inputs to Vissim Modelling are agreed.
8. The committed development flows for the adjacent Frontier Park (LPA Reference 19/00128/HYBRID) should be based on the consented scheme (Decision Notice 30 th July 2020) as follows:

Table 2 Frontier Park (consented development)

	Arrival			Departure		
	Light vehicles	Heavy vehicles	Total (vph)	Light vehicles	Heavy vehicles	Total (vph)
Pre-peak AM $07: 00-08: 00$	125	4	128	33	6	39
AM peak $08: 00-09: 00$	183	12	195	32	12	43
PM peak $17: 00-18: 00$	18	3	21	151	4	155

9. It is agreed that the Framework Travel Plan can be progressed and enhanced once more detail of the scheme and occupiers is known and this can be secured by planning condition.

Matters in dispute

Modelling Requirements

10. The extent to which the LinSig analysis submitted with the application, and subsequently amended, is an accurate representation of the highway network and is sufficient to demonstrate the acceptability of the proposals.
11. Reason 5 above does not accurately the Appellant's position. The Appellant does not agree that "microsimulation modelling (such as VISSIM) is required to accurately represent the flow of vehicles at all primary local junctions and the interaction between them."

Accessibility

12. The extent to which the site meets the proposition of Para 110 (a) of the NPPF in that "appropriate opportunities to promote sustainable transport modes can be - or have been taken up, given the type of development and its location".

Safe and suitable Access

13. The extent to which the site meets the proposition of Para 110 (b) of the NPPF in that safe and suitable access to the site can be achieved for all users".

Traffic Impact

14. The extent to which the site meets the proposition of Para 110 (d) and Para 111 of the NPPF in that "any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree".

Simon Tucker
DTA Transportation Ltd

Signed for Oxfordshire CC

Roger Plater
Oxfordshire County Council

Signed for National Highways

Signed for Cherwell District Council

Appendix C

Automatic Traffic Count Data

Site 1-52.0774329,-1.3128948

Appendix D

Classified Turning Count Data

Appendix E

Accidents between dates

Selection:

Selected using Manual Selection

01/01/2018 and
13/11/2023
(70) months

Notes:
DTA data Banbury area TABULATIONS

Table 1 - Accidents by Month

	2018	2019	2020	2021	2022	2023	Total
January	-	2	1	-	-	-	3
February	1	4	1	1	1	-	8
March	-	-	-	-	1	-	1
April	2	2	-	1	1	-	6
May	2	-	1	2	1	-	6
June	3	-	-	2	-	2	7
July	2	-	1	1	-	-	4
August	2	1	3	-	1	-	7
September	3	-	2	1	-	1	7
October	-	-	1	-	2	-	3
November	3	1	1	2	1	-	8
December	3	1	1	1	-	-	6
TOTAL	21	11	12	11	8	3	66

Table 2 - Casualties by Month

	2018	2019	2020	2021	2022	2023	Total
January	-	2	1	-	-	-	3
February	1	7	1	1	1	-	11
March	-	-	-	-	1	-	1
April	3	2	-	1	1	-	7
May	2	-	1	2	2	-	7
June	4	-	-	2	-	3	9
July	2	-	1	1	-	-	4
August	2	1	3	-	2	-	8
September	5	-	2	2	-	1	10
October	-	-	3	-	2	-	5
November	4	1	1	2	1	-	9
December	3	2	1	1	-	-	7
TOTAL	26	15	14	12	10	4	81

Table 3 - All Accidents by Severity

Fatal
Serious
Slight
TOTAL

2018	2019	2020	2021	2022	2023	Total
0	0	0	0	0	0	0
2	1	3	1	2	1	10
19	10	9	10	6	2	56
21	11	12	11	8	3	66

Table 4 - Casualties by Severity

	2018	2019	2020	2021	2022	2023	Total
Fatal	0	0	0	0	0	0	0
Serious	2	1	3	1	2	1	10
Slight	24	14	11	11	8	3	71
TOTAL	26	15	14	12	10	4	81

Accidents between dates

Selection:

Selected using Manual Selection

Table 5 - Pedestrian Accidents by Severity

	2018	2019	2020	2021	2022	2023	Total
Fatal	0	0	0	0	0	0	0
Serious	1	0	0	0	0	0	1
Slight	1	0	0	0	0	0	1
TOTAL	2	0	0	0	0	0	2

Table 6 - Cycle Accidents by Severity

	2018	2019	2020	2021	2022	2023	Total
Fatal	0	0	0	0	0	0	0
Serious	0	0	0	0	0	0	0
Slight	0	2	1	1	0	1	5
TOTAL	0	2	1	1	0	1	5

Table 7 - Motor Vehicle Only Accidents by Severity

	2018	201
Fatal	0	
Serious	1	
Slight	18	
TOTAL	19	
Table $8-60+$ Accidents by Severity		

Fatal
Serious
Slight
TOTAL

2018	2019
0	0
0	0
4	2
4	2

2020
0
1
1
2
2021
0
0
0
0
2022
0
2
0
2

2023	Total
0	0
0	3
1	8
1	11

Table 9 - Child Accidents by Severity

	2018	2019	2020	2021	2022	2023	Total
Fatal	0	0	0	0	0	0	0
Serious	0	0	0	0	0	0	0
Slight	3	0	0	0	0	0	3
TOTAL	3	0	0	0	0	0	3

Table 10 - P2W Accidents by Severity

	2018	2019	2020	2021	2022	2023	Total
Fatal	0	0	0	0	0	0	0
Serious	1	0	2	1	0	1	5
Slight	2	1	2	2	0	0	7
TOTAL	3	1	4	3	0	1	12

Accidents between dates $\quad 01 / 01 / 2018$ and $13 / 11 / 2023$ (70) months

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Saturday	26/05/2018	Time	0335	Sli		at A422 HENNEF WAY RBT J/W A4260 CONCCORDE AVENUE BANBURY						
E: 445956	N: 241634 Junction	Detail:	1	Contro	4							
Fine withou	ut high winds			Road surfac	Dry	Darkness: street lights present and lit						
	Vehicle Reference 1	Taxi/P	rivate	hire car				Moving from	W to E	Going ahead other		
	Casualt	Reference		1	Age:	32	2 Male		Driver/rider	Severity: Slight	Injured by vehicle:	

Wednesday 06/06/2018 Time 1838 Slight at A422 HENNEF WAY RBT J/W A361 SOUTHAM ROAD BANBURY
E: 445532 N: 241769 Junction Detail: $1 \quad$ Control 4

Fine without high winds Road surface Dry

| Vehicle Reference 1 | Car | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Casualty Reference: | 1 | Age: | 50 | Female |

Vehicle Reference 2 Car

Daylight
Moving from E to W Going ahead other Driver/rider

Moving from
E to W

Severity: Slight Injured by vehicle: 1

Going ahead but held up
Accidents between dates $\quad 01 / 01 / 2018$ and $\mathbf{1 3 / 1 1 / 2 0 2 3}$ (70) months

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

E: 445564 N: 241774 Junction Detail: $0 \quad$ Contro
Fine without high winds Road surface Dry Daylight

Wednesday $18 / 07 / 2018$ Time 1828 at A 422 HENNEF WAY RBT J/W A4260 CONCORDE AVENUE

E: 445978 N: 241594 Junction Detail: 1 Control 4
Fine without high winds Road surface Dry
Daylight

| Vehicle Reference 1 | Car | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | | |
| Casualty Reference: | 1 | Age: | 10 | Female | |

| Moving from | S to N | Stopping | |
| :---: | :---: | :---: | :---: | :---: |
| Moving from S to N | Stopping | | |
| Passenger | Severity: Slight | Injured by vehicle: 2 | |

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Friday $27 / 07 / 2018$ Time 2210 at M40 NBOUND AT MP 123/8 BANBURY E: 446762 N: 242540 Junction Detail: 0 Control Fine without high winds Road surface Dry

Sunday $05 / 08 / 2018$ Time 1201 at A361 SOUTHAM ROAD J/W MARLEY WAY BANBURY

E: 445388 N: 241467 Junction Detail: 3 Control 4
Fine without high winds Road surface Dry

Vehicle Reference	1	Car				
Vehicle Reference 2	Motorcycle over 500cc					
Casualty Reference:			1	Age:	69	Male

Vehicle Reference 3 Goods 3.5 tonnes mgw and under
Friday $24 / 08 / 2018$ Time 1022 Serious at A422 HENNEF WAY RBT J/W A4260 CONCORDE AVENUE

BANBURY
E: 445993 N: 241651 Junction Detail: 1 Control 4
Fine without high winds Road surface Dry
Vehicle Reference 1 Car
Vehicle Reference 2 Motorcycle over 500cc Casualty Reference: 1 Age: 32 Male

Daylight

| Moving from S to S | Turning right | |
| :---: | :---: | :---: | :---: |
| Moving from N to E | Turning left | |
| Driver/rider | Severity: Serious | Injured by vehicle: 2 |

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Wednesday $14 / 11 / 2018$ Time 2204 at WILDME

E: 446780 N: 241917 Junction Detail: 3 Control 2 Fine without high winds Road surface Dry

| Vehicle Reference 10 Car | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference $2 \quad$ Car | | | | |
| Casualty Reference: | 1 | Age: | 25 | Female |
| Casualty Reference: | 2 | Age: | 25 | Female |

| Darkness: street lights present and lit | | |
| :---: | :---: | :---: | :---: | :---: |
| Moving from S to E | Turning right | |
| Moving from N to S | Going ahead other | |
| Driver/rider | Severity: Slight | Injured by vehicle: 2 |
| Passenger | Severity: Slight | Injured by vehicle: 2 |

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Saturday 29/12/2018 Time 1630 Slight at M40 SBOUND AT MP123/8 BANBURY (SOME UNCERTAINTY OVER EXACT LOCATION)
E: 446780 N: 242551 Junction Detail: $0 \quad$ Control

Fine without high winds Road surface Dry

Vehicle Reference 1	Car			
Vehicle Reference 2	Car			Age:

Darkness: no street lighting
Moving from $\quad S E$ to N
Moving from $S E$ to N
Driver/rider

Changing lane to left
Going ahead other
Severity: Slight Injured by vehicle: 2

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Friday $15 / 02 / 2019$ Time 1253 Slight at A422 HENNEF WAY NWBOUND CWAY APPROX 100M SE OF RBT J/W A423 SOUTHAM ROAD BANBURY

E: 445621	N: 241720	Junction Detail:	0	Control Road surface	Dry

| Vehicle Reference 1 | Goods 3.5 tonnes mgw and under | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | |
| Casualty Reference: | 1 | Age: | 51 | Male |

Moving from	SE to N	Stopping	
Moving from	SE to N	Stopping	
Driver/rider	Severity:	Slight	Injured by vehicle:

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Saturday	16/02/2019	Time	2200	Slight		at A	A422 HENNE	WAY RBT J/W WATE		NE \& A4260 CON	DE AVENUE	BANBURY
E: 445959	N: 241634 Junct	Detail:	1	Control	4							
Fine withou	ut high winds			Road surface	Dry			Darkness: street lights p	ese			
	Vehicle Reference 1	Car						Moving from W to	E	Going ahead other		
	Casualt	Reference		1	Age:	31	1 Female	Passenger		Severity: Slight	Injured by vehicle:	1

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Tuesday $30 / 04 / 2019$ Time 1822 at A422 HENNEF WAY RBT J/W A4260 CONCORDE AVENUE BANBURY

E: 446005 N: 241652 Junction Detail: $1 \quad$ Control 4
Fine without high winds Doad surface Dry Daylight

Vehicle Reference 1	Car					Moving from	W to	E	Going ahead other	
Vehicle Reference 2	Car					Moving from	W to	E	Going ahead other	
Casualt	eference:	1	Age:	27	Male		ver/rider		Severity: Slight	Injured by vehicle:

Tuesday $20 / 08 / 2019$ Time 2144 at A422 HENNEF WAY AT RBT J/W ERMONT WAY \& DAVENTRY ROAD \quad BANBURY

E: 446765 N: 241730 Junction Detail: 5 Control 4
Fine without high winds Road surface Dry
$\begin{array}{ll}\text { Vehicle Reference } 1 & \text { Car } \\ \text { Vehicle Reference } 2 & \text { Motor Cycle over } 125 \mathrm{cc} \text { and up to 500cc }\end{array}$
Casualty Reference: 1 Age: 60 Male
Darkness: street lights present and lit

| Moving from E to W | Starting | |
| :---: | :---: | :---: | :---: |
| Moving from N to S | Going ahead other | |
| Driver/rider | Severity: Slight | Injured by vehicle: 2 |

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Thursday $19 / 12 / 2019$ Time 1600 at A422 J/W A422 / M40 RBT AT J11 BANBURY

E: 447054 N: 241790 Junction Detail: $1 \quad$ Control 4 Raining without high winds Road surface Wet/Damp

Darkness: no street lighting

| Vehicle Reference 1 | Car | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | |
| Casualty Reference: | 1 | Age: | 40 | Female |
| Casualty Reference: | 2 | Age: | Female | |

Moving from W to E	Going ahead other		
Moving from W to E	Going ahead but held up		
Driver/rider	Severity: Slight	Injured by vehicle:	2
Passenger	Severity: Slight	Injured by vehicle: 2	

Thursday $30 / 01 / 2020$ Time 1049 at A422 HENNEF WAY J/W AT RBT ERMONT WAY BANBURY
E: 446741 N: 241723 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Wet/Damp Daylight

Vehicle Reference 1	Goods 7.5 tonnes mgw and over					Moving from	S	to	W	Going ahead other	
Vehicle Reference 2	Car					Moving from	E	to	W	Going ahead other	
Casua	eference:	1	Age:	40	Male		er	ide		Severity: Slight	Injured by vehicle:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Saturday 18/07/2020 Time 1738 Serious at A422 HENNEF WAY RBT J/W A4260 CONCORDE AVENUE BANBURY

E: 446004 N: 241628 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Dry
Daylight

| Vehicle Reference 1 | Car | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Casualty Reference: | 1 | Age: | 61 | Female |

Moving from E to W
Driver/rider

Going ahead other Severity: Serious Injured by vehicle: 1

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Wednesday $26 / 08 / 2020$ Time 1530 at ERMONT WAY AT J/W RBT A422 HENNEF WAY BANBURY

E: 446737 N: 241704 Junction Detail: $1 \quad$ Control 4 Fine without high winds Road surface Wet/Damp Daylight

Vehicle Reference 1	Car				
Vehicle Reference 2	Car				
Casualty Reference:	1	Age:	28	Male	

Moving from S to N | Going ahead other |
| :---: |
| Moving from S to N | Going ahead other

Injured by vehicle: 2

E: 446762 N: 241678 Junction Detail: 5 Control 4
Fine without high winds Road surface Dry Daylight

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Wednesday $21 / 10 / 2020$ Time 0645 atight A422 J/W M40 RBT J/W A422 FROM MIDDLETON CHENEY BANBURY

E: 447284 N: 241816 Junction Detail: 1 Control 2
Fine without high winds Road surface Dry

Vehicle Reference $1 \quad$ Car					
Vehicle Reference $2 \quad$ Car					
Casualty Reference:	3	Age:	29	Female	
Vehicle Reference 3	Car				
Casualty Reference:	1	Age:	48	Male	
Casualty Reference:	2	Age:	35	Male	

Darkness: street lights present and lit	
Moving from N to W	Going ahead but held up
Moving from N to W	Going ahead but held up
Driver/rider	Severity: Slight Injured by vehicle: 2
Moving from N to W	Going ahead other
Driver/rider	Severity: Slight Injured by vehicle: 3
Passenger	Severity: Slight Injured by vehicle: 3

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Monday $02 / 11 / 2020$ Time 0815 Slight at A422 HENNEF WAY RBT AT TOUCAN CROSSING 40M SE OF J/W A423 SOUTHAM ROAD BANBURY
E: 445556 N: 241777 Junction Detail: 0 Control
Fine without high winds Road surface Wet/Damp Daylight
Vehicle Reference $1 \quad$ Goods 3.5 tonnes mgw and under

Moving from	N	to	SE	Going ahead other
Moving from	N	to	SE	Going ahead other

Casualty Reference: 1 Age: 25 Female Driver/rider Severity: Slight Injured by vehicle: 2
Thursday $10 / 12 / 2020$ Time 1047 at A 422 ERMONT WAY RBT J/W MIDDLETON ROAD BANBURY
E: 446726 N: 241719 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Wet/Damp Daylight

Vehicle Reference 1	Goods 3.5 tonnes mgw and under										
Vehicle Reference 2	Motor Cycle over 50 cc and up to 125 cc										
Casualty Reference:								1	Age:	33	Male

| Moving from S to W | Turning left |
| :---: | :---: | :---: |
| Moving from E to W | Going ahead other |
| Driver/rider | Severity: Serious |

Vehicle Reference 1	Car				
Vehicle Reference 2	Car				
Casualty Reference:	1	Age:	55	Male	

| Moving from | W to E | Going ahead other | |
| :---: | :---: | :---: | :---: | :---: |
| Moving from W to E | Going ahead other | | |
| Driver/rider | Severity: Slight | Injured by vehicle: 2 | |

Accidents between dates $\quad 01 / 01 / 2018$ and $\mathbf{1 3 / 1 1 / 2 0 2 3}$ (70) months

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Friday $23 / 04 / 2021$ Time 1813 Slight at A422 RBT AT J11 ON APPROACH TO J/W M40 SBOUIND EXITG SLIP ROAD BANBURY
E: 447147 N: 241902 Junction Detail: $1 \quad$ Control 2
Fine without high winds Road surface Dry

Daylight
Moving from S to NE Overtaking stat vehicle O/S

Vehicle Reference 2 Car Moving from S to NE Stopping
Monday $10 / 05 / 2021$ Time 2029 at A422 HENNEF WAY J/W A4260 CONCORDE AVE BANBURY

E: 446020 N: 241637 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Dry
Daylight
Moving from E to W Going ahead other Severity: Serious Injured by vehicle: 1

Friday $14 / 05 / 2021$ Time 2351 at A 422 HENANEF WAY RBT J/W A260 CONCORD AVE BANBURY
E: 446000 N: 241630 Junction Detail: 1 Control 4
Fine without high winds Road surface Dry
Vehicle Reference $1 \quad$ Car
Casualty Reference:
Age: $29 \quad$ Male

Darkness: street lights present and lit

| Moving from E to W | Going ahead other | |
| ---: | :---: | :---: | :---: |
| Passenger | Severity: Slight | Injured by vehicle: 1 |

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Wednesday $02 / 06 / 2021$ Time 1256 Slight at A361 SOUTHAM ROAD J/W MARLEY WAY BANBURY
E: 445380 N: 241456 Junction Detail: $3 \quad$ Control 4

Fine without high winds Road surface Dry
Daylight

Saturday 12/06/2021 Time 1915 Slight at A361 SOUTHAM ROAD J/W MARLEY WAY BANBURY

E: 445387 N: 241463 Junction Detail: 3 Control 4
Fine without high winds Road surface Dry Daylight

| Vehicle Reference 1 | Car | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | | |
| Casualty Reference: | 1 | Age: | 30 | Male | |

Saturday $31 / 07 / 2021$ Time 1130 atight A422 HENNEF WAY RBT J/W A4260 CONCORDE AVE BANBURY
E: 445978 N: 241597 Junction Detail: 1 Control 4
Fine without high winds Road surface Dry Daylight

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Friday $26 / 11 / 2021$ Time 0805 at Elight ERMONT WAY RBT J/W A422 HENNEF WAY BANBURY

E: 446706 N: 241734 Junction Detail: 1 Control 4
Fine without high winds Road surface Dry Daylight

| Vehicle Reference 1 | Car | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vehicle Reference 2 | Pedal Cycle | | | |
| Casualty Reference: | 1 | Age: | 28 | Male |

| Moving from S to W | Turning left |
| :---: | :---: | :---: |
| Moving from S to N | Going ahead other |
| Driver/rider | Severity: Slight |

Injured by vehicle: 2

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Thursday $02 / 12 / 2021$ Time 0700 Slight at A423 SOUTHAM ROAD 75M NORTH OF BEAUMONT CLOSE BANBURY
E: 445556 N: 242268 Junction Detail: 3 Control 2

Fine without high winds Road surface Frost/Ice

Vehicle Reference 1	Car				
Vehicle Reference 2	Car				
Casualty Reference:	1	Age:	50	Male	

Casualty Reference: 1 Age: 50 Male
Darkness: street lights present and lit
Moving from N to $\mathrm{S} \quad$ Stopping

Moving from N to S Stopping
Driver/rider Severity: Slight Injured by vehicle: 2

Friday $04 / 02 / 2022$ Time 1700 at A422 J/W A422 RBT J/W M40 RBT AT J11 BANBURY
E: 447223 N: 241914 Junction Detail: $1 \quad$ Control 2
Fine without high winds Doad surface Dry Darkness: street lights present and lit

| Vehicle Reference 1 | Car | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | | |
| Casualty Reference: | 1 | Age: | 45 | Male | |

Tuesday $15 / 03 / 2022$ Time 1710 at WILDME 10 READ 82 M NORTH OF HENNEF WAY RBT BANBURY
E: 446771 N: 241858 Junction Detail: 3 Control 4
Fine without high winds Road surface Dry

Vehicle Reference 1	Car				
Vehicle Reference 2	Car				
Casualty Reference:	1	Age:	32	Male	

Moving from N to S
Moving from N to S
Driver/rider

Going ahead other
Going ahead but held up
Severity: Slight Injured by vehicle: 2

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Monday $04 / 04 / 2022$ Time 1627 Serious at M40 NBOUND APPROX 300M S OF JCT 11 MP 122/2A BANBURY
E: 447420 N: 241050 Junction Detail: $0 \quad$ Control

Fine without high winds Road surface Dry
Daylight

Vehicle Reference 1	Goods 3.5 tonnes mgw and under	Moving from	SE to	N	Going ahead other		
Vehicle Reference 2	Goods over 3.5 tonnes and under 7.5 tonnes mgw	Moving from	SE to	N	Going ahead other		
Casualty Reference:	1	Age:	60	Male		Driver/rider	Severity: Serious Injured by vehicle: 2

Saturday 21/05/2022 Time 1503 Serious at A422 HENNEF WAY APPROX 130M W OF RBT J/W WILDMERE ROAD \& ERMONT WAY BANBURY
E: 446581 N: 241733 Junction Detail: $0 \quad$ Control

Fine without high winds Road surface Dry

Vehicle Reference 1	Car				
Vehicle Reference 2	Car				
Casualty Reference:	1	Age:	80	Female	
Casualty Reference:	2	Age:	81	Male	

Moving from $\quad \mathrm{E} \quad$ to
Moving from $\quad \mathrm{E} \quad$ to
Passenger
Driver/rider

Overtaking nearside		
Changing lane to left		
Severity:	Serious	Injured by vehicle:
Severity:	Slight	Injured by vehicle:

Wednesday $10 / 08 / 2022$ Time 1645 Slight at A422 HENNEF WAY WBOUND CWAY APPROX 15M E OF RBT K/W ERMONT WAY \& WILDMERE ROAD BA
E: 446782 N: 241737 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Dry
Vehicle Reference 1 Goods 7.5 tonnes mgw and over
Vehicle Reference 2 Car
$\begin{array}{lllll}\text { Casualty Reference: } & 1 & \text { Age: } & 20 & \text { Female } \\ \text { Casualty Reference: } & 2 & \text { Age: } & 21 & \text { Female }\end{array}$

Daylight

Accidents between dates $\quad 01 / 01 / 2018$ and $\mathbf{1 3 / 1 1 / 2 0 2 3}$ (70) months

Selection:
Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL
Thursday $06 / 10 / 2022$ Time 1645 Slight at A422 RBT J/W SLIP ROAD TO JOIN M40 SBOUND BANBURY
E: 447271 N: 241781 Junction Detail: $1 \quad$ Control 2

Fine without high winds Road surface Dry

Wednesday 19/10/2022 Time 1420 Slight at A422 HENNEF WAY RBT J/W WILDMERE ROAD BANBURY

E: 446755 N: 241771 Junction Detail: $1 \quad$ Control 4
Fine without high winds Road surface Dry Daylight

| Vehicle Reference 1 | Car | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Vehicle Reference 2 | Car | | | | |
| Casualty Reference: | 1 | Age: | 31 | Male | |

| Moving from N to S | Going ahead other |
| :---: | :---: | :---: |
| Moving from W to E | Going ahead other |
| Driver/rider | Severity: Slight |

Injured by vehicle: 2

Monday $07 / 11 / 2022$ Time 0817 at M40 SBOUND J/W ENTRY SLIP SLIP ROAD FROM JUNCTION 11 BANBURY
E: 447382 N: 241280 Junction Detail: 5 Control 4
Fine without high winds Road surface Dry Daylight

Selection:

Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Wednesday $27 / 09 / 2023$ Time 0831 atight GRIMSBURY GREEN J/W LINK ROAD FROM CONCORDE AVENUE RBT BANBURY
E: 445983 N: 241719 Junction Detail: 7 Control 4
Fine without high winds Road surface Dry Daylight

| Vehicle Reference 1 | Car | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vehicle Reference 2 | Pedal Cycle | | | |
| Casualty Reference: | 1 | Age: | 60 | Male |

| Moving from | S to E | Turning right | |
| :---: | :---: | :---: | :---: | :---: |
| Moving from E to W | Going ahead other | | |
| Driver/rider | Severity: Slight | Injured by vehicle: 2 | |

Accidents between dates $01 / 01 / 2018$ and $13 / 11 / 2023$ (70) months

Selection:
Selected using Manual Selection

Notes:
DTA data Banbury area NON CONFIDENTIAL

Accidents involving:

	Fatal	Serious	Slight	Total
Motor vehicles only (excluding 2-wheels)	0	5	44	49
2-wheeled motor vehicles	0	5	7	12
Pedal cycles	0	0	5	5
Horses \& other	0	0	1	1
Total	0	10	56	66

Casualties:

	Fatal	Serious	Slight	Total
Vehicle driver	0	3	40	43
Passenger	0	1	18	19
Motorcycle rider	0	5	7	12
Cyclist	0	0	5	5
Pedestrian	0	1	1	2
Other	0	0	0	0
Total	0	10	71	81

Number of casualties meeting the criteria: 81

Appendix F

Footway/ Cycleway Plans from Frontier Park S106

Appendix G

Summary of Committed and Development Traffic Flows
fRONTIER PARK

	B2 Max (50,000m²)		DEP		ARR		DEP	2-way		
	Assume as per FIG 7									
	PreAM									
B	M40N		14\%	32\%			18		15	33
C	A361		4\%	12\%			5		6	11
D	A422E		8\%	1\%		10		1	11	
E	M40S		44\%	18\%		58		8	67	
A	A422W		31\%	37\%		41		17	58	
			100\%	100\%		33		47	179	
	FIG 7									
	AM	ARR	DEP		ARR		DEP	2-way		
B	M40N		14\%	32\%		29		18	47	
C	A361		4\%	12\%		8		7	15	
D	A422E		8\%	1\%		16		1	16	
E	M40S		44\%	18\%		93		10	103	
A	A422W		31\%	37\%		65		22	86	
			100\%	100\%		11		58	269	
	Fig 8									
	PM	ARR	DEP		ARR		DEP	2-way		
B	M40N		3\%	2\%		1		4	5	
C	A361		2\%	2\%		0		3	4	
D	A422E		13\%	32\%		3		50	53	
E	M40S		63\%	13\%		15		21	36	
A	A422W		19\%	51\%		5		81	85	
			100\%	100\%		24		159	183	

DEVELOPMENT

Appendix H

TRICS Output - Commercial Warehousing

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 02-EMPLOYMENT
Category : F - WAREHOUSING (COMMERCIAL)
TOTAL VEHI CLES
```

02	SOUTH EAST	
	EX ESSEX	1 days
	KC KENT	1 days
03	SOUTH WEST	
	DV DEVON	2 days
04	EAST ANGLIA	
	SF SUFFOLK	1 days
06	WEST MI DLANDS	
	WM WEST MIDLANDS	1 days
07	YORKSHI RE \& NORTH LI NCOLNSHI RE	
	WY WEST YORKSHIRE	1 days
09	NORTH	
	TW TYNE \& WEAR	1 days

This section displays the number of survey days per TRICS \circledR^{\circledR} sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area	
Actual Range: 190 to 50000 (units: sqm) Range Selected by User: 190 to 80066 (units: sqm)		
Parking Spaces Range: All Surveys Included Public Transport Provision: Include all surveys Selection by:		

Date Range: $\quad 01 / 01 / 13$ to $15 / 10 / 20$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	1 days
Wednesday	1 days
Thursday	1 days
Friday	5 days

This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	8 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town 7
Free Standing (PPS6 Out of Town) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Industrial Zone 6
Commercial Zone 1
Out of Town 1
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:	2 days
n / a	6 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Filter by Site Operations Breakdown:
All Surveys Included
Population within 500m Range:
All Surveys Included
Population within 1 mile:

1,000 or Less	1 days
1,001 to 5,000	1 days
5,001 to 10,000	2 days
10,001 to 15,000	1 days
15,001 to 20,000	2 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
125,001 to 250,000	4 days
250,001 to 500,000	2 days
500,001 or More	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	4 days
1.1 to 1.5	4 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No
8 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:
No PTAL Present 8 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters

1 DV-02-F-01
 ALDERS WAY
 NTON

e of Town
ndustrial Zone Y

DV-02-F-02 LIDL DISTRIBUTI ON CENTRE
CHILLPARK BRAKE
EXETER
LYST HONITON
ree Standing (PPS6 Out of Town)
Out of Town Survey date: WEDNESDAY 03/04/19

EX-02-F 01
COLCHESTER
SEVERALLS INDUSTRIAL PK
dge of Town
Industrial Zone

2-F-02

11200 sqm
22/09/17

4700 sqm

WEST MI DLANDS

Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

MANUALLY DESELECTED SITES

Site Ref	Reason for Deselection
BD-02-F-02	during covid

TRIP RATE for Land Use 02 - EMPLOYMENT/F - WAREHOUSING (COMMERCIAL)
TOTAL VEHI CLES

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00	3	20212	0.081	3	20212	0.046	3	20212	0.127
06:00-07:00	3	20212	0.135	3	20212	0.068	3	20212	0.203
07:00-08:00	8	14715	0.163	8	14715	0.073	8	14715	0.236
08:00-09:00	8	14715	0.161	8	14715	0.093	8	14715	0.254
09:00-10:00	8	14715	0.141	8	14715	0.082	8	14715	0.223
10:00-11:00	8	14715	0.088	8	14715	0.091	8	14715	0.179
11:00-12:00	8	14715	0.095	8	14715	0.100	8	14715	0.195
12:00-13:00	8	14715	0.094	8	14715	0.100	8	14715	0.194
13:00-14:00	8	14715	0.132	8	14715	0.130	8	14715	0.262
14:00-15:00	8	14715	0.082	8	14715	0.110	8	14715	0.192
15:00-16:00	8	14715	0.082	8	14715	0.109	8	14715	0.191
16:00-17:00	8	14715	0.082	8	14715	0.149	8	14715	0.231
17:00-18:00	8	14715	0.068	8	14715	0.155	8	14715	0.223
18:00-19:00	8	14715	0.035	8	14715	0.100	8	14715	0.135
19:00-20:00	3	20212	0.028	3	20212	0.054	3	20212	0.082
20:00-21:00	3	20212	0.041	3	20212	0.033	3	20212	0.074
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			1.508			1.493			3.001

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

190-50000 (units: sqm)
01/01/13-15/10/20
8
0
0
0
0
0
1

This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 02 - EMPLOYMENT/F - WAREHOUSING (COMMERCIAL)
OGVS
Calculation factor: $\mathbf{1 0 0} \mathbf{~ s q m}$
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00	3	20212	0.026	3	20212	0.031	3	20212	0.057
06:00-07:00	3	20212	0.043	3	20212	0.043	3	20212	0.086
07:00-08:00	8	14715	0.041	8	14715	0.046	8	14715	0.087
08:00-09:00	8	14715	0.051	8	14715	0.056	8	14715	0.107
09:00-10:00	8	14715	0.055	8	14715	0.038	8	14715	0.093
10:00-11:00	8	14715	0.045	8	14715	0.046	8	14715	0.091
11:00-12:00	8	14715	0.037	8	14715	0.048	8	14715	0.085
12:00-13:00	8	14715	0.042	8	14715	0.042	8	14715	0.084
13:00-14:00	8	14715	0.035	8	14715	0.043	8	14715	0.078
14:00-15:00	8	14715	0.024	8	14715	0.025	8	14715	0.049
15:00-16:00	8	14715	0.040	8	14715	0.027	8	14715	0.067
16:00-17:00	8	14715	0.040	8	14715	0.034	8	14715	0.074
17:00-18:00	8	14715	0.042	8	14715	0.030	8	14715	0.072
18:00-19:00	8	14715	0.020	8	14715	0.022	8	14715	0.042
19:00-20:00	3	20212	0.010	3	20212	0.018	3	20212	0.028
20:00-21:00	3	20212	0.015	3	20212	0.015	3	20212	0.030
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			0.566			0.564			1.130

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Appendix I
TRICS Output - Parcel Distribution Centre

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 02-EMPLOYMENT
Category : G - PARCEL DISTRIBUTION CENTRES
```


TOTAL VEHI CLES

Selected regions and areas:
05 EAST MI DLANDS

LN	LINCOLNSHIRE	1 days
NT	NOTTINGHAMSHIRE	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area	
Actual Range:	1496 to 3000 (units: sqm)	
Range Selected by User:	763 to 24154 (units: sqm)	
Parking Spaces Range:	All Surveys Included	
Public Transport Provision:		Include all surveys

Date Range: $\quad 01 / 01 / 13$ to $11 / 05 / 21$

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	1 days
Friday	1 days

This data displays the number of selected surveys by day of the week.
Selected survey types:
Manual count 2 days
Directional ATC Count 0 days
This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Industrial Zone 1
Commercial Zone 1
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
B8 2 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS $®$.

Secondary Filtering selection (Cont.):

Population within 500 m Range:
All Surveys Included
Population within 1 mile:
10,001 to $15,000 \quad 1$ days
25,001 to $50,000 \quad 1$ days

This data displays the number of selected surveys within stated 1-mile radii of population.

125,001 to 250,000	1 days
500,001 or More	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:
1.1 to 1.52 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No
2 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:
No PTAL Present 2 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters

1	LN-02-G-01 PARCELFOR	PARCELFORCE WORLDWI DE	LI NCOLNSHI RE
	WHISBY WAY		
	LINCOLN		
	BIRCHWOOD		
	Edge of Town		
	Industrial Zone		
	Total Gross floor area:	1496 sqm	
	Survey date: FRIDAY	28/06/19	Survey Type: MANUAL
2	NT-02-G-02 CITY LINK		NOTTI NGHAMSHI RE
	MILLENIUM WAY		
	NOTTINGHAM		
	PHOENIX CENTRE		
	Edge of Town		
	Commercial Zone		
	Total Gross floor area:	3000 sqm	
	Survey date: MONDAY	17/06/13	Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 02 - EMPLOYMENT/G - PARCEL DISTRIBUTION CENTRES
TOTAL VEHI CLES

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00	1	1496	1.003	1	1496	0.134	1	1496	1.137
06:00-07:00	1	1496	1.671	1	1496	0.201	1	1496	1.872
07:00-08:00	2	2248	0.334	2	2248	0.712	2	2248	1.046
08:00-09:00	2	2248	0.067	2	2248	0.378	2	2248	0.445
09:00-10:00	2	2248	0.156	2	2248	0.156	2	2248	0.312
10:00-11:00	2	2248	0.156	2	2248	0.067	2	2248	0.223
11:00-12:00	2	2248	0.089	2	2248	0.067	2	2248	0.156
12:00-13:00	2	2248	0.178	2	2248	0.378	2	2248	0.556
13:00-14:00	2	2248	0.423	2	2248	0.178	2	2248	0.601
14:00-15:00	2	2248	0.200	2	2248	0.267	2	2248	0.467
15:00-16:00	2	2248	0.245	2	2248	0.356	2	2248	0.601
16:00-17:00	2	2248	0.356	2	2248	0.445	2	2248	0.801
17:00-18:00	2	2248	0.378	2	2248	0.378	2	2248	0.756
18:00-19:00	2	2248	0.400	2	2248	0.423	2	2248	0.823
19:00-20:00	2	2248	0.089	2	2248	0.222	2	2248	0.311
20:00-21:00	2	2248	0.111	2	2248	0.178	2	2248	0.289
21:00-22:00	1	3000	0.000	1	3000	0.000	1	3000	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			5.856			4.540			10.396

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

1496-3000 (units: sqm)
01/01/13-11/05/21
2
0
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 02 - EMPLOYMENT/G - PARCEL DISTRIBUTION CENTRES
OGVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00	1	1496	0.668	1	1496	0.134	1	1496	0.802
06:00-07:00	1	1496	0.535	1	1496	0.201	1	1496	0.736
07:00-08:00	2	2248	0.044	2	2248	0.423	2	2248	0.467
08:00-09:00	2	2248	0.022	2	2248	0.111	2	2248	0.133
09:00-10:00	2	2248	0.022	2	2248	0.022	2	2248	0.044
10:00-11:00	2	2248	0.044	2	2248	0.000	2	2248	0.044
11:00-12:00	2	2248	0.000	2	2248	0.022	2	2248	0.022
12:00-13:00	2	2248	0.067	2	2248	0.089	2	2248	0.156
13:00-14:00	2	2248	0.067	2	2248	0.067	2	2248	0.134
14:00-15:00	2	2248	0.067	2	2248	0.044	2	2248	0.111
15:00-16:00	2	2248	0.156	2	2248	0.044	2	2248	0.200
16:00-17:00	2	2248	0.044	2	2248	0.044	2	2248	0.088
17:00-18:00	2	2248	0.044	2	2248	0.000	2	2248	0.044
18:00-19:00	2	2248	0.111	2	2248	0.089	2	2248	0.200
19:00-20:00	2	2248	0.022	2	2248	0.044	2	2248	0.066
20:00-21:00	2	2248	0.044	2	2248	0.044	2	2248	0.088
21:00-22:00	1	3000	0.000	1	3000	0.000	1	3000	0.000
22:00-23:00									
23:00-24:00									
Total Rates:			1.957			1.378			3.335

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

VISSIM Local Model Validation Report

米SLR

Local Model Validation Report

Huscote Farm VISSIM

David Tucker Associates

Prepared by:
SLR Consulting Limited
7th Floor, 36 Great Charles Street, Birmingham, B3 3JY

SLR Project No.: 431.000006.00000
16 October 2023
Revision: 01

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
01	15 September 2023	AC	AH	AC
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with David Tucker Associates (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.
SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.
Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.
The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.
This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.
Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

1.0 Introduction 1
2.0 Background 2
3.0 Model Scope 3
4.0 Model Specifications \& Parameters 4
5.0 Survey Data 5
6.0 Signals 9
7.0 Public Transport 10
8.0 Vehicle Speeds, Conflicts \& Driving Behaviours 11
9.0 Assignment and Convergence 13
10.0 Calibration \& Validation Results 15
11.0 Summary \& Conclusion 24
Tables in Text
Table 1: AM WebTRIS vs MCC On-Slip and Off-Slip flows at Junction 11 7
Table 2: PM WebTRIS vs MCC On-Slip and Off-Slip flows at Junction 11 7
Table 3: TomTom Sample Hit Rates 8
Table 4: AM Convergence Results 13
Table 5: PM Convergence Results 13
Table 6: WebTAG Link Flow Criteria 16
Table 7: AM and PM Turn Count Calibration Results - Lights 16
Table 8: AM and PM Turn Count Calibration Results - Heavies 17
Table 9: WebTAG Journey Time Validation Criteria 18
Table 10: AM Journey Time Validation Results 19
Table 11: PM Journey Time Validation Results 20
Table 12: AM and PM ATC Validation Results using 2-week ATC Data - Total Vehicles 22
Table 13: AM and PM ATC Validation Results using 29 ${ }^{\text {th }}$ June ATC Data - Total Vehicles 23
Figures in Text
Figure 1: VISSIM Core Study Area 3
Figure 2: MCC, ANPR, and ATC Locations 5
Figure 3: Journey Time Validation Routes 18

Appendices

Appendix A ANPR Distributions

Appendix B Turn Count Calibration Results
Appendix C Journey Time Validation Results
Appendix D Queue Length Validation Results

Acronyms and Abbreviations

LMVR	Local Model Validation Report
DTA	David Tucker Associates
BTM	Banbury Transport Model
NH	National Highways
DfT	Department for Transport
MCC	Manual Classified Count
ANPR	Automatic Number Plate Recognition
ATC	Automatic Traffic Counters

1.0 Introduction

1.1 SLR Consulting Ltd (SLR) has been approached by David Tucker Associates (DTA) to develop a VISSIM model in support of a live planning application for the construction of up to $140,000 \mathrm{sq} \mathrm{m}$ of employment floorspace, along with the associated infrastructure and access arrangements. The Reference Number for the planning application is 22/01488/OUT.
1.2 The development is situated on land to the east of Junction 11 of the M40 (Banbury Interchange).
1.3 This Local Model Validation Report (LMVR) covers the scope, methodology, and the outputs for the Base year model, which will provide the basis upon which the forecasting and development impact assessments can be undertaken.

2.0 Background

2.1 SLR is aware that there is an existing 2017 VISSIM Base model, which DTA had planned to use which is being developed by Stantec, with forecasting to be informed by the Banbury Transport Model (BTM).
2.2 A significant benefit of creating a new model with new survey data is that the existing Base year of 2017 not only exceeds DfT guidance on model age, but also predates the COVID-19 pandemic which has had a significant impact on travel patterns and behaviours.

3.0 Model Scope

3.1 The core study area encompasses Banbury Interchange (M40 J11), A422/B4525/Mansion Hill roundabout to the east, and the three roundabouts to the west up to Ruscote Avenue. The two signalised junctions on Southam Road/Beaumont Road and Wildmere Road/Brookhill Way are also included.
3.2 Figure 1 below provides an overview of the study area:

Figure 1: VISSIM Core Study Area

3.3 The approach and exit links are coded such that observed queuing and other notable behaviours can be replicated within the modelling, whilst also allowing sufficient distance for lane changing from model input to junction approach.

4.0 Model Specifications \& Parameters

4.1 The model has been developed, calibrated, and validated with the following specifications:

VISSIM Version:	VISSIM 2023.06
Simulation Resolution:	5
Number of Seeds:	10
Base Year:	2023
AM Simulation Period (Evaluation Period):	$07: 00-08: 45$ (07:30-08:30)
PM Simulation Period (Evaluation Period):	$16: 00-17: 45$ (16:30-17:30)
Assignment Method:	Dynamic Assignment
Calibration Assessment Criteria:	2023 Turn Counts
Validation Assessment Criteria:	2023 TomTom Journey Time Data

5.0 Survey Data

MCCs, ANPR \& ATCs

5.1 The locations of the MCC, ANPR and ATC surveys are shown in Figure 2 below:

Figure 2: MCC, ANPR, and ATC Locations

5.2 Manual Classified Count (MCC) surveys and Automatic Number Plate Recognition (ANPR) data collection was carried out on Thursday 29 $9^{\text {th }}$ June 2023 between the hours of 07:0010:00 and 16:00-19:00 for all junctions within the model area.
5.3 Automatic Traffic Counts (ATCs) were collected for the 2-week period from Thursday $22^{\text {nd }}$ June 2023 to Wednesday $5^{\text {th }}$ July 2023.
5.4 Peak hour determination was carried out by SLR using the MCC data. The total number of vehicles arriving at each surveyed junction for each hour on a rolling 15-minute basis within the 07:00-10:00 and 16:00-19:00 periods was calculated, and the sum of these taken to provide the number of surveyed trips arriving at all junctions. This gave peak hours of 07:4508:45 and 16:30-17:30. This was compared to the total number of vehicles arriving at M40 J 11 (due to the strategic significance of this junction), where peak hours were calculated as 07:30-08:30 in the AM, and 16:30-17:30 again in the PM. As the second busiest hour in the AM for all junctions is also 07:30-08:30 (only ~ 10 vehicles less than the total for 07:4508:45), SLR has assumed this to be the most appropriate peak hour for the AM to align with what is more typically used.
5.5 The peak hours calculated from the MCCs have been compared to the peak hours determined from the ATC and ANPR surveys. From the ANPR data, the total vehicles travelling between each O-D was calculated for each hour on a rolling 15-minute basis. This gave peak hours of 07:30-08:30 and 16:30-17:30, aligning with the chosen hours from the MCCs. For the ATCs, the sum of total vehicles captured at each location was determined for each hour on a rolling 15-minute basis, again giving peak hours of 07:30-08:30 and 16:3017:30.

Matrix Build

5.6 ANPR has been used to create the prior matrix to inform the initial step in matrix estimation. The origin-destination data has been processed for each 15-minute period within the AM and PM peak hours, giving trip distributions between each ANPR location. Since as ANPR sites 3 and 11 (see Figure 2) serve more than one zone in VISSIM, the counts at these locations were proportioned to the corresponding zones using the MCCs. For VISSIM zones that were not directly covered by an ANPR site (movements within A422/B4525/Mansion Hill roundabout, and trips to/from Wildmere Road/Brookhill Way), turn counts were informed by the MCCs using proportional calculations through adjacent junctions.
5.7 ANPR U-turn movements were reviewed, and a cap of 2-minutes applied to the site-in siteout time stamps. This ensures short-distance trips that return to their origin within the same time period are not double counted as U-turns.
5.8 Both ANPR and MCC data was disaggregated into Car, LGV, OGV1, and OGV2 which SLR has combined to create Lights and Heavies matrix levels.
5.9 The MCC surveys were used to calculate the split of Cars and LGVs within the Lights user class, and OGV1 and OGV2 within the Heavies user class. Total counts during the peak periods at all MCC sites were used to determine the split which is applied to the VISSIM Light and Heavy matrices.
5.10 30-minute warm-up and 15-minute cool down periods have also been included. Matrices for these periods have been created in the same way as those for the peak hours.
5.11 The peak hour matrices were minorly adjusted throughout the calibration process to ensure the initial VISSIM matrices (primarily informed by ANPR data) match the MCCs. ANPR distributions have been calculated to show the percentage split of trips across each destination ANPR zone from each origin. The ANPR distributions within the model remain similar to the raw ANPR distributions, with a maximum difference of 8% between the VISSIM distributions and the ANPR distributions. The complete distributions informed by the raw ANPR data compared to the distributions within the matrices in VISSIM are evidenced in Appendix A.

WebTRIS

5.12 June 2023 WebTRIS data has been used to inform trip numbers on the M40 mainline. Data has been extracted in 15-minute intervals to be input into the corresponding matrices for AM and PM.
5.13 All WebTRIS data was subject to sifting and sense-checking to ensure the derived average was representative and robust. Firstly, the data was processed to exclude non-neutral days leaving only Tuesday-Thursday dates, thereby excluding the traditionally quieter days within the week. The school holiday on $1^{\text {st }}$ June was additionally excluded.
5.14 Secondly, the resulting dataset was further analysed to ensure no outliers existed. To help highlight and remove these outliers from the average, the statistical middle 50\% (Interquartile Range [IQR]) was calculated which divided the dataset into four equal groups. By subtracting the first quarter (25%) from the third quarter (75%), the middle 50% remains. It is generally agreed that a suitable upper and lower bound for the dataset can be calculated by multiplying the IQR by 1.5 , and applying this tolerance to either side of the middle 50%. Any values which fell outside of these boundaries were removed from the average value that was ultimately used for matrix development to ensure the data was representative and did not include any spurious data.
5.15 As an additional check, WebTRIS data for the on- and off-slips at Junction 11 has also been extracted and compared against the MCC data. The tables below demonstrate how the slip data matches well, providing evidence that the survey day is representative of typical conditions.

Table 1: AM WebTRIS vs MCC On-Slip and Off-Slip flows at Junction 11

	AM Peak Hour (07:30-08:30)					
	Heavies					
	WebTRIS	MCC	Difference	WebTRIS	MCC	Difference
NB Off-Slip	570	575	5	59	64	5
NB On-Slip	486	455	-31	63	48	-15
SB Off-Slip	773	703	-70	98	79	-19
SB On-Slip	666	697	31	71	66	-5

Table 2: PM WebTRIS vs MCC On-Slip and Off-Slip flows at Junction 11

	PM Peak Hour (16:30-17:30)					
				Heavies		
	WebTRIS	MCC	Difference	WebTRIS	MCC	Difference
NB Off-Slip	829	988	159	60	60	0
NB On-Slip	636	570	-66	33	43	10
SB Off-Slip	479	514	35	48	30	-18
SB On-Slip	544	575	31	38	26	-12

TomTom

5.16 Journey times were obtained from the TomTom database covering the month of June 2023, excluding Mondays, Fridays, Saturdays, and Sundays. Thursday $1^{\text {st }}$ June was also excluded due to school holidays.
5.17 Average sample size as provided by the TomTom raw data is tabulated below:

Table 3: TomTom Sample Hit Rates

Time Period	Average Sample Size
$07: 30-07: 45$	659.26
$07: 45-08: 00$	695.78
$08: 00-08: 15$	674.01
$08: 15-08: 30$	674.13
$16: 30-16: 45$	638.45
$16: 45-17: 00$	641.65
$17: 00-17: 15$	627.22
$17: 15-17: 30$	653.41

Queue Lengths

5.18 Queue data was provided alongside the MCCs, again for Thursday $29^{\text {th }}$ June 2023 with queue length surveyed at all approaches in 5-minute intervals.

6.0 Signals

6.1 There are three signalised junctions within the model extent (excluding separate signalised pedestrian crossings). These are:
i) M40 Junction 11
ii) Wildmere Road/Brookhill Way junction
iii) A423 Southam Road/Beaumont Road junction
6.2 Signal timing data was provided for each junction for Thursday $29^{\text {th }}$ June 2023, the same date that the MCC and ANPR surveys were conducted.
6.3 Data was presented in terms of the times each signal changed state, which SLR has processed to determine the parameters governing the signal programs for each junction, for example intergreen times, maximum and minimum green times, and signal stages. The signal programs have been input using VAP due to each signalised junction operating on a demand-responsive basis.
6.4 Four signalised pedestrian crossings are also present within the model extent. These are located:
i) A422 Hennef Way, just west of the A422/Wildmere Road/Ermont Way roundabout
ii) A423 Southam Road, just north of the A422/Southam Road roundabout
iii) A422 Hennef Way, just east of the A422/Southam Road roundabout
iv) A422 Ruscote Avenue, just west of the A422/Southam Road roundabout
6.5 Pedestrian crossing data was collected in 15-minute intervals during the AM and PM periods. This was disaggregated into pedestrians and cyclists at each crossing. These values have been replicated in VISSIM, and use VAP programs to allow the crossings to be demand responsive.

7.0 Public Transport

7.1 Online data sources were interrogated to provide morning and evening peak timetables which were replicated in the modelling. The services included are as follows:
i) 77
ii) B4
iii) 200
iv) 500
v) B9
7.2 Bus dwell times use a linear distribution of 20-30s across the model, which is considered to be in line with industry standards.

8.0 Vehicle Speeds, Conflicts \& Driving Behaviours

8.1 The model has utilised speed distributions as calculated from the DfT vehicle speed compliance statistics ${ }^{1}$. These are used to control vehicle entry speeds in the model and speed limit changes across the model extent. Since as no information is available regarding a 50 mph speed distribution in the DfT statistics, the Transport for London VISSIM Template distribution has been used in cases where a 50 mph speed limit is required.
8.2 Throughout the process of journey time validation, it became apparent that in some locations the unadjusted speed distributions resulted in speeds that were too slow across sections of the network. Each distribution contains a small number of vehicles that travel at the slower end of the distribution curve. On single lane sections of highway this results in modelled speeds that are too slow as all vehicles are beholden to the speed of the slowest vehicle ahead of them. Also some sections exhibited slow speeds where on-site observations suggested this would not occur in reality (such as on the A422 East of the roundabout with Banbury Lane, where road geometry and visibility mean that no vehicles would be expected to be driving at the slower end of the 50 mph speed distribution; speeds which can be as low as 25 mph if left unadjusted). Hence to reduce the issue of vehicles travelling at speeds at the lower end of the distribution holding up traffic behind them, additional speed distributions with the suffix "Adjusted" have been added and assigned to areas of the network where required. This has only been required for the 50 mph speed distribution.
8.3 The model uses the 'speed limitation in curves' function present in versions of VISSIM from 2023. This means VISSIM will adjust a vehicle's speed according to the brake radius reaction of a link, reducing the need for individual reduced speed areas to be added to the network. Some reduced speed areas have still been added to the network however if additional measures were required, for example to slow vehicles on an exit link leading up to a junction off the network, or to represent parked cars on the side of the road. The reduced speed areas used rely upon the VISSIM default km / h distributions as these generally contain a lower range at the extremes of the distribution curves compared with the TfL and DfT mph distributions, and where vehicle speeds are to be controlled due to physical or geometric reasons these tighter controls are necessary.
8.4 Conflicting movements between vehicles are primarily controlled by Priority Rules, which were adjusted as part of the calibration process and are unchanged between AM and PM peak periods. Conflict Areas are also included at some locations (e.g. bus lay-bys) where additional conflict management was considered necessary to prevent vehicles crossing over one another.
8.5 Three driving behaviours have been used in the model. Any non-strategic local roads have been set to the driving behaviour for urban roads, which was altered from the VISSIM default to ensure vehicle behaviour at an amber signal was set to "Stop same as red", as per the latest accepted best practice. All strategic links were set to the VISSIM default Right-side rule behaviour, and a merge/diverge driving behaviour was added and used for any links where this behaviour is required.

[^0]
Period Specific Differences

8.6 Both AM and PM model networks remain identical aside from one reduced speed area present in the PM but not the AM. This is on the Ruscote Avenue westbound exit link and uses a speed distribution of $12 \mathrm{~km} / \mathrm{h}$ to slow vehicles on the approach to the Lockheed Close roundabout, just outside the model network. PM journey time data suggests that the PM peak experiences delays on this westbound section which also causes delay on Hennef Way westbound and Southam Road northbound approaches to the roundabout upstream. This has been cross-checked with Google Maps typical traffic data which shows slow vehicle speeds in this area in the PM peak.

9.0 Assignment and Convergence

9.1 The model includes the dynamic method of vehicle assignment and must therefore be converged to an acceptable level.
9.2 Throughout the model, no route choice exists aside from which lane vehicles use to merge from the on-slips to the M40. Hence, the only purpose of convergence is to ensure both lanes on each on-slip are appropriately used.
9.3 To converge the models, the simulation was run consistently until a series of criteria were met.
9.4 DMRB 2 and TfL^{3} state that a model is considered to be converged when the following set of criteria are met:

- 95% of all path traffic volumes change by less than 5% for at least four consecutive iterations
- 95% of the travel times on all paths change by less than 20% for at least four consecutive iterations
- The percentage change in user costs or time spent within the network (V) should be less than 1% for four consecutive iterations
9.5 The final four runs were as follows:

Table 4: AM Convergence Results

Run Reference Number	Volume on Paths $<5 \%$	Travel Times on Paths $<20 \%$	Total Travel Time \% Change from previous run
2	100.0%	100.0%	0.0%
3	100.0%	100.0%	0.0%
4	100.0%	100.0%	0.0%
5	100.0%	100.0%	-0.01%

Table 5: PM Convergence Results

Run Reference Number	Volume on Paths $<5 \%$	Travel Times on Paths $<\mathbf{2 0 \%}$	Total Travel Time \% Change from previous run
2	100.0%	98.1%	0.41%
3	100.0%	98.7%	0.0%
4	100.0%	99.0%	0.0%
5	100.0%	99.4%	0.0%

[^1]9.6 Results show that both the AM and PM Base models converge to DMRB criteria on all 3 of the criteria, with 100% of volumes on paths changing by less than 5% for four consecutive runs, $>98 \%$ of travel times on paths changing by less than 20%, and total travel time changing by 1%.

10.0 Calibration \& Validation Results

Overview

10.1 The AM and PM models were run for 10 random seed runs as per best practice, starting at seed number 42 and increasing in increments of 1 . The average results from all 10 runs are presented in this section.

Turn Count Calibration

10.2 Flow calibration is a process whereby modelled flow outputs are compared to the equivalent observed traffic flows across the network.
10.3 The Geoffrey E. Havers (GEH) statistic is a standard way of comparing the observed and modelled flows, as defined in DMRB, Volume 12, Chapter 4. The GEH value is similar to a chi-squared test and also incorporates both relative and absolute errors in order to give an overall measure of the accuracy of the modelled flow.
10.4 The GEH statistic has the benefit of removing bias that exists when comparing flows of different magnitudes using percentages, such that a difference of 10 in a flow of 100 vehicles per hour (vph) is less significant ($\mathrm{GEH}=1$) than a difference of 100 in a flow of 1000 vph (GEH = 3.2).
10.5 The GEH statistic is calculated by:

$$
\mathrm{GEH}=\sqrt{\frac{(M-C)^{2}}{(M+C) / 2}}
$$

Where:
GEH = GEH statistic
M = Modelled flow
C = Observed flow
10.6 An extract of the calibration guideline criteria is shown in the table overleaf:

Table 6: WebTAG Link Flow Criteria ${ }^{4}$

Criteria	Description of Criteria	Acceptability Guideline
1	Individual flows within $100 \mathrm{veh} / \mathrm{h}$ of counts for flows less than 700 veh/hr	>85\% of Cases
	Individual flows within 15% of counts from 700 to $2700 \mathrm{veh} / \mathrm{hr}$	>85\% of Cases
	Individual flows within 400 veh/hr of counts for flows more than 2700 veh/hr	>85\% of Cases
2	GEH <5 for individual flows	>85\% of Cases

10.7 Turn count calibration results demonstrate that both AM and PM peak hour Base models exceed the guideline GEH pass-rate of 85%. The AM and PM Base models achieve 100% for both Lights and Heavies. A summary of the results can be seen in the following tables; full turn count results can be found in Appendix B

Table 7: AM and PM Turn Count Calibration Results - Lights

AM Peak Hour (07:30-08:30)		
GEH	No. of Passes	\% of Total
<1	88	76%
<2	111	96%
<3	116	100%
<4	116	100%
<5	116	100%
GEH	PM Peak Hour (16:30-17:30)	
<1	No. of Passes	$\%$ of Total
<2	84	72%
<3	110	95%
<4	115	99%
<5	116	100%
	116	100%

[^2]Table 8: AM and PM Turn Count Calibration Results - Heavies

AM Peak Hour (07:30-08:30)		
GEH	No. of Passes	\% of Total
<1	98	84%
<2	113	97%
<3	116	100%
<4	116	100%
<5	116	100%
GEH	PM Peak Hour (16:30-17:30)	
<1	No. of Passes	$\%$ of Total
<2	92	79%
<3	112	97%
<4	116	100%
<5	116	100%
	116	100%

10.8 The results demonstrate that 100% of modelled turn counts achieve a GEH of less than 4, thereby exceeding DMRB guidance for turn count calibration in a microsimulation model.

Journey Time Validation

10.9 The model was validated to a total of 28 journey time routes covering the majority of the model extent. The figure below provides an illustration of the routes.

Figure 3: Journey Time Validation Routes

10.10 An extract of the journey time validation criteria is shown in the table below:

Table 9: WebTAG Journey Time Validation Criteria ${ }^{5}$

Criteria	Description of Criteria	Acceptability Guideline
1	Modelled times along routes should be within 15% of surveyed time (or 1 minute, if higher than 15%)	$>85 \%$ of Cases

10.11 The TomTom observed data has been provided in 15 -minute periods. SLR has calculated peak journey times by using the number of samples from each segment to calculate a weighted value. The modelled journey times have also been collected every 15-minutes and peak hour values weighted by flow from the model.

[^3]10.12 The results are tabulated below:

Table 10: AM Journey Time Validation Results

AM Peak Hour (07:30-08:30)							
Route Name		Obs	Mod	Diff	\% Diff	Pass?	Pass 15\%
1	Hennef Way EB	307	280	-27	-9\%	Pass	Pass
2	Hennef Way WB	137	145	8	6\%	Pass	Pass
3	Beaumont Road EB	58	50	-8	-13\%	Pass	Pass
4	Beaumont Road WB	51	57	6	12\%	Pass	Pass
5	Southam Road NB	110	106	-4	-4\%	Pass	Pass
6	Southam Road SB	136	122	-14	-10\%	Pass	Pass
7	Concord Avenue/Grimsbury Green NB	62	54	-8	-12\%	Pass	Pass
8	Concord Avenue/Grimsbury Green SB	63	67	5	8\%	Pass	Pass
9	Ermont Way/Wildmere Road NB	125	110	-15	-12\%	Pass	Pass
10	Ermont Way/Wildmere Road SB	94	86	-8	-9\%	Pass	Pass
11	Wildmere Road/Brookhill Way EB	75	75	0	-1\%	Pass	Pass
12	Wildmere Road/Brookhill Way WB	74	84	11	14\%	Pass	Pass
13	M40 NB	184	206	22	12\%	Pass	Pass
14	M40 SB	189	211	22	12\%	Pass	Pass
15	M40 On-Slip NB	28	26	-3	-9\%	Pass	Pass
16	M40 Off-Slip SB	45	40	-5	-11\%	Pass	Pass
17	M40 Off-Slip NB	43	48	4	10\%	Pass	Pass
18	M40 On-Slip SB	26	24	-2	-7\%	Pass	Pass
19	A361 NB	68	68	0	0\%	Pass	Pass
20	A361 SB	127	125	-2	-1\%	Pass	Pass
21	A422 EB	165	175	9	6\%	Pass	Pass
22	A422 WB	187	180	-7	-4\%	Pass	Pass
23	Banbury Lane NB	62	56	-5	-8\%	Pass	Pass
24	Banbury Lane SB	64	69	5	8\%	Pass	Pass
25	Mansion Hill EB	62	64	1	2\%	Pass	Pass
26	Mansion Hill WB	65	74	9	14\%	Pass	Pass
27	Overthorpe NB	33	28	-5	-14\%	Pass	Pass
28	Overthorpe SB	27	24	-3	-10\%	Pass	Pass

Table 11: PM Journey Time Validation Results

PM Peak Hour (16:30-17:30)							
	Route Name	Obs	Mod	Diff	\% Diff	Pass?	Pass 15\%
1	Hennef Way EB	170	184	13	8\%	Pass	Pass
2	Hennef Way WB	203	191	-13	-6\%	Pass	Pass
3	Beaumont Road EB	59	63	3	6\%	Pass	Pass
4	Beaumont Road WB	55	55	0	-1\%	Pass	Pass
5	Southam Road NB	139	127	-12	-9\%	Pass	Pass
6	Southam Road SB	124	123	-1	-1\%	Pass	Pass
7	Concord Avenue/Grimsbury Green NB	66	63	-3	-5\%	Pass	Pass
8	Concord Avenue/Grimsbury Green SB	63	53	-10	-16\%	Pass	Fail
9	Ermont Way/Wildmere Road NB	185	189	4	2\%	Pass	Pass
10	Ermont Way/Wildmere Road SB	123	118	-6	-5\%	Pass	Pass
11	Wildmere Road/Brookhill Way EB	111	108	-3	-3\%	Pass	Pass
12	Wildmere Road/Brookhill Way WB	105	103	-3	-3\%	Pass	Pass
13	M40 NB	187	211	24	13\%	Pass	Pass
14	M40 SB	183	206	22	12\%	Pass	Pass
15	M40 On-Slip NB	28	26	-2	-8\%	Pass	Pass
16	M40 Off-Slip SB	45	42	-2	-5\%	Pass	Pass
17	M40 Off-Slip NB	39	43	4	10\%	Pass	Pass
18	M40 On-Slip SB	25	23	-1	-6\%	Pass	Pass
19	A361 NB	67	72	4	7\%	Pass	Pass
20	A361 SB	77	88	11	14\%	Pass	Pass
21	A422 EB	161	176	15	9\%	Pass	Pass
22	A422 WB	174	172	-2	-1\%	Pass	Pass
23	Banbury Lane NB	58	53	-4	-7\%	Pass	Pass
24	Banbury Lane SB	62	70	8	13\%	Pass	Pass
25	Mansion Hill EB	60	66	6	10\%	Pass	Pass
26	Mansion Hill WB	64	72	8	12\%	Pass	Pass
27	Overthorpe NB	30	29	-1	-2\%	Pass	Pass
28	Overthorpe SB	27	24	-3	-10\%	Pass	Pass

10.13 The results show that the AM and PM achieve a pass rate of 100% and 96% respectively.
10.14 The route which falls outside of the 15% criteria in the PM is Concord Avenue/Grimsbury Green SB. This does so by only 1 s hence is considered acceptable in light of the other results.
10.15 The sectional breakdown of routes across the model can be found in Appendix C.

Queue Length Validation

10.16 Neither TfL, DMRB nor WebTAG provide any specific guidelines on queue assessments. DMRB actually states that "precise validation of queue lengths can be difficult because of the volatility of the observed data".
10.17 Likewise, TfL identify that "The level of accuracy in queue measurement surveys can often be lower than for other surveys as the definition of a queue can be subjective as well as difficult to identify." ," and "Queue lengths are generally not used for validation purposes due to the difficulty in measuring them on street, however comparing modelled levels of queuing to those observed on street can indicate where inaccuracies may exist in a model."8
10.18 Queue length surveys can provide an estimation of conditions at the site but cannot be expected to be replicated accurately within a model. Reasons for this include:
i) The tendency for the model results to fluctuate between different model runs;
ii) The day-to-day variance in real-life conditions at the site meaning that results taken from one day cannot be applied too rigidly; and
iii) The software's mathematical interpretation of queue lengths compared with the subjective nature of human interpretation during manual surveys.
10.19 Nevertheless, queue length data is a useful dataset with which to gather an understanding of the general pattern of delay across a junction.
10.20 In this case, the modelled queue length is defined as the maximum queue observed within any given 5 -minute period. This is averaged across the hour and compared with the model equivalent to provide a general overview of queue conditions on all approaches. Results are reported within Appendix D.

[^4]
ATC Validation

10.21 ATC data for the peak hours has been processed for the two-week period and compared to the modelled outputs at each site in both directions. The table below demonstrates the total vehicle comparison:

Table 12: AM and PM ATC Validation Results using 2-week ATC Data - Total Vehicles

AM Peak Hour (07:30-08:30)				
Site	Location	Observed	Modelled	GEH
1	A361 (North of M40 J11) NB	312	299	0.7
	A361 (North of M40 J11) SB	551	653	4.2
2	A422 (East of M40 J11) EB	1019	1003	0.5
	A422 (East of M40 J11) WB	1003	1193	5.7
3	A422 (West of M40 J11) EB	1455	1588	3.4
	A422 (West of M40 J11) WB	2064	2160	2.1
4	Hennef Way (East of A4260) EB	1571	1818	6.0
	Hennef Way (East of A4260) WB	1765	1669	2.3
5	Hennef Way (West of A4260) EB	1364	1419	1.5
	Hennef Way (West of A4260) WB	1111	1139	0.8
PM Peak Hour (16:30-17:30)				
Site	Location	Observed	Modelled	GEH
1	A361 (North of M40 J11) NB	647	757	4.1
	A361 (North of M40 J11) SB	352	340	0.7
2	A422 (East of M40 J11) EB	1084	1152	2.0
	A422 (East of M40 J11) WB	801	997	6.6
3	A422 (West of M40 J11) EB	1792	1925	3.1
	A422 (West of M40 J11) WB	1634	1698	1.6
4	Hennef Way (East of A4260) EB	1648	1735	2.1
	Hennef Way (East of A4260) WB	2116	2094	0.5
5	Hennef Way (West of A4260) EB	1397	1357	1.1
	Hennef Way (West of A4260) WB	1331	1515	4.9

10.22 GEH values greater than 5 are present in the AM for Site 2 WB and Site 4 EB, and in the PM again for Site 2 WB.
10.23 In all cases where the GEH is above 5 , the modelled turn count is higher than the observed, demonstrating that the model is robust. Comparisons with the modelled outputs and the MCC/ANPR data shows that the model matches both of these well, and so it is likely that the ATC tubes have undercounted trips in these locations.
10.24 Furthermore, the ATC data has been processed for the singular day of Thursday $29^{\text {th }}$ June 2023 to match the date of the MCC and ANPR surveys. This is presented in the table below:

Table 13: AM and PM ATC Validation Results using 29 ${ }^{\text {th }}$ June ATC Data - Total Vehicles

AM Peak Hour (07:30-08:30)				
Site	Location	Observed	Modelled	GEH
1	A361 (North of M40 J11) NB	273	299	1.5
	A361 (North of M40 J11) SB	598	653	2.2
2	A422 (East of M40 J11) EB	933	1003	2.2
	A422 (East of M40 J11) WB	1073	1193	3.6
3	A422 (West of M40 J11) EB	1529	1588	1.5
	A422 (West of M40 J11) WB	2016	2160	3.2
4	Hennef Way (East of A4260) EB	1520	1818	7.3
	Hennef Way (East of A4260) WB	1773	1669	2.5
5	Hennef Way (West of A4260) EB	1372	1419	1.3
	Hennef Way (West of A4260) WB	1129	1139	0.3
PM Peak Hour (16:30-17:30)				
Site	Location	Observed	Modelled	GEH
1	A361 (North of M40 J11) NB	794	757	1.3
	A361 (North of M40 J11) SB	333	340	0.4
2	A422 (East of M40 J11) EB	1048	1152	3.1
	A422 (East of M40 J11) WB	942	997	1.8
3	A422 (West of M40 J11) EB	1832	1925	2.1
	A422 (West of M40 J11) WB	1663	1698	0.9
4	Hennef Way (East of A4260) EB	1700	1735	0.8
	Hennef Way (East of A4260) WB	2115	2094	0.5
5	Hennef Way (West of A4260) EB	1446	1357	2.4
	Hennef Way (West of A4260) WB	1401	1515	3.0

10.25 The AM still demonstrates a GEH value above 5 for Site 4 EB . The modelled output is higher than the observed ATC value and so can be considered robust for this assessment. Journey time and queue data shows that there are delays in the AM on the eastbound approach to the A422/Wildmere Road/Ermont Way roundabout, and so it is likely that queuing occurred on this ATC tube and has affected the count.
10.26 The AM and PM now pass at ATC Site 2 WB. This ATC value is higher on the singular day compared to the 2-week average in both the AM and PM, and so demonstrates that the model is robust in using higher flows.

11.0 Summary \& Conclusion

11.1 SLR Consulting Ltd (SLR) has been commissioned by David Tucker Associates (DTA) to develop a VISSIM model for the area surrounding M40 Junction 11, located east of Banbury, Oxfordshire, in support of a live planning application for the construction of up to 140,000 sq m of employment floorspace, along with the associated infrastructure and access arrangements.
11.2 This Local Model Validation Report sets out the methodology for developing the Base model and presents the results from the Base model calibration and validation exercise.
11.3 Results show that the model achieves a pass rate of 100% for MCC turn count calibration, and journey times demonstrate a very close correlation to the observed which exceeds the requisite industry standards for calibration and validation as defined in WebTAG. Hence this suggests that the model matches observed data and observed on-street traffic behaviour and is a suitable and robust Baseline upon which to confidently begin development testing

Appendix A ANPR Distributions

Local Model Validation Report

Huscote Farm VISSIM
David Tucker Associates
SLR Project No.: 431.000006.00000
16 October 2023

LIGHTS

Distribution using raw ANPR

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	5%	38%	2%	6%	18%	19%	0%	2%	4%	6%	100%
2	2%	0%	9%	30%	2%	18%	18%	1%	5%	12%	3%	100%
3	19%	3%	0%	7%	4%	14%	25%	1%	4%	13%	10%	100%
4	1%	12%	10%	0%	5%	19%	18%	1%	7%	16%	13%	100%
5	13%	6%	13%	12%	0%	22%	15%	2%	2%	11%	4%	100%
6	11%	7%	16%	15%	5%	0%	6%	1%	3%	21%	15%	100%
7	16%	8%	27%	12%	5%	8%	0%	1%	1%	7%	14%	100%
8	0%	7%	3%	10%	3%	14%	24%	0%	0%	24%	14%	100%
9	4%	2%	6%	7%	3%	5%	1%	0%	0%	27%	45%	100%
10	4%	3%	19%	18%	6%	18%	8%	1%	8%	0%	14%	100%
11	1%	0%	11%	15%	3%	12%	15%	1%	22%	19%	0%	100%

Distribution in VISSIM Matrices

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	5%	38%	0%	6%	18%	19%	0%	4%	4%	6%	100%
2	3%	0%	8%	32%	2%	19%	16%	1%	6%	10%	3%	100%
3	18%	5%	0%	7%	4%	13%	24%	2%	5%	13%	9%	100%
4	0%	12%	10%	0%	5%	19%	17%	1%	8%	16%	12%	100%
5	13%	6%	13%	12%	0%	22%	15%	2%	2%	11%	4%	100%
6	12%	3%	22%	16%	4%	0%	6%	1%	3%	19%	14%	100%
7	15%	7%	28%	11%	5%	11%	0%	1%	1%	7%	12%	100%
8	0%	7%	3%	10%	3%	14%	24%	0%	0%	24%	14%	100%
9	4%	2%	6%	7%	3%	9%	1%	0%	0%	26%	43%	100%
10	4%	2%	19%	18%	5%	18%	8%	1%	12%	1%	13%	100%
11	1%	0%	11%	15%	3%	12%	15%	1%	22%	19%	0%	100%

HEAVIES

Distribution using raw ANPR

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	8%	38%	1%	9%	16%	12%	1%	5%	3%	8%	100%
2	11%	0%	4%	37%	0%	11%	7%	7%	15%	4%	4%	100%
3	14%	6%	0%	6%	2%	22%	14%	10%	4%	12%	8%	100%
4	0%	17%	7%	2%	7%	25%	2%	0%	8%	8%	25%	100%
5	9%	9%	9%	27%	0%	18%	9%	9%	0%	0%	9%	100%
6	30%	8%	11%	30%	3%	0%	3%	0%	2%	5%	9%	100%
7	18%	12%	6%	12%	0%	24%	0%	6%	0%	12%	12%	100%
8	7%	60%	13%	0%	0%	0%	13%	0%	7%	0%	0%	100%
9	6%	45%	3%	16%	6%	6%	3%	0%	0%	6%	6%	100%
10	17%	8%	8%	29%	8%	8%	4%	0%	4%	0%	13%	100%
11	11%	2%	5%	14%	5%	5%	0%	25%	18%	16%	0%	100%

Distribution in VISSIM Matrices

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	8%	38%	0%	9%	16%	12%	1%	5%	3%	8%	100%
2	10%	0%	3%	45%	0%	10%	6%	6%	13%	3%	3%	100%
3	14%	6%	0%	6%	2%	22%	14%	10%	4%	12%	8%	100%
4	0%	17%	7%	2%	7%	25%	2%	0%	8%	8%	25%	100%
5	9%	9%	9%	27%	0%	18%	9%	9%	0%	0%	9%	100%
6	27%	9%	9%	37%	2%	0%	4%	0%	1%	4%	7%	100%
7	18%	12%	6%	12%	0%	24%	0%	6%	0%	12%	12%	100%
8	8%	54%	15%	0%	0%	0%	15%	0%	8%	0%	0%	100%
9	6%	45%	3%	16%	6%	6%	3%	0%	0%	6%	6%	100%
10	17%	8%	8%	29%	8%	8%	4%	0%	4%	0%	13%	100%
11	11%	2%	5%	14%	5%	5%	0%	25%	18%	16%	0%	100%

Difference												
	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	0%	0%	-1%	0%	0%	0%	0%	0%	0%	0%	0%
2	-1%	0%	0%	8%	0%	-1%	-1%	-1%	-2%	0%	0%	0%
3	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
6	-3%	1%	-2%	7%	-1%	0%	1%	0%	0%	-1%	-2%	0%
7	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8	1%	-6%	2%	0%	0%	0%	2%	0%	1%	0%	0%	0%
9	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
10	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
11	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

LIGHTS

Distribution using raw ANPR

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	3%	39%	1%	6%	11%	21%	0%	3%	11%	5%	100%
2	8%	0%	12%	24%	6%	11%	24%	0%	3%	11%	1%	100%
3	22%	4%	0%	8%	4%	10%	21%	1%	3%	17%	9%	100%
4	1%	36%	7%	0%	5%	8%	11%	0%	2%	13%	17%	100%
5	9%	10%	12%	7%	0%	11%	21%	0%	3%	16%	11%	100%
6	11%	8%	10%	8%	8%	0%	15%	1%	4%	23%	11%	100%
7	11%	11%	30%	9%	10%	4%	0%	1%	1%	10%	13%	100%
8	0%	0%	21%	6%	0%	6%	29%	0%	0%	21%	18%	100%
9	4%	6%	10%	4%	3%	5%	3%	0%	0%	26%	38%	100%
10	4%	8%	18%	8%	7%	11%	11%	1%	11%	0%	21%	100%
11	4%	2%	12%	11%	4%	7%	21%	0%	19%	20%	0%	100%

Distribution in VISSIM Matrices

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	3%	38%	0%	5%	11%	21%	0%	7%	11%	5%	100%
2	11%	0%	12%	23%	5%	11%	24%	0%	3%	10%	1%	100%
3	20%	11%	0%	8%	4%	10%	20%	1%	3%	14%	9%	100%
4	0%	38%	7%	0%	5%	8%	10%	0%	2%	12%	17%	100%
5	12%	3%	15%	7%	0%	11%	21%	0%	3%	16%	11%	100%
6	12%	6%	14%	9%	9%	0%	16%	1%	5%	21%	7%	100%
7	11%	9%	32%	9%	10%	4%	0%	1%	1%	10%	13%	100%
8	0%	0%	21%	6%	0%	6%	29%	0%	0%	21%	18%	100%
9	3%	5%	13%	4%	3%	8%	3%	1%	0%	27%	32%	100%
10	4%	6%	18%	9%	7%	11%	11%	0%	16%	0%	19%	100%
11	4%	2%	12%	11%	4%	7%	21%	0%	19%	20%	0%	100%

HEAVIES

Distribution using raw ANPR

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	7%	30%	0%	0%	19%	11%	4%	7%	0%	22%	100%
2	33%	0%	0%	33%	0%	11%	0%	0%	0%	0%	22%	100%
3	46%	0%	0%	0%	4%	19%	8%	0%	12%	8%	4%	100%
4	2%	23%	6%	0%	2%	36%	6%	0%	0%	4%	23%	100%
5	17%	0%	25%	25%	8%	17%	0%	0%	0%	0%	8%	100%
6	28%	13%	15%	15%	5%	0%	3%	0%	8%	5%	8%	100%
7	18%	18%	0%	9%	0%	36%	0%	0%	0%	0%	18%	100%
8	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%
9	13%	13%	38%	0%	0%	0%	0%	0%	0%	13%	25%	100%
10	13%	0%	25%	25%	0%	0%	13%	0%	13%	0%	13%	100%
11	26%	11%	7%	15%	0%	11%	4%	0%	19%	7%	0%	100%

Distribution in VISSIM Matrices

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	7%	30%	0%	0%	19%	11%	4%	7%	0%	22%	100%
2	33%	0%	0%	33%	0%	11%	0%	0%	0%	0%	22%	100%
3	46%	0%	0%	0%	4%	19%	8%	0%	12%	8%	4%	100%
4	0%	16%	10%	0%	2%	38%	6%	0%	0%	4%	25%	100%
5	17%	0%	25%	25%	8%	17%	0%	0%	0%	0%	8%	100%
6	23%	14%	17%	17%	3%	0%	3%	0%	9%	6%	9%	100%
7	18%	18%	0%	9%	0%	36%	0%	0%	0%	0%	18%	100%
8	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%
9	13%	13%	33%	0%	0%	0%	0%	0%	0%	13%	27%	100%
10	13%	0%	25%	25%	0%	0%	13%	0%	13%	0%	13%	100%
11	26%	11%	7%	15%	0%	11%	4%	0%	19%	7%	0%	100%

Difference

	1	2	3	4	5	6	7	8	9	10	11	Total
1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4	-2%	-7%	4%	0%	0%	2%	0%	0%	0%	0%	2%	0%
5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
6	-5%	1%	2%	2%	-2%	0%	0%	0%	1%	1%	1%	0%
7	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
9	1%	1%	-4%	0%	0%	0%	0%	0%	0%	1%	2%	0%
10	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
11	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Appendix B Turn Count Calibration Results

Local Model Validation Report

Huscote Farm VISSIM
David Tucker Associates
SLR Project No.: 431.000006 .00000
16 October 2023

Appendix C Journey Time Validation Results

Local Model Validation Report

Huscote Farm VISSIM
David Tucker Associates
SLR Project No.: 431.000006.00000
16 October 2023

No.	Description						
		Peak Hour 07:30-08:30					
		Observed	Modelled	Difference	\% Difference	Pass?	Pass 15\%?
1	1 NB	73	81	8	11\%	Pass	Pass
2	1 SB	79	88	10	12\%	Pass	Pass
3	2 NB	38	42	4	11\%	Pass	Pass
4	2 SB	36	40	4	11\%	Pass	Pass
5	3 NB	73	83	10	14\%	Pass	Pass
6	3 SB	74	83	8	11\%	Pass	Pass
7	4 NB	28	26	-3	-9\%	Pass	Pass
8	4 SB	45	40	-5	-11\%	Pass	Pass
9	5 NB	43	48	4	10\%	Pass	Pass
10	5 SB	26	24	-2	-7\%	Pass	Pass
11	6 Eb	21	20	-1	-6\%	Pass	Pass
12	6 WB	15	15	0	1\%	Pass	Pass
13	7 EB	85	73	-12	-14\%	Pass	Pass
14	7 WB	34	39	5	14\%	Pass	Pass
15	8 Ев	151	137	-14	-9\%	Pass	Pass
16	8 wb	45	50	4	10\%	Pass	Pass
17	9 Ев	29	32	3	11\%	Pass	Pass
18	9 wb	27	25	-2	-6\%	Pass	Pass
19	10 Ев	72	69	-3	-4\%	Pass	Pass
20	10 wb	93	80	-13	-14\%	Pass	Pass
21	11 EB	84	95	12	14\%	Pass	Pass
22	11 wb	90	95	5	6\%	Pass	Pass
23	12 NB	44	40	-3	-8\%	Pass	Pass
24	12 SB	63	48	-14	-23\%	Pass	Fail
25	13 EB	58	50	-8	-13\%	Pass	Pass
26	13 Wb	51	57	6	12\%	Pass	Pass
27	14 NB	30	28	-2	-8\%	Pass	Pass
28	14 SB	41	40	-1	-2\%	Pass	Pass
29	15 nB	29	32	3	10\%	Pass	Pass
30	15 SB	25	28	2	9\%	Pass	Pass
31	16 NB	42	40	-2	-5\%	Pass	Pass
32	16 SB	34	34	0	0\%	Pass	Pass
33	17 NB	13	8	-5	-41\%	Pass	Fail
34	17 SB	23	28	5	20\%	Pass	Fail
35	18 пв	26	24	-3	-10\%	Pass	Pass
36	18 SB	28	23	-6	-20\%	Pass	Fail
37	19 ев	20	18	-1	-6\%	Pass	Pass
38	19 Wb	23	28	5	20\%	Pass	Fail
39	20 м	6	6	0	3\%	Pass	Pass
40	20 SB	9	12	3	39\%	Pass	Fail
41	21 Eb	47	50	3	7\%	Pass	Pass
42	21 wb	41	45	4	10\%	Pass	Pass
43	22 nB	8	8	0	-2\%	Pass	Pass
44	22 SB	13	14	1	5\%	Pass	Pass
45	23 NB	76	64	-12	-16\%	Pass	Fail
46	23 SB	38	30	-7	-19\%	Pass	Fail
47	24 NB	68	68	0	0\%	Pass	Pass
48	24 SB	127	125	-2	-1\%	Pass	Pass
49	25 NB	62	56	-5	-8\%	Pass	Pass
50	25 SB	64	69	5	8\%	Pass	Pass
51	26 EB	62	64	1	2\%	Pass	Pass
52	26 Wb	65	74	9	14\%	Pass	Pass
53	27 nB	33	28	-5	-14\%	Pass	Pass
54	27 SB	27	24	-3	-10\%	Pass	Pass
55	28-1 EB	17	20	3	16\%	Pass	Fail
56	28-2 ев	2	1	0	-11\%	Pass	Pass
57	$28-3$ SB	6	5	-1	-16\%	Pass	Fail
58	$28-4$ SB	3	2	0	-8\%	Pass	Pass
59	28.5 SB	8	15	7	86\%	Pass	Fail
60	28-6 SB	2	2	0	8\%	Pass	Pass
61	28-7 Wb	18	19	1	5\%	Pass	Pass
62	28.8 WB	4	4	0	-2\%	Pass	Pass
63	28.9 n	7	15	8	115\%	Pass	Fail
64	28-10 NB	2	3	1	64\%	Pass	Fail
65	29-1 Eb	4	3	-1	-15\%	Pass	Pass
66	29-2 EB	1	1	0	10\%	Pass	Pass
67	29-3 SB	3	3	1	23\%	Pass	Fail
68	29-4 SB	1	1	0	34\%	Pass	Fail
69	$29-5$ SB	3	4	0	9\%	Pass	Pass
70	29.6 WB	0	1	0	4\%	Pass	Pass
71	29-7 Wb	3	4	0	15\%	Pass	Fail
72	29-8 WB	1	1	0	14\%	Pass	Pass
73	$29-9 \mathrm{n}$ в	4	5	1	27\%	Pass	Fail
74	29-10 NB	1	2	1	47\%	Pass	Fail
75	30-1 EB	3	3	0	10\%	Pass	Pass
76	30-2 ев	1	1	0	55\%	Pass	Fail
77	30-3 SB	3	4	1	20\%	Pass	Fail
78	$30-4$ SB	2	2	0	-11\%	Pass	Pass
79	$30-5$ WB	2	2	0	5\%	Pass	Pass
80	30.6 WB	2	2	0	7\%	Pass	Pass
81	$30-7$ NB	3	3	0	-3\%	Pass	Pass
82	30.8 EB	2	2	0	-6\%	Pass	Pass
83	30-9 ев	11	8	-3	-25\%	Pass	Fail
84	30-10 SB	13	14	1	5\%	Pass	Pass
85	31-1 EB	3	2	-1	-20\%	Pass	Fail
86	$31-2 \mathrm{~EB}$	2	1	-1	-62\%	Pass	Fail
87	31-3 SB	2	3	1	28\%	Pass	Fail
88	31-4 SB	1	2	1	50\%	Pass	Fail
89	$31-5 \mathrm{WB}$	2	3	1	24\%	Pass	Fail
90	${ }^{31-6 ~ W B}$	1	1	0	-7\%	Pass	Pass
91	$31-7$ NB	4	3	0	-7\%	Pass	Pass
92	$31-8$ NB	2	2		0\%	Pass	Pass
93	32-1 EB	2	2	0	4\%	Pass	Pass
94	32-2 EB	2	2	0	-13\%	Pass	Pass
95	32-3 SB	3	3	0	0\%	Pass	Pass
96	32-4 SB	1	1	-1	-36\%	Pass	Fail
97	32-5 WB	2	2	0	6\%	Pass	Pass
98	${ }^{32-6 ~ W B}$	2	2	-1	-31\%	Pass	Fail
$\begin{gathered} 99 \\ 100 \end{gathered}$	$32-7 \mathrm{NB}$ $32-8 \mathrm{~EB}$	3	3	0	- 0 -14\%	Pass Pass	Pass Pass

Appendix D Queue Length Validation Results

Local Model Validation Report

Huscote Farm VISSIM
David Tucker Associates
SLR Project No.: 431.000006 .00000
16 October 2023

Making Sustainability Happen

Appendix K
VISSIM Forecasting Report

旅SLR

Forecasting Report

Huscote Farm VISSIM

David Tucker Associates

Prepared by:
SLR Consulting Limited
7th Floor, 36 Great Charles Street, Birmingham, B3 3JY

SLR Project No.: 431.000006.00000
19 October 2023
Revision: 01

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
$\mathbf{0 1}$	19 October 2023	AC	AH	AC
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with David Tucker Associates (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.
SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.
Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.
This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.
Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

1.0 Introduction 1
2.0 Frontier Park 2
3.0 Growth Forecasting 4
4.0 Development Trips 5
5.0 Signals 6
6.0 Mitigation 7
7.0 Scenarios 8
8.0 Demand Summary 9
9.0 Modelling Results 10
10.0 Journey Time Variation 13
11.0 Summary \& Conclusion 15
Tables in Text
Table 1: Average TEMPro Factors 4
Table 2: AM Peak Hour Demand Summary 9
Table 3: PM Peak Hour Demand Summary 9
Figures in Text
Figure 1: Huscote Farm and Frontier Park site locations 2
Figure 2: Signal Mitigation on A361 at Junction 11 7
Figure 3: A422 Hennef Way Eastbound Journey Time Variation (AM Peak) 13
Figure 4: A423 Southam Road Southbound Journey Time Variation (AM Peak) 13
Figure 5: Ermont Way Northbound Journey Time Variation (PM Peak) 14
Appendices
Appendix A Development Site Access Drawing

1.0 Introduction

1.1 SLR Consulting Ltd (SLR) has been commissioned by David Tucker Associates (DTA) to produce a series of models to assist in determining the impact of a development site (known as Huscote Farm) situated on the land to the east of Junction 11 of the M40 (Banbury Interchange).
1.2 The Base VISSIM model has been developed for the year of 2023. An opening year assessment has been undertaken for the future year 2026, along with a 2032 assessment representing 10 years after the date of the registration of the application, thereby satisfying the criteria set out in DfT Circular 01/2022
1.3 This Report sets out the approach taken to forecasting of the 2023 Base VISSIM model to future year positions for the purposes of providing the Reference Case models against which development impacts can be assessed. This Report also details the creation of the development scenarios and the mitigation strategy implemented.

2.0 Frontier Park

2.1 Due to the proximity to the Huscote Farm site, Frontier Park has been included as an isolated committed development in the future year scenarios. The Figure below illustrates the Frontier Park site location alongside the Huscote Farm development site.

Figure 1: Huscote Farm and Frontier Park site locations

2.2 The Frontier Park site is located off the A361 at Junction 11, on the land between the M40 and A361. The access arrangement is a simple priority junction with a ghost island right turn lane. The site access has been coded into the model using a drawing provided by DTA taken from the Frontier Park Transport Assessment. The model includes the new bus laybys on the A361 and a reduced speed limit of 40 mph past the site.
2.3 DTA has provided SLR with peak hour trip generation and distribution for the Frontier Park committed development. This gave the split of trips at M40 Junction 11, disaggregated between Lights and Heavies. To proportion trips to/from the zones off A422 East and West from/to Junction 11, SLR used trip distributions provided by DTA which as set out in the TA were based on 2011 census journey to work data and the Base Year Freight Matrices (BYFM).
2.4 The Frontier Park flows were used to create hourly Lights and Heavies matrices to input into VISSIM.
2.5 For the AM, Frontier Park trips were provided for a pre-AM peak (07:00-08:00) and AM peak hour (08:00-09:00). Since as the VISSIM AM peak hour used for the Base model is 07:3008:30, the average of the two hourly matrices was calculated to provide a 07:30-08:30 Frontier Park matrix for VISSIM.
2.6 For the PM, Frontier Park trips were given only for the peak hour of 17:00-18:00. This hourly matrix has been input directly on to the 16:30-17:30 peak hour in VISSIM.

3.0 Growth Forecasting

3.1 In addition to the inclusion of the Frontier Park committed development, growth has also been applied using factors taken from the TEMPro database.
3.2 The 'High Growth' scenario factors have been taken from TEMPro v8.1 for both 2026 and 2032. The model spans three area levels in TEMPro and so origin/destination factors have been extracted for each so that growth factors can be calculated for trips between each zone. NTEM adjustments have been used for trips to/from the M40.
3.3 The average TEMPro factors applied to each scenario can be seen in the table below. These are an average of the individual factors applied to each movement between zones and so only provide an indication of the growth.

Table 1: Average TEMPro Factors

AM Peak		PM Peak	
$2023-2026$	$2023-2032$	$2023-2026$	$2023-2032$
1.0299	1.0917	1.0303	1.0919

3.4 In order for the Frontier Park trips to not be double counted, the total growth added to the model was capped to the TEMPro v8.1 factors.
3.5 Growth has been applied to the peak hour and additionally the warm-up and cool-down periods.

4.0 Development Trips

4.1 DTA provided SLR with development trip generation and distribution disaggregated between Car, LGV and HGV. These have been input into VISSIM as three separate vehicle classes.
4.2 Like the Frontier Park trips, development trips were provided for a pre-AM peak (07:0008:00) and AM peak hour (08:00-09:00). These were applied to the VISSIM AM peak hour in the same way by averaging the two hourly matrices to give 07:30-08:30 development matrices. The PM development peak is 17:00-18:00 which has been applied directly on top of the VISSIM 16:30-17:30 peak hour.
4.3 The development site is served by two access points on the A361: a priority junction with a ghost island right turn lane just north of the Frontier Park access, and a three-arm roundabout to the south that connects to Junction 11.
4.4 Based on analysis provided in the Huscote Farm Transport Assessment, 65\% of development trips are assumed to use the roundabout and 35% assumed to use the priority junction access.
4.5 The drawing of the development site access arrangements can be found in Appendix A. This drawing also shows the Frontier Park access.

5.0 Signals

5.1 In all Reference Cases, Do-Minimum and Do-Something scenarios, the VAP signals on the roundabout at Junction 11 have been replaced by fixed time signal plans. The decision to introduce fixed time signals was taken to ensure consistent offsets between the approach arms and circulating signal heads that follow. Early iterations of testing suggested that the variable signal plans, and therefore variable offsets, were not sufficient to accommodate the higher levels of traffic once growth and development were included, and measures needed to be taken to avoid unrealistic circulatory congestion.

6.0 Mitigation

6.1 A Do-Something scenario has been tested for the development, where the A361 arm of Junction 11 becomes signalised.
6.2 Early testing of the Do-Minimum scenarios highlighted that the A361 experiences delays, particularly in the AM peak, when development trips add to queues on the approach to Junction 11.
6.3 Fixed time signals have been added to the A361 and circulatory to create a Do-Something scenario, with the intention of creating set gaps in the circulating traffic to allow trips onto the roundabout from the A361 and reduce queues.
6.4 The Figure below shows the VISSIM network before and after the signals have been added on the A361.

Figure 2: Signal Mitigation on A361 at Junction 11

7.0 Scenarios

7.1 The following scenarios have been tested:

1) 2026 Reference Case (2026 Ref), AM and PM
2) 2026 Do-Minimum Case (2026 DM), AM and PM
3) 2026 Do-Something Case (2026 DS), AM and PM
4) 2032 Reference Case (2032 Ref), AM and PM
5) 2032 Do-Minimum Case (2032 DM), AM and PM
6) 2032 Do-Something Case (2032 DS), AM and PM
7.2 Traffic demands in the 2026 and 2032 Reference Cases are comprised of Base demands, Frontier Park committed development demands, and background TEMPro growth demands. No adjustments have been made to baseline, committed development, or background growth demands following inclusion of development.
7.3 In both Reference Case scenarios, the network remains consistent with the Base network (aside from the signal changes at Junction 11 and the Frontier Park access addition).
7.4 Aside from the site accesses (Huscote Farm and Frontier Park) and signal changes at Junction 11, the Do-Minimum and Do-Something scenario networks remain consistent with the Base.

8.0 Demand Summary

8.1 The following tables present a summary of the VISSIM peak hour demands contained within each scenario:

Table 2: AM Peak Hour Demand Summary

	Base Lights	Base Heavies	Growth Lights	Growth Heavies	Frontier Park Lights	Frontier Park Heavies	Dev Lights	Dev Heavies	Total
$\begin{aligned} & 2023 \\ & \text { Base } \end{aligned}$	10929	996	-	-	-	-	-	-	11926
2026 Ref	10929	996	112	9	186	17	-	-	12249
$\begin{gathered} 2026 \\ \text { DM/DS } \end{gathered}$	10929	996	112	9	186	17	291	193	12732
2032 Ref	10929	996	791	72	186	17	-	-	12991
$\begin{gathered} 2032 \\ \text { DM/DS } \end{gathered}$	10929	996	791	72	186	17	291	193	13475

Table 3: PM Peak Hour Demand Summary

	Base Lights	Base Heavies	Growth Lights	Growth Heavies	Frontier Park Lights	Frontier Park Heavies	Dev Lights	Dev Heavies	Total
2023 Base	12446	680	-	-	-	-	-	-	13126
2026 Ref	12446	680	175	8	169	6	-	-	13485
2026 DM/DS	12446	680	175	8	169	6	369	93	13947
2032 Ref	12446	680	943	52	169	6	-	-	14296
2032 DM/DS	12446	680	943	52	169	6	369	93	14758

9.0 Modelling Results

9.1 Each scenario will be discussed in detail in the following section.

2026 Reference (2026 Ref)

9.2 Model results show that following the inclusion of Frontier Park and growth to 2026, average delay per vehicle increases by 13 s and 5 s in the AM and PM respectively compared to the Base scenario.
9.3 In the AM, journey times increase on Hennef Way eastbound approaches to Concord roundabout and the roundabout with Ermont Way. This is a result of the additional trips adding to existing congestion on Hennef Way, and also increasing the number of conflicting trips at the roundabouts so there are fewer gaps for vehicles approaching eastbound.
9.4 In the PM, the largest journey time increase is on Ermont Way northbound (~ 40 s increase compared to the Base). This is due to growth and Frontier Park trips heading east to west at the roundabout reducing the number of gaps for Ermont Way. Elsewhere around the network, journey time increases are no more than 10 s on any one section.

2026 Do-Minimum (2026 DM)

9.5 Following the inclusion of the development demands, average delay per vehicle increases by 28s and 9 s compared to the 2026 Ref in the AM and PM respectively.
9.6 In the AM, the largest journey time increase is on A361 southbound. Compared to the Ref, journey times on this approach to Junction 11 increase by nearly 5 minutes. There are over 200 trips departing from the development site in the AM peak and heading towards Junction 11, which results in long queues on the A361 when vehicles give way to the trips on the roundabout. This causes latent demand from the development site as traffic is unable to get onto the A361.
9.7 Journey time increases are also seen in the AM on Hennef Way eastbound with queues occasionally blocking back to Southam Road. Overall journey times on Southam Road southbound increase by ~ 40 s as a result of this blocking back.
9.8 Like the AM, journey times on A361 southbound also increase in the PM, although this is only ~ 40 s increase compared to the Ref and so not as large an impact as in the AM. Existing delays on this approach in the Base and Ref for the PM are lower than in the AM and so there is more capacity to handle the development trips.
9.9 Journey time increases of ~50s compared to the Ref are also present on Ermont Way northbound for the PM peak. This is due to the development traffic increasing the number of trips from east to west at the roundabout, further reducing the number of gaps for Ermont Way and causing a small amount of latent demand from here.

2026 Do-Something (2026 DS)

9.10 The AM model shows an increase in average delay per vehicle of 13 s compared to the 2026 Ref Case.
9.11 The addition of the signals on the A361 at Junction 11 significantly reduces the journey times on the A361 so that these are now in line with those in the Ref. There are still delays on Hennef Way eastbound in 2026 DS, however these are contained within this part of the network, with journey times on Southam Road only increasing by ~ 40 s for the entire southbound approach and journey times on Ruscote Avenue eastbound approach to the roundabout remaining similar to the Ref value.
9.12 The PM model shows an increase in average delay per vehicle of 10 s compared to the 2026 Ref Case. The DS performs very similarly to the DM due to the A361 delays in the PM being minor and so there is less scope for the signals to provide benefit. Remaining journey time increases in the DS compared to the Ref are primarily on Ermont Way northbound of around 45 s which are unlikely to cause detriment to the surrounding network.

2032 Reference (2032 Ref)

9.13 Model results show that following the inclusion of Frontier Park and growth to 2032, average delay per vehicle increases by 47s and 19s in the AM and PM respectively compared to the Base scenario.
9.14 Like the 2026 Ref, in the AM journey times increase on Hennef Way eastbound as a result of the additional traffic. The queues on Hennef Way block back to Southam Road and cause journey time increases of around 5 minutes for the entire length of Southam Road southbound in the model. The latent demand in this scenario is attributable to Southam Road north.
9.15 Journey times also increase in the AM by just under 1 minute on A361 southbound compared to the Base. Growth and Frontier Park trips traversing Junction 11 mean there are fewer gaps for those from the A361, which combined with the additional trips arriving from the A361 means longer queues build.
9.16 In the PM, the largest journey time increases compared to the Base are on Ermont Way northbound. Trips from Ermont Way often struggle to get onto the roundabout in the Base, and the additional trips in 2032 further reduce the number of gaps for Ermont Way. Average queues also increase on A422 West arm at Junction 11 ($\sim 70 \mathrm{~m}$ average queue length increase compared to the Base). This is due to the increase in demands at the conflicting signal head on the circulatory meaning the west arm is allocated less green time.

2032 Do-Minimum (2032 DM)

9.17 Following the inclusion of the development demands to 2032, average delay per vehicle increases by 28 s and 16 s compared to the Ref in the AM and PM respectively.
9.18 In the AM, like the 2026 DM, large journey time increases are observed on A361 southbound to Junction 11. In comparison to the Ref, journey times increase by ~ 6 minutes due to the development trips adding to the existing queues on the A361. Latent demand exists from the development site accesses due to the trips being unable to enter the queues on the A361.
9.19 Latent demand is also present in the AM from Southam Road north. Compared to the Ref, journey times increase on Southam Road by ~ 1.5 minutes because of the congestion on Hennef Way eastbound blocking back. The additional delay is caused by development trips
heading to the site adding to the eastbound traffic and also increasing the number of conflicting trips at Concord roundabout and Ermont Way roundabout. The reported journey times on Hennef Way do not show large increases however, due to this stretch of Hennef Way already being filled with slow moving traffic in the Ref.
9.20 In the PM, the largest journey time increase is also on A361 southbound. This increase compared to the Ref is ~ 1.5 minutes due to over 250 development trips travelling from the site to Junction 11 and having to give way at the roundabout.
9.21 Like the 2026 DM, there are journey time and latent demand increases on Ermont Way in the PM because of the westbound development traffic reducing the number of gaps available for Ermont Way.
9.22 Journey times on the M40 northbound off-slip increase in PM 2032 DM compared to the Ref by ~ 30 s. There are around 60 development trips originating from M40 south which queue in the right-hand lane on the off-slip to head to the A361. Maximum queue lengths are over 100 m from the start of the slip however, and so pose no issue to the mainline.

2032 Do-Something (2032 DS)

9.23 The AM model shows an increase in average delay per vehicle of 8 s compared to the 2032 Ref Case.
9.24 Like AM 2026 DS, the addition of signals on the A361 greatly reduces queues so that journey times on A361 southbound are now ~30s lower than those in 2032 Ref. Delays exist on Hennef Way eastbound and Southam Road southbound, with Southam Road experiencing latent demand. However, this delay is not too dissimilar to Ref values, as 2032 Ref queues are often at their maximum values on Hennef Way.
9.25 The PM model shows an increase in average delay per vehicle of 12 s compared to the 2032 Ref Case. Introduction of the signals on the A361 means journey times on the A361 halve in comparison to the DM values. Queues on this approach to Junction 11 are now only an average of 55 m in length.
9.26 Elsewhere around the network in the PM, like the DM there are journey time increases compared to the Ref on Ermont Way northbound. This increase is ~ 40 s and so unlikely to cause large impacts on the surrounding area over and above what is already seen in the Ref. Also like the DM, journey times on the northbound off-slip have increased by $\sim 40 \mathrm{~s}$ compared to the 2032 Ref. The queues here are contained within the length of the slip and do not impact the mainline.

10.0 Journey Time Variation

10.1 To further evidence that some of the remaining journey time impacts in the DS scenarios are not significantly above what is observed in the Reference Cases, graphs have been produced showing the variation in journey times for some key areas of interest.
10.2 In the AM, Hennef Way eastbound experiences high levels of delay with queues impacting Southam Road. The following graphs illustrate that in both future years, average journey times on Hennef Way and Southam Road in the DS scenarios fall within the variation present within the Reference Cases. The only exception to this is for Southam Road southbound in the 2032 DS where the average journey time from 07:45-08:00 is ~ 30 s higher than the maximum journey time in the Ref. The maximum Ref journey time later exceeds the average DS journey time by ~ 400 s and so the DS can still be considered to perform within Reference Case variation.

Figure 3: A422 Hennef Way Eastbound Journey Time Variation (AM Peak)

Figure 4: A423 Southam Road Southbound Journey Time Variation (AM Peak)

10.3 In the PM, Ermont Way northbound experiences congestion in all future years. The following graphs demonstrate that average journey times in the DS scenarios fall within the variation present within the Reference Cases. The exception to this is in the 2032 DS scenario, the average journey time is above the maximum reported journey time for the Reference Case for 16:45-17:00. This is only ~ 30 s above the Ref value and considering the maximum Ref value later exceeds the average DS value, the DS can be regarded as not causing significant impact above the Reference Case.

Figure 5: Ermont Way Northbound Journey Time Variation (PM Peak)

11.0 Summary \& Conclusion

11.1 SLR Consulting Ltd (SLR) has been commissioned by David Tucker Associates (DTA) to produce a series of models to assist in determining the impact of a development site (known as Huscote Farm) situated on the land to the east of Junction 11 of the M40 (Banbury Interchange).
11.2 SLR has included the following scenarios in the assessment:

- 2023 Base
- 2026 Reference
- 2026 Do-Minimum
- 2026 Do-Something
- 2032 Reference
- 2032 Do-Minimum
- 2032 Do-Something
11.3 The modelling demonstrates that following the inclusion of development through an unmitigated network, queues and delays exist on the A361 approach to Junction 11, particularly in the AM peak. The introduction of signals on the A361 is successful at resolving existing issues that might occur here and mitigates against the development impacts.
11.4 Elsewhere in the AM, Hennef Way eastbound experiences high levels of congestion which impacts Southam Road when queues block back. The delays are not considered to be significant over those that are present in the Reference Cases however.
11.5 In the PM, Ermont Way demonstrates delay in all future year scenarios, with development trips unlikely to cause a severe impact on the surrounding network over and above what is already present in the Reference Cases. In 2032, the northbound off-slip at Junction 11 shows journey time increases when development trips add to queues in the right-hand lane. Queues on the off-slip remain over 100 m from the start of the slip and pose no issue to the mainline.
11.6 Overall, the proposed signals on the A361 are successful at resolving both existing issues that may occur on the A361, and the development impacts. The network is considered to operate at a similar level to the Reference Cases.

Appendix A Development Site Access Drawing

Forecasting Report

Huscote Farm VISSIM
David Tucker Associates
SLR Project No.: 431.000006.00000
19 October 2023

Making Sustainability Happen

Appendix L

nev	ssamemom	baum	mms	out	oexmes sunus	Cutareio	опEE

david tucker associates
matam ins im
maize \square
${ }^{\text {Job tite }}$

Appendix M

Independent Road Safety Audit

LAND AT M40 J 11

Site Access and Highway Works

Stage 1 Road Safety Audit
Overseeing Organisation: Oxfordshire County Council

December 2023

Gateway RSE

Road Safety Engineering

Project:	Land at M40 J 11 Site Access and Highway Works
Document:	Stage 1 Road Safety Audit
Design Organisation:	DTA Transport Planning
Overseeing Organisation:	Oxfordshire County Council
Client:	Greystoke
Gateway RSE ref:	SG/ WP/ 2311-11 RSA1 v1.0
Issue date:	$01 / 12 / 2023$
Status:	Issued as Version 1.0
Authorised by:	SG

© Copyright Gateway RSE 2023

Gateway RSE

Road Safety Engineering

Cheyenne House
West Street
Farnham
GU9 7EQ
01483679350
admin@gateway-rse.co.uk
www.gateway-rse.co.uk

CONTENTS

1 Introduction 1
2 Problems Identified by this Road Safety Audit 3
3 Audit Team Statement 4

Appendices

Appendix A: Items Considered by this RSA
Appendix B: Location Plan(s)

1

INTRODUCTION

This report describes a Stage 1 Road Safety Audit (RSA) of highway works on the A461 northeast of Banbury, within the District of Cherwell and the County of Oxfordshire. The audit brief, dated $27^{\text {th }}$ November 2023, describes the scheme as site accesses, a shared foot/ cycleway and off-site highway works, all associated with a 140,000 sqm of B8 warehousing development.

The A361 is a 2-lane single carriageway road running broadly northeast from J unction 11 of the M40. It is lit, with no footways, and is subject to a 40 mph speed limit, changing to 50 mph approximately 580 metres northeast of the M40 junction.

The proposed main site access comprises a 45 metre ICD roundabout to be located approximately 120 metres northeast of the M40 junction. The secondary site access will be a priority-controlled junction with a ghost island, some 420 metres further to the northeast (just within the 40 mph speed limit). The section of the A361 between the new roundabout and the M40 J 11 will be realigned, and signal control will be introduced at the M40 junction itself, with corresponding amendments to carriageway markings.

This Road Safety Audit was carried out by Steve Giles and Wendy Palmer and consisted of a desktop study and a site visit, which was carried out between 12:15 and 14:30 on Tuesday $28^{\text {th }}$ November 2023, when the weather was fine and the road surfaces dry. No significant traffic congestion was observed, whilst no pedestrian or cycle movements occurred along the A361.

The terms of reference for this RSA are as described in the Design Manual for Roads and Bridges (DMRB) document GG119. The Audit Team is independent of the project design team and has not been involved in the design process in any other capacity. The audit considers only the potential road safety implications of the scheme and has not verified compliance of the design with any other criteria.

The Audit Team has not been made aware of any Departures from Standard. Whilst reference may be made to design standards, this report is not intended to provide a design check.
1.7 Recommendations are aimed at addressing the identified potential road safety problems. However, there may be other acceptable ways to overcome a problem, considering wider constraints and opportunities; the Auditors would be pleased to discuss such alternative solutions as appropriate. The recommendations contained herein do not absolve the Designer of his/ her responsibilities.

Collision Data

1.8 Personal Injury Collision (PIC) information was provided by the Designers, DTA Transport Planning. This indicates that three PICs occurred on the A361 in the vicinity of the site during the period 01/01/2018 to 13/11/2023.
1.9 One collision was approximately 400 metres northwest of the M40 junction and involved a car performing a U-turn (southbound to northbound) in queuing traffic caused by roadworks. It collided with a northbound car, which left the carriageway and struck a tree, causing slight injuries to the driver.
1.10 The other two collisions were at the M40 junction, close to the A361 exit. Both appear to have resulted from late lane changes by car drivers and resulted in slight injuries.

Previous Road Safety Audit(s)

1.11 The Audit Team is not aware of any previous RSA having been undertaken of this scheme.
2.4 The Audit Team raises no concerns in respect of walking, cycling and horse riding.

Road Signs, Carriageway Markings and Lighting

2.5 The Audit Team raises no concerns in respect of road signs, carriageway markings and lighting.

Gateway

RSE
3.1 We certify that this Road Safety Audit has been carried out in accordance with DMRB document GG119.

Audit Team Leader

Steve Giles
BEng (Hons), IEng, FIHE, MCIHT, MICE, CMILT, MSORSA, HE Cert Comp Senior Road Safety Engineer

Signed:

Date: $\quad 01 / 12 / 2023$
Audit Team Member(s)
Wendy Palmer
MCIHT, MSORSA, FIHE, HE Cert Comp
Senior Road Safety Engineer
Signed:

Date: 01/12/2023

APPENDIX A

Items Considered by this RSA

Items Considered by this Road Safety Audit

Document ref.	Rev.	Originator	Title
$23457-07-01 G A$	B	DTA	A361 Roundabout with Secondary Access
$23457-07-03 G A$	B	DTA	M40 J unction 11 Gyratory \& Site Access Roundabout
$23457-07-04 G A$	B	DTA	Site Access Priority J unction
$23457-07-05 G A$	B	DTA	M40 J unction 11 Gyratory \& Site Access Roundabout
$23457-07-06 T R K$	A	DTA	A361 Site Access Tracking
$23457-07-07 T R K$	B	DTA	M40 J unction 11 Tracking

Additional/background information provided to the Audit Team

- Audit Brief dated 27/11/2023 (DTA Transport Planning)
- Proposed Site Layout, drawing 5166/ CA/ 00/00/DR/A05001/P1 (Chetwoods)

APPENDIX B
 Location Plan(s)

[^0]: ${ }^{1}$ https://www.gov.uk/government/organisations/department-for-transport/series/speeds-statistics

[^1]: ${ }^{2}$ Design Manual for Roads and Bridges, Volume 12, Section 2, Part 1, Chapter 4, Department for Transport 1996
 ${ }^{3}$ Traffic Modelling Guidelines, TfL Traffic Manager and Network Performance Best Practice Version 3.0, Transport for London 2010

[^2]: ${ }^{4}$ TAG Unit M3.1, Para. 3.2.8 Table 2, Department for Transport January 2014

[^3]: ${ }^{5}$ TAG Unit M3.1, Para. 3.2.10 Table 3, Department for Transport January 2014

[^4]: ${ }^{6}$ Design Manual for Roads and Bridges, Volume 12 Section 2, para 4.4.31 May 1996
 ${ }^{7}$ Traffic Modelling Guidelines Version 4.0, TfL September 2021, Para 2.3.4.4
 ${ }^{8}$ Traffic Modelling Guidelines Version 4.0, TfL September 2021, Para 2.4.2

