Particle Size Distribution Test BS 1377 Part 2:1990.

Client ref: Location: Contract Number: Hole Number Sample Number: Depth (m) : Sample Type Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4 SDG121024-16 Kingsmere Bicester Phase 2 17490-081012 TP702

0.60

Remarks:

Cl 9.4.8 - Sample has not been pretreated

Checked By

Date Approved:

5.11.12

Particle Size Distribution Test BS 1377 Part 2:1990. Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Date Approved:

Particle Size Distribution Test BS 1377 Part 2:1990. Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

ere Bicester Phase 2
081012

Checked By

Date Approved:

Approved By:

Particle Size Distribution Test BS 1377 Part 2:1990. Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref:SDG121024-16Location:Kingsmere Bicester Phase 2Contract Number:17490-081012Hole NumberTP709Sample Number:...Depth (m) :0.60Sample TypeB

Date Approved:

Particle Size Distribution Test

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: Location: **Contract Number: Hole Number** Sample Number: Depth (m): Sample Type

SDG121024-16 **Kingsmere Bicester Phase 2** 17490-081012 TP712

1.40

Remarks:

#- not determined

Checked By

Approved By:

Date Approved:

Particle Size Distribution Test

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: Location: **Contract Number: Hole Number** Sample Number: Depth (m): Sample Type

SDG121024-16 **Kingsmere Bicester Phase 2** 17490-081012 TP715

0.70

Remarks:

#- not determined

Approved By:

Date Approved:

5.11.12

Page 26 of 43

Particle Size Distribution Test

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: Location: Contract Number: Hole Number Sample Number: Depth (m) : Sample Type SDG121024-16 Kingsmere Bicester Phase 2 17490-081012 TP716

0.80

Remarks:

#- not determined

Approved By:

5.11.12

Date Approved:

Page 27 of 43

Particle Size Distribution Test

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: Location: Contract Number: Hole Number Sample Number: Depth (m) : Sample Type SDG121024-16 Kingsmere Bicester Phase 2 17490-081012 TP717

0.50

Remarks:

#- not determined

Checked By

Approved By:

Date Approved:

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP701
Sample Number:	
Depth (m) :	1.00
Sample Type	В

Checked By

ULU/VIU

Date Approved:

Page 29 of 43

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP702
Sample Number:	
Depth (m) :	0.60
Sample Type	В

Checked By

ULU/VIU

Date Approved:

Page 30 of 43

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP703
Sample Number:	
Depth (m) :	0.50
Sample Type	В

Checked By

Date Approved: Page 31 of 43 5.11.12

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP705
Sample Number:	
Depth (m) :	0.50
Sample Type	В

Checked By

Date Approved: Page 32 of 43 5.11.12

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP707
Sample Number:	
Depth (m) :	0.50
Sample Type	В

Checked By

Date Approved: Page 33 of 43 5.11.12

SDG121024-16
Kingsmere Bicester Phase 2
17490-081012
TP710
0.50
В

Checked By

Date Approved: Page 34 of 43 5.11.12

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP711
Sample Number:	
Depth (m) :	0.80
Sample Type	В

Checked By

Date Approved: Page 35 of 43 5.11.12

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP714
Sample Number:	
Depth (m) :	1.00
Sample Type	В

Checked By

Date Approved: Page 36 of 43 5.11.12

Dry Density/Moisture Content Relationship BS 1377:Part 4:1990

Client ref: Location: **Contract Number: Hole Number:** Sample Number: Depth (m) : Sample Type

SDG121024-16 **Kingsmere Bicester Phase 2** 17490-081012 **TP703**

1.00

Remarks:

Date Approved:

Dry Density/Moisture Content Relationship Vibro Compaction BS 1377:Part 4:1990 . Cl 3.7

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	ТР704
Sample Number:	
Depth (m) :	1.00
Sample Type	

Remarks

Checked By

Approved By:

Dry Density/Moisture Content Relationship Vibro Compaction BS 1377:Part 4:1990 . Cl 3.7

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	ТР707
Sample Number:	
Depth (m) :	0.50
Sample Type	

Remarks

Checked By

Approved By:

Date Approved:

Dry Density/Moisture Content Relationship BS 1377:Part 4:1990

Client ref: Location: Contract Number: Hole Number: Sample Number: Depth (m) : Sample Type SDG121024-16 Kingsmere Bicester Phase 2 17490-081012 TP708

1.10

Remarks:

Checked By Approved By:

Date Approved:

Dry Density/Moisture Content Relationship BS 1377:Part 4:1990

Client ref:	SDG121024-16
Location:	Kingsmere Bicester Phase 2
Contract Number:	17490-081012
Hole Number:	TP719
Sample Number:	
Depth (m) :	1.40
Sample Type	

Remarks:

Date Approved:

SUMMARY OF POINT LOAD TESTS.

Int. J. Rock Mech	. Sci. &	Geomech. Abstr.	Vol. 22,	No. 2, pp	. 51 - 60, 1985.
-------------------	----------	-----------------	----------	-----------	------------------

Borehole	Depth	Туре	of Test	Width	Platen	Failure	Equivalent	Point	Size	Point	Angle between	Type of	
Number		d	I		Separation	Load	Diameter	Load	Factor	Load Index	plane of	anisotropy	Remarks.
		а	//	(W)	(D)	(P)	(D _e)	(I_s)	(F)	$(I_{s(50)})$	anisotropy	(Bedding or	
	(m)	b/i		(mm)	(mm)	(kN)	(mm)	(MPa)		(MPa)	& core axis.	Cleavage).	
TP701	0.60	i		68	23	9.62	45	4.83	0.95	4.59			
TP703	0.50	i		63	23	8.27	43	4.48	0.93	4.18			
TP705	0.50	i		69	24	8.35	46	3.96	0.96	3.81			
TP707	0.50	i		97	24	7.07	54	2.38	1.04	2.48			
TP710	0.50	i		89	19	5.08	46	2.36	0.97	2.28			
TP715	0.70	i		74	25	8.63	49	3.66	0.99	3.62			
TP717	0.50	i		90	24	7.22	52	2.62	1.02	2.68			
								-					

Key : d = diametral; a = axial; b = block; i = irregular lump test; I = perpendicular; // = parallel to planes of weakness.

Approved By

06/11/12 Date

Contract No.

17490-081012 Client Ref No.

SDG121024-16

itte & Tecting Services Limited

Bynea, Llanelli, SA14 9SU

Kingsmere Bicester Phase 2

CERTIFICATE OF ANALYSIS

SDG:	121024-16	Location:	Kingsmere Bicester Phase 2	Order Number:	20058
Job:	H_WSP_BAS-71	Customer:	WSP Environmental	Report Number:	
Client Reference:	28453	Attention:	Helen Gardiner	Superseded Report:	

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method. TMO48 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate

If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9 NDP -No determination possible due to insufficient/unsuitable sample

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately

11. Results relate only to the items tested

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-guantitative due to the matrix effects and high dilution factors employed

Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol thylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 15 3-Methylphenol and 4-Methylphenol) Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5 -C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be

ANALYSIS	D&C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	analysis
SOLVENTEXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
ELEMENTAL SULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLS BY GOMS	WET	DOM	SOXTHERM	GC-MS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID
EPH (MIN OL)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID
EPH (CLEANED UP)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID
EPH CWGBY GC	D&C	HEXANEACETONE	ENDOWEREND	GC-FID
PCBAROCLOR 1254/ PCBCON	D&C	HEXANEACETONE	ENDOWEREND	GC-MS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GC-MS
×06C40	WET	HEXANEACETONE	SHAKER	GC-FID
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	GC-FD
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GC-MS

SOLID MATRICES EXTRACTION SUMMARY

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
BH	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FID
EPHCWG	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FID
MNERALOL	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FID
PCB7 CONGENERS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
PCBAROCLOR 1254	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
SVOC	DCM	LQUDILQUDSHAKE	GCMS
FREESULPHUR	DCM	SOLD PHASEEXTRACTION	HPLC
PESTOCPOPP	DCM	LQUD/LQUD SHAKE	GCMS
TRIAZINE HERBS	DCM	LQUD/LQUD SHAKE	GCMS
PHENOLSMS	ACETONE	SOLD PHASEEXTRACTION	GCMS
TFH by INFRARED (IR)	TCE	STRRED EXTRACTION (STIR-BAR)	R
MNERAL OL by R	TCE	STRRED EXTRACTION (STIR-BAR)	R
GLYCOLS	NONE	DRECTINIECTION	CC FD

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

ntification of asbestos in soils are ults for ide The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

Asbestos Type

Chrvenile

Amosite

Ondate

Fibrous Adinaite

Fibrous Anthrophilite

Fibras Trendie

Common Nar

White Ashestos

Brown Asbestos

Rive Astreations

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Table of Results Water Samples Job No: 07-00723 Site: Bicester, Whitlelands Farm (off B4030)

0	20
S	oratori
3	tal Lab
A	rironmer
	En

			Lab No.	7800	7801	7940
			Sample Ref	TP56-1.6	TP65-W1	TP27
			Depth	1.6	1.2	
Determination	LOD	Units	Method			
Arsenic	10	hg/l	303 *	I	< 10.0	1
Cadmium	5	hg/l	303 *	1	< 5.0	I
Chromium	5	hg/l	303 *	I	< 5.0	I
Copper	5	l/gu	303 *	1	< 5.0	I
Nickel	5	hg/l	303 *	1	< 5.0	1
Lead	10	hg/l	303 *	1	< 10.0	1
Zinc	7	hg/l	303 *	1	8.7	1
Free Cyanide	40	hg/l	315	1	< 40.0	1
Hd		pH units	312	7.8	8.1	1
Sulphate	20	mg/l	303	43.8	67.3	1
Chloride	20	l/gm	320	I	< 50.0	1
Ammonium	0.5	mg/l	324	1	< 1.3	1
Chemical Oxygen Demand (CO	20	mg/l	337	1	< 20.0	< 20.0

Accreditation: * ISO17025, M MCerts, \$ Subcontracted

Page 15 of 15

WSP

Job Number: 07/0810/S

Report No: 07/0810/S

Report Date: Project Number: Client: Site Address: Postal Address: Date of sampling: Date of Analysis: 11/06/2007 12370178 WSP Environmental Ltd Bicester, Whitelands Farm (off B4030) Mountbatten House, Basing View, Basingstoke, Hampshire, RG21 4HJ 14/05/2007 June 07

Dear C Poole, G Hearn & K Hawkins,

Please find attached your results for the above project.

This report includes the results for the soil samples we received.

Results Authorised by:

M. Beastall - Geotechnical Laboratory Manager

Samples from this project are due for disposal on

09/07/2007

Unaccredited Tests are marked with an asterix (**), Testing marked with (*) In house method based on BS1377 method all other tests are UKAS accredited.

Testing marked "X" see attached figure for results

US = Unsuitable

NP = Non plastic US = Unsuitable IS = Insufficient sample to carry out scheduled test UUS = Unconsolidated Undrained single stage UUM = Unconsolidated Undrained Multi stage \$ = Subcontract

WSP Environmental, Unit 5, Centurion Business Centre, Dabell Av, Blenheim Industrial Est, Bulwell, Notts, NG6 8WA

SP	NMENTAL			Remarks																							
Š	VIRO			One dimensional Consolidation *	Γ							t	T			t				Γ				T	F		П
	EN			* sqA ansV sand Shear																							Π
				Mode of Failure																							
		sting		Strain @ Failure %																							
7		sion te		Undrained Shear Strength CU kPa																							
8W/		press	5&7	Corrected Deviator Stress kPa																							
n NG6		Com	art's	Cell Pressure kPa																							
nghan		ngth 8	377:F	Diameter mm																							
Notti		Strer	BS 1	9qγ⊺ IsixsiıT	L																						
Ilwell,			t 3	* I/g ster Soluble Chloride g/l																							
le, Bu	S	mical	7:Par	Vrganic Matter % **																							
Avenu	sall	Chei	S 137	* Hq	7.7		7.4			8.0				8.1			7.1	8.0	6.3		7.7		7.6	7.2		7.9	8.0
abell	N N		â	* I\g əter Soluble Suphate g/I *	0.33		0.03			0.17				0.02			0.01	0.02	0.02		0.16		0.39	0.01		0.11	0.04
tre D	rato	_	4	Compaction 4.5kg		NS			×		IS					IS						×					
s Cen	abo	actior	7:Part	Compaction 2.5kg										×						×			×	×			×
usines	cal	Comp	S137	WCA																							
ian Bu	n		8	СВК			×	×					IS		IS			IS			×				×	×	
entur	otec			Particle Density Mg/m3																							
nit 5 C	16			Particle Size Distribution	×	NS		×	×		×		×		×	×				×		×			×		
td, Ur	2			Dry Density Mg/m3																							
ntal L	nma			Linear shrinkage																							
onme	Sur			% muð\$4 gnizzag lainstaM			90			70		47		100			90	37	90		100		58	95		60	100
Envir				Plasticity category			CI			CI		CL		CL			G	СН	MH		СН		CV	CV		CH	MΗ
WSP				Plasticity index %			16			18		∞		19			18	25	24		33		49	54		31	23
		uo	art 2	Plastic Limit %			23			19		18		21			19	26	42		33		26	23		24	32
		sificati	377:P	% jimid biupid			39			37		26		40			37	51	66		66		75	77		55	55
		Class	BS 1:	% fnefno Content %			11			23				18			16	25	22		35		32	17		24	35
				Depth to (m)	0.80	1.50	0.20	0.80	0.80	2.60	0.80		0.80	1.50	0.70	0.80	0.20	1.10		2.00	1.00	1.50	1.50	0.20	1.20	1.20	
				Deppth From (m)	0.40	1.00	0.10	0.30	0.30	2.40	0.30	0.65	0.30	0.80	0.25	0.50	0.10	0.60	0.10	1.50	0.50	1.20	1.20	0.10	0.80	0.80	1.00
20/2		Jata		Sample Type																							
a 08/07		nple L		oN əlqms2	4	5	-	4	4	80	4		4	5	4	4	-	S	-	6	5	7	80	-	3	4	4
RP09		Sar		BH/TP/WS No	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP06	TP09	TP10	TP11	TP12	TP13	TP13	TP14	TP15	TP15	TP16	TP16	TP16	TP17

Page 2 of 40

P	MENTAL			kemarks																								
ž	/IRON			Isnoisnemib enO Consolidation * TT	t	\vdash		\vdash		+		+	1		\vdash			\vdash							\vdash		┢	\vdash
2	EN			* Hand Shear Vane Kpa	t	t	t	t	t	t	t	t		t		\square		t						\square	t	\uparrow	┢	\vdash
				Mode of Failure	T	T	T		T	t	T	t	\square	t	t	t	t	t	\vdash	\square	F	\square		\vdash	\vdash			\square
		ting		Strain @ Failure %	T	T	T		T	T	T	t	T		T	T	T	T	T	\square			T	F	F		F	
		on tes		Undrained Shear Strength CU kPa	T		\square	T	T	T		T												T	T		F	
8WA		oressi	& 7	Corrected Deviator Stress kPa																					T			
NG6		Comp	art's 5	Cell Pressure kPa	Γ							T							\square		F	T	T	F				Π
gham		gth &	877:Pa	Diameter mm	Γ					T		T				T			\square		F		\square					Π
Nottin		Stren	BS 13	эqүТ ізіхізі Туре								T									Γ	T						Π
well, I	ĺ		3	* I/g ster Soluble Chloride g/l	Γ																				T			Π
le, Bu	s	nical	7:Part	** % Organic Matter %																		\square			T			\square
Avenu	sult	Cher	\$ 137	* Hd	7.7	7.7						7.6			7.2	8.0		7.6				7.5	8.0	7.8	7.7	7.9		7.7
abell	ry re		B	* I/e ster Soluble Suphate g/I	0.33	0.06						0.01			0.02	<0.01		0.01				0.03	0.01	0.03	0.03	0.03		0.08
tre D	rato		4	Compaction 4.5kg						S				Γ					×	IS							S	\square
s Cen	abo	action	7:Part	Compaction 2.5kg		IS										×		×				×			×			\square
sines		Comp	S1377	WCA																								
an Bu	hni		8	СВК	×		IS	IS				×					S				×		×	×		×		×
enturi	otec		Π	Particle Density Mg/m3																								\square
lit 5 C	f Ge			Particle Size Distribution			×	×		×							×		×		×						×	
td, Ur	ry o			€m∖gM γtianaG γnG																								
ntal L	nma			Linear shrinkage																								
onme	Sun			% muð24 gnisseg lensteM	47	36						100			96	70		70				90	74	61	58	50		63
Envir				Plasticity category	MV	MM						ML			ū	ū		ū				СН	CL	CV	CV	СН		СH
WSP				Plasticity index %	29	25						80			23	21		21				25	6	50	42	40		35
		uo	art 2	Plastic Limit %	43	34						23			21	22		22				24	20	27	29	24		36
		sificati	377:P	% jimid biupid	72	59						31			44	43		43				49	29	77	71	64		71
	i	Class	BS 1	Moisture Content %	56	21						15			18	17		17				18	17	22	34	22		37
				Depth to (m)	1.40	1.00	1.10	0.70	1.10	0.70	0.90		0.60	0.95			1.20	0.10	0.60	1.50	1.00	0.10	0.85	1.20	1.50	0.80	1.20	1.00
				Deppth From (m)	1.10	0.50	0.80	0.70	0.85	0.50	0.80	0.10	0.40	0.70	0.10	0.10	0.80	0.10	0.60	1.00	0.50	0.10	0.50	0.85	1.00	0.50	1.00	0.50
20/2		Jata		Sample Type																								
a 08/0	-	nple L		oN əlqms2	4	5	5	2	9	3	4	٢	ю	4		٢	5	-	4	5	т	-	5	7	7	4	4	2
RP09	d	Sal		BH/TP/WS No	TP18	TP19	TP20	TP21	TP21	TP22	TP22	TP23	TP23	TP23	TP24	TP27	TP26	TP27	TP27	TP28	TP29	TP30	TP30	TP30	TP31	TP32	TP33	TP34

Page 3 of 40

SP			Remarks																							
S			One dimensional * Consolidation																							
			* sqA ensV sead bnsH																							
			Mode of Failure																							
	sting		Strain @ Failure %																							
	ion te:		CU kPa Undrained Shear Strength																							
5 8W/	press	5&7	Corrected Deviator Stress kPa	L																						
n NG6	Com	art's	Cell Pressure kPa																							
nghan	ngth 8	377:F	Diameter mm																							
Nottir	Strer	BS 1	эqүТ гіахіаІ Туре	L																						
Ilwell,		t 3	* I/e Soluble Chloride g/l																							
le, Bl	mical	7:Par	Organic Matter % **																							
Avenu	Che	S 137	* Hq	7.7	7.4	7.8		7.3	7.8	7.9	7.8	8.3	6.5	6.7			7.3	8.3		8.1		8.3		7.2	8.3	7.9
abell v		â	* I\exter Soluble Suphate g/I	0.33	0.01	0.01		0.01	0.19	0.01	0.02	0.01	0.02	0.02			0.28	0.11		0.03		0.06		0.02	0.01	0.02
trato		4	Compaction 4.5kg													IS		IS								
s Cen	action	7:Part	Compaction 2.5kg	×	×			×	×		×			×							×	IS		×	×	
usines	Comp	S137	WCV																							
ian Bu	L	8	СВК				S			×		×	×		S		<u>IS</u>			×			IS			×
entur			Particle Density Mg/m3																							
f Ge			Particle Size Distribution				×								×	×			×				×			
IZ, Ur			Dry Density Mg/m3																							
ental L nma			Linear shrinkage																							
onme			% muð24 gnissag lanataM	100	80	80		80	60	69	37	79	80	96				95		77		100		75	100	32
Envii			Plasticity category	MH	MI	ML		СН	S	ū	CV	CL	СН	MI			NP	ML		CH		CL		MM	ML	CL
WSP			Plasticity index %	38	18	14		31	49	23	51	10	40	18			NP	2		28		10		ი	5	თ
	uo	art 2	8 JimiL Sitsel9	26	28	26		25	30	25	29	19	27	28			NP	34		23		20		49	15	18
	sificati	377:P	% jimiJ biupiJ	64	46	40		56	79	48	80	29	67	46				41		51		30		58	20	27
	Class	BS 1	Moisture Content %	22	26	20		24	26	25	29	12	17	14			115	54		22		15		51	13	18
			Depth to (m)	0.90		0.60	1.10		1.10	0.80	1.00	1.10	0.50		0.60	0.60	0.30	0.60	1.00	0.90		1.75	1.20	0.20	1.10	0.70
			Deppth From (m)	0.60	0.10	0.30	0.60	0.10	0.60	0.50	0.50	0.65	0.40	0.10	0.30	0.20	0.00	0.20	0.70	0.60	1.00	1.20	0.80	0.10	0.60	0.30
20/2	Jata		Sample Type																							
a 08/0	nple [oN əlqms2	5	٢	4		-	2	e	3	5	3	-	3	4	٢	m		7		9	7	-	5	3
RP09	Sar		ON SW/TP/H8	TP35	TP36	TP37	TP37	TP38	TP38	TP39	TP40	TP41	TP43	TP44	TP45	TP46	TP48	TP49	TP49	TP50	TP53	TP54	TP55	TP56	TP56	TP60

Page 4 of 40

	on te		Undrained Shear Strength									
	pressic	87	Corrected Deviator Stress kPa									
	Com	art's 5	Cell Pressure kPa									
	gth &	877:P	Diameter mm									
	Stren	BS 1 3	Triaxial Type									
	Γ	e	Water Soluble Chloride g/I *	Γ								
lts	nical	7:Part	Organic Matter % **									
esu	Cher	5 137	* Hq	7.7			6.1					
ory r		ä	Vater Soluble Suphate g/I	0.33			0.02					
rato		4	Compaction 4.5kg	Γ	×			×		S		
-abc	action	7:Part	Compaction 2.5kg	Γ								
cal I	Comp	S1377	MCV									
chni		В	СВК				×		S			
ote	Π		Particle Density Mg/m3	Γ								
f Ge			Particle Size Distribution	×	×	×		×	×	×		
ry o			Dry Density Mg/m3									
nma			Linear shrinkage									
Sun			% muZS4 gnisseq leitəteM				100					
			Plasticity category				ū					
			Plasticity index %				20					
	uo	art 2	Plastic Limit %				23					
	sificati	377:P	% jimid biupid				43					
	Class	BS 1	Moisture Content %				29					
			Depth to (m)	0.75	1.50	2.00		1.65	0.60	1.50		
			Deppth From (m)	0.25	1.00	1.50	0.10	1.10	0.30	1.10		
			Sample Type									
	Data		3pecimen Ref									
	nple [oN sigmeS	3	5	9	-	9	4	80		
	Sar		on SW/9T/H8	TP61	TP61	TP61	TP64	TP64	TP65	TP65	- 1	

			Remarks															
		Γ	One dimensional Consolidation *	Γ													Γ	\square
			* sqY ənsV shear Vane Kpa															
			Mode of Failure	Γ														
	ting		Strain @ Failure %	Γ														
1	on tes		Undrained Shear Strength CU kPa															
	Dressi	87	Corrected Deviator Stress kPa															
	Comp	art's 5	Cell Pressure kPa															
	gth &	377:P	Diameter mm															
	Stren	BS 1	тгіахіаl Туре															
		13	Water Soluble Chloride g/I *															
	mical	7:Part	Organic Matter % **															
	Chei	S 137	* Hq	7.7			6.1											
		â	I/g starduble Suphate g/I *	0.33			0.02											
		4	Compaction 4.5kg		×			×		S								
	actior	7:Part	Compaction 2.5kg															
	dwon	S137	WCA															
		8	СВК				×		S									
			Particle Density Mg/m3															
			Particle Size Distribution	×	×	×		×	×	×								
			Dry Density Mg/m3															
			Linear shrinkage															
			% muð24 gnissag laitetA				100											
l			Plasticity category				ū											
			Plasticity index %				20											
	5	art 2	Plastic Limit %				23											
	silicati	377:P	% timid biupid				43											
	Class	BS 1	% fnefnoC entert %				29											
			Debth to (m)	0.75	1.50	2.00		1.65	0.60	1.50								
			Deppth From (m)	0.25	1.00	1.50	0.10	1.10	0.30	1.10								
L			Sample Type															
040	Jala		Specimen Ref															
1 olon	1 pidi		oN alqms2	ю	5	9	-	9	4	80								
000	00		on SW/9T/H8	TP61	TP61	TP61	TP64	TP64	TP65	TP65								

RP09a 08/07/05

PLASTICITY CHART TAKEN FROM BS5930 : 2000

WSP Environmental Ltd Unit 5, Centurion Business Park Dabell Avenue, Bulwell Nottingham, NG6 8WA

Page 6 of 40

RP09b 09/02/05 ISSUE 1 REV0