

WINDOW SAMPLE LOG

FINAL

Contract: Land sou	th of Middle	ton St	onev F	Road, Bices	ster	1	Client:		side Propertie	es PLC	Windo	w Samp	le: WS3
Contract Ref:			-	31.08.17	-	und	d Level		National Grid Co-or		Sheet:		
2	9286			31.08.17			82. ⁻		E:456345.6	N:222499.0		1	of 1
Progress		Sam	ples / T		-	<u>ر</u>					I	Depth	Materi
Window Rur	n Depth		Туре	Results	, j	Water	Backfill		Description of	f Strata		(Thick ness)	Graph Legen
	- 0.15		PID	0.1ppm		-		organic sli rootlets. G	ED TOPSOIL: Br ghtly gravelly sand ravel is angular r ndy limestone/calcard	dy CLAY with from to coars	equent	(0.30) 0.30	
	- - 0.65 - 0.70-1.00 - -	1	PID SPT(c)	0.1ppm 13,15/25,2 for 75mn N=100*	25			Very dense COBBLES Gravel is calcareous	light brown/yellowis with much sandy G angular to sub-ang sandstone/sandy to 150mm across of	sh-brown/locally of RAVEL. Sand is c ular medium to c limestone. Cobble	ourse. coarse	- (0.70) - - 1.00	
												-	
	-											-	
	-											-	
	-											-	
	-											-	
	-											- - -	
	-											[
Drilli	ng Progress a			oservations					Caparal	Domorka			
	ime Boreho (m)	ole C	Casing Depth (m)	Borehole Diameter (mm)	Wate Depti (m)	pth							
											1 6-		
								All dimens	ions in metres	Scale:	1:25		

Drilled

DSUK

By:

Logged By: AGS

Checked

By:

ZHoque

Inspection pit + Tracked window

Plant

Used: Archway Competitor

Method

Used:

WINDOW SAMPLE LOG

FINAL

Land south			_					tryside Prop		0		
Contract Ref:	286				iroun	d Level		National Grid		Sheet:		. 1
Т	200	Cam	End:			80.	00	E:43043	2.8 N:222302.5			of 1
Progress Vindow Run	Depth		oles / T Type	Results	Water	Backfill & Instru- mentation		Descrip	tion of Strata		Depth (Thick	Mater Graph Leger
	Doptil		Type		>	m m	slightly	gravelly sandy C	Wheat grass over dar LAY with occasional subangular to subroun	rootlets.	ness)	E cgci
-	0.30 0.30	1	ES PID	<0.1ppm			and lim	estone with rare minous material.	fine to coarse sub	agments	0.40	
-	0.60 0.60	2	ES PID	<0.1ppm			GRAVE		d limestone interbedo		- - (0.70)	0. 0. 0. 0. 0.
	1.00-1.45	1	SPT(c)	6,9/5,6,5,6 N=22			gravelly	f orangish brown CLAY. Gravel is ned limestone.	to greyish brown slight fine to coarse subar	ly sandy igular of	 	
	1.50	3	D				ine grai	neu iimestone.			(0.70)	
	1.90	4	D		1 <u>−</u>				rown thinly laminated v nge brown sandy nodu		1.80	
-	2.00-2.43	2	SPT(c)	3,4/10,15,14,11 for 50mm N=55*	1	• • • • • • •					(0.63)	×
-							Window	sample terminate	ed at 2.43m depth.		- 2.43 - -	×
-											-	
	-										-	
											-	
-											-	
-	-										-	
											-	
Drilling	Progress a		ater Ob		/ater	_		Gen	eral Remarks			
Date Tim			Depth (m)	Diameter D	(m)	2. G 3. 50 21 4. N	roundwate Omm diam n depth o o visual o	bit hand dug to 1.2 er struck at 1.9m o heter standpipe (co n completion. Res	2m bgl. depth. omplete with flush prot ponse zone 1m to 2m. ce of contamination wa		ver) insta	alled to
							A.U. 11	ensions in metres	Scale:	1:25		

WINDOW SAMPLE LOG

1:25

Checked

AGS

Scale:

JTownsend By:

Logged By:

Contract Ref:	n of Middlet		-	01.09.17	-		Level:		viside Properties PL National Grid Co-ordinate:	.~	Sheet:		WS5
	9286					Juno			E:456768.7 N:222	2102 6	Sheet.	4	. 1
	0020	Som	End: ples / T				74.8)∠	E.430/00./ N.ZZZ	. 102.0			of 1
Progress	Donth					Water	Backfill & Instru- mentation		Description of Strata	l		(Thick	Materia Graph
Vindow Run	Depth	NO	Туре	Results	5	5			ED TOPSOIL: Wheat grass	over dark	brown	ness)	Legen
	L						28 22	slightly gra	velly sandy CLAY with oc ne to coarse subangular fl	casional ro	otlets.	(0.30)	
	- 0.25	1	ES					with rare g	ravel sized brick fragment	s and bitun	ninous _r	0.30	<u>k k k</u>
	0.25		PID	<0.1ppn	ו			\material. Verv dense	sandy fine to coarse suba	ngular GRA	VFI if	-	.0.0
	_							fine graine clay.	d limestone interbedded w	ith orange	brown		0
	0.70	2	ES					ciay.				-	p_0.
	0.70	-	PID	<0.1ppn	۱							(1.10)	ö. <i>D</i> .
				0.0/7.0.40	~							[°.0.
	1.00-1.40	1	SPT(c)	for 20m	,24 n							-	0.0
	-			N=61*								ļ	0.0°
	-							Windowen	mple terminated at 1.40m d	enth		1.40	
	-							window sa		epui.		-	
	_												
	-											-	
	-											-	
	_												
	-											-	
	-											-	
	-												
	-											-	
	-											-	
	_											-	
	-											-	
	-											-	
	-											-	
	-											-	
	-											-	
	_												
	-											-	
	-											-	
	-											-	
Drillin	g Progress a	and W	ater Ob	servations									
	Boreho ne Depth	le (Casing Depth	Borehole Diameter	Wat Dep		1		General Rer	narks			
	(m)		(m)	(mm)	(m	ı <u>)</u>	2. No 3. 50 1n 4. No	o groundwate mm diamete n depth on co o visual or ol	and dug to 1.2m bgl. er encountered. r standpipe (complete with ompletion. Response zone (factory evidence of contami ed at 1.4m bgl.).5m to 1m.		er) insta	alled to

All dimensions in metres

DSUK

Drilled

By:

Tracked window

sampling

Method

Used:

Plant

Used: Archway Competitor

APPENDIX C LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 17/05975, 17/06278 and 17/06009/1

Envirolab Job Number:	17/05975, 17/06278	and 17/06009
Issue Number:	2	Date: 16 October, 2017

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager:	Jack Townsend/Nigel Austin
Project Name:	Bicester – Full Site
Project Ref:	29286
Order No:	N/A
Date Samples Received:	04/09/17
Date Instructions Received:	04/09/17
Date Analysis Completed:	27/09/17

Prepared by:

Approved by:

Danielle Brierley Client Manager Richard Wong Client Manager

Page 1 of 6

Client Project Name: Bicester - Full Site

Lab Sample ID	17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7			
Client Sample No								
Client Sample ID	WS03	WS04	TP06	TP09	TP10			
Depth to Top	0.65	0.30	0.20	0.20	0.50			
Depth To Bottom								
Date Sampled	31-Aug-17	01-Sep-17	12-Sep-17	11-Sep-17	11-Sep-17			if
Sample Type	Soil - ES			Method ref				
Sample Matrix Code	5A	5A	5E	5AE	5AE		Units	Meth
% Stones >10mm _A	32.1	15.3	<0.1	21.1	22.7		% w/w	A-T-044
pH _D ^{M#}	8.26	8.05	7.86	7.99	7.98		рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01		g/I	A-T-026s
Sulphate (acid soluble) _D ^{M#}	850	580	620	560	570		mg/kg	A-T-028s
Organic matter _D ^{M#}	-	2.5	-	-	2.2		% w/w	A-T-032 OM
Arsenic _D ^{M#}	4	7	2	6	9		mg/kg	A-T-024s
Cadmium _D ^{M#}	1.5	0.8	1.0	0.9	0.9		mg/kg	A-T-024s
Copper _D ^{M#}	5	12	9	9	8		mg/kg	A-T-024s
Chromium _D ^{M#}	15	21	31	21	21		mg/kg	A-T-024s
Lead _D ^{M#}	5	25	17	17	16		mg/kg	A-T-024s
Mercury _D	0.96	<0.17	<0.17	<0.17	<0.17		mg/kg	A-T-024s
Nickel _D ^{M#}	14	19	22	19	20		mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1		mg/kg	A-T-024s
Zinc _D ^{M#}	15	42	52	43	32		mg/kg	A-T-024s

Client Project Name: Bicester - Full Site

Lab Sample ID	17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7			
Client Sample No								
Client Sample ID	WS03	WS04	TP06	TP09	TP10			
Depth to Top	0.65	0.30	0.20	0.20	0.50			
Depth To Bottom								
Date Sampled	31-Aug-17	01-Sep-17	12-Sep-17	11-Sep-17	11-Sep-17			J.
Sample Type	Soil - ES			Method ref				
Sample Matrix Code	5A	5A	5E	5AE	5AE		Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A [#]	-	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	-	N/A	N/A	N/A	-			

Client Project Name: Bicester - Full Site

Lab Sample ID	17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7			
Client Sample No								
Client Sample ID	WS03	WS04	TP06	TP09	TP10			
Depth to Top	0.65	0.30	0.20	0.20	0.50			
Depth To Bottom								
Date Sampled	31-Aug-17	01-Sep-17	12-Sep-17	11-Sep-17	11-Sep-17			÷
Sample Type	Soil - ES			Method ref				
Sample Matrix Code	5A	5A	5E	5AE	5AE		Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02		mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	0.16	<0.04	<0.04	<0.04		mg/kg	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	0.15	<0.04	<0.04	<0.04		mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.17	<0.05	<0.05	<0.05		mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.06	<0.05	<0.05	<0.05		mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07		mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	0.16	<0.06	<0.06	<0.06		mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04		mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08	0.17	<0.08	<0.08	<0.08		mg/kg	A-T-019s
Fluorene ^{"M#}	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	0.08	<0.03	<0.03	<0.03		mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03		mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	0.11	<0.03	<0.03	<0.03		mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	0.15	<0.07	<0.07	<0.07		mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	1.19	<0.08	<0.08	<0.08		mg/kg	A-T-019s

Client Project Name: Bicester - Full Site

Lab Sample ID	17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7			
Client Sample No								
Client Sample ID	WS03	WS04	TP06	TP09	TP10			
Depth to Top	0.65	0.30	0.20	0.20	0.50			
Depth To Bottom								
Date Sampled	31-Aug-17	01-Sep-17	12-Sep-17	11-Sep-17	11-Sep-17			÷
Sample Type	Soil - ES			od re				
Sample Matrix Code	5A	5A	5E	5AE	5AE		Units	Method ref
трн сwg								
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1	<0.1		mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01		mg/kg	A-T-022s

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX D LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 17/06800/1

Envirolab Job Number: Issue Number: 17/06800 2-S3

Date: 19 October, 2017

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager:Jack Townsend/Ziaul HoqueProject Name:Middleton Stony Road, BicesterProject Ref:29286Order No:N/ADate Samples Received:05/10/17Date Instructions Received:06/10/17Date Analysis Completed:17/10/17

Prepared by:

Approved by:

Danielle Brierley Client Manager Richard Wong Client Manager

Page 1 of 4

Envirolab Job Number: 17/06800

Client Project Name: Middleton Stony Road, Bicester (Full Site)

			Client Pro	ject Ref: 29	286		
Lab Sample ID	17/06800/1						
Client Sample No							
Client Sample ID	RC4						
Depth to Top	3.00						
Depth To Bottom							
Date Sampled	03-Oct-17						į
Sample Type	Water - EW						Method ref
Sample Matrix Code	N/A					Units	Meth
рН (w) ₄ #	7.07					pН	A-T-031w
Redox Potential (w) _A	219					mV	A-T-048
Dissolved oxygen _A	9.6					mg/l	A-T-048
Arsenic (dissolved) _A [#]	<1					µg/l	A-T-025w
Cadmium (dissolved) _A [#]	<0.2					µg/l	A-T-025w
Copper (dissolved) _A [#]	<1					µg/l	A-T-025w
Chromium (dissolved) _A [#]	9					µg/l	A-T-025w
Lead (dissolved) _A [#]	<1					µg/l	A-T-025w
Mercury (dissolved) _A [#]	<0.1					µg/l	A-T-025w
Nickel (dissolved) _A [#]	<1					µg/l	A-T-025w
Selenium (dissolved) _A [#]	<1					µg/l	A-T-025w
Zinc (dissolved) _A [#]	<1					µg/l	A-T-025w

Envirolab Job Number: 17/06800

Client Project Name: Middleton Stony Road, Bicester (Full Site)

				Client Pro	ject Ref: 29	286		
Lab Sample ID	17/06800/1							
Client Sample No								
Client Sample ID	RC4							
Depth to Top	3.00							
Depth To Bottom								
Date Sampled	03-Oct-17							
Sample Type	Water - EW							od ref
Sample Matrix Code	N/A						Units	Method ref
TPH CWG								
Ali >C5-C6 (w) _A #	<1						µg/l	A-T-022w
Ali >C6-C8 (w) _A [#]	<1						μg/l	A-T-022w
Ali >C8-C10 (w) _A [#]	<1						µg/l	A-T-022w
Ali >C10-C12 (w) _A [#]	<5						µg/l	A-T-023w
Ali >C12-C16 (w) _A [#]	<5						µg/l	A-T-023w
Ali >C16-C21 (w) _A [#]	<5						µg/l	A-T-023w
Ali >C21-C35 (w) _A [#]	<5						µg/l	A-T-023w
Total Aliphatics (w) _A	<5						µg/l	A-T-022+23w
Aro >C5-C7 (w) _A [#]	<1						µg/l	A-T-022w
Aro >C7-C8 (w) _A [#]	<1						µg/l	A-T-022w
Aro >C8-C9 (w) _A [#]	<1						µg/l	A-T-022w
Aro >C9-C10 (w) _A [#]	<1						µg/l	A-T-022w
Aro >C10-C12 (w) _A [#]	<5						µg/l	A-T-023w
Aro >C12-C16 (w) _A [#]	<5						µg/l	A-T-023w
Aro >C16-C21 (w) _A [#]	<5						µg/l	A-T-023w
Aro >C21-C35 (w) _A [#]	<5						µg/l	A-T-023w
Total Aromatics (w) _A	<5						µg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	<5						µg/l	A-T-022+23w
BTEX - Benzene (w) _A [#]	<1						µg/l	A-T-022w
BTEX - Toluene (w) _A [#]	<1						µg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A [#]	<1						µg/l	A-T-022w
BTEX - m & p Xylene (w) _A [#]	<1		1				µg/l	A-T-022w
BTEX - o Xylene (w) _A [#]	<1		1				µg/l	A-T-022w
MTBE (w) _A [#]	<1						µg/l	A-T-022w

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX E HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

• direct soil and dust ingestion

- consumption of home-grown produce
- consumption of soil attached to home-grown produce
- dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are

at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^{(3,6),} the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C₈–C₉ (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5-C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8-C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8-C_9 have been taken from styrene.

Physical parameters

For the residential with home-grown produce scenario, the CLEA default building is a small, twostorey terrace house with a concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn and flowerbeds, incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential with homegrown produce land-use scenario

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Tables 2 and 3 below.

The final selected GAC are presented by pathway in Table 4 and the combined GAC in Table 5.

Figure 1: Conceptual model for residential scenario with home-grown produce

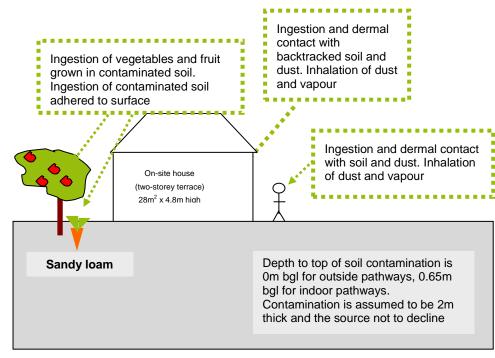


Table 1: Exposure assessment parameters for residential scenario with home-grown produce – inputs for CLEA model

Parameter	Value	Justification				
Land use	Residential with homegrown produce	Chosen land use				
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾				
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3. Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾				
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾				
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the				
End AC (age class)	6	critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾				
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾				
	1	To provide SAC for sites where				
	2.5	SOM <6% as often observed by RSK				
рН	7	Model default				

Name	me Consumption rate 90 th percen FW kg ⁻¹ BW day ⁻¹) by age clas					(g	Dry weight conversion factor (g DW g ⁻¹	Home- grown fraction (average)	Home- grown fraction (high	Soil Ioading factor (g g ⁻¹ DW)	Preparation correction factor	
	1	2	3	4	5	6	FW)	(uverage)	end)			
Green vegetables	7.12	5.87	5.87	5.87	4.53	4.53	0.096	0.05	0.33	1.00E-03	2.00E-01	
Root vegetables	10.7	2.83	2.83	2.83	2.14	2.14	0.103	0.06	0.4	1.00E-03	1.00E+00	
Tuber vegetables	16	6.6	6.6	6.6	4.95	4.95	0.21	0.02	0.13	1.00E-03	1.00E+00	
Herbaceous fruit	1.83	3.39	3.39	3.39	2.24	2.24	0.058	0.06	0.4	1.00E-03	6.00E-01	
Shrub fruit	2.23	0.46	0.46	0.46	0.19	0.19	0.166	0.09	0.6	1.00E-03	6.00E-01	
Tree fruit	3.82	10.3	10.3	10.3	5.16	5.16	0.157	0.04	0.27	1.00E-03	6.00E-01	
Justification	Table	3.4, SF	P1010 ⁽³⁾)			Table 6.3, SR3 ⁽⁵⁾	Table 4.19,	SR3 ⁽⁵⁾	Table 6.3, S	SR3 ⁽⁵⁾	

Table 2: Residential with home-grown produce – modified home-grown produce data

Table 3: Residential with home-grown produce - modified and use and receptor data

Devementer	11	Age clas	ss				
Parameter	Unit	1	2	3	4	5	6
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365
EF (consumption of home- grown produce)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, outdoor)	day yr ⁻¹	170	170	170	170	170	170
EF (inhalation of dust and vapour, indoor)	day yr ⁻¹	365	365	365	365	365	365
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365
Justification		Table 3.	5, SP1010	⁽³⁾ ; Table 3	8.1, SR3 ⁽⁵⁾		
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	0.1	0.1	0.1	0.1	0.1	0.1
Justification		Table 3.	5, SP1010	(3)			
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9/f	10.1	10.1	10.1
Justification		Mean va	lue USEP	A, 2011 ⁽¹²⁾	; Table 3.2	2, SP1010 ⁽	3)
Notes: For cadmium , the exposu						•	

of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-valuessgvs</u> (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report – Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015)

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario

	N	SAC Appropri	iate to Pathway SO	1	Soil Saturation	SAC Appropri	iate to Pathway SOM	l 2.5% (mg/kg)	Soil Saturation	SAC Appropriate to Pathway SOM 6% (mg/kg)		Soil Saturation	
Compound	Notes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Metals					1							-	
Arsenic	(a,b)	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR
Cadmium	(a)	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR
Chromium (III) - trivalent	(c)	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR
Chromium (VI) - hexavalent	(a,d)	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR
Copper		2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR
ead	(a)	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	NR	2.35E-01	NR	4.31E+00	NR	5.60E-01	NR	1.07E+01	NR	1.22E+00	NR	2.58E+01
norganic Mercury (Hg ²⁺)		3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR
Methyl Mercury (Hg4+)		1.26E+01	1.87E+01	7.52E+00	7.33E+01	1.26E+01	3.62E+01	9.34E+00	1.42E+02	1.26E+01	7.68E+01	1.08E+01	3.04E+02
Nickel	(d)	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR
Selenium	(b)	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR
Zinc	(b)	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR
Cyanide (free)		1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR
			•	•				•					
/olatile Organic Compounds													
Benzene	(a)	2.62E-01	9.01E-01	2.03E-01	1.22E+03	5.39E-01	1.68E+00	4.08E-01	2.26E+03	1.16E+00	3.48E+00	8.72E-01	4.71E+03
oluene		1.53E+02	9.08E+02	1.31E+02	8.69E+02	3.49E+02	2.00E+03	2.97E+02	1.92E+03	7.95E+02	4.55E+03	6.77E+02	4.36E+03
Ethylbenzene		1.10E+02	8.34E+01	4.74E+01	5.18E+02	2.61E+02	1.96E+02	1.12E+02	1.22E+03	6.00E+02	4.58E+02	2.60E+02	2.84E+03
(vlene - m		2.10E+02	8.25E+01	5.92E+01	6.25E+02	5.01E+02	1.95E+02	1.40E+02	1.47E+03	1.15E+03	4.56E+02	3.27E+02	3.46E+03
(ylene - n		1.92E+02	8.87E+01	6.07E+01	4.78E+02	4.56E+02	2.08E+02	1.40E+02	1.12E+03	1.05E+03	4.36E+02 4.86E+02	3.32E+02	2.62E+03
(ylene - p		1.98E+02	7.93E+01	5.66E+01	5.76E+02	4.36E+02 4.70E+02	1.86E+02	1.33E+02	1.35E+03	1.03E+03	4.86E+02 4.36E+02	3.10E+02	2.02E+03 3.17E+03
otal xylene		1.92E+02	7.93E+01	5.66E+01	6.25E+02	4.56E+02	1.86E+02	1.33E+02 1.33E+02	1.47E+03	1.08E+03	4.36E+02 4.36E+02	3.10E+02	3.17E+03 3.46E+03
		1.54E+02	1.04E+02	6.22E+01				1.08E+02		6.03E+03	4.36E+02 3.21E+02	2.10E+02	
Methyl tertiary-Butyl ether (MTBE)		1.54E+02 2.83E-01		6.22E+01 1.62E-02	2.04E+04	2.97E+02 6.26E-01	1.69E+02 3.59E-02	1.08E+02 3.40E-02	3.31E+04	1.41E+00	7.98E-02	7.55E-02	6.27E+04
Trichloroethene			1.72E-02		1.54E+03				3.22E+03				7.14E+03
etrachloroethene		4.49E+00	1.79E-01	1.76E-01	4.24E+02	1.04E+01	4.02E-01	3.94E-01	9.51E+02	2.38E+01	9.21E-01	9.04E-01	2.18E+03
1,1,1-Trichloroethane		3.33E+02	9.01E+00	8.77E+00	1.43E+03	7.26E+02	1.84E+01	1.80E+01	2.92E+03	1.62E+03	4.04E+01	3.94E+01	6.39E+03
,1,1,2 Tetrachloroethane		5.39E+00	1.54E+00	1.20E+00	2.60E+03	1.27E+01	3.56E+00	2.78E+00	6.02E+03	2.92E+01	8.29E+00	6.46E+00	1.40E+04
,1,2,2-Tetrachloroethane		2.81E+00	3.92E+00	1.64E+00	2.67E+03	6.10E+00	8.04E+00	3.47E+00	5.46E+03	1.36E+01	1.76E+01	7.67E+00	1.20E+04
Carbon Tetrachloride	_	3.10E+00	2.58E-02	2.57E-02	1.52E+03	7.11E+00	5.65E-02	5.62E-02	3.32E+03	1.62E+01	1.28E-01	1.27E-01	7.54E+03
1,2-Dichloroethane		3.17E-02	9.20E-03	7.13E-03	3.41E+03	5.73E-02	1.33E-02	1.08E-02	4.91E+03	1.09E-01	2.28E-02	1.88E-02	8.43E+03
/inyl Chloride		3.82E-03	7.73E-04	6.43E-04	1.36E+03	6.87E-03	1.00E-03	8.73E-04	1.76E+03	1.25E-02	1.53E-03	1.36E-03	2.69E+03
1,2,4-Trimethylbenzene		NR	1.76E+00	NR	4.74E+02	NR	4.26E+00	NR	1.16E+03	NR	9.72E+00	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
Semi-Volatile Organic Compounds													
Acenaphthene		2.27E+02	4.86E+04	2.26E+02	5.70E+01	5.41E+02	1.18E+05	5.38E+02	1.41E+02	1.18E+03	2.68E+05	1.17E+03	3.36E+02
Acenaphthylene		1.85E+02	4.59E+04	1.84E+02	8.61E+01	4.42E+02	1.11E+05	4.40E+02	2.12E+02	9.78E+02	2.53E+05	9.74E+02	5.06E+02
Anthracene		2.43E+03	1.53E+05	2.39E+03	1.17E+00	5.53E+03	3.77E+05	5.45E+03	2.91E+00	1.10E+04	8.76E+05	1.09E+04	6.96E+00
Benzo(a)anthracene		1.01E+01	2.47E+01	7.18E+00	1.71E+00	1.42E+01	4.37E+01	1.07E+01	4.28E+00	1.69E+01	6.26E+01	1.33E+01	1.03E+01
Benzo(a)pyrene	(a)	4.96E+00	3.51E+01	NR	9.11E-01	4.96E+00	3.77E+01	NR	2.28E+00	4.96E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		2.96E+00	1.93E+01	2.56E+00	1.22E+00	3.89E+00	2.13E+01	3.29E+00	3.04E+00	4.43E+00	2.22E+01	3.69E+00	7.29E+00
Benzo(g,h,i)perylene		3.77E+02	1.87E+03	3.14E+02	1.54E-02	4.09E+02	1.94E+03	3.38E+02	3.85E-02	4.23E+02	1.97E+03	3.48E+02	9.23E-02
Benzo(k)fluoranthene		8.92E+01	5.41E+02	7.66E+01	6.87E-01	1.10E+02	5.76E+02	9.22E+01	1.72E+00	1.21E+02	5.91E+02	1.00E+02	4.12E+00
Chrysene		1.66E+01	1.19E+02	1.46E+01	4.40E-01	2.54E+01	1.49E+02	2.17E+01	1.10E+00	3.19E+01	1.66E+02	2.67E+01	2.64E+00
ibenzo(a,h)anthracene		2.90E-01	1.45E+00	2.41E-01	3.93E-03	3.43E-01	1.64E+00	2.84E-01	9.82E-03	3.69E-01	1.74E+00	3.04E-01	2.36E-02
luoranthene		2.87E+02	3.83E+04	2.85E+02	1.89E+01	5.63E+02	8.87E+04	5.60E+02	4.73E+01	9.00E+02	1.83E+05	8.96E+02	1.13E+02
luorene		1.77E+02	6.20E+03	1.72E+02	3.09E+01	4.19E+02	1.53E+04	4.07E+02	7.65E+01	8.98E+02	3.62E+04	8.77E+02	1.83E+02
ndeno(1,2,3-cd)pyrene		3.09E+01	2.12E+02	2.70E+01	6.13E-02	4.22E+01	2.38E+02	3.59E+01	1.53E-01	4.92E+01	2.50E+02	4.11E+01	3.68E-01
		2.78E+01	2.33E+02	1.27E+01	7.64E+01	6.66E+01	5.58E+02	3.04E+01	1.83E+02	4.92E+01 1.53E+02	1.31E+02	4.11E+01 7.06E+01	4.32E+02
Vaphthalene			7.17E+03	9.72E+01		2.24E+02		2.22E+02					
Phenanthrene		9.85E+01 6.25E+02	7.17E+03 8.79E+04	9.72E+01 6.20E+02	3.60E+01		1.76E+04		8.96E+01	4.48E+02	4.07E+04	4.43E+02	2.14E+02
yrene	1	0.200+02	0./90+04	0.200+02	2.20E+00	1.25E+03	2.04E+05	1.24E+03	5.49E+00	2.05E+03	4.23E+05	2.04E+03	1.32E+01

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Table 4

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario

	Not	SAC Appropri	SAC Appropriate to Pathway SOM 1% (mg/kg)			SAC Appropriate to Pathway SOM 2.5% (mg/kg)			Soil Saturation	SAC Appropriate to Pathway SOM 6% (mg/kg)			Soil Saturation
Compound	les	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)

Total	Petroleum	Hydrocarbons

Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons EC5-EC6		4.99E+03	4.24E+01	4.23E+01	3.04E+02	1.13E+04	7.79E+01	7.78E+01	5.58E+02	2.50E+04	1.61E+02	1.60E+02	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		1.49E+04	1.04E+02	1.03E+02	1.44E+02	3.43E+04	2.31E+02	2.31E+02	3.22E+02	7.11E+04	5.29E+02	5.28E+02	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		1.61E+03	2.68E+01	2.67E+01	7.77E+01	2.91E+03	6.55E+01	6.51E+01	1.90E+02	4.26E+03	1.56E+02	1.54E+02	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		4.57E+03	1.33E+02	1.32E+02	4.75E+01	5.51E+03	3.31E+02	3.26E+02	1.18E+02	5.98E+03	7.93E+02	7.65E+02	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		6.27E+03	1.11E+03	1.06E+03	2.37E+01	6.34E+03	2.78E+03	2.41E+03	5.91E+01	6.36E+03	6.67E+03	4.34E+03	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC9 (styre	ene)	1.08E+01	5.22E+02	1.06E+01	6.26E+02	2.53E+01	1.20E+03	2.48E+01	1.44E+03	5.81E+01	2.79E+03	5.69E+01	3.35E+03
Aromatic hydrocarbons >EC9-EC10		5.76E+01	4.74E+01	3.45E+01	6.13E+02	1.38E+02	1.16E+02	8.38E+01	1.50E+03	3.07E+02	2.77E+02	1.94E+02	3.58E+02
Aromatic hydrocarbons >EC10-EC12		8.29E+01	2.58E+02	7.52E+01	3.64E+02	1.96E+02	6.39E+02	1.79E+02	8.99E+02	4.25E+02	1.52E+03	3.91E+02	2.15E+03
Aromatic hydrocarbons >EC12-EC16		1.47E+02	2.85E+03	1.45E+02	1.69E+02	3.36E+02	7.07E+03	3.32E+02	4.19E+02	6.81E+02	1.68E+04	6.74E+02	1.00E+03
Aromatic hydrocarbons >EC16-EC21	(b)	2.63E+02	NR	NR	5.37E+01	5.45E+02	NR	NR	1.34E+02	9.34E+02	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene. (c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Residential with home-grown produce

Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals			
Arsenic	37	37	37
Cadmium	22	22	22
Chromium (III) - trivalent	910	910	910
Chromium (VI) - hexavalent	21	21	21
Copper Lead	2,500 200	2,500 200	2,500 200
Elemental Mercury (Hg ⁰)	0.2	0.6	1.2
norganic Mercury (Hg ²⁺)	39	39	39
Methyl Mercury (Hg ⁴⁺)	10	10	10
Nickel	130	130	130
Selenium	258	258	258
Zinc	3,900	3,900	3,900
Cyanide (free)	1.4	1.4	1.4
/olatile Organic Compounds			
Benzene	0.20	0.41	0.87
Foluene	130	300	680
Ethylbenzene Kylene - m	<u> </u>	110 140	260 327
Kylene - o	61	140	332
Kylene - p	57	133	310
Fotal xylene	57	133	310
Methyl tertiary-Butyl ether (MTBE)	60	110	210
Frichloroethene	0.02	0.03	0.08
Fetrachloroethene	0.2	0.4	0.9
,1,1-Trichloroethane	9	18	39
,1,1,2 Tetrachloroethane	1.2	2.8	6.5
,1,2,2-Tetrachloroethane	1.6	3.5	7.7
Carbon Tetrachloride ,2-Dichloroethane	0.026	0.056 0.011	0.127 0.019
/inyl Chloride	0.0006	0.0009	0.0019
,2,4-Trimethylbenzene	1.8	4.3	9.7
,3,5-Trimethylbenzene	NR	NR	NR
· · · · ·			
Semi-Volatile Organic Compounds	230	540	1,170
Acenaphthylene	180	440	970
Anthracene	2,400	5,500	10,900
Benzo(a)anthracene	7	11	13
Benzo(a)pyrene	5	5	5
Benzo(b)fluoranthene	2.6	3.3	3.7
Benzo(g,h,i)perylene	310	340	350
Benzo(k)fluoranthene	77	92	100
Chrysene	15 0.24	22 0.28	27 0.30
Dibenzo(a,h)anthracene	290	560	900
luorene	170	410	880
ndeno(1,2,3-cd)pyrene	27	36	41
laphthalene	13	30	71
Phenanthrene	100	220	440
2yrene	620	1,240	2,040
henol	120	210	390
otal Petroleum Hydrocarbons			
Aliphatic hydrocarbons EC ₅ -EC ₆	42	78	160
liphatic hydrocarbons >EC ₆ -EC ₈	100	230	530
liphatic hydrocarbons >EC8-EC10	27	65	154
liphatic hydrocarbons >EC10-EC12	130 (48)	330 (118)	760 (283)
liphatic hydrocarbons >EC12-EC16	1,100 (24)	2,400 (59)	4,300 (142)
liphatic hydrocarbons >EC16-EC35	65,000 (8)	92,000 (21)	110,000
liphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	110,000
aromatic hydrocarbons > EC_8 - EC_9 (styrene)	11	25	57
aromatic hydrocarbons >EC ₉ -EC ₁₀	30	80	190
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	80	180	390
Aromatic hydrocarbons >EC12-EC16	140	330	670
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	260	540	930
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	1,100	1,500	1,700
aromatic hydrocarbons >EC ₃₅ -EC ₄₄	1,100	1,500	1,700
/ inerals			
	No asbestos detected with ID	or <0.001% dry weight ¹	
otes: Generic assessment criteria not calculated owing to low R - SAC for 1,3,5-trimethylbenzene is not recorded owin C - equivalent carbon. SAC - soil assessment criteria.			
LOD for weight of asbestos per unit weight of soil calcule he SAC for organic compounds are dependent on Soil C 1% SOM is 0.58% TOC. DL Rowell Soil Science: Met	Organic Matter (SOM) (%) content. To	obtain SOM from total organic carbon (TOC) (%) divide by 0.58.
AC for TPH fractions, PAHs napthalene, acenaphthene air inhalation pathway of 10 to reduce conservatism a (VALUE IN BRACKETS)			using an attenuation factor for th

(VALUE IN BHACKE IS) BSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

APPENDIX F GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as ammended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "*prevent harmful effects on soil, vegetation, animals and man*". To this end, it prohibits the use of <u>untreated sludge</u> on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were ammended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Determinant	Generic assessment criteria (mg/kg)								
Dotorninant	рН 5.0 < 5.5	рН 5.5 < 6.0	рН 6.0 < 7.0	рН >7.0					
Zinc	200	200	200	300					
Copper	80	100	135	200					
Nickel	50	60	75	110					
Lead	300	300	300	300					
Cadmium	3	3	3	3					
Mercury	1	1	1	1					

Table 1: Generic assessment criteria

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX G GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Protection of the water environment

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past.

The term 'controlled waters' refers to coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater and surface water protection as well as drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out within "The Environment Agency's approach to groundwater protection", version 1.0 (March 2017)⁽¹⁾ and the associated guidance "Land contamination groundwater compliance points: quantitative risk assessments (March 2017)^(1a) that have replaced the previous guidance document "Groundwater Principles and Practice (GP3)". When assessing risks to groundwater, the following need to be considered:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - *limit* the entry of other (non-hazardous) pollutants into groundwater to avoid pollution, deterioration in the status of groundwater bodies and to prevent sustained, upward trends in pollutant concentrations in groundwater.
- Where pollutants have already entered groundwater, the priority is to take all necessary and reasonable measures to:
 - *minimise* further entry of "contaminants" where there is a defined source
 - *limit the pollution* of groundwater or any effect on the status of the groundwater body from the future expansion of the 'plume', if necessary, by actively reducing its extent.

Within the context of groundwater risk assessments on sites affected by land contamination, "reasonable" means feasible without involving disproportionate costs. What costs are "disproportionate" depends on site-specific circumstances, which may include:

- Considerations of technical feasibility such as identified by the remedial options appraisal, this may be due to the distribution or nature of the contamination and the available remedial methods to treat the identified contamination;
- Sustainability considerations.

DEFINITIONS AND SUBSTANCE CLASSIFICATIONS

Risks to surface waters:

When assessing risks to surface waters, the following list of definitions should be understood:

Priority substances (PS) are harmful substances originally identified under the Water Framework Directive (WFD) 2000/60/EC as substances 'presenting a significant risk to or via the aquatic environment' at a European level. Member States are required to incorporate the identified **PS** into their country-wide monitoring programmes. There are currently 33 **PS** defined within the Priority Substances Directive (2013/39/EU; Annex 1), with a further 12 additional substances due to come into force from 22 December 2018. Directive 2013/39/EU has been transposed into domestic legislation for England and Wales by The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Under the umbrella of **PS**, there is a sub-set of substances identified as being "hazardous", and these are referred to as **Priority hazardous substances (PHS).** The list of **PHS** is defined at EU level within the Priority Substances Directive (2013/39/EU). The WFD defines hazardous substances as 'substances (or groups of substances) that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' There are currently 15 **PHS**, with a further 6 additional substances due to come into force from 22 December 2018.

There is also another group of substances defined at EU level and which are referred to as **other pollutants (OP)** in Directive 2013/39/EU. These are additional substances which although not **priority substances**, have EQS which are identical to those laid down in the legislation which applied prior to 13 January 2009 (Directive 2008/105/EU). The **OP** are listed along with the **priority substance (PS)** within the Priority Substances Directive (2013/39/EU), and their associated EQS are also listed therein. There are 6 **OP** defined within the Priority Substances Directive (2013/39/EU).

In addition to the EU level substances, there are also a group of pollutants defined at a Member State level, referred to as **Specific pollutants (SP)**. These substances are pollutants which are released in significant quantities into water bodies in each of the individual European Member States. Under the WFD, Member States are required to set their own EQS for these substances. An indicative list of **SP** is given in Annex VIII of the WFD. Many of the substances categorised as **SP** in the UK were formerly List 2 substances under the old Groundwater Directive (80/68/EEC). The **SP** are defined within Part 2 (Table 1) of The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Risks to groundwater:

When assessing risks to groundwater, the following definitions should be understood:

Under the requirements of the Groundwater Daughter Directive (2006/118/EU), the UK has published a list of substances it considers to be **hazardous substances** with respect to groundwater. In their advisory capacity to the government, this list has been derived by the UK Joint Agencies Groundwater Directive Advisory Group (JAGDAG), of which the Environment Agency is a member. The JAGDAG list of **hazardous substances** was published in January 2017 and the Environment Agency will use the updated list of hazardous substances from this date for all new activities that may lead to the discharge of hazardous substances to groundwater. The list is extensive and can be found in full at:

https://www.wfduk.org/sites/default/files/Media/170116%20Substance%20Determinationsfinal .pdf

Selecting the appropriate assessment criteria

When assessing the risks to controlled waters, various assessment criteria apply, depending on the nature of the assessment and the conceptual site model.

Where a surface water body is involved, then Environmental Quality Standards (EQS) are the relevant assessment criteria as they are designed to be protective of surface water ecology.

Where a public water supply or a Principal aquifer is involved, then the standards defined in The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source of assessment criteria. The Private Water Supplies Regulations⁽³⁾ may also be applicable in some cases. For instances where there are no UK assessment criteria, then the World Health Organisation (WHO) drinking water guidelines⁽⁴⁾ may be used.

This appendix presents the generic assessment criteria (GAC) that RSK considers suitable for assessing risks to controlled waters for our most commonly encountered determinants. A full list of EQS for England and Wales are included in The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

The RSK GAC for controlled waters are presented in **Table 1** and **Table 2**. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The appropriate target concentrations should be selected with consideration to:

- the site conceptual model (i.e. the receptor at potential risk);
- whether the substance is already present in groundwater at the site;
- whether or not the substance is classified as a priority hazardous substance under the Priority Substances Directive (2013/39/EC) (see above), or as a hazardous substance according to the current list of JAGDAG determinations⁽⁵⁾; and
- background concentrations in the aquifer (if applicable).

It is important to remember that the WFD and Environment Agency guidance^(1 & 1a) support a sustainable, risk-based approach be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is inevitably required.

Target concentrations shaded in green	Target concentrations shaded in orange
are statutory values	are <u>non-statutory values</u>

Note: Units µg/l throughout (unless otherwise stated)

Table 1: Target concentrations for controlled waters (excluding TPH CWG fractions)

Substanc	e classification			Target conce	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
		Metal	s & other inorg	janics		
Hazardous substance	Specific pollutant	Arsenic	-	10 ⁽²⁾	50 ^(6a)	25 ^(6a)
Non-hazardous pollutant	Priority substance	Cadmium	0.1 ⁽⁷⁾	5 ⁽²⁾	≤0.08, 0.08, 0.09, 0.15, 0.25 ^(6b)	0.2 ^(6a)
(Not determined)	-	Chromium (total)	-	50 ⁽²⁾	Sum values for chro	omium III and VI
(None	Specific pollutant	Chromium (III)	-	Use value for total chromium	4.7 ^(6a)	-
Hazardous substance	Specific pollutant	Chromium (VI)			3.4 ^(6a)	0.6 ^(6a)

Substanc	e classification			Target conc	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	or drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
						3.76 dissolved, where DOC ≤1mg/l ^(6a)
(Not determined)	Specific pollutant	Copper	-	2,000 ⁽²⁾	1 bioavailable ^(6a)	3.76µg/l + (2.677µg/l x ((DOC/2) – 0.5µg/l)) dissolved, where DOC >1mg/l ^(6a)
Hazardous substance	Priority substance	Lead	-	10 ⁽²⁾	1.2 bioavailable ^(6a)	1.3 ^(6a)
Hazardous substance	Priority hazardous substance	Mercury	0.01 ⁽⁷⁾	1 ⁽²⁾	0.07 ^(6c)	0.07 ^(6c)
Non-hazardous pollutant	Priority substance	Nickel	-	20 ⁽²⁾	4.0 bioavailable ^(6a)	8.6 ^(6a)
Non-hazardous pollutant	-	Selenium	-	10 ⁽²⁾	-	-
Non-hazardous pollutant	Specific pollutant	Zinc	-	3,000 ⁽⁸⁾	10.9 bioavailable ^(6a)	6.8 dissolved ^(6a)
None	Specific pollutant	Iron	-	200 ⁽²⁾	1000 ^{(6a)*1}	1000 ^{(6a))*1}
None	Specific pollutant	Manganese	-	50 ⁽²⁾ (0.05mg/l)	123 bioavailable ^(6a) (0.123mg/l)	-
(Not determined)	-	Aluminium	-	200 ⁽²⁾	-	-

Substanc	e classification			Target conce	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Priority hazardous substance	Tributyltin compounds (Tributyltin-cation)	0.001 ⁽⁷⁾	-	0.0002 ^(6a)	0.0002 ^(6a)
(Not determined)	-	Sodium	-	200,000 ⁽²⁾ (200 mg/l)	-	-
Non-hazardous pollutant	Specific pollutant	Cyanide (Hydrogen cyanide)	-	50 ⁽²⁾ (0.05 mg/l)	1 ^(6a) (0.001 mg/l)	1 ^(6a) (0.001 mg/l)
Non-hazardous pollutant	-	Total ammonia ^{\$} (ammonium (as NH_4^+) plus ammonia (NH_3)	-	500 ⁽²⁾ (0.5 mg/l)	300 ^(6f) (0.3 mg/l)	-
Non-hazardous pollutant	Specific pollutant	Ammonia un-ionised (NH ₃)	-	-	-	21 ^(6a) (0.021 mg/l)
Non-hazardous pollutant	Specific pollutant	Chlorine	-	-	2 ^(6a) (0.002 mg/l)	10 ^(6d) (0.01 mg/l)
(Not determined)	-	Chloride	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Sulphate	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Nitrate (as NO ₃)	-	50,000 ⁽²⁾ (50 mg/l)	-	-
(Not determined)	-	Nitrite (as NO ₂)	-	500 ⁽²⁾ (0.5 mg/l)	10 ⁽⁹⁾ (0.01 mg/l)	-
		Volatile or	ganic compou	nds (VOC)		

Substance classification			Target concentrations (µg/I)			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent	
					Freshwater	Transitional (estuaries) and coastal waters
Non-hazardous pollutant	Other pollutant	Tetrachloroethene (tetrachloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	Other pollutant	Trichloroethene (trichloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
None	Specific pollutant	Tetrachloroethane	-	-	140 ^(6a)	-
Hazardous substance	Other pollutant	Carbon tetrachloride (tetrachloromethane)	0.1 ⁽⁷⁾	3.0 ⁽²⁾	12 ^(6a)	12 ^(6a)
Non-hazardous pollutant	Priority substance	1,2-Dichloroethane	1.0 ⁽⁷⁾	3.0 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	-	Vinyl chloride (chloroethene)	-	0.5 ⁽²⁾	-	-
Non-hazardous pollutant	Priority substance	Dichloromethane	-	20 ⁽⁴⁾	20 ^(6a)	20 ^(6a)
Non-hazardous pollutant	Priority substance	Trichlorobenzenes	0.01 ⁽⁷⁾	-	0.4 ^(6a)	0.4 ^{((6a)}
(Not determined)	-	Trihalomethanes	-	100 ^(2a)	-	-
Hazardous substance	Priority substance	Trichloromethane (Chloroform)	0.1 ⁽⁷⁾	(see "Trihalomethanes"above)	2.5 ^(6a)	2.5 ^(6a)
Non-hazardous pollutant	Priority hazardous substance	Di(2-ethylhexyl) phthalate (bis(2-ethylhexyl) phthalate, DEHP)	-	8 ⁽⁴⁾	1.3 ^(6a)	1.3 ^(6a)

Substance classification			Target concentrations (µg/I)						
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent				
					Freshwater	Transitional (estuaries) and coastal waters			
None	Specific pollutant	Benzyl butyl phthalate	-	-	7.5 ^(6a)	0.75 ^(6e)			
Hazardous substance	Priority hazardous substance	Hexachlorobutadiene	0.005 ⁽⁷⁾	0.6 ⁽⁴⁾	0.6 ^(6c)	0.6 ^(6c)			
	Semi-volatile organic compounds (SVOC)								
(Not determined)	-	Acenaphthylene (C12-C16)	-	-	5.8 ⁽¹⁰⁾				
Hazardous substance	Priority hazardous substance	Anthracene (C16-C35)	-	-	0.1 ^(6a)	0.1 ^(6a)			
Non-hazardous pollutant	Priority substance	Naphthalene (C10-C12)	-	-	2 ^(6a)	2 ^(6a)			
Hazardous substance	Priority substance	Fluoranthene (C16-C35)	-	-	0.0063 ^(6a)	0.0063 ^(6a)			
Hazardous substance(s)	Priority hazardous substance(s)	Benzo(a)pyrene (C16-C35)	-	0.01 ⁽²⁾	0.00017 ^(6a)	0.00017 ^(6a)			
		Benzo(b)fluoranthene (C16-C35)	-	0.1 ⁽²⁾ sum of the concentration of the	No EQS for these substances. B(a)P should be used as the indicator				
		Benzo(k)fluoranthene (C16-C35)	-	four specified compounds compound ins					

Substanc	e classification			Target conc	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
		Benzo(g,h,i)perylene (C16-C35)	-			•
		Indeno(1,2,3-cd) pyrene (C16-C35)	-			
Non-hazardous pollutant	Specific pollutant	Phenol		-	7.7 ^(6a)	7.7 ^(6a)
Hazardous substance	Specific pollutant	2,4-Dichlorophenol	0.1 ⁽⁷⁾	-	4.2 ^(6a)	0.42 ^(6a)
Hazardous substance	Priority substance	Pentachloro-phenol (PCP)	0.1 ⁽⁷⁾	9 ⁽⁴⁾	0.4 ^(6a)	0.4 ^(6a)
		Petro	eleum hydroca	rbons		
Hazardous substance	-	Total petroleum hydrocarbons	-	See Table 2 for individual (non-statutory) TPH CWG fractions with respect to drinking water receptors	See individual risk driving compounds (i.e. BTE and PAH) for specific EQS	
Hazardous substance	Priority substance	Benzene	1 ⁽⁷⁾	1 ⁽²⁾	10 ^(6a)	8 ^(6a)
Hazardous substance	Specific pollutant	Toluene	4 ⁽⁷⁾	700 ⁽⁴⁾	74 ^(6a)	74 ^(6a)
Hazardous substance	-	Ethylbenzene	-	300 ⁽⁴⁾	-	-
(Not determined)	-	Xylenes	3 ⁽⁷⁾	500 ⁽⁴⁾	30 ⁽¹¹⁾	-

Substance	e classification			Target concentrations (µg/I)						
			Minimum	UK drinking water	EQS or best	equivalent				
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters				
Non-hazardous pollutant	-	Methyl tertiary butyl ether (MTBE)	-	15 ⁽¹²⁾	-					
		Pesticides, fungic	ides, insecticio	des and herbicides						
	Other pollutant (Cyclodiene pesticides)	Aldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾						
Hazardous		Dieldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾	0.01 ^(6a)	0.005 ^(6a)				
substance(s)		Endrin	0.003 ⁽⁷⁾	0.1 ^(2b)	0.01	0.005				
		Isodrin*2	0.003 ⁽⁷⁾	0.1 ^(2b)						
Hazardous substance	Other pollutant	DDT (total)	0.002 ⁽⁷⁾	1 ⁽⁴⁾	0.025 ^(6a)	0.025 ^(6a)				
(Not determined) – assume to be Hazardous Substance	-	Total pesticides	-	0.5 ⁽²⁾	-	-				
(Not determined) - assume to be Hazardous Substance	-	Other individual pesticides	-	0.1 ⁽²⁾						

Substand	ce classification			Target conc	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Specific pollutant	Carbendazim	-	-	0.15 ^(6a)	-
Hazardous substance	Specific pollutant	Chlorothalonil	-	-	0.035 ^(6a)	-
Hazardous substance	Specific pollutant (until 22/12/18, after which it becomes a Priority substance)	Cypermethrin	-	-	0.0001 ^(6a) From 22/12/18: 8.0E-5 ^(6a)	0.0001 ^(6a) From 22/12/18: 8.0E-6 ^(6a)
Hazardous substance	Specific pollutant	Dimethoate	0.01 ⁽⁷⁾	-	0.48 ^(6a)	0.48 ^(6a)
(Not determined)	Specific pollutant	Glyphosate	-	-	196 ^(6a)	196 ^(6a)
Hazardous substance	Specific pollutant	Linuron		-	0.5 ^(6a)	0.5 ^(6a)
Non- hazardous pollutant	Specific pollutant	Mecoprop	0.04 ⁽⁷⁾	-	18 ^(6a)	18 ^(6a)
Non- hazardous pollutant	Specific pollutant	Methiocarb	-	-	0.01 ^(6a)	-
Non- hazardous pollutant	Specific pollutant	Pendimethalin	-	20 ⁽⁴⁾	0.3 ^(6a)	-

Substand	ce classification			Target conce	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Specific pollutant	Permethrin	0.001 ⁽⁷⁾	-	0.001 ^(6a)	0.0002 ^(6a)
Hazardous substance	Priority substance	Alachlor	-	20 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)
Hazardous substance	Priority substance	Atrazine	0.03 ⁽⁷⁾	100 ⁽⁴⁾	0.6 ^(6a)	0.6 ^(6a)
Hazardous substance	Priority substance	Diuron	-	-	0.2 ^(6a)	0.2 ^(6a)
Hazardous substance	Priority hazardous substance	Endosulphan	0.005 ⁽⁷⁾	-	0.005 ^(6a)	0.0005 ^(6a)
Non- hazardous pollutant	Priority substance	Isoproturon	-	9 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)
Hazardous substance	Priority substance	Simazine	0.03 ⁽⁷⁾	2 ⁽⁴⁾	1 ^(6a)	1 ^(6a)
Hazardous substance	Priority hazardous substance	Trifluralin	0.01 ⁽⁷⁾	20 ⁽⁴⁾	0.03 ^(6a)	0.03 ^(6a)
(Not determined)	From 22/12/18: Priority substance	Dichlorovos	-	-	From 22/12/18: 6.0E-4 ^(6a)	From 22/12/18: 6.0E-5 ^(6a)
Hazardous substance	From 22/12/18: Priority substance	Heptachlor and heptachlor epoxide	-	0.03 ⁽²⁾	From 22/12/18: 2.0E-7 ^(6a)	From 22/12/18: 1.0E-08 ^(6a)
		·	Miscellaneous	5		

Substand	ce classification		Target concentrations (µg/I)						
			Minimum	UK drinking water	EQS or best equivalent				
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters			
None	Specific pollutant	Triclosan (antibacterial agent)	-	-	0.1 ^(6a)	0.1 ^(6a)			
Hazardous substance	From 22/12/18: Priority hazardous substance	Perfluoro-octane sulfonic acid (and its derivatives) (PFOS)	-	-	From 22/12/18: 6.5E-4 ^(6a)	From 22/12/18: 1.3E-4 ^(6a)			
Hazardous substance	From 22/12/18: Priority hazardous substance	Hexabromo cyclododecane (HBCDD)	-	-	From 22/12/18: 0.0016 ^(6a)	From 22/12/18: 0.0016 ^(6a)			

Notes:

'-' A target concentration is not available.

^{\$}Please note that total ammonia (NH₄⁺ and NH₃) is equivalent to ammoniacal nitrogen in laboratory reports

*¹ Please note that although iron is listed in the 2015 Direction as 1.000 μg/l, the EQS remains at 1mg/l in Scotland and it is assumed this is an error and should read either 1,000 or 1000μg/l.

*² Please note that although Isodrin is not listed in name within the group of "Cyclodiene pesticides" in Table 1 of Schedule 3 Part 3 of the 2015 Direction⁽⁶⁾, the CAS number for Isodrin (465-73-6) **is** listed and therefore it is assumed that it has been missed off the named list of substances.

*³ Total petroleum hydrocarbons is used for consistency, but is an analytical method-defined measurement for a mixture of hydrocarbons subject to environmental analysis¹¹.

"Bioavailable" in relation to copper, zinc, nickel and manganese (but not lead) is the generic EQSbioavailable^(6a) derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC_{dissolved}. http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat.

For zinc, if there is an exceedance of the EQSbioavailable in an initial GQRA, Tier 2 required that the EQS for zinc should also have the ambient background concentration of zinc added as well

Table 2: World Health Organization (WHO) guide values for TPH CWG fractions in drinking water⁽¹³⁾ (as referenced in CL:AIRE, 2017⁽¹¹⁾)

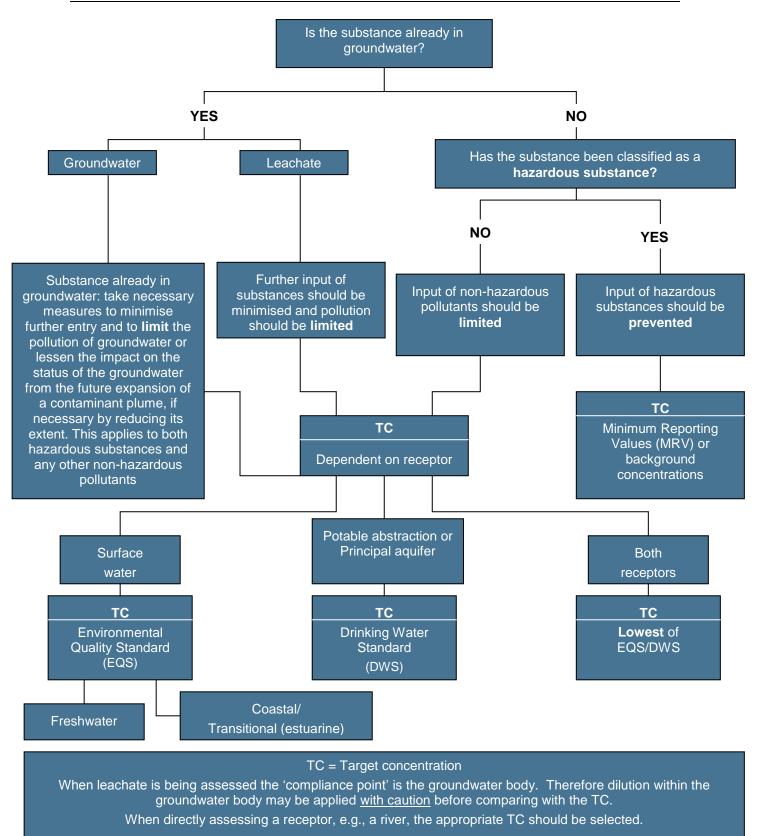
TPH CWG fraction	WHO guide value for drinking water ⁽¹³⁾ (µg/l)							
Aliphatic fractions:								
Aliphatic EC5-EC6	15,000							
Aliphatic >EC6-EC8	15,000							
Aliphatic >EC8-EC10	300							
Aliphatic >EC10-EC12	300							
Aliphatic >EC12-EC16	300							
Aliphatic >EC16-EC21	-							
Aliphatic >EC21-EC35	-							
Aromatic fractions:								
Aromatic EC5-EC6	10 (benzene)							
Aromatic >EC6-EC8	700 (toluene)							
Aromatic >EC8-EC10	300 (ethyl benzene)							
	500 (xylenes)							
Aromatic >EC10-EC12	90							
Aromatic >EC12-EC16	90							
Aromatic >EC16-EC21	90							
Aromatic >EC21-EC35	90							
Reference: World Health Organisation (WHO), 2008. Petroleum products in drinking- water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva ⁽¹³⁾ .								

References

- Environment Agency (2017), 'The Environment Agency's approach to groundwater protection', version 1.0, March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- Environment Agency (2017), 'Land contamination groundwater compliance points: quantitative risk assessments', March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- 2. The Water Supply (Water Quality) Regulations 2016 (SI 2016/619)
 - 2a. Sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane
 - 2b. Standard applies to individual pesticides except aldrin, dieldrin, heptachlor and heptachlor epoxide, for which a separate standard is defined.
- 3. The Private Water Supplies (England) Regulations 2016. SI 2016 / 618
- 4. WHO (2011), Guidelines for drinking-water quality, 4th edn
- 5. JAGDAG hazard substance determinations: This list contains substances that are determined to be hazardous substances or non-hazardous pollutants for the purposes of the groundwater directive 2006/118/EC. The absence of an assessment or substance from the list means an assessment has not been done yet and is presented as 'Not yet determined'; if a substance has been assessed but does not fall into either category it is presented as 'None'. For further details on how substances are assessed, see the Joint Agencies Groundwater Directive Advisory Group (JAGDAG) 'Methodology for the determination of hazardous substances in groundwater for the purposes of the groundwater directive 2006/118/EC' which is available from the JAGDAG website. The methodology is a UK –wide framework that sets criteria for how to assess whether a substance is a hazardous substances in groundwater. The list of substances can be found at:

https://www.wfduk.org/sites/default/files/Media/170116%20Substance%20Determinationsfinal.pdf

- The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
 - 6a. The EQS for these substances are based on a "long term mean" or an "annual average (AA)" EQS.
 - 6b. For cadmium and its compounds the EQS values vary depending on the hardness of the water as specified in five class categories (Class 1: < 40 mg CaCO3/I, Class 2: 40 to < 50 mg CaCO3/I, Class 3: 50 to < 100 mg CaCO3/I, Class 4: 100 to < 200 mg CaCO3/I and Class 5: ≥ 200 mg CaCO3/I).
 - 6c. The EQS for Mercury and hexachlorobutadiene are based on a "maximum acceptable concentration (MAC)" EQS in absence of an "annual average (AA)" EQS.
 - 6d. The EQS for chlorine in saltwater is based on the 95th percentile concentration of total residual oxidant, which refers to the sum of all oxidising agents existing in water, expressed as available chlorine.
 - 6e. The recommended saltwater standard is derived using a safety factor of 100. Where the standard is failed, it is recommended that supporting evidence of ecological damage should be obtained before committing to expensive action.
 - 6f. EQS for total ammonia is as per Schedule 3, Part 1, Table 7 of of the above directions. EQS applies to river types 1, 2 and 4 and 6 (namely upland and low alkalinity). The EQS for a lowland and high alkalinity rivers (types 3, 5 and 7) is 600μg/l (0.6mg/l).



Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat

- 7. Minimum reporting values listed at <u>https://www.gov.uk/government/publications/values-for-groundwater-risk-assessments/hazardous-substances-to-groundwater-minimum-reporting-values</u> (updated 13 January 2017; accessed 29 March 2017). Note target concentration for xylenes is 3 μg/l each for o-xylene and m/p xylene as it may not be possible to separate m- and p-xylene; 135 tcb, 124 tcb, 123 tcb each to 0.01 μg/l)
- The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001
- Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)
- 10. WRc plc (2002), R&D Technical Report P45.
- 11. CL:AIRE, 2017. Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. V1.1.
- 12. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value
- World Health Organisation (WHO), 2008. Petroleum products in drinking-water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva. [accessed 29 March 2017] <u>http://www.who.int/water_sanitation_health/dwq/chemicals/petroleumproducts_2add_june2008.p</u> df

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

APPENDIX H GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

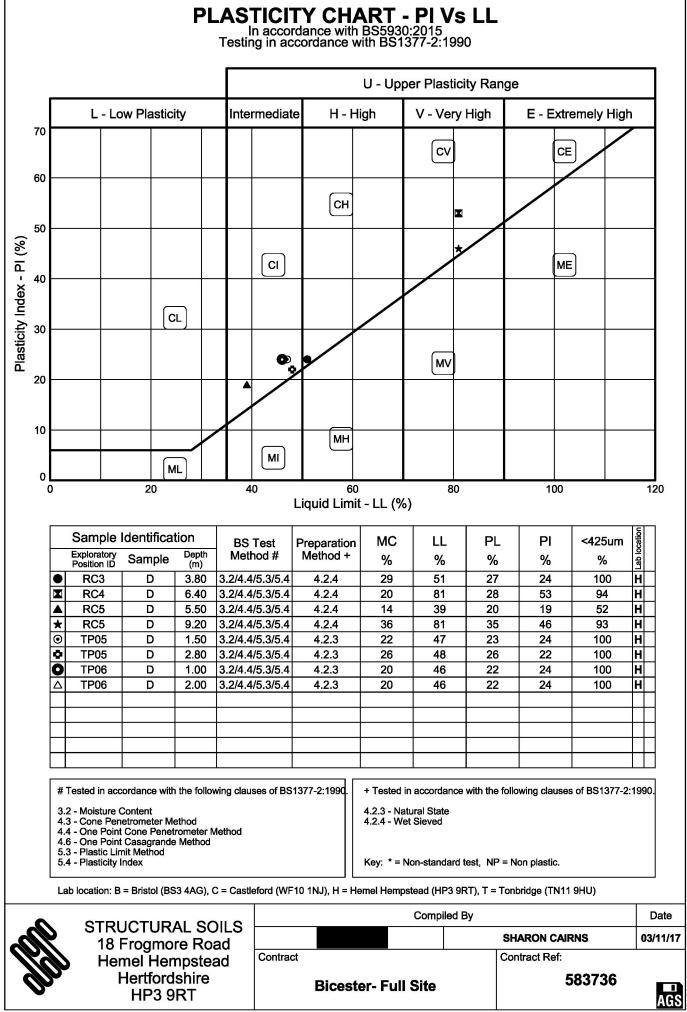
Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75m below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5m below the proposed depth of the pipe.

Countryside Properties (Bicester) Limited

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	• BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 – C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable
	where indicated as 'suitable', the material is considered resistant to perme	eation or degra	adation and


APPENDIX I CERTIFICATES OF GEOTECHNICAL ANALYSIS

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

D D D D D D D D	D	3.80 6.40 5.50	29 20 14	51 81	27 28	24 53	100	Brown mottled grey slightly gravelly CLAY				
D				81	28	53		Brown mottled grey slightly gravelly CLAY				
	D	5.50	14				94	Dark grey mottled light grey slightly gravelly CLAY				
D				39	20	19	52	Grey gravelly CLAY				
	D	9.20	36	81	35	46	93	Dark grey slightly gravelly CLAY				
D	D	1.50	22	47	23	24	100	Grey mottled brown CLAY				
D	D	2.80	26	48	26	22	100	Grey mottled brown CLAY				
D	D	1.00	20	46	22	24	100	Orange mottled grey CLAY				
D	D	2.00	20	46	22	24	100	Grey mottled brown CLAY				
STRUC		RAL		act:					ntract Ref: 583736			
		TRUCTU	D 2.80 D 1.00 D 2.00	D 2.80 26 D 2.80 26 D 1.00 20 D 2.00 20 D 2.00 20 TRUCTURAL Contra	D 2.80 26 48 D 2.80 26 48 D 1.00 20 46 D 2.00 20 46 D 2.00 20 46 D 2.00 20 46 Contract: Contract: Contract:	D 2.80 26 48 26 D 2.80 26 48 26 D 1.00 20 46 22 D 2.00 20 46 22 D 2.00 20 46 22 Contract: Contract: Contract: Contract:	D 2.80 26 48 26 22 D 2.80 26 48 26 22 D 1.00 20 46 22 24 D 2.00 20 46 22 24	D 2.80 26 48 26 22 100 D 2.80 26 48 26 22 100 D 1.00 20 46 22 24 100 D 2.00 20 46 22 24 100	D 2.80 26 48 26 22 100 Grey mottled brown CLAY D 1.00 20 46 22 24 100 Orange mottled grey CLAY D 1.00 20 46 22 24 100 Orange mottled grey CLAY D 2.00 20 46 22 24 100 Grey mottled brown CLAY D 2.00 20 46 22 24 100 Grey mottled brown CLAY D 2.00 20 46 22 24 100 Grey mottled brown CLAY D 2.00 20 46 22 24 100 Grey mottled brown CLAY Image: Contract: Image: Contract: Image: Contract: Image: Contract: Contract:			

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF CLASSIFICATION - A4L : 583736 BICESTER - FULL SITE - RSK 29286.GPJ : 03/11/17 12:25 : SC1 :

DETERMINATION OF POINT LOAD STRENGTH

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	y Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Conten (%)		Lab location
RC3	4.80	D	60	89	12.395	89	1.56	1.30	2.03 (✔)	3.5	LIMESTONE	в
RC3	4.80	A	89	53	8.030	77	1.34	1.22	1.63 (🗸)	3.5	LIMESTONE	в
												+
												+
										-		
I _s (50) Mean Diai I _a (50) Strength A ratio)	al tests = 1.63 MN/m ² metral tests = 2.03 MN/r Anisotropy Index = 1.25 ction Factor (F) calculat	m² (calculated	_			<u>Type of Test</u> _{(NSI} denotes N <u>Point Load Ir</u> Lab location: Tonbridge (T	lon-standard Te <u>)dex column:</u> (✔ B = Bristol (BS3	xial, D = Diam est.) = included in 3 4AG), C = Ca	<u>Key</u> etral, I = Irregula mean calculatior astleford (WF10 1	nr, B = Bloc ns, (x) = ex INJ), H = He	ck, L = Parallel, P = Perpendic xcluded from mean calculations emel Hempstead (HP3 9RT), T	ular, 3 =
A S	TRUCTURAL S	ous	5		Compiled E	Зу			Date	Cor	ntract Ref:	
Ĭ Ma	1a Princess Str					EMY	HOWARD		26.10.17			
<u>Alan</u>	Bedminster Bristol BS3 4AG		Contract:		Bic	ester- Full Si	te				583736	AG

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF POINT LOAD TESTS - A4L : 583736 BICESTER - FULL SITE - RSK 29286.GPJ : 26/10/17 08:26 : EH7 :

DETERMINATION OF POINT LOAD STRENGTH

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorato Position	pry Depth ID (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
RC5	6.20	D	60	89	16.095	89	2.03	1.30	2.63 (✔)	1.7	LIMESTONE	в
RC5	6.20	A	89	56	12.420	80	1.96	1.23	2.41 (✔)	1.7	LIMESTONE	в
(50) Mean D (50) Strength atio)	xial tests = 2.41 MN/m ² iametral tests = 2.63 MN/r n Anisotropy Index = 1.09 rection Factor (F) calculat	m² (calculated				<u>Type of Test</u> _[NS] denotes N <u>Point Load Ir</u> Lab location: Tonbridge (T	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	kial, D = Diam st.) = included in 3 4AG), C = Ca	Key etral, I = Irregula mean calculation astleford (WF10 1	r, B = Block, is, (χ) = exclu NJ), H = Hem	L = Parallel, P = Perpendic ided from mean calculations el Hempstead (HP3 9RT), T	cular, s ſ=
<u>_</u>	STRUCTURAL S	OILS			Compiled E	3y			Date	Contra	act Ref:	
<i>M</i>	1a Princess Str	eet				EMY	HOWARD		26.10.17	,		
flen	Bedminster Bristol BS3 4AG	1	Contract:		Bice	ester- Full Si	te				583736	A

UNCONFINED COMPRESSIVE STRENGTH

RT05 UCS of Rock-Sample Preparation (In-house method based on ASTM D4543-08 and Eurocode 7 Part 2 W.1.1) RT06 UCS of Rock (In-house method based on ISRM 2007, ASTM D4543-08 and Eurocode 7 Part 2 W.1.1)

Borehole: RC3

Sample Ref:

Sample Type: U

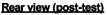
Depth (m): 12.70

Bulk Density (Mg/m³): **2.56** Length (mm): **232.40** Test Duration (mins:secs): **9:37** UCS (MPa): **48.2**

Dry Density (Mg/m³): **2.48** Moistu Diameter (mm): **85.79** Length/E Stress Rate (kN/min): **24** Load a **3.2** Failure Type: **Axial cleavage**

Moisture Content (%): **3.3** Length/Diameter Ratio: **2.71** Load at Failure (kN): **278.4**

Note: **Axis of loading parallel to core axis** Description: **Grey LIMESTONE** Specimen Preparation: **Specimen was not recored.** Sample tolerance checks: Straightness: **PASS**. Flatness: **PASS**. Perpendicularity: **PASS**.


Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

2	STRUCTURAL SOILS			Comp	iled By		Date
9	1a Princess Street					EMY HOWARD	26/10/17
\sim	Bedminster	Contract				Job No	
	Bristol BS3 4AG		Bicester- F	Full Site		583736	AGS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: **Issue Number:**

17/07220 1

Date: 31 October, 2017

Client:

Structural Soils Limited (Hemel Hempstead Lab) **18 Frogmore Road** Hemel Hempstead UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: **Date Samples Received:** Date Instructions Received: **Date Analysis Completed:**

Hemel Lab/Lucy Hopkins Bicester, Full Site 29286 N/A 24/10/17 24/10/17 31/10/17

Prepared by:

Laboratory Coordinator

Approved by:

Client Manager

Envirolab Job Number: 17/07220

Client Project Name: Bicester, Full Site

Client Project Ref: 29286

Lab Sample ID	17/07220/1	17/07220/2	17/07220/3	17/07220/4				
Client Sample No								
Client Sample ID	TP05	TP06	RC4	RC3				
Depth to Top	1.20	2.40	5.40	8.30				
Depth To Bottom								
Date Sampled								ų
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D				Method ref
Sample Matrix Code	5	5	5	6			Units	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1			% w/w	A-T-044
pH BRE _D	8.77	8.76	7.78	9.07			рН	A-T-031s
Sulphate BRE (water sol 2:1) _D ^{M#}	14	<10	634	213			mg/l	A-T-026s
Sulphate BRE (acid sol) _D ^{M#}	0.09	0.08	0.10	0.35			% w/w	A-T-028s
Sulphur BRE (total) _D	0.03	0.05	0.62	0.92			% w/w	A-T-024s
Organic Matter _D	-	-	-	0.6			% w/w	A-T-032 OM

REPORT NOTES

General.

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliguot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones. B = contains construction rubble. C = contains visible hydrocarbons. D = contains glass/metal.

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX J HAZ-WASTE ASSESSMENT

envirolab

Haswaste, developed by Dr. lain Haslock.

29286 Bicester

TP/WS/BH	

TP/WS/BH			W\$03	WS04	TP06	TP09	TP10				
Depth (m)			0.65	0.30	0.20	0.20	0.05				
Envirolab reference			17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7				
	1										
% Moisture	1	%								1	
pH (soil)	Ì		8.26	8.05	7.86	7.99	7.98				
pH (leachate)											
Arsenic	İ	mg/kg	4	7	2	6	9				
Cadmium		mg/kg	1.5	0.8	1.0	0.9	0.9				
Copper		mg/kg	5	12	9	9	8				
CrVI or Chromium Lead		mg/kg mg/kg	15 5	21 25	31 17	21 17	21 16				
Mercury		mg/kg	0.96	0	0.17	0.17	0.17				
Nickel		mg/kg	14	19	19	19	20				
Selenium		mg/kg	1	1	1	1	1				
Zinc		mg/kg	15	42	43	32	32				
Barium		mg/kg									
Beryllium Vanadium		mg/kg mg/kg									
Cobalt		mg/kg									
Manganese		mg/kg									
Molybdenum		mg/kg									
Antimony		mg/kg									
Aluminium Bismuth		mg/kg mg/kg									
CrIII		mg/kg									
Iron	updated v5.4ei	mg/kg									
Strontium		mg/kg									
Tellurium Thallium		mg/kg mg/kg									
Titanium		mg/kg									
Tunasten		mg/kg	ļ								
Ammoniacal N		mg/kg									
ws Boron		mg/kg									
PAH (Input Total PAH OR individu			0.01	0.01	0.01	0.01	0.01			r	· · · · · · ·
Acenaphthene		mg/kg mg/kg	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01				
Acenaphthylene Anthracene		mg/kg	0.02	0.02	0.01	0.02	0.01				
Benzo(a)anthracene		mg/kg	0.04	0.16	0.04	0.04	0.04				
Benzo(a)pyrene		mg/kg	0.04	0.15	0.04	0.04	0.04				
Benzo(b)fluoranthene		mg/kg	0.05	0.17	0.05	0.05	0.05				
Benzo(ghi)perylene		mg/kg	0.05	0.06	0.05	0.05	0.05				
Benzo(k)fluoranthene		mg/kg	0.07	0.07	0.07	0.07	0.07				
Chrysene		mg/kg	0.06	0.16	0.06	0.06	0.06				
Dibenzo(ah)anthracene		mg/kg	0.04 0.08	0.04 0.17	0.04 0.08	0.04 0.08	0.04 0.08				
Fluoranthene Fluorene		mg/kg mg/kg	0.08	0.01	0.08	0.08	0.08				
Indeno(123cd)pyrene		mg/kg	0.03	0.08	0.03	0.03	0.03				
Naphthalene		mg/kg	0.03	0.03	0.03	0.03	0.03				
Phenanthrene		mg/kg	0.03	0.11	0.03	0.03	0.03				
Pyrene		mg/kg	0.07	0.15	0.07	0.07	0.07				
Coronene		mg/kg									
Total PAHs (16 or 17)	1	mg/kg	0.08	0.19	0.08	0.08	0.08				
TPH	1									r	· · · · · ·
Petrol		mg/kg mg/kg									
Diesel Lube Oil		mg/kg									
							ц			• 1	
Crude Oil		mg/kg			1		1			1	
White Spirit / Kerosene		mg/kg						-	-	ł	↓
Creosote Unknown TPH with ID		mg/kg								<u> </u>	<u> </u>
		mg/kg	L				1			1	
Unknown TPHCWG		mg/kg	L		l		I			1	<u> </u>
Total Sulphide Complex Cyanide		mg/kg mg/kg						ļ	<u> </u>		<u> </u>
Free (or Total) Cyanide		mg/kg								<u> </u>	
Thiocyanate		mg/kg									
Elemental/Free Sulphur		mg/kg									
Phenois Input Total Phenois HPL	C OR individual I	Phenol									
results.	1				1		1	-		r	
Phenol Cresols		mg/kg mg/kg									
Cresols Xylenols		mg/kg mg/kg									
Resourcinol		mg/kg									
Phenols Total by HPLC		mg/kg									
BTEX Input Total BTEX OR individ	dual BTEX result	s.									
Benzene		mg/kg	0.01	0.01	0.01	0.01	0.01				
Toluene		mg/kg	0.01	0.01	0.01	0.01	0.01				
Ethylbenzene Xylenes		mg/kg mg/kg	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01				
Xylenes Total BTEX		тg/кg mg/kg	0.01	0.01	0.01	0.01	0.01				
	1						1				
PCBs (POPs) PCBs Total (eg EC7/WHO12)	1	mg/kg									
	1	y/ky	L		1		1			1	ı
PBBs (POPs) Hexabromobiphenyl (Total or	1									1	
PBB153; 2,2',4,4',5,5'- if only		mg/kg									
available)		.99									
	-										

envirolab

Haswaste, developed by Dr. lain Haslock.

29286 Bicester

TP/WS/BH	WS03	WS04	TP06	TP09	TP10		
Depth (m)	0.65	0.30	0.20	0.20	0.05		
Envirolab reference	17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7		

POPs Dioxins and Furans Input Total Dioxins and Furans OR individual Dioxin and Furan results.

2,3,7,8-TeCDD	mg/kg					
1,2,3,7,8-PeCDD	mg/kg					
1,2,3,4,7,8-HxCDD	mg/kg					
1,2,3,6,7,8-HxCDD	mg/kg					
1,2,3,7,8,9-HxCDD	mg/kg					
1,2,3,4,6,7,8-HpCDD	mg/kg					
OCDD	mg/kg					
2,3,7,8-TeCDF	mg/kg					
1,2,3,7,8-PeCDF	mg/kg					
2,3,4,7,8-PeCDF	mg/kg					
1,2,3,4,7,8-HxCDF	mg/kg					
1,2,3,6,7,8-HxCDF	mg/kg					
2,3,4,6,7,8-HxCDF	mg/kg					
1,2,3,7,8,9-HxCDF	mg/kg					
1,2,3,4,6,7,8-HpCDF	mg/kg					
1,2,3,4,7,8,9-HpCDF	mg/kg					
OCDF	mg/kg					
Total Dioxins and Furans	mg/kg					

Some Pesticides (POPs unless otherwise stated)

	1						1
Aldrin		mg/kg					ļ
α Hexachlorocyclohexane (alpha-							
HCH) (leave empty if total HCH		mg/kg					
results used)							
β Hexachlorocyclohexane (beta-							
HCH) (leave empty if total HCH		mg/kg					
results used)							
α Cis-Chlordane (alpha) OR		mg/kg					
Total Chlordane		шу/ку					
δ Hexachlorocyclohexane (delta-							
HCH) (leave empty if total HCH		mg/kg					
results used)							ļ
Dieldrin	updated v5.4ei	mg/kg					ļ
Endrin		mg/kg					
χ Hexachlorocyclohexane							
(gamma-HCH) (lindane) OR	updated v5.4ei	mg/kg					
Total HCH							
Heptachlor		mg/kg					
Hexachlorobenzene		mg/kg					
o,p'-DDT (leave empty if total		mg/kg					
DDT results used)							
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg					
χ Trans-Chlordane (gamma)							
(leave empty if total Chlordane		mg/kg					
results used)							
Chlordecone (kepone)	1	mg/kg					
Pentachlorobenzene		mg/kg					
Mirex		mg/kg					
Toxaphene (camphechlor)		mg/kg					
Tin	-						
Tin (leave empty if Organotin	1						
and Tin excl Organotin results		mg/kg					
used)							
Organotin	•				•	•	
Dibutyltin; DiBT	1	mg/kg					
-		mg/kg					
Tributyltin; TriBT		mg/kg					
Triphenyltin; TriPT		mg/kg					ĺ
Tetrabutyltin; TeBT	1	mg/kg					
Tin excluding Organotin	_	-					
Tin excl Organotin		mg/kg					

envirolab

eloped by Dr. lain Haslock.

29286	Bicester

	_
TP/WS/BH	
Depth (m)	

Envirolab reference	
Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter	THIESHOIUS
Y or N)	Y
	1
Asbestos % Composition in Soil	see "Carc HP7
(Matrix Loose Fibres or	% Asbestos in
Microscopic Identifiable Pieces only)	Soil (Fibres)" below

Soil (fibres or micro pieces)	20.1%		
Asbestos Identifiable Pieces visible with the naked eye	Y		

Carcinogenic HP7 % Asbestos in

detected in the Soil (enter Y or N)

W\$03	WS04	TP06	TP09	TP10		
0.65	0.30	0.20	0.20	0.05		
17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7		

	N	Ν	Ν							
Asbestos in Soil above is "Y", the soil is Hazardous Waste HP5 and HP7										
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		
If Asbestos in Soil	If Asbestos in Soil above is *Y*, but Asbestos % above is *<0.1%*, the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You									
		car	not use Asbestos % re	esults when visual iden	tifiable pieces are prese	ent.				

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05. Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres. All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

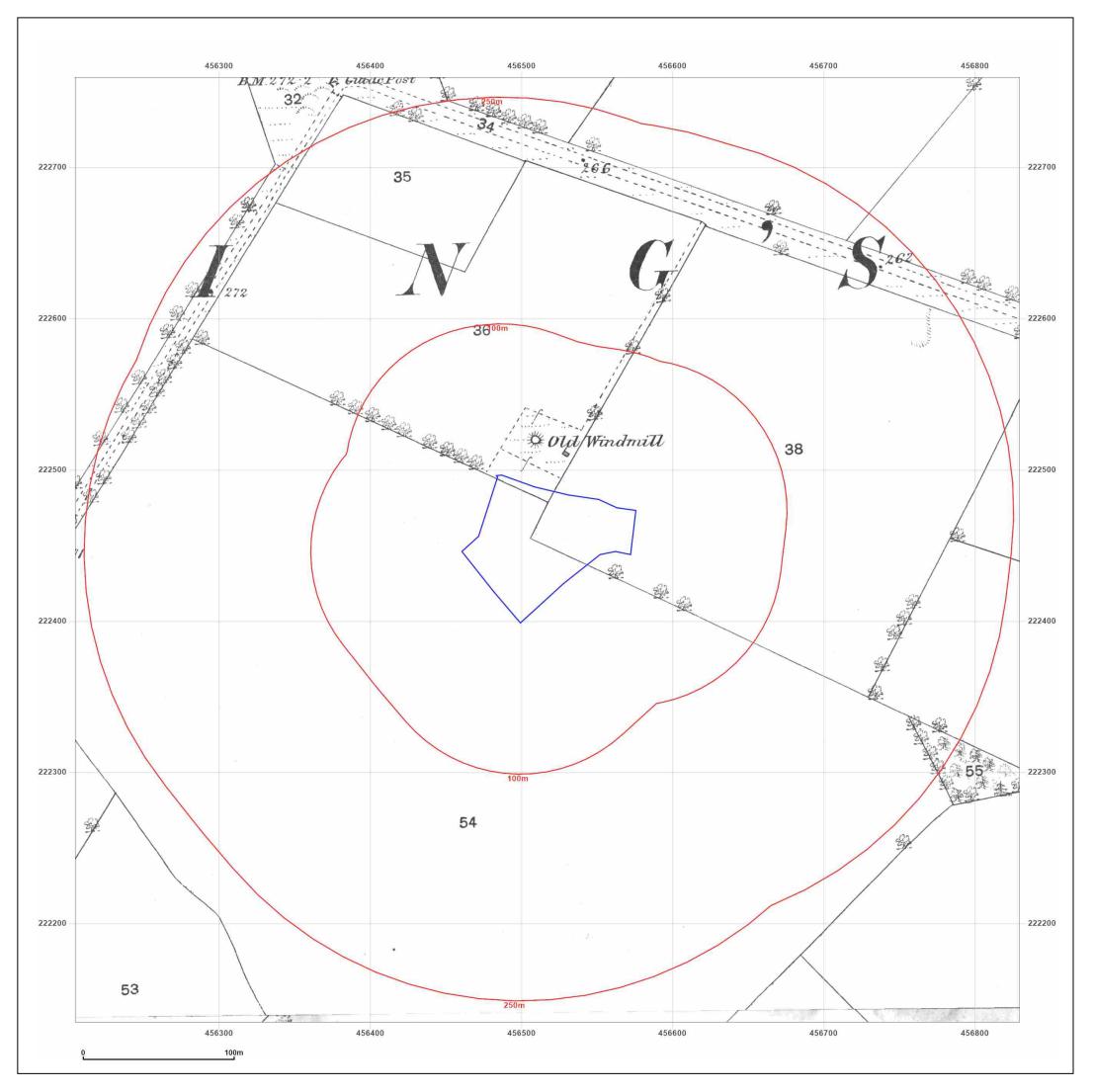
HP5 Specifc Target Organ Toxicity ≥24 HP5 Specifc Target Organ Toxicity ≥1 HP5 Specifc Target Organ Toxicity ≥1 HP5 ≥10 ≥10	≥5% ≥10% ≥20% ≥1% ≥1% ≥10% ≥10% ≥10% ≥0.1%	<1% <1% <1%	0.00341 0.00109 0.00342 0.00000 0.00001 0.00288	0.00496 0.00228 0.00525 0.00000 0.00002	0.00622 0.00128 0.00488 0.00000 0.00001	0.00482 0.00181 0.00488 0.00000	0.00522 0.00209 0.00497	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000
Irritant HP4 211 Irritant HP4 221 Specific Target Organ Toxicity 21 HP5 Specific Target Organ Toxicity HP5 Specific Target Organ Toxicity HP5 21 Specific Target Organ Toxicity 21 HP5 Specific Target Organ Toxicity HP5 21 Specific Target Organ Toxicity 21	≥20% ≥1% ≥10% ≥10% ≥0.1%	<1%	0.00109 0.00342 0.00000 0.00001	0.00228 0.00525 0.00000 0.00002	0.00128 0.00488 0.00000	0.00181 0.00488	0.00209	0.00000	0.00000	0.00000	0.00000
Irritant HP4 ≥2 Specifc Target Organ Toxicity ≥1 HP5 Specifc Target Organ Toxicity HP5 ≥21 HP5 Specifc Target Organ Toxicity HP5 ≥1 Specifc Target Organ Toxicity ≥1 HP5 ≥1 Specifc Target Organ Toxicity ≥1	≥20% ≥1% ≥10% ≥10% ≥0.1%		0.00342 0.00000 0.00001	0.00525 0.00000 0.00002	0.00488	0.00488					
Specific Target Organ Toxicity 21 HP5 Specific Target Organ Toxicity HP5 Specific Target Organ Toxicity Specific Target Organ Toxicity 21 HP5 Specific Target Organ Toxicity Specific Target Organ Toxicity 21	≥20% ≥1% ≥10% ≥10% ≥0.1%		0.00000	0.00000	0.00000		0.00101				0.00000
Specifc Target Organ Toxicity ≥21 HP5 Specifc Target Organ Toxicity HP5 ≥1 Specifc Target Organ Toxicity ≥1 HP5 ≥1	≥1% ≥10% ≥10% ≥0.1%				0.00001		0.00000	0.00000	0.00000	0.00000	0.00000
HP5 210 Specifc Target Organ Toxicity ≥10 HP5 210	≥10% ≥10% ≥0.1%		0.00288		0.00001	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000
HP5	≥10% ≥0.1%			0.00403	0.00595	0.00403	0.00404	0.00000	0.00000	0.00000	0.00000
	≥0.1%		0.00050	#REF!	0.00170	0.00170	0.00160	0.00000	0.00000	0.00000	0.00000
Aspiration Toxicity HP5 ≥10		Ī	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	≥0.25%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥0.2		<0.1%	0.00062	#REF!	0.00028	0.00081	0.00121	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥5	≥5%	<0.1%	0.00302	0.00417	0.00609	0.00417	0.00417	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥2	≥25%	<1%	0.00407	0.00534	0.00668	0.00667	0.00666	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥0.2	≥0.25%	<0.1%	0.00010	#REF!	0.00002	0.00002	0.00002	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥2.	≥2.5%	<0.1%	0.00288	0.00403	0.00595	0.00403	0.00403	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥15	≥15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	≥55%	<1%	0.00015	0.00008	0.00010	0.00009	0.00009	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥0.	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥0.	≥0.5%	<0.1%	0.00313	#REF!	0.00607	0.00414	0.00414	0.00000	0.00000	0.00000	0.00000
	≥3.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 ≥22	≥22.5%	<1%	0.00390	0.00521	0.00656	0.00656	0.00655	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7 ≥0.	≥0.1%		0.00288	0.00403	0.00595	0.00403	0.00404	0.00000	0.00000	0.00000	0.00000
	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7 ≥1	≥1%		0.00001	0.00002	0.00001	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7 Linknown TPH	000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
leachate)	18 ≥11.5		8.26	8.05	7.86	7.99	7.98	0.00	0.00	0.00	0.00
leachate)	H8 ≤2		8.26	8.05	7.86	7.99	7.98	0.00	0.00	0.00	0.00
	≥0.3%		0.00283	0.00384	0.00384	0.00384	0.00404	0.00000	0.00000	0.00000	0.00000
Toxic for Reproduction HP10 ≥3	≥3%		0.00288	0.00403	0.00595	0.00403	0.00403	0.00000	0.00000	0.00000	0.00000
Matagomorn	≥0.1%		0.00288	0.00403	0.00595	0.00403	0.00403	0.00000	0.00000	0.00000	0.00000
with ID	000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	≥1%	ŀ	0.00283	0.00384	0.00384	0.00384	0.00404	0.00000	0.00000	0.00000	0.00000
Sulphide	400mg/kg	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyanide	200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thiocyanate	600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising ≥10	≥10%		0.00288	0.00403	0.00595	0.00403	0.00404	0.00000	0.00000	0.00000	0.00000
Ecotoxic HP14 ≥1	Z1.0 Т	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.03851	#REF!	0.07388	0.06277	0.06431	0.00000	0.00000	0.00000	0.00000
Ecotoxic HP14 ≥2	≥25%	<0.1%	0.00963	#REF!	0.01847	0.01570	0.01608	0.00000	0.00000	0.00000	0.00000
Ecotoxic HP14 ≥2	^{225%} T	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.00963	#REF!	0.01847	0.01569	0.01608	0.00000	0.00000	0.00000	0.00000

HASWASTE v5.4ei extra. Envirolab's Contaminated Land Soil Hazardous Waste Assessment Tool for use with WM3Envirolab, Sandpits Business Park, Mottram Road, Hyde, Cheshire SK14 3AR.

envirolab

Haswaste, developed by Dr. lain Haslock.

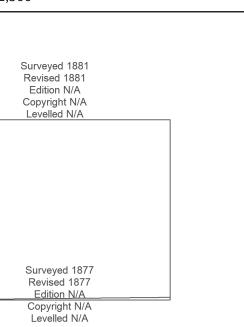
29286 Bicester


TP/WS/BH Depth (m)

Envirolab reference

Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%

WS03	WS04	TP06	TP09	TP10				
0.65	0.30	0.20	0.20	0.05				
17/05975/3	17/06009/1	17/06278/5	17/06278/6	17/06278/7				
0.00008	0.000019	0.00008	0.00008	0.00008	0.000000	0.000000	0.000000	0.000000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000
0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000


1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447

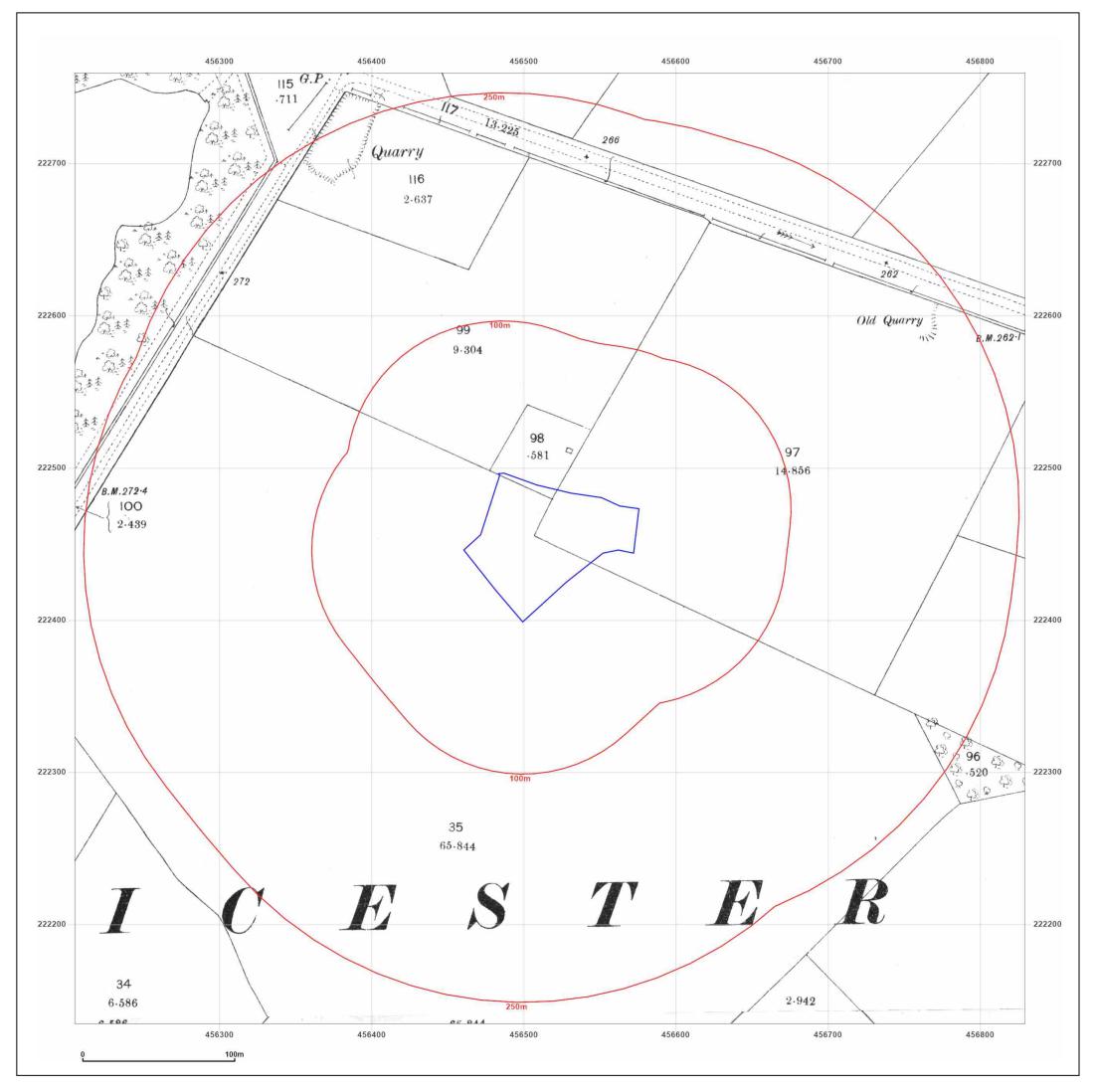
- Map Name: County Series
- 1877-1881 Map date:

Scale: 1:2,500

Printed at: 1:2,500

Ν

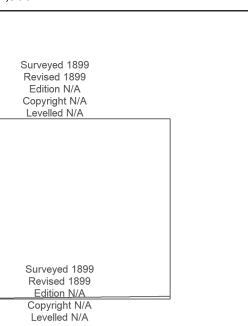
F


W

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023


1, STOCKTON ROAD, BICESTER, OX26 1GG

1899 Map date:

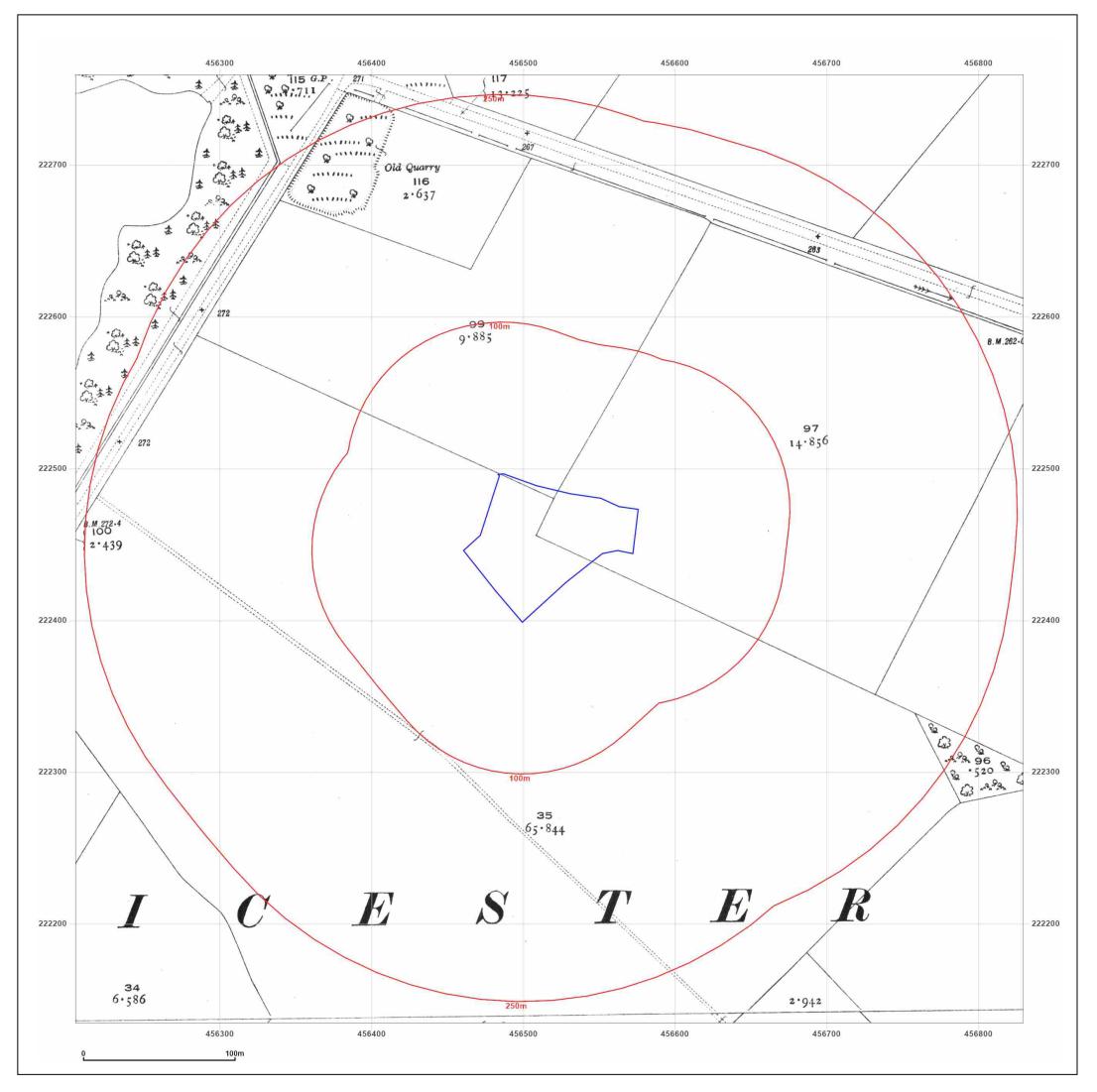
Scale: 1:2,500

Printed at: 1:2,500

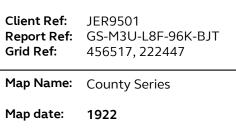
Ν

⊕

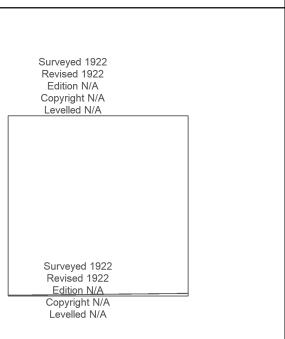
F


W

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023



1, STOCKTON ROAD, BICESTER, OX26 1GG

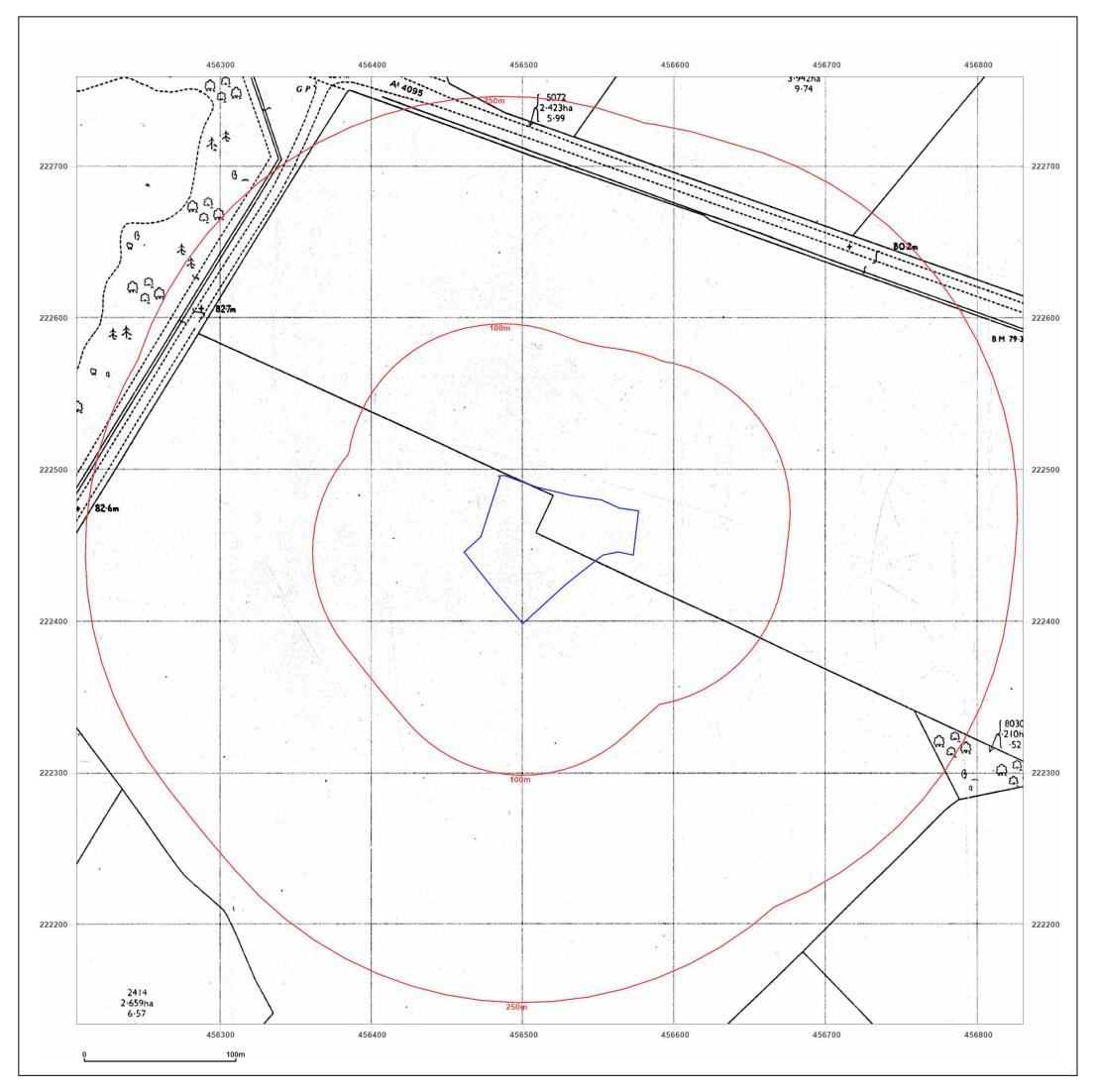
Scale: 1:2,500

Printed at: 1:2,500

Ν

 \oplus

F


W

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

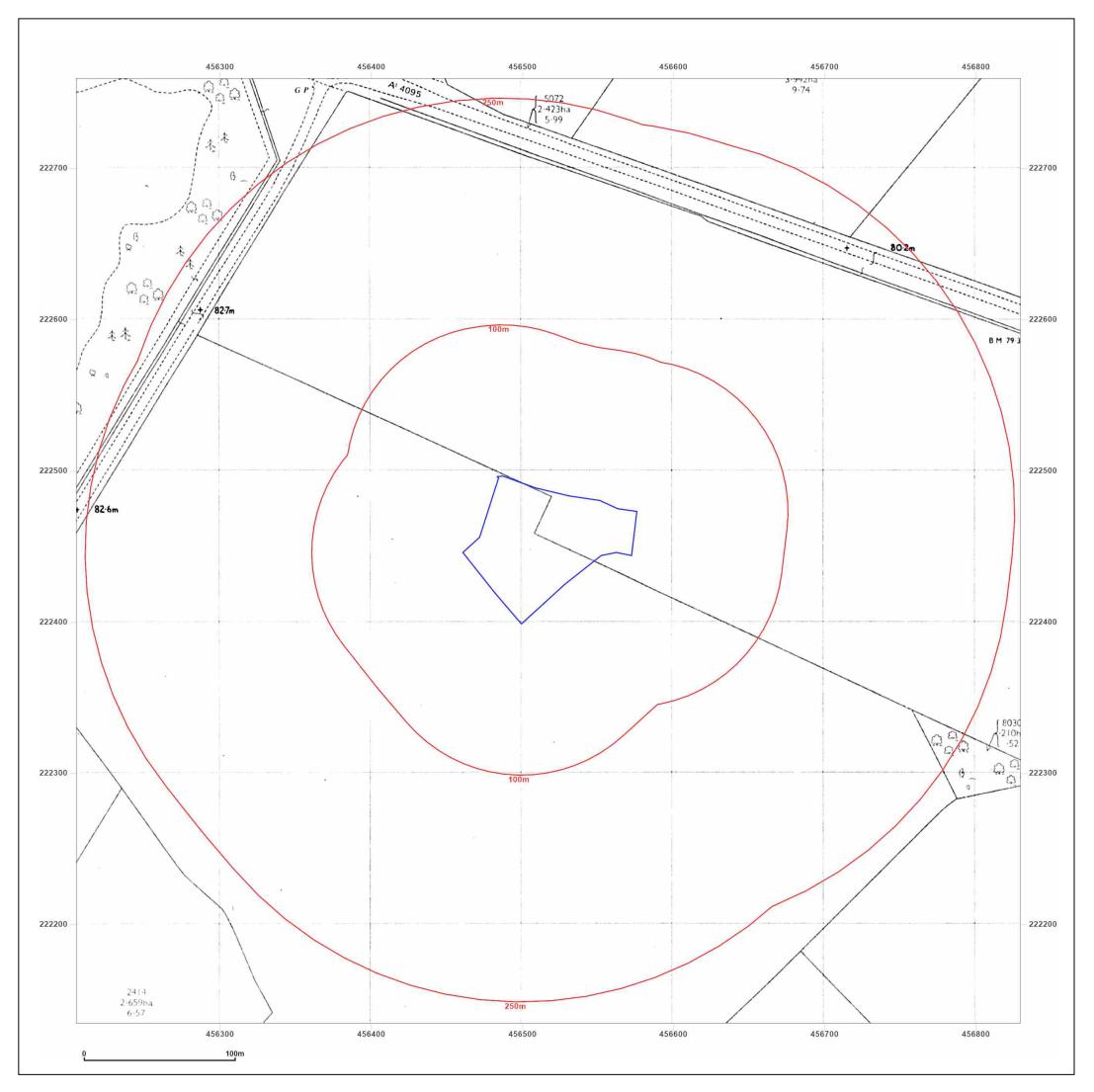
1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT 456517, 222447 Grid Ref: Map Name: National Grid

Map date: 1980

Scale: 1:2,500

Printed at: 1:2,500


Surveyed 1971 Revised 1980 Edition N/A Copyright 1980 Levelled 1971

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

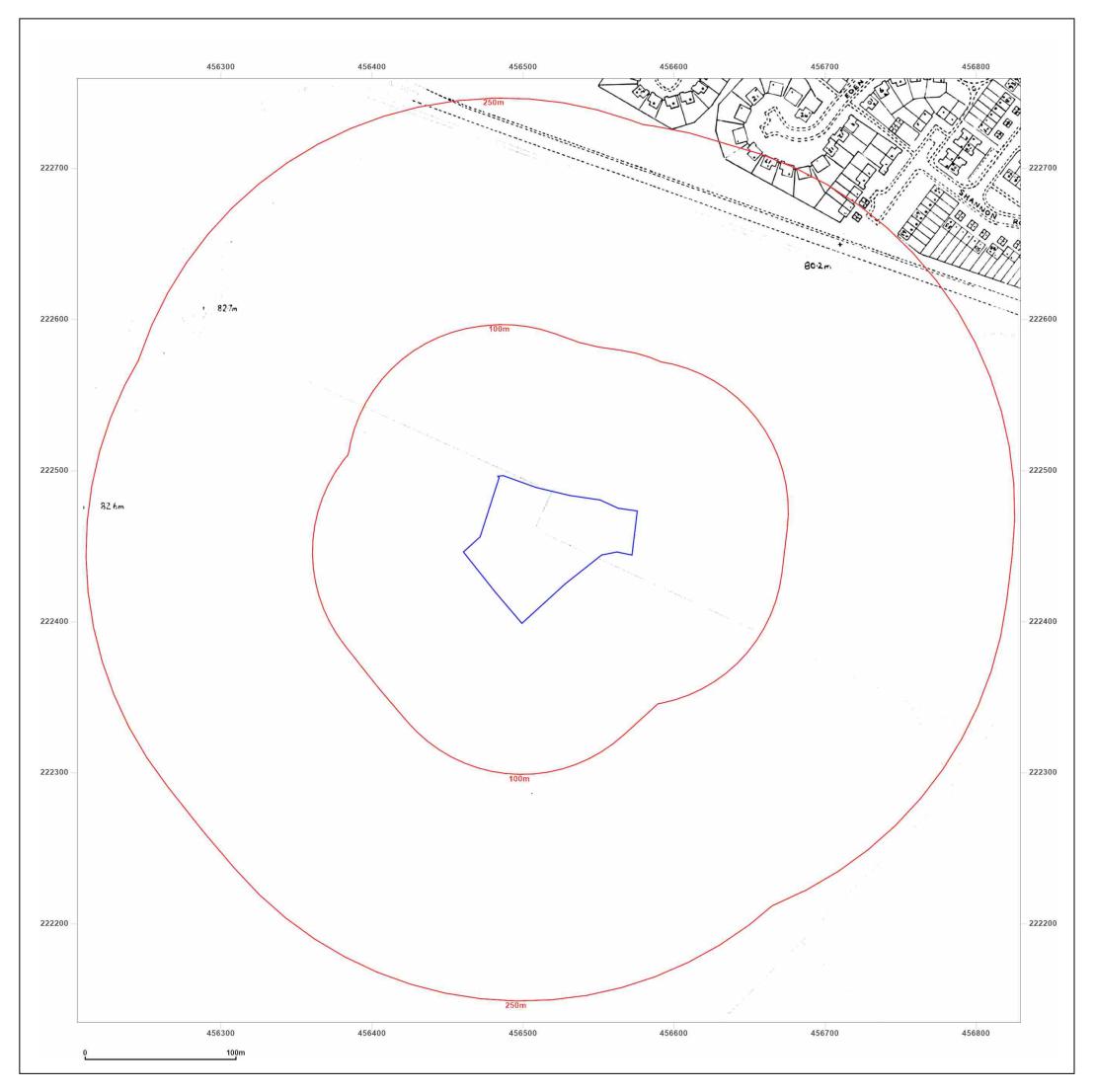
1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1980

Scale: 1:2,500

Printed at: 1:2,500

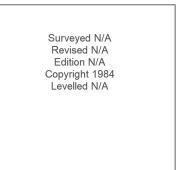

Surveyed 1971 Revised 1980 Edition N/A Copyright 1980 Levelled 1971

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

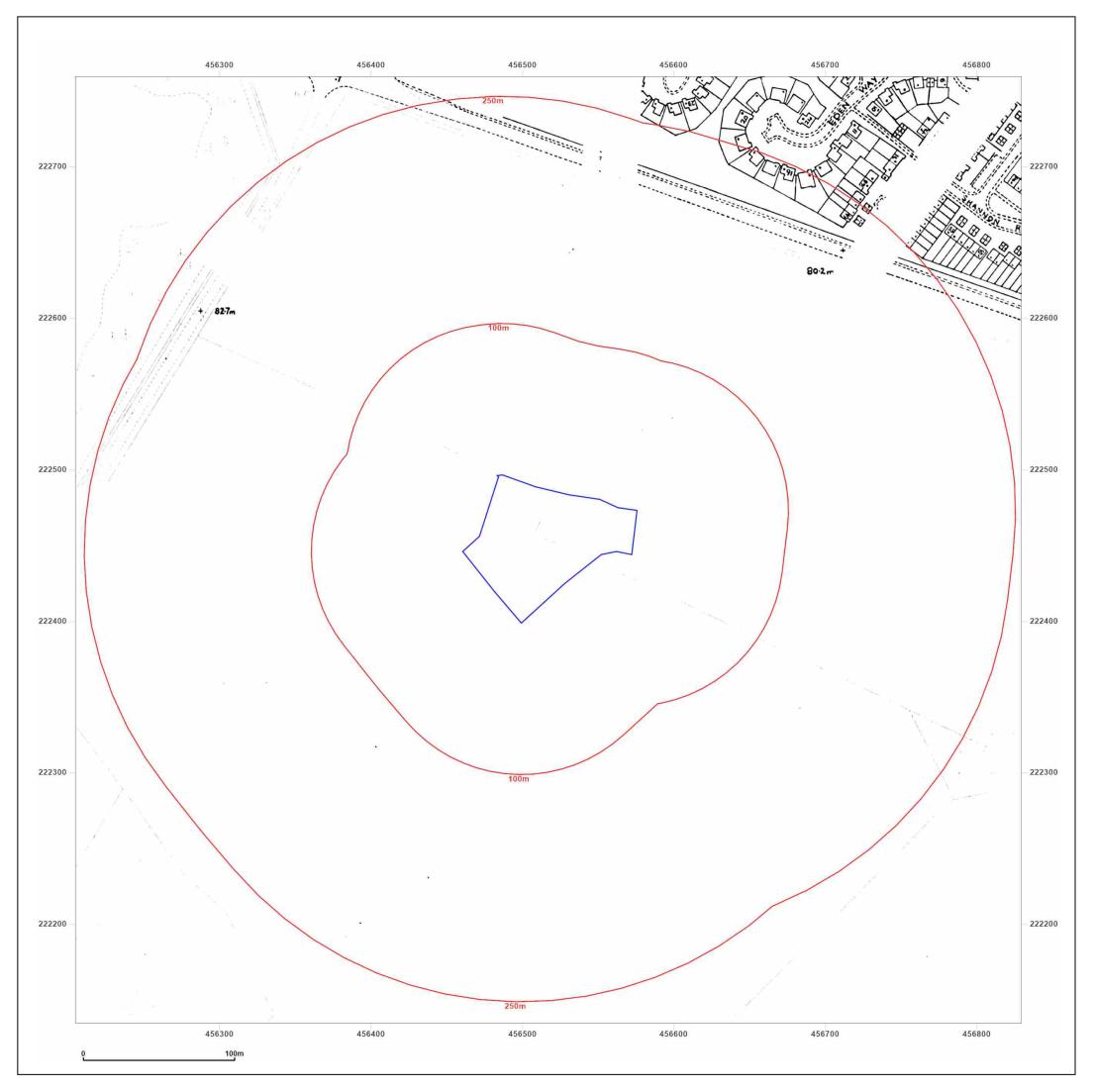
1, STOCKTON ROAD, BICESTER, OX26 1GG


Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1984

Scale: 1:2,500

Printed at: 1:2,500

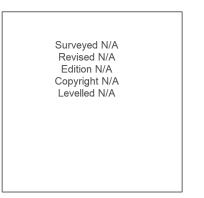


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

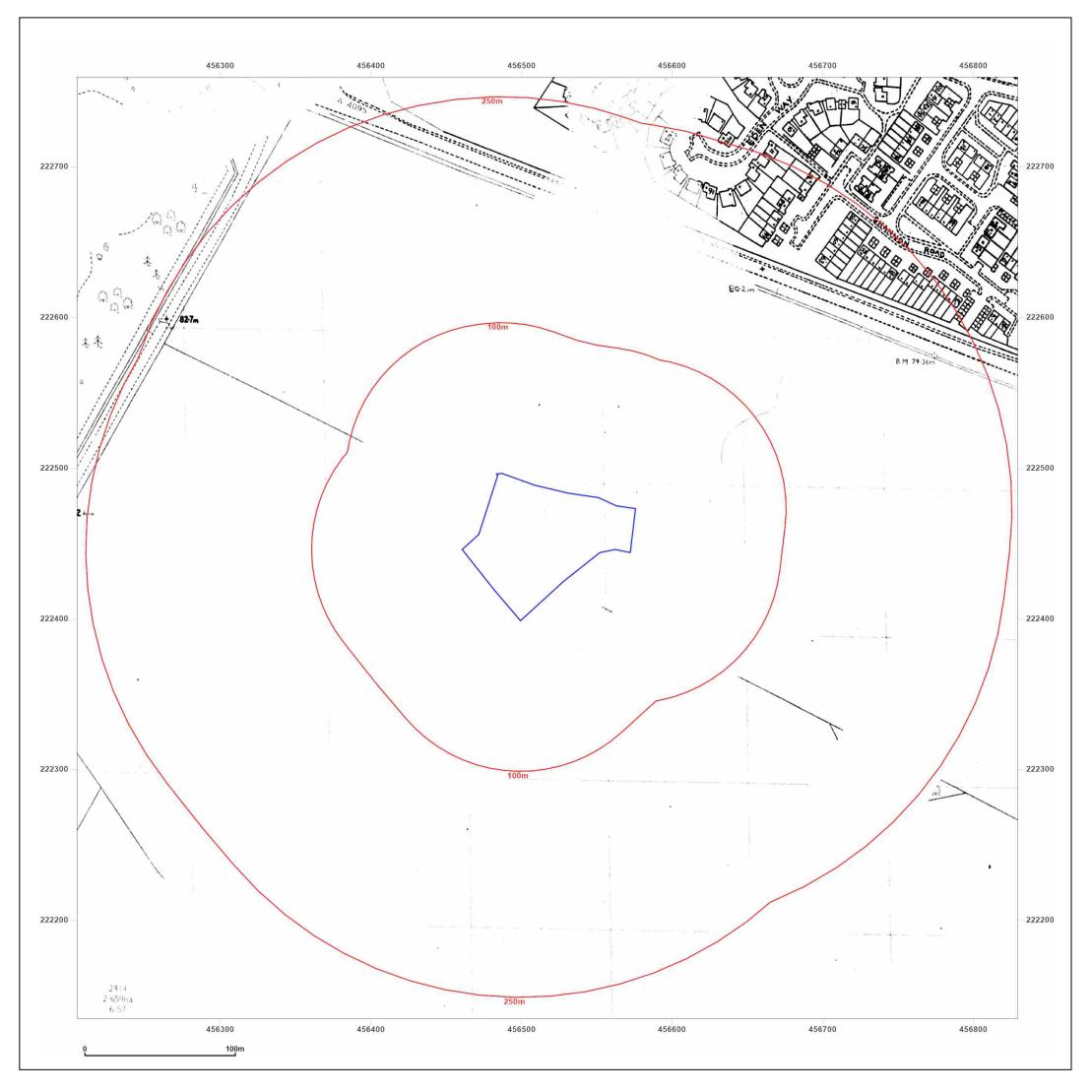
1, STOCKTON ROAD, BICESTER, OX26 1GG


Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1985

Scale: 1:2,500

Printed at: 1:2,500



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

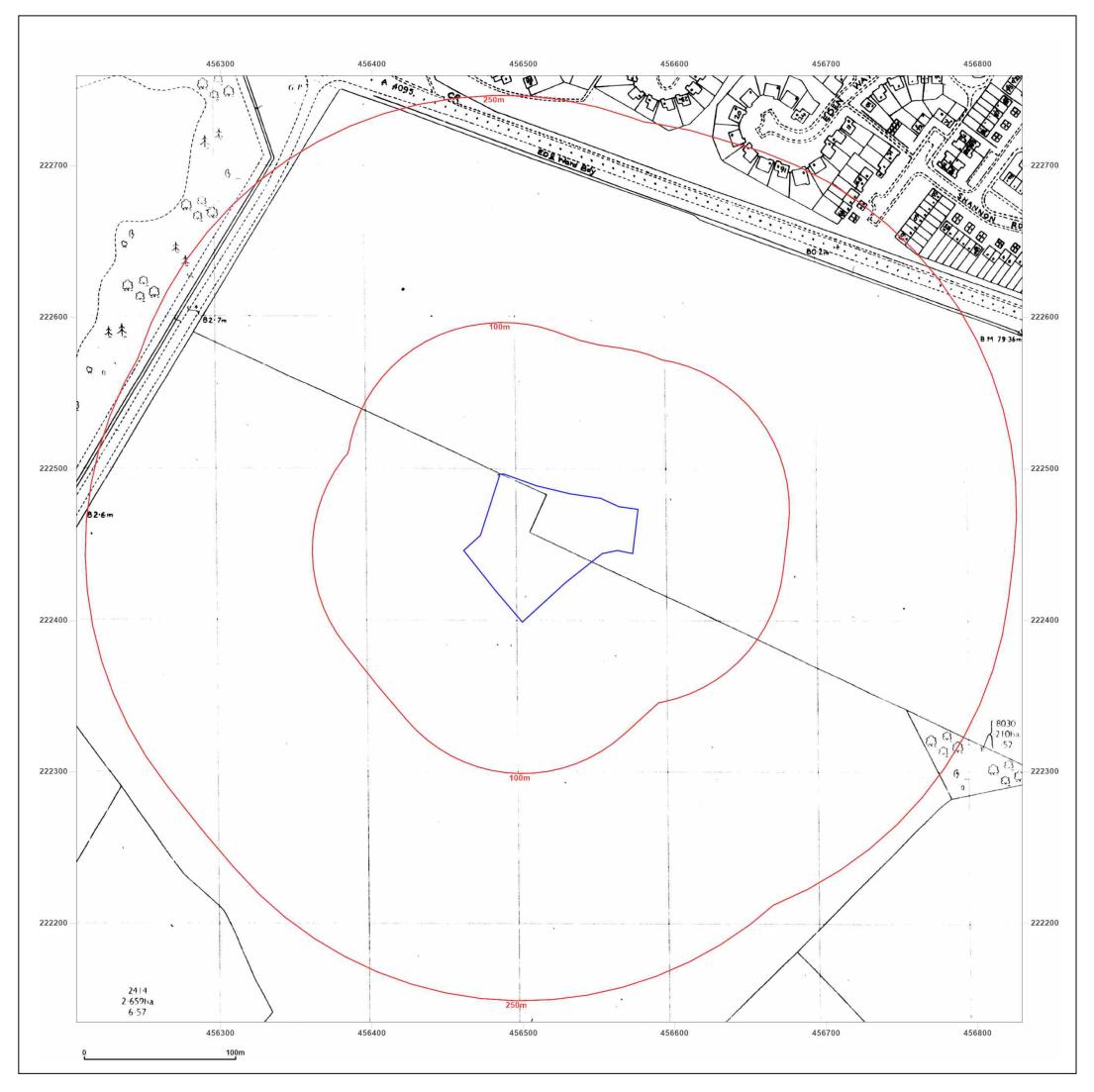
1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1986

Scale: 1:2,500

Printed at: 1:2,500


Surveyed N/A Revised N/A Edition N/A Copyright 1986 Levelled N/A

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

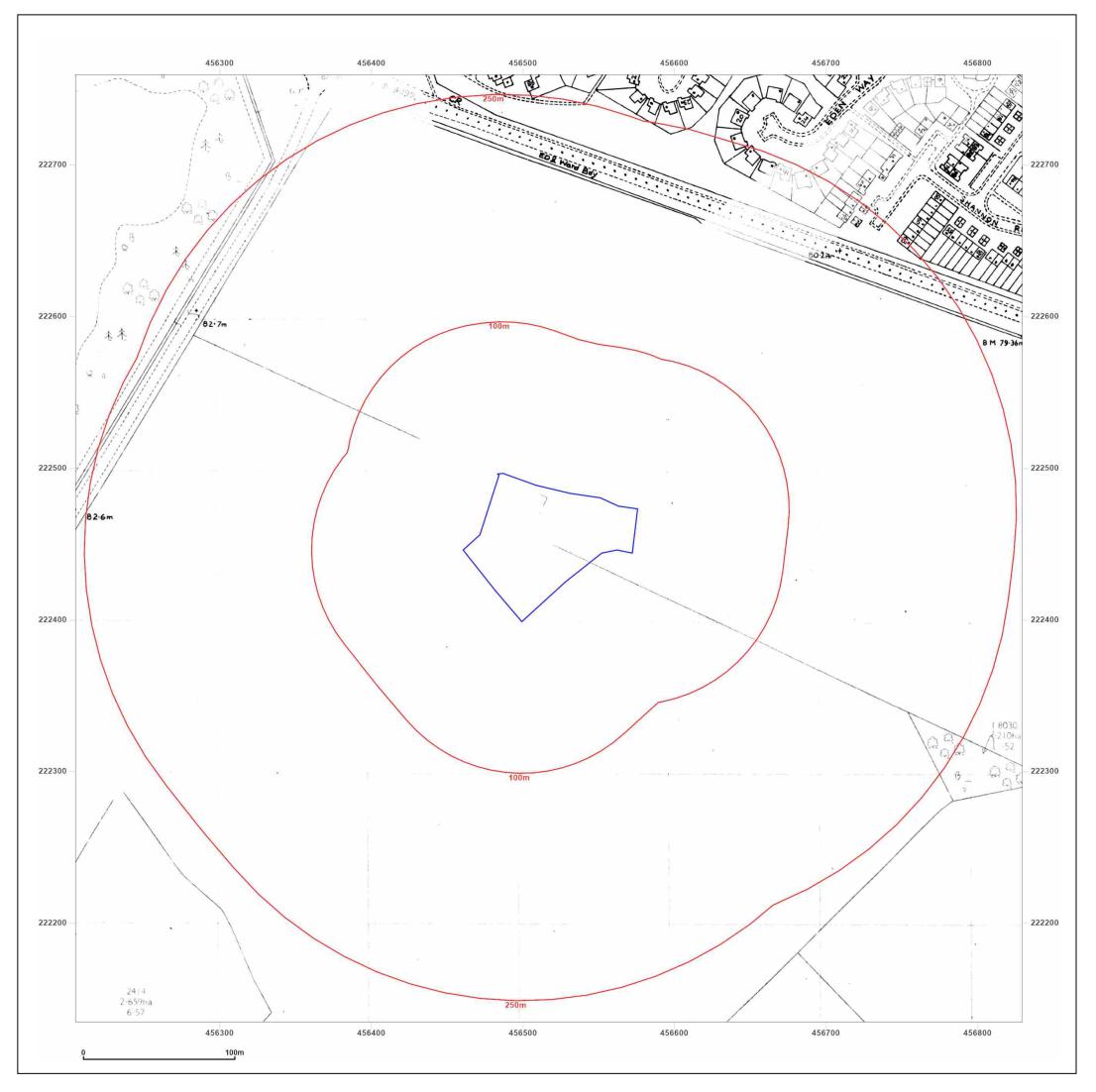
1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1988

Scale: 1:2,500

Printed at: 1:2,500


Surveyed N/A Revised N/A Edition N/A Copyright 1988 Levelled 1971

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

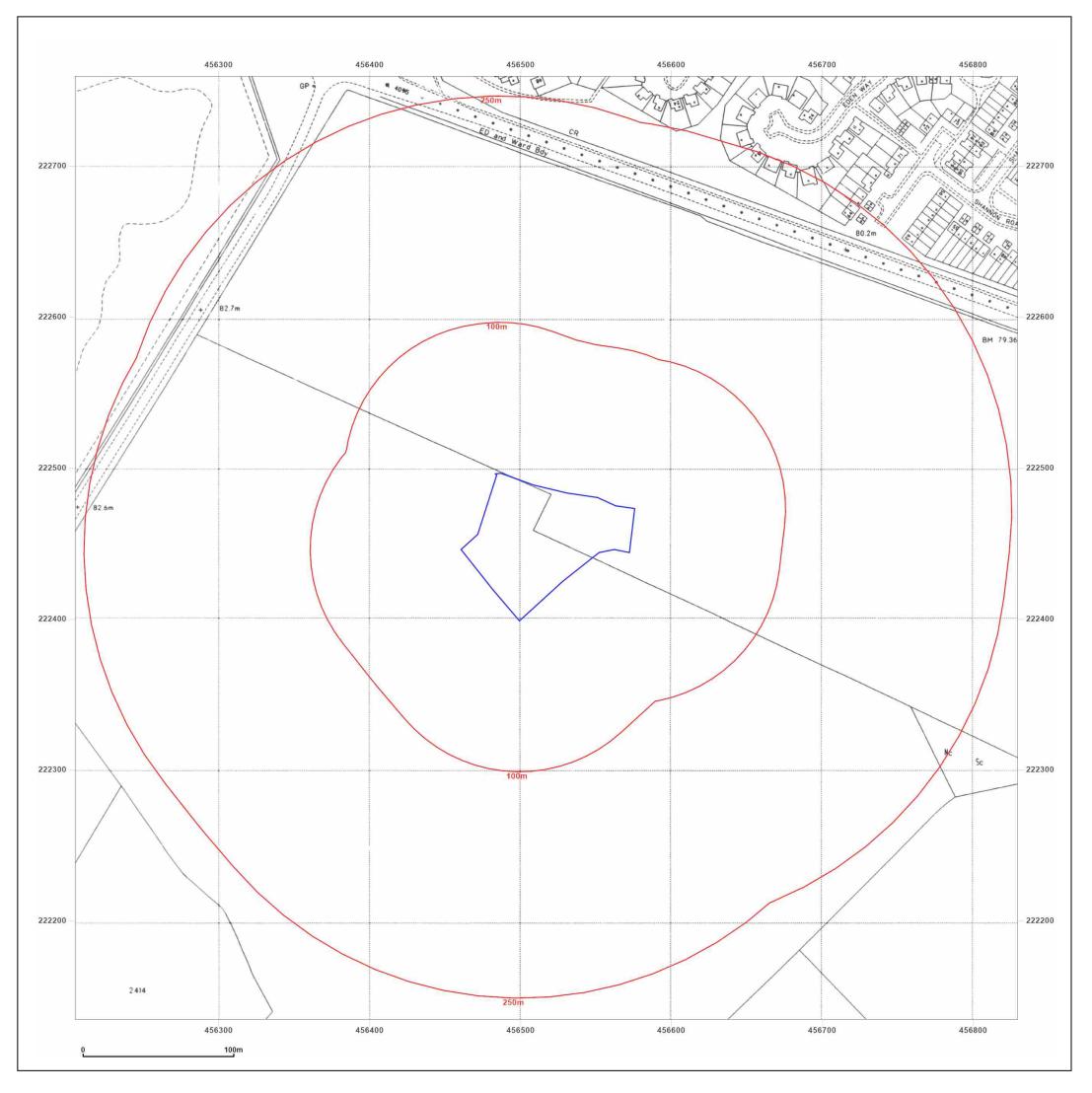
1, STOCKTON ROAD, BICESTER, OX26 1GG

Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT Grid Ref: 456517, 222447 Map Name: National Grid

Map date: 1988

Scale: 1:2,500

Printed at: 1:2,500


Surveyed N/A Revised N/A Edition N/A Copyright 1988 Levelled 1971

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG

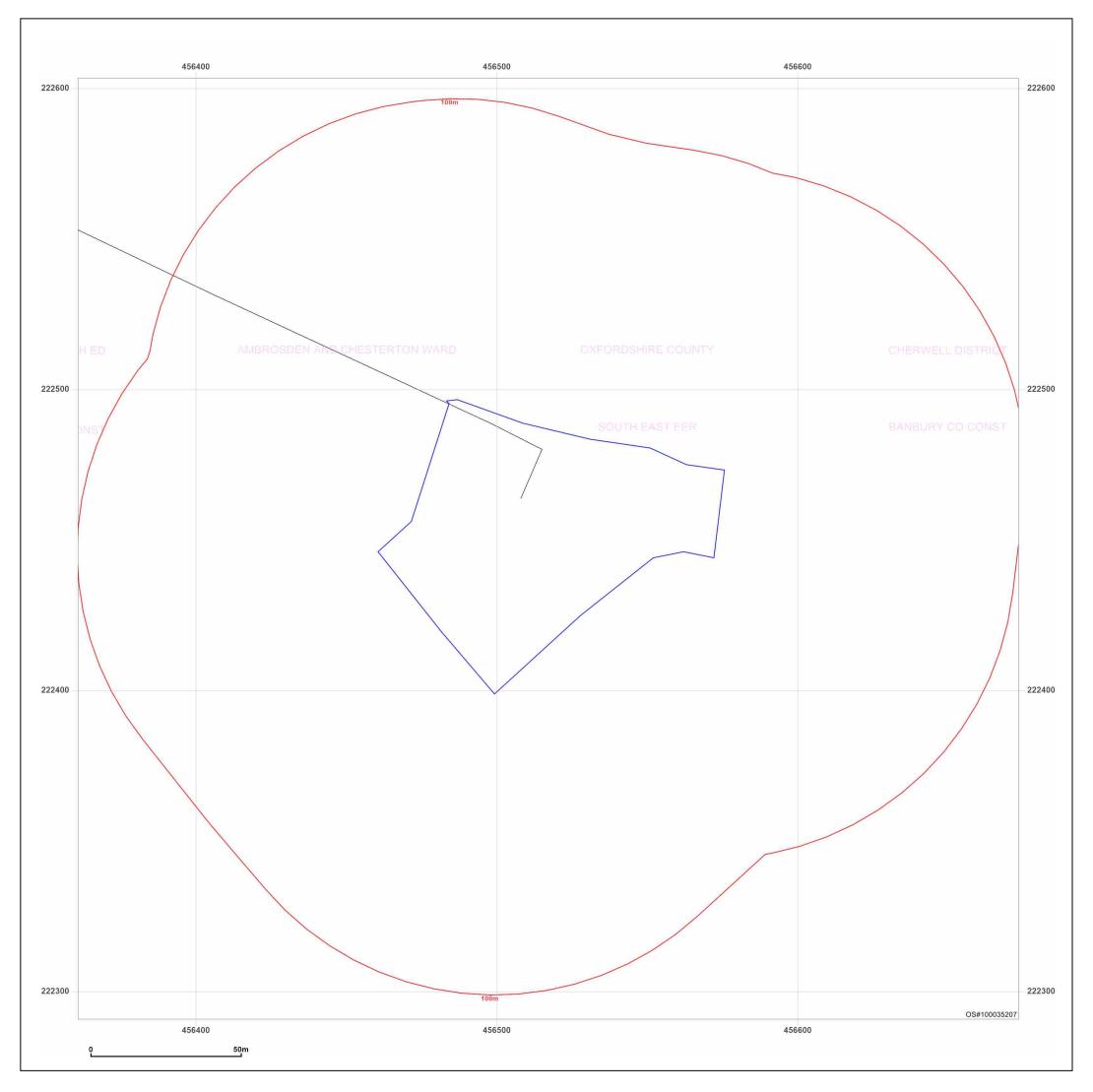
Client Ref: JER9501 Report Ref: GS-M3U-L8F-96K-BJT 456517, 222447 Grid Ref:

Map Name: National Grid

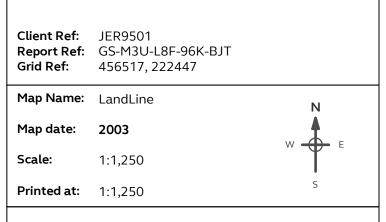
Map date: 1994

Scale: 1:2,500

Printed at: 1:2,500

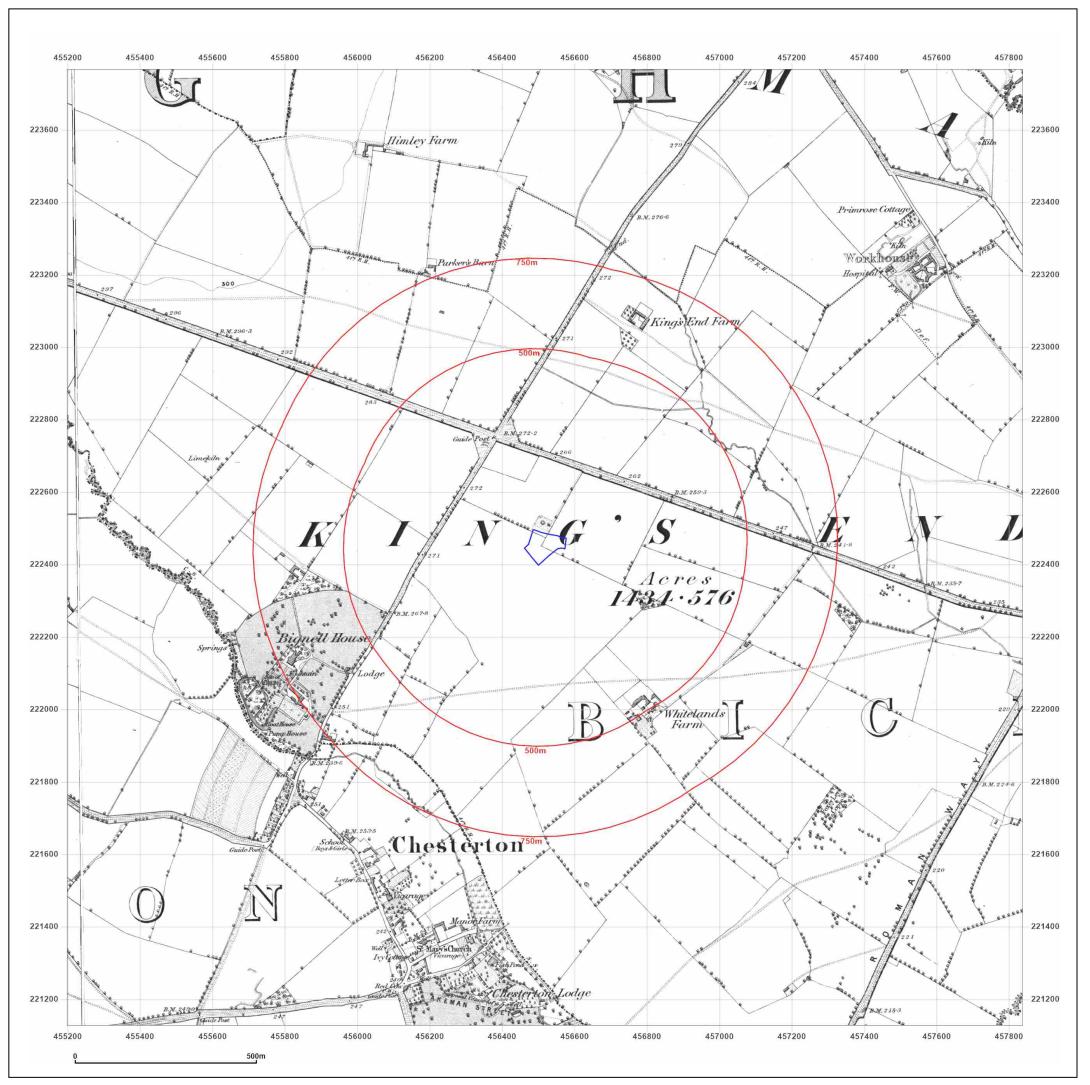

Surveyed 1994 Revised 1994 Edition N/A Copyright N/A Levelled N/A

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

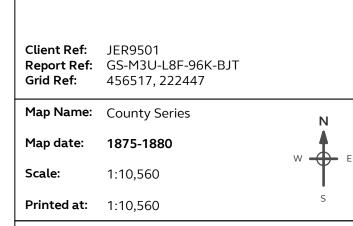

© Crown copyright and database rights 2018 Ordnance Survey 100035207

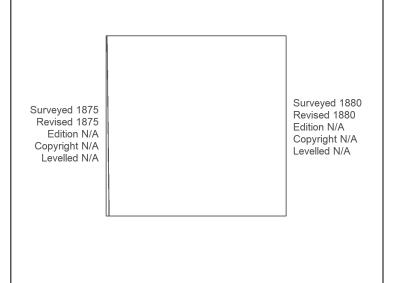
Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG

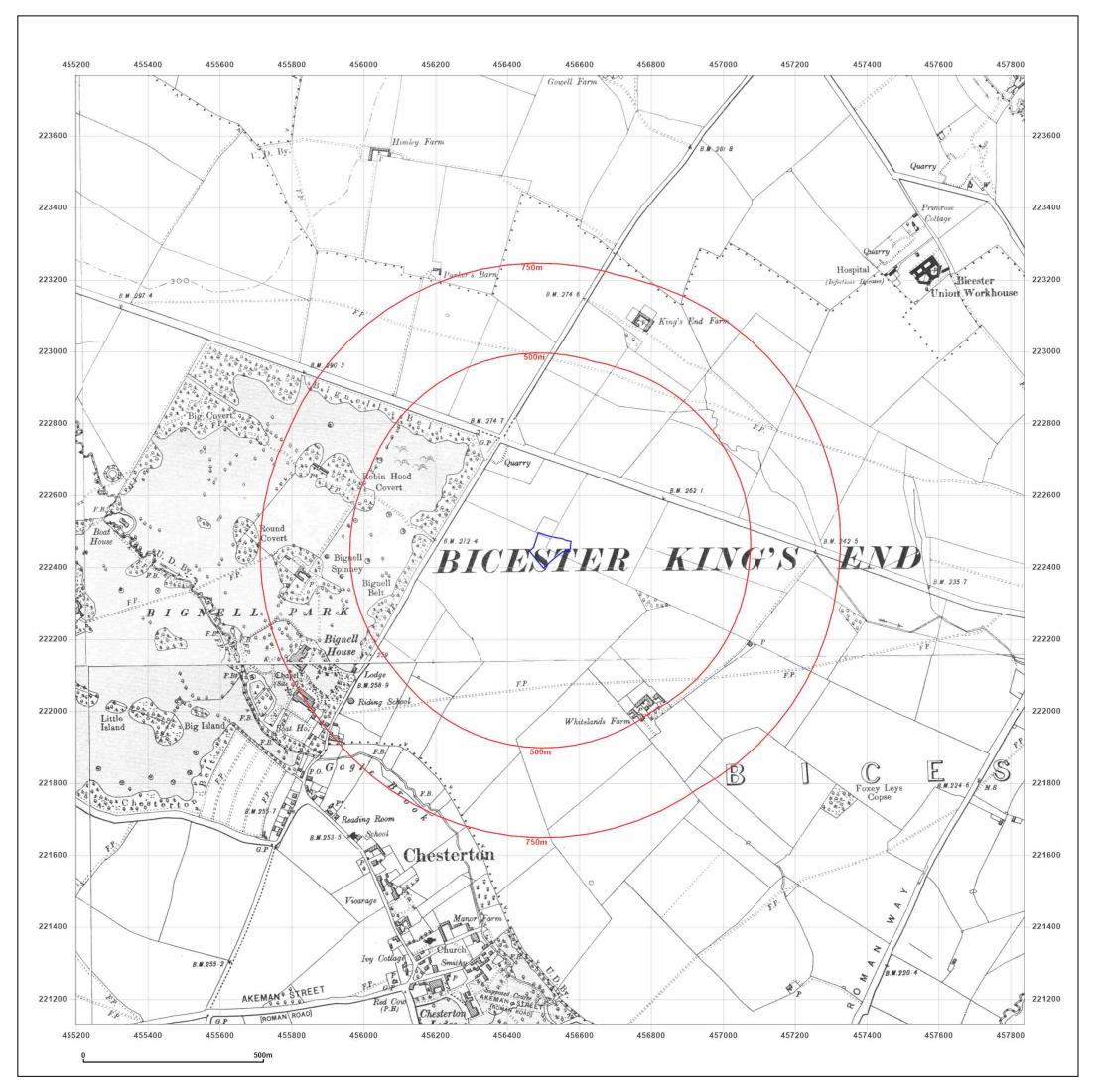

2003	

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

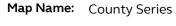

Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, ÓX26 1GG

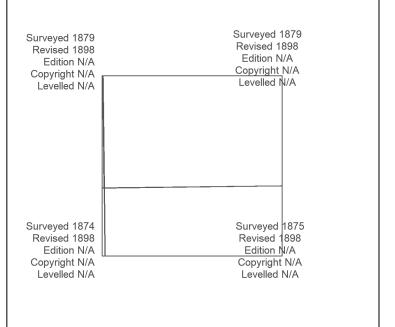


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG

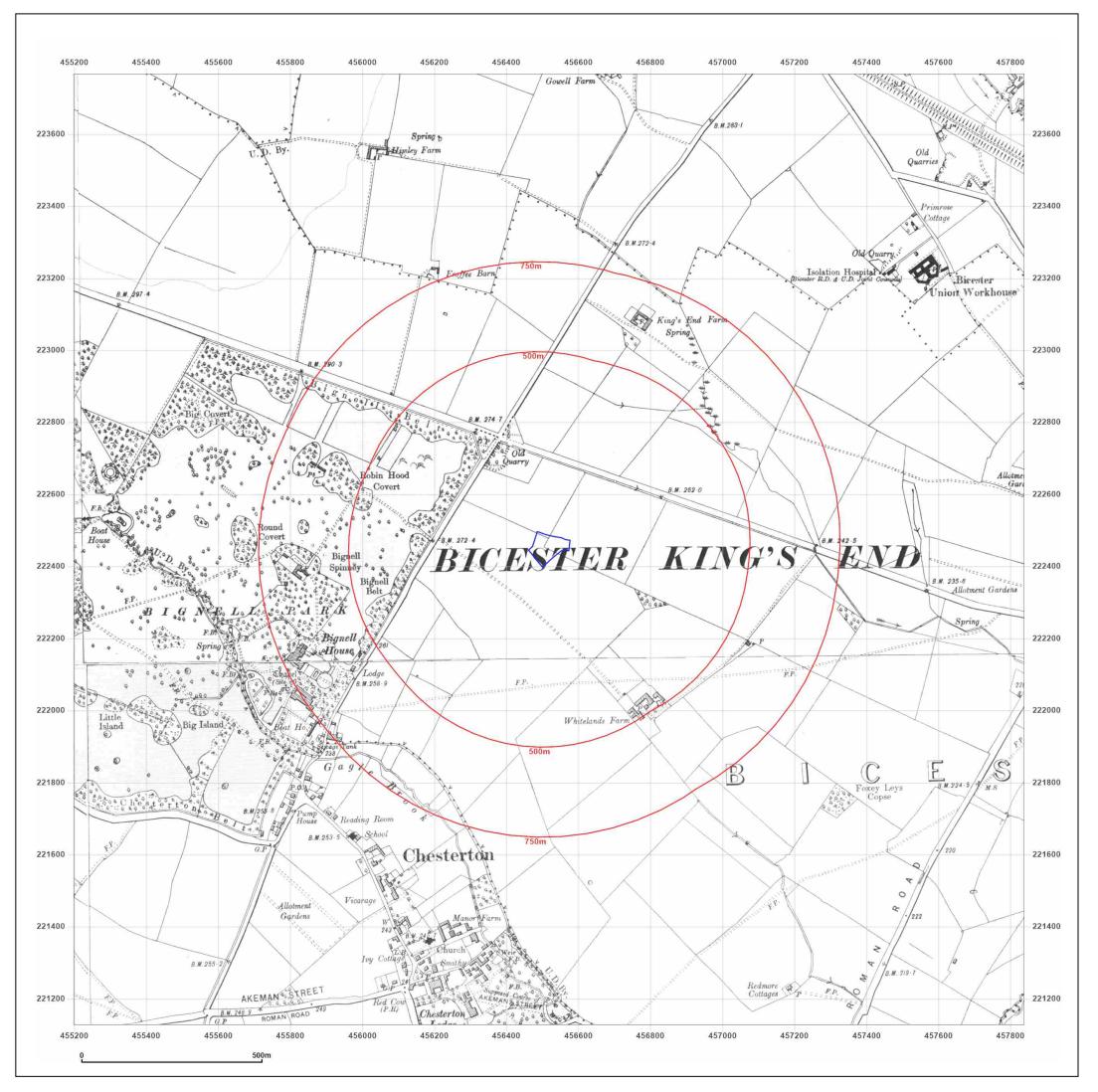


Map date: 1898

Scale: 1:10,560

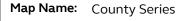
Printed at: 1:10,560

N

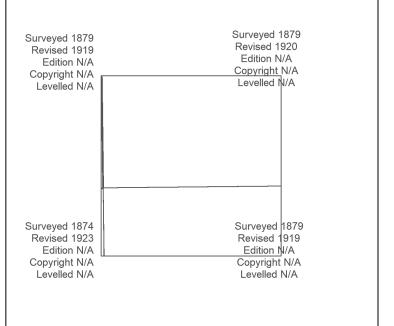

F

W

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG



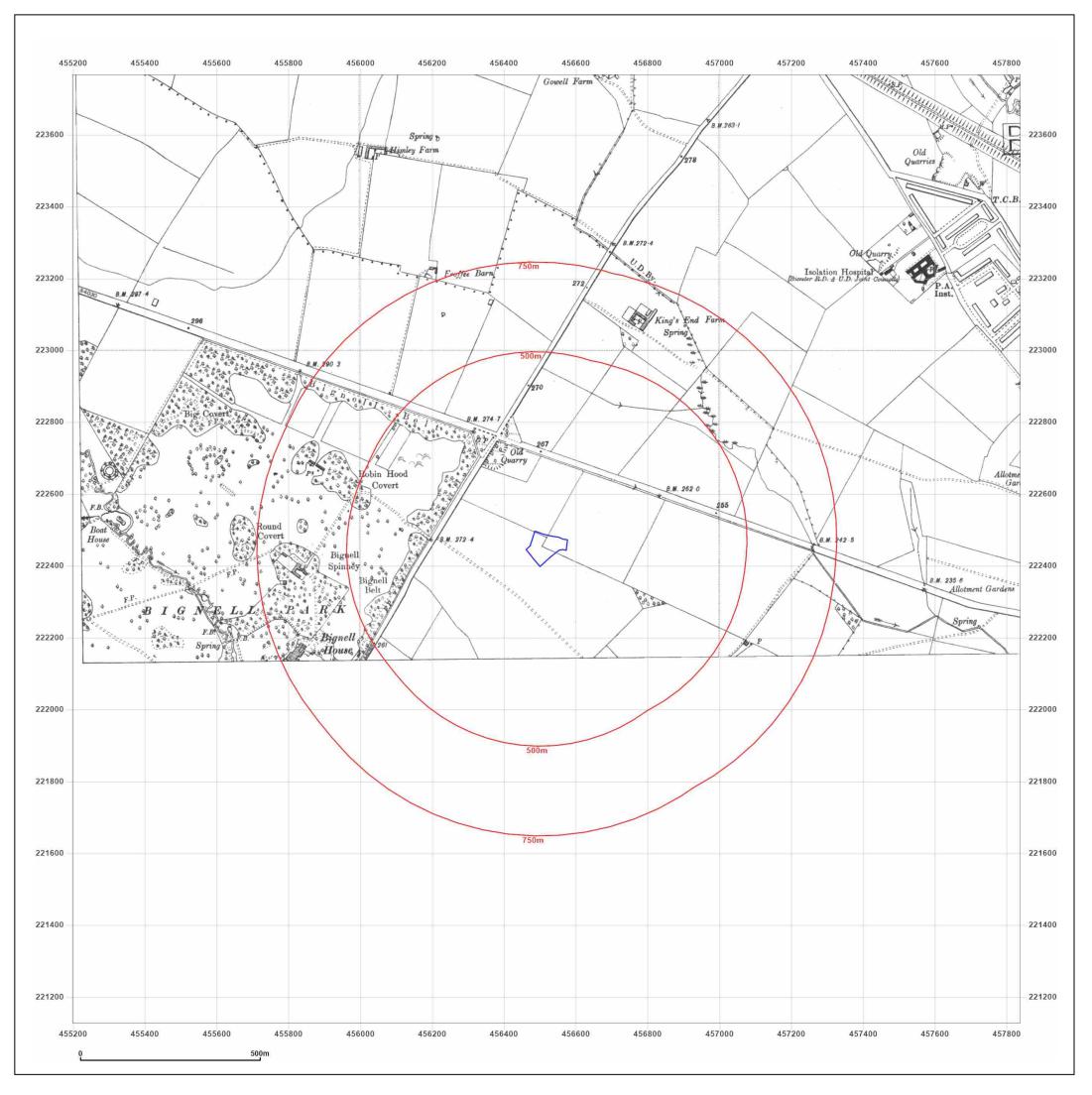
Map date: 1919-1923

Scale: 1:10,560

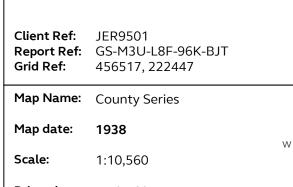
Printed at: 1:10,560

N

F


W

© Crown copyright and database rights 2018 Ordnance Survey 100035207

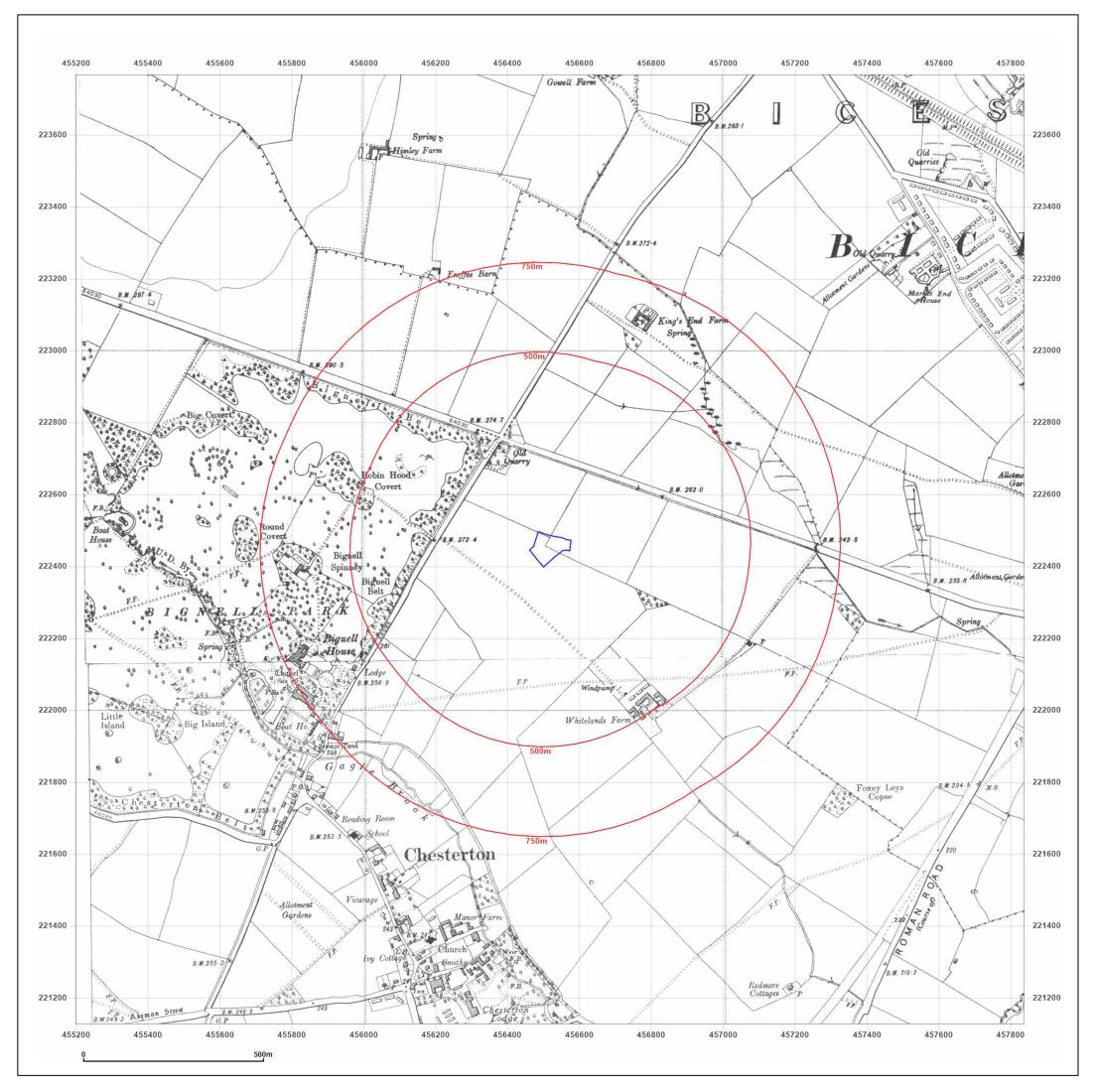

Production date: 20 July 2023

Map legend available at: www.groundsure_legend.pdf

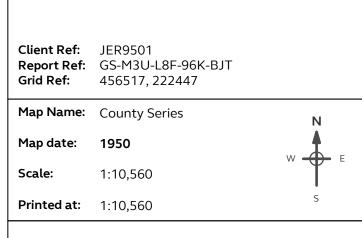
1, STOCKTON ROAD, BICESTER, ÓX26 1GG

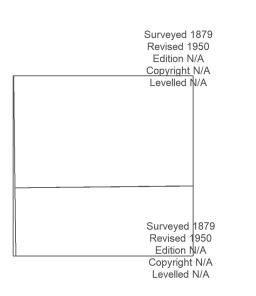
Printed at: 1:10,560

Ν

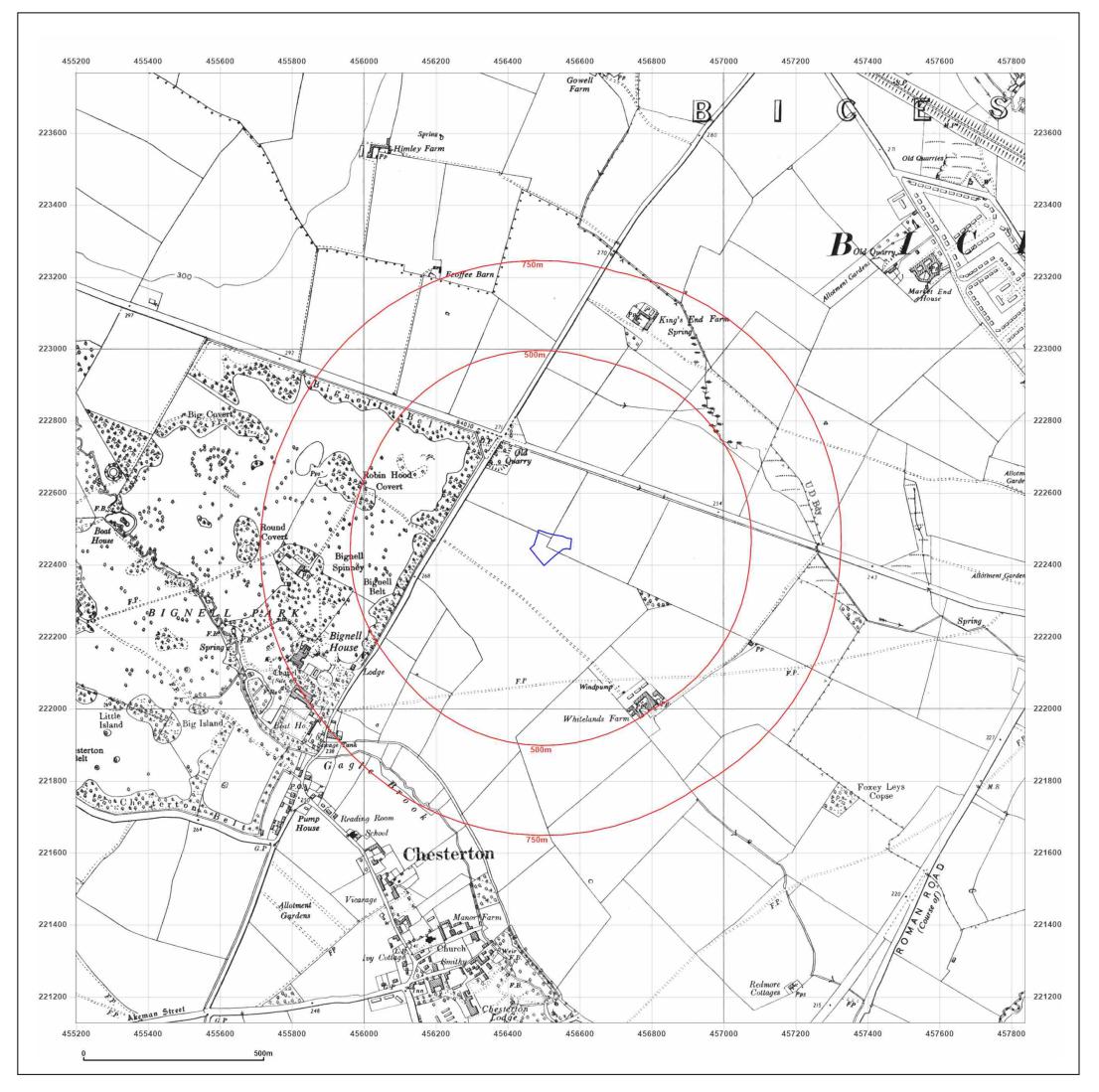

F

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

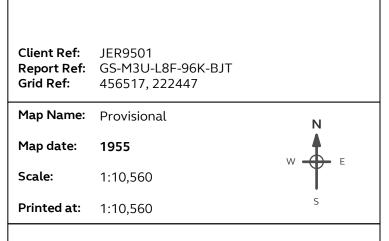

© Crown copyright and database rights 2018 Ordnance Survey 100035207

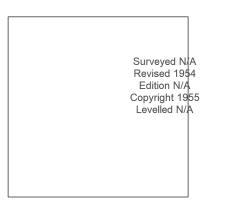

Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, ÓX26 1GG

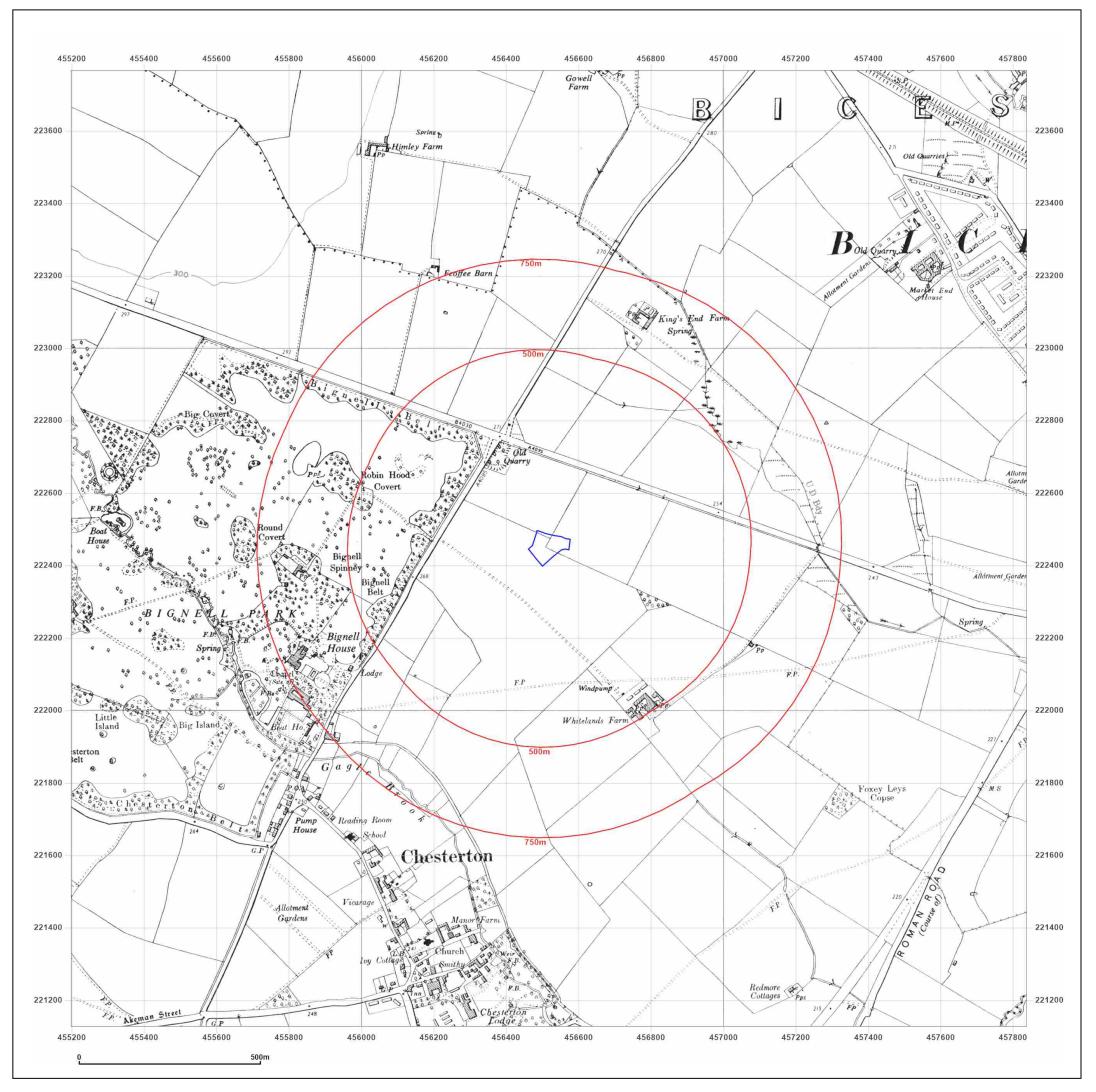


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

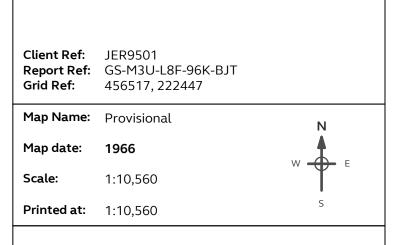

© Crown copyright and database rights 2018 Ordnance Survey 100035207

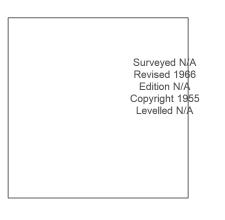

Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 20 July 2023

1, STOCKTON ROAD, BICESTER, OX26 1GG

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 20 July 2023