

PROJECT	PARCEL R DEVELOPMENT, KINGSMERE, BICESTER
	DRAINAGE STRATEGY
PROJECT NUMBER	23047
CLIENT	PREFERRED HOMES LTD AND COUNTRYSIDE (BICESTER) LTD
REPORT DATE	SEPT 2023

PROJECT NAME PARCEL R DEVELOPMENT, KINGSMERE, BICESTER

PROJECT NUMBER 23047

CLIENT PREFERRED HOMES LTD AND COUNTRYSIDE (BICESTER) LTD

REVISION	DATE	WRITTEN BY	REVIEWED BY
Initial issue	11.09.2023	JE	AA/AR
P1	15.09.2023	JE	AA/AR
P2	24.10.2023	JE	AA/AR
Р3	31.10.2023	JE	AA/AR
P4	03.11.2023	JE	AA/AR

TABLE OF CONTENTS

1	Introduction	1
1.1	Terms of Reference	1
1.2	Objectives	1
2	Details of the Site	1
2.1	Site Details	1
2.2	Location Plan:	5
2.3	Site Description	5
2.4	Proposed Development Details	5
3	Existing drainage/Flood Risk Assessment	7
3.1	Flood Risk Assessment	7
3.2	SUDS Hierarchy	3
3.3	Existing Drainage	3
3.4	Surface Water Restriction	3
4	Proposed Drainage	9

DRAINAGE DESIGN STRATEGY REF – 2				
	PARC	EL R DEVELOPMENT, KINGSMERE, BICESTER	Page 3 of 27	
	4.1	Section 104 Adopted Drainage	9	
	4.2	Private Surface Water Drainage	10	
	4.3	SUDS (Sustainable Urban Drainage Methods)		
	4.4	Private Foul Water Drainage	11	
	4.5	Assessment of Water Quality Hazard	15	
	5	Conclusions and Recommendations		
	APPEN	IDICIES		

- A: Create Engineering Drawing
- **B: Impermeable Areas Plan**
- C: Section 104 Adoptable Drainage Layout
- D: Proposed Drainage General Arrangement
- E: Surface Water Drainage Calculations
- F: Foul Water Drainage Calculations

1 Introduction

1.1 Terms of Reference

ARC Engineers Ltd has been appointed by Preferred Homes Ltd and Countryside (Bicester) Ltd to provide a Drainage Strategy in support of a hybrid application comprising (i) in FULL, the construction of an 82 no. apartment affordable extra care home (class C2) with associated bistro, open space, landscaping, car/cycle parking, service infrastructure (drainage, highway, lighting), engineering operations, creation of new vehicular access and re-instatement of existing access to footpath, and (ii) in OUTLINE, the construction of a maximum of 14 market residential dwellings (class C3), on land known as Parcel R, Kingsmere, Bicester.

The part of the site containing the extra care development and the adopted road covers an area approximately 0.6089 Hectares. The C3 housing development site connecting into the adopted road covers an area of 0.318 Hectares.

1.2 Objectives

The objective of this drainage design strategy is to evaluate the following issues in regard to flood risk at the application site.

- To provide a suitable drainage design for the extra care development.
- To provide a suitable adopted drainage design to section 104 within the adopted road network .
- To ensure that the drainage strategy complies with the recommendations within the approved flood risk assessment under application 13/00847/OUT.

2 Details of the Site

2.1 Site Details

Table 2: Development Location

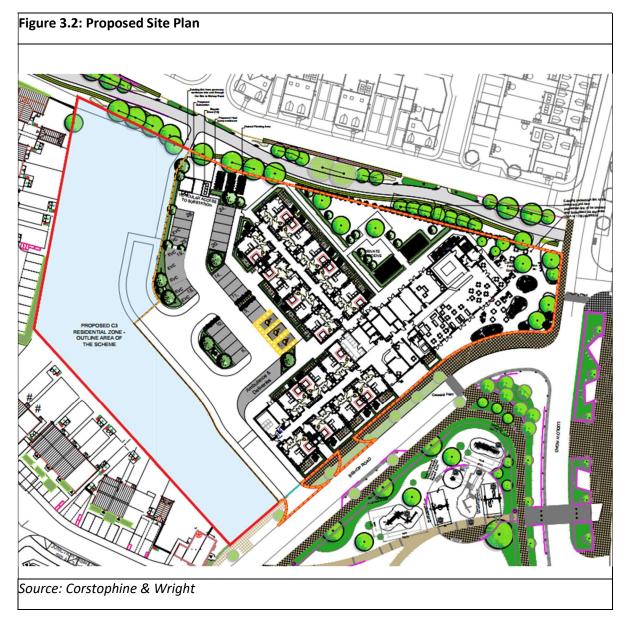
	at and a second s
Site Name:	Parcel R, Kingsmere, Bicester
Purpose of Development:	C2 Extra Care nd up to 14 C3 dwellings
Existing Land Use:	Serviced prepared site
OS NGR:	SP565224
Country:	England
County:	Oxfordshire
Local Planning Authority:	Cherwell District Council
Lead Local Flood Authority	Oxfordshire County
Critical Drainage Area	No
Internal Drainage Board:	Not Applicable
Other Authority (e.g. British Waterways/ Harbour Authority)	Not Applicable

2.2 Location Plan:

2.3 Site Description

The application site is located south west of Bicester.

The application site is known as Parcel R and is part of the Kingsmere Phase 2 development. Road and drainage infrastructure has been planned in a comprehensive manner as part of the approved masterplan for the area.


A topographical survey is available for the development. This indicates the existing levels are as follows:

- Site access via junction with main site road network 81.300mAOD
- North boundary = 82.200mAOD
- South-west corner = 81.300mAOD

The access road into the proposed site is to be adopted under a section 38 agreement with the local highways authority. As such the proposed drainage application within the access road will be to section 104 adoptable standards.

2.4 Proposed Development Details

Extra Care Development and C3 Dwellings.

3 Existing drainage/Flood Risk Assessment

3.1 Flood Risk Assessment

- The approved flood risk assessment for Kingsmere Phase 2 was prepared by WSP on behalf of Countryside (Bicester) Ltd. The details of this are as follows:
- 1. A residential led mixed use development together with the associated infrastructure is proposed at the Kingsmere Phase 2 site at south west Bicester.
- 2. The EA's Flood Map shows the development site to be wholly within Flood Zone 1 (Low Probability). All land uses are suitable for development within Flood Zone 1 according to the NPPF; hence the proposed development is in accordance with NPPF in terms of flood risk and the Sequential Test.
- 3. The drainage strategy for the development will continue to use the drainage principles set out in the Kingsmere Design Code, developed during Phase 1 and sets out the hierarchy of SuDS measures to be utilised on site. SuDS measures will be utilised within the housing parcels for rainfall events up to the 1 in 10. The surface water sewer system for the development will be used for events above the 1 in 10 year storm, and a proposed detention basin on the southern side of Vendee Drive will provide attenuation for events up to the 1 in 100 plus climate change (40%) while discharging at greenfield runoff rates to the upper reaches of Whitelands Farm Ditch.
- 4. The underling geology, predominantly Cornbrash, and the localised high groundwater table (estimated at 1.5m bgl adjacent Middleton Stoney Road) may preclude the use of soakaways in some areas of the site. Therefore, it will be necessary to establish the infiltration potential of each parcel before infiltration SuDS are used for surface water drainage. However, regardless of the infiltration capacity of the underlying geology, permeable paving can still be used for parcel SuDS for the 1 in 10 rainfall event.
- 5. Swales, walls and bunds along the boundary with Phase 1 will ensure that overland flows from the Phase 2 development site are conveyed to the detention basin south of Vendee Drive. The drainage strategy has been designed with input from the consultancy team, including planning and landscape consultants. The location of the detention basin on the south of Vendee Drive offers the potential to enhance the environment in that area.
- 6. The Environment Agency, Cherwell District Council (sports pitches) and Oxfordshire County Council as the Lead Local Flood Authority agreed to the principles of the drainage strategy during consultation and meetings.
- 7. The Phase 2 development maintains the main existing overland flow routes and is unlikely to increase surface water flood risk offsite.
- 8. Due to the location of the site and surrounding areas within Flood Zone 1, safe access and egress is available for the lifetime of the development.
- 9. The Phase 2 development proposals are robust in terms of flood risk and comply with the NPPF.

3.2 SUDS Hierarchy

Building Regulations Approved Document H, the Interim Code of Practice for SUDS and the NPPF, requires that a hierarchy is applied to development with regard to the disposal of surface water runoff from roof and paved areas and is listed below in order of preference:

- Infiltration to ground e.g. soakaway
- Discharge to watercourse e.g. Unnamed watercourse
- Discharge to sewer e.g. Located within Western Road.

As indicated in the flood risk assessment notes above, discharge via infiltration is considered to be ineffective due to the geology and the high water table. No water courses are available without crossing third party land for discharge.

3.3 Existing Drainage

A guideline drainage layout for the adopted road has been provided by Create Engineering as shown in appendix A below. This has been provided in accordance with the main infrastructure drainage and the FRA for the Kingsmere phase 2 development.

This drawing indicates that foul and surface water drainage connections have been provided into Parcel R. These are as follows: Surface water = 375mm diameter SP1 Spur IL:78.420 Foul water = 150mm diameter FR1 Spur IL:79.220

3.4 Surface Water Restriction

As can be seen in Appendix A drawing, a surface water pipe for connection to the main infrastructure drainage network is provided for the Parcel R site. The proposed section 104 adopted surface water network is to discharge into this connection. The connection has a flow restriction noted as follows:

Parcel R surface water discharge:

3.5 l/s up to the 1 in 10 year storm event

Free discharge above the 1 in 10 year storm event up to the 1 in 100 year storm event including climate change.

Calculations and simulations have been provided to Create Engineering who have confimred the discharge rates are acceptable and are in accordance with their main infrastructure drainage.

In addition to the restriction above, a restriction has also been included on the extra care site to reduce the attenuation requirement within the adopted road. The connection restriction is as follows:

Extra Care development Connection:

2.0 l/s up to the 1 in 10 year storm event

Free discharge above the 1 in 10 year storm event up to the 1 in 100 year storm event including climate change.

This connection is to discharge into the proposed Section 104 adopted drainage layout as shown in appendix C

4 Proposed Drainage

4.1 Section 104 Adopted Drainage

A section 104 adoptable drainage layout has been included (see appendix D). Adopted foul and surface water drainage is to be included within the adopted road. Connections have been provided for both the proposed extra care development site and also the proposed C3 residential dwellings.

Section 104 Surface Water

- Attenuation in the form of large diameter pipes is to be provided in the adopted drainage system to allow the C3 residential dwellings to drain without restriction into the road network via the MHS23 stub connection (appendix C).
- Extra care development site is to connect via MHS19 stub into the adopted system. This connection will require a flow control and weir chamber to allow a flow restriction of 2.0 l/s for the 1 in 10 year storm event. The weir will be positioned at a level to allow free discharge above the 1 in 10 year storm event (appendix C).
- Outfall chamber MHS25 to contain Hydrobrake to restrict the Parcel R discharge to 3.5 l/s for the 1 in 10 year storm event. A Hydro International Hydrobrake is to be installed with a design head of 1.2m and a restriction of 3.5 l/S (ref: CTL-SHE-0086-3500-1200-3500). The 1 in 10 year storm water level is 79.527m. Weir wall to be installed within the chamber at a level of 79.650m to allow overflow above the 1 in 10 year storm event. Weir to be 450mm wide and 450mm deep (appendix C).

Section 104 Foul Water

- Proposed adopted foul water to discharge freely without restriction into main infrastructure network (appendix C).
- Proposed C3 residential dwellings to discharge freely without restriction into the adopted stub connections provided (MHFW13 and MHFW10, appendix C)
- Proposed extra care development to discharge freely without restriction into adopted connection provided MHFW9 (appendix C).

4.2 Private Surface Water Drainage

A proposed private surface water drainage network has been provided for the Extra Care Development (see appendix D). The summary of this network is as follows:

- Locations of RWP's are shown indicative and are to be confirmed by the Architect.
- Permeable paving is shown within the car parking spaces at the lowest point of the car park. This will require perforated pipes linking the permeable parking areas and connecting them to the drainage network. Location subject to confirmation of proposed levels by the Architect/Landscape Architect.
- Bioretention areas shown in patio area to allow for hard landscaping drainage/storage.
- Attenuation tank required due to site discharge restriction. Plastic crate type tank currently shown in appendix D. required volume = 182m³
- Outfall chamber MHS19 to contain Hydrobrake to restrict discharge to 2.0 l/s for the 1 in 10 year storm event. A Hydro International Hydrobrake is to be installed with a design head of 1.35m and a restriction of 2.0 l/S (ref: CTL-SHE-0063-2000-1350-2000). The 1 in 10 year storm water level is 80.551m. Weir wall to be installed within the chamber at a level of 80.600m to allow overflow above the 1 in 10 year storm event. Weir to be 450mm wide and 450mm deep (appendix D).
- Surface water drainage calculations provided in appendix E

The proposed drainage for the C3 dwellings is to be designed by others and has not been included in this report.

4.3 SUDS (Sustainable Urban Drainage Methods)

An assessment of SUDS for the Extra Care development has been undertaken and is provided below:

Permeable Paving:

Recommended for inclusion within the access road and car parking area to provide shallow conveyance, attenuation volume and pollution control. Impermeable membrane to be used beneath the construction and perforated pipes to be run across the lowest area to allow for water collection and connected to the drainage network.

Green Roof:

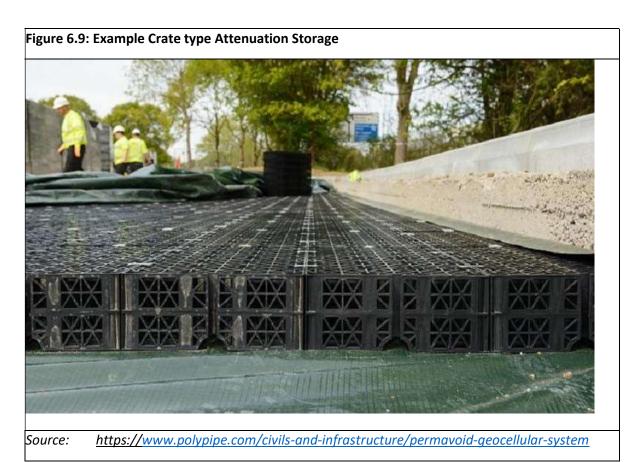
No green roofs have been specified for this project. However, large areas of flat roofs have been indicated which may be suitable for use as green roofs.

Swales:

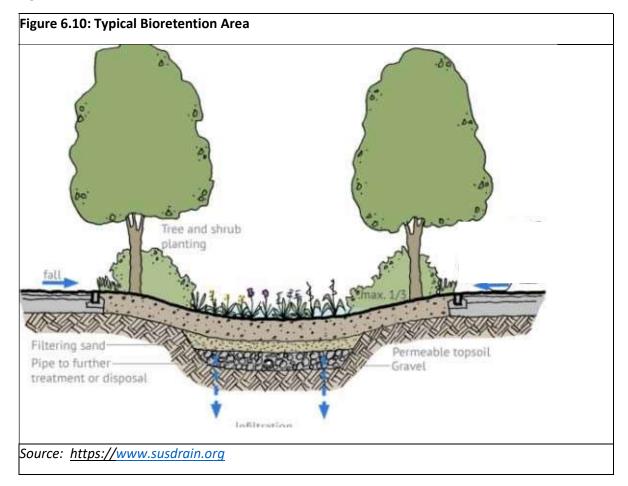
Swales could be used in the green space to the north east of the site if required. This will reduce the drainage depth and also provide attenuation in this area.

Bioretention areas:

Inclusion of bioretention areas has been indicated on the patio area to the east of the site. This is to allow for drainage of the hard landscaped area. Additional bioretention areas may be able to be located in the green spaces to the north east of the site if required.


4.4 Private Foul Water Drainage

Private foul water to drain via MHFW9 by gravity into proposed section 104 adopted stub connection shown in appendix C and D. foul water drainage calcualtions are also provided in appendix F.


Estimation of flows:

- 82-bedrooms, 20 staff in a 24 hour period, 60 visitors (TBC) over a 24 hour period
- Flows & Loads residential care homes 350l/person/day
- Total Flow = (350 x 169) / 86400 = 0.66 l/s

Bioretention areas are shown in the soft landscaping areas of the patio area to allow for surface water storage. Additonal bioretention areas may be implimented in the private garden area to the North of the site to manage surface water runoff from roof areas.

If required, swales may be a solution for roof drainage along the perimeter of the building in the private gardens to the north. This can provide shallow access roof water and provide additional attenuation. As the swales would be located close to the building, partial infiltration at the channel base should be avoided and an impermeable liner is recommended.

An example of shallow swales is illustrated within Figure 6.11 overleaf.

Outflow from the site to the surface water sewer is restricted to 3.5 I/s (QBAR) for the 1 in 10 year storm with free discharge flow rate above that level to the 1 in 100 year storm event including climate change in accordance with the flood risk assessment.

Foul flows will be discharged freely by gravity connection to the public foul/combined sewer located within Western Road.

Figure 6.11: Example of Grassed Swales T Source: <u>https://www.susdrain.org</u>

4.5 Assessment of Water Quality Hazard

An assessment of the water quality hazard arising from the Extra Care Development using the simple index approach outlined within Chapter 26 of CIRIA C753 The SUDS Manual has been requested by the LLFA.

Approaches to wa	ter quality risk management			
Design method	Hazard characterisation	Risk reduction		
		For surface water	For groundwater	
Simple index approach	Simple pollution hazard indices based on land use (eg Table 26.2 or equivalent)	Simple SuDS hazard mitigation indices (eg Table 26.3 or equivalent)	Simple SuDS hazard mitigation indices (eg Table 26.4 or equivalent	
Risk screening ¹	Factors characterising traffic density and extent of infiltration likely to occur (eg Table 26.5 or equivalent)	N/A	Factors characterising unsaturated soil depth and type, and predominant flor type through the soils (eg Table 26.5 or equivalent	
Detailed risk assessment	Site specific information used to define likely pollutants and their significance	More detailed, component s information used to demons components reduce the haz	trate that the proposed SuD	
Process-based treatment modelling	Time series rainfall used with generic pollution characteristics to determine statistical distributions of likely concentrations and loadings in the runoff	Models that represent the tr the proposed SuDS compor reductions in event mean di- total annual load reductions	nents give estimates of scharge concentrations and	

For the Extra Care Development site:

- Pollution Hazard Level = Low medium
- Total Suspended Solids (TSS) = 0.3 + 0.7 = 1.0
- Metals = 0.2 + 0.6 = 0.8
- Hydrocarbons = 0.05 + 0.7 = 0.75

Total SuDS mitigation index = mitigation index1 + 0.5 (mitigation index2)

Where:

mitigation Index n = mitigation index for component n

A factor of 0.5 is used to account for the reduced performance of secondary or tertiary components associated with already reduced inflow concentrations.

Proposed SUDS within the drainage strategy incorporate permeable pavement and a detention basin. The combined SUDS mitigation indices associated with these features for discharge to surface waters is:

- TSS = 0.5 + 0.7 = 1.2
- Metals = 0.6 + 0.6 = 1.2
- Hydrocarbons = 0.6 + 0.7 = 1.3

The proposed SUDS features are therefore considered to appropriately mitigate against any potential sources of pollution generated by the development.

Pollution hazard indices for different land use classifications							
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbon			
Residential roofs	Very low	0.2	0.2	0.05			
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05			
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4			
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), roads except low traffic roads and trur roads/motorways ¹		0.7	0.6	0.7			
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals ar fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	d High	0.82	0.82	0.92			

E Indicative SuDS mitigation indices for discharges to surface waters					
			Mitigation indices ¹		
	Type of SuDS component	TSS	Metais	Hydrocarbons	
	Filter strip	0.4	0.4	0.5	
	Filter drain	0.42	0.4	0.4	
(Swale	0.5	0.6	0.6	
Bioretention system		0.8	0.8	0.8	
	Permeable pavement	0.7	0.6	0.7	
	Detention basin	0.5	0.5	U.6	
	Pond ⁴	0.73	0.7	0.5	
	Wetland	0.83	0.8	0.8	
	Proprietary treatment systems ^{s,s}	These must demonstrate that they can address each of the contar acceptable levels for frequent events up to approximately the 1 in period event, for inflow concentrations relevant to the contributing			

5 Conclusions and Recommendations

ARC Engineers have been commissioned to undertake a Drainage Strategy for Parcel R in accordance the approved flood risk assessment under application 13/00847/OUT to support a planning application for an Extra Care Development and the associated Section 104 adopted drainage network.

The approved flood risk assessment states that runoff generated by the development is to be connected to the drainage network as soakaway is considered unachievable due to ground water and geotechnical conditions and no water courses are able to be connected to in the vicinity.

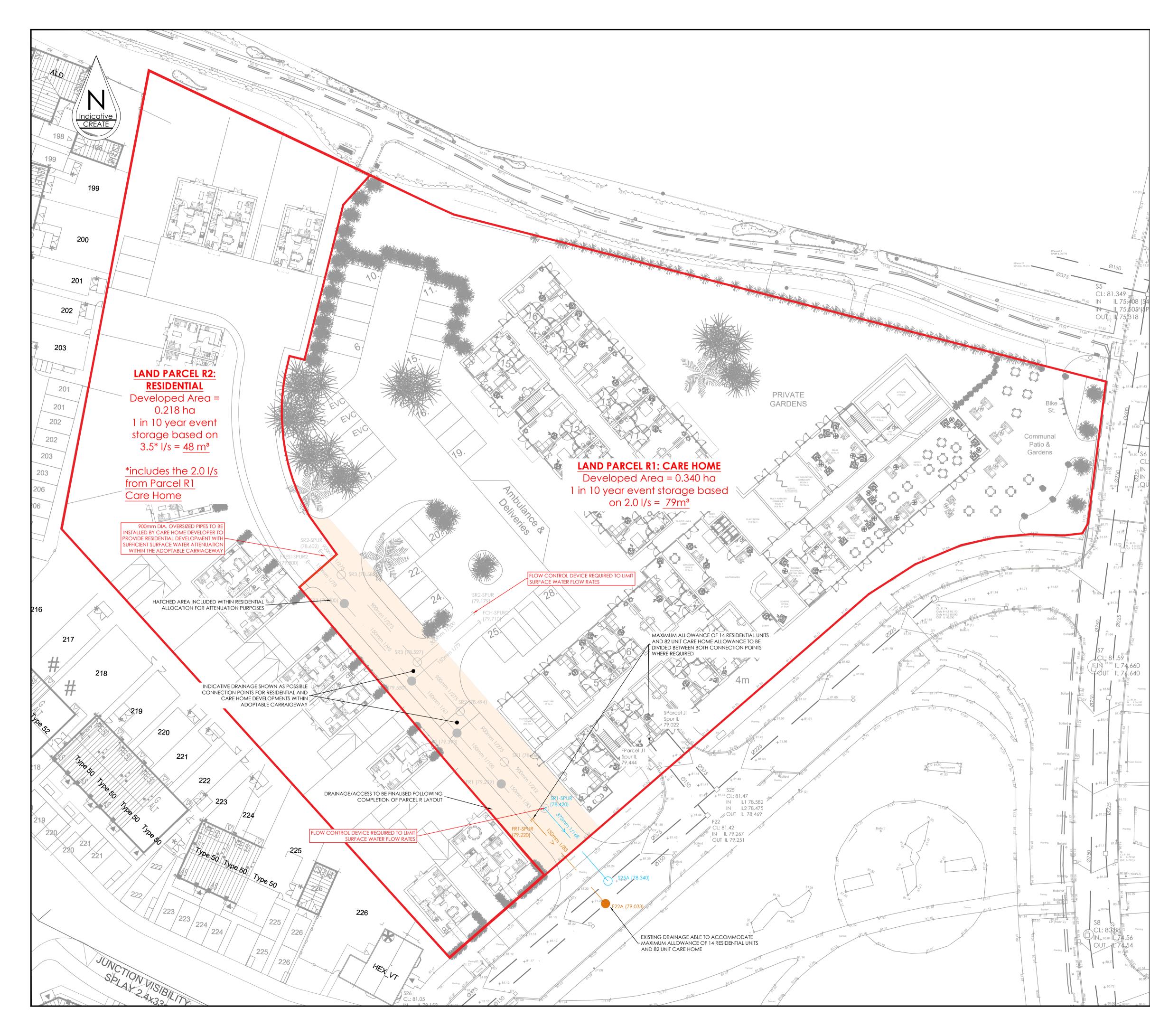
Drainage connection is to be made via existing foul and surface water connection stubs provided in the adopted road network.

Discharge rates must be restricted according the approved flood risk assessment, which states a flow restriction of 3.5 l/s for the for Parcel R up to the 1 in 10 year storm. Any flows above the 1 in 10 year storm up to the 1 in 100 year storm event plus climate change is to have free discharge.

Additional flow restriction has been placed on the Section 104 adopted connection stub for the Extra Care development. This has a restriction of 2.0 l/s up to the 1 in 10 year storm with a free discharge above the 1 in 10 years storm up to the 1 in 100 year storm event including climate change. Surface water attenuation is required for the Extra Care Development.

Drainage connections for both foul and surface water for the C3 dwellings have been provided in the section 104 adopted drainage network. The surface water from the C3 dwellings is to connect without a restriction. The oversized pipes within the section 104 network are to provide attenuation for this area.

A number of SUDS features such as permeable paving and bioretention have been utilised to provide infiltration, shallow conveyance and attenuation prior to discharge from the site.


Undertaking a simple assessment of the likely water hazard arising from the development, it is indicated that the SUDS features proposed provide suitable mitigation against possible TSS, metals and Hydrocarbon pollution.

Following development, the responsibility for maintenance of the Extra Care drainage system, including the SUDS features will be retained with the Extra Care operator. Adopted drainage within the road will become the responsibility of Thames Water under section 104 agreement.

REF – 23047 Page **20** of **27**

APPENDICES

Appendix A:-Create Engineering Design/existing drainage

GENERAL NOTES:

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER CONSULTANTS DRAWINGS AS APPROPRIATE.
- ALL SETTING OUT COORDINATES AND LEVELS ARE BASED ON THE LOCAL GRID GPS DATUM AS INDICATED.
 ALL SETTING OUT DETAILS SHALL BE VERIFIED ON SITE WITH THE ENGINEER. THE ENGINEER MAY REQUIRE MINOR AMENDMENT TO THE SETTING OUT AND/OR LEVEL DETAILS TO ENSURE PROPER TIE IN TO THE EXISTING CARRIAGEWAY AND/OR FOOTWAYS.
- 4. NO PRIVATE SURFACE WATER RUN OFF SHALL DISCHARGE ONTO THE PUBLIC HIGHWAY.
- PRIVATE DRAINAGE AND EXTERNAL WORKS SHALL COMPLY WITH PART H OF THE BUILDING REGULATIONS AND ALL ASSOCIATED BRITISH STANDARDS (BSEN WHERE APPLICABLE) AND NHBC GUIDELINES.
 ALL WORK WITHIN THE PUBLIC HIGHWAY WILL BE CARRIED OUT IN ACCORDANCE WITH THE REQUIREMENTS AND
- ALL WORK WITHIN THE PUBLIC HIGHWAY WILL BE CARRIED OUT IN ACCORDANCE WITH THE REQUIREMENTS AND SPECIFICATION OF OXFORDSHIRE COUNTY COUNCIL. NO WORK SHALL BE UNDERTAKEN WITHIN THE PUBLIC HIGHWAY UNTIL A LICENSE HAS BEEN ISSUED BY OXFORDSHIRE COUNTY COUNCIL.
 ALL PROPOSED ADOPTABLE SEWERS (EXCLUDING HIGHWAY DRAINS) AND ALL WORKS TO THE EXISTING PUBLIC
- SEWERS SHALL BE CARRIED OUT STRICTLY IN ACCORDANCE WITH THE WATER AUTHORITIES ASSOCIATION SPECIFICATION "SEWERS FOR ADOPTION 7TH EDITION" AND THE REQUIREMENTS OF THE WATER AUTHORITY . 8. ALL GULLIES, GULLY CONNECTIONS AND HIGHWAY DRAINS TO BE CONSTRUCTED IN ACCORDANCE WITH THE
- REQUIREMENTS OF OXFORDSHIRE COUNTY COUNCIL HIGHWAY AUTHORITY.
 9. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE LOCATIONS OF ANY EXISTING STATUTORY UTILITIES, ALONG WITH ANY ADOPTABLE AND PRIVATE DRAINAGE THAT MAY BE AFFECTED BY THE PROPOSED WORKS. IDENTIFICATION SHOULD BE CARRIED OUT BY MEANS OF EITHER A CAT SCAN OR HAND DUG TRIAL
- HOLES. ANY DAMAGE TO EXISTING PLANT OR EQUIPMENT SHALL BE REPAIRED AT THE CONTRACTORS EXPENSE.
 SITE CLEARANCE. EXISTING TREES, BUSHES AND SHRUBS SHALL ONLY BE REMOVED, INCLUDING GRUBBING UP OF ALL ROOTS, WITH THE PRIOR AGREEMENT OF THE ENGINEER. TRIMMING AND LOPPING OF EXISTING TREES SHALL ONLY BE CARRIED OUT BY AN EXPERIENCED TREE SURGEON AND APPROVED BY THE ENGINEER.
- 11. PRIOR TO COMMENCEMENT OF WORKS PLEASE REFER TO THE PRE-TENDER & CONSTRUCTION PHASE HEALTH AND SAFETY PLANS FOR FURTHER INFORMATION.

<u>KEY:</u>

Ø37!

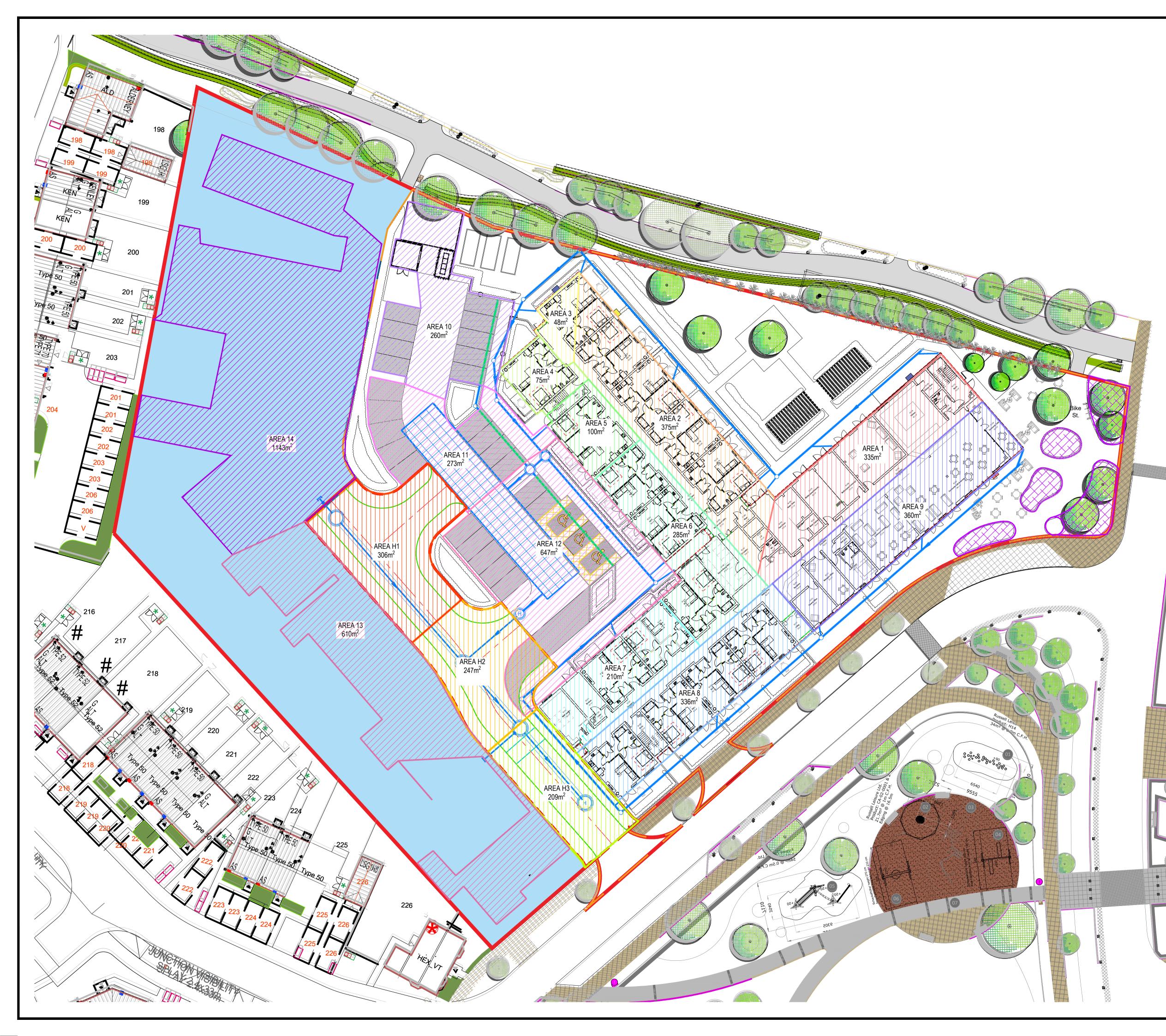
PROPOSED SURFACE WATER PIPE TO CONNECTION POINT SR1-SPUR (COUNTRYSIDE PROPERTIES LTD)

PROPOSED SURFACE WATER MANHOLE (COUNTRYSIDE PROPERTIES LTD) PROPOSED FOUL WATER PIPE TO CONNECTION POINT FR1-SPUR (COUNTRYSIDE PROPERTIES LTD)

PROPOSED FOUL WATER MANHOLE (COUNTRYSIDE PROPERTIES LTD) PROPOSED SURFACE WATER PIPE (CARE HOME DEVELOPER) PROPOSED SURFACE WATER MANHOLE (CARE HOME DEVELOPER) PROPOSED FOUL WATER PIPE (CARE HOME DEVELOPER) PROPOSED FOUL WATER MANHOLE (CARE HOME DEVELOPER) AS BUILT SURFACE WATER SEWER

AS BUILT FOUL WATER SEWER

LAND PARCEL R BOUNDARY

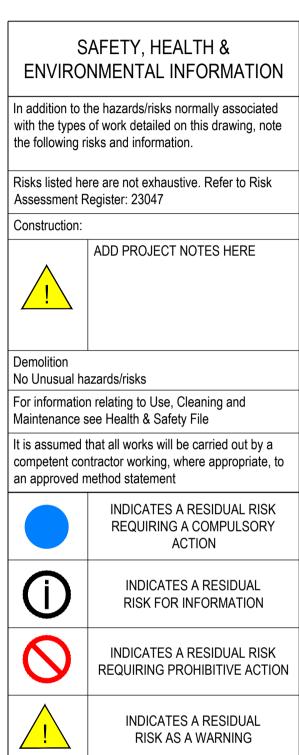

Create Consulting Engineers accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to. COPYRIGHT©RESERVED E 02.06.23 KEY REVISED TO CLIENT COMMENTS SW LJM D 19.05.23 CARE UNIT INCREASED TO 82 UNITS SW LJM 10.05.23 BOUNDARY AND PARCEL R REVISED SW BWA С B 11.10.22 BOUNDARY AND PARCEL R REVISED SW LJM A 20.05.22 REVISED TO LATEST LAYOUT SW BWA AMENDMENT DETAILS DRAWN APPROVED REV DATE

17.02.22			
SCALE(S)	DESIGNED SW	DRAWN SW	
1:250	CHECKED LJM	approved LJM	
JOB No			71
3	374		create
DRAWING NO)	REVISION	CONSULTING
02/8	801	E	ENGINEERS LTD
-	SCALE(S) 1:250 JOB No E DRAWING NO	17.02.22 INFORM SCALE(S) DESIGNED SW 1:250 CHECKED LJM	17.02.22 INFORMATION SCALE(S) DESIGNED DRAWN SW SW 1:250 CHECKED APPROVED LJM LJM JOB NO 874 DRAWING NO REVISION

O NOT SCALE ORIGINAL SHEET SIZE - A1 Landscap

REF – 23047 Page **22** of **27**

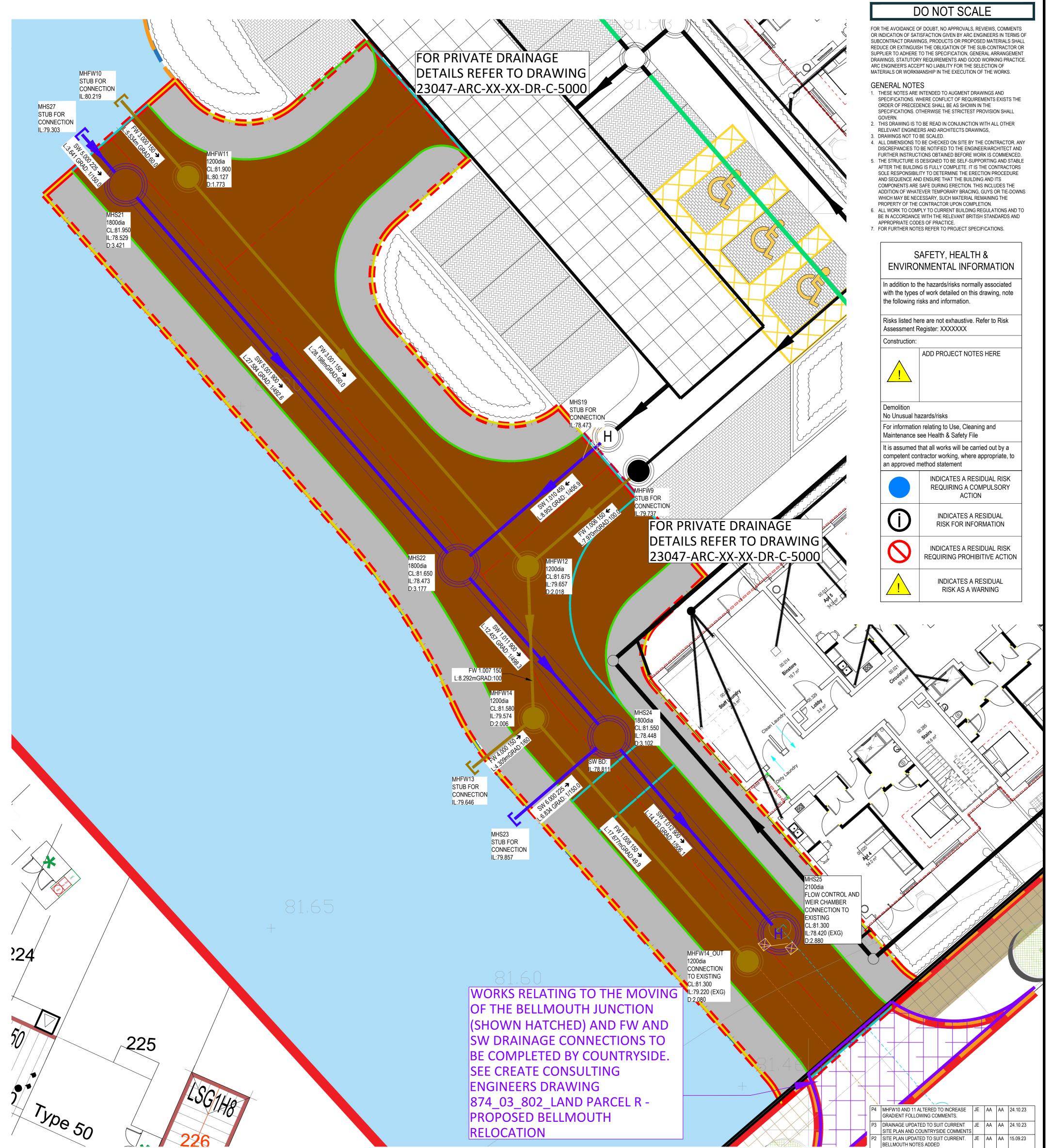
Appendix B:-Impermeable Areas Plan



FOR THE AVOIDANCE OF DOUBT, NO APPROVALS, REVIEWS, COMMENTS OR INDICATION OF SATISFACTION GIVEN BY ARC ENGINEERS IN TERMS OF SUBCONTRACT DRAWINGS, PRODUCTS OR PROPOSED MATERIALS SHALL REDUCE OR EXTINGUISH THE OBLIGATION OF THE SUB-CONTRACTOR OR SUPPLIER TO ADHERE TO THE SPECIFICATION, GENERAL ARRANGEMENT DRAWINGS, STATUTORY REQUIREMENTS AND GOOD WORKING PRACTICE. ARC ENGINEER'S ACCEPT NO LIABILITY FOR THE SELECTION OF MATERIALS OR WORKMANSHIP IN THE EXECUTION OF THE WORKS.

GENERAL NOTES

- THESE NOTES ARE INTENDED TO AUGMENT DRAWINGS AND SPECIFICATIONS. WHERE CONFLICT OF REQUIREMENTS EXISTS THE ORDER OF PRECEDENCE SHALL BE AS SHOWN IN THE SPECIFICATIONS. OTHERWISE THE STRICTEST PROVISION SHALL GOVERN.
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERS AND ARCHITECTS DRAWINGS,
 DRAWINGS NOT TO BE SCALED.
- 4. ALL DIMENSIONS TO BE CHECKED ON SITE BY THE CONTRACTOR. ANY DISCREPANCIES TO BE NOTIFIED TO THE ENGINEER/ARCHITECT AND FURTHER INSTRUCTIONS OBTAINED BEFORE WORK IS COMMENCED.
- 5. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE BUILDING IS FULLY COMPLETE. IT IS THE CONTRACTORS SOLE RESPONSIBILITY TO DETERMINE THE ERECTION PROCEDURE AND SEQUENCE AND ENSURE THAT THE BUILDING AND ITS COMPONENTS ARE SAFE DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE-DOWNS WHICH MAY BE NECESSARY, SUCH MATERIAL REMAINING THE PROPERTY OF THE CONTRACTOR UPON COMPLETION
- PROPERTY OF THE CONTRACTOR UPON COMPLETION.
 6. ALL WORK TO COMPLY TO CURRENT BUILDING REGULATIONS AND TO BE IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS AND APPROPRIATE CODES OF PRACTICE.
 7. FOR SUBJUE NOTES OF DESCRIPTION FOR SUBJUE AND A STANDARDS AND APPROPRIATE CODES OF PRACTICE.
- 7. FOR FURTHER NOTES REFER TO PROJECT SPECIFICATIONS.



P4		AS ALTERED TO AND DRAINAC		RENT SITE	JE	AA	AA	24.10.23
P3	SITE	PLAN UPDATE	D TO CURR	ENT	JE	AA	AA	15.09.23
P2	DRA	WING NUMBER	CHANGED		JE	AA	AA	11.09.23
P1	INITIAL ISSUE JE AA AA 07.					07.09.23		
REV	DETA	۹L			BY	СНК	APP	DATE
CONSULTING STRUCTURAL AND CIVIL ENGINEERS 3 CADMAN COURT, LEEDS, LS27 ORX Phone: 0113 253 3904 www.arc-engineers.co.uk								
PROPOSED EXTRA CARE DEVELOPMENT KINGSMERE, BICESTER								
TITLE: IMPERMEABLE AREAS PLAN DRAWING STATUS:								
	PRELIMINARY							
dra JE	WN:	DATE: SEPT 23	CHECKED: AA	DATE: SEPT 23	APF A/	PROVED		е: :PT 23
	CONTRACT №. SCALE @ A1: 23047 1:250							
PROJECT NO. ORIGINATOR ZONE LEVEL TYPE DISCIPLINE NUMBER REVISION 23047 - ARC - XX - XX - DR - C - 5500 - P4								

Ν

© ARC ENGINEERS LTD 2022

Appendix C:-Section 104 Adopted Drainage Layout

SECTION 108 MODEL MODEL MODEL MODEL
of the New Roads & Street works Act 1991. 14. Filled ground must be filled & consolidated under the supervision & satisfaction of Building

Appendix D:-Proposed Drainage General Arrangement

PRIVATE DRAINAG	<u>SE KEY:</u>
1.000 150Ø at 1:60	PROPOSED PRIVATE FOUL WATER PIPE (150mmØ U.N.O. OUTLET AND CONNECTION BY OTHERS)
1.000 150Ø at 1:60	PROPOSED PRIVATE SURFACE WATER PIPE
SW01 CL = TBC	
	SURFACE WATER CHAMBER
H	HYDROBRAKE
FW01 CL = TBC IL = TBC	
	FOUL WATER CHAMBER
	EXISTING FW SEWER
<u> </u>	EXISTING SW SEWER
	POLYPROPYLENE INSPECTION CHAMBER
RG 🔄	ROAD GULLY
RE 🧠	RODDING EYE
G	GULLY
FG 🔄	FOUL WATER GULLY
RWP	RAINWATER PIPE
st 🔾	SILT TRAP
	SURFACE WATER ATTENUATION POLYSTORM-R OR SIMILAR APPROVED PRODUCT
	PROPOSED PERMEABLE PAVING AREA
	PROPOSED BIORETENTION AREA
	SITE BOUNDARY

GREASE TRAPS NOTE: GREASE TRAPS TO BE CONSIDERED FOR ALL KITCHEN AREAS. THESE MAY BE INTERNAL AND PART OF THE KITCHEN SUPPLIERS WORKS, OR EXTERNAL WITH SIZE AND LOCATION TO BE ADVISED BY SPECIALIST SUPPLIER FOR INDICATIVE INCLUSION ON ENGINEERS DRAWINGS.

NOTE: ALL COVER LEVELS TO BE CONFIRMED FOLLOWING DEVELOPMENT OF EXISTING WORKS

LOW CONTROL CHAMBER DETAILS

1500dia PCC

FLOW CONTROL: HYDROBRAKE CTL-SHE-0063-2000-1350-2000 DESIGN HEAD = 1.35m

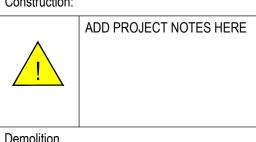
DESIGN FLOW = 2.0 I/s DESIGN FLOW UP TO 1 IN 10 YEAR STORM EVENT

WATER LEVEL = 80.551m WEIR:

DESIGN WIDTH = 0.45m DESIGN DEPTH = 0.45m

LEVEL = 80.600m FOR FLOWS ABOVE 1 IN 10 YEAR STORM EVENT UP TO 1 IN 100 YEAR STORM + CLIMATE CHANGE. CL:81.869

DO NOT SCALE


FOR THE AVOIDANCE OF DOUBT, NO APPROVALS, REVIEWS, COMMENTS OR INDICATION OF SATISFACTION GIVEN BY ARC ENGINEERS IN TERMS OF SUBCONTRACT DRAWINGS, PRODUCTS OR PROPOSED MATERIALS SHALL REDUCE OR EXTINGUISH THE OBLIGATION OF THE SUB-CONTRACTOR OR SUPPLIER TO ADHERE TO THE SPECIFICATION, GENERAL ARRANGEMENT DRAWINGS, STATUTORY REQUIREMENTS AND GOOD WORKING PRACTICE. ARC ENGINEER'S ACCEPT NO LIABILITY FOR THE SELECTION OF MATERIALS OR WORKMANSHIP IN THE EXECUTION OF THE WORKS.

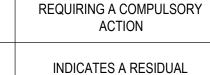
GENERAL NOTES 1. THESE NOTES ARE INTENDED TO AUGMENT DRAWINGS AND

- SPECIFICATIONS. WHERE CONFLICT OF REQUIREMENTS EXISTS THE ORDER OF PRECEDENCE SHALL BE AS SHOWN IN THE SPECIFICATIONS. OTHERWISE THE STRICTEST PROVISION SHALL
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERS AND ARCHITECTS DRAWINGS,
- 3. DRAWINGS NOT TO BE SCALED. 4. ALL DIMENSIONS TO BE CHECKED ON SITE BY THE CONTRACTOR. ANY
- DISCREPANCIES TO BE NOTIFIED TO THE ENGINEER/ARCHITECT AND FURTHER INSTRUCTIONS OBTAINED BEFORE WORK IS COMMENCED. 5. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE BUILDING IS FULLY COMPLETE. IT IS THE CONTRACTORS SOLE RESPONSIBILITY TO DETERMINE THE ERECTION PROCEDURE AND SEQUENCE AND ENSURE THAT THE BUILDING AND ITS COMPONENTS ARE SAFE DURING ERECTION. THIS INCLUDES THE
- ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE-DOWNS WHICH MAY BE NECESSARY, SUCH MATERIAL REMAINING THE PROPERTY OF THE CONTRACTOR UPON COMPLETION. 6. ALL WORK TO COMPLY TO CURRENT BUILDING REGULATIONS AND TO BE IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS AND
- APPROPRIATE CODES OF PRACTICE. 7. FOR FURTHER NOTES REFER TO PROJECT SPECIFICATIONS.

SAFETY, HEALTH & ENVIRONMENTAL INFORMATION In addition to the hazards/risks normally associated with the types of work detailed on this drawing, note the following risks and information.

Risks listed here are not exhaustive. Refer to Risk Assessment Register: 23047 Construction:

L


 \bigcirc

No Unusual hazards/risks

For information relating to Use, Cleaning and Maintenance see Health & Safety File

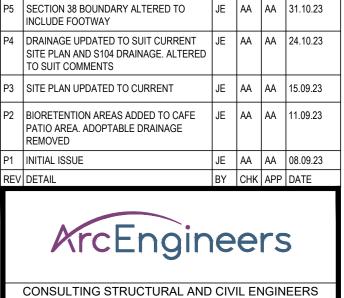
It is assumed that all works will be carried out by a competent contractor working, where appropriate, to

an approved method statement INDICATES A RESIDUAL RISK

INDICATES A RESIDUAL RISK

RISK FOR INFORMATION

REQUIRING PROHIBITIVE ACTION


INDICATES A RESIDUAL

RISK AS A WARNING

	· · · · · · · · · · · · · · · · · · ·	
	provisions of H.A.U.C. "Specification for the Reinstatement of	
	Openings in Highways" June 1992, both under section 71 of the New	
	Roads & Street works Act 1991.	
14.	Filled ground must be filled & consolidated under the supervision &	
	satisfaction of Building Control/Local Authority before any sewer	
	works are carried out.	
4 5	Contractor to take managing to materatible anomatives with respect to	

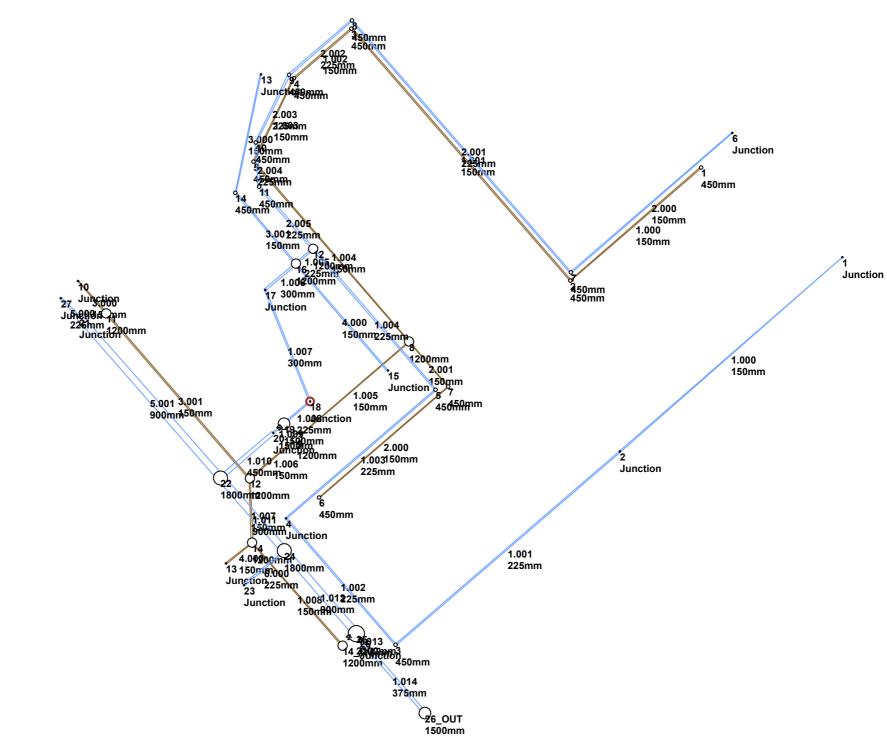
15. Contractor to take measures to protect his operatives with respect to the presence of gas in sewer trenches & manholes through the use of gas monitoring equipment & breathing apparatus as required. 16. Contractor to apply for sewer permits & road opening permits as necessary from the appropriate authorities, prior to commencing works.

- 17. Statutory Undertaker / Utilities Provider is not obligated to accept filter drain/land drainage run-off into the public sewer network or adoptable drainage system(directly or in-directly). An alternative method of disposal of land drainage run-off will therefore be required & you will have to liaise with the local authority, land drainage section with regards to the disposal of filter drain/land drainage run off.
- 18. Cover slabs must carry BSI Kitemark or will be rejected by Statutory Undertaker / Utilities Provider inspector. Where the clear opening of the kitemarked product is different to that of the cover & frame a load bearing slab should be fitted above the cover slab to bring down the size to 600mm x 600mm for Statutory Undertaker / Utilities Provider specified cover size. Please refer to Concrete Pipeline Systems Association (CPSA), Technical Bulletin for kitemarked cover slab opening sizes.
- 19. Sulphate resistant cement (C20-DC2) & precast concrete products must be used or a laboratory report provided providing that such precautions are not necessary. 20. The adopted sewers should be a minimum of 1m & manholes 0.5m
- from kerb faces & service margins. 21. Sewers must have 5m clearance from trees & hedges (please also refer to figure B5.1.10 in the 'Sewer Sector Guidance, Appendix C -Design and Construction Guidance planting adjacent to sewers).
- 2. The chamber size of manholes with more than one connection in them may need to be increased an increment to accommodate the connections & bends. 23. Sewers to be laid in Class "S" bedding (150mm granular bed &
- surround). Where depth of cover to top of sewer is less than 1.2m in highways & verges (or less 900mm in private vehicle areas or 750mm in landscaping areas) then a concrete slab should be provided above the granular surround. Bedding & backfill material to conform to the requirements of Water Industry Specification 4-08-02 (Table A2).

3 CADMAN COURT, LEEDS, LS27 0RX Phone: 0113 253 3904 www.arc-engineers.co.uk

PREFERRED HOMES

PROPOSED EXTRA CARE DEVELOPMENT KINGSMERE, BICESTER


PROPOSED PRIVATE DRAINAGE GENERAL ARRANGEMENT

DRAWING STATUS: PRELIMINARY									
DRAWN:	DATE:	CHECKED:	DATE:	APPROVED:	DATE:				
JE	SEPT 23	AA	SEPT 23	AA	SEPT 23				
CONTRACT			scale @ A1: 1:200						
PROJECT No. ORIGINATOR ZONE LEVEL TYPE DISCIPLINE NUMBER REVISION 23047- ARC - XX - XX - DR - C - 5000 - P5									
		© ARC	ENGINEE	RS LTD	2022				

- DRAINAGE NOTES
- All drainage works shall be carried out in accordance with the Sewer Sector Guidance, Appendix C - Design and Construction Guidance requirements/addendums to the Mechanical & Electrical Specification kite marked. Position size & depth of all existing sewers & services shall be
- established prior to commencement on site. 3. The Contractor shall allow for the protection, temporary & permanent support, & temporary & permanent diversion works, as necessary to
- all existing services. 4. The Contractor shall allow for all traffic management in connection with road & sewer works. 5. The Contractor shall allow for keeping sewer trenches & excavations
- as dry as practicable by pumping from temporary sumps & de-watering as appropriate. The point & method of discharge to be agreed with the drainage authority. 6. Concrete pipes to be Class S unless noted otherwise. The min
- crushing strength for concrete pipes should be Class 120 to EN1916/BS5911-1:2002. 7. Vitrified clay pipes & fittings shall comply with the relevant provisions
- of BS EN295 & BS 65 respectively & be kitemarked. All pipes shall be extra strength to BS 65 or equivalent BS EN295 pipe crushing strength. The min crushing strength for clay pipes should be as follows:100mm dia 40kN/m, 150mm dia 40kN/m, 225mm dia 45kN/m & 300mm dia 72kN/m.
- 8. Manhole covers & frames shall comply with the relevant provisions of BS EN124, have minimum 600 x 600 clear openings with 150 deep frames unless otherwise specified. Manhole covers & frames to be of a non-rocking design without cushion inserts & be kitemarked. Load class D400 in vehicular trafficked areas & load class B125 in footways & pedestrian areas. 9. Gully grates & frames shall comply with the relevant provisions of BS
- EN124 & be of a non-rocking design with captive hinge access & be kitemarked. Load Class D400 for roads regularly carrying fast moving heavy vehicles. Class C250 to be used in lesser trafficked areas eg. Estate roads, cul-de-sacs, residential car parking areas etc. 10. Cover slabs shall be provided where cover to the pipe barrel is less
- than 1.2m in vehicular trafficked areas & 0.9m elsewhere, to all road gully connections & within areas of deep rooting vegetation. 11. Selected backfill material shall consist of uniform material free from stones larger than 40mm, clay lumps larger than 75mm, tree roots,
- organic matter & frozen soil. Selected backfill material shall be placed in layers not exceeding 225mm, each layer compacted to form a stable trench backfill. 12. General backfill material to be free from stones larger than 40mm.
- General backfill material is to be placed in layers not exceeding 150mm thickness & each layer compacted by hand. No mechanical compaction of fill material shall be permitted within 300mm above the crown/barrel of the pipe.
- 13. Backfilling & reinstatement to trenches in public highways shall be in accordance with the requirements & specifications of the adopting authority, or, in the absence of such, in accordance with the requirements of "The Street Works Regulations 1992" & relevant provisions of H.A.U.C Openings in Highway Roads & Street works

Appendix E:-Surface Water Design Calculations

Design Settings

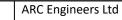
Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	40	Minimum Backdrop Height (m)	0.200
CV	0.750	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	х
Maximum Rainfall (mm/hr)	50.0		

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.012	14.170	506.1	900	Circular	81.550	78.448	2.202	81.300	78.420	1.980
1.011	12.457	498.3	900	Circular	81.650	78.473	2.277	81.550	78.448	2.202
6.000	6.834	150.0	225	Circular	81.650	79.857	1.568	81.550	79.811	1.514
1.010	8.952	406.9	450	Circular	81.869	79.064	2.355	81.650	79.042	2.158
5.001	27.584	492.6	900	Circular	81.950	78.529	2.521	81.650	78.473	2.277
1.009	1.802	100.1	150	Circular	81.869	79.382	2.337	81.869	79.364	2.355
1.008	4.420	250.0	225	Circular	81.650	79.400	2.025	81.869	79.382	2.262
1.007	15.514	250.0	300	Circular	81.575	79.638	1.637	81.650	79.576	1.774
1.006	5.223	250.0	300	Circular	81.550	79.659	1.591	81.575	79.638	1.637
4.000	18.182	150.0	150	Circular	81.550	80.950	0.450	81.550	80.829	0.571
1.005	2.918	250.0	225	Circular	81.650	79.746	1.679	81.550	79.734	1.591
3.001	12.007	150.0	150	Circular	81.550	80.846	0.554	81.550	80.766	0.634
3.000	15.644	150.0	150	Circular	81.550	80.950	0.450	81.550	80.846	0.554
1.004	24.050	150.0	225	Circular	81.650	79.981	1.444	81.650	79.821	1.604
1.003	25.418	150.0	225	Circular	81.650	80.150	1.275	81.650	79.981	1.444
1.002	21.563	150.0	225	Circular	81.550	80.294	1.031	81.650	80.150	1.275
1.001	38.146	150.0	225	Circular	81.700	80.548	0.927	81.550	80.294	1.031
1.000	38.043	150.0	150	Circular	81.700	80.800	0.750	81.700	80.546	1.004
2.005	10.619	150.0	225	Circular	81.650	80.156	1.269	81.650	80.085	1.340
2.004	5.710	150.0	225	Circular	81.650	80.194	1.231	81.650	80.156	1.269

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.012	24	1800	Manhole	Adoptable	25	2100	Manhole	Adoptable
1.011	22	1800	Manhole	Adoptable	24	1800	Manhole	Adoptable
6.000	23		Junction		24	1800	Manhole	Adoptable
1.010	20	1350	Junction		22	1800	Manhole	Adoptable
5.001	21	1800	Junction		22	1800	Manhole	Adoptable
1.009	19	1500	Manhole	Adoptable	20	1350	Junction	
1.008	18		Junction		19	1500	Manhole	Adoptable
1.007	17	1200	Junction		18		Junction	
1.006	16	1200	Manhole	Adoptable	17	1200	Junction	
4.000	15	1200	Junction		16	1200	Manhole	Adoptable
1.005	12	1200	Manhole	Adoptable	16	1200	Manhole	Adoptable
3.001	14	450	Manhole	Adoptable	16	1200	Manhole	Adoptable
3.000	13	450	Junction		14	450	Manhole	Adoptable
1.004	5	450	Manhole	Adoptable	12	1200	Manhole	Adoptable
1.003	4	450	Junction		5	450	Manhole	Adoptable
1.002	3	450	Manhole	Adoptable	4	450	Junction	
1.001	2	450	Junction		3	450	Manhole	Adoptable
1.000	1	450	Junction		2	450	Junction	
2.005	11	450	Manhole	Adoptable	12	1200	Manhole	Adoptable
2.004	10	450	Manhole	Adoptable	11	450	Manhole	Adoptable

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd

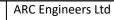

	ARC Enginee	ers Ltd		File: 2304	47-ARC-XX-X	X-M3-C- /	Page 2	
CAUSEWAY 🛟	1			Network	: SW N1			
	1			Jim Emm	erson			
				24/10/20)23			
			Pipeline S	Schedule				
				<u>Jeneuule</u>				
Link Length S	lope Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
(m) (i	1:X) (mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
2.003 9.738 1	50.0 225	Circular	81.700	80.259	1.216	81.650	80.194	1.231
2.002 10.705 1	50.0 225	Circular	81.700	80.330	1.145	81.700	80.259	1.216
2.001 43.014 1	50.0 225	Circular	81.700	80.617	0.858	81.700	80.330	1.145
2.000 27.478 1	50.0 150	Circular	81.700	80.800	0.750	81.700	80.617	0.933
1.014 12.798 2	50.0 375	Circular	81.300	78.413	2.512	81.300	78.362	2.563
1.013 1.000 1	42.9 375	Circular	81.300	78.420	2.505	81.300	78.413	2.512
5.000 3.416 1	50.0 225	Circular	82.000	79.303	2.472	81.950	79.280	2.445
Link US	b Dia	Node	МН	DS	Dia	Node	МН	

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
2.003	9	450	Manhole	Adoptable	10	450	Manhole	Adoptable
2.002	8	450	Manhole	Adoptable	9	450	Manhole	Adoptable
2.001	7	450	Manhole	Adoptable	8	450	Manhole	Adoptable
2.000	6	1200	Junction		7	450	Manhole	Adoptable
1.014	26		Junction		26_OUT	1500	Manhole	Adoptable
1.013	25	2100	Manhole	Adoptable	26		Junction	
5.000	27		Junction		21	1800	Junction	
	2.003 2.002 2.001 2.000 1.014 1.013	Node 2.003 9 2.002 8 2.001 7 2.000 6 1.014 26 1.013 25	Node (mm) 2.003 9 450 2.002 8 450 2.001 7 450 2.000 6 1200 1.014 26 1.013	Node (mm) Type 2.003 9 450 Manhole 2.002 8 450 Manhole 2.001 7 450 Manhole 2.000 6 1200 Junction 1.014 26 Junction 1.013 25 2100 Manhole	Node(mm)TypeType2.0039450ManholeAdoptable2.0028450ManholeAdoptable2.0017450ManholeAdoptable2.00061200JunctionJunction1.01426JunctionJunction1.013252100ManholeAdoptable	Node(mm)TypeTypeNode2.0039450ManholeAdoptable102.0028450ManholeAdoptable92.0017450ManholeAdoptable82.00061200Junction71.01426Junction26_OUT1.013252100ManholeAdoptable	Node(mm)TypeTypeNode(mm)2.0039450ManholeAdoptable104502.0028450ManholeAdoptable94502.0017450ManholeAdoptable84502.00061200Junction74501.01426Junction26_OUT15001.013252100ManholeAdoptable26	Node(mm)TypeTypeNode(mm)Type2.0039450ManholeAdoptable10450Manhole2.0028450ManholeAdoptable9450Manhole2.0017450ManholeAdoptable8450Manhole2.0017450ManholeAdoptable8450Manhole2.00061200Junction7450Manhole1.01426Junction26_OUT1500Manhole1.013252100ManholeAdoptable26Junction

Manhole Schedule

19 456	5487.784 5489.152 5462.831	222437.000 222438.173 222451.936	81.869 81.869 81.950	2.805	1350 1500	0	1 1.009 0 1.010 1 1.008	79.364 79.064 79.382	150 450 225
				2.487	1500				
				2.487	1500				225
21 456	5462.831	222451.936	81 950			\mathbf{X}			
21 456	5462.831	222451.936	81 950			0 ²	0 1.009	79.382	150
			51.550	3.421	1800	1	1 5.000	79.280	225
						N N	0 5.001	78.529	900
24 456	5489.190	222421.795	81.550	3.102	1800	2	1 6.000	79.811	225
							2 1.011	78.448	900
						1 0	0 1.012	78.448	900
25 456	5498.455	222411.074	81.300	2.880	2100		1 1.012	78.420	900
						и 0	0 1.013	78.420	375
26_OUT 456	5507.275	222400.826	81.300	2.938	1500	1	1 1.014	78.362	375
23 456	5484.009	222417.338	81.650	1.793		° 70			
							0 6.000	79.857	225

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd



File: 23047-ARC-XX-XX-M3-C- / Page 3 Network: SW N1 Jim Emmerson 24/10/2023

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
18	456492.507	222441.050	81.650	2.250		1, 1	1.007	79.576	300
						¢ / 0	1.008	79.400	225
26	456498.892	222410.496	81.300	2.887		1 1	1.000	78.413	375
						0	1.014	78.413	375
22	456480.989	222431.172	81.650	3.177	1800	1 1	5.001	78.473	900
							1.010	79.042	450
						<u> </u>			
17	456496 777	222455 447	01 575	1 0 2 7	1200	<u> </u>	1.011	78.473 79.638	900 300
17	456486.727	222455.447	81.575	1.937	1200		1.006	79.038	300
						٩			
						<u>۷</u> 0	1.007	79.638	300
16	456490.689	222458.851	81.550	1.891	1200	² 3 1	4.000	80.829	150
						\sim 2	3.001	80.766	150
							1.005	79.734 79.659	225 300
14	456482.893	222467.983	81.550	0.704	450	1 1	3.000	80.846	150
			01.000			d -			
						0	3.001	80.846	150
13	456486.200	222483.273	81.550	0.600	450				
						Q			
						Į a	2.000	00.050	150
12	456492.902	222460.753	81.650	1.904	1200	0 ⁰ 0	3.000	80.950 80.085	150 225
12	430492.902	222400.755	81.050	1.504	1200		1.004	79.821	225
								/0/011	
						⁰ ² 0	1.005	79.746	225
5	456508.639	222442.567	81.650	1.669	450	° _N 1	1.003	79.981	225
						$\langle \rangle$			
						1 0	1.004	79.981	225
4	456489.399	222425.957	81.650	1.500	450	1	1.002	80.150	225
						« ⁷⁰			
3	456503.496	222409.640	81.550	1.256	450	· 0	1.003	80.150 80.294	225 225
5	450505.490	222409.040	61.550	1.250	450		1.001	60.294	225
						\bigcirc			
						0	1.002	80.294	225
2	456532.344	222434.598	81.700	1.154	450	1 1 را	1.000	80.546	150
						8			
						° ~ 0	1.001	80.548	225
1	456560.956	222459.671	81.700	0.900	450	0		2010-10	
						۵			
						o Kanala and a second s			
						0	1.000	80.800	150

File: 23047-ARC-XX-XX-M3-C- / Page 4 Network: SW N1 Jim Emmerson 24/10/2023

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connect	ions	Link	IL (m)	Dia (mm)
15	456502.524	222445.048	81.550	0.600	1200	0				·
							0	4.000	80.950	150
11	456485.954	222468.783	81.650	1.494	450	1	1	2.004	80.156	225
						\square				
							0	2.005	80.156	225
10	456485.523	222474.477	81.650	1.456	450	1	1	2.003	80.194	225
						∇	_			
5	456546.803	222475.719	81.700	0.900	1200	Ŏ	0	2.004	80.194	225
5	430340.605	222475.719	81.700	0.900	1200					
						a K				
						U	0	2.000	80.800	150
7	456526.045	222457.715	81.700	1.083	450	°5-/1	1	2.000	80.617	150
							0	2.001	80.617	225
3	456497.893	222490.237	81.700	1.370	450		1	2.001	80.330	225
						\square				
						04	0	2.002	80.330	225
9	456489.806	222483.223	81.700	1.441	450		1	2.002	80.259	225
							0	2.003	90.250	225
27	456460.454	222454.390	82.000	2.697			0	2.005	80.259	
							0	5.000	79.303	225
			Si	mulation	Setting	s				
		1								
ainfall I	Methodology	FEH-22		nalysis S					age (m³∕h	-
	Summer CV Winter CV	0.750 0.840	אוז Drain Dow	o Steady S n Time (r		k 240			arge Rate(rge Volum	-
							0.100		.80 .0.0	
				Storm Du						
15	30 60	120	180 2	40 3	60	480 60	0 7	20	960	1440
	Ret	turn Period	Climate Ch	nange A	Addition	al Area 🛛 Ac	dition	al Flow		
		(years)	(CC %	-	(A %		(Q %			
		2		0		0		0		
		10 30		0 20		0 0		0 0		
		100		40		0		0		

Node 19 Online Hydro-Brake[®] Control

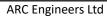
Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	х	Sump Available	\checkmark
Invert Level (m)	79.382	Product Number	CTL-SHE-0063-2000-1350-2000
Design Depth (m)	1.350	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	2.0	Min Node Diameter (mm)	1200

Node 25 Online Hydro-Brake® Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	78.420	Product Number	CTL-SHE-0086-3500-1200-3500
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.100
Design Flow (I/s)	3.5	Min Node Diameter (mm)	1200

Node 25 Offline Weir Control

Flap Valve	х	Design Depth (m)	0.450	Discharge Coefficient	0.590
Loop to Node	26	Design Flow (I/s)			
Invert Level (m)	79.650	Width (m)	0.450		


Node 19 Offline Weir Control

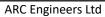
Flap Valve	х	Design Depth (m)	0.450	Discharge Coefficient	0.590
Loop to Node	20	Design Flow (I/s)			
Invert Level (m)	80.600	Width (m)	0.450		

Node 18 Depth/Area Storage Structure

Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)		fety Factor Porosity		Invert Level (m) Time to half empty (mins)	79.400
Denth Area Ir	of Area Denti	η Area I	Inf Area	Denth Area Inf Area	

•		ini Alea	· ·			•			
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.000	190.0	0.0	1.000	190.0	0.0	1.001	0.0	0.0	

CAUSEWAY

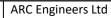


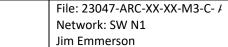
24/10/2023

Page 6

Results for 2 year Critical Storm Duration. Lowest mass balance: 93.89%

Node Event	ſ	US Peak Node (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
60 minute winter	20) 49	79.097	0.033	1.7	0.0000	0.0000	OK	
720 minute winter	19	9 690	79.988	0.606	1.7	1.0716	0.0000	SURCH	IARGED
240 minute winter	21	l 184	78.958	0.429	4.4	0.0776	0.0000	OK	
240 minute winter			78.958	0.510	6.0	1.3656	0.0000	OK	
240 minute winter	25	5 184	78.958	0.538	4.5	1.8621	0.0000	SURCH	IARGED
120 minute summ		5_OUT 146	78.403	0.041	3.5	0.0000	0.0000	OK	
15 minute winter	23		79.926	0.069	8.1	0.0466	0.0000	OK	
720 minute winter	18	3 690	79.989	0.589	9.2	107.9985	0.0000	SURCH	IARGED
180 minute summ			78.456	0.043	3.5	0.0000	0.0000	OK	
240 minute winter	22	2 184	78.958	0.485	5.6	1.3093	0.0000	OK	
720 minute winter	17	690	79.989	0.351	4.7	0.0000	0.0000	SURCH	IARGED
720 minute winter	16	690	79.989	0.330	4.7	0.3727	0.0000	SURCH	IARGED
15 minute winter	14	l 12	80.916	0.070	5.9	0.0644	0.0000	OK	
15 minute winter	13	3 11	80.995	0.045	2.9	0.0392	0.0000	OK	
720 minute winter	12	2 690	79.989	0.243	3.0	0.2998	0.0000	SURCH	IARGED
15 minute winter	5	12	80.075	0.094	15.0	0.0479	0.0000	OK	
15 minute winter	4	11	80.230	0.080	11.6	0.0224	0.0000	OK	
15 minute winter	3	11	80.365	0.071	9.1	0.0113	0.0000	OK	
15 minute winter	2	11	80.619	0.073	9.1	0.0429	0.0000	OK	
15 minute winter	1	10	80.858	0.058	4.8	0.0466	0.0000	OK	
15 minute winter	15	5 11	81.026	0.076	7.3	0.1650	0.0000	OK	
15 minute winter	11	L 12	80.236	0.080	10.4	0.0128	0.0000	OK	
15 minute winter	10) 11	80.278	0.084	10.5	0.0214	0.0000	ОК	
Link Event	US	Link	DS	Outflo		-	/Cap	Link	Discharge
Link Event (Upstream Depth)	Node		Node	Outflo (I/s)) (n	n/s)	v	′ol (m³)	Discharge Vol (m ³)
	Node 20	1.010	Node 22	(I/s) 1) (n L.7 (n/s) 0.384	v 0.010	'ol (m³) 0.0390	-
(Upstream Depth) 60 minute winter 720 minute winter	Node 20 19	1.010 1.009	Node 22 20	(I/s) 1 1) (n L.7 (L.7 (n/s) 0.384	v 0.010	′ol (m³)	Vol (m ³)
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter	Node 20 19 19	1.010 1.009 Weir	Node 22 20 20	(I/s) 1 1 0) (n 1.7 (1.7 ().0	n/s)).384).611	V 0.010 0.093	'ol (m³) 0.0390 0.0049	-
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter	Node 20 19 19 21	1.010 1.009 Weir 5.001	Node 22 20 20 22	(I/s) 1 1 0 3) (n 1.7 (1.7 ().0 3.1 (n /s)).384).611).218	V 0.010 0.093 0.004	ol (m³) 0.0390 0.0049 8.9037	Vol (m ³)
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter	Node 20 19 19 21 24	1.010 1.009 Weir 5.001 1.012	Node 22 20 20 22 22 25	(I/s) 1 1 0 3 4) (n 1.7 (1.7 (0.0 3.1 (1.5 (n /s)).384).611).218	V 0.010 0.093 0.004	'ol (m³) 0.0390 0.0049	Vol (m ³)
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter	Node 20 19 29 21 24 25	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d	Node 22 20 20 22 22 25 25 26	(I/s) 1 1 0 3 4 3) (n 1.7 () 1.7 () 3.0 3.1 () 4.5 () 3.5	n /s)).384).611).218	V 0.010 0.093 0.004	ol (m³) 0.0390 0.0049 8.9037	Vol (m³) 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter	Node 20 19 19 21 24	1.010 1.009 Weir 5.001 1.012	Node 22 20 20 22 22 25	(I/s) 1 1 0 3 4 3) (n 1.7 (1.7 (0.0 3.1 (1.5 (n /s)).384).611).218	V 0.010 0.093 0.004	ol (m³) 0.0390 0.0049 8.9037	Vol (m ³)
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter	Node 20 19 29 21 24 25	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d	Node 22 20 20 22 22 25 25 26	(I/s) 1 1 3 4 3 0) (n 1.7 () 1.7 () 3.1 () 1.5 () 3.5).0	h/s)).384).611).218).215	0.010 0.093 0.004 0.005	ol (m³) 0.0390 0.0049 8.9037	Vol (m³) 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter	Node 20 19 21 24 25 25	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir	Node 22 20 20 22 25 25 26 26 26	(I/s) 1 1 3 4 3 0 0 8) (n 1.7 () 1.7 () 3.1 () 1.5 () 3.5 0.0 3.0 ()	h/s) 0.384 0.611 0.218 0.215 0.808	0.010 0.093 0.004 0.005 0.189	ol (m³) 0.0390 0.0049 8.9037 5.4217	Vol (m³) 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter	Node 20 19 21 24 25 25 25	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000	Node 22 20 20 22 25 26 26 26 24	(I/s) 1 1 3 4 3 0 0 8 1) (n 1.7 () 1.7 () 0.0 3.1 () 4.5 () 3.5 0.0 3.0 () 1.7 ()	n/s) 0.384 0.611 0.218 0.215 0.808 0.167	0.010 0.093 0.004 0.005 0.189 0.053	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678	Vol (m³) 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 720 minute winter	Node 20 19 21 24 25 25 25 23 18	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008	Node 22 20 20 22 25 26 26 26 26 24 19	(I/s) 1 2 3 4 3 0 2 2 1 3 3 3 1 3 3) (n 1.7 () 1.7 () 0.0 3.1 () 3.5 () 3.5 () 3.0 () 1.7 () 3.5 ()	n/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519	0.010 0.093 0.004 0.005 0.189 0.053 0.028	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 15 minute winter 180 minute summer	Node 20 19 21 24 25 25 25 23 18 26	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ⁰ Weir 6.000 1.008 1.014	Node 22 20 20 22 25 26 26 26 26 24 19 26_OUT	(I/s) 1 2 3 4 4 3 4 4 3 0 0 1 1 3 3 3) (n 1.7 () 1.7 () 3.1 () 3.5 () 3.5 () 3.0 () 1.7 () 3.5 () 3.5 () 3.6 ()	n/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185	0.010 0.093 0.004 0.005 0.189 0.053 0.028 0.004	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 720 minute summer 240 minute summer 240 minute winter	Node 20 19 21 24 25 25 23 18 26 22	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008 1.014 1.011	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24	(I/s) 1 2 3 4 4 3 0 4 1 3 3 4) (n 1.7 () 1.7 () 0.0 3.1 () 3.5 () 3.5 () 3.5 () 3.6 () 4.5 ()	n/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185 0.552	0.010 0.093 0.004 0.005 0.189 0.053 0.028 0.004 0.065	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 720 minute summer 240 minute summer 240 minute winter 720 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18	(I/s) 1 1 3 4 4 3 0 4 3 1 1 3 4 4 4) (n 1.7 (C 1.7 (C 0.0 3.1 (C 3.5 (C 3.5 (C 3.5 (C 3.6 (C 3.6 (C 3.6 (C 1.5 (C 3.6 (C) 1.5 (C) 1.7 (C) 3.6 (C) 1.7 (C) 1.5 (C) 1.7 (C) 1.5 (C) 1.5 (C) 1.7 (C) 1.5 (C) 1.5 (C) 1.7 (C) 1.	h/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185 0.552 0.555	0.010 0.093 0.004 0.005 0.189 0.053 0.028 0.004 0.065 0.067	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute summer 240 minute winter 720 minute winter 720 minute winter 720 minute winter 720 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007 1.006	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17	(I/s) 1 1 3 4 4 3 0 0 1 1 3 4 4 4 4 5) (n 1.7 () 1.7 () 3.1 () 3.1 () 3.5 () 3.5 () 3.6 () 3.6 () 4.5 () 3.6 () 4.5 () 3.6 () 4.5 () 5.9 ()	h/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185 0.552 0.555 0.757	0.010 0.093 0.004 0.005 0.189 0.053 0.028 0.004 0.065 0.067 0.405	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute summer 240 minute winter 720 minute winter 720 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16	(I/s) 1 1 3 4 4 3 0 0 1 1 3 3 4 4 4 5 2) (n 1.7 () 1.7 () 3.1 () 3.1 () 3.5 () 3.5 () 3.5 () 3.5 () 3.5 () 3.6 () 1.7 () 3.5 () 3.6 () 1.7 () 3.6 () 1.7 () 3.6 () 1.7 () 3.6 () 1.7 () 3.6 () 1.7 () 3.6 () 1.7 () 3.6 () 3.7 () 3.6 () 3.6 () 3.6 () 3.6 () 3.6 () 3.6 () 3.6 () 3.7 () 3.6 () 3.7 () 3.6 () 3.6 () 3.7 () 3.6 () 3.6 () 3.7 () 3.9 () 3.1 ()	n/s) 0.384 0.611 0.218 0.215 0.255 0.255 0.757 0.465	0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute summer 240 minute winter 720 minute winter 720 minute winter 720 minute winter 15 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ⁰ Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18 17 16 14	(I/s) 1 2 3 4 4 3 6 4 1 3 4 4 5 2 2 3) (n 1.7 () 1.7 () 0.0 () 3.1 () 3.5 () 3.6 () 3.7 () 3.8 () 3.6 () 3.7 () 3.8 () 3.8 () 3.8 () 3.8 () 3.8 () 3.9 () 3.9 () 3.9 () 3.9 () 3.9 () 3.9 () 3.9 () 3.9 () 3.9 () 3.0 () 3.9 () 3.9 () 3.0 () 3.9 () 3.9 () 3.0 () 3.9 () 3.0 () 3.9 () 3.0 () 3.9 () 3.0 ()	n/s) 0.384 0.611 0.218 0.215 0.215 0.215 0.519 0.167 0.552 0.555 0.757 0.465 0.511	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199 0.092	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute summer 240 minute winter 720 minute winter 720 minute winter 15 minute winter 15 minute winter 15 minute winter 20 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18 17 16 14 16	(I/s) 1 2 3 4 4 3 0 4 4 5 2 3 4 4 5 2 3 1 4) (n 1.7 (C 1.7 (C) 3.1 (C) 3.1 (C) 3.5 (C) 3.5 (C) 3.5 (C) 3.6 (C) 4.7 (C) 5.9 (C) 3.0 (C) 4.7 (C) 3.0 (C) 4.7 (C) 5.9 (C) 5.0 (C)	h/s) 0.384 0.611 0.218 0.215 0.215 0.215 0.519 0.167 0.519 0.167 0.552 0.555 0.757 0.465 0.511 0.957	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199 0.092 0.348	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 180 minute summer 240 minute summer 240 minute winter 720 minute winter 720 minute winter 720 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18 17 16 14 16 14 16 12	(I/s) 1 1 2 3 4 4 3 0 2 8 1 1 3 4 4 4 5 2 3 1 4 1 1) (n 1.7 (C 1.7 (C) 3.1 (C) 3.1 (C) 3.1 (C) 3.5 (C) 3.5 (C) 3.5 (C) 3.5 (C) 3.5 (C) 3.6 (C) 4.7 (C) 5.9 (C) 3.0 (C) 4.7 (C) 5.9 (C) 4.7 (C) 5.9 (C) 4.7 (C) 5.9 (C) 5.9 (C) 5.9 (C) 5.9 (C) 5.9 (C) 5.1 (C)	h/s) 0.384 0.611 0.218 0.215 0.215 0.808 0.167 0.519 0.185 0.555 0.757 0.465 0.511 0.957 0.804	0.010 0.093 0.004 0.005 0.189 0.053 0.028 0.004 0.065 0.004 0.065 0.067 0.405 0.199 0.092 0.348 0.270	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 180 minute summer 240 minute summer 720 minute winter 720 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16 14 16 14 16 12 5	(I/s) 1 1 2 3 4 4 3 0 2 1 4 5 2 3 4 4 4 5 2 3 1 4 1 1 1 1 2 3 3 1 4 1 1 2 3 3 1 4 4 4 3 3 3 3 3 3 4 4 4 5 2 3 3 3 3 4 4 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	(n 1.7 0 1.7 0 3.1 0 3.1 0 3.5 0 3.5 0 3.6 0 4.5 0 3.6 0 4.5 0 3.6 0 4.7 0 3.0 0 1.7 0 3.0 0 1.7 0 3.0 0 1.7 0 3.0 0 0.0 0	h/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185 0.555 0.757 0.465 0.511 0.957 0.804 0.770	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.092 0.348 0.270 0.212	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704 0.3615	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 15 minute summer 240 minute summer 240 minute summer 720 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16 14 16 14 16 12 5 4	(I/s) 1 1 2 3 4 4 3 0 2 3 4 4 4 4 5 2 3 1 4 1 1 1 1 2 3 3 1 4 1 1 2 3 3 1 4 4 4 5 2 3 3 1 4 4 4 4 5 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(n 1.7 0 1.7 0 3.1 0 3.1 0 3.5 0 3.5 0 3.6 0 1.7 0 3.6 0 1.7 0 3.6 0 1.7 0 3.6 0 1.7 0 3.9 0 2.9 0 3.0 0 1.7 0 2.9 0 3.0 0 1.4 0 0.0 0 0.1 0	h/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.185 0.555 0.757 0.465 0.511 0.957 0.804 0.770 0.852	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199 0.092 0.348 0.270 0.212 0.214	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704 0.3615 0.2516	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute summer 240 minute winter 180 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 22	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16 14 16 14 16 12 5 4 3	(I/s) 1 1 2 3 4 4 3 4 4 5 2 4 4 5 2 3 4 4 5 2 2 3 14 11 5 9 4 4 4 11 9 9 9 4	(n 1.7 0 1.7 0 3.1 0 3.1 0 3.5 0 3.5 0 3.6 0 1.7 0 3.5 0 3.6 0 1.7 0 3.6 0 1.7 0 3.0 0 1.7 0 2.9 0 3.0 0 1.7 0 1.7 0 3.0 0 1.7 0 3.0 0 1.7 0 1.7 0 1.4 0 0.1 0 1.4 0 0.1 0 1.6 0	n/s) 0.384 0.611 0.218 0.215 0.215 0.215 0.215 0.519 0.167 0.552 0.555 0.757 0.465 0.511 0.957 0.465 0.511 0.957 0.804 0.770 0.852 0.632	V 0.010 0.093 0.004 0.005 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199 0.092 0.348 0.270 0.212 0.214 0.322	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704 0.3615 0.2516 0.4075	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 720 minute winter 15 minute winter 720 minute winter 720 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 2 1	1.010 1.009 Weir 5.001 1.012 Hydro-Brake ^d Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001 1.000	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5 4 3 2	(I/s) 1 1 2 3 4 4 3 0 2 4 4 5 2 3 4 4 5 2 3 4 4 4 5 2 3 14 11 1 9 9 4 4 7	(n 1.7 0 1.7 0 0.0 0 3.1 0 3.5 0 3.5 0 3.6 0 4.7 0 5.9 0 4.7 0 5.9 0 4.7 0 5.9 0 4.7 0 6.0 0 4.7 0 6.0 0 7.2 0	n/s) 0.384 0.611 0.218 0.215 0.808 0.167 0.519 0.167 0.555 0.555 0.757 0.465 0.551 0.957 0.465 0.511 0.957 0.804 0.770 0.852 0.632 0.814	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.067 0.405 0.199 0.092 0.348 0.270 0.212 0.214 0.322 0.497	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704 0.3615 0.2516 0.4075 0.2804	Vol (m³) 0.0 0.0
(Upstream Depth) 60 minute winter 720 minute winter 720 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 240 minute winter 15 minute winter 180 minute summer 240 minute winter 720 minute winter 720 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 2 1 15	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001 1.000 4.000	Node 22 20 20 22 25 26 26 24 19 26_OUT 24 18 17 16 14 16 14 16 12 5 4 3 2 16	(I/s) 1 1 1 1 3 4 3 4 5 2 3 4 4 5 2 3 14 11 9 4 7 10	(n 1.7 () 1.7 () 3.1 () 3.1 () 3.1 () 3.1 () 3.1 () 3.1 () 3.1 () 3.1 () 3.5 () 3.6 () 3.7 () 3.6 () 4.7 () 5.9 () 3.0 () 4.7 () 6.9 () 6.4 () 7.2 () 0.1 () 0.5 ()	n/s)).384).611).218).215).255).255).757).465).511).957).804).770).852).814).858	V 0.010 0.093 0.004 0.005 0.053 0.028 0.004 0.065 0.007 0.405 0.199 0.092 0.348 0.270 0.348 0.270 0.212 0.214 0.322 0.214	ol (m ³) 0.0390 0.0049 8.9037 5.4217 0.0678 0.1758 0.0864 4.4728 1.0925 0.3678 0.0928 0.0971 0.1161 0.3704 0.3615 0.2516 0.4075 0.2804 0.1607	Vol (m³) 0.0 0.0




Page 7

Results for 2 year Critical Storm Duration. Lowest mass balance: 93.89%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	6	10	80.857	0.057	4.5	0.0429	0.0000	ОК
15 minute winter	7	10	80.688	0.071	9.3	0.0600	0.0000	OK
15 minute winter	8	11	80.406	0.076	9.2	0.0120	0.0000	OK
15 minute winter	9	11	80.338	0.079	9.7	0.0180	0.0000	ОК
15 minute winter	27	10	79.395	0.092	15.1	0.0775	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	6	2.000	7	4.4	0.617	0.306	0.1969	
15 minute winter	7	2.001	8	9.2	0.825	0.217	0.4832	
15 minute winter	8	2.002	9	9.1	0.757	0.215	0.1289	
15 minute winter	9	2.003	10	9.6	0.745	0.228	0.1260	
15 minute winter	27	5.000	21	15.0	0.991	0.355	0.0518	

24/10/2023

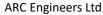

Page 8

CAUSEWAY

Results for 10 year Critical Storm Duration. Lowest mass balance: 93.89%

Node Event		US Peak ode (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	St	atus
240 minute wint		172	79.619	0.555	4.9	0.0000	0.0000) SURCH	ARGED
600 minute wint		585	80.456	1.074	1.8	1.8983	0.0000		ARGED
180 minute wint	er 21	140	79.617	1.088	22.2	0.1969	0.0000		HARGED
180 minute wint	er 24	140	79.614	1.166	38.8	3.1250	0.0000		IARGED
180 minute wint	er 25	144	79.638	1.218	48.5	4.2182	0.0000) SURCH	IARGED
180 minute wint	_	OUT 144	78.408	0.046	4.4	0.0000	0.0000		
15 minute winte		10	79.958	0.101	16.3	0.0686	0.0000		
600 minute wint		585	80.456	1.056	16.6	183.7730	0.0000		ARGED
180 minute wint		144	78.461	0.048	4.4	0.0000	0.0000		
180 minute wint		144	79.758	1.285	72.8	3.4709	0.0000		ARGED
600 minute wint		585	80.456	0.818	8.1	0.0000	0.0000		ARGED
600 minute wint		585	80.456	0.797	8.2	0.9018	0.0000		IARGED
15 minute winte		12	80.957	0.111	12.0	0.1029	0.0000		
15 minute winte		11	81.016	0.066	5.9	0.0574	0.0000		
600 minute wint		585	80.456	0.710	5.4	0.8780	0.0000		IARGED
600 minute wint	er 5	585	80.456	0.475	3.0	0.2410	0.0000		IARGED
600 minute wint		585	80.456	0.306	2.3	0.0858	0.0000		IARGED
600 minute wint	er 3	585	80.457	0.163	1.8	0.0259	0.0000		
15 minute winte	r 2	10	80.652	0.106	18.5	0.0622	0.0000) OK	
15 minute winte	r 1	10	80.888	0.088	9.6	0.0700	0.0000) OK	
15 minute winte	r 15	12	81.077	0.127	14.8	0.2757	0.0000) OK	
600 minute wint	er 11	585	80.457	0.301	2.1	0.0478	0.0000) SURCH	HARGED
600 minute wint	er 10	585	80.457	0.263	2.1	0.0670	0.0000) SURCH	IARGED
Link Event	US	Link	DS	Outflo	w Velo	ocity Flov	v/Cap	Link	Discharge
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		ocity Flov n/s)	-	Link Vol (m³)	Discharge Vol (m³)
		Link 1.010			(m	n/s)	-		-
(Upstream Depth)	Node		Node	(I/s) 17	(m .70	n/s) 0.384	_	Vol (m³)	-
(Upstream Depth) 240 minute winter	Node 20	1.010	Node 22	(I/s) 17 1	(m .70	n/s) 0.384	0.111	Vol (m³) 1.4184	-
(Upstream Depth) 240 minute winter 600 minute winter	Node 20 19	1.010 1.009	Node 22 20	(I/s) 17 1	(m .7 0 .8 0 .0	n/s) 0.384 0.624	0.111 0.100	Vol (m³) 1.4184	Vol (m³)
(Upstream Depth) 240 minute winter 600 minute winter 600 minute winter	Node 20 19 19	1.010 1.009 Weir	Node 22 20 20	(I/s) 17 1 0	(m .7 0 .8 0 .0 .8 0	n /s) 0.384 0.624 0.258	0.111 0.100	Vol (m³) 1.4184 0.0307	Vol (m³)
(Upstream Depth) 240 minute winter 600 minute winter 600 minute winter 180 minute winter	Node 20 19 19 21	1.010 1.009 Weir 5.001	Node 22 20 20 22	(I/s) 17 1 0 29 48	(m .7 0 .8 0 .0 .8 0	n /s) 0.384 0.624 0.258	0.111 0.100 0.033	Vol (m ³) 1.4184 0.0307 17.4820	Vol (m³)
(Upstream Depth) 240 minute winter 600 minute winter 600 minute winter 180 minute winter 180 minute winter	Node 20 19 19 21 24	1.010 1.009 Weir 5.001 1.012	Node 22 20 20 22 25	(I/s) 17 1 0 29 48 3	(m .7 0 .8 0 .0 .8 0 .5 0	n /s) 0.384 0.624 0.258	0.111 0.100 0.033	Vol (m ³) 1.4184 0.0307 17.4820	Vol (m³)
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter	Node 20 19 21 24 25 25 25	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000	Node 22 20 20 22 25 26 26 26 26	(I/s) 17 1 0 29 48 3 1 16	(m .7 0 .8 0 .0 .8 0 .5 0 .5 .0 .2 0	h/s) 0.384 0.624 0.258 0.258 0.258	0.111 0.100 0.033 0.055 0.382	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135	Vol (m³) 0.0
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter	Node 20 19 21 24 25 25 25 23 18	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008	Node 22 20 20 22 25 26 26 26 26 24 19	(I/s) 17 1 0 29 48 3 1 16 16	(m .7 0 .8 0 .0 .5 0 .5 .0 .5 .0 .2 0 .8 0	n /s) 0.384 0.624 0.258 0.258 0.258	0.111 0.100 0.033 0.055	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter	Node 20 19 21 24 25 25 25 23 18 26	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014	Node 22 20 20 22 25 26 26 26 26 24 19 26_OUT	(I/s) 17 1 0 29 48 3 1 16 1 4	(m .7 0 .8 0 .0 .5 0 .5 .0 .5 .0 .5 .0 .5 .0 .2 0 .8 0 .4 0	n/s) 0.384 0.624 0.258 0.258 0.258 0.973 0.135 0.534	0.111 0.100 0.033 0.055 0.382 0.056 0.035	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050	Vol (m³) 0.0
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter	Node 20 19 21 24 25 25 25 23 18 26 22	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24	(I/s) 17 1 0 29 48 3 1 16 1 4 33	(m .7 0 .8 0 .0 .5 0 .5 .0 .5 .0 .5 .0 .5 .0 .5 .0 .2 0 .8 0 .4 0 .7 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.973 0.135 0.534 0.205	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007	Node 22 20 20 22 25 26 26 26 26 24 19 26_OUT 24 18	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8	(m .7 0 .8 0 .0 .5 0 .5 0 .5 .0 .5 .0 .0 .5 .0 .5 .0 .5 .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	n/s) 0.384 0.624 0.258 0.258 0.258 0.973 0.135 0.534 0.205 0.583	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter	Node 20 19 21 24 25 25 25 23 18 26 22	1.010 1.009 Weir 5.001 1.012 Hydro-Brake [®] Weir 6.000 1.008 1.014 1.011	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8	(m .7 0 .8 0 .0 .5 0 .5 0 .5 .0 .5 .0 .0 .5 .0 .5 .0 .5 .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	n/s) 0.384 0.624 0.258 0.258 0.258 0.973 0.135 0.534 0.205 0.583	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 600 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007	Node 22 20 20 22 25 26 26 26 26 24 19 26_OUT 24 18	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8	(m .7 0 .8 0 .0 .8 0 .5 0 .5 .0 .5 .0 .2 0 .8 0 .4 0 .7 0 .0 0 .1 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.973 0.135 0.534 0.205 0.583 0.592	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 600 minute winter 600 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18 17	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 8 11	(m .7 0 .8 0 .0 .8 0 .5 0 .5 .0 .5 .0 .5 .0 .5 .0 .0 .2 0 .8 0 .4 0 .7 0 .0 .0 .1 0 .8 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.353 0.534 0.205 0.583 0.592 0.890 0.541	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.035 0.038 0.114 0.116 0.820 0.405	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001	Node 22 20 20 22 25 26 26 26 24 19 26_OUT 24 18 17 16	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5	(m .7 0 .8 0 .0 .5 0 .5 0 .5 .0 .5 .0 .5 .0 .5 .0 .2 0 .8 0 .4 0 .7 0 .1 0 .8 0 .9 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.353 0.534 0.205 0.583 0.592 0.890 0.541	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.035 0.038 0.114 0.116 0.820	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 20 19 21 24 25 25 25 23 18 26 22 17 16 14 13	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	n/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.534 0.205 0.583 0.592 0.890 0.541 0.574	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.035 0.038 0.114 0.116 0.820 0.405	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 600 minute winter	Node 20 19 21 24 25 25 23 18 26 22 17 16 14 13 12	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005	Node 22 20 20 22 25 26 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.534 0.205 0.534 0.592 0.592 0.541 0.574 0.608	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114 0.116 0.820 0.405 0.155	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1161	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 15 minute winter 15 minute winter 600 minute winter 15 minute winter 15 minute winter 600 minute winter	Node 20 19 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2	(m .7 0 .8 0 .0 .8 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.253 0.534 0.205 0.534 0.205 0.583 0.592 0.890 0.541 0.574 0.608 0.523	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114 0.116 0.820 0.405 0.405 0.155 0.071	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1161 0.9565	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 600 minute winter 15 minute winter 600 minute winter 600 minute winter 600 minute winter 600 minute winter 600 minute winter	Node 20 19 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.253 0.534 0.205 0.534 0.205 0.583 0.592 0.890 0.541 0.574 0.608 0.523 0.490	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114 0.116 0.820 0.405 0.155 0.071 0.054	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1161 0.9565 1.0109	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 600 minute winter 15 minute winter 600 minute winter 600 minute winter 600 minute winter 600 minute winter 600 minute winter 600 minute winter	Node 20 19 19 21 24 25 25 25 23 18 26 22 17 16 14 13 12 5 4 3	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002	Node 22 20 20 25 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5 4	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2 1 18	(m .7 0 .8 0 .0 .8 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.258 0.353 0.534 0.534 0.592 0.890 0.541 0.574 0.608 0.523 0.490 015	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114 0.116 0.820 0.405 0.155 0.071 0.054 0.043	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1161 0.9565 1.0109 0.7610	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 600 minute winter 15 minute winter 15 minute winter 600 minute winter	Node 20 19 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 22	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001	Node 22 20 20 25 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5 4 3	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2 1 18	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	h/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.258 0.353 0.534 0.534 0.592 0.890 0.541 0.574 0.608 0.523 0.490 015	0.111 0.100 0.033 0.055 0.035 0.035 0.035 0.035 0.035 0.038 0.114 0.116 0.820 0.405 0.155 0.071 0.054 0.043 0.043 0.431	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1161 0.9565 1.0109 0.7610 0.6887	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 15 minute winter 600 minute winter 600 minute winter 600 minute winter 15 minute winter 600 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 20 19 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 2 1	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001 1.000	Node 22 20 20 22 25 26 26 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5 4 3 2	(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2 1 18 9 14	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	n/s) 0.384 0.624 0.258 0.258 0.258 0.258 0.258 0.534 0.205 0.534 0.205 0.534 0.592 0.541 0.574 0.608 0.523 0.490 0.015 0.783 0.964	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.038 0.114 0.116 0.820 0.405 0.155 0.071 0.054 0.043 0.431 0.649	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1679 0.1161 0.9565 1.0109 0.7610 0.6887 0.4552	Vol (m³) 0.0 0.2
(Upstream Depth) 240 minute winter 600 minute winter 180 minute winter 15 minute winter 15 minute winter 600 minute winter 15 minute winter 600 minute winter 15 minute winter	Node 20 19 19 21 24 25 25 23 18 26 22 17 16 14 13 12 5 4 3 2 2 1 15	1.010 1.009 Weir 5.001 1.012 Hydro-Brake® Weir 6.000 1.008 1.014 1.011 1.007 1.006 3.001 3.000 1.005 1.004 1.003 1.002 1.001 1.000 4.000	Node 22 20 20 22 25 26 26 26 26 26 24 19 26_OUT 24 18 17 16 14 16 12 5 4 3 2 16	<pre>(I/s) 17 1 0 29 48 3 1 16 1 4 33 8 8 11 5 5 3 2 1 18 9 14 2</pre>	(m .7 0 .8 0 .0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0	1/s 0.384 0.384 0.624 0.258 0.258 0.258 0.373 0.135 0.534 0.205 0.534 0.592 0.890 0.541 0.574 0.608 0.523 0.490 0.783 0.964 0.551	0.111 0.100 0.033 0.055 0.382 0.056 0.035 0.035 0.038 0.114 0.116 0.820 0.405 0.405 0.405 0.405 0.071 0.054 0.043 0.431 0.649 1.003	Vol (m ³) 1.4184 0.0307 17.4820 8.9806 0.1135 0.1758 0.1050 7.8949 1.0925 0.3678 0.1597 0.1679 0.1675 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.2729 0.2729	Vol (m³) 0.0 0.2

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd



File: 23047-ARC-XX-XX-M3-C- / Network: SW N1 Jim Emmerson 24/10/2023

Page 9

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	6	10	80.885	0.085	9.1	0.0642	0.0000	ОК
15 minute winter	7	10	80.722	0.105	18.8	0.0888	0.0000	ОК
600 minute winter	8	585	80.457	0.127	1.8	0.0202	0.0000	OK
600 minute winter	9	585	80.457	0.198	1.9	0.0452	0.0000	OK
180 minute winter	27	144	79.629	0.326	11.4	0.2757	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	6	2.000	7	8.9	0.759	0.619	0.3231	
15 minute winter	7	2.001	8	18.5	0.968	0.437	0.8313	
600 minute winter	8	2.002	9	1.8	0.508	0.043	0.3222	
600 minute winter	9	2.003	10	1.9	0.499	0.045	0.3740	
180 minute winter	27	5.000	21	-10.2	0.805	-0.240	0.1359	

File: 23047-ARC-XX-XX-M3-C- / Network: SW N1 Jim Emmerson 24/10/2023

Page 10

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 93.89%

		,							
Node Event		US Peak	Level	Depth	Inflow	Node	Floo	d Sta	atus
		lode (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
180 minute winter			79.798	0.734	36.4	0.0000	0.000		IARGED
180 minute winter	· 19	120	80.720	1.338	36.4	2.3650	0.000	00 SURCH	IARGED
180 minute winter	· 21	120	79.796	1.267	14.0	0.2293	0.000	00 SURCH	IARGED
180 minute winter	· 24	120	79.795	1.347	50.5	3.6108	0.000	0 SURCH	IARGED
180 minute winter	· 25	120	79.796	1.376	49.6	4.7651	0.000	00 SURCH	IARGED
180 minute winter	· 26	OUT 120	78.523	0.161	49.6	0.0000	0.000	0 ОК	
15 minute winter	23	10	79.990	0.133	25.9	0.0907	0.000	00 OK	
180 minute winter			80.754	1.354	61.7	184.6698	0.000	0 SURCH	IARGED
180 minute winter			78.582	0.169	49.7	0.0000	0.000		
240 minute summ			79.847	1.374	25.3	3.7117	0.000		IARGED
180 minute winter	· 17	120	80.756	1.118	29.2	0.0000	0.000	0 SURCH	IARGED
180 minute winter	- 16	120	80.761	1.102	29.6	1.2469	0.000	0 SURCH	IARGED
15 minute winter	14		81.048	0.202	18.5	0.1869	0.000		IARGED
15 minute winter	13	12	81.092	0.142	9.4	0.1229	0.000	00 OK	
180 minute winter			80.765	1.019	19.1	1.2595	0.000	0 SURCH	IARGED
180 minute winter	· 5	120	80.768	0.787	11.6	0.3992	0.000	0 SURCH	IARGED
180 minute winter		120	80.771	0.621	8.8	0.1738	0.000	0 SURCH	IARGED
180 minute winter	· 3	120	80.772	0.478	6.9	0.0760	0.000	0 SURCH	IARGED
180 minute winter	· 2	120	80.775	0.229	7.9	0.1351	0.000	0 SURCH	IARGED
15 minute winter	1	10	80.925	0.125	15.3	0.1002	0.000	00 OK	
15 minute winter	15	12	81.274	0.324	23.5	0.7027	0.000	0 FLOOD	D RISK
180 minute winter	· 11	120	80.766	0.609	8.1	0.0969	0.000	0 SURCH	IARGED
180 minute winter	· 10	120	80.766	0.572	8.1	0.1460	0.000	00 SURCH	IARGED
Link Event	US	Link	DS	Outflo	w Ve	locity Flov	v/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)		n/s)	•	Vol (m³)	Vol (m ³)
180 minute winter	20	1.010	22	36	.2	0.386	0.227	1.4184	
180 minute winter	19	1.009	20	2	.7	0.627	0.150	0.0317	
180 minute winter	19	Weir	20	34	.7				65.0
180 minute winter	21	5.001	22	13	.1	0.286	0.015	17.4820	
180 minute winter	24	1.012	25	49	.6	0.237	0.056	8.9806	
180 minute winter	25	Hydro-Brake [®]	26	3	.5				
180 minute winter	25	Weir	26	46	5.2				103.1
15 minute winter	23	6.000	24	25	.7	1.091	0.607	0.1610	
180 minute winter	18	1.008	19			0.916	1.115	0.1758	
180 minute winter	26	1.014	26_OUT			1.063	0.394	0.5979	180.3
240 minute summer	22	1.011	24	26		0.233	0.030	7.8949	
180 minute winter	17	1.007	18	28		0.831	0.413	1.0925	
180 minute winter	16	1.006	17	29	.2	0.821	0.417	0.3678	

18.4

9.1

18.2

10.8

8.8

-6.9

6.8

14.8

22.6

8.1

8.1

1.058

0.570

0.808

0.841

0.750

0.717

0.784

0.904

1.284

0.801

0.775

0.1998

0.2725

0.1161

0.9565

1.0109

0.8576

1.5169

0.6245

0.3117

0.4223

0.2271

1.275

0.629

0.556

0.255

0.208

-0.163

0.161

1.026

1.563

0.191

0.191

3.001

3.000

1.005

1.004

1.003

1.002

1.001

1.000

4.000

2.005

2.004

14

13

12

5

4

3

2

1

15

11

10

15 minute winter

15 minute winter

180 minute winter

15 minute winter

15 minute winter

180 minute winter

180 minute winter

16

14

16

12

5

4

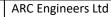

3

2

16

12

11



File: 23047-ARC-XX-XX-M3-C- / Network: SW N1 Jim Emmerson 24/10/2023

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	6	10	80.921	0.121	14.5	0.0915	0.0000	ОК
180 minute winter	7	120	80.770	0.153	6.9	0.1286	0.0000	ОК
180 minute winter	8	120	80.768	0.438	6.9	0.0696	0.0000	SURCHARGED
180 minute winter	9	120	80.767	0.508	7.4	0.1158	0.0000	SURCHARGED
180 minute winter	27	120	79.797	0.494	11.0	0.4171	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	6	2.000	7	14.1	0.867	0.975	0.4453	
180 minute winter	7	2.001	8	6.9	0.759	0.163	1.4725	
180 minute winter	8	2.002	9	6.9	0.718	0.163	0.4257	
180 minute winter	9	2.003	10	7.4	0.704	0.175	0.3873	
180 minute winter	27	5.000	21	11.0	0.910	0.260	0.1359	

Page 12

60 minute winter

60 minute winter

11

10

2.005

2.004

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 93.89%

Node Event		US Peak ode (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Floo (m³		atus
60 minute winte	r 20	40	80.024	0.960	123.8	0.000	0.000	0 SURCH	ARGED
60 minute winte	r 19	41	80.878	1.496	123.7	2.643	3 0.000	00 SURCH	IARGED
60 minute winte	r 21	40	80.003	1.474	46.9	0.266	3 0.000	00 SURCH	IARGED
60 minute winte	r 24	40	80.001	1.553	174.4	4.161	3 0.000	00 SURCH	ARGED
60 minute winte	r 25	40	79.998	1.578	174.2	5.465	7 0.000	00 SURCH	IARGED
60 minute winte	r 26	_OUT 40	78.668	0.306	173.9	0.000	0.000	00 ОК	
15 minute winte		10	80.037	0.180	38.9	0.122	3 0.000	00 OK	
60 minute winte	r 18	41	81.264	1.863	195.2	186.205	0.000	00 SURCH	IARGED
60 minute winte	r 26	40	78.813	0.400	174.1	0.000	0.000	00 SURCH	ARGED
60 minute winte	r 22	40	80.003	1.530	157.2	4.134	3 0.000	00 SURCH	ARGED
60 minute winte	r 17	41	81.312	1.674	86.9	0.000	0.000	0 FLOOD	O RISK
60 minute winte	r 16	41	81.338	1.679	88.1	1.899	0.000	0 FLOOD) RISK
60 minute winte		41	81.396	0.550	16.8	0.509	7 0.000		
60 minute winte		41	81.413	0.463	8.3	0.4013			
60 minute winte		41	81.374	1.628	56.1	2.011			
60 minute winte		42	81.424	1.443	33.0	0.731			
60 minute winte		42	81.453	1.303	27.6	0.364			
60 minute winte		42	81.468	1.174	22.7	0.186			
60 minute winte		42	81.491	0.945	22.7	0.556			
15 minute winte		11	81.700	0.900	22.9	0.849			
15 minute summ		12	81.550	0.600	31.8	1.328			
60 minute winte		42	81.387	1.231	28.3	0.195			
60 minute winte		42	81.396	1.202	25.8	0.306			
Link Event	US	Link	DS	Outflo		-	w/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s) (n	n/s)		Vol (m³)	Vol (m³)
60 minute winter	20	1.010	22	123	3.9 ().782	0.778	1.4184	
60 minute winter	19	1.009	20	-7	7.7 ().627	-0.434	0.0317	
60 minute winter	19	Weir	20	122	2.0				112.9
60 minute winter	21	5.001	22	46	5.8 ().422	0.052	17.4820	
60 minute winter	24	1.012	25	174	4.2 ().453	0.198	8.9806	
60 minute winter	25	Hydro-Brake [®]	26	3	3.5				
60 minute winter	25	Weir	26	170	0.6				175.8
15 minute winter	23	6.000	24	38	8.6 1	L.183	0.911	0.2227	
60 minute winter	18	1.008	19	123	3.7 3	3.110	3.783	0.1758	
60 minute winter	26	1.014	26_OUT	173	3.9 1	L.616	1.380	1.3216	230.5
60 minute winter	22	1.011	24	157	7.0 ().329	0.177	7.8949	
60 minute winter	17	1.007	18			L.219	1.227	1.0925	
60 minute winter	16	1.006	17			L.235	1.243	0.3678	
60 minute winter	14	3.001	16			0.968	1.156	0.2114	
60 minute winter	13	3.000	14).553	0.568	0.2754	
60 minute winter	12	1.005	16			L.323	1.609	0.1161	
60 minute winter	5	1.004	12).979	0.753	0.9565	
60 minute winter	4	1.003	5).945	0.582	1.0109	
60 minute winter	3	1.002	4).924	0.501	0.8576	
60 minute winter	2	1.001	3			L.052	0.535	1.5171	
15 minute winter	1	1.000	2			L.019	1.241	0.6697	
15 minute summer	15	4.000	16			L.739	2.118	0.3169	
								0.0100	

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd

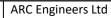
-28.3

24.6

1.025

0.944

-0.669


0.581

0.4223

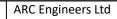
0.2271

12

11

File: 23047-ARC-XX-XX-M3-C- / Network: SW N1 Jim Emmerson 24/10/2023

Page 13


Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 93.89%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	6	42	81.478	0.678	17.9	0.5124	0.0000	FLOOD RISK
60 minute winter	7	42	81.443	0.826	23.0	0.6957	0.0000	FLOOD RISK
60 minute winter	8	42	81.416	1.086	23.1	0.1726	0.0000	FLOOD RISK
60 minute winter	9	42	81.406	1.147	24.0	0.2616	0.0000	FLOOD RISK
60 minute winter	27	40	80.010	0.707	37.0	0.5978	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	6	2.000	7	11.0	0.811	0.761	0.4837	
60 minute winter	7	2.001	8	23.1	0.997	0.545	1.7107	
60 minute winter	8	2.002	9	22.4	0.888	0.530	0.4257	
60 minute winter	9	2.003	10	23.5	0.871	0.555	0.3873	
60 minute winter	27	5.000	21	36.8	1.212	0.870	0.1359	

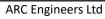
REF – 23047 Page **26** of **27**

Appendix F:-Foul Water Design Calculations

Design Settings

Frequency of use (kDU)	0.70	Minimum Velocity (m/s)	1.00
Flow per dwelling per day (I/day)	4000	Connection Type	Level Soffits
Domestic Flow (I/s/ha)	0.6	Minimum Backdrop Height (m)	0.200
Industrial Flow (I/s/ha)	0.7	Preferred Cover Depth (m)	1.200
Additional Flow (%)	0	Include Intermediate Ground	\checkmark

Pipeline Schedule


Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.008	17.677	49.9	150	Circular	81.580	79.574	1.856	81.300	79.220	1.930
4.000	4.309	60.0	150	Circular	81.750	79.646	1.954	81.580	79.574	1.856
1.007	8.292	100.0	150	Circular	81.675	79.657	1.868	81.580	79.574	1.856
1.006	7.970	100.0	150	Circular	81.869	79.737	1.982	81.675	79.657	1.868
3.001	28.198	60.0	150	Circular	81.900	80.127	1.623	81.675	79.657	1.868
3.000	5.534	60.0	150	Circular	82.000	80.219	1.631	81.900	80.127	1.623
1.005	19.073	99.9	150	Circular	81.650	79.928	1.572	81.869	79.737	1.982
1.004	30.657	99.9	150	Circular	81.650	80.235	1.265	81.650	79.928	1.572
2.001	7.676	99.7	150	Circular	81.650	80.005	1.495	81.650	79.928	1.572
2.000	21.927	100.1	150	Circular	81.700	80.224	1.326	81.650	80.005	1.495
1.003	11.955	99.6	150	Circular	81.700	80.355	1.195	81.650	80.235	1.265
1.002	9.777	99.8	150	Circular	81.700	80.453	1.097	81.700	80.355	1.195
1.001	43.014	113.2	150	Circular	81.700	80.833	0.717	81.700	80.453	1.097
1.000	22.270	99.9	150	Circular	81.700	81.106	0.444	81.700	80.883	0.667

Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia (mm)	Node Type	МН Туре
1.008	14	1200	Manhole	Adoptable	14_OUT	1200	Manhole	Adoptable
4.000	13		Junction		14	1200	Manhole	Adoptable
1.007	12	1200	Manhole	Adoptable	14	1200	Manhole	Adoptable
1.006	9	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
3.001	11	1200	Manhole	Adoptable	12	1200	Manhole	Adoptable
3.000	10		Junction		11	1200	Manhole	Adoptable
1.005	8	1200	Manhole	Adoptable	9	1200	Manhole	Adoptable
1.004	5	450	Manhole	Adoptable	8	1200	Manhole	Adoptable
2.001	7	450	Manhole	Adoptable	8	1200	Manhole	Adoptable
2.000	6	450	Manhole	Adoptable	7	450	Manhole	Adoptable
1.003	4	450	Manhole	Adoptable	5	450	Manhole	Adoptable
1.002	3	450	Manhole	Adoptable	4	450	Manhole	Adoptable
1.001	2	450	Manhole	Adoptable	3	450	Manhole	Adoptable
1.000	1	450	Manhole	Adoptable	2	450	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
13	456481.683	222420.142	81.750	2.104		م رم			
						0	4.000	79.646	150
6	456493.667	222428.650	81.700	1.476	450	() [*]			
						0	2.000	80.224	150

<u>Manhole Schedule</u>	

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
7	456510.264	222442.980	81.650	1.645	450	٥_ 1	2.000	80.005	150
						\mathcal{S}			
							2.004	00.005	450
1	456542.794	222471.249	81.700	0.594	450	0	2.001	80.005	150
1	450542.794	222471.249	81.700	0.594	450	\frown			
						\swarrow			
						0	1.000	81.106	150
2	456525.970	222456.657	81.700	0.867	450	° 5 1 1	1.000	80.883	150
						\sim			
						0	1.001	80.833	150
3	456497.817	222489.178	81.700	1.247	450	0		80.453	150
- -			02000			\bigcirc			
						¹ 0		80.453	150
4	456490.431	222482.772	81.700	1.345	450	- 1 1	1.002	80.355	150
						\bigotimes			
						۰ ^۷ 0	1.003	80.355	150
5	456485.229	222472.008	81.650	1.415	450	1 1		80.235	15(
						\mathcal{A}			
						\swarrow			
	456505 242	222440 705	04 650	4 7 2 2	4200	0	-	80.235	150
8	456505.242	222448.785	81.650	1.722	1200	² 1 2		79.928 79.928	150 150
							1.004	75.520	150
						0 1 0	1.005	79.928	150
9	456490.819	222436.305	81.869	2.132	1200	1 1	1.005	79.737	150
						$\boldsymbol{\triangleleft}$			
						0 L	1.000	70 707	450
10	456462.665	222456.596	82.000	1.781		0	1.006	79.737	150
10	430402.003	222430.330	02.000	1.701					
						۹ <u></u>			
						<u> </u>		80.219	150
11	456466.294	222452.418	81.900	1.773	1200	1 1	3.000	80.127	150
						\bigotimes			
						<u>ر</u> ۵	3.001	80.127	150
12	456484.769	222431.116	81.675	2.018	1200	1 1		79.657	150
						2	1.006	79.657	150
						\bigvee			
1.4	156495 054	111411 010	01 500	2.000	1200	<u> </u>		79.657	150
14	456485.051	222422.829	81.580	2.006	1200			79.574 79.574	150 150
						×	1.007	, , , , , , 4	10(
						1´ ³ 0 0	1.008	79.574	150
14_OUT	456496.691	222409.525	81.300	2.080	1200	1 1	1.008	79.220	150
						\sim			
						\smile			
							1		

The Institution of **StructuralEngineers**

3 CADMAN COURT MORLEY LEEDS LS27 ORX T: 0113 253 3904 W:www.arc-engineers.co.uk

REGISTERED IN ENGLAND AND WALES NUMBER 6365566 - REGISTERED OFFICE - 3 CADMAN COURT, MORLEY, LEEDS, LS27 ORX