

# **Environment Group**

Peveril Securities Ltd Lakeview Drive Bicester, Oxfordshire

Phase 2 Geo-Environmental Assessment

www.bwbconsulting.com



## **Environment Group**

Peveril Securities Ltd Lakeview Drive Bicester, Oxfordshire

# Phase 2 Geo-Environmental Assessment

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

Leeds W hitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> London 11 Borough High Street, London SE1 9SE T: 0207 407 3879

Manchester 4th Floor Carvers Warehouse, 77 Dale Street Manchester, M1 2HG T: 0161 233 4260

Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

September 2017

BIM Document Ref: LDB-BWB-00-XX-EN-RP-0001\_PH2\_P1

Project Number: NTE2366



### **DOCUMENT ISSUE RECORD**

| Rev | Date of<br>Issue  | Status | Author:                  | Checked:                              | Geotech Approved:               | Land Approved:                           |
|-----|-------------------|--------|--------------------------|---------------------------------------|---------------------------------|------------------------------------------|
| P1  | September<br>2017 | DRAFT  | Luke Cross<br>BSc (Hons) | Redmond Parker-<br>Dunn<br>BSc (Hons) | Jamie Rushton<br>BEng CEng MICE | Richard Robinson<br>BSc (Hons)<br>MCIWEM |
| FI  |                   |        |                          |                                       |                                 |                                          |

#### Limitations

This report has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this report by any third party. No part of this report shall be copied or reproduced in any form without the prior written permission of BWB.



| EXECUTIVE SUMMAR                 | Y                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Address                     | Land off Lakeview Drive, Bicester, Oxfordshire, OX261DE                                                                                                                                                                                                                                                                                                |
| Proposed                         | The proposed development is anticipated to comprise the development of up                                                                                                                                                                                                                                                                              |
| Development                      | to 55,000m <sup>2</sup> of office space.                                                                                                                                                                                                                                                                                                               |
| Site Setting and<br>History      | The site is irregular in shape and occupies approximately 21.0ha of land. The site currently comprises three large open fields used for grass / hay making and a landscaped area to the north including a large pond. Two dry drainage ditches cut north to south across the site.                                                                     |
|                                  | The site has remained relatively undeveloped since the earliest mapping produced in 1881. The site has been shown to comprise agricultural land with several small buildings located in the western extents of the site, believed to be associated with farming activities.                                                                            |
|                                  | The surrounding land has been utilised for agricultural uses, with a sewage works<br>and railway line located immediately south and east of the site since 1880.                                                                                                                                                                                       |
| scope of<br>investigation works  | boreholes to a maximum depth of 4.4m below ground level (bgl) and 26 machine excavated trial pits to a maximum depth of 3.7mbgl.                                                                                                                                                                                                                       |
| Ground Conditions<br>Encountered | Ground conditions were found to comprise varying thicknesses of topsoil<br>overlying weathered deposits of the Cornbrash Formation to the west of site, with<br>central and eastern areas recording thin deposits of Alluvium and River Terrace<br>Deposits overlying the weathered Kellaways Clay Member underlain by the<br>Cornbrash Formation.     |
|                                  | A small amount of Made Ground was recorded in the north western area of the site.                                                                                                                                                                                                                                                                      |
| Geotechnical<br>Appraisal        | Shallow spread foundations within the Cornbrash Formation or Kellaways Clay<br>Member should be suitable for the proposed buildings along the western<br>boundary of the site (buildings 1 & 11). For the proposed buildings in the central<br>and eastern area of site ground improvement techniques comprising vibrostone<br>columns maybe required. |
|                                  | A ground bearing floor slab should be achievable for the proposed development, however the floor slab should avoid spanning different geological strata to avoid differential settlement issues.                                                                                                                                                       |
|                                  | Design sulphate class DS-2 and ACEC Class AC-2 is required for concrete to resist attack from sulphate levels across the site.                                                                                                                                                                                                                         |
| Environmental<br>Assessment      | The environmental risk assessment has identified limited sources of<br>contamination that represent a risk to human health. A hotspot of Total TPH and<br>loose Asbestos fibres have been recorded with the shallow Made Ground<br>deposits encountered.                                                                                               |
|                                  | Elevated concentrations of sulphate have been identified within the groundwater beneath the site which could represent a risk to concrete foundations. Impact to secondary A Aquifers and surface water features is likely to be restricted based upon the predominately hardstanding cover of the proposed development.                               |
|                                  | Ground gas monitoring has indicated that the site can be characterised as a CS1 site whereby ground gas protection measures are not required.                                                                                                                                                                                                          |
| Recommendations                  | To mitigate the risk posed to human health from asbestos fibres, a clean soil cover system will be required in landscaped areas positioned above the existing                                                                                                                                                                                          |



#### **EXECUTIVE SUMMARY**

Made Ground deposits. The movement of Made Ground should be tracked if excavated as part of the development scheme to ensure appropriate mitigation is required. This may be by use of a Material Management Plan.

The foundation solutions for the proposed development should be re-assessed once final loadings are known.

This summary should be read in conjunction with BWB's full report (ref. LDB-BWB-00-XX-EN-RP-0001\_PH2\_P1) and reflects an assessment of the site based on information received by BWB at the time of production.



### CONTENTS PAGE

| 1 | INTRODUCTION                                                 | 1  |
|---|--------------------------------------------------------------|----|
|   | Instruction                                                  | 1  |
|   | Objectives                                                   | 1  |
|   | Scope of Works                                               | 2  |
| 2 | THE SITE                                                     | 3  |
|   | Site Location                                                | 3  |
|   | Site Description                                             | 3  |
| 3 | GEO-ENVIRONMENTAL SETTING                                    | 4  |
|   | Published Geology                                            | 4  |
|   | Hydrogeology                                                 | 4  |
|   | Hydrology                                                    | 4  |
| 4 | PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT                    | 5  |
|   | Introduction                                                 | 5  |
| 5 | PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION | 8  |
|   | Scope of Works                                               | 8  |
|   | Sampling Strategy                                            | 8  |
|   | Chemical Analytical Strategy                                 | 9  |
|   | Geotechnical Strategy                                        | 10 |
| 6 | GROUND CONDITIONS ENCOUNTERED                                | 11 |
|   | Geological Summary                                           | 11 |
|   | Geological Descriptions                                      | 11 |
|   | In Situ Testing                                              | 14 |
|   | Hydrogeology                                                 | 16 |
|   | Hydrology                                                    | 16 |
|   | Contamination Observations                                   | 17 |
| 7 | GEOTECHNICAL ASSESSMENT                                      | 18 |
|   | Introduction                                                 | 18 |
|   | Foundation Solutions                                         | 18 |
|   | Floor Slabs                                                  | 19 |
|   | Roads and Pavements                                          | 20 |
|   | Drainage                                                     | 20 |
|   | Excavations                                                  | 20 |



|    | Groundwater                                                    | 20 |
|----|----------------------------------------------------------------|----|
|    | Chemical Attack on Buried Concrete                             | 21 |
|    | Earthworks                                                     | 21 |
| 8  | GROUND GAS ASSESSMENT                                          | 22 |
|    | Introduction                                                   | 22 |
|    | Methodology                                                    | 22 |
|    | Results                                                        | 22 |
|    | Risk Assessment                                                | 24 |
|    | Recommendations                                                | 24 |
| 9  | HUMAN HEALTH RISK ASSESSMENT                                   | 25 |
|    | Pathways                                                       | 25 |
|    | Sources                                                        | 26 |
| 10 | CONTROLLED WATERS RISK ASSESSMENT                              | 27 |
|    | Pathways                                                       | 27 |
|    | Soil Leachability                                              | 27 |
|    | Groundwater                                                    | 28 |
|    | Surface Water                                                  | 29 |
|    | Summary                                                        | 29 |
| 11 | ENVIRONMENTAL RISK ASSESSMENT                                  | 30 |
|    | Summary of Potentially Significant Pollutant Linkages          | 30 |
| 12 | ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS | 33 |
|    | Statutory Liability                                            | 33 |
|    | Third Party Liability                                          | 33 |
|    | Public Relations                                               | 34 |
|    | Development Implications                                       | 34 |
| 13 | WASTE MANAGEMENT                                               | 35 |
|    | Waste Classification                                           | 35 |
| 14 | CONCLUSIONS AND RECOMMENDATIONS                                | 36 |
|    | Conclusions                                                    | 36 |
|    | Recommendations                                                | 36 |
| 15 | REFERENCES                                                     | 38 |



### TABLES

| Table 1  | Preliminary Conceptual Site Model                                   | 6  |
|----------|---------------------------------------------------------------------|----|
| Table 2  | Borehole Installation Summary                                       | 9  |
| Table 3  | Summary of Ground Conditions                                        | 11 |
| Table 4  | PSD Results Summary                                                 | 13 |
| Table 5  | DCP TRL Results Summary                                             | 14 |
| Table 6  | DCP TRL Results Summary                                             | 15 |
| Table 7  | Water Strikes                                                       | 16 |
| Table 8  | Summary of Safe Bearing Capacities – Western Buildings (No. 1 & 11) | 19 |
| Table 9  | Summary of Recorded Ground Gas Results                              | 22 |
| Table 10 | Controlled Water Exposure Pathways                                  | 27 |
| Table 11 | Summary of Leachable Contamination Exceedances                      | 28 |
| Table 12 | Summary of Recorded Exceedances in Groundwater                      | 28 |
| Table 13 | Revised Conceptual Site Model                                       | 31 |

### FIGURES (included in main text)

| Figure 1 | Site Location Plan                                      |
|----------|---------------------------------------------------------|
| Figure 2 | Corrected SPT 'N' Value (N <sub>60</sub> ) Versus Depth |

### DRAWINGS

| Drawing 1 | Site Layout Plan               |
|-----------|--------------------------------|
| Drawing 2 | Exploratory Hole Location Plan |

### APPENDICES

| Appendix 1  | Proposed Development Plan                   |
|-------------|---------------------------------------------|
| Appendix 2  | Exploratory Hole Logs                       |
| Appendix 3  | Drillers' Logs                              |
| Appendix 4  | Trip Hammer Calibration Certificate         |
| Appendix 5  | Gas and Groundwater Monitoring Results      |
| Appendix 6  | TRL Dynamic Cone Penetration Results        |
| Appendix 7  | Soil and Leachate Chemical Analysis Results |
| Appendix 8  | Groundwater Chemical Analysis Results       |
| Appendix 9  | Geotechnical Laboratory Testing Results     |
| Appendix 10 | Derivation of GSACs                         |
| Appendix 11 | CLEA Flow Chart & Screening Worksheets      |



- Appendix 12 Soil Leachate Assessment Sheets
- Appendix 13 Groundwater Assessments Sheets
- Appendix 14 Preliminary Waste Assessment



# **1** INTRODUCTION

### Instruction

- 1.1 BWB Consulting (BWB) was instructed by Peveril Securities Ltd (the Client) to carry out a Phase 2 Geo-Environmental Assessment for the site at Lakeview Drive, Bicester, Oxfordshire. Details of the project brief are included in BWB proposal reference 170623/01/NTE2366/RPD/LC, dated June 2017
- 1.2 The proposed development is anticipated to comprise the development of up to 55,000m<sup>2</sup> of office space. Details on the design of the proposed development have not been provided to date, however BWB anticipate that development will be no taller than 3 stories and include areas of car parking and limited soft landscaping.
- 1.3 A proposed development plan (drawing reference 16SK109, undated) and assumed current at the time of writing this report is presented as **Appendix 1**.

# **Objectives**

- 1.4 The objectives of the report are to assess:
  - The prevailing ground and groundwater conditions across the site;
  - The potential presence and extent of contamination in shallow soil and groundwater beneath the site;
  - The significance and magnitude of the observed contamination through comparison of analytical data to appropriate published environmental screening criteria;
  - The strength properties of the soil beneath the site to enable foundation design; and
  - The ground gas regime beneath the site.
- 1.5 The above objectives will allow the preliminary Conceptual Site Model presented in the Phase 1 report to be verified and updated. The report has been completed in accordance with BS10175:2011(+A1:2013) 'Investigation of Potentially Contaminated Sites, Code of Practice' and CLR11 'Model Procedures for the Management of Land Contamination'.
- 1.6 This report presents the information obtained from a desk study and the supplementary ground investigations. Sections 2 to 5 of the report, together with the associated Figures and Appendices, provides a Ground Investigation Report (GIR), as defined in BS EN 1997-1:2004 and BS EN 1997-2:2007
- 1.7 The report also includes information required to form a Geotechnical Design Report as defined in BS EN 1997-1:2004, and the salient information, assessments and recommendations are presented in Sections 6 to 11 of the report, together with the associated Figures and Appendices.



# Scope of Works

- 1.8 The ground investigation scope of works was completed on Thursday13<sup>th</sup> September 2017 and comprised the following;
  - Non-intrusive survey of excavation locations for underground utilities;
  - 26 machine excavated trial pits;
  - 12 cable percussive boreholes;
  - Insitu TRL DCP testing at select location;
  - Four gas and groundwater monitoring visits;
  - Chemical analysis of soils and groundwater; and
  - Geotechnical testing of soil.



# 2 THE SITE

# Site Location

2.1 The site is located at Lakeview Drive Bicester, Oxfordshire, centred at National Grid reference 457953, 221555. The approximate location of the site is shown in **Figure 1**.



Reproduced from the Ordnance Survey Open Map with the permission of the controller of Her Majesty's Stationery Office Crown Copyright Reserved.

# Site Description

2.2 The layout of the site with the main features is presented as **Drawing 1**. A detailed description of the key features of the site and its surroundings is included in the Phase 1 Report (ref: LDB-BWB-00-XX-RP-EN-0001\_PH1, dated August 2017).



# **3 GEO-ENVIRONMENTAL SETTING**

# **Published Geology**

- 3.1 British Geological Survey (BGS) mapping for the site indicates that the site is directly underlain by Alluvium overlying River Terrace Deposits (RTD) to the east, south and western areas of the site, no superficial deposits are mapped across the centre and northern areas. The solid geology beneath the site comprises the Kellaways Clay Member underlain by the Cornbrash Formation, with the Kellaways Clay Member absent in the west.
- 3.2 No Made Ground is mapped across the site, however limited Made Ground deposits are anticipated to the north west area as a result of historical developments and recent construction works across the neighbouring plots (Tesco Superstore). The Groundsure Report indicates Made Ground is present along the northern boundary (A41 roadway) and eastern boundary (railway line).
- 3.3 Varying thicknesses of Topsoil are anticipated across the site.
- 3.4 Several historical BGS borehole records are located within the site boundary. Borehole log SP25SE81 is located along the eastern boundary and details topsoil to 0.25m below ground level (bgl), Alluvium deposits to 3.7m bgl, dense clayey sand to 6.2m bgl, Kellaways Clay member to 9.3m bgl overlying the Cornbrash Formation (limestone).
- 3.5 Additional borehole records (refs: SP25SE78 & SP25SE82) also located along the eastern boundary generally confirm the ground conditions detailed above, with the Cornbrash Formation encountered between 8.05m and 10.6m bgl respectively.

# Hydrogeology

- 3.6 The underlying ground conditions have been classified by the Environment Agency (EA) as follows:
  - River Terrace Deposits: Secondary A Aquifer; and
  - Cornbrash Formation: Secondary A Aquifer.

# Hydrology

- 3.7 Two drainage ditches are present on site cutting east to west. One is located to the north of the site with the second located to the south. Both are listed as unnamed tertiary rivers and were noted to be dry during the site walkover undertaken as part of the Phase 1 Assessment.
- 3.8 The southern and eastern areas of the site lie within an EA designated Zone 2 and 3 floodplain.



# 4 PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT

### Introduction

- 4.1 The risk posed by any contaminants in soil or groundwater will depend on the nature of the hazard, the probability of exposure, the pathway by which exposure occurs, and the likely effects on the receptors. A contaminant is defined as a substance that has the potential to cause harm, while a risk is considered to exist if such a substance is present in sufficient concentration to cause harm and a pathway exists for a receptor to be exposed to the substance.
- 4.2 The following sections discuss all the identified potential on and off site sources, pathways and receptors in the context of the proposed development and plausible pollutant linkages which may represent a risk to identified receptors such as human health and/or controlled waters from the data gained from the desk study. At this stage the assessment is qualitative and aimed to determine all pollutant linkages, irrespective of significance or allowing for uncertainty.
- 4.3 Three impact potentials exist for any given site, these are:
  - The site impacting upon itself;
  - The site impacting on its surroundings; and
  - The surroundings impacting on the site.
- 4.4 All three impacts need to be considered in a risk assessment.
- 4.5 A Source, Pathway, Receptor analysis has been undertaken for the site based on the information provided in the preceding sections. This is presented as **Table 1**.
- 4.6 **Sources (S)**; These are potential or known sources of contamination that may relate to a former land use or present site feature or process (e.g. fuel storage tanks).
- 4.7 **Pathways (P)**; A pathway is defined as a mechanism or route by which a contaminant comes into contact with, or otherwise affects a receptor. Pathways by which the identified receptors may be impacted upon in the context of the proposed development.
- 4.8 **Receptors (R);** Receptors are defined as people, living organisms, ecological systems, controlled waters, atmosphere, structures and utilities that could be adversely affected by contaminant(s).



| able 1 Preliminary Conceptual Site Model                                                                                       |                                                                                                                                                               |                                                                             |       |      |      |                                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Source                                                                                                                         | Pathway                                                                                                                                                       | Receptor                                                                    | Con   | Prob | Risk | Mitigation/Investigation                                                                                                                                                                 |  |  |
|                                                                                                                                | P1: Direct contact                                                                                                                                            | <b>R1</b> : Construction personnel                                          | Md    | Lw   | M/L  | A ground investigation is recommended in order to<br>assess current concentrations of organic and<br>inorganic contaminants within soils and                                             |  |  |
| <b>\$1</b> : On site: Ground                                                                                                   | and incidental<br>ingestion.                                                                                                                                  | <b>R2</b> : Future site users<br>(commercial)                               | Md UI | UI   | L    | groundwater at the site that are likely to impo<br>construction workers and future site users of<br>ingestion, direct contact, and inhalation pathwa                                     |  |  |
| conditions and historical site uses, most notably                                                                              |                                                                                                                                                               |                                                                             |       |      |      | If present, it is likely that these contaminant linkages<br>will be easily severed through                                                                                               |  |  |
| agricultural uses, infilled<br>ponds, out buildings<br>(unknown uses) &<br>construction yard                                   | <ul> <li>P2: Vertical migration of contaminants in the soil leachate.</li> <li>P3: Migration and accumulation of ground gasses in enclosed spaces.</li> </ul> | <b>R3:</b> Underlying<br>Secondary A<br>Aquifer (RTD)                       | Md    | Lw   | M/L  | remediation/mitigation measures such as the<br>provision of a hardstanding surface layer, capping<br>layers in areas of soft landscaping and ground<br>gas/vapour protection measures.   |  |  |
| (temporary).<br>Possible contaminants to<br>include – agrochemicals,<br>fuel oils, heavy metals and<br>hazardous ground gases. |                                                                                                                                                               | <b>R4:</b> Underlying<br>Secondary A<br>Aquifer<br>(Cornbrash<br>Formation) | Md    | UI   | L    | The risk to the Aquifer present within the Cornbrash<br>Formation is likely to be reduced due to the relatively<br>impermeable cohesive Kellaways Clay Member<br>present above.          |  |  |
|                                                                                                                                |                                                                                                                                                               | <b>R1</b> : Construction personnel                                          | Sv    | Iw   | м    | Ground gas assessment in line with guidance detailed in CIRIA 665 and BS8485:2015 should be                                                                                              |  |  |
|                                                                                                                                |                                                                                                                                                               | <b>R2</b> : Future site users (commercial)                                  |       |      |      | undertaken to calculate the gassing regime beneath the site.                                                                                                                             |  |  |
| <b>S2:</b> Offsite – Land uses including the STW, petrol filling station and infilled ground.                                  | <b>P4</b> : Leaching and<br>permeation through<br>the soil profile and<br>migration                                                                           | R3:UnderlyingSecondaryAAquifer (RTD)R4:UnderlyingSecondaryA                 | Md    | UI   | L    | Ground investigation with consideration of the<br>ground gas regime will aid in the assessment of<br>potential contamination to risks to human health<br>and controlled water receptors. |  |  |



| Source                                                                                                           | Pathway                                                                      | Receptor                                      | Con | Prob | Risk | Mitigation/Investigation                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----|------|------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Contaminants to<br>potentially include<br>hydrocarbons, heavy<br>motals increanics                               |                                                                              | Aquifer<br>(Cornbrash<br>Formation)           |     |      |      | Low permeability of the surrounding geology may<br>have reduced leaching of contaminated<br>groundwater onto site. |  |  |
| asbestos, organic<br>compounds, micro-<br>organisms and hazardous                                                | <b>P5:</b> Lateral migration<br>of contaminated<br>groundwater               | <b>R5:</b> Unnamed<br>Primary River           | Md  | UI   | L    |                                                                                                                    |  |  |
| ground gases.                                                                                                    | P3: Migration and<br>accumulation of<br>ground gasses in<br>enclosed spaces. | <b>R2</b> : Future site users<br>(commercial) | Sv  | UI   | M/L  |                                                                                                                    |  |  |
| VH = Very High, <mark>H = High</mark> , M = Moderate, M/L = Moderate/Low, <mark>L = Low</mark> , VL = Very Low   |                                                                              |                                               |     |      |      |                                                                                                                    |  |  |
| KEY: Sv = Sev ere, Md = Medium, Mi = Mild, Mr = Minor Hi = High, Li = Likely, Lw = Low Likelihood, UI = Unlikely |                                                                              |                                               |     |      |      |                                                                                                                    |  |  |



# 5 PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

## Scope of Works

- 5.1 Intrusive ground investigation works were undertaken between 14<sup>th</sup> August and 13<sup>th</sup> of September 2017 and comprised the following works:
  - Clearance of investigation locations by a specialist buried services tracing company;
  - Collection of coordinates and elevations of exploratory hole locations;
  - The advancement of 12 cable percussive boreholes (BH101 to BH110, BH112 & BH113) to a maximum depth of 4.4mbgl with completion of SPTs and installations of gas and groundwater monitoring wells;
  - The advancement of 26 machine excavated trial pits (TP101 to TP126 inclusive) to a maximum depth of 3.7mbgl;
  - TRL dynamic probe penetration (TRL DCP) testing at selected locations in order to infer CBR values;
  - Collection of environmental soil and groundwater water samples for chemical analysis at a UKAS and MCERTS accredited laboratory;
  - Collection of bulk and disturbed soil samples for geotechnical analysis at a UKAS accredited laboratory; and
  - Four post investigation ground gas and groundwater level monitoring visits.
- 5.2 An exploratory hole location plan is presented as **Drawing 2**. BWB exploratory hole records are presented as **Appendix 2**, Drillers' Logs are presented as **Appendix 3**, the SPT calibration certificate is presented in **Appendix 4**, the post investigation gas and groundwater monitoring data is presented as **Appendix 5** and the TRL DCP results are presented as **Appendix 6**.
- 5.3 The site investigation works were carried out in general accordance with BS5930:2015 'Code of Practice for Site Investigations' and BS10175:2011 'Investigation of Potentially Contaminated Sites'.

# Sampling Strategy

- 5.4 A review of the Phase 1 Desk Study Report revealed limited potential contamination sources across the site. Therefore, the intrusive locations were positioned to provide site wide coverage.
- 5.1 Each borehole location was installed with a 50mm HDPE well screen, bung and gas tap to facilitate ground gas and groundwater monitoring. **Table 2** below summarises the response zone in each borehole and their targeted geology.



| Location | Slotted Well S | creen (m bgl) | Taracted Goolean                      |  |  |
|----------|----------------|---------------|---------------------------------------|--|--|
| LOCUIION | Тор            | Base          | Tulgeleu Geology                      |  |  |
| BH101    | 1.0            | 2.55          | Cornbrash Formation                   |  |  |
| BH102    | 1.0            | 3.4           | Cornbrash Formation                   |  |  |
| BH103    | 1.0            | 4.0           | River Terrace / Kellaways Clay Member |  |  |
| BH104    | 0.5            | 2.0           | Alluvium                              |  |  |
| BH105    | 0.5            | 1.4           | Cornbrash Formation                   |  |  |
| BH106    | 1.0            | 2.5           | Kellaways Clay Member                 |  |  |
| BH107    | 1.0            | 3.4           | Alluvium/Kellaways Clay Member        |  |  |
| BH108    | 1.0            | 3.0           | Alluvium                              |  |  |
| BH109    | 1.0            | 3.3           | Alluvium                              |  |  |
| BH110    | 1.0            | 3.5           | Alluvium/Kellaways Clay Member        |  |  |
| BH112    | 1.0            | 3.0           | Alluvium/Kellaways Clay Member        |  |  |
| BH113    | 1.0            | 4.0           | Alluvium/Kellaways Clay Member        |  |  |

### Table 2 Borehole Installation Summary

## Chemical Analytical Strategy

### Soil Strategy

- 5.2 Selected soil samples collected from exploratory hole locations were sent to 12 Analytical Services (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:
  - 16 soil samples tested for a soil suite (BWB Standard Suite) comprising arsenic, barium, beryllium, water soluble boron, cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), total phenols, total cyanide, free cyanide, complex cyanide, fraction of organic carbon, pH, Polycyclic Aromatic Hydrocarbons (PAHs) (United States Environment Protection Agency priority 16 compounds) and Total Petroleum Hydrocarbons (TPH) C6-C40;
  - Two soil samples tested for TPH speciated to the UK Criteria Working Group (TPHCWG) aliphatic and aromatic compounds;
  - Three Soil samples for Organochloride and Organiohos pesticides;
  - Five soil samples for asbestos screening; and
  - Three soil samples tested for a suite of common leachable contaminants, namely arsenic, barium, beryllium, water soluble boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, sulphate, total cyanide and pH.
- 5.3 The results of the soil chemical testing are presented as **Appendix 7**.

### Groundwater Strategy

- 5.4 Groundwater samples were obtained using a bailer following the removal of 3 times the well volume of water or the well bailed dry and allowed to recharge. The groundwater samples were sent to 12 Analytical Services (UKAS and MCERTS accredited) for the following suite of groundwater chemical testing:
  - Ten water samples tested for arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, conductivity, soluble



sulphate, ammoniacal nitrogen, total phenols, total cyanide, pH, total organic carbon, PAHs (US EPA priority 16 compounds).

5.5 The results of the water chemical testing are presented as **Appendix 8**.

# Geotechnical Strategy

- 5.6 The cable percussive borehole locations were positioned beneath the proposed building footprint to assess underlying ground conditions for geotechnical purposes. The trial pits were positioned to assess ground conditions, strength properties and characteristics across the wider site.
- 5.7 In-situ soil strength testing comprising SPTs were undertaken within the cable percussive boreholes. SPT 'N' values are included on the exploratory hole logs presented as **Appendix 2**. Dynamic Cone Penetration tests (DCP) were undertaken at selected locations across the site.
- 5.8 Selected disturbed and bulk samples were collected from the investigation locations and sent to the geotechnical project laboratory (I2 Analytical Services), which is UKAS accredited. The following geotechnical testing was undertaken;
  - 13 samples tested for moisture content;
  - Nine samples tested for Atterberg (liquid and plastic) limits;
  - Six samples tested for particle size distribution (by wet Sieve);
  - Two point load tests: and
  - Six samples tested for BRE Suite comprising aqueous sulphate and pH.
- 5.9 The results of the geotechnical testing are included as **Appendix 9**.



# **6 GROUND CONDITIONS ENCOUNTERED**

# **Geological Summary**

- 6.1 The ground conditions recorded confirmed the published geology discussed within the Phase 1 report. In general the ground conditions were found to comprise varying thicknesses of topsoil overly weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 6.2 A small amount of Made Ground was recorded in the north western area of the site.
- 6.3 A summary of the encountered ground conditions is presented below in **Table 3**. BWB exploratory hole records are presented as **Appendix 2**.

| Table 5 Sommary of Grooma Containons |               |           |                |      |               |        |                           |                 |  |
|--------------------------------------|---------------|-----------|----------------|------|---------------|--------|---------------------------|-----------------|--|
| Stratum                              | Top Depth (m) |           | Base Depth (m) |      | Thickness (m) |        | SPT N <sub>60</sub> Value |                 |  |
|                                      | Min           | Max       | Min            | Max  | Min           | Max    | Min                       | Max             |  |
| Topsoil                              | Groui         | nd lev el | 0.2            | 0.6  | 0.2           | 0.6    | -                         | -               |  |
| Made Ground                          | 0.0           | 0.3       | 0.2            | 1.0  | 0.2           | 1.0    | -                         | -               |  |
| Alluvium                             | 0.2           | 0.8       | 0.5            | 2.8  | 0.2           | 2.55   | 6                         | 15              |  |
| RiverTerrace Deposits                | 0.3           | 1.5       | 0.75           | 2.35 | 0.2           | 1.55   | 40                        | -               |  |
| Kellaways Clay<br>Member             | 0.4           | 2.8       | 2.1            | 4.3  | 0.4           | 3.2    | 9                         | 59<br>(refusal) |  |
| Cornbrash Formation                  | 0.2           | 4.3       | 1.44           | 4.4  | Not P         | rov en | 55<br>(refusal)           | 59<br>(refusal) |  |

Table 3Summary of Ground Conditions

# **Geological Descriptions**

<u>Topsoil</u>

- 6.4 Topsoil was encountered at all locations with the exceptions on BH101, BH102, TP101, TP102, TP103 and TP124, where Made Ground was recorded from ground level. Topsoil was encountered at thicknesses of between 0.2m and 0.6m, the composition generally displayed consistency, typically comprising brown or greyish brown slightly clayey slightly gravelly sand with rootlets.
- 6.5 The depth of topsoil over the site may vary from that encountered at the locations investigated within the scope of this investigation which may result in inaccurate estimations of topsoil quantities on the site.

### Made Ground

6.6 As mentioned above, Made Ground deposits were recorded at BH101, BH102, TP101, TP102, TP103 and TP124, all located in the north western area of site. The Made Ground deposits were recorded with a thickness ranging between 0.2m and 1.0m and were typically recorded as;



- Firm brown, dark brown, yellow or grey sandy gravelly clay;
- Brown gravelly sand;
- Brown occasionally yellow sandy gravelly cobbles; and
- Firm brown mottled grey clayey gravelly sand (reworked natural ground).
- 6.7 No in-situ testing or geotechnical testing was undertaken within the Made Ground deposits due to the limited thicknesses and limited coverage of the deposits.

#### <u>Alluvium</u>

- 6.8 Alluvium deposits were recorded in 29 locations, commonly across the central and eastern areas of the site and was generally recorded as the following;
  - Firm brown or grey mottled yellow or orange slightly sandy gravelly clay;
  - Brown mottled grey clayey gravel;
  - Soft brown to dark brown clayey pseudo-fibrous peat; and
  - Orange gravelly sand.
- 6.9 Alluvium deposits were often recorded to include organic matter and relic rootlets.
- 6.10 Typically the thicker Alluvium deposits were recorded in the eastern area of site with a maximum thickness of 2.55m. This area is a flood relief area for the neighbouring sewage treatment works and is currently not designated for development.
- 6.11 SPT N<sub>60</sub> results undertaken within the cohesive Alluvium deposits ranged between 5 (recorded at various locations at 5.0m bgl) and 15 blows (BH104 at 1.0m & BH110 at 2.0m bgl), indicating soft to firm deposits. No SPTs were undertaken within the granular Alluvium arising's. Graphs presenting the SPT results are presented within the text of this report later in this section as **Figure 2**.
- 6.12 Seven samples of the Alluvium were sent for moisture content analysis, recording results of between 19% and 35%, the samples were also tested for plasticity recording a plasticity index ranging between 28 (low plasticity) and 52 (high plasticity). Plasticity classification charts are included within **Appendix 9**.
- 6.13 Three PSD tests were undertaken on samples from the Alluvium deposits, a summary of the results is provided in **Table 4** below.



| Table 4  | PSD R            | esults Summa          | iry                      |                     |                           |                              |
|----------|------------------|-----------------------|--------------------------|---------------------|---------------------------|------------------------------|
| Location | Depth<br>(m bgl) | Cobble<br>Content (%) | Gravel<br>Content<br>(%) | Sand Content<br>(%) | Clay/ Silt<br>Content (%) | Earthworks<br>Classification |
| BH106    | 1.0              | 0.0                   | 39.6                     | 28.8                | 30.6                      | 2C                           |
| BH109    | 1.0              | 0.0                   | 0.0                      | 2.9                 | 97.1                      | 2A/B                         |
| BH112    | 1.0              | 0.0                   | 9.5                      | 36.7                | 53.8                      | 2A/B                         |

### <u>River Terrace Deposits</u>

- 6.14 River Terrace Deposits were recorded in 12 locations across the site, typically recorded between the Alluvium and bedrock formation. The deposits were generally recorded as the following;
  - Dense yellow and grey or light brown and yellowish brown slightly sandy gravel;
  - Grey sandy gravel; and
  - Orange, brownish orange or light brown sand and gravel.
- 6.15 One SPT was undertaken within the River Terrace Deposits, recoding an N<sub>60</sub> value of 40 blows (BH103 at 1.2mbgl), indicating dense deposits.
- 6.16 One sample of the River Terrace Deposits was tested for PSD, recording a silt /clay content of 26.7%, sand content of 7.32% and gravel content of 0.1%. Based upon these results the material is considered likely to be classified as a 2A/B material based upon Series 600 Earthworks specification.

#### Kellaways Clay Formation

- 6.17 The Kellaways Clay Member was recorded in 28 locations across the site and was encountered to a maximum depth of 4.3m bgl, although in ten locations the thickness of the deposits was not proven. This stratum was typically encountered as:
  - Dark grey sandy gravelly clay;
  - Stiff dark grey clay;
  - Very dense dark grey clayey gravel; and
  - Dark grey weathered mudstone arising as a very clayey gravel.
- 6.18 N<sub>60</sub> SPT results obtained within the cohesive Kellaways Clay Member recorded results of between 9 (BH112 at 2.0m bgl) and 48 blows (BH110 at 3.0m bgl), indicating soft to very stiff deposits. All N<sub>60</sub> results within the granular deposits of the Kellaways Clay Member recorded a blow count of 55 and 59 blows (refusal) at various depths, indicating very dense deposits.
- 6.19 Two samples of the cohesive Kellaways arisings were sent for moisture content analysis, recording results of between 41% and 82%, the samples were also tested for plasticity recording a plasticity index ranging between 30 (low plasticity) and 41 (medium plasticity).
- 6.20 One sample of the granular Kellaways Clay Member arisings was tested for PSD, recording a silt /clay content of 36.8%, sand content of 22.0% and gravel content of 41.1%. Based upon these results the material is considered likely to be classified as a 2C material based upon Series 600 Earthworks specification.



#### Cornbrash Formation

- 6.21 The Cornbrash Formation was recorded in 29 locations across the site and was encountered to a maximum depth of 4.0m bgl, although the maximum thickness of the deposits was not proven in any location. This stratum was typically encountered as:
  - Dark grey, brown, brownish orange or yellowish grey slightly sandy gravel with low to high cobble content;
  - Stiff dark grey weather limestone arisings as slightly sandy gravel with low to moderate cobble content; and
  - Extremely strong dark grey limestone (no arising returned to surface).
- 6.22 The arising of the Cornbrash Formation was often recorded to contain fine shell fragments.
- 6.23 SPT N<sub>60</sub> results were recorded between 55 and 59 blows (refusal) at all locations encountered at various depths, indicating very dense / strong deposits.
- 6.24 One sample of the Cornbrash Formation was tested for PSD, recording a silt /clay content of 18.3%, sand content of 25.0%, a gravel content of 51.5% and a cobble content of 5.3%. Based upon these results the material is considered likely to be classified as a 2C material based upon Series 600 Earthworks specification.
- 6.25 Four point load tests were undertaken on bulk samples retrieved from the Cornbrash Formation at two locations. The results are summarised below in **Table 5**.

| Location | Depth<br>(mbgl) | Sample<br>Type | Test Type | Is(50) MPa | Calculated<br>Unconfined<br>Compressive<br>Stregth | Inferred<br>Rock<br>Strength |
|----------|-----------------|----------------|-----------|------------|----------------------------------------------------|------------------------------|
| TP121    | 3.2 - 3.35      | В              | Irregular | 0.41       | 9.02                                               | Weak                         |
| TP121    | 3.2 – 3.55      | В              | Irregular | 0.28       | 5.5                                                | Weak                         |
| TP122    | 3.55 – 3.7      | В              | Irregular | 0.51       | 11.22                                              | Weak                         |
| Tp122    | 3.55 – 3.7      | В              | Irregular | 0.21       | 4.62                                               | Very weak                    |

Table 5DCP TRL Results Summary

### In Situ Testing

### Dynamic Cone Penetrometer Testing

6.26 Dynamic Cone Penetrometer Tests were undertaken adjacent to a number of exploratory hole locations following the removal of the topsoil in order to infer California Bearing Ratio (CBR) values to inform pavement design. The testing was undertaken in accordance with Transport Research Laboratory (TRL) methodology. The results of the testing are presented as **Appendix 6** and are summarised in **Table 6** below.



| Table 6  | DCP TRL Results Summary        |             |             |
|----------|--------------------------------|-------------|-------------|
| Location | Stratum                        | Min CBR (%) | Max CBR (%) |
| TP101    | Made Ground                    | 9.8         | 29.1        |
| TP103    | Made Ground                    | 28.0        | >100*       |
| TP104    | Cornbrash Formation            | 4.2         | >100        |
| TP105    | Alluvium                       | 3.1         | 44.7        |
| TP107    | Alluvium                       | 5.8         | 21.8        |
| TP108    | Alluvium                       | 3.1         | 39.8        |
| TP111    | Alluvium                       | 4.2         | 29.6        |
| TP112    | Alluvium                       | 2.6         | 7.5         |
| TP119    | Alluvium                       | 2.6         | 3.3         |
| TP120    | River Terrace Deposits         | 7.1         | 7.3         |
| TP121    | Alluvium                       | 4.0         | -           |
| TP122    | Alluvium                       | 4.2         | -           |
| TP124    | Made Ground                    | 27.7        | 57.5        |
| TP126    | Made Ground (Reworked Natural) | 3.0         | 3.2         |

\*Probe likely encountered a cobble during the test, the result should be discounted from any future design.

### Standard Penetration Tests

6.27 SPT results collected from the borehole locations are presented on the exploratory hole records presented in **Appendix 1**. A plot of corrected SPT 'N' Value vs. Depth is presented as **Figure 2** overleaf.



Figure 2 Corrected SPT N Value vs. Depth



# Hydrogeology

6.28 Groundwater strikes encountered during the ground investigation are summarised in **Table7** below.

| Table 7  | Water Stri       | kes                    |                                  |
|----------|------------------|------------------------|----------------------------------|
| Location | Depth (m<br>bgl) | Strata                 | Comments                         |
| BH102    | 2.5              | Cornbrash Formation    | Rising to 1.0m after 20minutes   |
| BH106    | 2.5              | Kellaways Clay Member  | Rising to 1.8m after 20minutes   |
| BH113    | 1.2              | Alluvium               | Rising to 1.0m after 20minutes   |
| TP101    | 1.3              | Cornbrash Formation    | Seepagenoted                     |
| TP102    | 1.7              | Cornbrash Formation    | -                                |
| TP103    | 1.7              | Cornbrash Formation    | Steadyingress                    |
| TP104    | 1.6              | Cornbrash Formation    | Slowingress                      |
| TP105    | 1.25             | Cornbrash Formation    | Seepagenoted                     |
| TP106    | 1.1              | River Terrace Deposits | Steadyingress                    |
| TP107    | 1.1              | River Terrace Deposits | Steadyingress                    |
| TP108    | 2.5              | Cornbrash Formation    | Seepagenoted                     |
| TP110    | 2.15             | Kellaways Clay Member  | Slowingress                      |
| TP111    | 1.2              | River Terrace Deposits | Steadyingress                    |
| TP112    | 1.15             | River Terrace Deposits | Slowingress                      |
| TP113    | 1.1              | Alluvium               | Seepagenoted                     |
| TP113    | 1.5              | River Terrace Deposits | Steadyingress                    |
| TP114    | 1.35             | River Terrace Deposits | -                                |
| TP115    | 3.0              | Cornbrash Formation    | Seepagenoted                     |
| TP117    | 2.5              | Cornbrash Formation    | -                                |
| TP118    | 2.95             | Cornbrash Formation    | Rising to 2.85m after 20 minutes |
| TP120    | 3.0              | Cornbrash Formation    | Seepagenoted                     |
| TP121    | 3.3              | Cornbrash Formation    | Slowingress noted                |
| TP124    | 1.1              | Cornbrash Formation    | Seepagenoted                     |

- 6.29 Standing water levels were recorded within the installed boreholes on four occasions between 24<sup>th</sup> August and 13<sup>th</sup> September 2017. Groundwater was recorded between 0.72m bgl (64.1 AOD) at location BH105 installed into the Cornbrash Formation and 3.48m bgl (62.41m AOD) at location BH09 installed into the Alluvium deposits. Locations BH108 and BH109 was recorded as 'dry' during the first two monitoring visits.
- 6.30 On the basis of the groundwater strikes and the geological formations, it is likely that a continuous body of groundwater is present at shallow depth beneath the Site. Given the identified geology, groundwater is not limited to a single formation.
- 6.31 Groundwater monitoring data is presented as Appendix 5.

# Hydrology

6.32 No surface water monitoring has been undertaken as part of this investigation.



# **Contamination Observations**

6.33 No contamination observations were made during the intrusive ground investigation works or the following ground as a groundwater monitoring period.



# 7 GEOTECHNICAL ASSESSMENT

## Introduction

- 7.1 The proposed development is anticipated to comprise up to 55,000m<sup>2</sup> of office space. Details on the design of the proposed development have not been provided to date, however BWB anticipate that development will be no taller than 3 stories and include areas of car parking and limited soft landscaping.
- 7.2 A preliminary development plan (drawing reference 16SK109, undated) is presented as **Appendix 1**. Given the preliminary nature of the development masterplans, no design loadings are available for the proposed development.
- 7.3 Ground conditions were generally found to comprise varying thicknesses of topsoil overlying weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 7.4 A small amount of Made Ground was recorded in the north western area of the site.

# **Foundation Solutions**

- 7.5 Given the competency of the underlying natural strata in the west of the site, it is considered that shallow spread foundations bearing onto the Kellaways Clay Member and Cornbrash Formation should be suitable for the proposed developments (buildings 1 & 11). Where Alluvium deposits are present (≥2.5m in central and eastern areas (buildings 2 10)), ground improvement techniques may have to be utilised to provide a suitable bearing capacity.
- 7.6 Deeper foundations such as piles are not considered necessary for the proposed development.

### Traditional Spread Foundations

- 7.7 The Topsoil and Made Ground are not suitable materials for setting foundations within due to their potential variable nature leading to excessive settlements when loaded.
- 7.8 Whilst two of the strata encountered underlying the site could all potentially support the likely deign loads for the proposed development, foundations that cross two or more geological boundaries have the potential to be impacted by differential settlement characteristics. Foundations should therefore seek to be founded solely within one strata.
- 7.1 **Table 8** presents estimated safe bearing capacities that could be achieved in the western area of the site for the different foundation types and sizes within the Cornbrash Formation and Kellaways Clay Member.



| Table 8 | Summary of Safe Bearing Capacities – Western Buildings (No. 1 & 11) |
|---------|---------------------------------------------------------------------|
|         |                                                                     |

| Founding Medium -                                                                                   | Foundation Size & Type |              |                 |              |                 |              |  |
|-----------------------------------------------------------------------------------------------------|------------------------|--------------|-----------------|--------------|-----------------|--------------|--|
| Description - Deptin                                                                                | 0.6m Strip             |              | 1.0m x 1.0m Pad |              | 2.0m x 2.0m Pad |              |  |
|                                                                                                     | (kN/m³                 | Load<br>(KN) | (kN/m³          | Load<br>(KN) | (kN/m³          | Load<br>(KN) |  |
| Cornbrash Formation – very<br>dense slightly clayey sandy<br>gravel – 1.0m bgl – circa<br>65.67mAOD | 220                    | 130          | 320             | 320          | 360             | 1440         |  |
| Kellaways Clay Member –<br>very dense slightly sandy<br>gravel – 2.0m bgl                           | 310                    | 180          | 375             | 375          | 375             | 1500         |  |

7.2 The above bearing capacities have been calculated by applying a safety factor or three to the ultimate bearing capacity for the stratum present on site. Due to limited information provided to BWB regarding potential loadings settlement could not be calculated for the proposed developments. Once design loads are known for the developments then a foundation assessment should be undertaken. Final foundation solutions will have to be re-assessed when the proposed development plan and foundation loadings are confirmed.

<u>Piles</u>

7.3 A piled foundation solution has not been considered at this stage.

### Ground Improvement Techniques

- 7.4 Ground improvement techniques are likely to be required in the central and eastern areas of site (building no. 2 to 10). Ground improvements in the form of vibro stone columns are anticipated to provide a bearing capacity in the region of 150kn/m<sup>2</sup>. However, this would be dependent on the columns terminating into either the firm / stiff mudstone (Kellaways Clay Member) or very dense Cornbrash Formation which are within no more than 2.8m of the current ground level.
- 7.5 A suitable experienced specialist ground improvement contractor should be appointed to confirm the suitability of this technique for use across the site.

## Floor Slabs

- 7.6 Loadings on to a ground bearing floor slab are currently unknown. For the purposes of this assessment it has been assumed that the proposed buildings floor slabs would not exert pressures of more than 25kN/m<sup>2</sup>. Once formation level has been achieved, the material beneath the building footprints should be proof rolled and inspected for signs of soft spots by an engineer. Where identified, these soft spots should be excavated and replaced with an engineered granular material.
- 7.7 Setting floor slabs across different geological strata should be avoided as it could lead to differential settlement issues.
- 7.8 The floor slab settlements should be re-assessed once further details of its construction / loadings are known.



## Roads and Pavements

- 7.9 In total 14 TRL DCP tests were undertaken at selected locations across the Site with inferred CBR results ranging between 3.0 and >100%. It is anticipated that reengineering of the near surface Made Ground and shallow natural ground would be required to provide a suitable development platform.
- 7.10 As a guide it is recommended that roads be designed for 5% CBR, which should be confirmed by in-situ testing once detailed designs are available.
- 7.11 Interim Advice Note 73/06 (IAN73/06) Revision 1 2009 advises that where the in-situ subgrade has an estimated CBR value less than 2.5% it must be improved.

## Drainage

7.12 No permeability testing was undertaken as part of the site investigation. Given the presence of significant thicknesses of cohesive material across the central and eastern areas of site, the construction of shallow soakaways is unlikely to be suitable. Soakaway drainage may be plausible to the west, however this will require confirmation through testing in line with BRE 365 guidance.

## Excavations

### Ease of Excavation

7.13 Excavations using backhoe excavators are expected to be suitable within shallow Made Ground and natural strata across the site.

### Stability of Excavation

7.14 Excavations advanced into the Made Ground and granular deposits are expected to be prone to instability. Where personnel entry is required for inspection; excavations should be sufficiently enlarged and an assessment of safe temporary angles should be assessed. Alternatively, temporary shoring should be provided.

### Legislation on Personnel Entry to Excavations

7.15 It is recommended that no excavations should be entered into without appropriate support and a full risk assessment should be completed prior to entry. Mitigation measures to protect from accumulating ground gases should be implemented.

### Groundwater

- 7.16 Groundwater has been recorded at standing depths of between 0.72m and 3.48m bgl across the site.
- 7.17 Any encountered groundwater across the site may be removed using conventional construction of sumps and submersible pumps, depending on depths and any shoring techniques in place.



# Chemical Attack on Buried Concrete

- 7.18 Design Sulphate (DS) and Aggressive Chemical Environment for Concrete (AC) classes have been determined from BRE digest 2005.
- 7.19 Soluble sulphate concentrations in the soil extracts ranged from 10mg/l to 1000mg/l with pH values ranging from 7.0 to 7.9. Total sulphur concentration ranged from 0.01 % to 0.26 %.
- 7.20 Sulphate concentrations in the groundwater ranged from 88 mg/l to 1100 mg/l with groundwater pH values ranging from 7 to 7.5.
- 7.21 In accordance with the recommendations of BRE Special Digest 1, 'Concrete in Aggressive Ground' 2005, the conditions of the soils at the site would therefore be classified as Design Sulphate Class DS-2 and ACEC Class AC-2 for soils and groundwater, when considering the most appropriate type of concrete to be used at the site in order to resist chemical attack from elevated sulphate present in the soils (assuming mobile groundwater in non pyritic soils).

## **Earthworks**

7.22 No specific earthworks assessments have been undertaken as part of this investigation.



# 8 GROUND GAS ASSESSMENT

### Introduction

- 8.1 A ground gas assessment has been undertaken to assess the risks associated with ground gases and volatile vapours to new buildings and their occupants. The results obtained have been assessed in line with relevant guidance (notably CIRIA 665).
- 8.2 Four gas monitoring visits have been undertaken as part of this assessment.

## Methodology

- 8.3 The ground gas monitoring visits were undertaken by BWB at the site between 24<sup>th</sup> August and 13<sup>th</sup> September 2017.
- 8.4 All borehole locations were installed with ground gas monitoring wells, with response zones targeting the Alluvium, Kellaways Clay Formation and Cornbrash Formation. Exploratory hole records showing the monitoring well construction are presented as **Appendix 2**.
- 8.5 The assessment of potential ground gas generation is based on the observation of trends and changes in gas evolution by the direct measurement of ground gases from gas wells. The works included measurement of methane, carbon dioxide, oxygen, hydrogen sulphide, carbon monoxide, gas flows and barometric pressure. A PID survey was undertaken to measure volatile organic compounds within the borehole response zones.

### Results

8.6 The minimum and maximum steady state concentrations recorded for borehole flow, oxygen, carbon dioxide and methane are summarised below in **Table 9**.

| Borehole<br>ID | Targeted Geology            | Steady Flo | ow (l/hr) | Carbor<br>(% | n Dioxide<br>Sv/v) | Methar | ıe (%v/v) |
|----------------|-----------------------------|------------|-----------|--------------|--------------------|--------|-----------|
|                |                             | min.       | max.      | min.         | max.               | min.   | max.      |
| BH101          | Cornbrash Formation         | <0.1       | <0.1      | 0.1          | 3.5                | <0.1   | <0.1      |
| BH102          | Cornbrash Formation         | <0.1       | <0.1      | 0.4          | 3.7                | <0.1   | <0.1      |
| BH103          | Kellaways Clay<br>Formation | <0.1       | <0.1      | 0.1          | 0.7                | <0.1   | <0.1      |
| BH104          | Alluvium                    | <0.1       | <0.1      | 0.5          | 1.0                | <0.1   | <0.1      |
| BH105          | Cornbrash Formation         | <0.1       | <0.1      | 0.3          | 0.9                | <0.1   | <0.1      |
| BH106          | Kellaways Clay<br>Formation | <0.1       | <0.1      | 0.8          | 1.8                | <0.1   | <0.1      |
| BH107          | Kellaways Clay<br>Formation | <0.1       | <0.1      | 0.6          | 1.5                | <0.1   | <0.1      |
| BH108          | Kellaways Clay<br>Formation | <0.1       | 0.4       | 0.2          | 1.1                | <0.1   | <0.1      |

### Table 9 Summary of Recorded Ground Gas Results



| Borehole<br>ID | Targeted Geology                       | Steady Flo | Steady Flow (I/hr) |      | Carbon Dioxide<br>(%v/v) |      | Methane (%v/v) |  |
|----------------|----------------------------------------|------------|--------------------|------|--------------------------|------|----------------|--|
|                |                                        | min.       | max.               | min. | max.                     | min. | max.           |  |
| BH109          | Alluvium / Kellaways<br>Clay Formation | <0.1       | 0.4                | 0.9  | 1.8                      | <0.1 | <0.1           |  |
| BH110          | Alluvium / Kellaways<br>Clay Formation | <0.1       | <0.1               | 1.0  | 1.7                      | <0.1 | <0.1           |  |
| BH112          | Alluvium / Kellaways<br>Clay Formation | <0.1       | <0.1               | 0.4  | 1.1                      | <0.1 | <0.1           |  |
| BH113          | Alluvium / Kellaways<br>Clay Formation | <0.1       | <0.1               | 0.1  | 0.8                      | <0.1 | <0.1           |  |

### Atmospheric Pressure and Flow

- 8.7 During the monitoring programme completed at the site the atmospheric pressure ranged between 991mb (recorded on 13<sup>th</sup> September 2017) and 1013mb (recorded on 24<sup>th</sup> August 2017).
- 8.8 One monitoring visit was undertaken when atmospheric pressure was recorded below 1000mB, representing a low pressure event and the worst case scenario for the site.
- 8.9 The pressure was recorded as rising during one monitoring visit (13<sup>th</sup> September 2017), as static during one monitoring visits (6<sup>th</sup> September 2017) and falling during two monitoring visits 24<sup>th</sup> & 31<sup>st</sup> August 2017).
- 8.10 On this basis, the monitoring is considered likely to have captured the worst case gassing scenario at the site as generally, ground gas emissions tend to increase when atmospheric pressure falls and particularly when the pressure drops below 1000mB.
- 8.11 During the monitoring period, steady flow rates ranged between <0.1/hr (recorded at multiple locations on numerous visits) and 0.4l/hr (recorded on 31<sup>st</sup> August 2017 in boreholes BH108 & BH109).

#### Hazardous Ground Gas and Volatile Vapours

- 8.12 Steady carbon dioxide concentrations recorded ranged between 0.1% v/v (recorded in several boreholes on several occasions) and 3.7% v/v (recorded on 31<sup>st</sup> August 2017 in BH102).
- 8.13 Steady methane concentrations were recorded at <0.1%v/v in all locations throughout the monitoring period.
- 8.14 Hydrogen sulphide concentrations were not recorded above the limit of detection of the equipment during the monitoring visits.
- 8.15 Carbon monoxide concentrations were generally not recorded above the limit of detection of the equipment during the monitoring visits with the exception of boreholes BH101 and BH103 where concentration ranging between 1ppm and 31ppm were recorded during the visits completed on 24<sup>th</sup> & 31<sup>st</sup> August 2017.



- 8.16 PID concentrations were recorded between <0.1ppm (the limit of detection of the equipment) and a maximum of 0.2ppm in borehole BH110 recorded on 31st August 2017.
- 8.17 Ground gas monitoring results are presented in **Appendix 5**.

# **Risk Assessment**

8.18 CIRIA Report 665 "Assessing Risks Posed by Hazardous Ground Gases to Buildings" presents current best practice on the assessment of ground gases for commercial and residential buildings (with the exception of low rise traditional housing). The report presents a risk based approach based on gas screening levels which depend on both the concentration and emission rate of gas from the ground. Gas screening levels are calculated as follows:

Gas screening value  $(l/hr) = \frac{gas \ concentration \ (\%) \ X \ measured \ borehole \ flow \ rate \ (l/h)}{100}$ 

8.19 From the above results, a maximum gas screening value (GSV) of 0.0148 has been calculated for the site, giving a classification of a Characteristic Situation 1 (CS1) site.

## Recommendations

8.20 It is assumed that the development will fall within a Type C building (office spaces). Based upon the guidance within BS8485:2015, for a CS1 categorisation, ground gas protection measures are not required.



# 9 HUMAN HEALTH RISK ASSESSMENT

- 9.1 Soil contaminant data have been compared against Generic Site Assessment Criteria (GSAC) developed by BWB using the CLEA model 1.06 and the updated CLEA framework (2009) for assessing risk from soil contamination to human health. Details of the derivation of the GSACs are presented in Appendix 10. The results of the soil chemical laboratory results are provided within Appendix 7 with a table summarising the results presented as Appendix 11.
- 9.2 The GSACs have been developed with the following assumptions which have been changed from the CLEA default parameter set. Soil type is a sandy loam with an organic matter content of 1%. This is considered to be more representative of shallow Made Ground found on most Brownfield sites than the CLEA default of 6% organic matter. The building type for a commercial development is assumed to be a post 1970s office which is representative of new commercial buildings.

# Pathways

- 9.3 BWB understand that the site will be developed for a commercial/warehouse end use, with associated offices, car parking and limited soft landscaping areas.
- 9.4 On this basis, contamination data has been compared to the GSACs for a commercial end use (i.e. using all pathways for that end use) based on an organic matter content of 1%. The key receptor for such a site is considered to be an adult female worker.

| Source                                          | Shallow                                                           | v Soils                                                      | Deep Soils                 |
|-------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|
| Pathway                                         | Commercial /<br>Industrial with<br>managed<br>landscaped<br>areas | Commercial<br>/ Industrial<br>with Hard<br>standing<br>areas | Commercial /<br>Industrial |
| Ingestion of Soil                               | $\checkmark$                                                      | ×                                                            | ×                          |
| Ingestion of site derived household dust        | ✓                                                                 | ×                                                            | ×                          |
| Ingestion of contaminated vegetables            | ×                                                                 | ×                                                            | ×                          |
| Ingestion of soil attached to vegetables        | ×                                                                 | ×                                                            | ×                          |
| Dermal contact with Soil                        | ✓                                                                 | ×                                                            | ×                          |
| Dermal contact with site derived household dust | ~                                                                 | ×                                                            | ×                          |
| Inhalation of fugitive soil dust                | ✓                                                                 | ×                                                            | ×                          |

9.5 Exposure pathways considered in this assessment are presented in Table 10.



| Source                                             | Shallow      | Deep Soils |   |
|----------------------------------------------------|--------------|------------|---|
| Inhalation of fugitive site derived household dust | √            | ×          | × |
| Inhalation of vapours outside                      | $\checkmark$ | √          | √ |
| Inhalation of vapours inside                       | ✓            | ✓          | ✓ |

9.6 CLAIRE report "Guidance on Comparing Soil Contamination Data with a Critical Concentration" sets out a structured approach for the statistical assessment of contaminant data with respect to risks to human health. A flow chart showing the approach along with soil screening sheets are presented as **Appendix 11**.

### Sources

### <u>Chemical</u>

- 9.7 The results have shown that all samples sent for analysis have concentrations below the relevant screening criteria for each contaminants.
- 9.8 One hot spot of Total TPH from the sample of Made Ground retrieved from TP102 at 0.1m 0.2m bgl with a concentration of 1,000mg/kg, against an initial screening criteria of 500mg/kg. However, speciated analysis on the same sample has confirmed that all split aliphatic and aromatic banding concentrations are below their relevant screening criteria and therefore do not represent a risk to human health, based on the proposed development.

### <u>Asbestos</u>

9.9 As part of the site investigation, 5 soil samples collected from the Made Ground were tested for the presence of asbestos. A summary of the samples which tested positive for asbestos are summarised in **Table 11** below. Asbestos fibres may present a risk to human health through inhalation of fibres.

| Table 11 | Summary of Asbestos Results |                           |  |  |
|----------|-----------------------------|---------------------------|--|--|
| Location | Depth (m bgl)               | Asbestos Type             |  |  |
| TP102    | 0.1 – 0.2                   | Chrysotile – loose fibres |  |  |
| TP103    | 0.2 - 0.3                   | Chrysotile – loose fibres |  |  |

9.10 It is noted at this time that the areas where ACMs have been identified are to be located beneath the footprint of a proposed office and car park and, as such, are unlikely to represent a risk to future Site users. During redevelopment the risk to ground workers is increased. Should the Made Ground materials be excavated and placed elsewhere on site appropriate remedial measures must be used i.e. a soil cover system in landscaped areas. Any movement of the Made Ground should therefore be tracked.



# **10 CONTROLLED WATERS RISK ASSESSMENT**

- 10.1 The results of soil leachate analysis and groundwater sampling are presented as **Appendix 7** and **Appendix 8** respectively.
- 10.2 The controlled waters assessment considers the potential impact of on-site contamination to pertinent controlled waters receptors identified at the site including:
  - Secondary A Aquifer beneath the central and eastern areas of site within the River Terrace Deposits;
  - Secondary A Aquifer within the Cornbrash Formation;
  - Two drainage ditches present on site (tertiary rivers);
  - Onsite ponds; and
  - Nearby offsite surface water features.

### **Pathways**

10.3 Controlled water risk assessment has been undertaken through assessment of leachable concentrations of contaminants in soil referring to exposure pathways considered and referencing **Table 10**.

### Table 10 Controlled Water Exposure Pathways

| Controlled Waters Exposure Pathway                                                         | Receptor |
|--------------------------------------------------------------------------------------------|----------|
| Leaching of soil contamination into recharge infiltration                                  | ✓        |
| Vertical migration of impacted pore water through unsaturated zone into underlying aquifer | ✓        |
| Horizontal migration of groundwater through aquifer to off site receptors                  | ✓        |

# Soil Leachability

- 10.4 As part of this investigation, eight soil samples were tested for a leachable metals suite, cyanide, sulphide and pH.
- 10.5 Soil leachate results have been compared directly to water quality standards quoted in Environmental Quality Standards (EQS). A conservative water hardness level of between 50mg/l and 100mg/l CaCO3 has been adopted therefore the upper limit of the EQS standards have been adopted. Where these are not available the UK Drinking Water Standards (UK DWS) 2000 have been used. A summary of the soil leachate concentrations which exceed the guideline concentrations are presented within Table 11.


| Table 11                 | Summary of Leachable Contamination Exceedances |                                                             |            |               |  |  |  |  |  |  |  |  |  |
|--------------------------|------------------------------------------------|-------------------------------------------------------------|------------|---------------|--|--|--|--|--|--|--|--|--|
| Leachable<br>Contaminant | Concentration<br>Range (µg/I)                  | Location and depth<br>(m bgl)                               | EQS (µg/I) | UK DWS (µg/I) |  |  |  |  |  |  |  |  |  |
| Copper                   | 22.0 - 42.0                                    | TP101 (0.2-0.3m),<br>TP101 (0.4-0.5m) &<br>TP102 (0.1-0.2m) | 1.0        | -             |  |  |  |  |  |  |  |  |  |
| Lead                     | 1.8 - 6.8                                      | TP101 (0.2-0.3m),<br>TP101 (0.4-0.5m) &<br>TP102 (0.1-0.2m) | 1.2        | -             |  |  |  |  |  |  |  |  |  |
| Nickel                   | 4.2                                            | TP101 (0.1-0.2m) &<br>TP102 (0.1-0.2m)                      | 4          | -             |  |  |  |  |  |  |  |  |  |
| Zinc                     | 12                                             | TP102 (0.1-0.2m)                                            | 10.9       | -             |  |  |  |  |  |  |  |  |  |

- 10.6 The leachate screening worksheets are presented as Appendix 12.
- 10.7 Several contaminants including cyanide (total) and mercury are indicated to be elevated on the leachate screening sheet. However, the laboratories lowest detection limit is higher than the screening value used and, therefore, these contaminants are considered to represent a low risk.
- 10.8 The exceedances highlighted above are believed to be marginal due to the limited concentrations of heavy metals recorded within the soils across the site. The proposed development is understood to comprise significant hardstanding and limited soft landscaping, therefore reducing the risks associated with leachable contaminants.

### Groundwater

- 10.9 Ten groundwater samples were collected from installed boreholes on one occasion for subsequent laboratory testing. The groundwater chemical analysis results are presented as **Appendix 8**.
- 10.10 The groundwater testing results have been compared directly to water quality standards and the recorded exceedances are summarised in **Table 12** below.

|             |                                               |                                  | ees in ereenaware                   | -1                                                               |
|-------------|-----------------------------------------------|----------------------------------|-------------------------------------|------------------------------------------------------------------|
| Contaminant | Range of<br>Recorded<br>Exceedances<br>(µg/I) | EQS Screening<br>Criteria (µg/l) | UK DWS Screening<br>Criteria (µg/I) | Locations of<br>Exceedances                                      |
| Copper      | 1.1 - 8.2                                     | 1.0                              | -                                   | BH102, BH104,<br>BH105, BH106,<br>BH107, BH108,<br>BH110 & BH113 |
| Lead        | 2.2 - 5.6                                     | 1.2                              | -                                   | BH105 & BH107                                                    |
| Mercury     | 0.11 - 0.16                                   | 0.07                             | -                                   | BH102 & BH108                                                    |
| Nickel      | 4.4 - 31.0                                    | 4.0                              | -                                   | BH104, BH105,<br>BH106, BH107,<br>BH110 & BH113                  |
| Zinc        | 11.0                                          | 10.9                             | -                                   | BH108                                                            |
| Sulphate    | 633 – 1090                                    | 400                              | -                                   | BH106, BH107,<br>BH108 & BH113                                   |

 Table 12
 Summary of Recorded Exceedances in Groundwater

10.11 The groundwater screening worksheets are presented as Appendix 13.



- 10.12 Several contaminants including cyanide (total), benzo(a)pyrene and dibenzo(a,h)anthracene are indicated to be elevated on the groundwater screening sheet. However, the laboratories lowest detection limit is higher than the screening value used and, therefore, these contaminants are not considered to represent a risk to the underlying aquifers.
- 10.13 The exceedances of mercury and zinc are only marginally above the screening criteria and are therefore considered unlikely to represent a significant risk to controlled waters when transport mechanism are taken into account.

### Surface Water

10.14 No surface water monitoring has been undertaken as part of this assessment.

### Summary

10.15 Based on the above findings it is considered that the recorded contaminant concentrations are unlikely to pose an unacceptable risk to controlled waters receptors (Secondary A Aquifers within the River terrace deposits and Cornbrash Formation).



# **11 ENVIRONMENTAL RISK ASSESSMENT**

11.1 An updated assessment of identified pollutant linkages has been made following completion of a ground investigation. The preliminary risk assessment presented in **Section 3** has been updated in the light of the findings of the ground investigation and the revised conceptual site model developed, as presented in **Table 13**.

#### <u>Sources</u>

- Asbestos fibres have been identified within the shallow Made Ground; and
- Elevated inorganics within the groundwater beneath site.

#### <u>Pathway</u>

- Inhalation of asbestos fibres; and
- Vertical and lateral migration of contaminated groundwater.

#### <u>Receptor</u>

- Future site users
- Groundworkers;
- Underground concrete surfaces; and
- Wider Secondary A Aquifer.

### Summary of Potentially Significant Pollutant Linkages

11.2 A summary of the identified significant pollutant linkages is provided below. The updated conceptual site model is presented in **Table 13**.

#### Ground Contamination Impact to Human Health (Commercial)

- 11.1 Asbestos fibres have been identified within the Made Ground, this presents a risk to human health receptors associated with a commercial end use through particle dust inhalation.
- 11.2 To mitigate the risk, landscaping areas above areas of Made Ground (including if moved elsewhere on site) will require a soil cover system, with all exposed Made Ground required to be kept damp during the construction phase. The specification should be set out in a remediation strategy and agreed with the local authority before implementation.

#### Groundwater Contamination to Controlled Waters

11.1 Slightly elevated concentrations of heavy metals and sulphate have been identified within groundwater samples, with leachable forms of heavy metals recorded at low concentrations within the Made Ground soil samples. The majority of the heavy metal concentrations have been identified at low concentrations and are considered to present a limited risk.

Following redevelopment, much of the site will be covered (hard standing and buildings) thereby reducing the potential for rainwater to infiltrate the ground and mobilise contamination.

| Source                                                                                                  | Pathway                                                    | Receptor                                                 | Con                                                                                                                                                                            | Prob | Risk                                                                                                                                                                                                                                                                    | Mitigation/Investigation                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>S1</b> : Made Ground –<br>presence of asbestos<br>fibres and hotspot of<br>Total TPH                 | <b>P1:</b> Inhalation of dust particles and dermal contact | R1: End site users                                       | Md                                                                                                                                                                             | UI   | L                                                                                                                                                                                                                                                                       | It is understood that the development is likely to<br>be predominantly covered by buildings and<br>hardstanding surface cover, therefore limiting<br>any potential contact by the future site user.                       |
|                                                                                                         |                                                            |                                                          |                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                         | A clean soil cover system is recommended in<br>areas of soft landscaping overlying the Made<br>Ground deposits (including if moved on site) to<br>break the pathway between the asbestos fibres<br>and future site users. |
|                                                                                                         |                                                            | R2: Construction workers                                 | Construction workers Md Lw M/L The risks to construction and<br>be minimised by the ado<br>PPE and respiratory protect<br>It is recommended the gr<br>damp to minimise the mov |      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |
| <b>S4:</b> Elevated inorganic<br>contaminants (sulphate)<br>within the groundwater<br>beneath the site. | <b>P3:</b> Migration of<br>contaminated<br>groundwater     | R3: Concrete foundations                                 | crete foundations Md Lw M/L In accordance w<br>BRE Special Diges<br>Ground' 2005, the<br>site would theref<br>Sulphate Class DS<br>soils and groundw                           |      | In accordance with the recommendations of<br>BRE Special Digest 1, 'Concrete in Aggressive<br>Ground' 2005, the conditions of the soils at the<br>site would therefore be classified as Design<br>Sulphate Class DS-2 and ACEC Class AC-2 for<br>soils and groundwater. |                                                                                                                                                                                                                           |
|                                                                                                         |                                                            | R3: Secondary A Aquifer                                  | Mi                                                                                                                                                                             | Lw   | L                                                                                                                                                                                                                                                                       | The concentrations recorded are only slightly elevated. Furthermore, it is understood that the                                                                                                                            |
|                                                                                                         |                                                            | <b>R4:</b> Tertiary rivers on site<br>(drainage ditches) | Mi                                                                                                                                                                             | Lw   | L                                                                                                                                                                                                                                                                       | development is likely to be predominantly<br>covered by buildings and hard standing surface<br>cover, therefore limiting leaching and migration<br>of contaminants.                                                       |

#### Table 13Revised Conceptual Site Model

| Source | Pathway              | Receptor                                                                 | Con         | Prob         | Risk                     | Mitigation/Investigation     |
|--------|----------------------|--------------------------------------------------------------------------|-------------|--------------|--------------------------|------------------------------|
|        | VH = Very Hig        | g <mark>h</mark> , <mark>H = High</mark> , M = Moderate, <mark>M/</mark> | L = Mode    | erate/Low    | <mark>/</mark> , L = Low | , VL = Very Low              |
|        | KEY: Sv = Severe, Md | = Medium, Mi = Mild, Mr = Mino                                           | r Hi = Higl | n, Li = Like | ely, Lw = L              | ow Likelihood, UI = Unlikely |

#### Pollutant Linkage Assessment Summary

The assessment has established numerous source-pathway-receptor pollutant linkages at the site, which when assessed in the context of proposed development are considered to pose a **low to moderate** risk to human health and **low to moderate** risk to controlled waters.

The majority of pollutant linkages can be easily severed by the use of hardstanding and the use of a clean soil capping layer in landscaped areas above Made Ground deposits.

# 12 ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS

### **Statutory Liability**

- 12.1 The contaminated land regime has implications for those who cause or knowingly permit land to be contaminated, or who own or occupy land that is contaminated.
- 12.2 Contaminated land is defined in Section 78A(2) of Part IIA of the Environmental Protection Act 1990 as:
- 12.3 "Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under land, that:
  - a) Significant harm is being caused or there is a significant possibility of such harm being caused; or
  - b) Pollution of controlled waters is being or is likely to be, caused."
- 12.4 Harm is defined in Section 78(4) of the Environmental Protection Act 1990 as:
- 12.5 "Harm to the health of living organisms or other interference with ecological systems of which them form part and, in the case of man, includes harm to property."
- 12.6 Once an area of land has been identified as contaminated land, appropriate persons will be identified as being responsible for the cost of cleaning up the land by the enforcing authority. The appropriate person will be liable for all or part of the remediation of the land. Two classes of appropriate person have been identified:
  - Class A appropriate persons are those who cause or knowingly permit the pollutants to be in, on or under the land.
  - Class B appropriate persons are the owners(s) or occupier(s) of the land.
- 12.7 Where no Class A appropriate persons can be identified, then Class B appropriate persons may become liable.
- 12.8 Based on the information available regarding the site, the potential for Statutory Authority action based on "pollution of controlled water" or "significant harm" as defined by Part IIA of the Environmental Protection Act 1990 is considered to be **LOW**.

### Third Party Liability

12.9 Based on the information contained in this report, it is the opinion of BWB that the potential for legal action by surrounding landowners, based on the potential for contamination to migrate off-site, is considered to be **LOW**.

### **Public Relations**

12.10 The likelihood of public relations being tarnished due to contamination issues at the site are considered to be **LOW**.

### **Development Implications**

- 12.11 It is likely that clay land drains will be present across the site, theses may require tracing and removal prior to development of the office units.
- 12.12 Given the presence of ACMs within Made Ground, appropriate mitigation measures will need to be implemented at the time of redevelopment to ensure free fibres are not released into the atmosphere.
- 12.13 A clean capping soil system will be required in landscaped areas positioned above the existing areas of Made Ground. It is possible that the Made Ground could be excavated and used elsewhere on site as part of an earthworks scheme. If this is the case then the material will need to be tracked so the appropriate clean soil cover is provided, or it is placed beneath hard stand to mitigate the risk of asbestos fibre inhalation. A Material Management Plan and CL:AIRE Definition of Waste: Code of Practice (DoW:CoP) declaration represents best practice for such an operation.

# **13 WASTE MANAGEMENT**

### Waste Classification

- 13.1 Soil samples have been characterised against hazardous waste criteria using Hazwasteonline. The results of the waste classification are presented in **Appendix 14**. The assessment indicates that the Made Ground analysed may be classified as hazardous in the area that a hotspot of hydrocarbons were recorded. However, the speciated testing indicates that the concentration is lower than the 1,000mg/kg threshold and so could be reduced to Non-Hazardous. All other samples of the Made Ground were classified as non-hazardous. The waste classification assessment only applies to those soils that have been tested. For the purpose of this assessment, BWB has assumed the materials on site are non-flammable, further laboratory testing is recommended to confirm this.
- 13.2 If other soils are to be disposed of off-site then further analysis may be required.
- 13.3 Asbestos has been found within Made Ground deposits at the site. The presence of visible asbestos containing materials in waste or at concentrations exceeding 0.1% by weight will classify the waste as mixed and require disposal as hazardous waste irrespective of the chemical properties of the waste.
- 13.4 Should any soils require disposal off site an assessment of waste classification of the soils for disposal should be made by a competent person. Further chemical analysis may be required to fully characterise waste soils for disposal to landfill or re-use off site. WAC analysis may be required for disposal of soils as inert or hazardous.

# 14 CONCLUSIONS AND RECOMMENDATIONS

### Conclusions

- 14.1 The ground conditions were found to comprise varying thicknesses of topsoil overlying weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 14.2 A small amount of Made Ground was recorded in the north western area of the site.

#### <u>Environmental</u>

- 14.3 The environmental risk assessment has identified limited sources of contamination that represent a risk to human health. Loose Asbestos fibres have been recorded with the shallow Made Ground deposits encountered.
- 14.4 Slightly elevated concentrations of sulphate have been identified within the groundwater beneath the site which could represent a risk to concrete foundations. Impact to secondary A Aquifers and surface water features is likely to be restricted based upon the predominately hardstanding cover of the proposed development.
- 14.5 Ground gas monitoring has indicated that the site can be characterised as a CS1 site whereby ground gas protection measures are not required.
- 14.6 The majority of soils across the site are indicated to be classified as non-hazardous with respect to off-site disposal.

#### **Geotechnical**

- 14.7 Shallow spread foundations within the Cornbrash Formation or Kellaways Clay Member should be suitable for the proposed buildings along the western boundary of the site (buildings 1 & 11). For the proposed buildings in the central and eastern area of site ground improvement techniques in the form of vibro stone columns maybe required.
- 14.8 A ground bearing floor slab should be achievable for the proposed development, however the floor slab should avoid spanning different geological strata in order to avoid differential settlement issues.
- 14.9 Design sulphate class DS-2 and ACEC Class AC-2 is required for concrete to resist attack from sulphate levels across the site.

### **Recommendations**

14.10 In order to mitigate the risk posed to human health from asbestos fibres, a clean soil cover system will be required in landscaped areas positioned above the existing Made Ground deposits. It is possible that the Made Ground could be excavated and used elsewhere on site as part of an earthworks scheme. If this is the case then the material will need to be tracked so the appropriate clean soil cover is provided, or it is placed beneath hard stand to mitigate the risk of asbestos fibre inhalation. A Material

Management Plan and CL:AIRE DoW:CoP declaration represents best practice for such an operation.

14.11 The foundation solutions for the proposed development should be re-assessed once final loadings are known.

# **15 REFERENCES**

- 1. British Standards Institute, (BSI), BS 8485:2015, Code of Practice for the characterization and remediation from ground gas in affected developments
- 2. British Standards Institute, (BSI), BS 8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs)
- 3. British Standards Institute, (BSI), BS 10175:2011+A1:2013, Investigation of Contaminated Sites Code of Practice
- 4. British Standards Institute, (BSI), BS5930:2015 Code of practice for Ground investigations
- 5. British Standards Institute, (BSI), BS EN 1997-1:2004 Incorporating corrigendum February 2009, Eurocode 7 Geotechnical Design Part 1: General rules.
- 6. British Standards Institute, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 – Geotechnical Design – Part 2: Ground Investigation and testing.
- 7. Building Research Establishment Special Digest 1 Third Edition. Concrete in Aggressive Ground (2005)
- 8. Building Research Establishment (BRE) BR211, Radon; Guidance on Protective Measures for New Buildings (2015)
- 9. Construction Industry Research and Information Association (CIRIA), Report 132, A Guide to Safe working on Contaminated Sites (1996).
- 10. Construction Industry Research and Information Association (CIRIA). 2001, C522 Contaminated land risk assessment, A guide to good practice.
- 11. Construction Industry Research and Information Association (CIRIA). 2007, Report C665, Assessing Risk Posed by on Hazardous Ground Gases to Buildings
- 12. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 13. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 14. Environment Agency report CLR11 'Model Procedures for the Management of Land Contamination'.
- 15. Environment Agency 2008, Updated technical background to the CLEA model Science Report - SC050021/SR3
- 16. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2
- 17. Environment Agency 2009, CLEA Software (Version 1.05) Handbook Better Regulation Science Programme Science report: SC050021/SR4

- 18. Environment Agency 2008, A review of body weight and height data used within the Contaminated Land Exposure Assessment model (CLEA) Project SC050021/ Technical Review 1
- 19. Environment Agency, 2006, Remedial Targets Methodology, Hydrogeological Risk Assessment for Land Contamination
- 20. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).
- 21. Nathanail, C.P, McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 22. NHBC Guidance for the Safe Development of Housing on Land Affected by Contamination, R&D Publication 66: 2008



DRAWINGS



# DRAWING 1 SITE LAYOUT PLAN



| NOTES                                                                                                               |                            |
|---------------------------------------------------------------------------------------------------------------------|----------------------------|
| NOT SCALE THIS DRAWING. ALL DIMENS<br>CKED/ VERIFIED ON SITE. IF IN DOUBT AS                                        | SIONS MUCT BE<br>SK.       |
| IS DRAWING IS TO BE READ IN CONJUNC<br>VANT ARCHITECTS, ENGINEERS AND SPI<br>VINGS AND SPECIFICATIONS.              | TION WITH ALL<br>ECIALISTS |
| . DIMENSIONS IN MILLIMETRES UNLESS N<br>RWISE. ALL LEVELS IN METERES UNLES<br>RWISE.                                | IOTED<br>SS NOTED          |
| Y DISCREPANCIES NOTED ON SITE ARE TO THE ENGINEER IMMEDIATELY.                                                      | TO BE                      |
| LEGEND                                                                                                              |                            |
|                                                                                                                     |                            |
| Site boundary                                                                                                       |                            |
|                                                                                                                     |                            |
|                                                                                                                     |                            |
|                                                                                                                     |                            |
|                                                                                                                     |                            |
|                                                                                                                     |                            |
|                                                                                                                     |                            |
| BWB                                                                                                                 |                            |
| ilding, Infrastructure and vironmental Consultancy                                                                  | -                          |
| loor, Waterfront House, Station Street,<br>ngham, NG2 3DQ<br>I5 924 1100 <b>F</b> 0115 950 3966 <b>W</b> bwbconsult | ling.com                   |
| ent:                                                                                                                |                            |
| SLADEN ESTATES                                                                                                      | 6                          |
| ject Title:                                                                                                         |                            |
| AKEVIEW DRIVE, BICE                                                                                                 | STER                       |
| wing Title:                                                                                                         |                            |
| wing Huc.                                                                                                           |                            |
| SITE LAYOUT PLAI                                                                                                    | N                          |
| . Date: Drawn                                                                                                       | Authorised                 |
| to Scale 21.08.17 L.Cross                                                                                           | R.Robinson                 |
| ing Status:<br>FINAL                                                                                                |                            |
| wing No:                                                                                                            | Revision:                  |
| DB-BWB-00-XX-EN-DR-0001                                                                                             | F1                         |



# **DRAWING 2**

## **EXPLORATORY HOLE LOCATION PLAN**



Copyright BWB Consulting Lt

|              |     | ¥] |
|--------------|-----|----|
|              |     |    |
| 38+Pac       |     |    |
| -<br>100,044 | 957 | 4  |

| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Do not scale this drawing. All dimensions must be<br/>checked/verified on site. If in doubt ask.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. This drawing is to be read in conjunction with all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| relevant architects, engineers and specialists drawings<br>and specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>All dimensions in millimetres unless noted otherwise. All<br/>levels in metres unless noted otherwise.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>Any discrepancies noted on site are to be reported to<br/>the participancies of the base of the participancies of the parti</li></ol> |
| the engineer immediately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Koy Dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Denotes Location of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Trial Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BH**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Denotes Location of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cable Percussive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P1         26.09.17         FINAL         PT         RPD           Rev         Date         Details of issue / revision         Drw         Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Issues & Revisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Birmingham   0121 233 3322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Leeds   0113 233 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONSULTANCY   ENVIRONMENT Nottingham   0115 924 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INFRASTRUCTURE   BUILDINGS www.bwbconsulting.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SLADEN ESTATES LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Project Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BICESTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drawing Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LUCATION PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drawn: P.TAYLOR Reviewed: R.PARKER-DUNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drawn:         P.TAYLOR         Reviewed:         R.PARKER-DUNN           BWB Ref:         NTE2366         Date:         26.09.17         Scale@A3:         NTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drawn:         P.TAYLOR         Reviewed:         R.PARKER-DUNN           BWB Ref:         NTE2366         Date:         26.09.17         Scale@A3:         NTS           Drawing Status         FINAL         Kerner Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drawn:         P.TAYLOR         Reviewed:         R.PARKER-DUNN           BWB Ref:         NTE2366         Date:         26.09.17         Scale@A3:         NTS           Drawing Status         FINAL         Note:         Project - Originator - Zone - Level - Type - Role - Number         Status         Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



**APPENDICES** 



# **APPENDIX** 1

### **PROPOSED DEVELOPMENT PLAN**



| t | project | originator | zone | level | type | role       | number | rev |
|---|---------|------------|------|-------|------|------------|--------|-----|
| - |         | DW ·       |      |       |      | - <b>A</b> | 001    | Α   |



# APPENDIX 2 EXPLORATORY HOLE LOGS

| BOREHO                      | OLE I                                                                                                                                                                                | LOG                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                 |         |                           |                                                                | Sca                                                              | le 1:2        | 5                                                 |                                                                                                          | Sheet 1 of 1                                                                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|---------|---------------------------|----------------------------------------------------------------|------------------------------------------------------------------|---------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| LOCATION I                  | D Proj                                                                                                                                                                               | ject Nan                                    | ne: Lakeview Drive, Bicest                                                                                                                                                                                                                                                                                                                                                                                                                                            | ter                                                                     |                 |         |                           | Gr                                                             | ound l                                                           | .eve          | (m A                                              | <b>OD):</b> 66.67                                                                                        | 7                                                                                    |
| BU101                       | Proj                                                                                                                                                                                 | ject Nun                                    | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                 |         |                           | Ea                                                             | stings:                                                          |               |                                                   | 4576                                                                                                     | 90.08                                                                                |
| DUIO                        | L Clie                                                                                                                                                                               | nt:                                         | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                       |                 |         |                           | No                                                             | Northings                                                        |               |                                                   | 2217                                                                                                     | 11.42                                                                                |
| Hole Type: CF               | P Rig:                                                                                                                                                                               | Dan                                         | ndo 2500 Start & End Date: 14/08/2017                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                 |         | Engineer:                 |                                                                |                                                                  | C             | Checker:                                          | RPD                                                                                                      |                                                                                      |
| Groundwa                    | ater                                                                                                                                                                                 |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strata                                                                  |                 |         | Sampl                     |                                                                |                                                                  | In-Situ Tests |                                                   |                                                                                                          |                                                                                      |
| Strike Details              | Well                                                                                                                                                                                 | Level (m AOD) &<br>[Thickness (m)]          | Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ription                                                                 | Legend          | (m bgl) | Type<br>(Ublows)          | (m)                                                            | To (m)                                                           | Туре          | Depth<br>(m)                                      | Result                                                                                                   | Casing Depth &<br>(Water Level)                                                      |
|                             |                                                                                                                                                                                      | 65.67<br>[1.00]<br>64.67<br>[0.55]<br>64.12 | <ul> <li>With low to moderate cobble<br/>coarse sub-angular to sub-rou<br/>flint and quartzite with rare ti<br/>Cobbles of sub-angular brick a<br/>(Made Ground)</li> <li>Very dense light brown to yell<br/>grey slightly clayey sandy GRA<br/>angular limestone.<br/>(Cornbrash Formation)</li> <li>Very dense dark grey slightly<br/>cobble content. Gravel is fine<br/>limestone. Cobbles of sub-ang<br/>(Cornbrash Formation)</li> <li>Hole Terminate</li> </ul> | Inded brick, concrete, asp<br>mber, ceramic and glass.<br>and concrete. | halt,           | 2.00    | B<br>D<br>U<br>(100)<br>D | 1.00<br>1.00<br>2.00<br>2.50                                   | 1.40<br>2.00<br>2.10<br>2.53                                     | s             | 2.50                                              | 50 (9,13/50 for<br>250mm)<br>50 (25 for<br>15mm/50 for<br>10mm)                                          | 1.00m (NR)                                                                           |
| Chi                         | iseling                                                                                                                                                                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Romarks                                                                 |                 |         | <u> </u>                  |                                                                |                                                                  |               | Leø                                               | end                                                                                                      |                                                                                      |
| From (m bgl) To (<br>2.10 2 | m bgl) T<br>2.50                                                                                                                                                                     | ïme (hh:mm)<br>00:30                        | Reason for Termination:                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nemarks                                                                 |                 |         | s                         | ample Ty                                                       | /pe:                                                             | Gro           | oundwa                                            | ter: In-Situ                                                                                             | Tests                                                                                |
| Wate<br>From (m bgl) To (   | 2.50     00:30     Reserved remarks:     B-I       Terminated in hard ground     C - C       Groundwater Remarks:     D - I       ater Added     No groundwater encountered.     Sar |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                 |         |                           |                                                                | Bulk Sore Sore Sore Sore Sore Sore Sore Sore                     |               |                                                   | undwater C - Cone<br>ke HSV - Ha<br>ting PID - Pho<br>undwater Detectio<br>= Not S - Stand<br>orded Test | Penetration Test<br>ind Shear Vane<br>oto Ionisation<br>n Screen<br>lard Penetration |
|                             |                                                                                                                                                                                      |                                             | Uther Remarks:<br>1. No olfactory or visual evidence o<br>screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                            | f contamination noted. 2. Inst                                          | talled with 50m | m HDPE  | well M<br>S'<br>N         | WB Consu<br>Vaterfront<br>tation Stre<br>lottingham<br>IG2 3DQ | disturbed<br>onsulting Ltd<br>ront House<br>Street<br>gham<br>DQ |               | b:<br>oconsulti<br>115 924<br>ottingha<br>wbconsu | ing.com<br>1100<br>m<br>Ilting.com                                                                       |                                                                                      |

| BUREHUI                                  |                | UG                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                          |           |                                                            |                                                          |                                                                                          | Sca                                                   | le 1:2             | 5                                             |                                                                                                    | Sheet 1 of 1                                                                                  |
|------------------------------------------|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| LOCATION ID                              | Proj           | ect Nan                                                                  | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter                                                                                                                                                                                                                                                                                                              |                                          |           |                                                            |                                                          | Gr                                                                                       | ound l                                                | .eve               | (m A                                          | <b>OD):</b> 65.88                                                                                  | 3                                                                                             |
| BH102                                    | Proj           | ect Nun                                                                  | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                          |           |                                                            |                                                          | Ea                                                                                       | stings:                                               |                    |                                               | 4577                                                                                               | 57.57                                                                                         |
| DIIIOZ                                   | Clier          | nt:                                                                      | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                          |           | No                                                         | orthing                                                  | s:                                                                                       |                                                       | 2216               | 69.84                                         |                                                                                                    |                                                                                               |
| Hole Type: CP                            | Rig:           | Dan                                                                      | do 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start & End Date:                                                                                                                                                                                                                                                                                                | 14/08                                    | 8/2017    |                                                            |                                                          | Engineer:                                                                                |                                                       |                    | C                                             | Checker:                                                                                           | RPD                                                                                           |
| Groundwate                               | er             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strata                                                                                                                                                                                                                                                                                                           |                                          |           |                                                            | S                                                        | Samples                                                                                  |                                                       |                    |                                               | In-Situ Tests                                                                                      |                                                                                               |
| Strike Details                           | Well           | Level (m AOD) &<br>[Thickness (m)]                                       | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ription                                                                                                                                                                                                                                                                                                          |                                          | Legend    | Depth<br>(m bgl) <sup>(I</sup>                             | Type<br>Iblows)                                          | From<br>(m)                                                                              | To (m)                                                | Туре               | Depth<br>(m)                                  | Result                                                                                             | Casing Depth &<br>(Water Level)                                                               |
| 1.00m<br>bgl after<br>20mins<br>2.5m bgl |                | [0.20]<br>65.68<br>[0.50]<br>65.18<br>[2.10]<br>63.08<br>[0.60]<br>62.48 | Shrubs over firm dark brown<br>CLAY with frequent rootlets t<br>medium sub-angular limeston<br>Rare fragments of brick.<br>(Made Ground)<br>Stiff greyish brown occasiona<br>slightly gravelly CLAY. Gravel i<br>angular limestone. Occasiona<br>(Alluvium)<br>Light brown to yellowish brov<br>GRAVEL with rare pockets of<br>coarse sub-angular limestone<br>(Cornbrash Formation)<br>Very dense dark grey weathe<br>slightly clayey slightly sandy g<br>angular mudstone and limest<br>(Cornbrash Formation)<br>Hole Terminate | slightly sandy slightly gra<br>hroughout. Gravel is fine<br>ne and occasional sandst<br>illy mottled yellow and o<br>is fine and medium sub-<br>al rootlets.<br>wn mottled grey sandy<br>soft clay. Gravel us fine t<br>s.<br>rred LIMESTONE arising a<br>gravel of fine and mediur<br>tone.<br>ed at 3.40m bgl. | avelly<br>e and<br>tone.<br>rrange<br>50 |           | 0.20<br>0.70<br>-<br>-<br>-<br>2.80<br>-<br>3.40<br>-<br>- | B<br>D                                                   | 2.00                                                                                     | 0.70                                                  | s                  | 2.00                                          | N=29<br>(8,16/6,6,9,8)<br>50 (25 for<br>75mm/50 for<br>45mm)<br>50 (5,15/50 for<br>215mm)          | 1.00m (NR)<br>2.00m (NR)<br>2.00m (1.00m bgl)                                                 |
| Chiseli<br>From (m bgl) To (m b          | ing<br>ogl) Ti | me (hh:mm)                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks                                                                                                                                                                                                                                                                                                          |                                          |           |                                                            |                                                          | • =                                                                                      |                                                       | -                  | Leg                                           | end                                                                                                |                                                                                               |
| 0.80 3.00 Water Ad From (m bgl) To (m b  | dded           | Volume (I)                                                               | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>Groundwater encountered at 2.5m<br>Other Remarks:<br>1. No olfactory or visual evidence of                                                                                                                                                                                                                                                                                                                                                        | n, rising to 1.0m after 20 mir<br>of contamination noted. 2. I                                                                                                                                                                                                                                                   | nutes<br>nstalled v                      | with 50mm | HDPE we                                                    | B -<br>C -<br>D -<br>ES -<br>Sar<br>U -<br>BW<br>ell Wai | nple Ty<br>Bulk<br>Core<br>Disturb<br>- Enviro<br>nple<br>Undistu<br>B Consu<br>terfront | pe:<br>oed<br>inmental<br>urbed<br>lting Ltd<br>House | Gro                | Grou<br>Strik<br>Rest<br>Grou<br>NR =<br>Recc | ter: In-Situ<br>undwater<br>ke HSV-Ha<br>undwater<br>PID - Pho<br>Detectio<br>orded Test<br>rg.com | Tests<br>Penetration Tess<br>ind Shear Vane<br>oto Ionisation<br>n Screen<br>lard Penetration |
|                                          |                |                                                                          | screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                          |           |                                                            | Stat<br>Not                                              | tion Stre<br>tingham<br>2 3DO                                                            | et<br>1                                               | P: 0<br>E: n<br>@h | 115 924:<br>ottingha<br>wbconsu               | 1100<br>m<br>Ilting.com                                                                            |                                                                                               |

#### LOCATION ID Project Name: Lakeview Drive, Bicester Ground Level (m AOD): Project Number: NTE2366 Eastings: 457674.00 **BH103** Client: Sladen Estates Ltd Northings: 221478.00 Hole Type: CP Rig: Engineer: LC Checker: Dando 2500 Start & End Date: 14/08/2017 - 15/08/2017 RPD Samples In-Situ Tests Groundwater Strata Casing Depth & (Water Level) Strike Depth From Depth evel (m AOD) & [Thickness (m)] Type Strike Well Description Legend To (m) Туре Result Details . (m bgl) (m) (m) [0.60] 0.00 1.20 В Grass over brown fine SAND with rootlets to 0.25m. (Topsoil) [0.85] 0.60 Dense yellow and grey slightly clayey slightly sandy GRAVEL of fine to coarse sub-angular limestone, quartzite and flint. (River Terrace Deposits) D 1.20 1.20 N=34 1.00m (NR) 1.65 S (1,4/6,6,10,12) [0.45] 1.45 Dense light brown to yellowish brown slightly sandy GRAVEL of fine to coarse sub-angular limestone, flint and quartzite. (River Terrace Deposits) °,\* [2.35] ÷ 1.90 В 1.90 2.20 Very dense grey to dark grey slightly sandy GRAVEL of fine to coarse angular to sub-angular mudstone. (Weathered Kellaways Clay Member) 50 (4.12/50 for 2.00m В 2.20 2.50 S 2.20 D 2.20 3.00 150mm) (1.60m bgl) D 3.00 3.45 S 3.00 N=50 2.00m (5,5/10,10,10,20) (1.60m bgl) В 3.45 4.00 50 (25 for 2.00m D 4.00 4.12 S 4.00 110mm/50 for (1.00m bgl) 10mm) 4.25 Hole Terminated at 4.25m bgl. Legend Chiseling Remarks From (m bgl) To (m bgl) Time (hh:mm) **Reason for Termination:** Sample Type: Groundwater: In-Situ Tests 2.00 4.00 03:00 Terminated in hard ground B - Bulk Groundwater C - Cone Penetration Tes HSV - Hand Shear Va C - Core Strike D - Disturbed **T** Resting Test Groundwater Remarks: PID - Photo Ionisation ES - Environmental Groundwater Detection Screen S - Standard Penetration No groundwater encountered. Sample NR = Not Water Added U - Undisturbed Recorded Test From (m bgl) To (m bgl) Volume (I) Other Remarks: BWB Consulting Ltd Web 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE well bwbconsulting.com Waterfront House Station Street P: 0115 9241100 screen, gas tap and flush cover, 3. Coordinates taken from a hand held GPS unit. Nottingham E: nottingham NG2 3DQ @bwbconsulting.com

### BOREHOLE LOG

Scale 1:25

| BOREHO                            | LEL                                                               | OG                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                   |             |                            |                                                                                               | Sca                                          | ale 1:2                                       | <u>!</u> 5                                        |                                                                                                | Sheet 1 of 1                                                                      |
|-----------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|----------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| LOCATION ID                       | Proj                                                              | ect Nam                                                                                                                                                                                           | ne: Lakeview Drive, Bicest                                                                                                                                                                                                                                              | Gr                                                                                                                                                                               | ound              | Leve        | (m /                       | <b>40D):</b> 66.52                                                                            | -                                            |                                               |                                                   |                                                                                                |                                                                                   |
|                                   | Proje                                                             | ect Num                                                                                                                                                                                           | <b>nber:</b> NTE2366                                                                                                                                                                                                                                                    | Ea                                                                                                                                                                               | stings            | :           |                            | 45778                                                                                         | 36.90                                        |                                               |                                                   |                                                                                                |                                                                                   |
| DUTA                              | Clier                                                             | ıt:                                                                                                                                                                                               | Sladen Estates Ltd                                                                                                                                                                                                                                                      | No                                                                                                                                                                               | orthing           | ζs:         |                            | 22162                                                                                         | 21.63                                        |                                               |                                                   |                                                                                                |                                                                                   |
| Hole Type: CP                     | Rig:                                                              | Dan                                                                                                                                                                                               | do 2500                                                                                                                                                                                                                                                                 | Start & End Date:                                                                                                                                                                | 14/08/201         | .7          |                            | En                                                                                            | gineer                                       | r: L                                          | C                                                 | Checker:                                                                                       | RPD                                                                               |
| Groundwat                         | er                                                                | L                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         | Strata                                                                                                                                                                           |                   |             |                            | Samples                                                                                       |                                              |                                               |                                                   | In-Situ Tests                                                                                  |                                                                                   |
| Strike Details                    | Well                                                              | Level (m AOD) &<br>[Thickness (m)]                                                                                                                                                                | Descr                                                                                                                                                                                                                                                                   | ription                                                                                                                                                                          | Lege              | end (m bgl) | Type<br>(Ublows            | From<br>(m)                                                                                   | To (m)                                       | Туре                                          | Depth<br>(m)                                      | Result                                                                                         | Casing Depth &<br>(Water Level)                                                   |
| Strike Details                    |                                                                   | (0.25)<br>(0.25)<br>66.27<br>[1.75]<br>64.12<br>64.12<br>64.12<br>                                                                                                                                | Grass over brown fine SAND v<br>(Topsoil)<br>Firm brown slightly sandy CLA<br>angular to sub-rounded, limes<br>rootlet to 0.6m.<br>(Alluvium)<br>1.7m - 2.0m: Becomes orangish<br>Stiff dark grey weather MUDS<br>clay.<br>(Weathered Kellaways Forma<br>Hole Terminate | Iption<br>vith rootlets throughout<br>M. Gravel is fine and sub<br>stone and flint. Occasion<br>brown.          TONE arising's as a grav         ition)         2d at 2.40m bgl. | /elly             |             | Ublows<br>B<br>D<br>B<br>D | <ul> <li>(m)</li> <li>0.20</li> <li>1.00</li> <li>1.70</li> <li>2.00</li> <li>2.10</li> </ul> | 0.70<br>0.70<br>1.45<br>2.00<br>2.10<br>2.13 | s s s s s                                     | (m)<br>1.00<br>2.00<br>2.10                       | N=14 (5,9/6,4,2,2)<br>50 (25 for<br>55mm/50 for<br>35mm)<br>50 (25 for<br>10mm/50 for<br>20mm) | (Water Level)<br>0.80m (NR)<br>1.00m (NR)<br>1.00m (NR)                           |
| Chical                            |                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                   | <u> </u>    | $\Box_{\uparrow}$          |                                                                                               |                                              |                                               |                                                   |                                                                                                |                                                                                   |
| From (m bgl) To (m b<br>2.00 2.10 | Chiseling Remarks To (m bgl) Time (hh:mm) Reason for Termination: |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                   |             |                            |                                                                                               | /pe:                                         | Gro                                           | Jundwa                                            | ater: In-Situ 1                                                                                | Tests                                                                             |
| Water Ar<br>From (m bgl) To (m I  | dded<br>bgl)                                                      | 01:30     Reason for remination:     Sar       Terminated in hard ground     B -       Groundwater Remarks:     D -       d     No groundwater encountered.       Volume (I)     Other Dependence |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                   |             |                            |                                                                                               |                                              | Grou<br>Strik<br>Rest<br>Grou<br>NR =<br>Rect |                                                   | undwater C - Cone f<br>«e HSV - Har<br>ting PID - Pho'<br>undwater S - Stand;<br>orded Test    | Penetration Test<br>nd Shear Vane<br>to Ionisation<br>n Screen<br>ard Penetration |
|                                   |                                                                   |                                                                                                                                                                                                   | 1. No olfactory or visual evidence o<br>screen, gas tap and flush cover.                                                                                                                                                                                                | f contamination noted. 2. I                                                                                                                                                      | Installed with 50 | 0mm HDPE    | well v<br>s                | WB Consu<br>Vaterfront<br>tation Stre<br>Jottingham<br>JG2 3DQ                                | Iting Ltd<br>House<br>et                     | Wel<br>bwb<br>P: 0<br>E: n<br>@b              | ):<br>/consulti<br>115 924<br>/ottingha<br>wbcons | ing.com<br>1100<br>am<br>ulting.com                                                            |                                                                                   |

| BOREHO                                                         | LE L   | .0G                               |                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                            |                                                                                         |                   |                                                               | Sca                                                                                                            | ale 1:2                                                                                      | 5                                                |                                   | Sheet 1 of 1   |
|----------------------------------------------------------------|--------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------|
| LOCATION ID                                                    | ) Proj | ect Nam                           | ne: Lakeview Drive, Bices                                                                                                                                                                           |                                                                                                                                                                                                                   | Gr                                                                                         | ound l                                                                                  | Leve              | (m A                                                          | <b>OD):</b> 64.82                                                                                              | 2                                                                                            |                                                  |                                   |                |
| BH105                                                          | Proj   | ect Num                           | nber: NTE2366                                                                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                            |                                                                                         |                   | Ea                                                            | stings:                                                                                                        |                                                                                              |                                                  | 4576                              | 82.02          |
|                                                                | Clier  | nt:                               | Sladen Estates Ltd                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                                                                            |                                                                                         |                   | No                                                            | orthing                                                                                                        | gs:                                                                                          |                                                  | 2214                              | 57.75          |
| Hole Type: CP                                                  | Rig:   | Dan                               | do 2500                                                                                                                                                                                             | Start & End Date: 15/08/2017                                                                                                                                                                                      |                                                                                            |                                                                                         |                   | Engineer: LC                                                  |                                                                                                                |                                                                                              |                                                  | Checker: RPD                      |                |
| Groundwa                                                       | ter    |                                   | T                                                                                                                                                                                                   | Strata                                                                                                                                                                                                            |                                                                                            | Nenth                                                                                   |                   | Sampl                                                         | es                                                                                                             |                                                                                              | Penth                                            | In-Situ Tests                     | Coring Depth & |
| Strike Details                                                 | Well   | [Thickness (m)]                   | Desi                                                                                                                                                                                                | cription                                                                                                                                                                                                          | Legend                                                                                     | (m bgl)                                                                                 | Ublows)           | (m)                                                           | To (m)                                                                                                         | Туре                                                                                         | (m)                                              | Result                            | (Water Level)  |
|                                                                |        | 63.38                             | Grass over slightly clayey slig<br>is fine to coarse angular to su<br>occasional limestone.<br>(Topsoil)<br>Light brown to yellow slightly<br>coarse angular to sub-angula<br>(Cornbrash Formation) | htly gravelly fine SAND. Grave<br><i>ib</i> -rounded flint, quartzite an<br><i>i</i> sandy GRAVEL of fine to<br><i>i</i> limestone.<br><i>content noted</i> .<br><i>content noted</i> .<br><i>content noted</i> . |                                                                                            | 0.20                                                                                    | D                 | 0.20                                                          | 1.20                                                                                                           | S                                                                                            | 1.20                                             | 50 (4,14/50 for<br>85mm)          | 1.00m (NR)     |
| Chise                                                          | eling  |                                   |                                                                                                                                                                                                     | Bomarks                                                                                                                                                                                                           |                                                                                            |                                                                                         |                   |                                                               |                                                                                                                |                                                                                              | Leg                                              | end                               |                |
| From (m bgl) To (m<br>1.20 1.4<br>Water.<br>From (m bgl) To (m | Added  | me (hh:mm)<br>01:00<br>Volume (l) | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>No groundwater encountered.<br>Other Remarks:                                                                       | B<br>C<br>D<br>E<br>Si<br>U<br>B                                                                                                                                                                                  | ample Ty<br>- Bulk<br>- Core<br>- Disturk<br>S - Envirc<br>ample<br>I - Undist<br>WB Consu | n <b>ple Type:</b><br>Bulk<br>Core<br>Disturbed<br>Environmental<br>nple<br>Undisturbed |                   | Undwar<br>Grou<br>Strik<br>Rest<br>Grou<br>NR =<br>Recc<br>b: | ter: In-Situ<br>Jindwater C - Cone<br>HSV - Ha<br>Ing Test<br>PID - Pho<br>Detectio<br>S - Stand<br>orded Test | Tests<br>Penetration Test<br>nd Shear Vane<br>oto Ionisation<br>n Screen<br>lard Penetration |                                                  |                                   |                |
|                                                                |        |                                   | 1. No olfactory or visual evidence screen, gas tap and flush cover.                                                                                                                                 | of contamination noted. 2. Install                                                                                                                                                                                | ed with 50mr                                                                               | n HDPE v                                                                                | well W<br>St<br>N | /aterfront<br>tation Stre<br>lottingham<br>IG2 3DQ            | House<br>et                                                                                                    | bwt<br>P: 0<br>E: n<br>@b                                                                    | <br>iconsulti<br>115 924:<br>ottingha<br>wbconsu | ng.com<br>1100<br>m<br>Ilting.com |                |

| BUREHUI                                                                                    |                                 | .UG                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                    |                                                  |           |                           |                                                                   |                                                                                                   | Sca                                                  | le 1:2     | 5                                                                                                    |                                                                                                                    | Sheet 1 of 1                                                                               |
|--------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|---------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LOCATION ID                                                                                | Proj                            | ect Nan                                                              | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                 | ster                                                                                                                                                                                                                                                               |                                                  |           |                           |                                                                   | Gr                                                                                                | ound l                                               | .evel      | (m /                                                                                                 | <b>OD):</b> 65.80                                                                                                  | )                                                                                          |
|                                                                                            | Proj                            | ect Nun                                                              | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |                                                  |           |                           |                                                                   | Ea                                                                                                | stings:                                              |            |                                                                                                      | 4577                                                                                                               | 72.49                                                                                      |
| DUIDO                                                                                      | Clier                           | nt:                                                                  | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                  |           |                           |                                                                   | No                                                                                                | orthing                                              | s:         |                                                                                                      | 2214                                                                                                               | 99.77                                                                                      |
| Hole Type: CP                                                                              | Rig:                            | Dan                                                                  | do 2500                                                                                                                                                                                                                                                                                                                                                                   | Start & End Date:                                                                                                                                                                                                                                                  | 16/08                                            | 8/2017    |                           |                                                                   | En                                                                                                | gineer                                               | : L        | .C                                                                                                   | Checker:                                                                                                           | RPD                                                                                        |
| Groundwate                                                                                 | er                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                           | Strata                                                                                                                                                                                                                                                             |                                                  |           |                           | S                                                                 | ampl                                                                                              | es                                                   |            |                                                                                                      | In-Situ Tests                                                                                                      |                                                                                            |
| Strike Details                                                                             | Well                            | Level (m AOD) &<br>[Thickness (m)]                                   | Desc                                                                                                                                                                                                                                                                                                                                                                      | cription                                                                                                                                                                                                                                                           |                                                  | Legend    | Depth<br>(m bgl)          | Type<br>Jblows)                                                   | From<br>(m)                                                                                       | To (m)                                               | Туре       | Depth<br>(m)                                                                                         | Result                                                                                                             | Casing Depth &<br>(Water Level)                                                            |
| 1.80m<br>bgl after<br>20mins<br>2.5m bgl                                                   |                                 | [Thdres(m)]<br>[0.35]<br>65.45<br>[0.85]<br>64.60<br>[1.43]<br>63.17 | Grass over slightly clayey slig<br>is fine to coarse angular to su<br>occasional limestone.<br>(Topsoil)<br>Firm brown and yellow slight<br>with occasional rootlets to 0.<br>sub-angular to sub-rounded I<br>(Alluvium)<br>Firm becoming Stiff from 1.7r<br>Gravel is fine and medium su<br>Occasional coarse sand lense<br>(Weathered Kellaways Clay N<br>Hole Terminat | htly gravelly fine SAND.<br>htly gravelly fine SAND.<br>htly gravelly fine SAND.<br>htly sandy slightly gravelly<br>8m. Gravel is fine and m<br>limestone, flint and quar<br>m slightly sandy gravelly<br>b-angular mudstone.<br>s.<br>Member)<br>ed at 2.63m bgl. | Gravel<br>ite and<br>r CLAY<br>hedium<br>rtzite. |           | (m bgl) (<br>0.35<br>1.20 | B<br>B<br>B<br>B<br>B<br>D<br>D<br>D<br>D                         | (m)<br>0.10<br>0.50<br>1.00<br>1.20<br>2.00<br>2.55                                               | 0.40<br>1.00<br>1.45<br>2.00<br>2.45<br>2.63         | s<br>s     | (m)<br>1.00<br>2.00<br>2.55                                                                          | N=5 (1,2/1,1,1,2)<br>N=12 (1,2/2,3,3,4)<br>50 (25 for<br>65mm/50 for<br>10mm)                                      | (Water Level)<br>1.00m (NR)<br>2.00m (NR)<br>2.00m (1.80m bgl)                             |
|                                                                                            |                                 |                                                                      | -                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                    |                                                  | -         | -                         | -+                                                                |                                                                                                   |                                                      |            | -                                                                                                    |                                                                                                                    |                                                                                            |
| Chiseli                                                                                    | ing                             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                           | Remarks                                                                                                                                                                                                                                                            |                                                  |           |                           |                                                                   |                                                                                                   |                                                      |            | Leg                                                                                                  | end                                                                                                                |                                                                                            |
| From (m bgl)     To (m b       2.55     2.60       water Ac       From (m bgl)     To (m b | ogl) Tii<br>)<br>dded<br>ogl) - | me (hh:mm)<br>01:00<br>Volume (l)                                    | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>Groundwater encountered at 2.5n<br>Other Remarks:<br>1. No olfactory or visual evidence of<br>screen, gas tap and flush cover.                                                                                                                                                            | n, rising to 1.8m                                                                                                                                                                                                                                                  | Installed                                        | with 50mm | n HDPE w                  | B - I<br>C - U<br>D -<br>ES -<br>Sam<br>U -<br>BWN<br>Wat<br>Stat | nple Ty<br>Bulk<br>Core<br>Disturb<br>Enviro<br>nple<br>Undistu<br>B Consu<br>erfront<br>ion Stre | pec<br>onmental<br>urbed<br>lting Ltd<br>House<br>et | Gro        | → o<br>oundwa<br>→ Gro<br>Stril<br>C Res <sup>2</sup><br>Gro<br>NR<br>Rec<br>→<br>Consult<br>115 924 | tter: In-Situ '<br>undwater C - Cone<br>ke TESV - Ha<br>undwater PID - Phc<br>betection<br>s - Stand<br>orded Test | Tests<br>Penetration Test<br>nd Shear Vane<br>to Ionisation<br>1 Screen<br>ard Penetration |
|                                                                                            |                                 |                                                                      | solution and and mush covel.                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |                                                  |           |                           | Not                                                               | tingham<br>2 3DO                                                                                  | ı                                                    | E: n<br>@h | ottingha<br>wbconsi                                                                                  | im<br>ulting.com                                                                                                   |                                                                                            |

|                         |                   | LOG                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                  |           |               |                                                          |                                                                     | Sca                                                          | ale 1:2                          | 25                                                     |                                                                                                                                   | Sheet 1 of 1                                                                       |
|-------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|---------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| LOCATION                | ID Pro            | ject Nan                                                                                                                          | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ster                                                                                                                                                                                                                                                                                                |                                                  |           | Gr            | ound                                                     | Leve                                                                | l (m /                                                       | <b>\OD):</b> 65.22               | <u>!</u>                                               |                                                                                                                                   |                                                                                    |
| <br>  110               | - Pro             | ject Nur                                                                                                                          | <b>nber:</b> NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                  |           |               |                                                          | Ea                                                                  | stings                                                       | :                                |                                                        | 45786                                                                                                                             | 67.57                                                                              |
| ΒΠΤΛ                    | Clie              | ent:                                                                                                                              | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                  |           |               |                                                          | Nc                                                                  | orthing                                                      | gs:                              |                                                        | 2215(                                                                                                                             | 03.18                                                                              |
| Hole Type: C            | CP Rig:           | : Dan                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start & End Date:                                                                                                                                                                                                                                                                                   | 16/08                                            | 8/2017    |               |                                                          | En                                                                  | igineer                                                      | r:                               | LC                                                     | Checker:                                                                                                                          | RPD                                                                                |
| Groundw                 | vater             | Τ                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strata                                                                                                                                                                                                                                                                                              |                                                  |           |               |                                                          | Samp                                                                | les                                                          |                                  |                                                        | In-Situ Tests                                                                                                                     |                                                                                    |
| Strike Strike           | Well              | Level (m AOD) &                                                                                                                   | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cription                                                                                                                                                                                                                                                                                            |                                                  | legend    | Depth         | Type                                                     | From                                                                | To (m)                                                       |                                  | Depth                                                  | Result                                                                                                                            | Casing Depth &                                                                     |
| Details                 |                   | [0.35]                                                                                                                            | - Grass over slightly clayey slig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | shtly gravelly fine SAND.                                                                                                                                                                                                                                                                           | Gravel                                           |           | (m bgi)       | Ubiows                                                   | (m)                                                                 |                                                              |                                  | (m)                                                    |                                                                                                                                   | (Water Lever)                                                                      |
| Details                 |                   | (Thickness (m))<br>[0.35]<br>64.87<br>[0.75]<br>64.87<br>[0.75]<br>64.12<br>[1.20]<br>62.92<br>[0.65]<br>62.27<br>[0.45]<br>61.82 | Grass over slightly clayey slig<br>is fine to coarse angular to su<br>occasional limestone.<br>(Topsoil)<br>Firm orange slightly sandy sli<br>fine and medium sub-angular<br>quartzite and limestone.<br>(Alluvium)<br>Firm grey mottled orange slig<br>occasional sand lenses. Grave<br>angular to sub-rounded flint<br>(Alluvium)<br>Stiff dark grey gravelly CLAY.<br>angular mudstone. Rare shel<br>(Weathered Kellaways Clay f<br>Very stiff dark grey weather l<br>gravelly clay.<br>(Kellaways Clay Member)<br>Hole Terminal | htly gravelly fine SAND. G<br>ib-rounded flint, quartzit<br>ghtly gravelly CLAY. Grav<br>r to sub-rounded flint,<br>ghtly gravelly CLAY with<br>el is fine and medium sul<br>and limestone.<br>Gravel is fine and mediu<br>Il fragments.<br>Member)<br>MUDSTONE arising's as a<br>ted at 3.40m bgl. | Gravel<br>te and<br>rel is<br>lb-<br>m sub-<br>a |           | (m bgl) (<br> | B<br>B<br>B<br>D<br>D<br>B<br>B<br>D<br>D<br>D<br>D<br>D | (m)<br>0.10<br>0.70<br>1.00<br>1.00<br>2.00<br>2.30<br>3.00<br>3.30 | 0.60<br>1.00<br>1.45<br>1.50<br>2.45<br>2.70<br>3.02<br>3.31 | S S S S                          | (m)<br>1.00<br>2.00<br>3.30                            | N=5 (2,1/1,1,1,2)<br>N=8 (2,1/2,2,2,2)<br>N=8 (2,1/2,2,2,2)<br>S0 (25 for<br>15mm/50 for<br>5mm)<br>S0 (25 for<br>5mm/50 for 5mm) | (Water Level) 1.00m (NR) 1.00m (NR) 1.00m (NR) 1.00m (NR)                          |
|                         | <b></b>           |                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                     |                                                  |           |               | -                                                        |                                                                     |                                                              | ⊢                                | '                                                      |                                                                                                                                   |                                                                                    |
| Cr                      | hiseling          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bomarks                                                                                                                                                                                                                                                                                             |                                                  |           |               |                                                          | L                                                                   |                                                              |                                  | Leg                                                    | end                                                                                                                               |                                                                                    |
| From (m bgl) To<br>3.20 | (m bgl) T<br>3.40 | Гіте (hh:mm)<br>01:00                                                                                                             | -<br>Reason for Termination:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks                                                                                                                                                                                                                                                                                             |                                                  |           |               | Sa                                                       | ample Ty                                                            | ype:                                                         | Gr                               | oundwa                                                 | iter: In-Situ                                                                                                                     | Tests                                                                              |
| Wat<br>From (m bgl) To  | ter Added         | Volume (I)                                                                                                                        | Terminated in hard ground<br>Groundwater Remarks:<br>No groundwater encountered.<br>Other Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                  |           |               | B -<br>C -<br>ES<br>Sa<br>U                              | - Bulk<br>- Core<br>- Disturt<br>3 - Envirc<br>ample<br>- Undist    | oed<br>onmental<br>:urbed                                    |                                  | ∠ Gro<br>Stril<br>Res <sup>4</sup><br>Gro<br>NR<br>Rec | undwater C - Cone I<br>«e HSV - Har<br>ting PID - Pho<br>undwater S - Stand.<br>orded Test<br>PID - Stand.<br>S - Stand.          | Penetration Test<br>nd Shear Vane<br>ito Ionisation<br>n Screen<br>ard Penetration |
|                         |                   |                                                                                                                                   | 1. No olfactory or visual evidence<br>screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of contamination noted. 2. I                                                                                                                                                                                                                                                                        | Installed                                        | with 50mm | HDPE w        | rell W<br>Sti<br>No                                      | VB Consu<br>aterfront<br>ation Stre<br>ottinghan<br>G2 3DQ          | ilting Ltd<br>House<br>≗et<br>n                              | Wel<br>bwł<br>P: C<br>E: r<br>@ł | b:<br>bconsulti<br>)115 924<br>10ttingha<br>pwbcons    | ing.com<br>+1100<br>am<br>ulting.com                                                                                              |                                                                                    |

|                                                                      |                                     | .00                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                  |                                                                        |           |                  |                                             |                                                                                                        | Sca                                                               | ale 1:2             | <u>'</u> 5                                                                                                                                     |                                                                                                                                      | Shee                                                                                      | et 1 of 1                                             |
|----------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|
| LOCATION ID                                                          | Proj                                | ect Nan                                                                                                                                 | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ster                                                                                                                                                                                                                                                                             |                                                                        |           |                  |                                             | Gr                                                                                                     | ound                                                              | Leve                | l (m /                                                                                                                                         | <b>40D):</b> 67                                                                                                                      | .15                                                                                       |                                                       |
| 011400                                                               | Proj                                | ect Nun                                                                                                                                 | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |                                                                        |           |                  |                                             | Ea                                                                                                     | stings                                                            | :                   |                                                                                                                                                | 45                                                                                                                                   | 7853.6                                                                                    | 56                                                    |
| ΒΗΤΛ9                                                                | Clier                               | nt:                                                                                                                                     | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  |                                                                        |           |                  |                                             | Nc                                                                                                     | orthing                                                           | zs:                 |                                                                                                                                                | 22                                                                                                                                   | 1611.3                                                                                    | 33                                                    |
| Hole Type: CP                                                        | Rig:                                | Dan                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start & End Date:                                                                                                                                                                                                                                                                | 15/08                                                                  | 3/2017    |                  |                                             | En                                                                                                     | Igineer                                                           | r:                  | C                                                                                                                                              | Checke                                                                                                                               | er: R                                                                                     | ≀PD                                                   |
| Groundwat                                                            | er                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strata                                                                                                                                                                                                                                                                           |                                                                        |           |                  | !                                           | Samp                                                                                                   | les                                                               |                     |                                                                                                                                                | In-Situ Te                                                                                                                           | sts                                                                                       |                                                       |
| Strike Strike                                                        | Well                                | Level (m AOD) &<br>[Thickness (m)]                                                                                                      | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cription                                                                                                                                                                                                                                                                         |                                                                        | Legend    | Depth<br>(m.bgl) | Type<br>(Ublows)                            | From<br>(m)                                                                                            | To (m)                                                            | Турє                | Depth                                                                                                                                          | Result                                                                                                                               | Casin<br>(Wa                                                                              | ng Depth &                                            |
| Strike Details                                                       | Vell                                | Level (m ACO) &<br>[Theorems (m)]<br>[0.40]<br>66.75<br>[2.10]<br>64.15<br>[0.50]<br>63.90<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Desc<br>Grass over slightly clayey sligh<br>is fine to coarse angular to su<br>occasional limestone.<br>(Topsoil)<br>Firm grey to greyish brown sli<br>occasional rootlets to 0.65m.<br>sub-angular to sub-rounded s<br>quartzite. Rare shell fragment<br>(Alluvium)<br>Stiff dark grey CLAY with occa<br>Occasional fine shell fragment<br>(Weathered Kellaways Clay N<br>Dark grey MUDSTONE arising<br>fine to coarse sub-angular mi<br>(Kellaways Clay Member)<br>Hole Terminat | ription<br>htly gravelly fine SAND. G<br>ib-rounded flint, quartzit<br>ightly gravelly CLAY with<br>Gravel is fine and mediu<br>sandstone and occasiona<br>ts.<br>asional lenses of fine san<br>its.<br>Vember)<br>g as a slightly clayey grav-<br>udstone.<br>ied at 3.25m bgl. | Jravel         te and         um         al         nd.         rel of |           | Depth<br>(m bgl) | Type<br>(Ublows)<br>B<br>B<br>D<br>D<br>B   | From<br>(m)<br>0.10<br>0.40<br>1.00<br>2.00<br>2.50                                                    | To (m)<br>0.40<br>1.00<br>1.45<br>2.45<br>3.00                    | Type<br>S<br>S<br>S | 2.00                                                                                                                                           | Result           N=7 (1,1/1,2,4)           N=11 (1,2/2,2,4)           50 (25 for 0mm/50 for 10mm)           50 (25 for 0mm/50 for 5) | (wat<br>(wat<br>)<br>2,2) 1.00<br>,3,4) 2.00<br>,r<br>2.00<br>mm) 2.00                    | iter Level)<br>Dm (NR)<br>Om (NR)<br>Om (NR)          |
| Chisel                                                               | ling                                |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bomarks                                                                                                                                                                                                                                                                          |                                                                        |           |                  | $\square$                                   | <u> </u>                                                                                               |                                                                   |                     | Leg                                                                                                                                            | rend                                                                                                                                 |                                                                                           |                                                       |
| From (m bgl) To (m t<br>3.00 3.20<br>Water A<br>From (m bgl) To (m t | ng<br>ygl) Tir<br>,<br>dded<br>bgl) | me (hh:mm)<br>01:00<br>Volume (l)                                                                                                       | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>No groundwater encountered.<br>Other Remarks:<br>1. No olfactory or visual evidence                                                                                                                                                                                                                                                                                                                | Remarks                                                                                                                                                                                                                                                                          | Installed \                                                            | with 50mm | HDPE V           | Sa<br>B<br>C<br>D<br>E<br>Sa<br>U<br>Well W | ample Ty<br>- Bulk<br>- Core<br>- Disturk<br>S - Envirc<br>ample<br>- Undist<br>WB Consu<br>Vaterfront | ype:<br>Ded<br>Ded<br>Domental<br>Surbed<br>ulting Ltd<br>t House | Gro                 | Leg<br>Jundwa<br>Z Gro<br>Stril<br>Res:<br>Gro<br>NR<br>Rec<br>b:<br>b:<br>b:<br>b:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D | Inter: In-S<br>undwater C - C<br>ke HSV<br>ting PID<br>undwater = Not S - S<br>corded Test<br>ting.com                               | itu Tests<br>Cone Penetra<br>- Hand Shea<br>- Photo Ioni:<br>ection Scree<br>Standard Per | ration Test<br>Par Vane<br>isation<br>en<br>metration |
|                                                                      |                                     |                                                                                                                                         | screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                  |                                                                        |           |                  | St<br>N                                     | ation Stre<br>ottingham                                                                                | et<br>a                                                           | P:0<br>E:r<br>@F    | 115 924<br>ottingha                                                                                                                            | -1100<br>am<br>ulting com                                                                                                            |                                                                                           |                                                       |

| BUREHU                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                            |                              |                                                                                              |                                                                                                                          | Sca                                                                                          | ale 1:2             | 25                               |                                                                                                                                                               | Sheet 1 of 1                                                                            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| LOCATION ID                                                    | ) Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ect Nan                                                                                                                        | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ster                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                            |                              |                                                                                              | Gr                                                                                                                       | round                                                                                        | Leve                | l (m /                           | 4 <b>OD):</b> 65.89                                                                                                                                           | ÷                                                                                       |
|                                                                | Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ect Nur                                                                                                                        | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                            |                              |                                                                                              | Ea                                                                                                                       | stings                                                                                       | :                   |                                  | 4579                                                                                                                                                          | 30.93                                                                                   |
| RHINA                                                          | Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt:                                                                                                                            | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                            |                              |                                                                                              | N¢                                                                                                                       | orthin                                                                                       | gs:                 |                                  | 2215                                                                                                                                                          | 41.14                                                                                   |
| Hole Type: CP                                                  | Rig:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dan                                                                                                                            | -<br>ido 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Start & End Date:                                                                                                                                                                                                                                                                                        | 17/08,                                                                                                 | /2017                                                      |                              |                                                                                              | En                                                                                                                       | Iginee                                                                                       | r:                  | LC                               | Checker:                                                                                                                                                      | RPD                                                                                     |
| Groundwa                                                       | iter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Strata                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                            |                              | !                                                                                            | Samp                                                                                                                     | les                                                                                          |                     |                                  | In-Situ Tests                                                                                                                                                 | . <u></u> ;                                                                             |
| Strike Strike                                                  | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (m AOD) &<br>[Thickness (m)]                                                                                             | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cription                                                                                                                                                                                                                                                                                                 |                                                                                                        | Legend                                                     | Depth                        | Type<br>(Ublows)                                                                             | From                                                                                                                     | To (m)                                                                                       | Туре                | Depth                            | Result                                                                                                                                                        | Casing Depth &                                                                          |
| Strike Details                                                 | Image: state | Leve(m ACO) &<br>[Pinkerser (m)]<br>[0.35]<br>65.54<br>[2.25]<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Crass over slightly clayey slig<br>is fine to coarse angular to su<br>occasional limestone.<br>(Topsoil)<br>Firm light and brown slightly<br>with occasional rootlets to 0.<br>medium sub-angular to sub-r<br>limestone. Occasional shell fr<br>(Alluvium)<br>Stiff dark grey gravelly CLAY.<br>mudstone. Occasional shell fr<br>(Weathered Kellaways Clay f<br>Very dense dark grey weather<br>slightly sandy gravel of fine s<br>(Cornbrash Formation)<br>Hole Terminat | ription<br>htly gravelly fine SAND. G<br>ib-rounded flint, quartzit<br>sandy slightly gravelly CL<br>.75m. Gravel is fine and<br>rounded flint, quartzite a<br>ragments.<br>Gravel is fine and sub-aną<br>'ragments.<br>Member)<br>ered LIMESTONE arising a<br>ubangular limestone.<br>ted at 3.30m bgl. | Gravel<br>te and<br>LAY<br>and<br>gular<br>as a                                                        |                                                            | Depth<br>(m bgl)<br>0.35<br> | Type<br>[Ublows]<br>B<br>B<br>D<br>D                                                         | From<br>(m)<br>0.10<br>0.70<br>1.00<br>2.00<br>3.00                                                                      | To (m)<br>0.60<br>1.00<br>1.45<br>2.45<br>3.01                                               | Type<br>S<br>S<br>S | 2.00<br>3.30                     | Result           N=6 (1,1/1,1,2,2)           N=11 (1,2/2,2,3,4)           50 (25 for           5mm/50 for 0mm)           50 (25 for           0mm/50 for 0mm) | Casing Depth &<br>(Water Level)<br>1.00m (NR)<br>1.00m (NR)<br>1.00m (NR)<br>1.00m (NR) |
| Chise                                                          | oling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                            |                              |                                                                                              | <u> </u>                                                                                                                 |                                                                                              |                     |                                  | rend                                                                                                                                                          |                                                                                         |
| From (m bgl) To (m<br>3.10 3.3<br>Water.<br>From (m bgl) To (m | Installed w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vith 50mm                                                                                                                      | HDPE w                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sa<br>B<br>C<br>D<br>ES<br>S<br>S<br>V<br>V<br>Vell                                                                                                                                                                                                                                                      | imple Ty<br>- Bulk<br>- Core<br>- Disturk<br>5 - Envirc<br>ample<br>- Undist<br>WB Const<br>Vaterfront | /pe:<br>Ded<br>Domental<br>turbed<br>ulting Ltd<br>t House |                              | Leg<br>Jundwa<br>Z Gro<br>Stril<br>■ Res<br>Gro<br>NR<br>Rec<br>2b:<br>tbconsul <sup>2</sup> | tter: In-Situ '<br>undwater C - Cone<br>ke HSV - Ha<br>pundwater PID - Phc<br>pundwater = Not<br>corded Test<br>ting.com | Tests<br>Penetration Test<br>nd Shear Vane<br>sto Ionisation<br>n Screen<br>lard Penetration |                     |                                  |                                                                                                                                                               |                                                                                         |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                | screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                            |                              | St;<br>Nr<br>N                                                                               | ation Stre<br>ottingham<br>G2 3DQ                                                                                        | et?<br>?                                                                                     | P: 0<br>E: r<br>@t  | 1115 924<br>10ttingha<br>2wbcons | +1100<br>am<br>sulting.com                                                                                                                                    |                                                                                         |

| BUREF         |                                   | L    | UG                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                   |           |                                 |                                      |                                                       | Sca                                                    | le 1:2                    | 25                                         |                                                                                                                | Sheet 1 of 2                                                                         |
|---------------|-----------------------------------|------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|---------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| LOCATION      | N ID Pr                           | roje | ect Nan                            | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ster                                                                                                                                                                                                      |                                   |           |                                 |                                      | Gr                                                    | ound l                                                 | leve                      | l (m /                                     | AOD): 65.65                                                                                                    | 5                                                                                    |
|               | 1 <b>n</b> Pr                     | roje | ect Nun                            | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                   |           |                                 |                                      | Ea                                                    | stings                                                 |                           |                                            | 4580                                                                                                           | 02.12                                                                                |
| DUT           |                                   | lien | t:                                 | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                   |           |                                 |                                      | No                                                    | orthing                                                | s:                        |                                            | 2215                                                                                                           | 39.73                                                                                |
| Hole Type:    | CP Ri                             | ig:  | Dan                                | do 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Start & End Date:                                                                                                                                                                                         | 17/08                             | 8/2017    |                                 |                                      | En                                                    | gineer                                                 | : I                       | C                                          | Checker:                                                                                                       | RPD                                                                                  |
| Ground        | water                             |      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Strata                                                                                                                                                                                                    |                                   |           |                                 | S                                    | ampl                                                  | es                                                     |                           |                                            | In-Situ Tests                                                                                                  |                                                                                      |
| Strike Strike | e Wel                             | 1    | Level (m AOD) &<br>[Thickness (m)] | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cription                                                                                                                                                                                                  |                                   | Legend    | Depth<br>(m.bgl)                | Type<br>Ublows)                      | From<br>(m)                                           | To (m)                                                 | Туре                      | Depth                                      | Result                                                                                                         | Casing Depth &                                                                       |
| Strike Detail |                                   |      | 63.45<br>[1.20]<br>62.15           | Grass over slightly clayey slig         is fine to coarse angular to su         occasional limestone.         (Topsoil)         Firm light brown slightly sand         medium sub-angular to sub-         sandstone gravels. Rare relic         (Alluvium)         Firm dark grey gravelly becord         is fine and medium sub-angul         (Weathered Kellaways Clay No         3.0m - 3.4m: Becomes stiff.         Very dense dark grey weather         slightly sandy gravel of fine and         limestone.         (Cornbrash Formation)         Hole Terminat | ription<br>htly gravelly fine SAND.<br>ub-rounded flint, quartzi<br>dy CLAY with rare fine ar<br>rounded quartzite and<br>rootlets to 0.55m.<br>ming very gravelly CLAY.<br>ular mudstone.<br>Member)<br> | Gravel<br>ite and<br>nd<br>Gravel |           | (m bgi)<br>0.35<br>0.35<br>2.20 | B<br>B<br>D<br>D<br>B<br>B<br>B<br>D | (m)<br>0.10<br>0.40<br>1.00<br>2.00<br>2.50<br>3.00   | To (m)<br>0.40<br>0.90<br>1.45<br>2.45<br>3.00<br>3.38 | s<br>s<br>c               | 2.00<br>3.50                               | Result<br>N=7 (1,1/1,2,2,2)<br>N=14 (1,2/3,3,4,4)<br>48 (2,3/48 for<br>230mm)<br>50 (25 for<br>5mm/50 for 0mm) | (Water Level)<br>(Water Level)<br>1.00m (NR)<br>2.00m (NR)<br>3.00m (NR)             |
|               |                                   |      |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                   |           | -                               |                                      |                                                       |                                                        |                           |                                            |                                                                                                                | <u> </u>                                                                             |
|               | Chi li                            |      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                   |           |                                 |                                      |                                                       |                                                        |                           |                                            | and                                                                                                            |                                                                                      |
| From (m bgl)  | Chiseling<br>To (m bgl)           | Tin  | ne (hh:mm)                         | Reason for Termination:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                                                                   |                                   |           |                                 | Sar                                  | nple Tv                                               | /pe:                                                   | Gro                       | Leg                                        | ena<br>ater: In-Situ                                                                                           | Tests                                                                                |
| 3.40          | 3.50<br>Nater Added<br>To (m bgl) |      | 01:00<br>/olume (l)                | Terminated in hard ground<br>Groundwater Remarks:<br>No groundwater encountered.<br>Other Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                   |           |                                 | B -<br>C -<br>ES -<br>Sar<br>U -     | Bulk<br>Core<br>Disturk<br>- Enviro<br>nple<br>Undist | ped<br>primental<br>urbed                              |                           | C Gro<br>Stri<br>C Res<br>Gro<br>NR<br>Rec | ke HSV-Ha<br>ke HSV-Ha<br>ting Test<br>PID-Pho<br>Detectio<br>= Not S-Stanc<br>orded Test                      | Penetration Test<br>ind Shear Vane<br>oto Ionisation<br>n Screen<br>lard Penetration |
|               |                                   |      |                                    | 1. No olfactory or visual evidence<br>screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of contamination noted. 2.                                                                                                                                                                                | Installed                         | with 50mn | n HDPE w                        | ell Wai<br>Stat<br>Not               | B Consu<br>terfront<br>tion Stre<br>ttingham<br>2 3DO | Ilting Ltd<br>House<br>eet<br>1                        | We<br>bwl<br>P: C<br>E: r | b:<br>bconsult<br>)115 924<br>nottingha    | ing.com<br>1100<br>am<br>ulting.com                                                                            |                                                                                      |

Sheet 1 of 1

| BOREH                          | OLE L         | .0G                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |                                                     |                                                                                                       |                                                                                         | Sc                                               | ale 1:2                             | <u>!</u> 5      |                                                                                                                  | Sheet 1 of 1                                                                               |
|--------------------------------|---------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LOCATION                       | ID Proj       | ect Nan                                              | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ster                                                                                                                                                                                                                                                                                            |                                                     |                                                                                                       | Gr                                                                                      | round                                            | Leve                                | l (m /          | <b>\OD):</b> 65.97                                                                                               | ·                                                                                          |
| 8H11                           | <b>7</b> Proj | ect Nun                                              | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                     |                                                                                                       | Ea                                                                                      | stings                                           | :                                   |                 | 4580                                                                                                             | 75.45                                                                                      |
|                                | Clier         | nt:                                                  | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                                                     |                                                                                                       | No                                                                                      | orthing                                          | gs:                                 |                 | 22158                                                                                                            | 32.76                                                                                      |
| Hole Type: C                   | CP Rig:       | Dan                                                  | do 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Start & End Date: 17/08                                                                                                                                                                                                                                                                         | 3/2017                                              |                                                                                                       | En                                                                                      | iginee                                           | r: L<br>T                           | .C              | Checker:                                                                                                         | RPD                                                                                        |
| Groundw<br>Strike              | vater         | Level (m AOD) &                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strata                                                                                                                                                                                                                                                                                          | Dept <sup>1</sup>                                   | h <sub>Type</sub>                                                                                     | Sampi                                                                                   |                                                  | +                                   | Depth           | In-Situ Tests                                                                                                    | Casing Depth &                                                                             |
| Strike Details                 | Weii          | [Thickness (m)]                                      | - Grass over slightly clayey slig                                                                                                                                                                                                                                                                                                                                                                                                                                                | ription                                                                                                                                                                                                                                                                                         | Legend (m bgl                                       | (Ublows                                                                                               | <sup>s)</sup> (m)                                                                       | To (m)                                           | Туре                                | (m)             | Result                                                                                                           | (Water Level)                                                                              |
|                                |               | 63.97<br>[1.00]<br>63.97<br>[1.00]<br>62.83<br>62.83 | Grass over signity clayey sign<br>is fine to coarse angular to su<br>occasional limestone.         (Topsoil)         Firm orange slightly sandy slig<br>fine and medium sub-angular<br>quartzite and limestone.         (Alluvium)         Stiff dark grey gravelly CLAY. C<br>angular mudstone.         (Weathered Kellaways Clay N         Very dense dark grey weathe<br>slightly sandy gravel of fine a<br>limestone.         (Cornbrash Formation)         Hole Termination | Tilly gravelly fine SAND. Gravel         b-rounded flint, quartzite and         ghtly gravelly CLAY. Gravel is         r to sub-rounded flint,         3ravel is fine and medium sub-         Jember)         Pred LIMESTONE arising as a         nd medium subangular         ed at 3.14m bgl. |                                                     | B<br>B<br>D<br>B<br>D                                                                                 | 0.10 0.60 1.00 2.00 2.00 3.00                                                           | 0.60<br>1.00<br>1.45<br>2.45<br>2.50<br>3.14     | S<br>S<br>S                         | 1.00            | N=6 (1,1/1,2,1,2)<br>N=8 (1,1/1,2,2,3)<br>S0 (37 for<br>140mm/50 for<br>0mm)<br>S0 (25 for<br>5mm/50 for 0mm)    | 1.00m (NR)<br>1.00m (NR)<br>1.00m (NR)                                                     |
| Cł<br>From (m bgl) To          | hiseling      | ime (hh:mm)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                         |                                                     |                                                                                                       |                                                                                         |                                                  |                                     | Leg             | end,                                                                                                             |                                                                                            |
| 3.10<br>Wat<br>From (m bgl) To | iter Added    | 01:00                                                | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>No groundwater encountered.<br>Other Remarks:                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                     | S<br>E<br>C<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | 3 - Bulk<br>C - Core<br>D - Disturk<br>ES - Envirc<br>Sample<br>U - Undist<br>BWB Const | ype:<br>Ded<br>Donmental<br>turbed<br>ulting Ltd | Gro                                 | C Grou<br>Stril | ter: In-Situ I<br>undwater C - Cone I<br>ke HSV - Har<br>ting PID - Pho<br>undwater Not S - Stand<br>corded Test | Tests<br>Penetration Test<br>nd Shear Vane<br>to Ionisation<br>n Screen<br>ard Penetration |
|                                |               |                                                      | <ol> <li>No olfactory or visual evidence of<br/>screen, gas tap and flush cover.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                      | E well                                                                                                                                                                                                                                                                                          | Naterfront<br>Station Stre<br>Nottinghan<br>NG2 3DQ | House<br>≥et<br>n                                                                                     | bwb<br>P: 0<br>E: r<br>@b                                                               | oconsulti<br>115 924<br>ottingha<br>wbcons       | ing.com<br>µ100<br>am<br>ulting.com |                 |                                                                                                                  |                                                                                            |

|                                     |                        |       | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                               |                                                               |              |                                                            |                                    | Sca                                                                       | ıle 1:2                                                              | !5                                  |                                               | Sheet 1 of 1                                                                                           |                                                                                             |
|-------------------------------------|------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LOCATIO                             |                        | Proje | ect Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne: Lakeview Drive, Bices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter                                                                                                                                                                                                                                                                           |                                                               |              |                                                            |                                    | Gr                                                                        | ound I                                                               | eve                                 | l (m A                                        | <b>AOD):</b> 64.63                                                                                     | }                                                                                           |
| вц1,                                | 12                     | Proje | ect Nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nber: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               |                                                               |              |                                                            |                                    | Ea                                                                        | stings:                                                              |                                     |                                               | 4580                                                                                                   | 87.80                                                                                       |
| DITT.                               | 1.2                    | Clien | it:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                               |              |                                                            |                                    | No                                                                        | orthing                                                              | s:                                  |                                               | 2213                                                                                                   | 73.13                                                                                       |
| Hole Type:                          | CP F                   | Rig:  | Dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | do 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start & End Date:                                                                                                                                                                                                                                                             | 15/08                                                         | 3/2017       |                                                            |                                    | En                                                                        | gineer                                                               | : L                                 | _C                                            | Checker:                                                                                               | RPD                                                                                         |
| Ground                              | dwater                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strata                                                                                                                                                                                                                                                                        |                                                               |              |                                                            | 9                                  | Sampl                                                                     | es                                                                   |                                     |                                               | In-Situ Tests                                                                                          |                                                                                             |
| Strike Strik                        | e<br>vils We           | ell   | Level (m AOD) &<br>[Thickness (m)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ription                                                                                                                                                                                                                                                                       |                                                               | Legend       | Depth<br>(m bgl)                                           | Type<br>Ublows)                    | From<br>(m)                                                               | To (m)                                                               | Туре                                | Depth<br>(m)                                  | Result                                                                                                 | Casing Depth &<br>(Water Level)                                                             |
| 1.000<br>bgl aft<br>20min<br>1.2m h | m ter ns bg            |       | 63.13<br>63.13<br>63.13<br>63.13<br>63.13<br>63.13<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.40]<br>60.4 | Grass over slightly clayey sligh<br>is fine light coarse angular ligh<br>and occasional limestone.<br>(Topsoil)<br>Soft light brown mottled grey<br>slightly sandy slightly gravelly<br>0.6m. Gravel is fine and medii<br>shell fragments. Occasional sa<br>(Alluvium)<br>Light brown and orange grave<br>Gravel is fine and medium sul<br>quartzite.<br>(River Terrace Deposits)<br>Firm dark grey CLAY with occa<br>Rare fine shell fragments.<br>(Weathered Kellaways Clay N<br>Weathered Kellaways Clay N<br>Very dense dark grey weathe<br>slightly sandy gravel.<br>(Cornbrash Formation)<br>Hole Terminate | Itly gravelly fine SAND. Control to the sub-rounded flint, quadity and occasionally orange in CLAY with occasional rourn sandstone and occasional lenses. Event Sand Lenses. Event Sandstone and assional lenses of fine san Aember) red LIMESTONE arisings Eed at 4.40m bgl. | Gravel<br>artzite<br>e<br>bots to<br>sional<br>d<br>d<br>as a |              | - 1.50<br>- 1.90<br>- 4.30<br>- 4.40                       | B<br>D<br>B<br>D<br>(32)<br>D<br>B | 0.20<br>1.20<br>1.50<br>2.45<br>3.00<br>3.45<br>3.80<br>3.90              | 1.20<br>1.65<br>1.90<br>2.45<br>3.00<br>3.45<br>3.55<br>4.15<br>4.10 | s                                   | 2.00                                          | N=11 (1,2/3,3,3,2)<br>N=11 (1,2/3,3,3,2)<br>N=7 (1,1/1,2,2,2)<br>50 (25 for<br>Omm/50 for 0mm]         | 1.00m (NR)<br>2.00m (NR)<br>3.00m<br>(1.00m bgl)<br>3.00m                                   |
|                                     |                        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                               |                                                               |              |                                                            |                                    |                                                                           |                                                                      |                                     |                                               |                                                                                                        |                                                                                             |
| From (m bgl)                        | Chiseling<br>To (m bgl | )Tir  | ne (hh:mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks                                                                                                                                                                                                                                                                       |                                                               |              |                                                            |                                    |                                                                           | •                                                                    | -                                   | Leg                                           | end                                                                                                    |                                                                                             |
| From (m bgl)                        | Water Adde             | ed    | Volume (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reason for Termination:<br>Terminated in hard ground<br>Groundwater Remarks:<br>Groundwater encountered at 1.2m<br>Other Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | η, rising to 1.0m                                                                                                                                                                                                                                                             |                                                               |              |                                                            | Sa<br>B<br>C<br>D<br>ES<br>Sa<br>U | mple Ty<br>- Bulk<br>- Core<br>- Disturb<br>- Enviro<br>ample<br>- Undist | v <b>pe:</b><br>Ded<br>Donmental<br>urbed                            | Gro                                 | C Grou<br>Strik<br>Rest<br>Gro<br>NR :<br>Rec | ter: In-Situ<br>undwater C - Cone<br>ke HSV - Ha<br>ting PID - Pho<br>undwater S - Stand<br>orded Test | Tests<br>Penetration Test<br>nd Shear Vane<br>>to lonisation<br>n Screen<br>ard Penetration |
|                                     |                        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. No olfactory or visual evidence of screen, gas tap and flush cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of contamination noted. 2. II                                                                                                                                                                                                                                                 | I HDPE w                                                      | ell W<br>Sta | VB Consu<br>aterfront<br>ation Stre<br>ottingham<br>G2 3DO | Ilting Ltd<br>House<br>eet         | Wel<br>bwb<br>P: 0<br>E: n<br>@b                                          | b:<br>oconsulti<br>1115 924<br>ottingha<br>wbconsi                   | ing.com<br>1100<br>am<br>ulting.com |                                               |                                                                                                        |                                                                                             |

| Decision Integer       Project Name:       Lakevice Drive; Bircske:       2.20         TP1010       Project Name:       Stade Transition       Stade Transition       Stade Transition       Stade Transition       Doi:       PID Dimension       Stade Transition       Stade Transit Transition       Stade Transition       Stade T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRIAL                                                                                                    | PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LO                           | G              |                                                            |                                                                                                       |                                                              |                                                                                                                        |      |                                |                                                                                                 |                                                                           | Scale: 1     | :25                                                                                                                       |                                                                                    | Sheet 1 of 1                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|--------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Project Number:       NTI2360       Out       Stability:       Perministicity:       Perministity:       Perministity: <t< th=""><th>LOCATION ID</th><th>D: Pro</th><th>ject N</th><th>lame</th><th>: Lake</th><th>eview Drive, Bicest</th><th>er</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2.20</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCATION ID                                                                                              | D: Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ject N                       | lame           | : Lake                                                     | eview Drive, Bicest                                                                                   | er                                                           |                                                                                                                        |      |                                |                                                                                                 |                                                                           |              |                                                                                                                           | 2.20                                                                               |                                                                                            |
| Inter-Type:       Description       Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TD101                                                                                                    | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ject N                       | lumb           | er: NTE                                                    | 2366                                                                                                  |                                                              |                                                                                                                        |      |                                |                                                                                                 |                                                                           | c [          | D.1 D.                                                                                                                    |                                                                                    | ( ) 0                                                                                      |
| Intel Time Plant:         Itel Time Plant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          | Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ent:                         |                | Slad                                                       | len Estates Ltd                                                                                       |                                                              |                                                                                                                        |      |                                |                                                                                                 | U                                                                         | .65          | PIT DIN                                                                                                                   | iensio                                                                             | Degrees                                                                                    |
| Ground local (mAOD):       65:30       Eastings & Northings:       45:7678E 221086N       Engineer:       LC       Checker:       Ref         Same Sets<br>Same | Hole Type: TP                                                                                            | Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt: J                        | CB 30          | X                                                          | Start & End Date                                                                                      | :                                                            | 15/08/2017                                                                                                             |      |                                |                                                                                                 | Stabili                                                                   | y: Re        | main s                                                                                                                    | table t                                                                            | hroughout                                                                                  |
| Groundwise<br>In the rise, lacked<br>needs         Interpretation<br>(response)         Description<br>(response)         Description<br>(response)         The second<br>(response)         Interpretation<br>(response)         The second<br>(response)         Interpretation<br>(response)         Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Level                                                                                             | (m A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OD):                         | 66.            | .30                                                        | Eastings & North                                                                                      | ings:                                                        | 457678E 221686N                                                                                                        |      |                                |                                                                                                 | Enginee                                                                   | er: LC       |                                                                                                                           | Che                                                                                | cker: RPD                                                                                  |
| Sinke         Sinke         Data         Description         Impart (m)         Type         Nummer (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Groundwater                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                |                                                            | St                                                                                                    | rata                                                         |                                                                                                                        |      |                                |                                                                                                 | Sample                                                                    | s            |                                                                                                                           | In-S                                                                               | itu Tests                                                                                  |
| I 3m     Grass over trovent gravely SAMD with frequent rootlets.     Grass over trovent gravely SAMD with frequent rootlets.     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.       I 3m     Grass over trovent gravely SAMD with frequent rootlets.     Grass over trovent gravely SAMD with frequent rootlets.     Grass over trovent gravely SAMD with frequent rootlets.       I 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strike Details                                                                                           | Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level (m<br>AOD)             | Thickn<br>ess  |                                                            |                                                                                                       | Descriptior                                                  | ו<br>                                                                                                                  | Lege | nd <sup>Depth</sup><br>(m bgl) | Туре                                                                                            | From (m)                                                                  | To (m)       | Туре                                                                                                                      | Depth<br>(m)                                                                       | Result                                                                                     |
| 130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       130       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65.95                        | 0.35m<br>0.35m | Grass o<br>Gravel i<br>with ra<br>(Made<br>Brown<br>COBBLE | is fine to coarse ar<br>re inclusions of bri<br>Ground)<br>occasionally yellov<br>E of angular limest | wish brow                                                    | with frequent rootlets.<br>sub-angular limestone<br>ic and timber.<br>wn slightly sandy grave<br>vel is fine to coarse | lly  | 0.35                           | ES<br>ES                                                                                        | 0.20                                                                      | 0.30<br>0.50 |                                                                                                                           |                                                                                    |                                                                                            |
| a.10       Firm dark grey mottled light brown slightly sandy gravelly<br>CLAX. Gravel is fine and medium mudstone.<br>(Weathered Kellaways Formation)       1.20       0       1.70       1.80         a.200       a.200       a.200       Dark grey slightly sandy GRAVEL with low to moderate<br>cobble content. Gravel is fine to coarse sub-angular<br>mudstone. Cobbles of sub-angular<br>mudstone. Cobbles of sub-angular<br>mudstone. Cobbles of sub-angular<br>mudstone. Cobbles of sub-angular<br>mudstone.       8       2.20       2.30         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.80       1.80       1.80         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.80       1.80       1.80         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.80       1.80       1.80         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.80       1.80       1.80         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.00       1.00       1.00       1.00         Image: State of the sub-angular<br>mudstone.       Note Terminated at 2.30m bgt.       1.00       1.00       1.00       1.00         Image: State of the sub-angular<br>mudstone.       Note Terminated in hard ground       Image: State of the sub-angular<br>mudstone.       Image: State of the sub-angular<br>mudstone.       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ➡ 1.3m<br>bgl                                                                                            | <ul> <li>COBBLE of angular limestone. Gravel is fine to coarse angular to sub-angular limestone. (Reworked Natural Ground)</li> <li>Grey and yellow slightly sandy GRAVEL with medium cobble content. Gravel is fine to coarse angular to su angular limestone. Cobbles of sub-angular limestone (Weathered Cornbrash Formation)</li> <li>1.3m bgl</li> <li>64.70</li> <li>Firm dark grey mottled light brown slightly sandy grad CLAY. Gravel is fine and medium mudstone.</li> </ul> |                              |                |                                                            |                                                                                                       |                                                              |                                                                                                                        |      |                                | BES                                                                                             | 0.80                                                                      | 0.90<br>1.00 |                                                                                                                           |                                                                                    |                                                                                            |
| B       2.00       Dark grey slightly sandy GRAVEL with low to moderate coble content. Gravel is fine to coarse sub-angular mudstone. (Weathered Combrash Formation)       2.00       B       2.20       2.30         Mode       Mode       Mode Terminated at 2.30m bgl.       2.00       B       2.00       2.00       Dark grey slightly sandy GRAVEL with low to moderate coble content. Gravel is fine to coarse sub-angular mudstone. (Weathered Combrash Formation)       2.00       B       2.20       2.30         Hole Terminated at 2.30m bgl.       Hole Terminated at 2.30m bgl.       Dark grey slightly sandy GRAVEL with low to moderate coble content. Gravel is fine to coarse sub-angular mudstone. (Weathered Combrash Formation)       Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 64.70<br>64.70<br>Firm dark grey mottled light brown slightly sandy grave<br>CLAY. Gravel is fine and medium mudstone.<br>(Weathered Kellaways Formation)                                                                                                                                                                                                                                                                                                                              |                              |                |                                                            |                                                                                                       |                                                              |                                                                                                                        |      | 1.60                           | D<br>ES                                                                                         | 1.70<br>1.70                                                              | 1.80<br>1.80 |                                                                                                                           |                                                                                    |                                                                                            |
| Remarks       Legend         Reason for Termination:       Samples:       Groundwater Strikes:       In-Situ Tests:         Terminated in hard ground       B - Bulk       Oroundwater Strikes:       In-Situ Tests:         Groundwater Notes:       Seepage noted from 1.3m       Sample       Groundwater         Others Democrative       Others Democrative       Others Democrative       For the second strike in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64.00                        | 0.20m          | Dark gr<br>cobble<br>mudstc<br>(Weath                      | ey slightly sandy G<br>content. Gravel is<br>one. Cobbles of sub<br>rered Cornbrash Fo<br>Hole Term   | GRAVEL v<br>fine to c<br>b-angula<br>prmation<br>inated at 2 | vith low to moderate<br>oarse sub-angular<br>r mudstone.<br>.)<br>2.30m bgl.                                           |      | 2.30                           | В                                                                                               | 2.20                                                                      | 2.30         |                                                                                                                           |                                                                                    |                                                                                            |
| Reason for Termination:     Samples:     Groundwater Strikes:     In-Situ Tests:       Terminated in hard ground     B - Bulk     Groundwater Strikes:     HSV - Hand She       D - Disturbed     D - Disturbed     Strike     Vane Test       Seepage noted from 1.3m     Sample     Groundwater     Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                |                                                            | Remarks                                                                                               |                                                              |                                                                                                                        |      |                                |                                                                                                 | 1                                                                         |              | Lege                                                                                                                      | nd                                                                                 |                                                                                            |
| Utner Kemarks:         1. No olfactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion.         BWB Consulting Ltd<br>Waterfront House<br>Station Street<br>Nottingham         BWB Consulting.com<br>E: nottingham<br>@bwbconsulting.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reason for Terr<br>Terminated in H<br>Groundwater N<br>Seepage noted<br>Other Remarks<br>1. No olfactory | mination<br>nard gro<br>Notes:<br>from 1<br>s:<br>or visu                                                                                                                                                                                                                                                                                                                                                                                                                              | on:<br>ound<br>3m<br>al evic | lence          | of contam                                                  | ination noted. 2. Bac                                                                                 | ckfilled wi                                                  | th arising's upon complet                                                                                              | ion. |                                | Sample<br>B - Bulk<br>D - Dist<br>ES - Env<br>Sample<br>BWB Co<br>Waterfi<br>Station<br>Notting | es:<br>urbed<br>vironmenta<br>onsulting L<br>ront House<br>Street<br>;ham | Grour        | Grour<br>Strike<br>Restir<br>Grour<br>Level<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b: | i <b>trikes:</b><br>Indwater<br>Indwater<br>Indwater<br>Ing.com<br>In<br>Iting.com | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |

| TRIA                                                                                                                                                                                                                                                                                                                                                         | ۱L P                                                | IT LC                                       | )G                    |                                  |                                        |             |                 |        |                  |                                                                   |                     | Scale: 1 | :25                                                         |                                  | S                                                                 | sheet 1 of 1                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------|----------------------------------|----------------------------------------|-------------|-----------------|--------|------------------|-------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|-------------------------------------------------|
| LOCATIC                                                                                                                                                                                                                                                                                                                                                      | ON ID:                                              | Project                                     | Name                  | e: Lak                           | eview Drive, Biceste                   | er          |                 |        |                  |                                                                   |                     |          |                                                             | 1.90                             |                                                                   |                                                 |
| TP1                                                                                                                                                                                                                                                                                                                                                          | 02                                                  | Project                                     | Num                   | ber: NTE                         | 2366                                   |             |                 |        |                  |                                                                   | C                   |          | Dit Din                                                     | nonsio                           |                                                                   | ] 0                                             |
| •••                                                                                                                                                                                                                                                                                                                                                          |                                                     | Client:                                     |                       | Slac                             | Jen Estates Ltd                        |             |                 |        |                  |                                                                   | U                   | .05      |                                                             |                                  | 15 (11)                                                           | Degrees                                         |
| Hole Type:                                                                                                                                                                                                                                                                                                                                                   | ТР                                                  | Plant:                                      | JCB 3                 | CX                               | Start & End Date:                      | : 1         | 15/08/2017      |        |                  | $ \rightarrow $                                                   | Stabilit            | :y: Rei  | main s                                                      | table t                          | hroughc                                                           | out                                             |
| Ground L                                                                                                                                                                                                                                                                                                                                                     | .evel (                                             | m AOD):                                     | 66                    | 5.34                             | Eastings & Northi                      | ings: 4     | 157715E 221705N |        |                  | E                                                                 | Inginee             | er: LC   | <del></del>                                                 | Che                              | cker: F                                                           | RPD                                             |
| Groundwa                                                                                                                                                                                                                                                                                                                                                     | iter                                                |                                             | Trick                 |                                  | Str                                    | rata        |                 |        |                  | 5                                                                 | Sample              | :s       | <b> </b>                                                    | In-Si                            | itu Tests                                                         | 5                                               |
| Strike Det                                                                                                                                                                                                                                                                                                                                                   | rike<br>tails Bar                                   | ckfill AOD)                                 | n Thickr<br>ess       |                                  | D                                      | Description |                 | Legend | Depth<br>(m bgl) | Туре                                                              | From (m)            | To (m)   | Туре                                                        | Deptn<br>(m)                     | Re                                                                | esult                                           |
| Strike Det                                                                                                                                                                                                                                                                                                                                                   |                                                     | Deput<br>(mbpl)                             | Type<br>ES<br>ES<br>D | From (m)<br>0.10<br>0.40<br>0.70 | To (m)<br>0.20<br>0.50<br>0.80<br>2.20 | Туре        |                 | Re     | esult            |                                                                   |                     |          |                                                             |                                  |                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                             | +                     |                                  |                                        |             |                 | +      |                  |                                                                   |                     |          |                                                             |                                  |                                                                   |                                                 |
|                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                             |                       |                                  | Remarks                                |             |                 |        |                  |                                                                   |                     |          | Lege                                                        | nd                               |                                                                   |                                                 |
| Reason for<br>Terminated<br>Groundwa<br>Groundwa<br>Other Rer                                                                                                                                                                                                                                                                                                | r Termi<br>d in har<br>ater Nc<br>ater en<br>marks: | ination:<br>rd ground<br>ites:<br>countered | at 1.7                | 'm                               |                                        |             |                 |        |                  | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample<br>BWB Cc | Jirbed<br>ironmenta | Groun    | dwater S<br>Groun<br>7 Strike<br>— Restin<br>Grour<br>Level | idwater<br>Ig<br>Idwater         | In-Situ Tes<br>HSV - Han<br>Vane Test<br>PID - Phot<br>Detector 7 | <b>sts:</b><br>d Shear<br>:o lonisation<br>Test |
| Other Remarks:       BWB Consulting Ltd       Web:         1. No olfactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion.       BWB Consulting Ltd       Web:         Station Street       Station Street       E: nottingham       @bwbconsulting.com         NG2 3DQ       P: 0115 9241100       P: 0115 9241100 |                                                     |                                             |                       |                                  |                                        |             |                 |        |                  |                                                                   |                     |          | oconsultir<br>ottinghar<br>wbconsu<br>0115 9241             | าg.com<br>ท<br>lting.com<br>1100 | CONSULTANCY                                                       | Y   ENVIRONMENT<br>URE   BUILDINGS              |

| TRIAL P                                                                                                           | PIT LO                                                     | C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                |             | Scale: 1                                                                                                                    | :25                                      |                                                                                            | Sheet 1 of 1                                            |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|
| LOCATION ID:                                                                                                      | Project                                                    | Name             | : Lakeview Drive, Bicester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                |             |                                                                                                                             |                                          | 2.10                                                                                       |                                                         |
| TP103                                                                                                             | Project                                                    | Numb             | er: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                | ſ           | 1 65                                                                                                                        | Pit Din                                  | nensio                                                                                     | ns (m) 270                                              |
|                                                                                                                   | Client:                                                    |                  | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                |             |                                                                                                                             |                                          |                                                                                            | Degrees                                                 |
| Hole Type: TP                                                                                                     | Plant:                                                     | JCB 30           | CX         Start & End Date:         15/08/2017           D2         Endition & Number of Start & |                                                                              |                                                                | Stabili     | ty: Re                                                                                                                      | main s                                   | table t                                                                                    | hroughout                                               |
| Ground Level (                                                                                                    | m AOD):                                                    | 66               | .22 Eastings & Northings: 457/66E 221691N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                | Engine      | er: LC                                                                                                                      |                                          | Che                                                                                        | cker: RPD                                               |
| Strike Strike Pa                                                                                                  | ckfill Level                                               | (m Thickn        | Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logond De                                                                    | pth Tupe                                                       |             |                                                                                                                             | Tupo                                     | Depth                                                                                      |                                                         |
| Strike Details Ba                                                                                                 |                                                            | ) ess            | Shrubs over brown slightly clayey gravelly SAND. Gravel is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eegend (m                                                                    | <sub>bgl)</sub> Type                                           | FIOIT (III) | 10 (m)                                                                                                                      | Type                                     | (m)                                                                                        | Result                                                  |
|                                                                                                                   | 65.4                                                       | 0.80m            | fine to coarse angular to sub-rounded brick, concrete, flint<br>with occasional glass, timber and plastic. Cobbles of<br>concrete from 0.45m.<br>(Made Ground)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | ES                                                             | 0.20        | 0.30                                                                                                                        |                                          |                                                                                            |                                                         |
|                                                                                                                   |                                                            | 0.30m            | is fine and medium sub-angular to sub-rounded flint,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              | ES                                                             | 0.90        | 1.00                                                                                                                        |                                          |                                                                                            |                                                         |
| 1.7m<br>bgl<br>1.70m<br>bgl<br>after<br>20mins                                                                    | 65.1                                                       | 2<br>1.25m       | Imestone and quartzite.<br>(Alluvium)<br>Light grey and orange slightly sandy GRAVEL with medium<br>cobble content. Gravel is fine to coarse angular to sub-<br>angular limestone. Cobbles of sub-angular limestone.<br>(Weathered Cornbrash Formation)<br>Hole Terminated at 2.35m bgl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | 35                                                             |             |                                                                                                                             |                                          |                                                                                            |                                                         |
| Reason for Term<br>Terminated in ha<br>Groundwater No<br>Steady ingress no<br>Other Remarks:<br>1. No olfactory o | ination:<br>rd ground<br>otes:<br>oted from<br>r visual ev | 1.7m<br>//idence | Remarks<br>of contamination noted. 2. Backfilled with arising's upon completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sampl<br>B - Bul<br>D - Dis<br>ES - Er<br>Sampl<br>BWB C<br>Water<br>Station | es:<br>k<br>turbed<br>vironment<br>e<br>front Hous<br>s Street | Grour<br>al | Lege<br>dwater S<br>Grour<br>Strike<br>Restir<br>Grour<br>Level<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b: | nd<br>Strikes:<br>ndwater<br>ng.com<br>m | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |                                                         |
|                                                                                                                   |                                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | Nottin<br>NG2 3                                                | gham<br>DQ  | @b<br>P: C                                                                                                                  | wbconsu<br>115 924:                      | lting.com<br>1100                                                                          | CONSULTANCY   ENVIRONMENT<br>INFRASTRUCTURE   BUILDINGS |
| TRIAL P                                                                                      | IT LC                                                                                                | G             |                                                                                     |                                                                                                                                                                           |                                                                                       |                                                                                                                       |                                                                   |                                |       |                                             | Scale: 1                                   | :25                                                                                        |                                  | Sheet 1 of 1                                     |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|-------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|
| LOCATION ID:                                                                                 | Project N                                                                                            | lame          | : Lake                                                                              | eview Drive, Bicest                                                                                                                                                       | ter                                                                                   |                                                                                                                       |                                                                   |                                |       |                                             |                                            |                                                                                            | 2.00                             |                                                  |
| TD104                                                                                        | Project N                                                                                            | lumb          | er: NTE                                                                             | 2366                                                                                                                                                                      |                                                                                       |                                                                                                                       |                                                                   |                                |       |                                             |                                            |                                                                                            |                                  | , 90                                             |
| 11104                                                                                        | Client:                                                                                              |               | Slad                                                                                | len Estates Ltd                                                                                                                                                           |                                                                                       |                                                                                                                       |                                                                   |                                |       | 0                                           | .65                                        | PIT DIM                                                                                    | iensioi                          | ns (m)<br>Degrees                                |
| Hole Type: TP                                                                                | Plant: J                                                                                             | CB 3C         | X                                                                                   | Start & End Date                                                                                                                                                          | <b>e:</b> 1                                                                           | 5/08/2017                                                                                                             |                                                                   |                                |       | Stabili                                     | ty: Re                                     | main s                                                                                     | table t                          | hroughout                                        |
| Ground Level (                                                                               | m AOD):                                                                                              | 65.           | 63                                                                                  | Eastings & North                                                                                                                                                          | nings: 4                                                                              | 57606E 221547N                                                                                                        |                                                                   |                                | E     | Inginee                                     | er: LC                                     |                                                                                            | Che                              | cker: RPD                                        |
| Groundwater                                                                                  |                                                                                                      |               |                                                                                     | Si                                                                                                                                                                        | trata                                                                                 |                                                                                                                       |                                                                   |                                | 9     | Sample                                      | es                                         |                                                                                            | In-S                             | itu Tests                                        |
| Strike Details Ba                                                                            | ckfill Level (m<br>AOD)                                                                              | Thickn<br>ess |                                                                                     |                                                                                                                                                                           | Description                                                                           |                                                                                                                       | Leger                                                             | nd (m bgl)                     | Туре  | From (m)                                    | To (m)                                     | Туре                                                                                       | Depth<br>(m)                     | Result                                           |
| 1.6m<br>bgl<br>1.60m<br>bgl<br>after<br>20mins                                               | 65.28                                                                                                | 0.35m         | Grass o<br>rootlets<br>and occ<br>(Topsoi<br>Browni<br>high co<br>sub-aną<br>(Weath | ver slightly clayey<br>s. Gravel is fine an<br>casional quartzite.<br>I)<br>sh orange and yel<br>bble content. Gra<br>gular limestone. C<br>ered Cornbrash Fo<br>Hole Tem | slightly gr<br>d medium<br>low slightly<br>vel is fine t<br>lobbles of l<br>ormation) | avelly fine SAND with<br>sub-angular limestor<br>y sandy GRAVEL with<br>to coarse angular to<br>imestone.<br>75m bgl. | le                                                                | 0.35                           | B     | 0.40<br>0.40                                | 0.50 1.00                                  |                                                                                            |                                  |                                                  |
|                                                                                              |                                                                                                      |               |                                                                                     |                                                                                                                                                                           |                                                                                       |                                                                                                                       |                                                                   |                                |       |                                             |                                            |                                                                                            |                                  |                                                  |
|                                                                                              |                                                                                                      | 1             |                                                                                     | Remarks                                                                                                                                                                   |                                                                                       |                                                                                                                       | I                                                                 | 1                              |       | 1                                           | 1                                          | Lege                                                                                       | nd                               | 1                                                |
| Reason for Term<br>Terminated in ha<br>Groundwater No<br>Slow ingress note<br>Other Remarks: | ination:<br>rd ground<br>otes:<br>ed from 1.6                                                        | m             |                                                                                     |                                                                                                                                                                           |                                                                                       |                                                                                                                       | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample<br>BWB Co | s:<br>ironmenta<br>onsulting L | Grour | Grour<br>Strike<br>Restin<br>Grour<br>Level | <b>strikes:</b><br>udwater<br>g<br>udwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |                                  |                                                  |
| 1. No olfactory o                                                                            | o olfactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion. |               |                                                                                     |                                                                                                                                                                           |                                                                                       |                                                                                                                       |                                                                   |                                |       |                                             |                                            | oconsultii<br>ottinghai<br>wbconsu<br>115 9241                                             | ng.com<br>n<br>lting.com<br>l100 | BANG I ENVIRONMENT<br>INFRASTRUCTURE   BUILDINGS |

| TRIAL                                             | PIT                 | LO               | G             |                                              |                                     |                                                     |                                          |                                         |                                   |                              |                           |                      |        |                                     |                  |                                                     |                                               | Scale: 1                        | .:25                                                |                                   | (                                               | Sheet 1 of 1                           |
|---------------------------------------------------|---------------------|------------------|---------------|----------------------------------------------|-------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|------------------------------|---------------------------|----------------------|--------|-------------------------------------|------------------|-----------------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------|
| LOCATION II                                       | D: Pro              | oject N          | lame          | : Lake                                       | eviev                               | v Driv                                              | e, Bice                                  | ester                                   |                                   |                              |                           |                      |        |                                     |                  |                                                     |                                               |                                 |                                                     | 2.00                              |                                                 |                                        |
|                                                   | Pro                 | oject N          | lumb          | er: NTE                                      | 236                                 | 6                                                   |                                          |                                         |                                   |                              |                           |                      |        |                                     |                  |                                                     |                                               |                                 |                                                     |                                   |                                                 | 45                                     |
| 11103                                             | Cli                 | ent:             |               | Slad                                         | den E                               | states                                              | s Ltd                                    |                                         |                                   |                              |                           |                      |        |                                     |                  |                                                     | Ĺ                                             | 0.65                            | Pit Dir                                             | nensio                            | ns (m)                                          | Degrees                                |
| Hole Type: TP                                     | Pla                 | nt: J            | CB 30         | X                                            | Sta                                 | rt & E                                              | nd Da                                    | ite:                                    | 1                                 | 15/08/                       | 2017                      |                      |        |                                     |                  |                                                     | Stabili                                       | ty: Re                          | mains                                               | stable t                          | hrough                                          | out                                    |
| Ground Leve                                       | l (m A              | OD):             | 65.           | .00                                          | Eas                                 | tings                                               | & Nor                                    | rthings:                                | : 4                               | 157642                       | 2E 221                    | 476N                 |        |                                     |                  | E                                                   | Engine                                        | er: LC                          |                                                     | Che                               | cker:                                           | RPD                                    |
| Groundwater                                       |                     |                  |               |                                              |                                     |                                                     |                                          | Strata                                  |                                   |                              |                           |                      |        |                                     |                  |                                                     | Sample                                        | es                              |                                                     | In-S                              | itu Test                                        | :S                                     |
| Strike Details                                    | Backfill            | Level (m<br>AOD) | Thickn<br>ess |                                              |                                     |                                                     |                                          | Descri                                  | iption                            |                              |                           |                      |        | Legend                              | Depth<br>(m bgl) | Туре                                                | From (m                                       | To (m)                          | Туре                                                | Depth<br>(m)                      | R                                               | esult                                  |
|                                                   |                     | 64.60            | 0.40m         | Grass o<br>SAND w<br>angular<br>(Topsoi      | over l<br>with<br>r to c<br>il)     | browr<br>freque<br>quartz                           | n slight<br>ent roo<br>tite, fli         | tly claye<br>otlets. (<br>nt and        | ey gra<br>Grave<br>limes          | avelly find                  | fine ar                   | nd medi<br>oarse     | um     |                                     | 0.40             |                                                     |                                               |                                 |                                                     |                                   |                                                 |                                        |
|                                                   |                     | 64.30            | 0.30m         | frequer<br>(Alluviu                          | nt ro<br>um)                        | otlets                                              | and o                                    | organic                                 | matt                              | er.                          |                           |                      | With   | ماند ماند<br>ماند ماند<br>ماند ماند | -                | D<br>ES                                             | 0.50<br>0.50                                  | 0.60<br>0.60                    |                                                     |                                   |                                                 |                                        |
|                                                   |                     |                  | 0.50m         | Yellow a<br>sub-ang<br>relic roo<br>(Alluviu | and<br>gular<br>ots a<br>um)        | grey s<br>lime:<br>Ind or                           | andy (<br>stone a<br>ganic i             | GRAVEI<br>and she<br>matter.            | L of fi<br>ell fra                | ine to<br>agmen              | coarse<br>ts. Oc          | e angula<br>casional | r to   | NHC.<br>NHC.                        |                  | ES                                                  | 0.80                                          | 0.90                            |                                                     |                                   |                                                 |                                        |
| 1.25m<br>bgl<br>1.25m<br>bgl<br>after<br>20mins   |                     | 63.80            | 0.80m         | Yellowis<br>content<br>limesto<br>(Weath     | ish gi<br>it. Gr<br>one. (<br>nerec | rey sli <sub>i</sub><br>avel is<br>Cobbli<br>I Corn | ghtly s<br>s fine t<br>es of s<br>Ibrash | sandy G<br>to coars<br>sub-ang<br>Forma | GRAVI<br>se an<br>gular<br>ition) | EL with<br>gular t<br>limest | h high<br>:o sub-<br>one. | cobble<br>-angular   | -      |                                     | + 1.20<br>       |                                                     |                                               |                                 |                                                     |                                   |                                                 |                                        |
|                                                   |                     | 63.00            |               |                                              |                                     |                                                     | Hole Te                                  | erminated                               | d at 2.                           | 00m bg                       | Ι.                        |                      |        |                                     |                  |                                                     |                                               |                                 |                                                     |                                   |                                                 |                                        |
|                                                   |                     |                  |               |                                              |                                     | P                                                   | omarl                                    | /6                                      |                                   |                              |                           |                      |        |                                     |                  |                                                     |                                               |                                 |                                                     |                                   |                                                 |                                        |
| Reason for Ter                                    | minat               | ion:             |               |                                              |                                     | ĸ                                                   | endfk                                    | 13                                      |                                   |                              |                           |                      |        |                                     |                  | Sample                                              | s:                                            | Grou                            | ndwater                                             | Strikes:                          | In-Situ Te                                      | ests:                                  |
| Terminated in I<br>Groundwater I<br>Seepage noted | rater Notes:        |                  |               |                                              |                                     |                                                     |                                          |                                         |                                   |                              |                           |                      |        |                                     |                  | B - Bulk<br>D - Distu<br>ES - Env<br>Sample         | urbed<br>ironment                             |                                 | Grou<br>Strike<br>Restin<br>Grou<br>Level           | าdwater<br>เ<br>าg<br>ndwater     | HSV - Har<br>Vane Test<br>PID - Pho<br>Detector | nd Shear<br>:<br>to Ionisation<br>Test |
| Uther Remark                                      | oted from 1.25m<br> |                  |               |                                              |                                     |                                                     |                                          |                                         |                                   |                              |                           |                      | etion. |                                     |                  | BWB Cc<br>Waterfr<br>Station :<br>Notting<br>NG2 3D | onsulting I<br>ont Hous<br>Street<br>ham<br>Q | td We<br>bw<br>E:r<br>@b<br>P:C | b:<br>bconsulti<br>nottingha<br>wbconsu<br>)115 924 | ng.com<br>m<br>ılting.com<br>1100 |                                                 |                                        |

| AL PIT LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                                                       | S                                                                                             | Scale: 1:                                                                                                                 | 25                                                                                                                                  |                                                                                                                                             | Sheet 1 of 1                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON ID: Project Name: Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | view Drive, Bicester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                       |                                                                                               |                                                                                                                           |                                                                                                                                     | 2.20                                                                                                                                        |                                                                                                                                                                                                                                                                               |
| Project Number: NTE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                       | 0                                                                                             | 60                                                                                                                        |                                                                                                                                     | oncio                                                                                                                                       | 0                                                                                                                                                                                                                                                                             |
| Client: Slade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                       | 0.                                                                                            |                                                                                                                           |                                                                                                                                     | IEIISIOI                                                                                                                                    | Degrees                                                                                                                                                                                                                                                                       |
| e: TP Plant: JCB 3CX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Start &amp; End Date:</b> 15/08/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | St                                                                                    | tability                                                                                      | y: Uns                                                                                                                    | table fr                                                                                                                            | om grou                                                                                                                                     | und level to 1.4m                                                                                                                                                                                                                                                             |
| Level (m AOD): 64.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Eastings &amp; Northings:</b> 457666E 221424N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | En                                                                                    | igineei                                                                                       | r: LC                                                                                                                     |                                                                                                                                     | Che                                                                                                                                         | cker: RPD                                                                                                                                                                                                                                                                     |
| vater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | Sa                                                                                    | mples                                                                                         | S                                                                                                                         |                                                                                                                                     | In-S                                                                                                                                        | itu Tests                                                                                                                                                                                                                                                                     |
| Backfill AOD) ess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Legend (m bgl)                       | Type Fr                                                                               | rom (m)                                                                                       | To (m)                                                                                                                    | Туре                                                                                                                                | (m)                                                                                                                                         | Result                                                                                                                                                                                                                                                                        |
| Lilm bel<br>after Dimins<br>1.1 m bel<br>1.0 m<br>betails<br>1.1 m bel<br>1.0 m<br>bel after dimensional dimensi | Prevention         Ver brown slightly clayey gravelly fine and medium ith frequent rootlets. Gravel is fine to coarse to sub-angular quartzite, flint and limestone.         Image: hyperbolic clayer gravelly fine and solve angular quartzite, flint and limestone with occasional flint and quartzite.         Image: hyperbolic clayer gravelly fine gravelly fine and quartzite.         Image: hyperbolic clayer gravelly fine gravelly fine gravelly fine gravelly fine gravelly fine and quartzite.         Image: hyperbolic clayer gravelly fine graveli fine gravelly fine gravelly fine gravelly |                                      | ES<br>ES<br>ES                                                                        | 0.10<br>0.40<br>1.00                                                                          | 0.20<br>0.50<br>1.10<br>1.60                                                                                              |                                                                                                                                     | (m)                                                                                                                                         |                                                                                                                                                                                                                                                                               |
| for Termination:<br>ed in hard ground<br>vater Notes:<br>Igress noted from 1.1m<br>emarks:<br>actory or visual evidence of contamin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remarks nation noted. 2. Backfilled with arising's upon completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | iamples:<br>3 - Bulk<br>2 - Disturb<br>5 - Envirou<br>iample<br>WB Consi<br>Vaterfron | oed<br>onmental<br>sulting Lt.<br>It House<br>reet                                            | Groun                                                                                                                     | Legel<br>dwater S<br>Groun<br>- Restin,<br>Groun<br>_ Level                                                                         | nd<br>trikes:<br>dwater<br>g<br>dwater                                                                                                      | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test                                                                                                                                                                                    |
| vater Notes:<br>Igress noted from 1.1m<br>Emarks:<br>actory or visual evidence of contamir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nation noted. 2. Backfilled with arising's upon completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E<br>E<br>S<br>V<br>S<br>N<br>N<br>N | )<br>ia<br>3''<br>1<br>1<br>1                                                         | - Distant<br>3 - Enviro<br>ample<br>WB Cons<br>Vaterfror<br>tation Str<br>ottingha<br>(G2 3DQ | - Disturbed<br>5 - Environmental<br>ample<br>WB Consulting Lt<br>Aterfront House<br>tation Street<br>ottingham<br>IG2 3DQ | - Disturbed<br>5 - Environmental<br>ample<br>WB Consulting Ltd<br>Atterfront House<br>tation Street<br>ottingham<br>G2 3DQ<br>P: 01 | - Disturbed<br>5 - Environmental<br>ample<br>WB Consulting Ltd<br>/aterfront House<br>tation Street<br>ottingham<br>/G2 3DQ<br>P: 0115 9241 | - Disturbed<br>5 - Environmental<br>ample<br>WB Consulting Ltd<br>/aterfront House<br>tation Street<br>oftingham<br>G2 3DQ<br>- Disturbed<br>Strike<br>Resting<br>Groundwater<br>Level<br>Web:<br>bwbconsulting.com<br>E: nottingham<br>@bwbconsulting.com<br>P: 0115 9241100 |

| TRIAL I                            | PIT              | LC             | G                |                  | _            |          |                     |                     |           |             |            |          |        |                  |                                   |                     | Scale: 1                | .:25                         |                   | Sł                                     | neet 1 of 1    |
|------------------------------------|------------------|----------------|------------------|------------------|--------------|----------|---------------------|---------------------|-----------|-------------|------------|----------|--------|------------------|-----------------------------------|---------------------|-------------------------|------------------------------|-------------------|----------------------------------------|----------------|
| LOCATION ID                        | ): Prc           | oject N        | lame             | : Lak            | kevi         | iew Driv | ve, Bice            | ester               |           |             |            |          |        |                  |                                   |                     |                         |                              | 2.20              |                                        |                |
| тр107                              | Pro              | ject N         | lumb             | per: NTE         | E23          | 366      |                     |                     |           |             |            |          |        |                  |                                   | ſ                   | 75                      | in +: ח                      |                   |                                        | 45             |
|                                    | Clie             | ent:           |                  | Slac             | ider         | n Estate | es Ltd              |                     |           |             |            |          |        |                  |                                   | ~                   | ./ 5                    |                              | IEnsie.           | 15 (11)                                | Degrees        |
| Hole Type: TP                      | Pla              | nt: J          | CB 30            | CX               | S            | itart &  | End Da              | ite:                | 16/       | /08/201     | 17         |          |        |                  |                                   | Stabilit            | iy: Ve                  | ry unst                      | table tr          | om 0.8m                                | <u>n</u>       |
| Ground Lever                       | (m A             | OD):           | 64.              | .74              | Ŀ            | astings  | 3 & Nor             | rthings:            | 45,       | 7737E z     | 21431IN    |          |        |                  |                                   | inginee             | r: LC                   | <del></del>                  | Che               | cker: к                                | PD             |
| Groundwater<br>Strike              | 1.61             | Level (m       | Thickn           |                  |              |          |                     | Strata              |           |             |            |          | 1      | Depth            | <b>*</b>                          | Sample              | <b>:S</b>               |                              | In-Si             | itu Tests                              |                |
| Strike <sub>Details</sub> b        | Jacktiii         | AOD)           | ess              | Grass (          | OVE          | or greyi | ich brov            | Descrip<br>wn sligh | ption     | vellv fin   | SAND.      |          | Legenu | 1 (m bgl)        | Туре                              | From (m)            | To (m)                  | Туре                         | (m)               | Kes                                    | sult           |
|                                    |                  | ł              | 0.30m            | Gravel           | is f<br>     | fine to  | coarse              | sub-ang             | gular w   | vith occ    | asional    | shells.  |        | *  <br>*         | ES                                | 0.10                | 0.20                    |                              |                   |                                        |                |
|                                    |                  | 64.44          |                  | (Topsoi<br>Brown | oil)<br>n to | orangi   | ish brov            | wn sligh            | ntly clav | vey grav    | velly fine | and      |        | 0.30             |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              | 0.50m            | mediur           | um S         | SAND. (  | Gravel i            | is fine to          | o coars   | se sub-a    | Ingular    |          |        |                  | ES                                | 0.50                | 0.60                    |                              |                   |                                        |                |
|                                    |                  | l              | 0.5011           | (Alluviı         | ium          | 1)       | 3101141 .           | Ources              | 10 0.7    |             |            |          |        | اللہ ا<br>مراجع  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | 63.94          |                  | Grev st          |              | dv grav  |                     | ND of fi            | ne to c   | oarse a     | ngular t   |          |        | 0.80             | В                                 | 0.80                | 1.10                    |                              |                   |                                        |                |
|                                    |                  | l              |                  | rounde           | led          | mixed I  | litholog            | gy's.               |           | .00.02      | inguize :  | 0        |        | }  <br>↓↓        |                                   |                     |                         |                              |                   |                                        |                |
| 1.1m                               |                  | l              |                  | (River 1         | Ter<br>2.3   | Trace De | eposits<br>omes orç | )<br>ganish bro     | own.      |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
| 1.10m<br>bgl                       |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  | В                                 | 1.20                | 1.50                    |                              |                   |                                        |                |
| after<br>20mins                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              | 1.55m            |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        | .⊢  <br>.↓       |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        | -}  <br>-}<br>-} |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | 62.39<br>62.34 | 0.05m            | Dark gi          | grey         | v extrer | mely st             | rong LIN            | MESTO     | NE (no i    |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  |                |                  | (Cornb           | bras         | sh Form  | nation)             | erminatec           | 1 at 2.40 | m hal.      |            | /        | 1      |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     | Innacc              | al 2.70   | lli byi.    |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    |                  | l              |                  |                  |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         |                              |                   |                                        |                |
|                                    | -+               |                | $\left  \right $ | <u> </u>         |              |          |                     |                     |           |             |            |          |        |                  |                                   |                     |                         | <u> </u>                     |                   |                                        |                |
|                                    |                  |                |                  | <u> </u>         | —            |          | Remarl              | ks                  |           |             |            |          |        |                  |                                   |                     |                         | Lege                         | nd                | <u> </u>                               |                |
| Reason for Terr                    | minati           | on:            |                  |                  |              |          |                     |                     |           |             |            |          |        |                  | Samples                           | s:                  | Grour                   | idwater S                    | <b>strikes:</b>   | In-Situ Test                           | ts:            |
| Terminated in na                   | ard gr           | ound           |                  |                  |              |          |                     |                     |           |             |            |          |        |                  | B - Buik<br>D - Distu<br>ES - Env | urbed<br>vironment  | al 🖂                    | 7 Strike<br>Restir           | idWater           | HSV - Hanu<br>Vane Test<br>PID - Phote | l Shear        |
| Groundwater in<br>Steady inflow re | lotes:<br>ecorde | ed from        | n 1.1m           | n                |              |          |                     |                     |           |             |            |          |        | I                | Sample                            | Tonne               |                         | Groun<br>Level               | s<br>Idwater      | Detector Te                            | est            |
| Other Remarks                      | s:               |                |                  |                  | —            |          |                     |                     |           |             |            |          |        |                  |                                   |                     | HA We                   |                              |                   | T                                      |                |
| 1. No olfactory (                  | or visı          | ial evic       | lence            | of contam        | mina         | ation no | )ted. 2. E          | Backfillec          | d with a  | arising's ı | upon com   | pletion. |        | I                | Waterfr<br>Station                | ont House<br>Street | e bwł<br>E:r            | נ:<br>consultir<br>ottinghaי | ng.com<br>m       | RV                                     | VR             |
|                                    |                  |                |                  |                  |              |          |                     |                     |           |             |            |          |        | I                | Nottingh<br>NG2 3D                | nam<br>iQ           | @b <sup>,</sup><br>P: C | wbconsul<br>115 924:         | lting.com<br>1100 |                                        |                |
|                                    |                  |                |                  |                  |              |          |                     |                     |           |             |            |          |        | I                | 1                                 |                     |                         |                              |                   | INFRAME OF C.                          | It   BUILDING. |

| TRIAL I                                                                                  | PIT                                       | LO                    | G     |                                                                                        |                                                                        |                                                                        |                          |                               |                                                            |                                    | Scale: 1                                                                                 | .:25                                              |                                  | Sheet 1 c | of 1             |
|------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|-------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------|-------------------------------|------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|-----------|------------------|
| LOCATION ID                                                                              | ): Pro                                    | ject N                | lame  | Lakeview Drive                                                                         | e, Bicester                                                            |                                                                        |                          |                               |                                                            |                                    |                                                                                          |                                                   | 2.00                             |           |                  |
|                                                                                          | Pro                                       | ject N                | lumb  | er: NTE2366                                                                            |                                                                        |                                                                        |                          |                               |                                                            | C                                  |                                                                                          |                                                   |                                  | 45        |                  |
| 11 100                                                                                   | , Clie                                    | ent:                  |       | Sladen Estates                                                                         | Ltd                                                                    |                                                                        |                          |                               |                                                            | 0                                  | ).60                                                                                     |                                                   | iension                          | Degre     | es               |
| Hole Type: TP                                                                            | Pla                                       | nt: J                 | CB 30 | < Start & Er                                                                           | nd Date:                                                               | 16/08/2017                                                             |                          |                               |                                                            | Stabili                            | ty: Re                                                                                   | main s                                            | table t                          | hroughout |                  |
| Ground Level                                                                             | (m A0                                     | DD):                  | 65.   | 19 Eastings 8                                                                          | & Northings:                                                           | 457751E 221471N                                                        |                          |                               | [                                                          | Enginee                            | er: LC                                                                                   | <del>,                                     </del> | Che                              | cker: RPD |                  |
| Groundwater                                                                              |                                           |                       |       |                                                                                        | Strata                                                                 |                                                                        | <u> </u>                 |                               | <u> </u>                                                   | Sample                             | 25                                                                                       | <u> </u>                                          | In-S                             | itu Tests |                  |
| Strike Details                                                                           | 3ackfill                                  | Level (m<br>AOD)      | ess   | <u> </u>                                                                               | Descriptio                                                             | on                                                                     | Legen                    | d <sup>Depth</sup><br>(m bgl) | Туре                                                       | From (m)                           | ) To (m)                                                                                 | Туре                                              | Depth<br>(m)                     | Result    |                  |
|                                                                                          |                                           |                       | 0.30m | Grass over greyish<br>Gravel is fine to co<br>(Topsoil)                                | oarse sub-angu                                                         | lar with occasional shells                                             |                          |                               |                                                            |                                    |                                                                                          |                                                   |                                  |           |                  |
|                                                                                          |                                           | 65.19                 | 0.40m | Firm orangish brow<br>sub-angular to sub<br>Occasional rootlet<br>(Alluvium)           | wn slightly san<br>b-rounded, lime<br>t to 0.6m.                       | dy CLAY. Gravel is fine and<br>estone and flint.                       |                          |                               | D                                                          | 0.30                               | 0.40                                                                                     |                                                   |                                  |           |                  |
|                                                                                          |                                           | 64.79                 | 0.40m | Stiff grey slightly g<br>coarse sand lenses<br>and occasional qu<br>(Alluvium)         | ravelly CLAY w<br>s. Gravel is fine<br>artzite.                        | ith occasional pockets of<br>sub-angular limestone                     |                          |                               | D                                                          | 0.80                               | 0.90                                                                                     |                                                   |                                  |           |                  |
|                                                                                          |                                           | 64.39<br>64.04        | 0.35m | Orange slightly gra<br>and coarse angula<br>(Alluvium)                                 | avelly fine to co<br>Ir to sub-angula                                  | barse SAND. Gravel is fine<br>ar limestone and flint.                  |                          | 1.10                          |                                                            |                                    |                                                                                          |                                                   |                                  |           |                  |
|                                                                                          |                                           |                       | 1.00m | Stiff grey with occ<br>Gravel is fine and<br>(Weathered Kellav                         | asional brown<br>medium sub-ai<br>ways Clay Men                        | speckling gravelly CLAY.<br>ngular mudstone.<br>nber)                  |                          |                               | D                                                          | 1.50                               | 1.60                                                                                     |                                                   |                                  |           |                  |
| 2.5m<br>bgl<br>2.50m<br>bgl<br>after<br>20mins                                           |                                           | 63.04<br>62.99        | 0.05m | Dark grey weather<br>gravel with low to<br>shell fragments no<br>(Cornbrash Forma<br>F | red LIMESTONE<br>moderate cob<br>oted.<br>(tion)<br>fole Terminated at | E arising as slightly sandy<br>ble content. Occasional<br>t 2.50m bgl. |                          | 2.45<br>-2.50<br>             |                                                            |                                    |                                                                                          |                                                   |                                  |           |                  |
|                                                                                          |                                           |                       |       |                                                                                        | <u> </u>                                                               |                                                                        |                          |                               | <u> </u>                                                   |                                    |                                                                                          | Ļ                                                 | Ļ                                |           |                  |
| Reason for Terr<br>Terminated in h<br>Groundwater N<br>Slight seepage I<br>Other Remarks | mination<br>nard gro<br>Notes:<br>noted f | pn:<br>ound<br>from 2 | 5m    |                                                                                        |                                                                        | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample<br>BWB Cc       | s:<br>urbed<br>ironmenta | Grour<br>al                   | Groun<br>Groun<br>Strike<br>Restin<br>Grour<br>Level<br>b: | trikes:<br>idwater<br>g<br>idwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisati<br>Detector Test | ion                                               |                                  |           |                  |
| 1. No olfactory                                                                          | or visu                                   | al evic               | lence | r contamination note                                                                   | d. 2. Backfilled w                                                     | vith arising's upon completic                                          | n.                       |                               | Waterfr<br>Station<br>Notting<br>NG2 3D                    | ont House<br>Street<br>ham<br>Q    | e bwł<br>E: n<br>@b<br>P: C                                                              | oconsultir<br>ottinghar<br>wbconsul<br>)115 9241  | ng.com<br>n<br>lting.com<br>L100 |           | 3<br>AENT<br>NGS |

| TRIAL P                                                                 | I T I                                                                                                                                                             | .0             | G             |                                |                             |                   |                     |                    |                              |                            |                       |                                                   |                                                                               |                                                       |                                                    | Scale: 1                         | :25                                         |                                             |                                                             | Sheet 1 of 1                                            |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--------------------------------|-----------------------------|-------------------|---------------------|--------------------|------------------------------|----------------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| LOCATION ID:                                                            | Proje                                                                                                                                                             | ct N           | ame           | Lake                           | eview [                     | Drive, Bi         | icester             |                    |                              |                            |                       |                                                   |                                                                               |                                                       |                                                    |                                  |                                             | 2.00                                        |                                                             |                                                         |
| TD100                                                                   | Proje                                                                                                                                                             | ct N           | umb           | er: NTE                        | 2366                        |                   |                     |                    |                              |                            |                       |                                                   |                                                                               |                                                       | 0                                                  |                                  |                                             |                                             | ()                                                          | 225                                                     |
| 11103                                                                   | Client                                                                                                                                                            | t:             |               | Slad                           | len Esta                    | ates Ltd          |                     |                    |                              |                            |                       |                                                   |                                                                               |                                                       | C                                                  | ).65                             | PIT DIN                                     | nensio                                      | ns (m)                                                      | Degrees                                                 |
| Hole Type: TP                                                           | Plant                                                                                                                                                             | : J(           | CB 3C         | X                              | Start                       | & End [           | Date:               |                    | 16/08/2                      | 2017                       |                       |                                                   |                                                                               |                                                       | Stabili                                            | ty: Un                           | stable be                                   | tween gr                                    | ound leve                                                   | l and 1.0m                                              |
| Ground Level (                                                          | m AOD                                                                                                                                                             | <b>)</b> :     | 66.           | 25                             | Eastir                      | ngs & N           | orthing             | gs:                | 457753                       | 3E 2215                    | 35N                   |                                                   |                                                                               |                                                       | Engine                                             | er: LC                           |                                             | Che                                         | cker:                                                       | RPD                                                     |
| Groundwater                                                             |                                                                                                                                                                   |                |               |                                |                             |                   | Strat               | ta                 |                              |                            |                       |                                                   |                                                                               | :                                                     | Sample                                             | es                               |                                             | In-S                                        | itu Test                                                    | :s                                                      |
| Strike <sup>Strike</sup> Ba                                             | ckfill A                                                                                                                                                          | vel (m<br>.OD) | Thickn<br>ess |                                |                             |                   | Des                 | scription          | ı                            |                            |                       | Legen                                             | d <sup>Depth</sup><br>(m bgl)                                                 | Туре                                                  | From (m)                                           | To (m)                           | Туре                                        | Depth<br>(m)                                | F                                                           | esult                                                   |
|                                                                         | 65                                                                                                                                                                | 5.90           | 0.35m         | Grass o<br>Gravel i<br>(Topsoi | over gre<br>is fine 1<br>I) | eyish broto coars | own sli<br>se sub-a | ightly (<br>angula | gravelly<br>ar with o        | fine SA                    | ND.<br>nal shells.    |                                                   | 0.35                                                                          | в                                                     | 0.40                                               | 0.50                             |                                             |                                             |                                                             |                                                         |
|                                                                         | 65                                                                                                                                                                | 5.25           | 0.65m         | angular<br>(Alluviu            | r limest                    | tone.             |                     |                    |                              |                            |                       |                                                   |                                                                               | ES                                                    | 0.40                                               | 0.90                             |                                             |                                             |                                                             |                                                         |
|                                                                         |                                                                                                                                                                   |                | 0.75m         | Firm gro<br>fragme<br>(Weath   | ey mot<br>nts.<br>iered K   | tled bro          | own CL<br>/s Clay   | AY wit             | th occas                     | sional sł                  | nell                  |                                                   |                                                                               | D                                                     | 1.10                                               | 1.20                             |                                             |                                             |                                                             |                                                         |
|                                                                         | 64.50<br>64.50<br>64.50<br>0.65m<br>0.65m<br>0.65m<br>0.05m<br>0.05m<br>0.05m<br>0.05m<br>0.05m<br>0.05m<br>0.05m<br>0.05m<br>0.05m                               |                |               |                                |                             |                   |                     |                    | LAY. Gra<br>Occasior<br>ber) | avel is fi<br>nal coar     | ne and<br>se sand     |                                                   | 1.75                                                                          | D                                                     | 1.80                                               | 1.90                             |                                             |                                             |                                                             |                                                         |
|                                                                         | 63.85<br>63.80<br>63.85<br>63.80<br>0.05m<br>Cark grey weathered LIM<br>gravel with low to mode<br>fine shell fragments note<br>(Cornbrash Formation)<br>Hole Ten |                |               |                                |                             |                   |                     |                    | arising ;<br>le conte        | as sligh<br>ent. Occ<br>I. | tly sandy<br>casional |                                                   | 2.40<br>2.45<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                       |                                                    |                                  |                                             |                                             |                                                             |                                                         |
|                                                                         |                                                                                                                                                                   |                |               |                                |                             | Pore-             | rka                 |                    |                              |                            |                       |                                                   |                                                                               |                                                       |                                                    |                                  | 1000                                        |                                             |                                                             |                                                         |
| Reason for Term<br>Terminated in ha<br>Groundwater No<br>No groundwater | Remarks         on for Termination:         inated in hard ground         ndwater Notes:         roundwater encountered         r Remarks:                        |                |               |                                |                             |                   |                     |                    |                              |                            |                       |                                                   |                                                                               | Sample<br>B - Bulk<br>D - Distr<br>ES - Env<br>Sample | s:<br>urbed<br>ironmenta                           | Groun                            | Groun<br>Strike<br>Restin<br>Groun<br>Level | itu<br>Strikes:<br>ndwater<br>ng<br>ndwater | In-Situ Te<br>HSV - Ha<br>Vane Tes<br>PID - Pho<br>Detector | <b>ests:</b><br>nd Shear<br>t<br>ito Ionisation<br>Test |
| 1. No olfactory o                                                       | er Remarks:<br>o olfactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion.                                               |                |               |                                |                             |                   |                     |                    |                              |                            |                       | BWB Co<br>Waterfr<br>Station<br>Notting<br>NG2 3D | onsulting I<br>ont Hous<br>Street<br>ham<br>Q                                 | Ltd We<br>bw<br>E:r<br>@b<br>P:C                      | b:<br>bconsulti<br>ottingha<br>wbconsu<br>)115 924 | ng.com<br>n<br>lting.com<br>L100 |                                             | AND<br>Y   ENVIRONMENT<br>TURE   BUILDINGS  |                                                             |                                                         |

| TRIAL                                                           | ΡΙΤ                                  | . TC                          | )G            |                                                  |                                               |                                            |                                            |                                             |                                          |                                                     |                                  |            |        |                                                                                             |                                                        |                                               | Scale: 1                         | :25                                                  |                                         | Sheet 1 of 1                                                                               |
|-----------------------------------------------------------------|--------------------------------------|-------------------------------|---------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------------------------|------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|----------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| LOCATION I                                                      | D: Pr                                | oject N                       | lame          | : Lak                                            | keviev                                        | v Drive,                                   | Biceste                                    | er                                          |                                          |                                                     |                                  |            |        |                                                                                             |                                                        |                                               |                                  |                                                      | 2.00                                    |                                                                                            |
| TD11                                                            | h Pr                                 | oject I                       | lumb          | er: NTI                                          | E236                                          | õ                                          |                                            |                                             |                                          |                                                     |                                  |            |        |                                                                                             |                                                        |                                               |                                  |                                                      |                                         | ( ) 45                                                                                     |
|                                                                 |                                      | ent:                          |               | Sla                                              | aden E                                        | states l                                   | td                                         |                                             |                                          |                                                     |                                  |            |        |                                                                                             |                                                        | C                                             | ).65                             | Pit Din                                              | nensio                                  | ns (m)<br>Degree                                                                           |
| Hole Type: TP                                                   | Pla                                  | ant: J                        | CB 30         | X                                                | Sta                                           | rt & En                                    | d Date:                                    | :                                           | 16/08                                    | 8/2017                                              |                                  |            |        |                                                                                             |                                                        | Stabili <sup>.</sup>                          | ty: Re                           | main s                                               | table t                                 | hroughout                                                                                  |
| Ground Leve                                                     | el (m A                              | OD):                          | 65.           | .39                                              | Eas                                           | tings &                                    | North                                      | ings:                                       | 4578                                     | 08E 22                                              | 1487N                            |            |        |                                                                                             | E                                                      | Ingine                                        | er: LC                           |                                                      | Che                                     | cker: RPD                                                                                  |
| Groundwater                                                     |                                      |                               |               |                                                  |                                               |                                            | St                                         | rata                                        |                                          |                                                     |                                  |            |        |                                                                                             |                                                        | Sample                                        | es                               |                                                      | In-S                                    | itu Tests                                                                                  |
| Strike Details                                                  | Backfill                             | Level (m<br>AOD)              | Thickn<br>ess | -                                                |                                               |                                            |                                            | Descripti                                   | ion                                      |                                                     |                                  |            | Legend | Depth<br>(m bgl)                                                                            | Туре                                                   | From (m)                                      | To (m)                           | Туре                                                 | Depth<br>(m)                            | Result                                                                                     |
|                                                                 |                                      | 65.04                         | 0.35m         | Grass of<br>is fine<br>quartz<br>(Topso<br>Brown | over s<br>light<br>zite ar<br>pil)<br>nish or | slightly<br>coarse<br>id occas<br>range sl | clayey<br>angulai<br>sional l<br>lightly g | slightly<br>r light s<br>imesto<br>gravelly | y gravel<br>sub-rou<br>one.<br>y fine Sa | ly fine s<br>inded f<br>AND. G                      | SAND. Gr<br>lint,<br>ravel is fi | avel       |        | 0.35                                                                                        | В                                                      | 0.40                                          | 0.70                             |                                                      |                                         |                                                                                            |
|                                                                 |                                      | 64.54                         | 0.50m         | and mo<br>and lin<br>(Alluvin<br>Stiff gr        | nediur<br>mesto<br>ium)<br>rey oc             | n sub-a<br>ne.<br>casiona                  | ngular                                     | to sub                                      | -rounde                                  | ed flint,                                           | , quartzit                       | e<br>velly |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                        |                                               |                                  |                                                      |                                         |                                                                                            |
|                                                                 |                                      |                               | 1.35m         | CLAY. G                                          | Grave<br>ium)                                 | l is fine                                  | and m                                      | edium                                       | sub-an                                   | igular li                                           | mestone                          | -          |        |                                                                                             | D                                                      | 1.00                                          | 1.10                             |                                                      |                                         |                                                                                            |
| 2.15m<br>bgl<br>2.15m                                           |                                      | 63.19                         |               | Firm d                                           | Jark g                                        | rey grav                                   | velly CL                                   | AY. Gra                                     | avel is fi                               | ine and                                             | I medium                         | 1          |        | 2.20                                                                                        | D                                                      | 2 30                                          | 2 40                             |                                                      |                                         |                                                                                            |
| bgl<br>after<br>20mins                                          |                                      | 63.54                         | 0.65m         | sub-an<br>(Weath<br>2.75m -                      | ngular<br>herec<br><u>- 2.85</u> r            | n: Fine si                                 | one.<br>/ays Cla<br>hell fragr             | ay Mer<br><u>ment</u> s ar                  | mber)<br>nd seleni                       | ite crysta                                          | als noted.                       |            |        |                                                                                             |                                                        |                                               |                                  |                                                      |                                         |                                                                                            |
|                                                                 |                                      | 62.49                         | 0.05m         | Dark g<br>gravel<br>(Cornb                       | grey w<br>l with<br>brash                     | reather<br>low to r<br>Format<br>Ho        | ed LIM<br>modera<br>ion)<br>ole Term       | ESTON<br>ate cob                            | E arisin<br>oble cor<br>at 2.90m I       | ıg as sli <sub>i</sub><br>ntent.<br><sup>bgl.</sup> | ghtly san                        | dy         |        | - 2.85<br>- 2.90<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |                                                        |                                               |                                  |                                                      |                                         |                                                                                            |
|                                                                 |                                      |                               |               |                                                  |                                               |                                            |                                            |                                             |                                          |                                                     |                                  |            |        |                                                                                             |                                                        |                                               |                                  |                                                      |                                         |                                                                                            |
|                                                                 |                                      |                               |               |                                                  |                                               |                                            |                                            |                                             |                                          |                                                     |                                  |            |        | -<br>-<br>-<br>-                                                                            |                                                        |                                               |                                  |                                                      |                                         |                                                                                            |
|                                                                 |                                      |                               |               |                                                  |                                               | Rer                                        | narks                                      |                                             |                                          |                                                     |                                  |            |        |                                                                                             |                                                        |                                               |                                  | Leve                                                 | nd                                      |                                                                                            |
| Reason for Te<br>Terminated in<br>Groundwater<br>Slow ingress n | rminat<br>hard g<br>Notes<br>oted fr | ion:<br>round<br>:<br>rom 2.1 | 5m            |                                                  |                                               |                                            |                                            |                                             |                                          |                                                     |                                  |            |        |                                                                                             | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample | <b>s:</b><br>urbed<br>ironment;               | Groun                            | Groun<br>Groun<br>Strike<br>Restir<br>Groun<br>Level | Strikes:<br>Indwater<br>Ing<br>Indwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo lonisation<br>Detector Test |
| Other Remark                                                    | <b>(s:</b><br>y or vis               | ual evid                      | dence         | of contan                                        | minatio                                       | on notec                                   | d. 2. Bac                                  | kfilled v                                   | with aris                                | ing's up                                            | on comple                        | etion.     |        |                                                                                             | BWB Co<br>Waterfr<br>Station<br>Notting<br>NG2 3D      | onsulting I<br>ont Hous<br>Street<br>ham<br>Q | Ltd We<br>bw<br>E:r<br>@b<br>P:C | b:<br>bconsulti<br>lottingha<br>wbconsu<br>115 924   | ng.com<br>m<br>Iting.com<br>1100        |                                                                                            |

| TRIAL I                                                                | PIT                                   | LC                                        | G                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        |                                                | Scale: 1                           | :25                                                  |                                             | Sheet 1 of 1                                                                               |
|------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--------------------------------------------------------|------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|
| LOCATION ID                                                            | ): Pro                                | oject N                                   | lame                             | : Lak                                                                                                                                                                                                                               | eview Driv                                                                                                                                                                                                                                                                                         | e, Bicester                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        |                                                |                                    |                                                      | 2.10                                        |                                                                                            |
| TD111                                                                  | Pro                                   | ject N                                    | lumb                             | er: NT                                                                                                                                                                                                                              | E2366                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        | 0                                              |                                    |                                                      | ancia                                       | 315                                                                                        |
|                                                                        | Clie                                  | ent:                                      |                                  | Slad                                                                                                                                                                                                                                | den Estates                                                                                                                                                                                                                                                                                        | s Ltd                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        | U                                              | .05                                |                                                      | Terisio                                     | Degrees                                                                                    |
| Hole Type: TP                                                          | Pla                                   | nt: J                                     | CB 30                            | X                                                                                                                                                                                                                                   | Start & E                                                                                                                                                                                                                                                                                          | nd Date:                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                              | .6/08/201                                                                                                                                                                                             | .7                                                                                                                                                                            |       |           |                                                        | Stabili                                        | ty: Slig                           | htly unst                                            | able bet                                    | ween 1.2m and 1.65m                                                                        |
| Ground Level                                                           | (m A                                  | OD):                                      | 64.                              | .60                                                                                                                                                                                                                                 | Eastings                                                                                                                                                                                                                                                                                           | & Northing                                                                                                                                                                                                                                                                                                      | <b>gs:</b> 4                                                                                                                                                   | 57817E 2                                                                                                                                                                                              | 21449N                                                                                                                                                                        |       |           | E                                                      | Enginee                                        | er: LC                             |                                                      | Che                                         | cker: RPD                                                                                  |
| Groundwater                                                            |                                       |                                           | 1                                | [                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    | Strata                                                                                                                                                                                                                                                                                                          | a                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        | Sample                                         | es                                 |                                                      | In-S                                        | itu Tests                                                                                  |
| Strike Details E                                                       | Backfill                              | Level (m<br>AOD)                          | Thickn<br>ess                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    | Desc                                                                                                                                                                                                                                                                                                            | cription                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                               | Legen | d (m bgl) | Туре                                                   | From (m)                                       | To (m)                             | Туре                                                 | Depth<br>(m)                                | Result                                                                                     |
| 1.2m<br>bgl<br>1.20m<br>bgl<br>after<br>20mins                         |                                       | 64.35<br>63.85<br>63.60<br>62.95<br>62.35 | 0.25m<br>0.50m<br>0.25m<br>0.65m | Grass c<br>is fine and oc<br>(Topso<br>Brown<br>SAND.<br>limesto<br>(Alluvin<br>Soft gr<br>fine an<br>quartzi<br>(Alluvin<br>Orange<br>and mo<br>and flin<br>(River )<br>Firm di<br>mediuu<br>(Weath<br>Dark gi<br>gravel<br>(Cornb | over slightl<br>to coarse a<br>ccasional lir<br>ish orange<br>Gravel is fi<br>one, quartz<br>um)<br>rey and ora<br>and medium<br>ite numerc<br>um)<br>e occasiona<br>edium ang<br>nt. Sand is<br>Terrace De<br>ark grey sli<br>m sub-ang<br>hered Kella<br>rey weathe<br>with low to<br>orash Form | y clayey slig<br>ingular to su<br>mestone.<br>slightly grav<br>ne and mec<br>zite, flint with<br>ange slightly<br>angular to<br>bus flint with<br>ally grey SAI<br>ular to sub-<br>fine and me<br>posits)<br>ghtly gravel<br>ular mudsto<br>ways Clay f<br>ered LIMEST<br>o moderate<br>ation)<br>Hole Terminat | shtly gr<br>ub-rou<br>velly cl<br>dium an<br>ith occas<br>gravel<br>sub-ro<br>h occas<br>ND anc<br>rounde<br>edium.<br>Ily CLA'<br>one.<br>Membe<br>ted at 2.: | avelly find<br>nded flint<br>ayey fine<br>ngular to<br>asional sh<br>ly sandy C<br>unded lim<br>sional she<br>d GRAVEL.<br>ed quartzi<br>Y. Gravel i:<br>er)<br>rising as s<br>e content.<br>25m bgl. | e SAND. Gravel<br>, quartzite<br>and medium<br>sub-rounded<br>ell fragments.<br>CLAY. Gravel is<br>hestone,<br>Il fragments.<br>Gravel is fine<br>te, limestone<br>s fine and |       | 0.25      | ES<br>D                                                | 0.40                                           | 0.50                               |                                                      |                                             |                                                                                            |
|                                                                        |                                       |                                           |                                  |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       | 1         |                                                        |                                                |                                    |                                                      |                                             |                                                                                            |
|                                                                        |                                       |                                           | <u> </u>                         |                                                                                                                                                                                                                                     | R                                                                                                                                                                                                                                                                                                  | emarks                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           |                                                        |                                                | <u> </u>                           | Lege                                                 | nd                                          | I                                                                                          |
| Reason for Terr<br>Terminated in h<br>Groundwater N<br>Steady inflow n | minati<br>hard gr<br>Notes:<br>oted f | on:<br>ound<br>rom 1.                     | 2m                               |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                               |       |           | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample | <b>s:</b><br>urbed<br>ironmenta                | Grour                              | Grour<br>Grour<br>Strike<br>Restir<br>Grour<br>Level | <b>Strikes:</b><br>ndwater<br>ng<br>ndwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |
| Other Remarks<br>1. No olfactory                                       | <b>::</b><br>or visu                  | ial evic                                  | lence                            | of contam                                                                                                                                                                                                                           | nination not                                                                                                                                                                                                                                                                                       | ed. 2. Backfill                                                                                                                                                                                                                                                                                                 | lled with                                                                                                                                                      | n arising's u                                                                                                                                                                                         | upon completior                                                                                                                                                               |       |           | BWB Co<br>Waterfr<br>Station S<br>Notting<br>NG2 3D    | onsulting L<br>ont House<br>Street<br>ham<br>Q | td We<br>bwl<br>E: n<br>@b<br>P: C | b:<br>oconsulti<br>ottingha<br>wbconsu<br>115 924:   | ng.com<br>m<br>lting.com<br>1100            |                                                                                            |

| TRIAL                                                                                             | PIT                                                                                                                                                      | <sup>-</sup> LC                  | )G              |                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                  |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    |                                                                             |                                                       | Scale: 1           | .:25                                                           |                                                 | ç                                                             | Sheet 1 of 1                                |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|--------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| LOCATION                                                                                          | ID: Pr                                                                                                                                                   | oject N                          | Vame            | : Lal                                                                                                                                                         | keview D                                                                                                                                                                    | )rive, Bi                                                                                                                                                  | icester                                                                                                                                          |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    |                                                                             |                                                       |                    |                                                                | 2.10                                            |                                                               |                                             |
| <b>TP11</b>                                                                                       | <b>7</b> Pr                                                                                                                                              | oject N                          | lumb            | er: NT                                                                                                                                                        | E2366                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                  |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    |                                                                             | ſ                                                     |                    | Dit Din                                                        |                                                 | nc (m)                                                        | 0                                           |
|                                                                                                   |                                                                                                                                                          | ient:                            |                 | Sla                                                                                                                                                           | den Esta                                                                                                                                                                    | ates Ltd                                                                                                                                                   |                                                                                                                                                  |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    |                                                                             | 0                                                     |                    |                                                                |                                                 |                                                               | Degrees                                     |
| Hole Type: TP                                                                                     | Pla                                                                                                                                                      | ant: J                           | CB 30           | CX                                                                                                                                                            | Start 8                                                                                                                                                                     | & End [                                                                                                                                                    | Date:                                                                                                                                            |                                                                                        | 16/08/2                                                                                                                                                            | 2017                                                                                        |                                                                                       |        |                    |                                                                             | Stabili                                               | ty: Un             | stable b                                                       | etween                                          | 1.05m ar                                                      | nd 1.45m                                    |
| Ground Leve                                                                                       | el (m A                                                                                                                                                  | \OD):                            | 64              | .68                                                                                                                                                           | Eastin                                                                                                                                                                      | igs & N                                                                                                                                                    | orthing                                                                                                                                          | gs:                                                                                    | 457905                                                                                                                                                             | E 22148                                                                                     | 83N                                                                                   |        |                    | E                                                                           | Enginee                                               | er: LC             |                                                                | Che                                             | cker:                                                         | RPD                                         |
| Groundwater                                                                                       |                                                                                                                                                          |                                  |                 | <del></del>                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                            | Strat                                                                                                                                            | ta                                                                                     |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    | :                                                                           | Sample                                                | 25                 | <u> </u>                                                       | In-S                                            | itu Test                                                      | S                                           |
| Strike Details                                                                                    | Backfil                                                                                                                                                  | Level (m<br>AOD)                 | . Thickn<br>ess |                                                                                                                                                               | <u>.</u>                                                                                                                                                                    |                                                                                                                                                            | Des                                                                                                                                              | scriptior                                                                              | n                                                                                                                                                                  |                                                                                             |                                                                                       | Legend | I Depth<br>(m bgl) | Туре                                                                        | From (m)                                              | ) To (m)           | Туре                                                           | Depth<br>(m)                                    | R                                                             | esult                                       |
| 1.15m<br>bgl<br>1.15m<br>bgl<br>after<br>20mins                                                   |                                                                                                                                                          | 64.43<br>63.63<br>63.23<br>62.23 | 0.25m           | Grass<br>is fine<br>and oc<br>(Topsc<br>Firm o<br>sandy<br>mediu<br>Occasi<br>(Alluvi<br>Yellow<br>Gravel<br>quartz<br>(River<br>Stiff da<br>is fine<br>(Weat | over slig<br>to coars<br>:casiona<br>iil)<br>irange of<br>CLAY wi<br>im sub-a<br>ional poo<br>ium)<br>is fine t<br>:ite. Sand<br>Terrace<br>ark grey<br>and men<br>hered Ke | htly cla<br>e angu<br>l limest<br>ccasion<br>th occa<br>ingular<br>ckets of<br>vn to gr<br>o coars<br>d is fine<br>Deposi<br>gravell<br>dium su<br>ellaway | ayey sli<br>ilar to s<br>tone.<br>nally broasional<br>to sub-<br>f fine a<br>reyish I<br>se sub-<br>e and m<br>its)<br>ly becolub-ang<br>/s Clay | ghtly g<br>sub-ro<br>ownisi<br>rootle<br>-round<br>angula<br>nediur<br>gular m<br>Memi | gravelly f<br>unded fl<br>h orange<br>ets. Grave<br>Jed flint<br>edium sa<br>i SAND a<br>ar to sub<br>m.<br>very grav<br>udstone<br>ber)<br>iTONE (n<br>2.50m bgl. | fine SAN<br>int, qua<br>e slightly<br>el is fine<br>and lim<br>ind.<br>rounde<br>rounde<br> | ND. Gravel<br>artzite<br>y gravelly<br>e and<br>nestone.<br>AVEL.<br>ed<br>AY. Gravel |        | 245<br>0.25<br>    | ES                                                                          | 0.40                                                  | 0.50               |                                                                |                                                 |                                                               |                                             |
|                                                                                                   |                                                                                                                                                          |                                  |                 |                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                  |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        | <u>†</u>           |                                                                             |                                                       |                    |                                                                |                                                 |                                                               |                                             |
|                                                                                                   | <u> </u>                                                                                                                                                 | <u> </u>                         |                 | <u> </u>                                                                                                                                                      |                                                                                                                                                                             | Rema                                                                                                                                                       | arks                                                                                                                                             |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        | <u> </u>           | <u> </u>                                                                    | <u> </u>                                              | <u> </u>           | Lege                                                           | nd                                              | <u> </u>                                                      |                                             |
| Reason for Te<br>Terminated in<br>Groundwater<br>Slow ingress r<br>Other Remark<br>1. No olfactor | Remarks Remarks Remarks Remarks Remarks Remarks Remarks: Ifactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completic |                                  |                 |                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                  |                                                                                        |                                                                                                                                                                    |                                                                                             |                                                                                       |        |                    | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample<br>BWB Cc<br>Waterfr | s:<br>urbed<br>'ironmenta<br>onsulting I<br>ront Hous | Grour<br>al        | Grour<br>Strike<br>Restin<br>Grour<br>Level<br>b:<br>bconsulti | itrikes:<br>Idwater<br>Ig<br>Idwater<br>ndwater | In-Situ Te<br>HSV - Har<br>Vane Test<br>PID - Pho<br>Detector | ists:<br>Ind Shear<br>to Ionisation<br>Test |
|                                                                                                   | , 5, 113                                                                                                                                                 |                                  |                 | sontal                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                            | . 24000                                                                                                                                          |                                                                                        | 2.19116                                                                                                                                                            |                                                                                             |                                                                                       |        |                    | Station<br>Notting<br>NG2 3D                                                | Street<br>ham<br>)Q                                   | E: n<br>@b<br>P: C | ottinghar<br>wbconsu<br>)115 9241                              | n<br>lting.com<br>1100                          |                                                               | Y   ENVIRONMENT<br>TURE   BUILDINGS         |

| TRIAL P                                                                                                                              | IT LC                                                           | )G                               |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                              |            |          |                                                                  |                                | Scale: 1                    | .:25                                                             |                                           | Sheet                                                                             | 1 of 1 |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------------------------|--------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|--------|
| LOCATION ID:                                                                                                                         | Project                                                         | Name                             | : Lak                                                                                                                                                                                                                      | eview Drive,                                                                                                                                                                                                                                      | Bicester                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                  |                                                                                                                              |            |          |                                                                  |                                |                             |                                                                  | 2.10                                      |                                                                                   |        |
| TP113                                                                                                                                | Project                                                         | Numb                             | er: NTE                                                                                                                                                                                                                    | 2366                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                              |            |          |                                                                  | C                              | . 00                        |                                                                  | oncio                                     | as (m)                                                                            | 180    |
|                                                                                                                                      | Client:                                                         |                                  | Slad                                                                                                                                                                                                                       | den Estates L                                                                                                                                                                                                                                     | td                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                              |            |          |                                                                  | U                              |                             | r it Din                                                         |                                           | De                                                                                | grees  |
| Hole Type: TP                                                                                                                        | Plant:                                                          | ICB 30                           | X                                                                                                                                                                                                                          | Start & En                                                                                                                                                                                                                                        | d Date:                                                                                                                                                                                                                                                         | 16/08/2017                                                                                                                                                                                                                       |                                                                                                                              |            |          |                                                                  | Stabili                        | ty: Un                      | stable                                                           | oetwee                                    | n 1.1m and 1                                                                      | 1.7m   |
| Ground Level (I                                                                                                                      | m AOD):                                                         | 64.                              | .51                                                                                                                                                                                                                        | Eastings &                                                                                                                                                                                                                                        | Northings:                                                                                                                                                                                                                                                      | 458046E 221                                                                                                                                                                                                                      | .396N                                                                                                                        |            |          | E                                                                | Engine                         | er: LC                      |                                                                  | Che                                       | cker: RPD                                                                         |        |
| Groundwater                                                                                                                          | Level (n                                                        | Thickn                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   | Strata                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                              |            | Depth    | -                                                                | Sample                         | es                          |                                                                  | In-S<br>Depth                             | itu Tests                                                                         |        |
| Strike <sub>Details</sub> Bac                                                                                                        | ckfill <sub>AOD)</sub>                                          | ess                              | Grass o                                                                                                                                                                                                                    | over slightly                                                                                                                                                                                                                                     | Descript                                                                                                                                                                                                                                                        | tion                                                                                                                                                                                                                             | AND, Gravel                                                                                                                  | Legend     | (m bgl)  | Туре                                                             | From (m)                       | To (m)                      | Туре                                                             | (m)                                       | Result                                                                            |        |
| <ul> <li>1.1m<br/>bgl<br/>1.10m<br/>bgl<br/>after<br/>20mins</li> <li>1.5m<br/>bgl<br/>1.50m<br/>bgl<br/>after<br/>20mins</li> </ul> | 64.26<br>63.26<br>62.81                                         | 0.25m<br>1.00m<br>0.45m<br>0.80m | Grass c<br>is fine t<br>and oc<br>(Topsoi<br>Firm lig<br>gravell'<br>angula<br>(Alluvit<br>0.75m -<br>Orange<br>fine to<br>Sand is<br>(River -<br>Firm da<br>to sub-<br>(Weath<br>2.3m - 2<br>Stiff da<br>mediuu<br>(Weath | over slightly<br>to coarse an<br>casional lime<br>il)<br>ght grey occa<br>y CLAY with<br>r quartzite a<br>um)<br>-1.25m: Becom<br>e occasionall<br>coarse sub-<br>5 fine and me<br>Terrace Depo<br>ark grey sligl<br>-angular and<br>nered Kellaw | clayey slightl<br>gular to sub-<br>estone.<br>asionally bro-<br>occasional rc<br>nd limestone<br><u>nes soft, brown</u><br>y light grey S<br>angular limes<br>edium.<br>osits)<br>ntly gravelly Clay<br>s stiff.<br>gravelly CLA<br>ar mudstone<br>rays Clay Me | y gravelly fine S<br>rounded flint, q<br>wn slightly sand<br>ootlets. Gravel is<br>e. Frequent shel<br>mottled grey.<br>AND and GRAV<br>stone, quartzite<br>CLAY. Gravel is fine<br>ents.<br>mber)<br>Y. Gravel is fine<br>mber) | AND. Gravel<br>Juartzite<br>ly slightly<br>s fine sub-<br>ll fragments.<br>EL. Gravel is<br>and flint.<br>ine angular<br>and |            |          |                                                                  |                                |                             |                                                                  |                                           |                                                                                   |        |
| Reason for Termi<br>Terminated in har<br>Groundwater No<br>Seepage noted fi<br>Other Remarks:                                        | 60.76<br>60.71<br>ination:<br>rd ground<br>otes:<br>rom 1.1, st | 0.05m                            | Dark gu<br>gravel (<br>(Cornb                                                                                                                                                                                              | rey weather<br>with low to l<br>rash Format<br>He<br>Manual Second                                                                                                                                                                                | ed LIMESTON<br>moderate co<br>ion)<br>ole Terminated a<br><b>marks</b>                                                                                                                                                                                          | IE arising as slig<br>bble content.<br>at 3.80m bgl.                                                                                                                                                                             | htly sandy                                                                                                                   |            | 3.75<br> | Sample:<br>B - Bulk<br>D - Distt<br>ES - Env<br>Sample<br>BWB Cc | s:<br>s:<br>nsulting b         | Groun<br>al Ltd Wee         | Lege<br>ndwater S<br>Grour<br>Strike<br>Restin<br>Grour<br>Level | nd<br>itrikes:<br>idwater<br>g<br>idwater | In-Situ Tests:<br>HSV - Hand She<br>Vane Test<br>PID - Photo Ion<br>Detector Test | ar     |
| 1. No olfactory or<br>excavated to asse                                                                                              | r visual evi<br>ess ground                                      | dence<br>condit                  | of contam<br>tions only.                                                                                                                                                                                                   | ination noted                                                                                                                                                                                                                                     | l. 2. Backfilled                                                                                                                                                                                                                                                | with arising's upc                                                                                                                                                                                                               | on completion.                                                                                                               | 3. Trial p | bit      | Waterfr<br>Station<br>Notting<br>NG2 3D                          | ont Hous<br>Street<br>ham<br>Q | e bwl<br>E: r<br>@b<br>P: C | bconsultii<br>iottinghai<br>wbconsu<br>0115 9241                 | ng.com<br>n<br>Iting.com<br>1100          | CONSULTANCY   ENVI<br>INFRASTRUCTURE   BU                                         |        |

| TRIAL                                           | PIT                                                                                                                                                                         | LO                      | G              |                                                                                                            |                                                                                                 |                                                                     |                                                       |                                                        |                                                        |                            |        |                  |               |                                                | Scale: 1                           | :25                                            |                                          | S                                                  | Sheet 1 of 1                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------|--------|------------------|---------------|------------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------|
| LOCATION I                                      | D: Pro                                                                                                                                                                      | oject N                 | lame           | : Lake                                                                                                     | eview D                                                                                         | rive, Bic                                                           | ester                                                 |                                                        |                                                        |                            |        |                  |               |                                                |                                    |                                                | 2.20                                     |                                                    |                                   |
| TD112                                           | 1 Pro                                                                                                                                                                       | oject N                 | lumb           | er: NTE                                                                                                    | 2366                                                                                            |                                                                     |                                                       |                                                        |                                                        |                            |        |                  |               | 0                                              | 75                                 |                                                | oncio                                    | ac (m)                                             | 270                               |
|                                                 | Cli                                                                                                                                                                         | ent:                    |                | Slad                                                                                                       | len Esta                                                                                        | ates Ltd                                                            |                                                       |                                                        |                                                        |                            |        |                  |               | U                                              | ./5                                |                                                | lensio                                   | 15 (11)                                            | Degrees                           |
| Hole Type: TP                                   | Pla                                                                                                                                                                         | nt: J                   | CB 30          | CX                                                                                                         | Start                                                                                           | & End Da                                                            | ate:                                                  | 15/08                                                  | 8/2017                                                 |                            |        |                  |               | Stabili                                        | ty: Uns                            | table be                                       | tween gr                                 | ound level                                         | and 1.65m                         |
| Ground Leve                                     | el (m A                                                                                                                                                                     | OD):                    | 64.            | .62                                                                                                        | Eastin                                                                                          | gs & No                                                             | rthings:                                              | 45810                                                  | 06E 2214                                               | 05N                        |        |                  | E             | Inginee                                        | er: LC                             |                                                | Che                                      | cker:                                              | RPD                               |
| Groundwater                                     |                                                                                                                                                                             |                         |                |                                                                                                            |                                                                                                 |                                                                     | Strata                                                |                                                        |                                                        |                            |        |                  |               | Sample                                         | es                                 |                                                | In-S                                     | itu Test                                           | 5                                 |
| Strike Details                                  | Backfill                                                                                                                                                                    | Level (m<br>AOD)        | l hickn<br>ess |                                                                                                            |                                                                                                 |                                                                     | Descrip                                               | tion                                                   |                                                        |                            | Legend | Depth<br>(m bgl) | Туре          | From (m)                                       | To (m)                             | Туре                                           | Depth<br>(m)                             | Re                                                 | esult                             |
|                                                 |                                                                                                                                                                             | 64.32                   | 0.30m          | Gravel<br>Gravel<br>occasio<br>(Topsoi<br>Firm br<br>gravelly<br>sub-rou<br>fragme<br>(Alluviu<br>0.6m - 0 | is fine t<br>onal she<br>own m<br>cown m<br>cLAY.<br>unded f<br>nts.<br>un)<br><u>2.7m: Bar</u> | o coarse<br>ells.<br>ottled ar<br>Gravel is<br>lint and             | and orange<br>fine and<br>quartzite                   | e slightly<br>I medium<br>with oc                      | y sandy sli<br>y sandy sli<br>n sub-ang<br>ccasional s | ightly<br>ular to<br>shell |        | 0.30             | ES<br>ES<br>D | 0.10                                           | 0.20                               |                                                |                                          |                                                    |                                   |
| 1.35m<br>bgl<br>1.35m<br>bgl<br>after           |                                                                                                                                                                             | 63.62                   | 0.65m          | Light br<br>fine and<br>sub-rou<br>(River T                                                                | rown to<br>d mediu<br>unded r<br>Ferrace                                                        | o orangis<br>um. Grav<br>nixed litl<br>Deposits                     | h yellow<br>vel is fine<br>hology's.<br>s)            | SAND and to coars                                      | nd GRAVE<br>se sub-an                                  | EL. Sand is<br>gular to    |        |                  | ES<br>B       | 1.00                                           | 1.20<br>1.50                       |                                                |                                          |                                                    |                                   |
| 20mins                                          |                                                                                                                                                                             | 62.97<br>62.67<br>61.07 | 0.30m          | Soft da<br>fine and<br>more g<br>(Weath<br>Stiff da<br>(Weath                                              | rk grey<br>d medii<br>ravelly<br>iered Kr<br>rk grey<br>iered Kr                                | slightly s<br>um sub-a<br>with dep<br>ellaways<br>CLAY.<br>ellaways | sandy slig<br>angular w<br>oth.<br>Clay Me<br>Clay Me | ghtly gra<br>veak mu<br>ember)<br>ember)<br>at 3.55m t | bgl.                                                   | Y. Gravel is<br>secomes    |        |                  | B             | 2.00                                           | 2.10                               |                                                |                                          |                                                    |                                   |
| Reason for Te<br>Sufficient dept<br>Groundwater | Remarks       n for Termination:       ent depth reached       Idwater Notes:       idwater encountered at 1.35m                                                            |                         |                |                                                                                                            |                                                                                                 |                                                                     |                                                       |                                                        |                                                        |                            |        |                  |               | s:                                             | Grour                              | Lege<br>Idwater S<br>Grour<br>Strike<br>Restir | nd<br>trikes:<br>dwater                  | In-Situ Te<br>HSV - Har<br>Vane Test<br>PID - Phot | sts:<br>Id Shear<br>to Ionisation |
| Groundwater<br>Other Remark<br>1. No olfactory  | Iwater Notes:         water encountered at 1.35m         Remarks:         Ifactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion. |                         |                |                                                                                                            |                                                                                                 |                                                                     |                                                       |                                                        |                                                        |                            |        |                  |               | onsulting L<br>ont House<br>Street<br>ham<br>Q | td We<br>bwh<br>E: n<br>@b<br>P: 0 | Grour<br>Level                                 | dwater<br>ng.com<br>n<br>ting.com<br>100 |                                                    |                                   |

| TRI                                   | AL I                                      | PIT                                   | LC                  | )G              |                                                                                                                                                                                                                                             | S                                                                           | icale: 1                            | :25                                                      |                                   | Sheet 1 of 1                                                                               |
|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|
| LOCA                                  |                                           | ): Pro                                | oject N             | lame            | Lakeview Drive, Bicester                                                                                                                                                                                                                    | _                                                                           |                                     |                                                          | 2.10                              |                                                                                            |
| ТР                                    | 115                                       | Pro                                   | oject N             | lumb            | r: NTE2366                                                                                                                                                                                                                                  |                                                                             | 60                                  | Dit Dim                                                  | onsior                            | 180 180                                                                                    |
| ••                                    | ±±0                                       | Clie                                  | ent:                |                 | Sladen Estates Ltd                                                                                                                                                                                                                          |                                                                             |                                     |                                                          | ension                            | Degrees                                                                                    |
| Hole Ty                               | pe: TP                                    | Pla                                   | nt: J               | CB 30           | Start & End Date:         17/08/2017                                                                                                                                                                                                        | Stability                                                                   | /: Re                               | main st                                                  | able t                            | hroughout                                                                                  |
| Groun                                 | d Level                                   | (m A                                  | OD):                | 64.             | 54 Eastings & Northings: 458088E 221485N                                                                                                                                                                                                    | Engineer                                                                    | r: LC                               |                                                          | Che                               | cker: RPD                                                                                  |
| Ground                                | lwater                                    |                                       |                     |                 | Strata                                                                                                                                                                                                                                      | Samples                                                                     | 5                                   |                                                          | In-Si                             | itu Tests                                                                                  |
| Strike                                | Strike<br>Details E                       | Backfill                              | Level (m<br>AOD)    | Thickn<br>ess   | Description Legend (m bel)                                                                                                                                                                                                                  | Type From (m)                                                               | To (m)                              | Туре                                                     | Depth<br>(m)                      | Result                                                                                     |
|                                       |                                           |                                       | 64.34               | 0.30m           | Grass over greyish brown slightly gravelly fine SAND.<br>Gravel is fine to coarse sub-angular with occasional shells.<br>(Topsoil)                                                                                                          |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       | 64.14               | 0.20m           | gravelly sandy CLAY. Gravel is fine and medium sub-angular                                                                                                                                                                                  |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       | 63.80               | 0.25m           | Rare shell fragments.                                                                                                                                                                                                                       |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       | 03.89               |                 | Orange SAND and GRAVEL. Gravel is fine to coarse sub-<br>angular limestone. Sand is fine and medium.                                                                                                                                        |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       |                     |                 | Stiff grey occasionally mottled brown very slightly gravelly         CLAY with frequent relic rootlets. Gravel is fine sub-angular         mudstone, limestone and flint. Occasional fine shells.         (Weathered Kellaways Clay Member) |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       |                     | 1.60m           |                                                                                                                                                                                                                                             |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       | 62.29               | 0.55m           | Stiff dark grey gravelly CLAY. Gravel is fine and medium<br>sub-angular mudstone.<br>(Weathered Kellaways Clay Member)                                                                                                                      |                                                                             |                                     |                                                          |                                   |                                                                                            |
| ▼                                     | 3m bgl<br>3.00m<br>bgl<br>after<br>20mins |                                       | 61.74<br>61.64      | 0.10m           | Dark grey weathered LIMESTONE arising as slightly sandy<br>gravel with low to moderate cobble content.<br>(Cornbrash Formation)<br>Hole Terminated at 3.00m bgl.                                                                            |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       |                     |                 |                                                                                                                                                                                                                                             |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       |                     |                 |                                                                                                                                                                                                                                             |                                                                             |                                     |                                                          |                                   |                                                                                            |
|                                       |                                           |                                       |                     |                 | Remarks                                                                                                                                                                                                                                     |                                                                             |                                     | Legen                                                    | d                                 |                                                                                            |
| Reason<br>Termina<br>Ground<br>Seepag | ated in h<br>dwater N<br>e noted          | minati<br>hard gr<br>Notes:<br>from 3 | on:<br>ound<br>3.0m |                 | San<br>B - I<br>D -<br>ES -<br>San                                                                                                                                                                                                          | <b>mples:</b><br>- Bulk<br>- Disturbed<br>- Environmental<br>mple           | Groun                               | Ground<br>Strike<br>Resting<br>Ground<br>Level           | <b>rikes:</b><br>Iwater<br>Iwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |
| Other I<br>1. No o<br>excavat         | Remarks<br>Ifactory<br>ed to as           | r<br>or visu<br>sess g                | ual evid<br>round   | dence<br>condit | f contamination noted. 2. Backfilled with arising's upon completion. 3. Trial pit<br>ons only.<br>Not<br>NG:                                                                                                                                | VB Consulting Ltd<br>aterfront House<br>ation Street<br>ottingham<br>52 3DQ | d Web<br>bwb<br>E: n<br>@bv<br>P: 0 | o:<br>oconsulting<br>ottingham<br>wbconsult<br>115 92411 | g.com<br>ing.com<br>LOO           | CONSULTANCY   ENVIRONMENT<br>INFRASTRUCTURE   BUILDINGS                                    |

| TRIAL P                                                                 | PIT LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DG              |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                | Scale: 1                         | :25                                                   |                                              | S                                                                | heet 1 of 1                                     |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|------------------------------------------------|-------------------------|-----------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------|-------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| LOCATION ID:                                                            | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name            | e: Lake                         | eview Drive, Bice                              | ester                   |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       | 2.30                                         |                                                                  |                                                 |
| TD116                                                                   | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Numb            | oer: NTE                        | 2366                                           |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        | 0                                              |                                  | D.1 D.                                                |                                              |                                                                  | 270                                             |
| 1110                                                                    | Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Slad                            | en Estates Ltd                                 |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        | 0                                              | 0.60                             | PIT DIM                                               | nensio                                       | ns (m)                                                           | Degrees                                         |
| Hole Type: TP                                                           | Plant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JCB 30          | CX                              | Start & End Da                                 | ite:                    | 15/08/2017                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        | Stabili                                        | ty: Re                           | main s                                                | table t                                      | hrough                                                           | out                                             |
| Ground Level (                                                          | m AOD):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64              | .63                             | Eastings & Nor                                 | rthings:                | 458142E 221462              | 2N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | E                                                      | Enginee                                        | er: LC                           |                                                       | Che                                          | cker: I                                                          | RPD                                             |
| Groundwater                                                             | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 1                               |                                                | Strata                  |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        | Sample                                         | es                               |                                                       | In-S                                         | itu Tests                                                        | 5                                               |
| Strike <sup>Strike</sup> Ba                                             | ckfill Level (<br>AOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m Thickn<br>ess | 1                               |                                                | Description             | n                           |            | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth<br>(m bgl) | Туре                                                   | From (m)                                       | To (m)                           | Туре                                                  | Depth<br>(m)                                 | Re                                                               | esult                                           |
|                                                                         | 64.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.25m           | Grass o<br>rootlets<br>(Topsoil | ver brown slight<br>s throughout.<br>I)        | tly clayey f            | ine SAND with fre           | equent     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25             |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55m           | CLAY. O<br>(Alluviu<br>0.45m -  | ccasional shell f<br>im)<br>0.8m: Becomes ligh | ragments.               | ght brown.                  | tiy sanuy  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         | 63.83<br>63.83<br>63.63<br>63.63<br>63.63<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0.20m<br>0. |                 |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         | 63.13<br>63.13<br>63.13<br>63.14<br>63.13<br>63.13<br>Firm dark grey CLAY with frequent relic roots and organic<br>matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)<br>Matter.<br>(Alluvium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30m           |                                 |                                                |                         |                             |            | ale" = "<br>ale" = "<br>ale |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         | 01.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50m           | Stiff dar<br>mudsto<br>(Weath   | rk grey very grav<br>ne.<br>ered Kellaways     | velly CLAY.<br>Clay Mem | Gravel is fine to c<br>ber) | coarse     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         | 61.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                 | Hole Te                                        | erminated at a          | 3.30m bgl.                  |            | <u>*</u> * * * * - * - * - * - * - * - * - * * - * * - * * - * * - * * - * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 3.30<br>       |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |                                                        |                                                |                                  |                                                       |                                              |                                                                  |                                                 |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        |                                                |                                  |                                                       |                                              |                                                                  | _                                               |
|                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               | •                               | Remark                                         | s                       |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                        | 1                                              |                                  | Lege                                                  | nd                                           | 1                                                                |                                                 |
| Reason for Term<br>Sufficient depth<br>Groundwater No<br>No groundwater | ination:<br>reached<br>otes:<br>encounte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | red             |                                 |                                                |                         |                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample | <b>s:</b><br>urbed<br>ironmenta                | Groun                            | Grour<br>Grour<br>Strike<br>Restin<br>Grour<br>Level  | o <b>trikes:</b><br>ndwater<br>ng<br>ndwater | In-Situ Te<br>HSV - Han<br>Vane Test<br>PID - Phot<br>Detector T | <b>its:</b><br>d Shear<br>.o Ionisation<br>Test |
| Other Remarks:<br>1. No olfactory o                                     | r visual ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | idence          | of contam                       | ination noted. 2. E                            | Backfilled wi           | ith arising's upon co       | ompletion. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | BWB Co<br>Waterfr<br>Station<br>Notting<br>NG2 3D      | onsulting L<br>ont House<br>Street<br>ham<br>Q | td We<br>bwl<br>E:r<br>@b<br>P:C | b:<br>oconsultii<br>ottinghai<br>wbconsu<br>1115 9241 | ng.com<br>n<br>Iting.com<br>L100             | BN                                                               | NB<br>'   ENVIRONMENT<br>JRE   BUILDINGS        |

| TRIAL P                                                                                     | PIT LC                           | )G                               |                                                                                                                                                                                        |                                                                                                                              |                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |           |              |               |                      |                                                                             |                                                                       | Scale: 1                 | :25                                                                                                                       |                                                      | Sheet 1 of 1                                                             |
|---------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|--------------|---------------|----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
| LOCATION ID:                                                                                | Project                          | Name                             | : Lake                                                                                                                                                                                 | eview                                                                                                                        | Drive,                                                                           | Bicest                                                                                                                                    | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |           |              |               |                      |                                                                             |                                                                       |                          |                                                                                                                           | 1.90                                                 |                                                                          |
| TP117                                                                                       | Project                          | Numb                             | er: NTE                                                                                                                                                                                | E2366                                                                                                                        |                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |           |              |               |                      |                                                                             | 0                                                                     | 65                       | Dit Din                                                                                                                   | nensio                                               | os (m) 0                                                                 |
|                                                                                             | Client:                          |                                  | Slad                                                                                                                                                                                   | den Es                                                                                                                       | tates L                                                                          | td                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |           |              |               |                      |                                                                             | 0                                                                     | .05                      | rit Din                                                                                                                   | 1011310                                              | Degree                                                                   |
| Hole Type: TP                                                                               | Plant:                           | JCB 30                           | CX                                                                                                                                                                                     | Star                                                                                                                         | t & End                                                                          | d Date                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17/08                                  | 8/2017    |              |               |                      |                                                                             | Stabili                                                               | ty: Re                   | main s                                                                                                                    | table t                                              | hroughout                                                                |
| Ground Level (                                                                              | m AOD):                          | 65                               | .09                                                                                                                                                                                    | East                                                                                                                         | ings &                                                                           | North                                                                                                                                     | ings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45819                                  | 96E 221   | 571N         |               |                      |                                                                             | Enginee                                                               | er: LC                   |                                                                                                                           | Che                                                  | cker: RPD                                                                |
| Groundwater                                                                                 | Level (r                         | n Thickn                         |                                                                                                                                                                                        |                                                                                                                              |                                                                                  | St                                                                                                                                        | rata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |           |              |               | _ Depth              | Ture                                                                        | Sample                                                                | es                       | Tura                                                                                                                      | In-S<br>Depth                                        |                                                                          |
| Strike Details Ba                                                                           |                                  | ess                              | Grass o                                                                                                                                                                                | over b                                                                                                                       | rown s                                                                           | lightly                                                                                                                                   | clavev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / gravelly                             | , fine ar | nd medium    | Legen         | a <sub>(m bgl)</sub> | Type                                                                        | From (m)                                                              | 10 (m)                   | Type                                                                                                                      | (m)                                                  | Result                                                                   |
|                                                                                             | 64.84<br>64.49<br>63.94<br>63.24 | 0.25m<br>0.35m<br>0.55m<br>0.70m | SAND v<br>angular<br>(Topsoi<br>Soft bro<br>Gravel<br>limesto<br>(Alluviu<br>Browni<br>coarse<br>(River T<br>Stiff da<br>occasio<br>sub-ang<br>(Weath<br>Stiff da<br>sub-ang<br>(Weath | with fin<br>r to qu<br>il)<br>owniss<br>is fine<br>one ar<br>um)<br>ish ora<br>sub-a<br>Terrac<br>ark gree<br>gular<br>nered | h oran<br>ange S/<br>ngular<br>e Depo<br>y mott<br>elic roo<br>limesto<br>Kellaw | e, flint<br>ge slig<br>arse su<br>rtzite.<br>AND ar<br>limest<br>bited bro<br>bits and<br>one an<br>rays Cl<br>elly CL<br>one.<br>rays Cl | htly gr<br>htly gr<br>htly gr<br>htly gr<br>htly ang<br>htly ang<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>https:<br>http | dy CLAY.<br>Ided,<br>ine to<br>medium. |           | 0.25         | ES<br>B<br>ES | 0.40                 | 0.50                                                                        |                                                                       |                          |                                                                                                                           |                                                      |                                                                          |
| 2.5m<br>bgl<br>after<br>20mins                                                              | 62.54                            | 0.15m                            | Dark gr<br>gravel v<br>(Cornbi                                                                                                                                                         | eathere<br>ow to r<br>format<br>Ho                                                                                           | ed LIM<br>moder<br>ion)<br>ble Term                                              | htly sandy                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.40                                   |           |              |               |                      |                                                                             |                                                                       |                          |                                                                                                                           |                                                      |                                                                          |
| Reason for Term                                                                             | ination.                         |                                  |                                                                                                                                                                                        |                                                                                                                              | Rer                                                                              | narks                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |           |              |               |                      | Sample                                                                      | c.                                                                    | Grou                     | Lege                                                                                                                      | nd                                                   | In-Situ Tecte                                                            |
| Sufficient depth<br>Groundwater No<br>Groundwater en<br>Other Remarks:<br>1. No olfactory o | reached<br>otes:<br>countered    | at 2.5r<br>dence                 | n<br>of contam                                                                                                                                                                         | ninatio                                                                                                                      | n noted                                                                          | l. 2. Bad                                                                                                                                 | ckfilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | with arisi                             | ing's upo | n completior | 1.            |                      | B - Bulk<br>D - Distu<br>ES - Env<br>Sample<br>BWB Cc<br>Waterfr<br>Station | J.<br>urbed<br>ironmenta<br>onsulting L<br>ont House<br>Street<br>ham | td We bwi<br>E: r<br>@bw | Groun<br>Strike<br>Restir<br>Groun<br>Level<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b: | ndwater<br>ndwater<br>ndwater<br>ng.com<br>lting.com | HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |
|                                                                                             |                                  |                                  |                                                                                                                                                                                        |                                                                                                                              |                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |           |              |               |                      | NG2 3D                                                                      | Q                                                                     | P: C                     | 115 924                                                                                                                   | 1100                                                 | CONSULTANCY   ENVIRONMENT<br>INFRASTRUCTURE   BUILDING                   |

| TRIAL                                                        | ΡΙ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲ LC    | )G              |     |       |          |         |                                                                                                   |           |        |            |                        |                                              |                                                      |                                                   |                                                        |                                       | Scale: 1                                            | :25                                                  |                             |                                                            | Sheet 1 of 1                                       |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----|-------|----------|---------|---------------------------------------------------------------------------------------------------|-----------|--------|------------|------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|---------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------------|----------------------------------------------------|
| LOCATION                                                     | ID: Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oject I | Name            | :   | Lakev | view Dri | ve, Bic | ester                                                                                             |           |        |            |                        |                                              |                                                      |                                                   |                                                        |                                       |                                                     |                                                      | 2.10                        |                                                            |                                                    |
| TD11                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oject I | Numb            | er: | NTE2  | 366      |         |                                                                                                   |           |        |            |                        |                                              |                                                      |                                                   |                                                        |                                       |                                                     |                                                      |                             |                                                            | 0                                                  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ient:   |                 | 2   | Slade | n Estate | es Ltd  |                                                                                                   |           |        |            |                        |                                              |                                                      |                                                   |                                                        | U                                     | 0.60                                                |                                                      | iensio                      | ns (m)                                                     | Degrees                                            |
| Hole Type: TP                                                | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant:    | ICB 30          | CX  | :     | Start &  | End Da  | ate:                                                                                              |           | 17/08/ | /2017      |                        |                                              |                                                      |                                                   |                                                        | Stabili                               | ty: Re                                              | main s                                               | table t                     | hrough                                                     | iout                                               |
| Ground Lev                                                   | el (m /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AOD):   | 65              | .42 |       | Easting  | s & No  | orthing                                                                                           | gs:       | 45810  | 5E 221     | 556N                   |                                              |                                                      |                                                   | E                                                      | Engine                                | er: LC                                              |                                                      | Che                         | cker:                                                      | RPD                                                |
| Groundwater                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       |                 | 1   |       |          |         | Strat                                                                                             | ta        |        |            |                        |                                              |                                                      |                                                   |                                                        | Sample                                | es                                                  |                                                      | In-S                        | itu Test                                                   | ts                                                 |
| Strike Details                                               | Backfil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AOD)    | n Thickn<br>ess |     |       |          |         | Des                                                                                               | scriptior | n      | <i>c</i> : |                        |                                              | Legend                                               | d <sup>Depth</sup><br>(m bgl)                     | Туре                                                   | From (m)                              | To (m)                                              | Туре                                                 | Depth<br>(m)                | F                                                          | (esult                                             |
| 2.85m<br>bgl<br>after<br>20mins<br>2.95m<br>bgl              | 285m     225m     225m |         |                 |     |       |          |         | nd mediu<br>coarse<br>ional<br>flint.<br>ntly grave<br>ckets of f<br>angular<br>ONE arisi<br>ent. | ım        |        | 0.25       | ES<br>D<br>D<br>B<br>B | 0.40<br>0.70<br>0.80<br>1.40<br>2.30<br>2.85 | 0.50<br>0.80<br>0.90<br>1.50<br>2.00<br>2.80<br>3.00 | Lege                                              | nd                                                     |                                       |                                                     |                                                      |                             |                                                            |                                                    |
| Reason for Te<br>Terminated ir<br>Groundwater<br>Groundwater | Remarks for Termination: ted in hard ground water Notes: water encountered at 2.95m, rising to 2.85m after 20 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                 |     |       |          |         |                                                                                                   |           |        |            |                        |                                              |                                                      |                                                   | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample | s:<br>urbed<br>ironmenta              | Groun                                               | Grour<br>Grour<br>Strike<br>Restir<br>Grour<br>Level | <b>Strikes:</b><br>Indwater | In-Situ T<br>HSV - Ha<br>Vane Tes<br>PID - Pho<br>Detector | ests:<br>nd Shear<br>t<br>oto Ionisation<br>• Test |
| Other Remar<br>1. No olfactor                                | er encountered at 2.95m, rising to 2.85m after 20 minutes<br>arks:<br>ory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                 |     |       |          |         |                                                                                                   |           |        |            |                        |                                              |                                                      | BWB Cc<br>Waterfr<br>Station<br>Notting<br>NG2 3D | onsulting l<br>ont Hous<br>Street<br>ham<br>Q          | Ltd We<br>e bwl<br>E: r<br>@b<br>P: C | b:<br>bconsulti<br>lottingha<br>wbconsu<br>115 924: | ng.com<br>n<br>Iting.com<br>L100                     | CONSULTANC                  |                                                            |                                                    |

| TRIAL P                                                                 | IT L                          | 0            | G             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                          |                                                         |                                                | Scale: 1                         | :25                                                  |                                                | Sheet 1 of 1                                                                               |
|-------------------------------------------------------------------------|-------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|
| LOCATION ID:                                                            | Projec                        | t N          | ame:          | Lakeview Drive, Bicester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                          |                                                         |                                                |                                  |                                                      | 2.00                                           |                                                                                            |
| TD110                                                                   | Projec                        | t N          | umb           | er: NTE2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                          |                                                         | 0                                              | c 0                              |                                                      |                                                | 180                                                                                        |
|                                                                         | Client                        |              |               | Sladen Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                          |                                                         | 0                                              | .60                              | PIL DIM                                              | Tensio                                         | Degrees                                                                                    |
| Hole Type: TP                                                           | Plant:                        | J            | CB 3C         | X Start & End Date: 17/08/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                          |                                                         | Stabilit                                       | ty: Re                           | main s                                               | table t                                        | hroughout                                                                                  |
| Ground Level (                                                          | m AOD                         | ):           | 66.           | 11 Eastings & Northings: 458141E 221618N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                          | E                                                       | Inginee                                        | er: LC                           | 1                                                    | Che                                            | cker: RPD                                                                                  |
| Groundwater                                                             |                               |              |               | Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                          | 9                                                       | Sample                                         | s                                |                                                      | In-S                                           | itu Tests                                                                                  |
| Strike Details Ba                                                       | ackfill AC                    | :l (m<br>:D) | Thickn<br>ess | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Legend | Depth<br>(m bgl)         | Туре                                                    | From (m)                                       | To (m)                           | Туре                                                 | Depth<br>(m)                                   | Result                                                                                     |
|                                                                         | 65                            | 36           | 0.25m         | Grass over brown slightly clayey gravelly fine and medium<br>SAND with frequent rootlets. Gravel is fine to coarse<br>angular to quartzite, flint and limestone.<br>(Topsoil)<br>Firm orangish brown slightly sandy slightly gravelly CLAY<br>with frequent rootlets. Gravel is fine to coarse angular to<br>sub-rounded flint and limestone.<br>(Alluvium)<br>Stiff greyish brown mottled brown slightly gravelly CLAY<br>with occasional pockets of fine and medium sand. Gravel is<br>fine and medium angular to sub-rounded flint, sandstone,<br>quartzite and limestone.<br>(Weathered Kellaways Clay Member)<br>1.1m - 2.4m: Becomes firm. |        | 0.75                     | ES<br>ES<br>D                                           | 0.30<br>0.80<br>0.90                           | 0.40<br>0.90<br>1.00             |                                                      |                                                |                                                                                            |
|                                                                         | 63                            | 71           | 1.65m         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                          | D                                                       | 1.80                                           | 1.90                             |                                                      |                                                |                                                                                            |
|                                                                         | 62                            | 16           | 1.55m         | Stiff dark grey very gravelly CLAY. Gravel is fine and<br>medium sub-angular mudstone.<br>(Weathered Kellaways Clay Member)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                          | D                                                       | 2.50                                           | 2.60                             |                                                      |                                                |                                                                                            |
|                                                                         | 62.                           | 11           | <u>0.05m</u>  | Extremely strong dark grey weathered LIMESTONE arising<br>as a slightly sandy gravel with low to moderate cobble<br>content.<br>(Cornbrash Formation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 4.00<br>-<br>-<br>-<br>- |                                                         |                                                |                                  |                                                      |                                                |                                                                                            |
|                                                                         |                               |              |               | Hole ferminated at 4.00m bgf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                          |                                                         |                                                |                                  |                                                      |                                                |                                                                                            |
|                                                                         |                               |              |               | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                          |                                                         |                                                | -                                | Lege                                                 | nd                                             |                                                                                            |
| Reason for Term<br>Terminated in ha<br>Groundwater No<br>No groundwater | ard grour<br>otes:<br>encount | nd<br>:ere   | d             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                          | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample | <b>s:</b><br>urbed<br>ironmenta                | Grour                            | Grour<br>Grour<br>Strike<br>Restir<br>Grour<br>Level | <b>Strikes:</b><br>Indwater<br>Ing<br>Indwater | In-Situ Tests:<br>HSV - Hand Shear<br>Vane Test<br>PID - Photo Ionisation<br>Detector Test |
| Other Remarks:<br>1. No olfactory o                                     | or visual e                   | evid         | ence          | of contamination noted. 2. Backfilled with arising's upon completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          | BWB Co<br>Waterfr<br>Station S<br>Nottingl<br>NG2 3D    | onsulting L<br>ont House<br>Street<br>ham<br>Q | td We<br>bwl<br>E:n<br>@b<br>P:0 | b:<br>oconsulti<br>ottinghai<br>wbconsu<br>1115 924: | ng.com<br>m<br>Iting.com<br>1100               | BWB<br>CONSULTANCY   ENVIRONMENT<br>INFRASTRUCTURE   BUILDINGS                             |

| TRIAL                                                         | PIT                        | LC               | G             |                                                                                                              |                                                                                                                                  |                                                                                            |                                      |                                       |                                                           |                                                                |                                                                       |                                   |       |                  |                                              |                                 | Scale: 1                  | .:25                                          |                                  | 5                                               | Sheet 1 of 1                                    |
|---------------------------------------------------------------|----------------------------|------------------|---------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|-------|------------------|----------------------------------------------|---------------------------------|---------------------------|-----------------------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------------|
| LOCATION I                                                    | D: Pr                      | oject N          | lame          | : Lake                                                                                                       | eview l                                                                                                                          | Drive, l                                                                                   | Bicest                               | er                                    |                                                           |                                                                |                                                                       |                                   |       |                  |                                              |                                 |                           |                                               | 2.00                             |                                                 |                                                 |
| TD120                                                         | ) Pr                       | oject N          | lumb          | er: NTE                                                                                                      | 2366                                                                                                                             |                                                                                            |                                      |                                       |                                                           |                                                                |                                                                       |                                   |       |                  |                                              | 0                               |                           |                                               |                                  | m.c. (mc)                                       | 180                                             |
|                                                               | Cli                        | ent:             |               | Slad                                                                                                         | len Est                                                                                                                          | ates Lt                                                                                    | td                                   |                                       |                                                           |                                                                |                                                                       |                                   |       |                  |                                              | U                               | 0.60                      | PIL DIN                                       | nensio                           | ns (m)                                          | Degrees                                         |
| Hole Type: TP                                                 | Pla                        | ant: J           | CB 3C         | CX                                                                                                           | Start                                                                                                                            | & End                                                                                      | Date                                 | :                                     | 17/                                                       | /08/201                                                        | 17                                                                    |                                   |       |                  |                                              | Stabili                         | ty: Re                    | main s                                        | table t                          | hrough                                          | out                                             |
| Ground Leve                                                   | l (m A                     | OD):             | 66.           | .45                                                                                                          | Easti                                                                                                                            | ngs & I                                                                                    | North                                | nings:                                | 458                                                       | 8070E 2                                                        | 221668                                                                | N                                 |       |                  | E                                            | Inginee                         | er: LC                    |                                               | Che                              | cker:                                           | RPD                                             |
| Groundwater                                                   |                            |                  |               |                                                                                                              |                                                                                                                                  |                                                                                            | St                                   | trata                                 |                                                           |                                                                |                                                                       |                                   |       |                  | 9                                            | Sample                          | es                        |                                               | In-S                             | itu Test                                        | s                                               |
| Strike Details                                                | Backfill                   | Level (m<br>AOD) | Thickn<br>ess |                                                                                                              |                                                                                                                                  |                                                                                            |                                      | Descript                              | tion                                                      |                                                                |                                                                       |                                   | Legen | d (m bgl)        | Туре                                         | From (m)                        | To (m)                    | Туре                                          | Depth<br>(m)                     | R                                               | esult                                           |
|                                                               |                            | 66.15<br>65.25   | 0.30m         | Grass o<br>SAND w<br>angular<br>(Topsoi<br>Orange<br>Gravel i<br>quartzit<br>(River T<br>Firm da<br>fine and | ver briver briver briver briver<br>vith free<br>r to qu<br>l)<br>: slight<br>is fine<br>te and<br>ferrace<br>ark gree<br>d sub-a | own sl<br>equent<br>artzite<br>ly claye<br>to coa<br>limest<br>e Depo<br>y grave<br>angula | elly CL<br>r mud                     | Avelly find                           | y grave<br>ravel i<br>mesto<br>ine an<br>to sub<br>th occ | elly fine<br>is fine t<br>one.<br>nd med<br>b-round<br>coround | e and m<br>to coars<br>lium SA<br>ded flint<br>l relic ro<br>onal qui | ND.<br>t,<br>pootlets.<br>artzite |       |                  | ES                                           | 0.60                            | 0.70                      |                                               |                                  |                                                 |                                                 |
|                                                               |                            | 64.55            | 0.70m         | Stiff dan<br>(Weath<br>Stiff dan<br>mediun<br>(Weath                                                         | rk grey<br>n sub-<br>iered k                                                                                                     | cellawa<br>v very į<br>angula<br>cellawa                                                   | gravel<br>ar muc                     | lay Me<br>lly CLA<br>dstone<br>lay Me | Y. Graves                                                 | )<br>vel is fi                                                 | ne and                                                                |                                   |       |                  | В                                            | 2.00                            | 2.30                      |                                               |                                  |                                                 |                                                 |
| 3m bgl<br>3.00m<br>bgl<br>after<br>20mins                     |                            | 63.50<br>63.45   | 0.05m         | Extrem<br>as a slig<br>(Cornbr                                                                               | ely str<br>ghtly sa<br>rash Fo                                                                                                   | ong da<br>andy g<br>ormatio<br>Hol                                                         | ark gre<br>ravel v<br>on)<br>le Term | ey wea<br>with lo                     | athere<br>ow col                                          | ed LIME<br>bble co<br>m bgl.                                   | STONE<br>ontent.                                                      | arising                           |       | 2.95<br>3.00<br> |                                              |                                 |                           |                                               |                                  |                                                 |                                                 |
|                                                               |                            |                  |               |                                                                                                              |                                                                                                                                  |                                                                                            |                                      |                                       |                                                           |                                                                |                                                                       |                                   |       |                  |                                              |                                 |                           |                                               |                                  |                                                 |                                                 |
| Reason for To                                                 | minat                      | ion:             |               | -                                                                                                            |                                                                                                                                  | Rem                                                                                        | narks                                |                                       |                                                           |                                                                |                                                                       |                                   | •     |                  | Same !:                                      |                                 |                           | Lege                                          | nd                               | In 64                                           | octor                                           |
| Terminated in<br>Groundwater<br>Seepage noted<br>Other Remark | hard g<br>Notes:<br>d from | 3.0m             | lonce         | of contact                                                                                                   | instia                                                                                                                           | noted                                                                                      | 2 8                                  | ckfilled                              | with a                                                    | ricingle                                                       |                                                                       | molotion                          |       |                  | B - Bulk<br>D - Distu<br>ES - Envi<br>Sample | nsulting L                      | al Srout                  | Groun<br>Strike<br>Restir<br>Groun<br>Level   | ndwater<br>ng<br>ndwater         | HSV - Hai<br>Vane Test<br>PID - Pho<br>Detector | rots:<br>nd Shear<br>t<br>to lonisation<br>Test |
| 1. No olfactory                                               | / or vis                   | uai evio         | ience         | ot contam                                                                                                    | lination                                                                                                                         | noted.                                                                                     | . 2. Bac                             | скпШеd                                | with a                                                    | irising's                                                      | upon co                                                               | mpletion.                         |       |                  | Waterfro<br>Station S<br>Notting<br>NG2 3D   | ont House<br>Street<br>nam<br>Q | e bwl<br>E:r<br>@b<br>P:C | bconsulti<br>lottingha<br>wbconsu<br>115 924: | ng.com<br>m<br>Iting.com<br>1100 |                                                 | AB<br>CY   ENVIRONMENT<br>TURE   BUILDINGS      |

| TRIAL                                                                    | Pľ                                            | T LC                               | )G            |                                                                            |                                                                                         |                                                                                 |                                                                           |                                                    |                                         |                                                                   |                                |                    |                                                            |                                              | Scale: 1                                                       | :25                                             |                                  | S        | iheet 1 of 1                       |
|--------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|---------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|--------------------------------|--------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|----------------------------------|----------|------------------------------------|
| LOCATION                                                                 | ID: P                                         | roject N                           | Name          | : Lake                                                                     | eview Dri <sup>,</sup>                                                                  | ve, Bices                                                                       | ter                                                                       |                                                    |                                         |                                                                   |                                |                    |                                                            |                                              |                                                                |                                                 | 2.10                             |          |                                    |
| TD12                                                                     | 1 P                                           | roject N                           | Numb          | er: NTE                                                                    | 2366                                                                                    |                                                                                 |                                                                           |                                                    |                                         |                                                                   |                                |                    |                                                            |                                              |                                                                |                                                 |                                  | ( )      | ]                                  |
| 1 - 1 2                                                                  | T c                                           | lient:                             |               | Slac                                                                       | len Estate                                                                              | es Ltd                                                                          |                                                                           |                                                    |                                         |                                                                   |                                |                    |                                                            | 0                                            | .60                                                            | Pit Dim                                         | iensior                          | ns (m)   | Degrees                            |
| Hole Type: TP                                                            | Р                                             | lant: J                            | CB 30         | CX                                                                         | Start &                                                                                 | End Date                                                                        | e:                                                                        | 15/08/2                                            | 2017                                    |                                                                   |                                |                    |                                                            | Stabilit                                     | ty: Re                                                         | main s                                          | table t                          | hrough   | out                                |
| Ground Lev                                                               | vel (m                                        | AOD):                              | 65            | .25                                                                        | Eastings                                                                                | & Nortl                                                                         | hings:                                                                    | 458039                                             | E 221518                                | N                                                                 |                                |                    | E                                                          | Inginee                                      | er: LC                                                         |                                                 | Che                              | cker:    | RPD                                |
| Groundwate                                                               | r                                             |                                    |               |                                                                            |                                                                                         | S                                                                               | trata                                                                     |                                                    |                                         |                                                                   |                                |                    | 9                                                          | Sample                                       | es                                                             |                                                 | In-S                             | itu Test | s                                  |
| Strike Strike Details                                                    | Backf                                         | ill Level (m<br>AOD)               | Thickn<br>ess | I                                                                          |                                                                                         |                                                                                 | Descriptio                                                                | on                                                 |                                         |                                                                   | Legen                          | d Depth<br>(m bgl) | Туре                                                       | From (m)                                     | To (m)                                                         | Туре                                            | Depth<br>(m)                     | Re       | esult                              |
|                                                                          |                                               | 64.95                              | 0.30m         | Grass o<br>SAND v<br>angulai<br>(Topsoi<br>Firm or                         | over brow<br>vith frequ<br>r quartzite<br>I)<br>range slig                              | n slightly<br>ient root<br>e, flint ai<br>htly sanc                             | y clayey<br>tlets. Gra<br>nd limes<br>dy slightl                          | gravelly f<br>avel is fin<br>tone.<br>y gravelly   | fine and m<br>le to coars<br>y CLAY wit | nedium<br>se<br>th                                                |                                | 0.30               | ES<br>ES                                                   | 0.10                                         | 0.20                                                           |                                                 |                                  |          |                                    |
|                                                                          |                                               | 64.60                              | 0.35m         | occasio<br>to sub-<br>(Alluviu<br>Firm br<br>pockets                       | onal rooth<br>rounded<br>um)<br>rownish g<br>s of medi                                  | ets. Grav<br>quartzite<br>rey sligh<br>um and o                                 | vel is fine<br>e and lim<br>tly grave<br>coarse sa                        | e and meen<br>nestone.<br>elly CLAY y<br>and. Occa | dium sub-<br>with occa<br>asional sh    | -angular<br>Isional<br>Iells.                                     |                                | 0.65               | D                                                          | 0.80                                         | 0.90                                                           |                                                 |                                  |          |                                    |
|                                                                          |                                               | 64.25<br>64.00                     | 0.25m         | Gravel<br>(Alluviu<br>Orange<br>Fine to<br>limesto                         | is fine and<br>um)<br>slightly c<br>coarse an<br>one.                                   | udstone.<br>edium SA<br>nt, quartzi                                             | ND.<br>ite and                                                            |                                                    | 1.00                                    |                                                                   |                                |                    |                                                            |                                              |                                                                |                                                 |                                  |          |                                    |
|                                                                          |                                               | 62.05                              | 1.95m         | (River 1<br>Stiff gre<br>pockets<br>fragme<br>mudsto<br>(Weath<br>1.9m - 3 | Ferrace Dr<br>ey to dark<br>s of medi<br>nts. Grav<br>one.<br>hered Kell<br>2.2m: Becor | eposits)<br>grey slig<br>um and d<br>el is fine<br>aways <u>C</u><br>mes very g | ghtly gra<br>coarse sa<br>and me<br><u>Clay M</u> en<br><u>gravelly</u> . | hvelly CLA<br>and. Occa<br>dium sub<br>nber)       | W with oc<br>asional sh<br>p-angular    | arising                                                           |                                |                    | D                                                          | 2.00                                         | 2.10                                                           |                                                 |                                  |          |                                    |
| 3.30m<br>bgl<br>3.30m<br>bgl<br>after<br>20min:                          | 5                                             | 61.85                              | 0.20m         | as a slig<br>(Cornb                                                        | ghtly sand<br>rash Forn                                                                 | dy gravel<br>nation)<br>Hole Terr                                               | with low                                                                  | w cobble                                           | content.                                |                                                                   |                                |                    |                                                            |                                              |                                                                |                                                 |                                  |          |                                    |
|                                                                          |                                               |                                    |               |                                                                            |                                                                                         |                                                                                 |                                                                           |                                                    |                                         |                                                                   |                                |                    |                                                            |                                              |                                                                |                                                 |                                  |          |                                    |
|                                                                          | 1                                             |                                    | í.            |                                                                            | I                                                                                       | Remarks                                                                         |                                                                           |                                                    |                                         |                                                                   | 1                              | 1                  |                                                            | 1                                            | 1                                                              | Lege                                            | nd                               | 1        |                                    |
| Reason for T<br>Terminated i<br>Groundwate<br>Slow ingress<br>Other Rema | ermina<br>n hard<br>r Note<br>of wate<br>rks: | ation:<br>ground<br>s:<br>er noted | from          | 3.3m                                                                       |                                                                                         |                                                                                 |                                                                           |                                                    |                                         | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample<br>BWB Co | s:<br>ironmenta<br>onsulting L | Grour              | Grour<br>Grour<br>Strike<br>Restin<br>Grour<br>Level<br>b: | i <b>trikes:</b><br>ndwater<br>ig<br>ndwater | In-Situ Te<br>HSV - Han<br>Vane Test<br>PID - Phot<br>Detector | sts:<br>Id Shear<br>:o Ionisation<br>Test       |                                  |          |                                    |
| 1. No olfacto                                                            | ry or v                                       | isual evid                         | dence         | of contam                                                                  | ination no                                                                              | ted. 2. Ba                                                                      | ackfilled w                                                               | vith arising                                       | g's upon co                             | ompletion.                                                        |                                |                    | Waterfr<br>Station S<br>Notting<br>NG2 3D                  | ont House<br>Street<br>ham<br>Q              | e bwl<br>E: n<br>@b<br>P: C                                    | oconsultir<br>ottinghar<br>wbconsu<br>1115 9241 | าg.com<br>ท<br>lting.com<br>1100 |          | Y   ENVIRONMENT<br>URE   BUILDINGS |

| TRIAL P                                                                                                          | 'IT LC                                                      | )G          |                                                                            |                                                                                                      |                                                                    |                                                              |                    |        |                                                                                             |                                                                                         |           | Scale: 1                | .:25                                                                                                                                      |                                                                   | Sł                                                                    | neet 1 of 1                           |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------|--------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|
| LOCATION ID:                                                                                                     | Project I                                                   | Vame        | : Lak                                                                      | eview Drive,                                                                                         | Bicester                                                           |                                                              |                    |        |                                                                                             |                                                                                         |           |                         |                                                                                                                                           | 2.20                                                              |                                                                       |                                       |
| TD122                                                                                                            | Project I                                                   | Numb        | er: NTE                                                                    | 2366                                                                                                 |                                                                    |                                                              |                    |        |                                                                                             |                                                                                         | C         |                         |                                                                                                                                           |                                                                   | ~~ (m)                                                                | 180                                   |
| 11 166                                                                                                           | Client:                                                     |             | Slac                                                                       | Jen Estates Lt                                                                                       | td                                                                 |                                                              |                    |        |                                                                                             |                                                                                         | U         | .05                     |                                                                                                                                           |                                                                   | 15 (11)                                                               | Degrees                               |
| Hole Type: TP                                                                                                    | Plant: J                                                    | CB 3C       | CX                                                                         | Start & End                                                                                          | J Date:                                                            | 16/08/20                                                     | )17                |        |                                                                                             |                                                                                         | Stabilit  | ty: Re                  | main s                                                                                                                                    | table t                                                           | hrougho                                                               | ut                                    |
| Ground Level (r                                                                                                  | m AOD):                                                     | 66.         | .46                                                                        | Eastings &                                                                                           | Northings:                                                         | 457939E                                                      | 221581N            |        |                                                                                             | E                                                                                       | inginee   | er: LC                  | <del></del>                                                                                                                               | Cheo                                                              | cker: R                                                               | (PD                                   |
| Groundwater                                                                                                      | Lavel (n                                                    | Thiske      | <del></del>                                                                |                                                                                                      | Strata                                                             |                                                              |                    |        |                                                                                             | 9                                                                                       | Sample    | !S                      | <b> </b>                                                                                                                                  | In-Si                                                             | itu Tests                                                             |                                       |
| Strike Details Bac                                                                                               | ckfill AOD)                                                 | Thickness   |                                                                            |                                                                                                      | Descript                                                           | tion                                                         |                    | Legend | )<br>(m bgl)                                                                                | Туре                                                                                    | From (m)  | To (m)                  | Туре                                                                                                                                      | Deptri<br>(m)                                                     | Res                                                                   | sult                                  |
|                                                                                                                  | 66.16                                                       | 0.30m       | Grass o<br>SAND v<br>angular<br>(Topsoi<br>Stiff mc<br>(Alluviu<br>0.75m - | ver brown si<br>vith frequent<br>r to quartzite<br>l)<br>ottled brown<br>Jm)<br><u>1.45m: Lenses</u> | lightly clayey<br>t rootlets. G<br>2, flint and lin<br>CLAY with c | y gravelly fin<br>ravel is fine<br>mestone.<br>Occasional re | elic rootlets.     |        |                                                                                             | ES                                                                                      | 0.50      | 0.60                    |                                                                                                                                           |                                                                   |                                                                       |                                       |
|                                                                                                                  | 65.01                                                       | 1.40m       | Firm gr<br>gravelly<br>mudstc<br>(Weath                                    | ey occasiona<br>/ CLAY. Grave<br>>ne.<br>Iered Kellawa<br>3.55m: Become.                             | ally orangish<br>el is fine and<br>ays Clay Me<br><u>s stiff.</u>  | ıtly sandy very<br>ıb-angular                                |                    |        | ES<br>D                                                                                     | 1.50                                                                                    | 2.30      |                         |                                                                                                                                           |                                                                   |                                                                       |                                       |
|                                                                                                                  | 63.61                                                       | 0.70m       | Dark gr<br>gravel (<br>(Kellaw                                             | ey weathere<br>of fine and m<br>ays Clay Me                                                          | ed MUDSTON<br>nedium mud<br>ember)                                 | NE arising as<br>Istone.                                     | s a very clayey    |        |                                                                                             | В                                                                                       | 2.90      | 3.40                    |                                                                                                                                           |                                                                   |                                                                       |                                       |
|                                                                                                                  | 62.91<br>62.76                                              | 0.15m       | Dark gr<br>slightly<br>(Cornb <sup>,</sup>                                 | ey weathere<br>gravelly COE<br>rash Formati<br>Ho                                                    | ed LIMESTON<br>3BLE of lime<br>ion)<br>Je Terminated               | VE arising as<br>stone.<br>at 3.70m bgl.                     | slightly sandy     |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | В                                                                                       | 3.55      | 3.70                    |                                                                                                                                           |                                                                   |                                                                       |                                       |
|                                                                                                                  |                                                             | $\square$   |                                                                            |                                                                                                      |                                                                    |                                                              |                    |        |                                                                                             |                                                                                         |           |                         | ·                                                                                                                                         |                                                                   |                                                                       |                                       |
|                                                                                                                  |                                                             |             | <u> </u>                                                                   | Ren                                                                                                  | narks                                                              |                                                              |                    |        | <u> </u>                                                                                    |                                                                                         |           |                         | Lege                                                                                                                                      | nd                                                                |                                                                       |                                       |
| Reason for Termi<br>Terminated in har<br>Groundwater No<br>No groundwater<br>Other Remarks:<br>1. No olfactory o | ination:<br>rd ground<br>ytes:<br>encounter<br>r visual evi | ed<br>dence | of contarr                                                                 |                                                                                                      | I. 2. Backfilled                                                   |                                                              | s upon completion. | <br>   |                                                                                             | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample<br>BWB Co<br>Waterfr<br>Station | ironmenta | Groun                   | dwater S<br>Groun<br>7 Strike<br>- Restin<br>Grour<br>Level<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b:<br>b: | i <b>trikes:</b><br>idwater<br>ig<br>idwater<br>idwater<br>ng.com | In-Situ Test<br>HSV - Hand<br>Vane Test<br>PID - Photo<br>Detector Te | ts:<br>I Shear<br>I Ionisation<br>est |
|                                                                                                                  |                                                             |             |                                                                            |                                                                                                      |                                                                    |                                                              |                    |        |                                                                                             | Notting<br>NG2 3D                                                                       | nam<br>Q  | @b <sup>,</sup><br>P: 0 | wbconsul<br>115 9241                                                                                                                      | n<br>lting.com<br>1100                                            |                                                                       | I ENVIRONMENT<br>RE   BUILDINGS       |

|                                                                      | PIT                                                                                                           | LC               | G             |                                                                         |                                                                                  |                                                                  |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        |                                               | Scale: 1                           | :25                                                  |                                             | Shee                                                                            | et 1 of 1              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|---------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|------------------------|
| LOCATION ID                                                          | ): Pro                                                                                                        | oject N          | lame          | : Lak                                                                   | eview Dr                                                                         | rive, Bi                                                         | cester                                                                 |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        |                                               |                                    |                                                      | 2.20                                        |                                                                                 |                        |
| TD123                                                                | Pro                                                                                                           | oject N          | lumb          | er: NTE                                                                 | 2366                                                                             |                                                                  |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        | c                                             |                                    |                                                      |                                             | a a (ma)                                                                        | 45                     |
|                                                                      | Clie                                                                                                          | ent:             |               | Slac                                                                    | den Estat                                                                        | tes Ltd                                                          |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        | Ĺ                                             | 0.65                               | PIT DIN                                              | nensio                                      | ns (m)                                                                          | )egrees                |
| Hole Type: TP                                                        | Pla                                                                                                           | nt: J            | CB 30         | CX                                                                      | Start &                                                                          | k End D                                                          | Date:                                                                  |                                                           | 16/08/                                                            | 2017                                                |                                                          |        |        |                                                                                                                 |                                                        | Stabili                                       | ty: Re                             | main s                                               | table t                                     | hroughout                                                                       | t                      |
| Ground Level                                                         | (m A                                                                                                          | OD):             | 66            | .82                                                                     | Easting                                                                          | gs & No                                                          | orthing                                                                | gs:                                                       | 457860                                                            | DE 221                                              | .580N                                                    |        |        |                                                                                                                 | E                                                      | Engine                                        | er: LC                             |                                                      | Che                                         | cker: RP                                                                        | D                      |
| Groundwater                                                          |                                                                                                               |                  | 1             |                                                                         |                                                                                  |                                                                  | Strat                                                                  | a                                                         |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        | Sample                                        | es                                 |                                                      | In-S                                        | itu Tests                                                                       |                        |
| Strike Details B                                                     | Backfill                                                                                                      | Level (m<br>AOD) | Thickn<br>ess |                                                                         |                                                                                  |                                                                  | Des                                                                    | criptior                                                  | ۱                                                                 |                                                     |                                                          |        | Legend | Depth<br>(m bgl)                                                                                                | Туре                                                   | From (m                                       | To (m)                             | Туре                                                 | Depth<br>(m)                                | Resu                                                                            | lt                     |
|                                                                      |                                                                                                               | 66.57            | 0.25m         | Grass c<br>SAND v<br>angula<br>(Topsoi<br>Firm br<br>gravelly<br>rounde | over brov<br>with freq<br>r to quar<br>il)<br>rown bec<br>y CLAY. G<br>ed quartz | wn slig<br>Juent r<br>rtzite, f<br>coming<br>Gravel i<br>zite an | shtly cla<br>rootlets<br>flint and<br>g greyis<br>is fine t<br>d limes | ayey g<br>s. Grav<br>d lime<br>sh bro<br>so coa<br>stone. | ravelly<br>vel is fin<br>estone.<br>wn fror<br>rse ang<br>occasio | fine ar<br>ne to c<br>m 0.7n<br>jular to<br>onal ro | nd mediur<br>oarse<br>n slightly<br>o sub-<br>ootlets to | m      |        | - 0.25                                                                                                          | ES                                                     | 0.50                                          | 0.60                               |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               | 65.72            |               | 0.5m.<br>(Alluvit<br>0.75m -                                            | um)<br><u>1.1m: Bec</u><br>ey mottle                                             | comes s<br>ed bro                                                | stiff with f                                                           | fine she                                                  | ell fragme<br>e sandy                                             | ents not<br>y CLAY                                  | ted.<br>with                                             | *<br>  |        | - 1.10                                                                                                          | D<br>ES                                                | 1.00                                          | 1.10                               |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               | 65.22            | 0.50m         | mediur<br>(Alluviu                                                      | n and co<br>um)<br>ark grev                                                      | with b                                                           | and len                                                                | nses.                                                     | nite we                                                           | atherii                                             | ng slightly                                              |        |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     |                                                        |                                               | 1.00                               |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               |                  | 1.10m         | sandy g<br>(Weath                                                       | gravelly (<br>ered Kel                                                           | CLAY. G<br>Ilaway                                                | Gravel is                                                              | s fine<br>Meml                                            | and me<br>ber)                                                    | edium                                               | mudstone                                                 | e. 400 |        |                                                                                                                 | D                                                      | 1.70                                          | 1.80                               |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               | 04.12            | 0.70m         | Dark gr<br>gravellı<br>(Kellaw                                          | 'ey weat<br>y clay. Gr<br>/ays Clay                                              | hered<br>ravels<br>y Mem                                         | MUDS <sup>-</sup><br>of fine a<br>ber)                                 | TONE<br>and m                                             | arising<br>nedium                                                 | as a si<br>muds                                     | tiff very<br>tone.                                       |        |        | -                                                                                                               | D                                                      | 3.00                                          | 3.10                               |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               | 63.42<br>63.37   | 0.05m         | Dark gr<br>slightly<br>(Weath                                           | ey weat<br>gravelly<br>nered Co                                                  | hered<br>COBB<br>rnbras<br>Hole                                  | LIMEST<br>BLE of lin<br>sh Form<br>Terminat                            | TONE<br>mesto<br>nation<br>ted at 3                       | arising<br>one.<br>)<br>3.45m bg                                  | as slig<br>I.                                       | htly sandy                                               | У<br>  |        | - 3.40<br>- 3.45<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                        |                                               |                                    |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               |                  |               |                                                                         |                                                                                  |                                                                  |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        |                                               |                                    |                                                      |                                             |                                                                                 |                        |
|                                                                      |                                                                                                               |                  | <u> </u>      |                                                                         |                                                                                  | Rema                                                             | irks                                                                   |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 |                                                        |                                               | <u> </u>                           | Lege                                                 | nd                                          |                                                                                 |                        |
| Reason for Terr<br>Terminated in h<br>Groundwater N<br>No groundwate | Remarks ion for Termination: initiated in hard ground undwater Notes: groundwater encountered                 |                  |               |                                                                         |                                                                                  |                                                                  |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 | Sample:<br>B - Bulk<br>D - Distu<br>ES - Env<br>Sample | <b>s:</b><br>urbed<br>ironment                | Grour                              | Grour<br>Grour<br>Strike<br>Restir<br>Grour<br>Level | <b>Strikes:</b><br>ndwater<br>ng<br>ndwater | In-Situ Tests:<br>HSV - Hand Sl<br>Vane Test<br>PID - Photo Ic<br>Detector Test | hear<br>onisation<br>t |
| Other Remarks<br>1. No olfactory                                     | temarks:<br>Ifactory or visual evidence of contamination noted. 2. Backfilled with arising's upon completion. |                  |               |                                                                         |                                                                                  |                                                                  |                                                                        |                                                           |                                                                   |                                                     |                                                          |        |        |                                                                                                                 | BWB Co<br>Waterfr<br>Station<br>Notting<br>NG2 3D      | onsulting I<br>ont Hous<br>Street<br>ham<br>Q | td We<br>bwl<br>E: n<br>@b<br>P: C | b:<br>oconsulti<br>ottingha<br>wbconsu<br>115 924:   | ng.com<br>n<br>Iting.com<br>L100            |                                                                                 |                        |

| TRIAL I                                                                                                  | PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LO                | G              |                                                               |                                                                                    |                                                                                           |                                                                         |                                                         |        |                  |                                                                              |                                                       | Scale: 1                        | :25                                                                     |                                                | Shr                                                                     | eet 1 of 1                       |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|--------|------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|
| LOCATION ID                                                                                              | ): Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ject N            | lame           | : Lake                                                        | eview Drive                                                                        | , Bicester                                                                                |                                                                         |                                                         |        |                  |                                                                              |                                                       |                                 |                                                                         | 2.20                                           |                                                                         |                                  |
| TD17/                                                                                                    | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ject N            | lumb           | er: NTE                                                       | 2366                                                                               |                                                                                           |                                                                         |                                                         |        |                  |                                                                              | 0                                                     |                                 |                                                                         |                                                | n a (ma)                                                                | 0                                |
|                                                                                                          | Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ent:              |                | Slac                                                          | den Estates                                                                        | Ltd                                                                                       |                                                                         |                                                         |        |                  |                                                                              | 0                                                     | .05                             |                                                                         |                                                | ns (m)                                                                  | Degrees                          |
| Hole Type: TP                                                                                            | Plai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt: J             | CB 3C          | X                                                             | Start & En                                                                         | d Date:                                                                                   | 15/08/20                                                                | )17                                                     |        |                  |                                                                              | Stabilit                                              | ty: Sli                         | ghtly u                                                                 | nstable                                        | e below 1                                                               | 1.0m.                            |
| Ground Level                                                                                             | (m A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ):                | 65.            | .75                                                           | Eastings &                                                                         | k Northings:                                                                              | 457746E                                                                 | 221645N                                                 |        |                  | E                                                                            | Inginee                                               | er: LC                          |                                                                         | Che                                            | cker: RI                                                                | PD                               |
| Groundwater                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | ,              |                                                               |                                                                                    | Strata                                                                                    |                                                                         |                                                         |        |                  | !                                                                            | Sample                                                | 2S                              |                                                                         | In-S                                           | itu Tests                                                               |                                  |
| Strike Details                                                                                           | 3ackfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (m<br>AOD)  | Thickn<br>ess  | <u> </u>                                                      |                                                                                    | Descript                                                                                  | tion                                                                    |                                                         | Legend | Depth<br>(m bgl) | Туре                                                                         | From (m)                                              | To (m)                          | Туре                                                                    | Depth<br>(m)                                   | Res                                                                     | ult                              |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65.50             | 0.25m<br>0.40m | Grass o<br>SAND v<br>angular<br>(Topsoi<br>Dark br<br>frequer | wer brown s<br>with frequer<br>r to quartzit<br>il)<br>rown clayey<br>nt rootlets. | slightly clayey<br>nt rootlets. G<br>te, flint and lin<br>gravelly fine<br>Gravel is fine | y gravelly fir<br>ravel is fine<br>mestone.<br>and mediu<br>to coarse a | ne and medium<br>to coarse<br>m SAND with<br>angular to |        | 0.25             | ES                                                                           | 0.10                                                  | 0.20                            |                                                                         |                                                |                                                                         |                                  |
| Lange 1.1m                                                                                               | <ul> <li>45.10</li> <li>and the store is the stor</li></ul> |                   |                |                                                               |                                                                                    |                                                                                           |                                                                         |                                                         |        |                  |                                                                              |                                                       | 0.80                            |                                                                         |                                                |                                                                         |                                  |
| 1.10m<br>bgl<br>after<br>20mins                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 0.75m          | Yellowi<br>angulai<br>angulai<br>(Cornb                       | r limestone.<br>r limestone.<br>r limestone.<br>rash Format                        |                                                                                           |                                                                         |                                                         |        |                  |                                                                              |                                                       |                                 |                                                                         |                                                |                                                                         |                                  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.90             |                |                                                               | H                                                                                  | ole Terminated                                                                            | at 1.85m bgl.                                                           |                                                         |        |                  |                                                                              |                                                       |                                 |                                                                         |                                                |                                                                         |                                  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                |                                                               | Po                                                                                 | marks                                                                                     |                                                                         |                                                         |        |                  | <u> </u>                                                                     |                                                       |                                 |                                                                         |                                                |                                                                         |                                  |
| Reason for Terr<br>Terminated in h<br>Groundwater N<br>Seepage noted<br>Other Remarks<br>1. No olfactory | mination<br>hard grow<br>Votes:<br>from 1<br>5:<br>or visu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on:<br>ound<br>1m | lence          | of contarr                                                    | nination note                                                                      | d. 2. Backfilled                                                                          | with arising':                                                          | s upon completion                                       | <br>   |                  | Samples<br>B - Bulk<br>D - Distu<br>ES - Envi<br>Sample<br>BWB Cc<br>Waterfr | s:<br>urbed<br>ironmenta<br>onsulting L<br>ront House | Groun                           | Grour<br>Grour<br>Strike<br>Restin<br>Grour<br>Level<br>b:<br>bconsulti | itrikes:<br>ndwater<br>ng<br>ndwater<br>ng.com | In-Situ Test:<br>HSV - Hand<br>Vane Test<br>PID - Photo<br>Detector Te: | s:<br>Shear<br>Ionisation<br>est |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                |                                                               |                                                                                    |                                                                                           |                                                                         |                                                         |        |                  | Station S<br>Notting<br>NG2 3D                                               | Street<br>ham<br>IQ                                   | E: n<br>@b <sup>,</sup><br>P: 0 | ottinghar<br>wbconsu<br>115 9241                                        | n<br>lting.com<br>1100                         |                                                                         |                                  |

| TRIAL P                                                                                                        | IT L                                     | .0                         | G                       |                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                   |                                                                |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              |                                      | Scale: 1                             | :25                                                               |                                            | 4                                                             | Sheet 1 of 1                                           |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| LOCATION ID:                                                                                                   | Proje                                    | ct Na                      | ame:                    | Lake                                                                                                                                                                                                                        | eview                                                                                                                                                                             | / Drive,                                                                                                                                                                           | , Bicest                                                                                                                                                                                  | er                                                                                                                                                |                                                                |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              |                                      |                                      |                                                                   | 2.00                                       |                                                               |                                                        |
| TP125                                                                                                          | Proje                                    | ct N                       | umb                     | er: NTE                                                                                                                                                                                                                     | E2366                                                                                                                                                                             | 5                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                   |                                                                |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              | C                                    | 65                                   | Dit Din                                                           | ooncio                                     | nc (m)                                                        | 0                                                      |
| 11 123                                                                                                         | Client                                   | :                          |                         | Slac                                                                                                                                                                                                                        | den E                                                                                                                                                                             | states l                                                                                                                                                                           | Ltd                                                                                                                                                                                       |                                                                                                                                                   |                                                                |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              | C                                    | .05                                  |                                                                   |                                            |                                                               | Degrees                                                |
| Hole Type: TP                                                                                                  | Plant:                                   | : JC                       | CB 3C                   | X                                                                                                                                                                                                                           | Sta                                                                                                                                                                               | rt & En                                                                                                                                                                            | d Date                                                                                                                                                                                    | :                                                                                                                                                 | 16/                                                            | /08/201                                                                                                                           | 17                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              | Stabili                              | ty: Re                               | main s                                                            | table t                                    | hrough                                                        | out                                                    |
| Ground Level (                                                                                                 | m AOD                                    | ):                         | 66.                     | 80                                                                                                                                                                                                                          | East                                                                                                                                                                              | tings &                                                                                                                                                                            | North                                                                                                                                                                                     | ings:                                                                                                                                             | 457                                                            | 7817E 2                                                                                                                           | 221604                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                             | E                                                                            | Engine                               | er: LC                               |                                                                   | Che                                        | cker:                                                         | RPD                                                    |
| Groundwater                                                                                                    |                                          |                            |                         |                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                    | St                                                                                                                                                                                        | rata                                                                                                                                              |                                                                |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                             |                                                                              | Sample                               | es                                   |                                                                   | In-S                                       | itu Test                                                      | S                                                      |
| Strike <sup>Strike</sup> Ba                                                                                    | ackfill AC                               | el (m<br>DD)               | Thickn<br>ess           |                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                           | Descript                                                                                                                                          | ion                                                            |                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Legen | d (m bgl)                                                                   | Туре                                                                         | From (m)                             | To (m)                               | Туре                                                              | Depth<br>(m)                               | R                                                             | esult                                                  |
|                                                                                                                | 66<br>66<br>65<br>64<br>64<br>63         | 1.35 -<br>1.00 -<br>1.95 - | 0.25m<br>0.50m<br>1.50m | Grass c<br>rootlet<br>and occ<br>(Topsoi<br>Firm br<br>rootlet<br>sub-an;<br>(Alluviu<br>Brown<br>sub-an;<br>(Alluviu<br>Stiff gre<br>occasic<br>(Alluviu<br>2.0m - 2<br>Stiff da<br>2.6m. C<br>(Kellaw<br>Extrem<br>(Cornb | over s<br>ss. Gra<br>casio<br>il)<br>rown<br>ss to (<br>ggular<br>one.<br>um)<br>grave<br>ggular<br>um)<br>ey oc<br>onal f<br>um)<br>2.45m:<br>Grave<br>vays (<br>Grave<br>vays ( | lightly<br>avel is f<br>nal qua<br>slightly<br>0.5m. G<br>to sub<br>elly fine<br>limest<br>casiona<br>ine and<br><i>Relic ro</i><br>ey grav<br>I is fine<br>Clay Mu<br>Format<br>H | clayey<br>fine an<br>artzite.<br>y grave<br>iravel is<br>-round<br>e to coa<br>one.<br>ally spe<br>d mediu<br>botlets no<br>eelly CL<br>e and n<br>ember<br>lark gre<br>tion)<br>ole Term | slightly<br>d medi<br>lly sand<br>s fine a<br>led flin<br>arse SA<br>eckled l<br>um sar<br>oted.<br>AY bec<br>nedium<br>)<br>ey LIMI<br>ninated a | y grav<br>ium su<br>dy CL/<br>and m<br>MD. C<br>brown<br>d par | relly fin<br>ub-ang<br>AY with<br>edium<br>artzite,<br>Gravel i<br>n CLAY<br>trings.<br>g very g<br>-angula<br>NE (no i<br>m bgl. | e SANI<br>ular lin<br>occasi<br>sandst<br>s fine t<br>with<br>gravelly<br>r muds<br>arising | D with nestone<br>ional onal one and o coarse o coa |       | 0.25<br>0.25<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.9 | ES<br>D<br>D<br>B                                                            | 0.40<br>0.50<br>1.00<br>2.10<br>2.50 | 0.50<br>0.60<br>1.10<br>2.20<br>2.60 |                                                                   |                                            |                                                               |                                                        |
| Reason for Term<br>Terminated in ha<br>Groundwater No<br>No groundwater<br>Other Remarks:<br>1. No olfactory o | ination:<br>ard groun<br>otes:<br>encoun | :<br>nd<br>tereo           | d<br>ence (             | of contam                                                                                                                                                                                                                   | ninatic                                                                                                                                                                           | Rei                                                                                                                                                                                | marks                                                                                                                                                                                     | ckfilled                                                                                                                                          | with a                                                         | rising's (                                                                                                                        | upon cc                                                                                     | mpletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                             | Sample:<br>B - Bulk<br>D - Distt<br>ES - Env<br>Sample<br>BWB Cct<br>Waterfr | s:<br>urbed<br>ironment              | Ground<br>al                         | Lege<br>dwater:<br>Strike<br>Restin<br>Groun<br>Level<br>b:<br>b: | nd<br>Strikes:<br>ndwater<br>ng<br>ndwater | In-Situ Te<br>HSV - Hai<br>Vane Test<br>PID - Pho<br>Detector | <b>ists:</b><br>nd Shear<br>t<br>to Ionisation<br>Test |
| , -                                                                                                            |                                          |                            |                         |                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                    | _ 24                                                                                                                                                                                      | /                                                                                                                                                 |                                                                | 0.2                                                                                                                               | ,                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                             | Station<br>Notting<br>NG2 3D                                                 | Street<br>ham<br>Q                   | E: r<br>@b<br>P: 0                   | wbconsu<br>115 924                                                | m<br>lting.com<br>1100                     |                                                               | Y   ENVIRONMENT                                        |

| TRIAL                            | PIT               | LC                                                | G                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  |                                                      |                                                | Scale: 1                             | :25                                                  |                                 | S                      | sheet 1 of 1          |
|----------------------------------|-------------------|---------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|--------|----------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|------------------------|-----------------------|
| LOCATION IE                      | ): Pro            | ject N                                            | lame                              | : Lake                                                                                                                                                                                                                   | eview Dri                                                                                                                                                                                                                                            | ve, Bicest                                                                                                                                                                                   | er                                                                                                                                              |                                                                                                                                                                         |             |                                                                      |        |                                  |                                                      |                                                |                                      |                                                      | 2.00                            |                        |                       |
| TD126                            | Pro               | ject N                                            | lumb                              | er: NTE                                                                                                                                                                                                                  | 2366                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  |                                                      |                                                |                                      |                                                      |                                 | ( )                    | ]                     |
| 17120                            | Clie              | ent:                                              |                                   | Slad                                                                                                                                                                                                                     | len Estate                                                                                                                                                                                                                                           | es Ltd                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  |                                                      | 0                                              | .65                                  | Pit Dim                                              | iensioi                         | ns (m)                 | Degrees               |
| Hole Type: TP                    | Pla               | nt: J                                             | CB 3C                             | X                                                                                                                                                                                                                        | Start &                                                                                                                                                                                                                                              | End Date                                                                                                                                                                                     | :                                                                                                                                               | 16/08/2                                                                                                                                                                 | 017         |                                                                      |        |                                  |                                                      | Stabili                                        | ty: Re                               | main s                                               | table t                         | hrough                 | out                   |
| Ground Leve                      | l (m A            | OD):                                              | 66.                               | .95                                                                                                                                                                                                                      | Easting                                                                                                                                                                                                                                              | s & North                                                                                                                                                                                    | nings:                                                                                                                                          | 457810                                                                                                                                                                  | E 2216561   | N                                                                    |        |                                  | E                                                    | Inginee                                        | er: LC                               |                                                      | Che                             | cker:                  | RPD                   |
| Groundwater                      |                   |                                                   |                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      | St                                                                                                                                                                                           | trata                                                                                                                                           |                                                                                                                                                                         |             |                                                                      |        |                                  | 9                                                    | Sample                                         | s                                    |                                                      | In-S                            | itu Test               | S                     |
| Strike Details                   | Backfill          | Level (m<br>AOD)                                  | Thickn<br>ess                     |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              | Descriptio                                                                                                                                      | on                                                                                                                                                                      |             |                                                                      | Legend | Depth<br>(m bgl)                 | Туре                                                 | From (m)                                       | To (m)                               | Туре                                                 | Depth<br>(m)                    | R                      | esult                 |
|                                  |                   | AOD)<br>66.65<br>66.30<br>64.95<br>64.55<br>64.50 | ess 0.30m 0.35m 1.35m 0.40m 0.05m | Grass o<br>with fre<br>angular<br>(Topsoi<br>Firm br<br>sandy C<br>rounde<br>Rare sh<br>(Made<br>0.3m - 0<br>drain.<br>0.55m -<br>Stiff gre<br>occasio<br>(Alluviu)<br>Firm da<br>sub-ang<br>(Weath<br>Extrem<br>(Cornbr | ver brow<br>equent ro<br>r to sub-a<br>l)<br>own occa<br>CLAY. Gra-<br>d, sandst<br>ell fragm<br><u>Ground)</u><br>1.55m: Coa<br><u>0.65m: 100</u><br>ey mottle<br>mal sand<br>im)<br>ark grey g<br>gular mu-<br>ered Kell<br>ely stron<br>rash Form | rn slightly<br>potlets th<br>ingular fli<br>asionally<br>vel is fine<br>cone and<br>eents.<br><u>Travelly Cl</u><br>d orange<br>lenses.<br>(aways Cl<br>g dark green<br>nation)<br>Hole Term | clayey s<br>roughou<br>int and s<br>mottled<br>and me<br>limestor<br>ular grave<br>and drain n<br>and wh<br>LAY. Grav<br>ey LIMES<br>ninated at | slightly gr<br>ut. Gravel<br>candstone<br>grey slig<br>edium suk<br>ne. Occas<br>el noted to k<br>noted.<br>ite sandy<br>vel is fine<br>hber)<br>STONE (n<br>2.45m bgl. | and med     | ND<br>coarse<br>e brick.<br>elly<br>to sub-<br>tlets.<br>a land<br>h |        | 2.40<br>2.40<br>2.40<br>2.40<br> | ES<br>ES<br>D<br>B                                   | 0.10<br>0.40<br>0.70<br>0.80<br>1.00           | 0.20<br>0.50<br>0.80<br>0.90<br>1.50 |                                                      | (m)                             |                        |                       |
|                                  |                   |                                                   |                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        | -                                |                                                      |                                                |                                      |                                                      |                                 |                        |                       |
|                                  |                   |                                                   |                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      | Remarks                                                                                                                                                                                      |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  |                                                      |                                                |                                      | Lege                                                 | nd                              |                        |                       |
| Reason for Ter                   | minati            | on:                                               |                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  | Sample                                               | s:                                             | Grour                                | dwater S                                             | trikes:                         | In-Situ Te             | sts:                  |
| Terminated in I                  | nard gr           | ound                                              |                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  | B - Bulk<br>D - Distu                                | urbed                                          | $\nabla$                             | Groun<br>7 Strike                                    | dwater                          | HSV - Har<br>Vane Test | ıd Shear              |
| Groundwater I<br>No groundwate   | Notes:<br>er encc | ountere                                           | ed                                |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                         |             |                                                                      |        |                                  | ES - Envi<br>Sample                                  | ironmenta                                      |                                      | - Restin<br>Groun<br>Level                           | g<br>dwater                     | PID - Phot<br>Detector | :o Ionisation<br>Test |
| Other Remarks<br>1. No olfactory | s:<br>or visu     | ial evic                                          | dence                             | of contam                                                                                                                                                                                                                | ination nc                                                                                                                                                                                                                                           | oted. 2. Ba                                                                                                                                                                                  | ckfilled w                                                                                                                                      | ith arising                                                                                                                                                             | 's upon cor | mpletion.                                                            |        |                                  | BWB Co<br>Waterfr<br>Station S<br>Nottingl<br>NG2 3D | onsulting L<br>ont House<br>Street<br>ham<br>Q | td Wel<br>bwb<br>E: n<br>@b<br>P: 0  | o:<br>consultir<br>ottinghar<br>wbconsul<br>115 9241 | ng.com<br>n<br>lting.com<br>100 | BN                     |                       |



APPENDIX 3 DRILLERS' LOGS

|                                                   | Name                 | Rig Type        |            |                 |                     |   |                        |   |   | From           | Casing Red                      | Servi                           | Rig S                           | Remarks:                           |    |    |                           |    |   |      |    |   |   |   |   |   | 5.00      | )       | 2.10      |               | 0,90                | 96                    | (mbgl)                                  | Depth                | Job Ref:        | (                                                         | ר<br>ה                                     |
|---------------------------------------------------|----------------------|-----------------|------------|-----------------|---------------------|---|------------------------|---|---|----------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|----|----|---------------------------|----|---|------|----|---|---|---|---|---|-----------|---------|-----------|---------------|---------------------|-----------------------|-----------------------------------------|----------------------|-----------------|-----------------------------------------------------------|--------------------------------------------|
| The ah                                            | NBinna               | Dando           |            |                 |                     | _ |                        |   |   | To Description | fluced from                     | ce Pit up to 1 ho               | et Up up to 1 ho                | (Standing time, daywork            |    |    | Rorehole completed at (m) | 6  |   |      |    |   |   |   |   |   | glay      |         | HICM      |               | firm                | grass                 |                                         |                      | ME236           |                                                           | otro                                       |
| nue are the driller'                              | X 1) Time off site   | Time on Site    |            |                 |                     |   |                        |   |   |                | đ                               | a<br>X                          | я<br>Х                          | s, in situ testing, visitors etc.) |    |    | -                         |    |   |      |    |   |   |   |   |   | limestor  |         | glay      |               | orange/yr           | over                  |                                         |                      | Site Location:  |                                                           | ווא איז איז איז איז איז איז איז איז איז אי |
| r cita docarintiana and factual data only and are | 6 PM                 | 7,30 AM         |            |                 |                     |   |                        |   |   |                | at metres Time taken (dayworks) | Time taken over 1 hour (daywork | Time taken over 1 hour (daywork |                                    |    |    | Borehole continues        |    |   |      |    |   |   | • |   |   | ne        | L.      | Clay      |               | ay/brown sandy clay | tirm brown sandy clay |                                         | Strata Description   | Bicester        |                                                           | DRILLING LOG                               |
| subject to amen                                   | F                    | SPT/CPT U/UT    | Sample     |                 |                     |   |                        |   |   | I              |                                 | 5                               | s                               | Dayworks Standing<br>hours hours   | -  |    |                           |    |   |      |    |   |   |   |   |   | 57 320    | 26 300  | RS 2:00 2 | 5 4 2.00 2    | 1 00-1 25           | 1080 28               | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | Test Type From (m)   | client: BW      | Те                                                        | Rig cre                                    |
| dment after ch                                    | ω                    | W B QS/C        | quantities | Quantity (bags) | Well Materials Used |   | Well Diameter          |   |   |                |                                 | 3.10-3.20                       | And the first                   | From (m) to (m)                    |    |    |                           |    |   |      |    |   |   |   |   |   | 25/5 50/0 | 12 13/6 | 8         | Ř -           | 1 1 54.             | 00                    | 0.75 75-150                             | o(m)                 | B               | Unit E2018, Warmco In<br>1: 01457 833910, Fax: 01457 83   | v<br>V                                     |
| orking hu or u                                    | Foreman's Signature  | Foreman's Name  |            | U<br>-          | Gravel Bento        | 5 |                        |   |   |                |                                 | 60Min                           |                                 | 18<br>Time (mins)                  |    |    |                           |    |   |      |    |   |   |   |   |   | 2         | 5 50/0  |           | - 2           | 12                  |                       | 150-225 225-300                         | SPT                  | Day:            | 1dustry Park, Manchester Rc<br>33920, Email: info@geotron | Bthin                                      |
| nder the cupe                                     |                      |                 |            |                 |                     |   | Other N                |   |   |                |                                 |                                 |                                 | Time Depth (m) Rate o              |    | -  |                           |    |   |      |    |   |   | 6 |   |   |           | •       |           | 2<br>20<br>20 | 1 2 6               |                       | 300-375 375-450 KP                      | NVak                 | thuisday        | rad, Mossley, OLS 9AY;<br>uk.co.uk, www.geotronuk.c       |                                            |
| nuicion of a                                      |                      |                 |            |                 |                     |   | laterials Used (e.g    |   |   |                |                                 |                                 | 5                               | f Rise Vater St                    |    |    |                           |    |   |      | _  |   |   |   |   |   |           |         |           |               |                     |                       | A Piston blows                          | se or U100/ R        | Date:           | o.uk                                                      | B                                          |
| n onninger or I                                   | Engineer's Signature | Engineer's Name |            |                 |                     |   | lost cones/shoes etc.) |   |   |                |                                 |                                 | 10 15 2                         | Rising to (mins)                   |    |    |                           |    |   |      |    |   |   |   |   |   | 1.0001    | 1.00 05 |           | 1.00 0        | 0.90 0              |                       | (%) Deputi (m) (i                       | tecovery Casing Wate | 11/8/17         | Sheet of                                                  | orehole Referen                            |
| reologist.                                        |                      |                 | Well1      |                 |                     |   |                        |   |   |                |                                 |                                 | 10                              | Total 3                            | ba | 99 | 2                         | 0} |   | )iai | Ve | ( |   |   |   |   | 1         | 6       | enr       | 0.<br>V       | 69                  |                       | а<br>(1                                 | r level Liner size   | Borel           | Weather D                                                 | ICE BH 1                                   |
|                                                   |                      |                 | Tag        |                 |                     |   |                        | ļ | 1 | _              |                                 | -                               | 121                             | M                                  | 5  | 1  | 24                        | 1  | 4 | 1    | 1  |   | 1 | 1 | 1 | 1 | 1         | P       | air       | 1             |                     | 1                     | stallation Details                      | 00111                | hole Diameter(s | 2                                                         | P                                          |

| er or                                                            | an enginee       | supervision of a       | y or under the                                         | hecking b                               | C It after cl                           | iendmer               | r ct to am    | e subje  | 5 PM                            | are the driller's si    | The above                 | Name N            |
|------------------------------------------------------------------|------------------|------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|---------------|----------|---------------------------------|-------------------------|---------------------------|-------------------|
| Engineer's Signature                                             |                  |                        | gnature                                                | Foreman's S                             | L                                       |                       |               | =        |                                 | Time off site           | 0000                      | V. V              |
| Engineer's Name                                                  |                  |                        | Name                                                   | Foreman's                               | 8 W                                     | as/a                  | CPT U/UT      | SPT/     | 7,20AM                          | Time on Site            | hado                      | Rig Type          |
|                                                                  |                  |                        |                                                        |                                         | ιx                                      | nple quantitie        | San           | +        |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        | 3                                       | ntity (bags)                            | Quar                  |               |          |                                 |                         |                           |                   |
|                                                                  |                  |                        | Boato                                                  | n 2M 10                                 | M Scree                                 | Plain                 | 12-21         |          |                                 |                         |                           |                   |
| aterials Used (e.g. lost cones/shoes etc.)                       | aterials Used (e | Other M                |                                                        | ·                                       | l Diameter                              | Well                  |               |          |                                 |                         |                           |                   |
|                                                                  |                  | $\vdash$               |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  | -                      |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  | -                      |                                                        |                                         |                                         |                       |               |          |                                 |                         | Description               | From To           |
|                                                                  |                  | -                      |                                                        |                                         |                                         |                       |               |          | at metres Time taken (dayworks) | t                       | om                        | Casing Reduced fr |
|                                                                  |                  |                        | 5                                                      | 60%                                     | -3.30                                   | 316                   |               | orks)    | Time taken over 1 hour (daywo   | ×                       | up to 1 hour              | Service Pit       |
| 5 10 15                                                          | 5                |                        |                                                        |                                         | a bud as the                            |                       |               | orks)    | Time taken over 1 hour (daywo   | ×                       | up to 1 hour              | Rig Set Up        |
| Water Strikes<br>Rising to (mins)                                | Water            | fimil Rate o           | inst Time Death                                        | ing<br>Time for                         | Chiselli                                |                       | orks Standing | Dayw     |                                 | testing, visitors etc.) | g time, dayworks, in situ | Remarks: (Sandir  |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  | -                      |                                                        |                                         | -                                       |                       | -             | $\vdash$ | Borshole continues              | 3.30 M                  | completed at (m)          | Ebrehol           |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         | 2                         |                   |
|                                                                  |                  | -                      |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  | -                      | •                                                      |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               | 1        |                                 |                         |                           |                   |
|                                                                  |                  |                        |                                                        |                                         |                                         |                       |               |          |                                 |                         |                           |                   |
|                                                                  |                  | _                      |                                                        |                                         |                                         |                       |               |          | e                               | limeston                | gray                      | 3.00              |
| 000.1                                                            |                  | +                      |                                                        | 0                                       | 25/6 50/                                |                       | 3.30          | 95       |                                 | ġ                       |                           | ,                 |
| 1.00 0                                                           |                  | -                      |                                                        | 0                                       | 105 5/52                                | 545                   | 3.00          | 52       | ay                              | iay ci                  | THE S                     | 2.66 3.           |
| 1 1.00 6                                                         | -                | 7                      | 234                                                    | 2                                       | - 2                                     | 2.45                  | 1 2.00        | 54       |                                 | and Ir c                |                           |                   |
| 10000                                                            | 03               | 6                      | 1 2 2                                                  | 1                                       | 1 1                                     | 1.45                  | \$ 1.00       | 53       | In mother clau                  | hay / hay               | im c                      | 4 050             |
| 0.00                                                             |                  |                        |                                                        |                                         |                                         | 1.00                  | 20.70         | 33       | blown sandy clay                | ier linn                | rass or                   | 62                |
| a or U200/ Recovery Casing Wat<br>A Piston blows (%) Depth (m) ( | A Piston blows   | 450 N Valu             | 225-300 300-375 375-4                                  | ) 150-225                               | 0-75 75-150                             | To (m)                | ype From (m)  | ) Text   | Strata Description              |                         |                           | Depth<br>(mbgl)   |
| Date: 17/8/11                                                    | Date:            | Sder                   | Day: Thur                                              |                                         |                                         | 22                    | a<br>S        | Clier    | Bicester                        | Site Location:          | E2366                     | Job Ref: NT       |
| uk Sheet of                                                      | uk               | 5 9AY;<br>geptronuk.co | nchester Road, Mossley, OL<br>o@geotronuk.co.uk, www.g | Industry Park, Ma<br>833920, Email: inf | : E2018, Warmen 1<br>3910, Fax: 01457 8 | Unit<br>Tel: 01457 83 | -             | -        |                                 |                         |                           |                   |
| Borehole Referen                                                 | 200              |                        | AM                                                     | JBF                                     | 1                                       | crew                  | Rig           |          | DRILLINGLOG                     |                         | ÷))                       | ר<br>ס<br>ר       |
| _                                                                |                  |                        | ~ ~ ~                                                  | 1                                       | _                                       |                       |               | -        |                                 |                         |                           |                   |

PD020 14/07/2016

|                                                                    |                                                                                                                | Rig c              | rew 7                                                   | JBYAN                                                        | >                                                   | <b>Borehole Reference</b>                           | RH 107                         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------|
|                                                                    | DRILLING LOG                                                                                                   |                    | Unit E201B, Warmco I<br>Tel: 01457 833910, Fax: 01457 8 | ndustry Park, Manchester Roa<br>33920, Email: Info@geotronul | d, Mossley, OLS 9AY;<br>.co.uk, www.geotronuk.co.uk | Sheet of                                            | weather PRY                    |
| ob Ref: NTE 7366 Site Location:                                    | Bicester                                                                                                       | client: B          | 8                                                       | Day:                                                         | Netnesday Date                                      | 16/8/17                                             | Borehole Diameter(s)           |
| Depth<br>(mbgl)                                                    | Strata Description                                                                                             | Test Type Fram (m) | Yo (m) 0-75 75-150                                      | SPT<br>150-225 225-300 3                                     | 00-375 375-450 N Value or U100/ Pist                | on Recovery Casing Depth Water level<br>(%) (m) (m) | Uner size installation Details |
| GL grass over still                                                | t brown sandy clay                                                                                             | B1 0.10            | 0.60                                                    |                                                              |                                                     |                                                     | E                              |
| old stiff orange 16                                                | nown sandy clay                                                                                                | 53 100             | 1.45 2 1                                                | 1                                                            | 2 2                                                 | 0.30 014                                            | IT IN                          |
|                                                                    |                                                                                                                | SS 2.00            | 2.6 2 1                                                 | 4<br>14                                                      | 222                                                 | 1-M OH                                              | 001                            |
| 10 Stiff June 1001                                                 | UN CIALY                                                                                                       | 86 2.30            | 2.76                                                    |                                                              |                                                     | -                                                   | / k                            |
| 2.30 CIN aran ric                                                  | 5                                                                                                              | 57 300             | 3.2025/5 50/                                            |                                                              |                                                     | 1.00 Pry                                            |                                |
|                                                                    |                                                                                                                | 58 3.30            | 3.40 25/5 501                                           |                                                              |                                                     | 1.00 Dry                                            |                                |
| 200 Sray lime Sto                                                  | ne l                                                                                                           |                    |                                                         |                                                              |                                                     |                                                     | 7                              |
|                                                                    |                                                                                                                |                    |                                                         |                                                              |                                                     |                                                     |                                |
|                                                                    |                                                                                                                |                    |                                                         |                                                              |                                                     |                                                     | 1<1                            |
|                                                                    | ,                                                                                                              |                    |                                                         |                                                              |                                                     |                                                     | 3ra<br>T<br>te                 |
| BH Cont: N Y/N Casing (depth m) · 1 /M                             | BH Complete (depth) · Z · D                                                                                    |                    |                                                         |                                                              |                                                     |                                                     | 01                             |
|                                                                    | 2                                                                                                              |                    |                                                         |                                                              |                                                     |                                                     | \$<br> <br>+                   |
| (emarks: (Standing time, dayworks, in situ testing, visitors etc.) |                                                                                                                | Dayworks/Standing  | Chisellin<br>From (m) to (m)                            | g Time (mins)                                                | Time Depth (m) Rate of Rise W                       | ater Strikes<br>Rising to (mins)                    | intal<br>a con<br>L            |
| Rig Set Up up to 1 hour                                            | Time taken over 1 hour (dayworks)                                                                              |                    |                                                         | , internet                                                   | UT                                                  | 10 15 20                                            | 12.                            |
| Service Pit up to 1 hour                                           | Time taken over 1 hour (dayworks)                                                                              |                    |                                                         | 60min                                                        |                                                     |                                                     | 4                              |
| From To Description                                                | tanana tanana antara atara |                    | 240-240                                                 |                                                              |                                                     |                                                     |                                |
|                                                                    |                                                                                                                |                    |                                                         |                                                              |                                                     |                                                     |                                |
|                                                                    |                                                                                                                |                    |                                                         |                                                              | Oshor Masouile Heo                                  | l (n ar last source (shour other)                   |                                |
|                                                                    |                                                                                                                |                    | Weil Oldinetei                                          |                                                              |                                                     |                                                     | [                              |
|                                                                    |                                                                                                                |                    | Plain Screer                                            | Crawel Bento                                                 |                                                     |                                                     | 0                              |
|                                                                    |                                                                                                                |                    | Quantity (bags)                                         | 1 4                                                          |                                                     |                                                     |                                |
|                                                                    | -                                                                                                              | Sam                | ple quantities                                          |                                                              |                                                     | Fundamenta Blance                                   | WellTag                        |
| Rig Type Dando Time on Site                                        | 7.30 AM                                                                                                        | SPT/CPT U/UT       | D/SD B W                                                | Foreman's Name                                               |                                                     | Engineer's Name                                     |                                |
| Name W. Ginnall Time of site                                       | SpM                                                                                                            | F                  | F                                                       | Foreman's Signature                                          |                                                     | Engineer's Signature                                |                                |
| The above are the driller's s                                      | ite descriptions and factual data only and are su                                                              | ibject to ame      | ndment after che                                        | cking by or unc                                              | ler the supervision of                              | an engineer or geolog                               | vist.                          |

PD020 14/07/2016

o.so him yellow/brown sandy gravely clay 1.20 still gray clay 5 250 gray Mu lime Stone JOB REF: NTE2.36 Depth (mbgl) Ceptron UK Casing Reduced from Rig Type emarks: (Standing time, dayworks, in situ testing, visitors etc.) From Name Service Pit Rig Set Up **BH Cont** grass NBinnall Ъ Dando NAN Description up to 1 hour up to 1 hour The above are the driller's site descriptions and factual data only and are subject to amendment after checking by or under the supervision of an engineer or geologist. Casing (depth m) - 23 over stiff brown sandy clay to Site Location: Time off site Time on Site BH Complete (depth) -Strata Description 2 Ricester 08 Prid DRILLING LOG metres 2.70m Time taken over 1 hour (dayworks Time taken over 1 hour (dayworks Time taken (dayworks) B1 0.10 0.40 B2 0.50 1.40 S3 1.00 1.45 B4 1.20 2.00 S5 2.00 2.45 S5 2.55 25 LS Client: SPT/CPT Test Type Dayworks/Standing £ 2.602.70 25/5 50/5 From (m) U/UT BWB Sample quantities To (m) D/SD 2-55-2.60 Unit E2018, Warmoo Industry Park, Manchester Road, Mossley, OLS 9AY; Tel: 01457 839910, Fax: 01457 833920, Email: Info@gendronuk.co.uk, www.geodronuk.co.uk Plain Well Materials Used Quantity (bags) Well Diameter From (m) to (m) 25/15/20/10 (M Screen 0-75 8 75-150 Chiselling N N ٤ NBTAM 150-225 225-300 300-375 375-450 Somin is v 3 W Gravel Bento Foreman's Name Time (mins) Day: Wednesday Date: x Time 250 Fust f 3 Depth (m) Rate of Rise Other Materials Used (e.g. lost cones/shoes etc.) 2 KPA N U100/ Piston blows Water Strikes Recovery (%) 6 Engineer's Signatur Rising to (mins) Engineer's Name 10  $\overline{\infty}$ 1.90 014 Casing Depth Water level (m) (m) 0.90 Dry 2.001.80 Sheet 15 ę, 1.80 BHiob Weather Ory Unor size Total Well Tag glavel bento Borehole Diameter(s) 3 IGOMM Installation Details 3 Plain Slotted m 1.5

**Rig crew** 

**Borehole Reference** 

PD020 14/07/2016

PD020 14/07/2016

| אווייס איז                           | Time off stra                | Rig Type SOC A A                           | -                 |                     |                                  |                       |                                               |   |   | From To Description | Casing Reduced from to          | Service Pit up to 1 hour        | Rig Set Up up to 1 hour         | Remarks: (Standing time, dayworks, in situ testing, visitors etc.) |   | BH CONT N VIN Casing (depart m)- C 1-V | 0.40 Firm orange/b<br>2.20 Firm gray g<br>3.40 gray limesto |                 | Depth<br>(mbgl)                                                                                                                                                             | Job Ref: NTE2366 Stee Location:    |                                                                                                                                                                |                      |
|--------------------------------------------------------------------------|------------------------------|--------------------------------------------|-------------------|---------------------|----------------------------------|-----------------------|-----------------------------------------------|---|---|---------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------|---|----------------------------------------|-------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| site descriptions and factual data only and are.                         | 1.12 - 11                    | 7. 20 AM                                   |                   |                     |                                  |                       |                                               |   |   |                     | at metres Time taken (dayworks) | Time taken over 1 hour (daywork | Time taken over 1 hour (daywork |                                                                    |   | au company                             | fown sandy clay                                             | in has could in | Strata Description                                                                                                                                                          | Bieester                           |                                                                                                                                                                |                      |
| ubject to amendment after checking by or under the supervision of an eng | A Foreman's Signature Engine | SPT/CPT U/UT D/SD B W Foreman's Name Engin | Sample quantities | Quantity (bags) S 2 | Well Materials Used Graved Banto | Plain 1 Screen 2.5 to | Well Diameter Other Materials Used (e.g. lost |   |   |                     |                                 | 3.40-3.50 60 Mill               | 5 10                            | Dayworks/Standing Chiselling Water Strikes Water Strikes Rish      |   |                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$       | R1 0.10 0.1.0   | Test Type         From (m)         To (m)         0-75         75-150         150-225         225-300         300-375         375-450         KPA         Blows         (%) | client: QWB Day: TUESday Date: 151 | Unit E2018, Warmco Industry Park, Manchester Read, Mossley, OLS 9AV;<br>Tel: 01457 833910, Fax: 01457 833920, Email: Info@geotronuk.co.uk, www.geotronuk.co.uk | Rig crew NB+AM Borel |
| gineer or geolo                                                          | neer's Signature             | ginaer's Name                              |                   |                     |                                  |                       | st cones/shoes etc.)                          |   |   |                     |                                 |                                 | ) 15 20                         | rs<br>Ing to (míns)                                                |   | -                                      |                                                             |                 | nry Casing Depth Water level<br>(m) (m)                                                                                                                                     | 18/17                              | Sheet of                                                                                                                                                       | ehole Reference      |
| vgist.                                                                   |                              |                                            | Well Tag          |                     |                                  |                       | Ę                                             | 2 | 7 | Z                   | .5                              |                                 | 5                               | Total M                                                            | 1 |                                        | ed implain r<br>avel 2 berto 2                              |                 | Liner size Installation Details                                                                                                                                             | Borehole Diameter(s                | Weather Dry                                                                                                                                                    | BH 100               |

\_\_\_\_\_

| - 70 |
|------|
|      |
| 0    |
| N    |
| 0    |
| 1.0  |
| 44   |
| 2    |
| 2    |
| -    |
| N    |
| 0    |
| ÷    |
| 5    |

| The above are the driller's site descriptions and j   | Nome W. BINNCII TIMe off site 6 PM | NETIDO DOLADO TIMO OS SEC. 7.30 |                   |                 |                    |                      |                                       |  | From To Description | Casing Reduced from to at metres | Service Pit up to 1 hour          | Rig Set Up up to thour                    | Remarks: (Standing time, dayworks, in situ testing, visitors etc.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BH Cont N Y/N Casing (depth m) - 2 T 1 BH Complete (depth) - 5 - |    |    |   | 1746 | Linestone | avot Stontal hold and | have grave crack | D.(n 0. 1)      |                | Orta FILM BOWN /gray Mott |                   | Clay          | le juss over him blow |              | Depth Strata Description                                                                                                                                                           | LOD REF: NTEZZL SITE LOCATION: RILESTET |                                                                                                                       | DRILL               |
|-------------------------------------------------------|------------------------------------|---------------------------------|-------------------|-----------------|--------------------|----------------------|---------------------------------------|--|---------------------|----------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----|----|---|------|-----------|-----------------------|------------------|-----------------|----------------|---------------------------|-------------------|---------------|-----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|
| rctual data only and are subject to amendment after c | 4 3                                | 1 M SPT/CPT U/UT D/SD 8         | Sample quantities | Quantity (bags) | Well Materials Use | Plain ( Sc           | Well Diameter                         |  |                     | Time taken (dayworks)            | Time taken over 1 hour (dayworks) | Time taken over 1 hour (dayworks)         | Dayworks/Standing Chi                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |    |    |   |      |           |                       |                  | 57 3.20 25/0 50 | 56 3.00 300 25 | en clary BS 2.50 3.00     | Sur 2:00 2:45 1 2 | 53 100 145 1  | ~ Sand 4 B2 0.40 100  | B 1 0.0 0.44 | TestType From (m) To (m) 0.75 75                                                                                                                                                   | client: BWB                             | Unit E2019, Wam<br>Tel: 01457 839310, Fau: 014                                                                        | NG LOG Rig crew     |
| checking by or under the supervision of an engined    | annstiffes sustained               | W Foreman's Name Engineer's Na  |                   | 4 2             | ed Gravel Bento    | men 2 " SPt Shino di | Other Materials Used (e.g. lost cones |  |                     |                                  | 60MM                              | Time (mins) Time vepun (m) reasonate 5 10 | iselling Water Strikes                                             | and the second se |                                                                  |    |    |   |      |           |                       |                  | 1/5             |                |                           | 223411            | 1 1 2 2 2 7 0 |                       |              | SPT         N Value of U100/ Pitton Recovery Casin           1-150         150-225         225-300         300-375         375-450         KPA         blows         (%)         ( | Day: THESOLOGY Date: 15/8               | mco industry Park, Manchester Road, Mossley, OLS 9AY;<br>457 833920, Email: Info@geotronuk.co.uk, www.gnotronuk.co.uk | CLT FTY Borenole    |
| er or geologist.                                      |                                    | lame                            | Well Tag          |                 | ri ugeg            | concept [            | ;/shoes etc.)                         |  |                     | 4                                | 6                                 | 15 20 100                                 |                                                                    | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a ]                                                              | ve | 21 | 1 |      |           |                       |                  | 2               | . b            | er                        | -0 P/9 8.         | 80 0(4) 08.   | J                     | 577          | Ing Depth Water level Liner size (m) (m) (m) Liner size Installation Details                                                                                                       | P / 1 / Borenoie Diameter(s)            | set of Weather DFY                                                                                                    | Reference IS MININS |

| 25  |
|-----|
| 20  |
| õ   |
| ~   |
| ÷   |
| æ   |
| 3   |
| 23  |
| 2   |
| 1.5 |
| 8   |
| 25  |

| The above are th                                             | Neme N. BINNWI)      | METYPS DOMON          |                      |                 |                     |           |                                      |  | From To Description | Casing Reduced from to 1        | Service Pit up to 1 hour           | Rig Set Up up to 1 hour            | Remarks: (Standing time, dayworks, in situ testing, visitor |    | BH Cont N Y/N Casing (depth m) - |           |   |    |   |    |   |    |   | 2.00 gray Mudsto |            | 1.70 film orenge   | Clay         | GL Glass Over          |                  | Depth (mbel)                                                      | Job Ref: NTE 2366 Site Lo |                                                                                                                   |                    |
|--------------------------------------------------------------|----------------------|-----------------------|----------------------|-----------------|---------------------|-----------|--------------------------------------|--|---------------------|---------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------|----|----------------------------------|-----------|---|----|---|----|---|----|---|------------------|------------|--------------------|--------------|------------------------|------------------|-------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|
| he driller's site descriptions and factual data only and are | eoffste GPM          | a, 45-AM              |                      |                 |                     |           |                                      |  |                     | at metres Time taken (dayworks) | //№ Time taken over 1 hour (daywor | / N Time taken over 1 hour (daywor | ns etc.)                                                    |    | 2 M BH Complete (depth) · 2.1    |           |   |    |   |    |   |    |   | No.              |            | brown Mottled Clay | -            | LILL DOMU SHIPS DIGNEY | I'm han and a la | Strata Description                                                | ocation: Bicester         |                                                                                                                   | DRIIIINGIOG        |
| subject to amendment after cl                                | 2                    | SPT/CPT U/UT D/SD B V | Sample quantities    | Quantity (bags) | Well Materials Used | Plain Scr | Well Diameter                        |  |                     |                                 | s) 2N-2.101                        | (5)                                | Dayworks/Standing Chise                                     | -  |                                  |           |   |    |   |    |   |    |   |                  | 105/1/2 55 | 5 14 2.00 25/55 59 | B3 1.70 2.00 | 52 1.00 1.45 S q       | B1 0.200.70      | Test Type From (m) To (m) 0.75 751                                | client: BWB               | Unit E2018, Warme<br>Tel: 01457 833910, Fax: 0145                                                                 | Rig crew           |
| necking by or under the supervision                          | Foreman's Signature  | V Foreman's Name      |                      | 3 1             | Gravel Bento        | to to     | Other Material                       |  |                     | Gonin                           |                                    |                                    | lling<br>Time (mins) Time   Depth (m)   Rate of Rise        |    |                                  |           |   |    |   |    |   |    |   |                  | 8          |                    |              | 6 4 2 2 14             |                  | SPT Viewer U10<br>150-225 225-300 300-375 375-450 KPA 1           | Day: Mordery              | o Industry Park, Manchester Roed, Mossley, OLS 9AY;<br>7 839920, Email: info@geotronuk.co.uk, www.geotronuk.co.uk | NB TAM             |
| n of an engineer or geolog                                   | Engineer s signature | Logineer's Name       | To obtain the Blance |                 |                     |           | is Used (e.g. lost cones/shoes etc.) |  |                     |                                 |                                    | 5 10 15 20                         | Water Strikes<br>Rising to (mins)                           |    |                                  |           |   |    |   |    |   |    |   |                  |            |                    |              | 610080                 |                  | 30/ Piston Recovery Cosing Depth Water level to blows (%) (m) (m) | Date: 14/8/17             | Sheet of W                                                                                                        | Borehole Reference |
| ist.                                                         |                      |                       | Well Tag             |                 |                     |           |                                      |  |                     | 7                               |                                    |                                    | 3                                                           | ba | 29                               | S<br>Tete | < | »ł | 9 | 1a | 1 | el | I | 0.5              | be<br>5 P  | :17<br>?1a         | n<br>n       | Å                      | ]                | Liner size Instaliation Details                                   | ISOMW                     | veather dry                                                                                                       | 31104              |

|                                                                    |                                                   | Dit room ADL ANN                                                                                                                                                                                                            | Rorahole Reference                               | _           |
|--------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|
| Ceotron UK                                                         | DRILLING LOG                                      | Unit E2018, Warmoo Industry Park, Manchester Road, Mossley, OLS SAY;<br>Tel: 01457 833910, Fax: 01457 833920, Email: Info@gedtronuk.co.uk, www.geotronuk.co.uk                                                              | Sheet of                                         | Neather D ( |
| 10b Ref: NTE236 Site Location:                                     | Ricester                                          | client: BWB Day: MOAday Date:                                                                                                                                                                                               | L1/8/11                                          |             |
| Depth<br>(mbgl)                                                    | Strata Description                                | Test Type         From (m)         To (m)         From (m)         To (m)         SPT         N Value ave<br>205-300         N Value ave<br>300-375         N Value ave<br>315-450         N Value ave<br>87A         Bioms | Recovery Casing Depth Water level<br>(%) [m] [m] | Liner size  |
| GL grass over brow                                                 | in clay                                           | 31 0.10 0.70 16 6 6 9 29                                                                                                                                                                                                    | 6.80 08.0                                        |             |
| 0.10 weathend stady                                                | Store                                             | 5 3 2.00743 25 50/43 5 15 15 20/65                                                                                                                                                                                          | 1.80 pry                                         |             |
| 2-10 gray Mudstone                                                 |                                                   |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
| BH Cont N V/N Casing (depth m)- 2.M                                | BH Complete (depth) - 3 M                         |                                                                                                                                                                                                                             |                                                  |             |
|                                                                    |                                                   |                                                                                                                                                                                                                             |                                                  |             |
| Remarks: (Standing time, dayworks, in situ testing, visitors etc.) |                                                   | Dayworks/Standing Chiselling Wi                                                                                                                                                                                             | er Strikes<br>Rising to (mins)                   | Total       |
| Rig Set Up up to 1 hour                                            | Time taken over 1 hour (dayworks                  | From (m) to (m)                                                                                                                                                                                                             | 10 15 20                                         |             |
| Service Pit up to 1 hour                                           | Time taken over 1 hour (dayworks                  | 080 3HE 250 taut -                                                                                                                                                                                                          | 1.00                                             |             |
| Casing Reduced from to To Description                              | at metres lime taken (uayworks)                   |                                                                                                                                                                                                                             |                                                  |             |
| NOB 129 8 60                                                       | suprend to ste                                    |                                                                                                                                                                                                                             |                                                  |             |
| Chin Rom OSC                                                       | - 3,00 Aue                                        | Cheer Materials Lieu                                                                                                                                                                                                        | (e.g. lost cones/shoes etc.)                     |             |
| To herd                                                            | Strata                                            | Plain M Screen 2 M to                                                                                                                                                                                                       | leigi mar contra anna chui                       |             |
|                                                                    |                                                   | Quantity (bags) 1 1 7                                                                                                                                                                                                       |                                                  |             |
| 4                                                                  |                                                   | Sample quantities                                                                                                                                                                                                           |                                                  |             |
| Rig Type Oando Time on Site                                        | a.HSAN                                            | SPT/CPT U/UT D/SD B W Foreman's Name                                                                                                                                                                                        | Engineer's Name                                  |             |
| Name N. B. NOC 11 Time off site                                    | Spm                                               | 3     Foreman's signature                                                                                                                                                                                                   | Engineer's Signature                             |             |
| The above are the driller's s                                      | site descriptions and factual data only and are s | ubject to amendment after checking by or under the supervision of                                                                                                                                                           | in engineer or geolo                             | gist.       |

PD020 14/07/2016

>

|                                 | 's Signature                                   | Engineer                                              | Foreman's signature                                         | 2                               | 7                 | 1.Y.                                                 | 200                             | Ianyo r                  | L          |
|---------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-------------------|------------------------------------------------------|---------------------------------|--------------------------|------------|
|                                 | er's Name                                      | Enginet                                               | Foreman's Name                                              | 0/30 B W                        | SPIT/SPE U/UN     | 54.5                                                 | Time off site                   | 1                        | ne /       |
| WellTag                         |                                                |                                                       |                                                             | ole quantities                  | Samp              |                                                      | fime on Site                    | 2                        |            |
| /                               |                                                | p.*                                                   | N - Contraction                                             | Quantity (bags)                 |                   |                                                      |                                 |                          |            |
| $\langle \rangle$               |                                                | ¢                                                     | 2.5 101                                                     | Viell Materials Head            |                   |                                                      |                                 |                          | 11         |
|                                 | ones/shoes etc.)                               | Other Materials Used (e.g. lost co                    | 63                                                          | Well Diameter                   |                   |                                                      |                                 |                          |            |
| 1                               |                                                |                                                       |                                                             |                                 |                   |                                                      |                                 |                          |            |
| <u> </u>                        |                                                |                                                       |                                                             |                                 | is,               |                                                      | instail                         |                          |            |
|                                 |                                                |                                                       |                                                             |                                 |                   |                                                      |                                 | To Description           | om         |
|                                 |                                                |                                                       | - 3 2                                                       | 1.1                             |                   | at metres Time taken (dayworks)                      | to                              | ced from                 | ng Reduc   |
|                                 | 15 20                                          | 5 10                                                  |                                                             | 7 41                            |                   | Time taken over 1 hour (dayworks)                    | /                               | Pit up to 1 hour         | Service    |
| ₽                               | rto (mins) Tot                                 | ne Dupth (m) Rate of Rise Rising                      | Time (mins) Ti                                              | From (m) to (m)                 | hours hours       | Time taken area to be a start of a second start of a | ~                               | Up up to 1 hour          | Rig Set I  |
| <u> </u>                        |                                                | Water Strikes                                         |                                                             | Chise和ng                        | Dayworks Standing |                                                      | in situ testing, visitors etc.) | tanding time, dayworks,  | larks: (St |
|                                 |                                                |                                                       |                                                             |                                 |                   |                                                      |                                 |                          | -          |
|                                 |                                                |                                                       |                                                             |                                 |                   | Borehole continues                                   |                                 | orahole completed at (m) | Bc         |
| <u>-      </u>                  |                                                |                                                       |                                                             |                                 |                   |                                                      |                                 |                          |            |
|                                 |                                                |                                                       |                                                             |                                 |                   |                                                      |                                 | • •                      | Ń          |
|                                 |                                                |                                                       |                                                             |                                 |                   |                                                      | i har                           | nujsio                   | 1          |
|                                 |                                                |                                                       | So                                                          | 2.53725                         | 57/ 2.5           | not snall should                                     | start y                         | わらう                      |            |
|                                 |                                                | 160 /                                                 |                                                             | 2.1                             | LINO 2-           |                                                      |                                 | dar1                     |            |
|                                 | 2                                              |                                                       |                                                             | 2.                              | 22                | en send snevel                                       | Y Lishi Ja                      | TCILON                   | r          |
|                                 |                                                | 57                                                    | 13 15 1                                                     | 1-1-1-1-3                       | 5711-             | nown server snewly 2                                 | verner &                        | chert                    | ŕ          |
| er size<br>Installation Details | ery Cesting Water-invel Un<br>Depth (m) (m) Un | 00.3/25 375-050 KKPA Pision blows (%)                 | 150-225 225-300 3                                           | s) To (m) 0.75 75-150           | TestType From (m) |                                                      |                                 |                          | fideeut    |
| Borehole Diametar(s)            | 418/17                                         | men Date: 16                                          | Day:                                                        |                                 | Client:           | Strata Description                                   | 20                              | NAK LOG                  | Depth      |
| ather                           | Sheet of We                                    | rd, Massley, OIS 9AY;<br>k.co.uk, www.geotronuk.co.uk | annustry Perk, Menchester Ro<br>33920, Email: Info@geotronu | Tel: 01457 833910, Fax: 01457 8 |                   | 0 1010                                               | Site Location:                  | 120071                   | b Ref:     |
| 101                             | ehole Reference                                | culturn Bon                                           | Sin h                                                       |                                 | 9M                | DRILLING LOG                                         |                                 |                          |            |

| ine above are the arilier's site descriptions and factual data only and are | Nem Culture Shapland 18:00 | 1/ondo 2500/1 09115 | Pla Tune On Ste   |                 |                     |           |                                   |                                  |  | 14:00 Isiao Fill water Bowser | rioni 10 Description | From To Description at metres Time taken (dayworks) | Casing Reduced from The taken over 1 hour (daywork | Service Pit us to how Time taken over 1 hour (dayword | Riz Set Ub                 | Remarks: (Standing time, dayworks, in situ testing, visitors etc.) |  | Borehole completed at (m) 4.00 Borehole continues |  |   |  |   |             |          |            |           |               | ing man much scene. | 2.00 from share and change | 0.6 light Brown yellow sundy cluy soft | or mad crovin |                                     | Depth<br>Imbell Strata Description | Job Ref: NTE 2366 Site Location: Bicester |                                                                           | Ceotron UK DRILLING LOG |
|-----------------------------------------------------------------------------|----------------------------|---------------------|-------------------|-----------------|---------------------|-----------|-----------------------------------|----------------------------------|--|-------------------------------|----------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------------------------|--|---------------------------------------------------|--|---|--|---|-------------|----------|------------|-----------|---------------|---------------------|----------------------------|----------------------------------------|---------------|-------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-------------------------|
| a only and are subject i                                                    | 4                          | SPT/CPT             |                   |                 |                     | 14        |                                   | <u></u>                          |  |                               |                      | taken (dayworks)                                    | en over 1 hour (dayworks)                          | en over 1 hour (dayworks)                             |                            | Dayworks                                                           |  |                                                   |  |   |  |   | SPT         | D        | SPT        | a         | 507           | 0                   | 15                         | LdS<br>LdS                             | 2             |                                     | Teat Ture                          | Client                                    |                                                                           | G                       |
| o amendment after c                                                         | 1 4                        | U/UT D/SD B V       | Sample quantities | Quantity (bags) | Well Materials Used | Plain Scr |                                   | Well Diameter                    |  |                               |                      |                                                     | 2m to 4m                                           |                                                       | From (m) to (m)            | /Standing Chi                                                      |  |                                                   |  |   |  | - | 4.0 628 4 . | 3.464.00 | 3.063.45 5 | 2.20 3.00 | 2.20 2.50 4 1 | 1.451.90            | 1.902.20                   | 1.2 165 1                              | 0.0 1.2       | 0-75                                |                                    | 800                                       | Unit E2018, Wa<br>Tel: 01457 833910, Fax: (                               | Kig crew                |
| hecking by or unde                                                          | Foreman's Signature        | V Foreman's Name    | 4                 |                 | d Gravel Bento      | een to    |                                   |                                  |  |                               |                      |                                                     | 3M                                                 |                                                       | Time (mins) Ti             | selling                                                            |  |                                                   |  | _ |  |   | 2 No cars   |          | 5 10 10 1  |           | 2 10 40       |                     |                            | 4661                                   |               | 75-150 150-225 225-300 3            | spi                                | Day:                                      | armoo industry Park, Manchester Ros<br>01457 833920, Email: info@geotronu | CS FOM                  |
| er the supervision o                                                        | N.                         | Um Sigker           |                   |                 |                     |           |                                   | Other Materials L                |  |                               |                      |                                                     |                                                    |                                                       | ime Depth (m) Rate of Rise |                                                                    |  |                                                   |  |   |  |   |             | - 0      | N 05 02 0  |           | 50 N          |                     |                            | 0 12 34 n                              |               | 100-375 375-450 KPA                 | Control                            | vondera                                   | ad, Mossley, OLS 9AY;<br>ik.co.uk, www.geotronuk.co.uk                    |                         |
| of an engineer or geo                                                       | Engineer's Signature       | Engineer's Name     |                   |                 |                     |           | oseo (e.g. iost cones/snoes etc.) | ised (e.e. Inst remee/shoes at ) |  |                               |                      |                                                     |                                                    | 5 10 15 20                                            | Rising to (mins)           | Water Strikes                                                      |  |                                                   |  |   |  | S | 0           | 1        | 14 2 3     |           | 1A 2 /        |                     |                            | 11100 1 /                              |               | blows (%) (m) (                     | 1102180141                         | Date: In I co /ow in                      | Sheet of                                                                  | Borehole Refere         |
| logist.                                                                     |                            |                     | Well Tag          |                 |                     |           |                                   |                                  |  |                               |                      |                                                     |                                                    |                                                       | Total                      |                                                                    |  |                                                   |  |   |  |   |             |          |            |           |               |                     |                            |                                        |               | (m) Liner size Installation Details |                                    | Borehole Diameter(                        | 2 Weather Cloudie                                                         | nce GHI03               |

PD020 14/07/2016

| 0    |
|------|
| N    |
| 0    |
| 14   |
| 25   |
| ~    |
| 0    |
| 1    |
| 22   |
| 22   |
| ~~~~ |
| m    |
|      |

| Ceptron UK                                                      | Bicester<br>Strate Description              | Client: 13 (      | E C E                          | rew         unit Exots, W           Tel: 01457 8339310, Fear           S           To (m)           0-75 | Tew         CS         Jwanso         Industry Park, Mancha           Tal: 01457 833930, Fau: 01457 833920, Email: Inflo@p         Day         String         Day           S         String         String         Day         String         Day           To (m)         0-75         75-190         150-225         225-3 | rew         CS         + Omega           Unit E2018. Warmoo Industry Fark, Marchaster Road, Mossiley, OLS 9AY           Tel: 01457 8393/0. Fanal: info@gentronud.co.ul, www.gentro           S         Day:         T U CS CC           S         SPT         To (m)         0.75         75-150         150-225         225-300         300-375         375-450 | rew         CS         + Jow           Unit EO21B. Warmoo industry Park. Manchaster Raad. Morsiley, OLS SAY;           Tel: 01457 8393/0. Fault: Class?         Day:         Tue Solution and Loo uit.         Day:         Day:         Date:         Date:         Date:         Date:         Date:         Date:         Str         To (m)         0.75         75:190         150-225         225-300         300-375         375-450         More or Using/ Patan         Bons: |
|-----------------------------------------------------------------|---------------------------------------------|-------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Install From Barn To                                            | 8:45 = 45 min install                       |                   | 0.75                           | 75-150 150-225 225-3                                                                                     | 00 300-375 375-450                                                                                                                                                                                                                                                                                                            | KPA blows                                                                                                                                                                                                                                                                                                                                                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                               |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.00                                                            |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| arks: (Standing time, dayworks, in situ testing, visitors etc.) |                                             | Dayworks/Standing | 9                              | selling                                                                                                  |                                                                                                                                                                                                                                                                                                                               | Water                                                                                                                                                                                                                                                                                                                                                            | trikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lig Set Up up to 1 hour                                         | Time taken over 1 hour (dayworks            | s                 | From (m) to (m)                | Time (mins)                                                                                              | Time Depth (m) R                                                                                                                                                                                                                                                                                                              | ste of Rise                                                                                                                                                                                                                                                                                                                                                      | Rising to (mins)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reduced from to                                                 | at metres Time taken over 1 hour (dayworks) | <u>s</u>          |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| m To Description                                                |                                             | 1_1               |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             |                   |                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             |                   | Well Diameter                  |                                                                                                          | Oth                                                                                                                                                                                                                                                                                                                           | r Materials Used (e.                                                                                                                                                                                                                                                                                                                                             | . lost cones/sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 |                                             |                   | Plain Sc<br>Well Materials Use | d Gravel Bonto                                                                                           | Imoter                                                                                                                                                                                                                                                                                                                        | Scotted                                                                                                                                                                                                                                                                                                                                                          | MWS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Time on Sile                                                    |                                             | Sar               | mple quantities                |                                                                                                          | - 5 2 2 2                                                                                                                                                                                                                                                                                                                     | entro                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| elando 2500/1                                                   | 07:52                                       | SPT/CPT U/UT      | D/SD B                         | Foreman's Name                                                                                           | 120                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  | Engineer's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                             | -                 |                                | Foreman's Signature                                                                                      | ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | ingineer's Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                    |                                      | Rig               | 3 crew                                              | \$                                               |                                                                | Rorehole Reference                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|--------------------------------------|-------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                      |                   | Unit E2018, Warmco<br>Tel: 01457 833910, Fax: 01457 | Industry Park, Manches<br>833920, Email: info@ee | er Road, Mossley, OLS 9AY;<br>Monuk.co.uk. www.sectronuk.co.uk | Sheet 1 of 1                               | Weather S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Job Ref: WTE2366 Site Location:                                    | Ricester                             | Client: BL        | SC                                                  | Day                                              | T. josdau                                                      | hate: 1/20/04/3                            | Borehole Diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (mbg()                                                             | Strata Description                   | Test Type From (m | s) To (m)                                           | TdS                                              | N Value or U10                                                 | 0/ Piston Recovery Casing Depth Water leve | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GLA TOP Soil                                                       |                                      | B 0.2             | 1.20                                                | 00.021 C23.001                                   | 0 300-375 375-450                                              | funt funt<br>foot connection               | Installation Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P. L Sost Light-yellows scind                                      |                                      | SPT 1.2           | 1. 4 14                                             | 30 20                                            | 50                                                             | 0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.2 Very hurd Bedroch lim                                          | nestone                              |                   |                                                     |                                                  |                                                                |                                            | , <sup>1</sup> ,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            | Grad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     | _                                                |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Borehole completed at (m)                                          | Berehole continues                   |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   | -                                                   |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks: (Standing time, dayworks, in situ testing, visitors etc.) |                                      | Dayworks/Standing | Chisellin                                           |                                                  |                                                                | Water Strikes                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rig Set Up up to 1 hour                                            | Time takes a set of the state of the |                   | From (m) to (m)                                     | Time (mins)                                      | Time Depth (m) Rate of Rise                                    | Rising to (mins)                           | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Service Pit up to 1 hour                                           | Time taken over 1 hour (dayworks)    |                   |                                                     |                                                  |                                                                | 5 10 15 20                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Casing Reduced from to                                             | at metres Time taken (dayworks)      |                   | 1-2-1.20                                            | 60muns                                           |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| From To Description                                                |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10:10 10:40 Jonin's Inchall                                        |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     |                                                  |                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   | Well Diameter                                       |                                                  | Other Materials U                                              | sed (e.g. lost cones/shoes etc.)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   | Plain Screen                                        | 6                                                | o. Smeter Plan                                                 | 1 Mw8(over                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   | Quantity (bags)                                     | Gravel Bento                                     | 1 Out Incured                                                  | Gollow Cons                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Time or Side                                                       |                                      | Samj              | ple quantities                                      | -                                                | 12 Buy Bento                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RETIPO dando 2500/1                                                | 07:32                                | SPT/CPT U/UT      | D/SD B W                                            | Foreman's Name                                   | LSJ                                                            | Engineer's Name                            | And the second s |
| Name Callow                                                        | 17:00                                | 1                 | 1                                                   | Foreman's Signature                              | Call on Constand                                               | Engineer's Signature                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                      |                   |                                                     |                                                  | A REAL PROPERTY AND        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                         |                                                   |              |            |                           |                                  | (                              |                             |                              |                            |                    |                     |                |              |             |            |                             |
|--------------------------------------------|-------------------------|---------------------------------------------------|--------------|------------|---------------------------|----------------------------------|--------------------------------|-----------------------------|------------------------------|----------------------------|--------------------|---------------------|----------------|--------------|-------------|------------|-----------------------------|
| Creotron                                   |                         | DRILLING LOG                                      |              | Rig crev   | ×                         | 2                                | +                              | 3                           |                              |                            |                    |                     | Borehol        | e Refer      | ence        | BHI        | ω                           |
|                                            |                         |                                                   |              | 10         | Unit E2<br>1: 01457 83391 | 018, Warmco I<br>0, Fax: 01457 8 | ndustry Park,<br>33920, Email: | Manchester F<br>Info@geotro | load, Mossie<br>muk.co.uk, w | y, OLS 9AY;<br>ww.geotronu | k.co.uk            |                     | S              | heet į o     | -           | Veather    | Sunny                       |
| Job Ref: NTE2366                           | Site Location:          | Bicester                                          | Client:      | BWB        |                           |                                  |                                | Day:                        | Tucs                         | licury                     |                    | Date:               | 15/06          | 120          | F           |            | Borehole Diameter(s)        |
| Depth<br>(mbgt)                            |                         | Strata Description                                | Test Type    | From (m) T | 5 (m)                     | 75.150                           | 150.375                        | PI                          |                              |                            | Value or UI<br>KPA | 00/ Piston<br>blows | Recovery Ca    | sing Depth V | Vater level | Liner size | ISCAN                       |
| GL TOP Soil                                |                         |                                                   | 2            | -1 6.2     | 2                         |                                  |                                | And and                     |                              | Detreto                    |                    |                     | 1              | į            | 1           |            | THE DEFICIENCY OF THE PARTY |
| 0.2 Hard derk gro                          | en cluy                 |                                                   | SPT          | 1.2 1.     | 1 33                      | 2                                | 3                              | ω                           | ω                            | N                          | =                  |                     |                | _            | 1           |            | 2                           |
| 1.50 Sost yellow S                         | und                     |                                                   | 0 1          | · SO 1.    | 40                        | _                                |                                |                             |                              | _                          | _                  |                     |                | -            |             |            | 3em<br>Uzi                  |
| 1. 90 Hard Gray Cla                        | L'A                     |                                                   | 0 1          | .40 2.     | 8                         |                                  |                                |                             |                              |                            | _                  |                     |                |              |             |            | · 1                         |
| 4.30 Very hand ise                         | drock cimes             | one                                               | SPT 2        | .00 2.     | 1 54                      | 2                                | S                              | ω                           | w                            | N                          | =                  |                     |                | 2            |             |            | ed-                         |
| ,                                          |                         |                                                   | G            | .45 3.     | 8                         |                                  |                                |                             |                              |                            |                    |                     |                |              |             |            | lott<br>e                   |
|                                            |                         |                                                   | U4 3         | 00 3.      | 5                         |                                  |                                |                             |                              | GAN                        | 3                  | 2 1                 | 8              | N            |             |            | ise<br>use                  |
|                                            |                         |                                                   | U            | 3.         | 3                         |                                  |                                |                             |                              |                            |                    | _                   |                |              |             |            | <br>                        |
|                                            |                         |                                                   | sipt 3       | 80 4.      | - 2                       | -                                | 1                              | 2                           | 2                            | N                          | 4                  |                     |                | ч            |             |            | -> -<br>1   1<br>1 m        |
|                                            |                         |                                                   | BS           | -90 4.     | 10                        |                                  |                                |                             |                              |                            |                    |                     |                |              |             |            | 11<br>10m                   |
|                                            |                         |                                                   | SPT 4        | F-30 4.    | 30 25                     | 50                               |                                |                             |                              | 10                         | 0                  |                     |                |              |             |            | ŀ                           |
|                                            |                         |                                                   | CPT 4        | .30 4.     | 30 25                     | 50                               |                                |                             |                              | 10                         | <u>o</u> ,         |                     |                |              |             |            |                             |
|                                            |                         |                                                   |              |            |                           |                                  |                                |                             | _                            |                            | _                  |                     | _              |              | _           |            |                             |
|                                            |                         |                                                   |              | _          | +                         |                                  |                                |                             |                              |                            |                    |                     | _              |              |             |            |                             |
| Borehole completed at (m)                  | 1.30                    | Borehole continues                                |              |            |                           |                                  |                                |                             |                              |                            |                    | _                   |                |              |             |            |                             |
|                                            |                         |                                                   |              |            |                           |                                  |                                |                             |                              |                            |                    |                     |                |              |             |            |                             |
| Remarks: (Standing time, dayworks, in situ | testing, visitors etc.) |                                                   | Dayworks/Sta | anding     |                           | Chiselling                       |                                |                             |                              |                            |                    | Water S             | trikes         |              |             |            |                             |
| Rig Set Up up to 1 hour                    | 7                       | Time taken over 1 hour (dayworks)                 | (s           |            | From (m) t                | o (m)                            | Time (                         | mins)                       | Time De                      | opth (m) Rat               | t of Rise          | -                   | Rising to (m   | ins)         |             | Total      |                             |
| Service Pit up to 1 hour                   | 1                       | Time taken over 1 hour (dayworks)                 | <u>s</u>     | Т          |                           |                                  |                                |                             | 2:20 1                       | 20                         | -                  | 140                 | 10             | 15           | 3 20        |            |                             |
| Casing Reduced from                        | 6                       | at metres Time taken (dayworks)                   |              |            |                           |                                  |                                | _                           |                              | -                          | -                  | ~~~                 | -              |              | 8           |            |                             |
| From To Description                        |                         |                                                   |              |            |                           |                                  |                                |                             |                              | -                          | _                  | _                   | _              |              | _           |            |                             |
| 14:00 15:00 one hour                       | chisting                |                                                   |              |            |                           |                                  |                                |                             |                              |                            |                    |                     |                |              | _           |            |                             |
| 15:15 16:00 Instull                        |                         |                                                   |              |            |                           |                                  |                                |                             | _                            | -                          | -                  | -                   | _              | _            | _           |            |                             |
|                                            |                         |                                                   |              | П          | Well Dian                 | neter                            |                                |                             |                              | Other                      | Materials          | Used (e.g           | lost cones/    | shoes etc.   |             |            |                             |
|                                            |                         |                                                   |              | Plair      |                           | Screen                           | to                             | 6.                          | Smeter                       | Slott                      | ed                 | -                   | Mws /          | over         |             |            |                             |
|                                            |                         |                                                   |              | Τ          | Well Materia              | als Used                         | Gravel                         | Bento                       | mete                         | ( plun                     |                    |                     | y sub          | 50           |             |            |                             |
|                                            |                         |                                                   |              |            | Quantity (                | bags)                            |                                |                             | 228                          | Grave                      | 6                  | -                   | Botton         | end          | 6           |            |                             |
|                                            | Time on Site            |                                                   |              | Sample qu  | lantities                 |                                  |                                | -                           | Burg                         | Bento                      |                    |                     |                |              |             | 5          | rell Tag                    |
| Rie Type Dounde 2500/1                     | P                       | 07:31                                             | SPT/CPT U    | J/UT D/    | SD B                      | ٤                                | Foreman's                      | Name                        | allon                        | Sha                        | pland              |                     | Engineer's Na  | ma           |             |            |                             |
| Name Callon Shaple                         | a lime on site          | 17:00                                             | η            | 2          | F                         |                                  | Foreman's S                    | ignature                    |                              | 4                          |                    | _                   | ngineer's Sign | ature        |             |            |                             |
| The abov                                   | e are the driller's     | site descriptions and factual data only and are s | subject to   | amend      | ment af                   | ter che                          | king b                         | v or un                     | der the                      | super                      | vision             | ofan                | enginee        | er or ge     | pologis     | t.         |                             |
|                                            |                         |                                                   |              |            |                           |                                  |                                |                             |                              | -                          |                    |                     |                |              |             |            |                             |

PD020 14/07/2016



# **APPENDIX 4**

# TRIP HAMMER CALIBRATION CERTIFICATE

# **SPT Hammer Energy Test Report**

13/04/2017

13/04/2017

AR95.spt

SH

in accordance with BSEN ISO 22476-3:2005

# ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE HX59JP

#### **Instrumented Rod Data**

| Diameter d <sub>r</sub> (mm): | 54    |
|-------------------------------|-------|
| Wall Thickness tr (mm):       | 6.0   |
| Assumed Modulus Ea (GPa):     | 208   |
| Accelerometer No.1:           | 7080  |
| Accelerometer No.2:           | 11609 |

#### **SPT Hammer Information**

SPT Hammer Ref: AR95

Test Date:

File Name:

Report Date:

Test Operator:

| Hammer Mass    | m (kg):    | 63.5 |
|----------------|------------|------|
| Falling Height | h (mm):    | 760  |
| SPT String Len | gth L (m): | 10.0 |

# Comments / Location CALIBRATION







## Calculations

| Area of Rod A (mm2):              |         | 905 |
|-----------------------------------|---------|-----|
| Theoretical Energy Ethe           | or (J): | 473 |
| Measured Energy E <sub>meas</sub> | ; (J):  | 338 |

Energy Ratio Er (%):

71

The recommended calibration interval is 12 months





M. Gardhe

Signed: M.GARDNER Title: FITTER

# **SPT Hammer Energy Test Report**

in accordance with BSEN ISO 22476-3:2005

Archway Engineering Ainleys Industrial Estate Elland West Yorkshire HX5 9JP

#### **Instrumented Rod Data**

| Diameter d <sub>r</sub> (mm):         | 54   |
|---------------------------------------|------|
| Wall Thickness tr (mm):               | 6.1  |
| Assumed Modulus E <sub>a</sub> (GPa): | 200  |
| Accelerometer No.1:                   | 7080 |
| Accelerometer No.2:                   | 7079 |

| SPI Hammer Re  | r: AR932   |
|----------------|------------|
| Test Date:     | 21/06/2016 |
| Report Date:   | 6/21/2016  |
| File Name:     | AR932.spt  |
| Test Operator: | SH         |
|                |            |

## **SPT Hammer Information**

| Hammer Mass    | m (kg):    | 63.5 |
|----------------|------------|------|
| Falling Height | h (mm):    | 760  |
| SPT String Len | gth L (m): | 10.0 |

Comments / Location CALIBRATION

5

Title:





10

Velocity



# Calculations

m/sec2

| Area of Rod A (mm2):                  |      | 918 |
|---------------------------------------|------|-----|
| Theoretical Energy E <sub>theor</sub> | (J): | 473 |
| Measured Energy E <sub>meas</sub>     | (J): | 314 |

Energy Ratio E r (%):

66



The recommended calibration interval is 12 months



# **APPENDIX 5**

# GAS AND GROUNDWATER MONITORING RESULTS

| Site:                 |              | Lakeview Drive, Bicester | NR = Not Recorded          |
|-----------------------|--------------|--------------------------|----------------------------|
| Client:               |              | Sladen Estates           | Dry = No Groundwater       |
| Job No.:              |              | NTE2366                  |                            |
| Date:                 |              | 24 August 2017           |                            |
| Start / End Time:     |              | 11:30 - 13:40            |                            |
| Engineer:             |              | EMS                      |                            |
| Monitoring Equipment: | Gas Meter ID | BWB00956                 |                            |
|                       | PIDID        | BWB00998                 |                            |
|                       | Dip Tape     | BWB00945                 | CONSULTANCY   ENVIRONMENT  |
|                       | Other        |                          | INFRASTRUCTURE   BUILDINGS |
|                       |              |                          |                            |

| Weather Conditions       | Start | End  |
|--------------------------|-------|------|
| (Dry / Raining)          | Dry   | Dry  |
| Cloud Cover (Oktas)      | 8/8   | 8/8  |
| Wind Strength (m/s)      | 7.0   | 8.0  |
| Wind Direction (from)    | SSE   | SE   |
| Temperature (°C)         | 19.0  | 22.0 |
| Barometric Pressure (mb) | 1013  | 1010 |
| (Rising/ Falling)        |       |      |
| PID - Air                | 0     | 0    |
| PID - Calibration Gas    |       |      |

|                                     | Relative           | Flow | (l/hr) | Methane | • (%v/v) | Carbon<br>(% | Dioxide<br>v/v) | Oxyger | ı (%v/v) | Hydrogen<br>Sulphide | Carbon<br>Monoxide | PID   | Depth to<br>water | Base of<br>Response | Free-Phase<br>Product | Groundwater          | Notes                                          |
|-------------------------------------|--------------------|------|--------|---------|----------|--------------|-----------------|--------|----------|----------------------|--------------------|-------|-------------------|---------------------|-----------------------|----------------------|------------------------------------------------|
| Location<br>Reference               | Pressure<br>(mbar) | Peak | Steady | Peak    | Steady   | Peak         | Steady          | Min    | Steady   | (ppm)                | (ppm)              | (ppm) | (m)               | Zone (m)            | Level Top<br>(m)      | Elevation<br>(m AOD) |                                                |
| Ambient Air Start<br>(Calibration)  |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
| Ambient Air Finish<br>(Calibration) |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
| BH101                               |                    |      | <0.1   |         | <0.1     |              | 0.1             |        | 16.9     | <0.1                 | 21.0               | <0.1  | 1.15              | 2.32                |                       | 65.52                |                                                |
| BH102                               |                    |      | <0.1   |         | <0.1     |              | 0.6             |        | 20.2     | <0.1                 | <0.1               | <0.1  | 1.10              | 2.90                |                       | 64.78                |                                                |
| BH103                               |                    |      | <0.1   |         | <0.1     |              | 0.1             |        | 20.3     | <0.1                 | 31.0               | <0.1  | 0.82              | 3.82                |                       | -0.82                |                                                |
| BH104                               |                    |      |        |         |          |              |                 |        |          |                      |                    |       | 2.05              | 2.18                |                       | 64.47                | No bung in borehole therefore gas not measured |
| BH105                               |                    |      | <0.1   |         | <0.1     |              | 0.3             |        | 19.7     | <0.1                 | <0.1               | <0.1  | 0.72              | 1.60                |                       | 64.10                |                                                |
| BH106                               |                    |      | <0.1   |         | <0.1     |              | 0.8             |        | 16.5     | <0.1                 | <0.1               | <0.1  | 1.75              | 2.64                |                       | 64.05                | Silt on dip                                    |
| BH107                               |                    |      | <0.1   |         | <0.1     |              | 0.6             |        | 17.8     | <0.1                 | <0.1               | <0.1  | 3.17              | 3.28                |                       | 62.05                |                                                |
| BH108                               |                    |      | <0.1   |         | <0.1     |              | 0.2             |        | 17.8     | <0.1                 | <0.1               | <0.1  | Dry               | 3.18                |                       |                      |                                                |
| BH109                               |                    |      | <0.1   |         | <0.1     |              | 0.9             |        | 16.6     | <0.1                 | <0.1               | <0.1  | Dry               | 3.48                |                       |                      |                                                |
| BH110                               |                    |      | <0.1   |         | <0.1     |              | 1.0             |        | 16.0     | <0.1                 | <0.1               | <0.1  | 2.98              | 3.36                |                       | 62.67                |                                                |
| BH112                               |                    |      | <0.1   |         | <0.1     |              | 0.6             |        | 15.4     | <0.1                 | <0.1               | <0.1  | NR                | NR                  |                       |                      | Bentonite/cement set over bung, can not remove |
| BH113                               |                    |      | <0.1   |         | <0.1     |              | 0.3             |        | 17.0     | <0.1                 | <0.1               | <0.1  | 0.72              | 4.32                |                       | 63.91                |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |
|                                     |                    |      |        |         |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                                |

| Site:                 |              | Lakeview Drive, Bicester | NR = Not Recorded    |
|-----------------------|--------------|--------------------------|----------------------|
| Client:               |              | Sladen Estates           | Dry = No Groundwater |
| Job No.:              |              | NTE2366                  |                      |
| Date:                 |              | 31/08/2017               |                      |
| Start / End Time:     |              | 11:00-13:30              |                      |
| Engineer:             |              | EMS                      |                      |
| Monitoring Equipment: | Gas Meter ID | BWB00956                 |                      |
|                       | PIDID        | BWB00998                 |                      |
|                       | Dip Tape     | BWB00945                 |                      |
|                       | Other        |                          |                      |

Weather Conditions Start End (Dry / Raining) Spitting Dry Cloud Cover (Oktas) Wind Strength (m/s) 6/8 5/8 3.0 3.0 Wind Direction (from) SSW SW Temperature (°C) 13.0 13.0 Barometric Pressure (mb) 1010 1008 (Rising/ Falling) PID - Air 0 0 PID - Calibration Gas

|                    | Relative           | Flow | (I/hr) | Methan | e (%v/v) | Carbon<br>(% | Dioxide<br>v/v) | Oxyger | ı (%v/v) | Hydrogen<br>Sulphide | Carbon<br>Monoxide | PID   | Depth to<br>water | Base of<br>Response | Free-Phase<br>Product | Groundwater          | Notes                               |
|--------------------|--------------------|------|--------|--------|----------|--------------|-----------------|--------|----------|----------------------|--------------------|-------|-------------------|---------------------|-----------------------|----------------------|-------------------------------------|
| Location Reference | Pressure<br>(mbar) | Peak | Steady | Peak   | Steady   | Peak         | Steady          | Min    | Steady   | (ppm)                | (ppm)              | (ppm) | (m)               | Zone (m)            | Level Top<br>(m)      | Elevation<br>(m AOD) |                                     |
| Ambient Air Start  |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
| Ambient Air Finish |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
| (Calibration)      |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
| BH101              |                    |      | <0.1   |        | <0.1     |              | 0.4             |        | 19.2     | <0.1                 | <0.1               | <0.1  | 1.30              | 2.32                |                       | 65.37                |                                     |
| BH102              |                    |      | <0.1   |        | <0.1     |              | 3.7             |        | 15.0     | <0.1                 | <0.1               | <0.1  | 1.18              | 2.90                |                       | 64.70                |                                     |
| BH103              |                    |      | <0.1   |        | <0.1     |              | 0.1             |        | 20.5     | <0.1                 | <0.1               | <0.1  | 0.87              | 3.80                |                       | -0.87                |                                     |
| BH104              |                    |      | <0.1   |        | <0.1     |              | 1.0             |        | 19.3     | <0.1                 | <0.1               | 0.1   | 1.96              | 2.18                |                       | 64.56                |                                     |
| BH105              |                    |      | <0.1   |        | <0.1     | -            | 0.4             |        | 20.2     | <0.1                 | <0.1               | <0.1  | 0.78              | 1.62                |                       | 64.04                |                                     |
| BH106              |                    |      | <0.1   |        | <0.1     |              | 1.8             |        | 17.8     | <0.1                 | <0.1               | <0.1  | 1.78              | 2.65                |                       | 64.02                | silt on dip                         |
| BH107              |                    |      | <0.1   |        | <0.1     | -            | 1.5             |        | 18.2     | <0.1                 | <0.1               | <0.1  | 2.92              | 3.29                |                       | 62.30                |                                     |
| BH108              |                    |      | 0.4    |        | <0.1     |              | 0.7             |        | 18.3     | <0.1                 | <0.1               | <0.1  | 3.05              | 3.15                |                       | 64.10                |                                     |
| BH109              |                    |      | 0.4    |        | <0.1     | -            | 1.2             |        | 15.3     | <0.1                 | <0.1               | <0.1  | 3.38              | 3.48                |                       | 62.51                |                                     |
| BH110              |                    |      | <0.1   |        | <0.1     |              | 1.7             |        | 17.4     | <0.1                 | <0.1               | 0.2   | 2.98              | 3.35                |                       | 62.67                |                                     |
| BH112              |                    |      | <0.1   |        | <0.1     |              | 1.1             |        | 18.7     | <0.1                 | <0.1               | <0.1  | NR                | NR                  |                       |                      | Bung sealed over - could not remove |
| BH113              |                    |      | <0.1   |        | <0.1     |              | 0.1             |        | 20.6     | <0.1                 | <0.1               | <0.1  | 0.78              | 4.32                |                       | 63.85                |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      | 1      |        |          |              |                 |        | -        |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      | 1      |        |          |              |                 |        | -        |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      |        |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      | 1      |        |          |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |
|                    |                    |      | 1      |        | 1        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                     |

| Site:                 |              | Lakeview Drive, Bicester | NR = Not Recorded          |  |
|-----------------------|--------------|--------------------------|----------------------------|--|
| Client:               |              | Sladen Estates           | Dry = No Groundwater       |  |
| Job No.:              |              | NTE2366                  |                            |  |
| Date:                 |              | 06/09/2017               |                            |  |
| Start / End Time:     |              | 10:00 - 15:00            |                            |  |
| Engineer:             |              | EMS                      |                            |  |
| Monitoring Equipment: | Gas Meter ID | BWB00956                 |                            |  |
|                       | PID ID       | BWB00998                 | CONSULTANCY   ENVIRONMENT  |  |
|                       | Dip Tape     | BWB00945                 | INFRASTRUCTURE   BUILDINGS |  |
|                       | Other        |                          |                            |  |
|                       |              |                          |                            |  |

| Weather Conditions       | Start | End  |
|--------------------------|-------|------|
| (Dry / Raining)          | Dry   | Dry  |
| Cloud Cover (Oktas)      | 4/8   | 5/8  |
| Wind Strength (m/s)      | 13.0  | 13.0 |
| Wind Direction (from)    | W     | WNW  |
| Temperature (°C)         | 15.0  | 17.0 |
| Barometric Pressure (mb) | 1011  | 1011 |
| (Rising/ Falling)        |       |      |
| PID - Air                | 0     | 0    |
| PID - Calibration Gas    |       |      |

|                                     | Relative           | Flow | (l/hr) | Methane ( | %v/v)  | Carbon<br>(% | Dioxide<br>v/v) | Oxyger | ı (%v/v) | Hydrogen<br>Sulphide | Carbon<br>Monoxide | PID   | Depth to<br>water | Base of<br>Response | Free-Phase<br>Product | Groundwater          | Notes                             |
|-------------------------------------|--------------------|------|--------|-----------|--------|--------------|-----------------|--------|----------|----------------------|--------------------|-------|-------------------|---------------------|-----------------------|----------------------|-----------------------------------|
| Location<br>Reference               | Pressure<br>(mbar) | Peak | Steady | Peak      | Steady | Peak         | Steady          | Min    | Steady   | (ppm)                | (ppm)              | (ppm) | (m)               | Zone (m)            | Level Top<br>(m)      | Elevation<br>(m AOD) |                                   |
| Ambient Air Start                   |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
| Ambient Air Finish<br>(Calibration) |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
| BH101                               | 1011.0000          |      | <0.1   |           | <0.1   |              | 3.5             |        | 15.1     | <1                   | <1                 | <0.1  | 1.20              | 2.90                |                       | 65.47                |                                   |
| BH102                               |                    |      | <0.1   |           | <0.1   |              | 0.4             |        | 19.1     | <1                   | <1                 | <0.1  | 1.35              | 2.32                |                       | 64.53                |                                   |
| BH103                               |                    |      | <0.1   |           | <0.1   |              | 0.1             |        | 20.4     | <1                   | <1                 | <0.1  | 0.90              | 3.82                |                       | -0.90                |                                   |
| BH104                               |                    |      | <0.1   |           | <0.1   |              | 0.9             |        | 20.0     | <1                   | <1                 | 0.1   | 1.95              | 2.16                |                       | 64.57                |                                   |
| BH105                               |                    |      | <0.1   |           | <0.1   |              | 0.4             |        | 20.4     | <1                   | <1                 | 0.0   | 0.86              | 1.60                |                       | 63.96                |                                   |
| BH106                               |                    |      | <0.1   |           | <0.1   |              | 1.7             |        | 18.6     | <1                   | <1                 | <0.1  | 1.78              | 2.63                |                       | 64.02                |                                   |
| BH107                               |                    |      | <0.1   |           | <0.1   |              | 1.0             |        | 19.5     | <1                   | <1                 | <0.1  | 2.75              | 3.28                |                       | 62.47                |                                   |
| BH108                               |                    |      | <0.1   |           | <0.1   |              | 0.8             |        | 19.3     | <1                   | <1                 | <0.1  | 2.95              | 3.15                |                       | 64.20                |                                   |
| BH109                               |                    |      | <0.1   |           | <0.1   |              | 1.5             |        | 17.5     | <1                   | <1                 | <0.1  | 3.48              | 3.48                |                       | 62.41                |                                   |
| BH110                               |                    |      | <0.1   |           | <0.1   |              | 1.4             |        | 19.1     | <1                   | <1                 | 0.1   | 2.10              | 3.36                |                       | 63.55                |                                   |
| BH112                               |                    |      | <0.1   |           | <0.1   |              | 0.4             |        | 20.3     | <1                   | <1                 | <0.1  | NR                | NR                  |                       |                      | bung cemented over- cannot remove |
| BH113                               |                    |      | <0.1   |           | <0.1   |              | 0.8             |        | 19.2     | <1                   | <1                 | <0.1  | 0.74              | 4.32                |                       | 63.89                |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |
|                                     |                    |      |        |           |        |              |                 |        |          |                      |                    |       |                   |                     |                       |                      |                                   |

| Site:                 |              | Lakeview Drive, Bicester | NR = Not Recorded          |  |  |  |
|-----------------------|--------------|--------------------------|----------------------------|--|--|--|
| Client:               |              | Sladen Estates           | Dry = No Groundwater       |  |  |  |
| Job No.:              |              | NTE2366                  |                            |  |  |  |
| Date:                 |              | 13.9.17                  |                            |  |  |  |
| Start / End Time:     |              | 8:25 / 11:25             |                            |  |  |  |
| Engineer:             |              | Y Lawson                 |                            |  |  |  |
| Monitoring Equipment: | Gas Meter ID | BWB00957                 |                            |  |  |  |
|                       | PIDID        | BWB00998                 |                            |  |  |  |
|                       | Dip Tape     | BWB00944                 | INFRASTRUCTURE   BUILDINGS |  |  |  |
|                       | Other        |                          |                            |  |  |  |
|                       |              |                          |                            |  |  |  |

Weather Conditions Start End (Dry / Raining) Dry Dry Cloud Cover (Oktas) 1 3 Wind Strength (m/s) Wind Direction (from) 2.9 3.5 SW SW Temperature (°C) 12.0 23.0 Barometric Pressure (mb) 991 992 (Rising/ Falling) PID - Air 0 0 PID - Calibration Gas

| Relative                            |                    | Flow | (l/hr) | Methane | e (%v/v) | Carbon<br>(% | Dioxide<br>v/v) | Oxygen (%v/v) |        | Hydrogen<br>Sulphide | Carbon<br>Monoxide<br>(ppm) | PID   | Depth to<br>water | Base of<br>Response | Free-Phase<br>Product | Groundwater          | Notes |
|-------------------------------------|--------------------|------|--------|---------|----------|--------------|-----------------|---------------|--------|----------------------|-----------------------------|-------|-------------------|---------------------|-----------------------|----------------------|-------|
| Location Reference                  | Pressure<br>(mbar) | Peak | Steady | Peak    | Steady   | Peak         | Steady          | Min           | Steady | (ppm)                | (ppm)                       | (ppm) | (m)               | Zone (m)            | Level Top<br>(m)      | Elevation<br>(m AOD) |       |
| Ambient Air Start<br>(Calibration)  |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
| Ambient Air Finish<br>(Calibration) |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
| BH101                               |                    |      | <0.1   |         | <0.1     |              | 0.6             |               | 19.7   | <1                   | <1                          | <0.1  | 1.28              | 2.33                |                       | 65.39                |       |
| BH102                               |                    |      | <0.1   |         | <0.1     |              | 2.4             |               | 18.5   | <1                   | <1                          | <0.1  | 1.25              | 2.85                |                       | 64.63                |       |
| BH103                               |                    |      | <0.1   |         | <0.1     |              | 0.7             |               | 17.5   | <1                   | <1                          | <0.1  | 0.89              | 3.80                |                       | -0.89                |       |
| BH104                               |                    |      | <0.1   |         | <0.1     |              | 0.5             |               | 16.9   | <1                   | <1                          | <0.1  | 0.78              | 1.60                |                       | 65.74                |       |
| BH105                               |                    | 23.0 | <0.1   |         | <0.1     |              | 0.9             |               | 19.8   | <1                   | <1                          | <0.1  | 1.97              | 2.00                |                       | 62.85                |       |
| BH106                               |                    |      | <0.1   |         | <0.1     |              | 1.7             |               | 17.9   | <1                   | <1                          | <0.1  | 1.84              | 2.65                |                       | 63.96                |       |
| BH107                               |                    |      | <0.1   |         | <0.1     |              | 1.1             |               | 19.1   | <1                   | <1                          | <0.1  | 1.69              | 3.29                |                       | 63.53                |       |
| BH108                               |                    |      | <0.1   |         | <0.1     |              | 1.1             |               | 19.1   | <1                   | <1                          | <0.1  | 1.93              | 3.16                |                       | 65.22                |       |
| BH109                               |                    | 0.3  | <0.1   |         | <0.1     |              | 1.8             |               | 17.4   | <1                   | <1                          | <0.1  | 3.15              | 3.45                |                       | 62.74                |       |
| BH110                               |                    |      | <0.1   |         | <0.1     |              | 1.3             |               | 19.0   | <1                   | <1                          | <0.1  | 2.51              | 3.37                |                       | 63.14                |       |
| BH112                               |                    |      | <0.1   |         | <0.1     |              | 0.7             |               | 19.9   | <1                   | <1                          | <0.1  | 1.78              | 3.28                |                       | 64.19                |       |
| BH113                               |                    |      | <0.1   |         | <0.1     |              | 0.3             |               | 19.5   | <1                   | <1                          | <0.1  | 0.79              | 4.33                |                       | 63.84                |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |
|                                     |                    |      |        |         |          |              |                 |               |        |                      |                             |       |                   |                     |                       |                      |       |



# **APPENDIX 6**

# TRL DYNAMIC CONE PENETATION RESULTS

| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP126                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.30                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm | CBR (%) |
|-------|-------|------------------|----------------------------|--------------------|---------|
|       |       |                  | (1111)                     | ugi)               |         |
| 1     | 4     | 4                | 295                        | 295                | 3.2     |
| 2     | 5     | 9                | 391                        | 686                | 3.0     |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP101                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.3                      |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Lavor | Blows | Cumulativo Blows | Layer | Total |      |
|-------|-------|------------------|-------|-------|------|
| Layer | DIOWS | Cumulative Diows | (mm)  | bgl)  |      |
| 1     | 13    | 13               | 127   | 127   | 27.2 |
| 2     | 8     | 21               | 205   | 332   | 9.8  |
| 3     | 21    | 42               | 192   | 524   | 29.1 |
| 4     | 15    | 57               | 188   | 712   | 20.9 |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |
|       |       |                  |       |       |      |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP103                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.40                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm | CBR (%) |
|-------|-------|------------------|----------------------------|--------------------|---------|
|       |       |                  | (11111)                    | ugi)               |         |
| 1     | 7     | 7                | 55                         | 55                 | 34.4    |
| 2     | 10    | 17               | 95                         | 150                | 28.0    |
| 3     | 10    | 27               | 7                          | 157                | >100    |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |
|       |       |                  |                            |                    |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP104                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.35                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 3     | 3                | 172                        | 172                        | 4.2     |
| 2     | 7     | 10               | 92                         | 264                        | 19.8    |
| 3     | 30    | 40               | 65                         | 329                        | >100    |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP105                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.40                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

|       |       |                  | Layer     | Total     |         |
|-------|-------|------------------|-----------|-----------|---------|
| Layer | Blows | Cumulative Blows | Thickness | Depth (mm | CBR (%) |
|       |       |                  | (mm)      | bgl)      |         |
| 1     | 3     | 3                | 229       | 229       | 3.1     |
| 2     | 8     | 11               | 134       | 363       | 15.4    |
| 3     | 31    | 42               | 189       | 552       | 44.7    |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP107                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.30                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 18    | 18               | 758                        | 758                        | 5.8     |
| 2     | 7     | 25               | 84                         | 842                        | 21.8    |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP108                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.35                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 5     | 5                | 376                        | 376                        | 3.1     |
| 2     | 36    | 41               | 245                        | 621                        | 39.8    |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP111                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.25                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

|       |       |                  | Layer     | Total     |         |
|-------|-------|------------------|-----------|-----------|---------|
| Layer | Blows | Cumulative Blows | Thickness | Depth (mm | CBR (%) |
|       |       |                  | (mm)      | bgl)      |         |
| 1     | 5     | 5                | 286       | 286       | 4.2     |
| 2     | 4     | 9                | 184       | 470       | 5.3     |
| 3     | 12    | 21               | 203       | 673       | 15.2    |
| 4     | 5     | 26               | 45        | 718       | 29.6    |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP112                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.25                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 9     | 9                | 813                        | 813                        | 2.6     |
| 2     | 2     | 11               | 66                         | 879                        | 7.5     |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP119                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.30                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 2     | 2                | 178                        | 178                        | 2.6     |
| 2     | 9     | 11               | 646                        | 824                        | 3.3     |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP120                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.30                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

|       |       |                  | Layer     | Total     |         |
|-------|-------|------------------|-----------|-----------|---------|
| Layer | Blows | Cumulative Blows | Thickness | Depth (mm | CBR (%) |
|       |       |                  | (mm)      | bgl)      |         |
| 1     | 15    | 15               | 510       | 510       | 7.3     |
| 2     | 10    | 25               | 346       | 856       | 7.1     |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP121                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.30                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

|       |       |                  | Layer     | Total     |         |
|-------|-------|------------------|-----------|-----------|---------|
| Layer | Blows | Cumulative Blows | Thickness | Depth (mm | CBR (%) |
|       |       |                  | (mm)      | bgl)      |         |
| 1     | 15    | 15               | 893       | 893       | 4.0     |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP122                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.35                     |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| _     |       |                  | Layer     | Total     |         |
|-------|-------|------------------|-----------|-----------|---------|
| Layer | Blows | Cumulative Blows | Thickness | Depth (mm | CBR (%) |
|       |       |                  | (mm)      | bgl)      |         |
| 1     | 15    | 15               | 856       | 856       | 4.2     |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |
|       |       |                  |           |           |         |



| PROJECT NUMBER            | NTE2366                  |  |
|---------------------------|--------------------------|--|
| PROJECT TITLE             | Lakeview Drive, Bicester |  |
| TEST REFERENCE            | TP124                    |  |
| DATE                      | 15-Aug-17                |  |
| MATERIAL/ STRATA TYPE     | Natural                  |  |
| START DEPTH (mm bgl)      | 0.7                      |  |
| WEATHER/ GROUND CONDITION | Dry                      |  |

| Layer | Blows | Cumulative Blows | Layer<br>Thickness<br>(mm) | Total<br>Depth (mm<br>bgl) | CBR (%) |
|-------|-------|------------------|----------------------------|----------------------------|---------|
| 1     | 26    | 26               | 314                        | 315                        | 21.7    |
| 2     | 15    | 41               | 72                         | 387                        | 57.5    |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |
|       |       |                  |                            |                            |         |





# APPENDIX 7

# SOIL AND SOIL LEACHATE CHEMICAL ANALYSIS RESULTS



Luke Cross **BWB** Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ



i2 Analytical Ltd. 7 Woodshots Meadow, **Croxley Green** Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

# Analytical Report Number : 17-58560

| Project / Site name: | Lakeview Drive, Bicester | Samples received on:   | 17/08/2017 |
|----------------------|--------------------------|------------------------|------------|
| Your job number:     | NTE2366                  | Samples instructed on: | 23/08/2017 |
| Your order number:   | POR012935                | Analysis completed by: | 06/09/2017 |
| Report Issue Number: | 1                        | Report issued on:      | 06/09/2017 |
| Samples Analysed:    | 6 soil samples           |                        |            |

Signed:

Rexona Rahman **Reporting Manager** For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012935

| Sample Reference<br>Sample Number<br>Denth (m) |               |                       |                         | DU101         |               |               |               |               |
|------------------------------------------------|---------------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Number<br>Denth (m)                     |               | Sample Reference      |                         |               |               |               | BH106         | BH110         |
| Depth (m)                                      | Sample Number |                       |                         |               |               | 2             | 3             | 5             |
| - opt ()                                       | 0.00-1.00     | 1.00-1.45             | 1.20-1.65               | 0.50-1.00     | 2.50-3.00     |               |               |               |
| Date Sampled                                   | Deviating     | Deviating             | Deviating               | Deviating     | Deviating     |               |               |               |
| Time Taken                                     |               |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis)        | Units         | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |
| Stone Content                                  | %             | 0.1                   | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                               | %             | N/A                   | NONE                    | 9.7           | 8.4           | 9.4           | 14            | 19            |
| Total mass of sample received                  | kg            | 0.001                 | NONE                    | 0.69          | 0.91          | 0.82          | 0.39          | 0.60          |

#### **General Inorganics**

| pH - Automated                                  | pH Units | N/A     | MCERTS | 9.5  | 8.4   | 8.4   | 8.1   | 7.6 |
|-------------------------------------------------|----------|---------|--------|------|-------|-------|-------|-----|
| Water Soluble SO4 16hr extraction (2:1 Leachate |          |         |        |      |       |       |       |     |
| Equivalent)                                     | g/l      | 0.00125 | MCERTS | 0.36 | 0.035 | 0.020 | 0.042 | 1.0 |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012935

| Lab Sample Number                       |               |                       |                         | 806398 |  |  |  |
|-----------------------------------------|---------------|-----------------------|-------------------------|--------|--|--|--|
| Sample Reference                        |               |                       |                         | BH112  |  |  |  |
| Sample Number                           | Sample Number |                       |                         |        |  |  |  |
| Depth (m)                               | 2.00-2.50     |                       |                         |        |  |  |  |
| Date Sampled                            | Deviating     |                       |                         |        |  |  |  |
| Time Taken                              | None Supplied |                       |                         |        |  |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units         | Limit of<br>detection | Accreditation<br>Status |        |  |  |  |
| Stone Content                           | %             | 0.1                   | NONE                    | < 0.1  |  |  |  |
| Moisture Content                        | %             | N/A                   | NONE                    | 19     |  |  |  |
| Total mass of sample received           | kg            | 0.001                 | NONE                    | 0.33   |  |  |  |

#### **General Inorganics**

| pH - Automated                                  | pH Units | N/A     | MCERTS | 7.8  |  |  |
|-------------------------------------------------|----------|---------|--------|------|--|--|
| Water Soluble SO4 16hr extraction (2:1 Leachate |          |         |        |      |  |  |
| Equivalent)                                     | g/l      | 0.00125 | MCERTS | 0.36 |  |  |





#### Project / Site name: Lakeview Drive, Bicester

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                            |
|----------------------|---------------------|------------------|-----------|-------------------------------------------------|
| 806393               | BH101               | 1                | 0.00-1.00 | Light brown loam and clay with gravel.          |
| 806394               | BH102               | 1                | 1.00-1.45 | Light brown clay and sand with gravel.          |
| 806395               | BH103               | 2                | 1.20-1.65 | Light brown clay and sand.                      |
| 806396               | BH106               | 3                | 0.50-1.00 | Brown clay and sand with gravel and vegetation. |
| 806397               | BH110               | 5                | 2.50-3.00 | Grey clay.                                      |
| 806398               | BH112               | 5                | 2.00-2.50 | Grey clay.                                      |





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                                  | Analytical Method Description                                                                                                                                       | Analytical Method Reference                                                                                                                 | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Moisture Content                                      | Moisture content, determined gravimetrically.                                                                                                                       | In-house method based on BS1377 Part 2,<br>1990, Chemical and Electrochemical Tests                                                         | L019-UK/PL       | W                     | NONE                    |
| pH in soil (automated)                                | Determination of pH in soil by addition of water<br>followed by automated electrometric<br>measurement.                                                             | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                                         | L099-PL          | D                     | MCERTS                  |
| Stones content of soil                                | Standard preparation for all samples unless<br>otherwise detailed. Gravimetric determination of<br>stone > 10 mm as % dry weight.                                   | In-house method based on British Standard<br>Methods and MCERTS requirements.                                                               | L019-UK/PL       | D                     | NONE                    |
| Sulphate, water soluble, in soil (16hr<br>extraction) | Determination of water soluble sulphate by ICP-<br>OES. Results reported directly (leachate<br>equivalent) and corrected for extraction ratio (soil<br>equivalent). | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests,<br>2:1 water:soil extraction, analysis by ICP-<br>OES. | L038-PL          | D                     | MCERTS                  |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



| Sample ID | Other_ID | Sample Type | Job      | Sample Number | Sample Deviation Code | test_name | test_ref | Test Deviation code |
|-----------|----------|-------------|----------|---------------|-----------------------|-----------|----------|---------------------|
| BH101     | 1        | S           | 17-58560 | 806393        | a                     |           |          |                     |
| BH102     | 1        | S           | 17-58560 | 806394        | a                     |           |          |                     |
| BH103     | 2        | 2 S         | 17-58560 | 806395        | a                     |           |          |                     |
| BH106     | 3        | 3 S         | 17-58560 | 806396        | a                     |           |          |                     |
| BH110     | 5        | 5 S         | 17-58560 | 806397        | a                     |           |          |                     |
| BH112     | 5        | 5 S         | 17-58560 | 806398        | a                     |           |          |                     |



Luke Cross BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ



i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

# Analytical Report Number : 17-58244

| Project / Site name: | Lakeview Drive, Bicester             | Samples received on:   | 17/08/2017 |
|----------------------|--------------------------------------|------------------------|------------|
| Your job number:     | NTE2366                              | Samples instructed on: | 23/08/2017 |
| Your order number:   | POR012937                            | Analysis completed by: | 04/09/2017 |
| Report Issue Number: | 1                                    | Report issued on:      | 04/09/2017 |
| Samples Analysed:    | 3 leachate samples - 16 soil samples |                        |            |

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | <ul> <li>4 weeks from reporting</li> </ul> |
|-----------|--------------------------------------------|
| leachates | - 2 weeks from reporting                   |
| waters    | - 2 weeks from reporting                   |
| asbestos  | - 6 months from reporting                  |

Excel copies of reports are only valid when accompanied by this PDF certificate.





Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                               |            |                    | 804157                 | 804158                | 804159        | 804160                      | 804161        |                             |
|-------------------------------------------------|------------|--------------------|------------------------|-----------------------|---------------|-----------------------------|---------------|-----------------------------|
| Sample Reference                                |            |                    |                        | TD101                 | TD101         | TD102                       | TD102         | TD102                       |
| Sample Number                                   |            |                    |                        | 1                     | 7             | 1                           | 2             | 1                           |
| Depth (m)                                       |            |                    |                        | 0.20-0.30             | 0.40-0.50     | 0.10-0.20                   | 0.40-0.50     | 0.20-0.30                   |
| Date Sampled                                    |            |                    |                        | 15/08/2017            | 15/08/2017    | 15/08/2017                  | 15/08/2017    | 15/08/2017                  |
| Time Taken                                      |            |                    |                        | None Supplied         | None Supplied | None Supplied               | None Supplied | None Supplied               |
|                                                 |            |                    | A                      |                       |               |                             |               |                             |
| Analytical Parameter<br>(Soil Analysis)         | Units      | Limit of detection | ccreditatior<br>Status |                       |               |                             |               |                             |
| Stone Content                                   | 0/4        | 0.1                |                        | < 0.1                 | < 0.1         | < 0.1                       | < 0.1         | < 0.1                       |
| Moisture Content                                | -70<br>9/6 | 0.1<br>N/A         | NONE                   | 16                    | 10            | 79                          | 12            | 11                          |
| Total mass of sample received                   | ka         | 0.001              | NONE                   | 2.0                   | 2.0           | 2.0                         | 2.0           | 2.0                         |
|                                                 |            |                    |                        |                       | •             | •                           |               |                             |
| Asbestos in Soil Screen / Identification Name   | Туре       | N/A                | ISO 17025              | -                     | -             | Chrysotile- Loose<br>Fibres | -             | Chrysotile- Loose<br>Fibres |
| Asbestos in Soil                                | Туре       | N/A                | ISO 17025              | Not-detected          | -             | Detected                    | -             | Detected                    |
|                                                 |            |                    |                        |                       |               |                             |               |                             |
| General Inorganics                              |            |                    |                        | 7.0                   |               | ~ 7                         | 0.4           |                             |
| pri - Automated                                 | pH Units   | N/A<br>1           | MCERTS                 | /.8                   | 8.0           | 9./                         | 8.1           | 8.1                         |
| Complex Cvanide                                 | mg/kg      | 1                  | MCERTS                 | <1                    | < 1<br>< 1    | < 1                         | <1            | < 1                         |
| Free Cvanide                                    | ma/ka      | 1                  | MCERTS                 | < 1                   | < 1           | < 1                         | < 1           | < 1                         |
| Water Soluble SO4 16hr extraction (2:1 Leachate |            | -                  |                        |                       | · · ·         |                             | · · ·         |                             |
| Equivalent)                                     | g/l        | 0.00125            | MCERTS                 | 0.025                 | 0.021         | 0.64                        | 0.049         | 0.85                        |
| Total Sulphur                                   | mg/kg      | 50                 | MCERTS                 | 790                   | 650           | 1500                        | 610           | 1300                        |
| Fraction Organic Carbon (FOC)                   | N/A        | 0.001              | NONE                   | 0.044                 | 0.024         | 0.017                       | 0.020         | 0.015                       |
| Total Phenois                                   |            |                    |                        |                       |               |                             |               |                             |
| Total Phenols (monohydric)                      | ma/ka      | 1                  | MCEDTS                 | < 1.0                 | < 1.0         | < 1.0                       | < 1.0         | < 1.0                       |
|                                                 | nig/kg     | 1                  | MCER15                 | < 1.0                 | < 1.0         | < 1.0                       | < 1.0         | < 1.0                       |
| Speciated PAHs                                  |            |                    |                        |                       |               |                             |               |                             |
| Naphthalene                                     | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | < 0.05                      | < 0.05        | < 0.05                      |
| Acenaphthylene                                  | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | < 0.05                      | < 0.05        | < 0.05                      |
| Acenaphthene                                    | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | < 0.05                      | < 0.05        | < 0.05                      |
| Fluorene                                        | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | < 0.05                      | < 0.05        | < 0.05                      |
| Phenanthrene                                    | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | 0.73                        | 0.39          | 0.19                        |
| Anthracene                                      | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | 0.21                        | 0.19          | < 0.05                      |
| Durana                                          | mg/kg      | 0.05               | MCEDTS                 | 0.24                  | < 0.05        | 2.2                         | 1.2           | 0.67                        |
| Benzo(a)anthracene                              | mg/kg      | 0.05               | MCERTS                 | 0.22                  | < 0.05        | 1 4                         | 0.82          | 0.00                        |
| Chrysene                                        | ma/ka      | 0.05               | MCERTS                 | 0.15                  | < 0.05        | 1.6                         | 0.96          | 0.45                        |
| Benzo(b)fluoranthene                            | mg/kg      | 0.05               | MCERTS                 | 0.13                  | < 0.05        | 2.0                         | 1.2           | 0.43                        |
| Benzo(k)fluoranthene                            | mg/kg      | 0.05               | MCERTS                 | 0.13                  | < 0.05        | 1.4                         | 0.59          | 0.41                        |
| Benzo(a)pyrene                                  | mg/kg      | 0.05               | MCERTS                 | 0.17                  | < 0.05        | 2.4                         | 1.2           | 0.55                        |
| Indeno(1,2,3-cd)pyrene                          | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | 1.5                         | 0.63          | 0.30                        |
| Dibenz(a,h)anthracene                           | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | 0.23                        | 0.14          | 0.09                        |
| Benzo(ghi)perylene                              | mg/kg      | 0.05               | MCERTS                 | < 0.05                | < 0.05        | 1.9                         | 0.86          | 0.39                        |
|                                                 |            |                    |                        |                       |               |                             |               |                             |
| Speciated Total EPA-16 PAHs                     | ma/ka      | 0.8                | MCERTS                 | 1.16                  | < 0.80        | 17.5                        | 9,29          | 4.50                        |
| Specifical Four Environning                     | ing/itg    | 0.0                | HEEKIS                 | 1.10                  | 0.00          | 17.5                        | 5.25          | 1.50                        |
| Heavy Metals / Metalloids                       |            |                    |                        |                       |               |                             |               |                             |
| Arsenic (aqua regia extractable)                | mg/kg      | 1                  | MCERTS                 | 28                    | 19            | 12                          | 20            | 22                          |
| Barium (aqua regia extractable)                 | mg/kg      | 1                  | MCERTS                 | 72                    | 49            | 130                         | 81            | 68                          |
| Beryllium (aqua regia extractable)              | mg/kg      | 0.06               | MCERTS                 | 1.1                   | 0.70          | 0.43                        | 0.61          | 0.72                        |
| Boron (water soluble)                           | mg/kg      | 0.2                | MCERTS                 | 4.5                   | 3.0           | 3.3                         | 2.3           | 1.7                         |
| Caamium (aqua regia extractable)                | mg/kg      | 0.2                | MCERTS                 | < 0.2                 | < 0.2         | 0./                         | < 0.2         | < 0.2                       |
| Chromium (aqua regia extractable)               | mg/kg      | 4                  | MCEDTO                 | <u>&lt; 4.0</u><br>วว | < 4.U<br>10   | < 4.U<br>01                 | < 4.U<br>01   | < 4.0<br>22                 |
| Copper (aqua regia extractable)                 | ma/ka      | 1                  | MCERTS                 | 41                    | 19            | 72                          | 35            | 36                          |
| Lead (aqua regia extractable)                   | ma/ka      | 1                  | MCERTS                 | 51                    | 23            | 67                          | 40            | 30                          |
| Mercury (aqua regia extractable)                | mg/kg      | 0.3                | MCERTS                 | < 0.3                 | < 0.3         | < 0.3                       | < 0.3         | < 0.3                       |
| Nickel (aqua regia extractable)                 | mg/kg      | 1                  | MCERTS                 | 28                    | 19            | 14                          | 18            | 23                          |
| Selenium (aqua regia extractable)               | mg/kg      | 1                  | MCERTS                 | < 1.0                 | < 1.0         | < 1.0                       | < 1.0         | < 1.0                       |
| Vanadium (aqua regia extractable)               | mg/kg      | 1                  | MCERTS                 | 71                    | 49            | 31                          | 43            | 40                          |
| Zinc (aqua regia extractable)                   | mg/kg      | 1                  | MCERTS                 | 95                    | 48            | 170                         | 78            | 79                          |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |                       |                         | 804157        | 804158        | 804159        | 804160        | 804161        |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       | TP101                 | TP101                   | TP102         | TP102         | TP103         |               |               |
| Sample Number                           |       |                       |                         | 1             | 2             | 1             | 2             | 1             |
| Depth (m)                               |       |                       |                         | 0.20-0.30     | 0.40-0.50     | 0.10-0.20     | 0.40-0.50     | 0.20-0.30     |
| Date Sampled                            |       |                       |                         | 15/08/2017    | 15/08/2017    | 15/08/2017    | 15/08/2017    | 15/08/2017    |
| Time Taken                              |       |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |

#### Monoaromatics

| Benzene                            | ug/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |
|------------------------------------|-------|---|--------|-------|---|-------|---|---|
| Toluene                            | µg/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |
| Ethylbenzene                       | µg/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |
| p & m-xylene                       | µg/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |
| o-xylene                           | µg/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 1 | MCERTS | < 1.0 | - | < 1.0 | - | - |

#### Petroleum Hydrocarbons

| TPH C10 - C40                    | mg/kg | 10    | MCERTS | 48      | 27    | 1000    | 61    | 46    |
|----------------------------------|-------|-------|--------|---------|-------|---------|-------|-------|
| TPH2 (C6 - C10)                  | mg/kg | 0.1   | MCERTS | < 0.1   | < 0.1 | < 0.1   | < 0.1 | < 0.1 |
| TPH-CWG - Aliphatic >EC5 - EC6   | ma/ka | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aliphatic >EC6 - EC8   | mg/kg | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aliphatic >EC8 - EC10  | mg/kg | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aliphatic >EC10 - EC12 | mg/kg | 1     | MCERTS | < 1.0   | -     | < 1.0   | -     | -     |
| TPH-CWG - Aliphatic >EC12 - EC16 | mg/kg | 2     | MCERTS | < 2.0   | -     | 7.0     | -     | -     |
| TPH-CWG - Aliphatic >EC16 - EC21 | mg/kg | 8     | MCERTS | < 8.0   | -     | 15      | -     | -     |
| TPH-CWG - Aliphatic >EC21 - EC35 | mg/kg | 8     | MCERTS | 15      | -     | 200     | -     | -     |
| TPH-CWG - Aliphatic (EC5 - EC35) | mg/kg | 10    | MCERTS | 19      | -     | 220     | -     | -     |
|                                  |       |       |        |         |       |         |       |       |
| TPH-CWG - Aromatic >EC5 - EC7    | mg/kg | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aromatic >EC7 - EC8    | mg/kg | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aromatic >EC8 - EC10   | mg/kg | 0.001 | MCERTS | < 0.001 | -     | < 0.001 | -     | -     |
| TPH-CWG - Aromatic >EC10 - EC12  | mg/kg | 1     | MCERTS | < 1.0   | -     | 4.3     | -     | -     |
| TPH-CWG - Aromatic >EC12 - EC16  | mg/kg | 2     | MCERTS | 4.2     | -     | 14      | -     | -     |
| TPH-CWG - Aromatic >EC16 - EC21  | mg/kg | 10    | MCERTS | < 10    | -     | 33      | -     | -     |
| TPH-CWG - Aromatic >EC21 - EC35  | mg/kg | 10    | MCERTS | 18      | -     | 410     | -     | -     |
| TPH-CWG - Aromatic (EC5 - EC35)  | ma/ka | 10    | MCERTS | 27      | -     | 460     | -     | -     |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |       |               | 804157        | 804158        | 804159        | 804160        | 804161 |
|-----------------------------------------|-------|-------|---------------|---------------|---------------|---------------|---------------|--------|
| Sample Reference                        | TP101 | TP101 | TP102         | TP102         | TP103         |               |               |        |
| Sample Number                           |       |       |               | 1             | 2             | 1             | 2             | 1      |
| Depth (m)                               |       |       | 0.20-0.30     | 0.40-0.50     | 0.10-0.20     | 0.40-0.50     | 0.20-0.30     |        |
| Date Sampled                            |       |       | 15/08/2017    | 15/08/2017    | 15/08/2017    | 15/08/2017    | 15/08/2017    |        |
| Time Taken                              |       |       | None Supplied |        |
| Analytical Parameter<br>(Soil Analysis) |       |       |               |               |               |               |               |        |
| Environmental Forensics                 |       |       |               |               |               |               |               |        |

#### **Organochlorine Pesticides**

| Aldrin                                 | µg/kg | 10 | NONE | - | - | - | - | - |
|----------------------------------------|-------|----|------|---|---|---|---|---|
| Alpha-HCH (Alpha BHC)                  | µg/kg | 10 | NONE | - | - | - | - | - |
| Beta-HCH (Beta-BHC)                    | µg/kg | 10 | NONE | - | - | - | - | - |
| Chlordane (sum of cis & trans isomers) | µg/kg | 10 | NONE | - | - | - | - | - |
| Delta-HCH (Delta-BHC)                  | µg/kg | 10 | NONE | - | - | - | - | - |
| Dieldrin                               | µg/kg | 10 | NONE | - | - | - | - | - |
| Endosulphan A                          | µg/kg | 10 | NONE | - | - | - | - | - |
| Endosulphan B                          | µg/kg | 10 | NONE | - | - | - | - | - |
| Endrin                                 | µg/kg | 10 | NONE | - | - | - | - | - |
| Gamma-HCH (Lindane) (Gamma-BHC)        | µg/kg | 10 | NONE | - | - | - | - | - |
| HCB (Hexachlorobenzene)                | µg/kg | 10 | NONE | - | - | - | - | - |
| Heptachlor                             | µg/kg | 10 | NONE | - | - | - | - | - |
| Heptachlor Epoxide                     | µg/kg | 10 | NONE | - | - | - | - | - |
| Isodrin                                | µg/kg | 10 | NONE | - | - | - | - | - |
| pp-Methoxychlor                        | µg/kg | 10 | NONE | - | - | - | - | - |
| o,p-DDE                                | µg/kg | 10 | NONE | - | - | - | - | - |
| o,p-DDT                                | µg/kg | 10 | NONE | - | - | - | - | - |
| o,p-TDE (o,p-DDD)                      | µg/kg | 10 | NONE | - | - | - | - | - |
| p,p-DDE                                | µg/kg | 10 | NONE | - | - | - | - | - |
| p,p-DDT                                | µg/kg | 10 | NONE | - | - | - | - | - |
| p,p-TDE (p,p-DDD)                      | µg/kg | 10 | NONE | - | - | - | - | - |
| Trifluralin                            | µg/kg | 10 | NONE | - | - | - | - | - |

#### Organophosphorous pesticides

| Azinphos-methyl            | µg/kg | 10 | NONE | - | - | - | - | - |
|----------------------------|-------|----|------|---|---|---|---|---|
| Chlorfenvinphos I (cis)    | µg/kg | 10 | NONE | - | - | - | - | - |
| Chlorfenvinphos II (trans) | µg/kg | 10 | NONE | - | - | - | - | - |
| Chlorfenvinphos-methyl     | µg/kg | 10 | NONE | - | - | - | - | - |
| Diazinon                   | µg/kg | 10 | NONE | - | - | - | - | - |
| Dichlorvos                 | µg/kg | 10 | NONE | - | - | - | - | - |
| Dimethoate                 | µg/kg | 10 | NONE | - | - | - | - | - |
| E-mevinphos                | µg/kg | 10 | NONE | - | - | - | - | - |
| Z-mevinphos                | µg/kg | 10 | NONE | - | - | - | - | - |
| Fenitrothion               | µg/kg | 10 | NONE | - | - | - | - | - |
| Fenthion                   | µg/kg | 10 | NONE | - | - | - | - | - |
| Malathion                  | µg/kg | 10 | NONE | - | - | - | - | - |
| Parathion-ethyl            | µg/kg | 10 | NONE | - | - | - | - | - |
| Parathion-methyl           | µg/kg | 10 | NONE | - | - | - | - | - |
| Phorate                    | µg/kg | 10 | NONE | - | - | - | - | - |





Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                               |               |                       |                         | 804162              | 804163            | 804164               | 804165            | 804166       |
|-------------------------------------------------|---------------|-----------------------|-------------------------|---------------------|-------------------|----------------------|-------------------|--------------|
| Sample Reference                                |               |                       |                         | TP103               | TP105             | TP106                | TP107             | TP114        |
| Sample Number                                   |               |                       |                         | 2                   | 1                 | 1                    | 2                 | 1            |
| Depth (m)                                       | 0.90-1.00     | 0.50-0.60             | 0.10-0.20               | 0.50-0.60           | 0.10-0.20         |                      |                   |              |
| Date Sampled                                    |               |                       |                         | 15/08/2017          | 15/08/2017        | 15/08/2017           | 16/08/2017        | 15/08/2017   |
| Time Taken                                      | None Supplied | None Supplied         | None Supplied           | None Supplied       | None Supplied     |                      |                   |              |
| Analytical Parameter<br>(Soil Analysis)         | Units         | Limit of<br>detection | Accreditation<br>Status |                     |                   |                      |                   |              |
| Stone Content                                   | %             | 0.1                   | NONE                    | < 0.1               | < 0.1             | < 0.1                | < 0.1             | < 0.1        |
| Moisture Content                                | %             | N/A                   | NONE                    | 18                  | 41                | 28                   | 12                | 18           |
| Total mass of sample received                   | kg            | 0.001                 | NONE                    | 2.0                 | 2.0               | 2.0                  | 2.0               | 2.0          |
| Asbestos in Soil Screen / Identification Name   | Туре          | N/A                   | ISO 17025               | -                   | -                 | -                    | -                 | -            |
| Asbestos in Soil                                | Туре          | N/A                   | ISO 17025               | -                   | -                 | Not-detected         | -                 | Not-detected |
| General Inorganics                              |               |                       |                         |                     |                   |                      |                   |              |
| pH - Automated                                  | pH Units      | N/A                   | MCERTS                  | 7.9                 | 7.4               | 7.6                  | 8.1               | 7.7          |
| Total Cyanide                                   | mg/kg         | 1                     | MCERTS                  | < 1                 | < 1               | < 1                  | < 1               | < 1          |
| Complex Cyanide                                 | mg/kg         | 1                     | MCERTS                  | < 1                 | < 1               | < 1                  | < 1               | < 1          |
| Free Cyanide                                    | mg/kg         | 1                     | MCERTS                  | < 1                 | < 1               | < 1                  | < 1               | < 1          |
| Water Soluble SO4 16hr extraction (2:1 Leachate | - //          | 0.00125               | MOEDTO                  | 0.22                | 0.045             | 0.001                | 0.025             | 0.020        |
| Equivalent)<br>Total Sulabur                    | g/l           | 0.00125               | MCERTS                  | 610                 | 0.045             | 1000                 | 0.025             | 0.028        |
| Fraction Organic Carbon (EOC)                   | N/Δ           | 0.001                 | NONE                    | 0.015               | 0.094             | 0.060                | 0.0015            | 0.029        |
| ración organic carbon (roc)                     | N/A           | 0.001                 | NONE                    | 0.015               | 0.051             | 0.000                | 0.0015            | 0.029        |
| Total Phenols                                   |               |                       |                         |                     |                   |                      |                   |              |
| Total Phenols (monohydric)                      | mg/kg         | 1                     | MCERTS                  | < 1.0               | < 1.0             | < 1.0                | < 1.0             | < 1.0        |
| · · · · ·                                       |               |                       |                         |                     |                   |                      |                   |              |
| Speciated PAHs                                  |               |                       |                         |                     |                   |                      |                   | 1            |
| Naphthalene                                     | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Acenaphthylene                                  | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Acenaphthene                                    | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Fluorene                                        | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Anthracono                                      | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Fluoranthene                                    | ma/ka         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Pyrene                                          | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Benzo(a)anthracene                              | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Chrysene                                        | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Benzo(b)fluoranthene                            | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Benzo(k)fluoranthene                            | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Benzo(a)pyrene                                  | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Indeno(1,2,3-cd)pyrene                          | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Diberiz(d,ii)diuliacene<br>Benzo(dhi)nervlene   | mg/kg         | 0.05                  | MCERTS                  | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Denzo(gni)perviene                              | iiig/kg       | 0.05                  | PICERTS                 | < 0.05              | < 0.05            | < 0.05               | < 0.05            | < 0.05       |
| Total PAH                                       |               |                       |                         |                     |                   |                      |                   |              |
| Speciated Total EPA-16 PAHs                     | mg/kg         | 0.8                   | MCERTS                  | < 0.80              | < 0.80            | < 0.80               | < 0.80            | < 0.80       |
| Heavy Metals / Metalloids                       |               |                       |                         |                     | <u></u>           |                      | 10                | 10           |
| Arsenic (aqua regia extractable)                | mg/kg         | 1                     | MCERTS                  | 19                  | 9.1               | 10                   | 10                | 18           |
| Beryllium (aqua regia extractable)              | mg/kg         | 0.06                  | MCEPTS                  | 41<br>0.85          | <u>ە</u> ت<br>1 ؟ | 08<br>0 R0           | <u>∠ŏ</u><br>0 47 | 0.86         |
| Boron (water soluble)                           | ma/ka         | 0.2                   | MCERTS                  | 2.9                 | 8.1               | 7.7                  | 0.6               | 4.3          |
| Cadmium (agua regia extractable)                | ma/ka         | 0.2                   | MCERTS                  | < 0.2               | 0.4               | < 0.2                | < 0.2             | < 0.2        |
| Chromium (hexavalent)                           | mg/kg         | 4                     | MCERTS                  | < 4.0               | < 4.0             | < 4.0                | < 4.0             | < 4.0        |
| Chromium (aqua regia extractable)               | mg/kg         | 1                     | MCERTS                  | 23                  | 26                | 21                   | 11                | 29           |
| Copper (aqua regia extractable)                 | mg/kg         | 1                     | MCERTS                  | 25                  | 59                | 32                   | 14                | 41           |
| Lead (aqua regia extractable)                   | mg/kg         | 1                     | MCERTS                  | 16                  | 15                | 41                   | 5.6               | 29           |
| Mercury (aqua regia extractable)                | mg/kg         | 0.3                   | MCERTS                  | < 0.3               | < 0.3             | < 0.3                | < 0.3             | < 0.3        |
| Nickel (aqua regia extractable)                 | mg/kg         | 1                     | MCERTS                  | 16                  | 20                | 15                   | 13                | 20           |
| Selenium (aqua regia extractable)               | mg/kg         | 1                     | MCEDIC                  | < 1.0               | 4.8<br>61         | < 1.U<br>42          | < 1.0             | < 1.0        |
| Zinc (aqua regia extractable)                   | mg/kg         | 1                     | MCERTS                  | <del>סד</del><br>36 | 21                | <del>د ۲</del><br>52 | 25                | 100          |
| (aquu regiu exclueico)                          | iiig/kg       | 1                     | TIGENTJ                 |                     | <u>-</u>          | 52                   | 23                | 100          |




#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |                       |                         | 804162        | 804163        | 804164        | 804165        | 804166        |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                       |                         | TP103         | TP105         | TP106         | TP107         | TP114         |
| Sample Number                           |       |                       | 2                       | 1             | 1             | 2             | 1             |               |
| Depth (m)                               |       |                       |                         | 0.90-1.00     | 0.50-0.60     | 0.10-0.20     | 0.50-0.60     | 0.10-0.20     |
| Date Sampled                            |       |                       |                         | 15/08/2017    | 15/08/2017    | 15/08/2017    | 16/08/2017    | 15/08/2017    |
| Time Taken                              |       |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |
|                                         |       |                       |                         |               |               |               |               |               |

| Monoaromatics                      |       |   |        |   |   |   |   |   |
|------------------------------------|-------|---|--------|---|---|---|---|---|
| Benzene                            | ug/kg | 1 | MCERTS | - | - | - | - | - |
| Toluene                            | µg/kg | 1 | MCERTS | - | - | - | - | - |
| Ethylbenzene                       | µg/kg | 1 | MCERTS | - | - | - | - | - |
| p & m-xylene                       | µg/kg | 1 | MCERTS | - | - | - | - | - |
| o-xylene                           | µg/kg | 1 | MCERTS | - | - | - | - | - |
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 1 | MCERTS | - | - | - | - | - |
|                                    |       |   |        |   |   |   |   |   |

#### Petroleum Hydrocarbons

| TPH C10 - C40                    | mg/kg | 10    | MCERTS | 19    | < 10  | < 10  | < 10  | 47    |
|----------------------------------|-------|-------|--------|-------|-------|-------|-------|-------|
| TPH2 (C6 - C10)                  | mg/kg | 0.1   | MCERTS | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
|                                  |       |       |        |       |       |       |       |       |
| TPH-CWG - Aliphatic >EC5 - EC6   | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC6 - EC8   | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC8 - EC10  | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC10 - EC12 | mg/kg | 1     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC12 - EC16 | mg/kg | 2     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC16 - EC21 | mg/kg | 8     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC21 - EC35 | mg/kg | 8     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic (EC5 - EC35) | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
|                                  |       |       |        |       |       |       |       |       |
| TPH-CWG - Aromatic >EC5 - EC7    | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC7 - EC8    | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC8 - EC10   | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC10 - EC12  | mg/kg | 1     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC12 - EC16  | mg/kg | 2     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC16 - EC21  | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC21 - EC35  | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic (EC5 - EC35)  | ma/ka | 10    | MCERTS | -     | -     | -     | -     | -     |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |                       |                         | 804162        | 804163        | 804164        | 804165        | 804166        |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                       |                         | TP103         | TP105         | TP106         | TP107         | TP114         |
| Sample Number                           |       |                       |                         | 2             | 1             | 1             | 2             | 1             |
| Depth (m)                               |       |                       |                         | 0.90-1.00     | 0.50-0.60     | 0.10-0.20     | 0.50-0.60     | 0.10-0.20     |
| Date Sampled                            |       |                       | 15/08/2017              | 15/08/2017    | 15/08/2017    | 16/08/2017    | 15/08/2017    |               |
| Time Taken                              |       |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |
| Environmental Forensics                 |       |                       |                         |               |               |               |               |               |

#### **Organochlorine Pesticides**

| Aldrin                                 | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
|----------------------------------------|-------|----|------|---|---|------|---|------|
| Alpha-HCH (Alpha BHC)                  | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Beta-HCH (Beta-BHC)                    | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Chlordane (sum of cis & trans isomers) | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Delta-HCH (Delta-BHC)                  | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Dieldrin                               | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Endosulphan A                          | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Endosulphan B                          | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Endrin                                 | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Gamma-HCH (Lindane) (Gamma-BHC)        | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| HCB (Hexachlorobenzene)                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Heptachlor                             | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Heptachlor Epoxide                     | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Isodrin                                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| pp-Methoxychlor                        | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| o,p-DDE                                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| o,p-DDT                                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| o,p-TDE (o,p-DDD)                      | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| p,p-DDE                                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| p,p-DDT                                | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| p,p-TDE (p,p-DDD)                      | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |
| Trifluralin                            | µg/kg | 10 | NONE | - | - | < 10 | - | < 10 |

#### Organophosphorous pesticides

| Azinphos-methyl            | µg/kg | 10 | NONE | - | - | < 25.0 | - | < 25.0 |
|----------------------------|-------|----|------|---|---|--------|---|--------|
| Chlorfenvinphos I (cis)    | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Chlorfenvinphos II (trans) | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Chlorfenvinphos-methyl     | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Diazinon                   | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Dichlorvos                 | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Dimethoate                 | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| E-mevinphos                | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Z-mevinphos                | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Fenitrothion               | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Fenthion                   | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Malathion                  | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Parathion-ethyl            | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Parathion-methyl           | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |
| Phorate                    | µg/kg | 10 | NONE | - | - | < 10   | - | < 10   |





Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                                               |          |         |           | 804167                | 804168                | 804169        | 804170        | 804171                                |  |  |  |
|-----------------------------------------------------------------|----------|---------|-----------|-----------------------|-----------------------|---------------|---------------|---------------------------------------|--|--|--|
| Sample Reference                                                |          |         |           | TD114                 | TD118                 | TD110         | TP120         | TD121                                 |  |  |  |
| Sample Number                                                   |          |         |           | 5                     | 2                     | 2             | 1             | 1                                     |  |  |  |
| Depth (m)                                                       |          |         |           | 1.00-1.20             | 0.70-0.80             | 0.80-0.90     | 0.60-0.70     | 0.10-0.20                             |  |  |  |
| Date Sampled                                                    |          |         |           | 15/08/2017            | 17/08/2017            | 17/08/2017    | 17/08/2017    | 16/08/2017                            |  |  |  |
| Time Taken                                                      |          |         |           | None Supplied         | None Supplied         | None Supplied | None Supplied | None Supplied                         |  |  |  |
|                                                                 |          |         | A         |                       |                       |               |               |                                       |  |  |  |
| Analytical Parameter                                            | c        | 료 드     | S         |                       |                       |               |               |                                       |  |  |  |
|                                                                 | Init     | ëqit    | bdit      |                       |                       |               |               |                                       |  |  |  |
|                                                                 | S        | ĝ 9     | atio      |                       |                       |               |               |                                       |  |  |  |
|                                                                 |          |         | ä         |                       |                       |               |               |                                       |  |  |  |
| Stone Content                                                   | %        | 0.1     | NONE      | < 0.1                 | < 0.1                 | < 0.1         | < 0.1         | < 0.1                                 |  |  |  |
| Moisture Content                                                | %        | N/A     | NONE      | 13                    | 16                    | 13            | 5.0           | 15                                    |  |  |  |
| Total mass of sample received                                   | kg       | 0.001   | NONE      | 2.0                   | 1.6                   | 1.4           | 2.0           | 1.5                                   |  |  |  |
|                                                                 | r        | r       | 1         |                       |                       |               |               |                                       |  |  |  |
| Asbestos in Soil Screen / Identification Name                   | Type     | N/A     | ISO 17025 | -                     | -                     | -             | _             | _                                     |  |  |  |
|                                                                 | .,,,,,   | ,,,     |           |                       |                       |               |               |                                       |  |  |  |
| Asbestos in Soil                                                | Туре     | N/A     | ISO 17025 | -                     | -                     | -             | -             | -                                     |  |  |  |
|                                                                 |          |         |           |                       |                       |               |               |                                       |  |  |  |
| General Inorganics                                              |          |         |           |                       |                       |               |               | · · · · · · · · · · · · · · · · · · · |  |  |  |
| pH - Automated                                                  | pH Units | N/A     | MCERTS    | 8.2                   | 7.3                   | 7.9           | 8.2           | 7.0                                   |  |  |  |
| Total Cyanide                                                   | mg/kg    | 1       | MCERTS    | < 1                   | < 1                   | < 1           | < 1           | < 1                                   |  |  |  |
| Complex Cyanide                                                 | mg/kg    |         | MCERTS    | < 1                   | < 1                   | < 1           | < 1           | < 1                                   |  |  |  |
| Pree Cyaniae<br>Water Soluble SO4 16br extraction (2:1 Leachate | mg/kg    | 1       | MCERTS    | < 1                   | < 1                   | < 1           | < 1           | < 1                                   |  |  |  |
| Equivalent)                                                     | a/l      | 0.00125 | MCERTS    | 0.019                 | 0.019                 | 0.13          | 0.011         | 0.0098                                |  |  |  |
| Total Sulphur                                                   | mg/kg    | 50      | MCERTS    | 270                   | 190                   | 320           | 280           | 560                                   |  |  |  |
| Fraction Organic Carbon (FOC)                                   | N/A      | 0.001   | NONE      | 0.0022                | 0.0037                | 0.0044        | 0.0024        | 0.028                                 |  |  |  |
|                                                                 |          |         |           |                       |                       |               |               |                                       |  |  |  |
| Iotal Phenois                                                   |          |         |           |                       |                       |               |               |                                       |  |  |  |
| Total Phenols (monohydric)                                      | mg/kg    | 1       | MCERTS    | < 1.0                 | < 1.0                 | < 1.0         | < 1.0         | < 1.0                                 |  |  |  |
|                                                                 |          |         |           |                       |                       |               |               |                                       |  |  |  |
| Speciated PAHS                                                  |          | 0.05    |           | . 0.05                | . 0.05                | . 0.05        | . 0.05        | . 0.05                                |  |  |  |
|                                                                 | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
|                                                                 | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Fluorene                                                        | ma/ka    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Phenanthrene                                                    | ma/ka    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Anthracene                                                      | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Fluoranthene                                                    | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Pyrene                                                          | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Benzo(a)anthracene                                              | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Chrysene                                                        | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Benzo(b)fluoranthene                                            | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Benzo(k)fluoranthene                                            | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Benzo(a)pyrene                                                  | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Dibonz(2, b)onthrosono                                          | mg/kg    | 0.05    | MCEDIC    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Benzo(abi)nervlene                                              | mg/kg    | 0.05    | MCERTS    | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Denzo(gnr)perviene                                              | iiig/kg  | 0.05    | FIGERTS   | < 0.05                | < 0.05                | < 0.05        | < 0.05        | < 0.05                                |  |  |  |
| Total PAH                                                       |          |         |           |                       |                       |               |               |                                       |  |  |  |
| Speciated Total EPA-16 PAHs                                     | mg/kg    | 0.8     | MCERTS    | < 0.80                | < 0.80                | < 0.80        | < 0.80        | < 0.80                                |  |  |  |
|                                                                 |          |         |           |                       |                       |               |               |                                       |  |  |  |
| Heavy Metals / Metalloids                                       | -        | -       | -         |                       | -                     |               | -             |                                       |  |  |  |
| Arsenic (aqua regia extractable)                                | mg/kg    | 1       | MCERTS    | 9.2                   | 8.0                   | 3.7           | 14            | 9.4                                   |  |  |  |
| Barium (aqua regia extractable)                                 | mg/kg    | 1       | MCERTS    | 11                    | 39                    | 35            | 50            | 61                                    |  |  |  |
| Beryllium (aqua regia extractable)                              | mg/kg    | 0.06    | MCERTS    | 0.20                  | 0.71                  | 0.68          | 0.46          | 0.84                                  |  |  |  |
| Boron (water soluble)                                           | mg/kg    | 0.2     | MCERTS    | 0.2                   | 2.1                   | 1.8           | 0.9           | 5.6                                   |  |  |  |
| Caumum (aqua regia extractable)                                 | mg/kg    | 0.2     | MCERTS    | < 0.2                 | < 0.2                 | < 0.2         | < 0.2         | < 0.2                                 |  |  |  |
| Chromium (aqua regia extractable)                               | mg/kg    | 4       | MCEDTO    | <u>&lt; 4.0</u><br>ຊາ | <u>&lt; 4.0</u><br>つつ | < 4.0<br>22   | < 4.U<br>14   | < 4.U<br>28                           |  |  |  |
| Copper (aqua regia extractable)                                 | ma/ka    | 1       | MCERTS    | 19                    | 22                    | 25            | 25            | 47                                    |  |  |  |
| Lead (aqua regia extractable)                                   | ma/ka    | 1       | MCERTS    | 4.7                   | 12                    | 11            | 7.1           | 39                                    |  |  |  |
| Mercury (aqua regia extractable)                                | mg/kg    | 0.3     | MCERTS    | < 0.3                 | < 0.3                 | < 0.3         | < 0.3         | < 0.3                                 |  |  |  |
| Nickel (aqua regia extractable)                                 | mg/kg    | 1       | MCERTS    | 12                    | 9.3                   | 12            | 18            | 19                                    |  |  |  |
| Selenium (aqua regia extractable)                               | mg/kg    | 1       | MCERTS    | < 1.0                 | < 1.0                 | < 1.0         | < 1.0         | < 1.0                                 |  |  |  |
| Vanadium (aqua regia extractable)                               | mg/kg    | 1       | MCERTS    | 20                    | 32                    | 33            | 24            | 40                                    |  |  |  |
| Zinc (aqua regia extractable)                                   | mg/kg    | 1       | MCERTS    | 23                    | 32                    | 26            | 29            | 78                                    |  |  |  |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |                       |                         | 804167        | 804168        | 804169        | 804170        | 804171        |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                       |                         | TP114         | TP118         | TP119         | TP120         | TP121         |
| Sample Number                           |       | 5                     | 2                       | 2             | 1             | 1             |               |               |
| Depth (m)                               |       |                       |                         | 1.00-1.20     | 0.70-0.80     | 0.80-0.90     | 0.60-0.70     | 0.10-0.20     |
| Date Sampled                            |       |                       |                         | 15/08/2017    | 17/08/2017    | 17/08/2017    | 17/08/2017    | 16/08/2017    |
| Time Taken                              |       |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |
|                                         |       |                       |                         |               |               |               |               |               |

| Monoaromatics                      |       |   |        |   |   |   |   |   |  |  |
|------------------------------------|-------|---|--------|---|---|---|---|---|--|--|
| Benzene                            | ug/kg | 1 | MCERTS | - | - | - | - | - |  |  |
| Toluene                            | µg/kg | 1 | MCERTS | - | - | - | - | - |  |  |
| Ethylbenzene                       | µg/kg | 1 | MCERTS | - | - | - | - | - |  |  |
| p & m-xylene                       | µg/kg | 1 | MCERTS | - | - | - | - | - |  |  |
| o-xylene                           | µg/kg | 1 | MCERTS | - | - | - | - | - |  |  |
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 1 | MCERTS | - | - | - | - | - |  |  |

#### Petroleum Hydrocarbons

| TPH C10 - C40                    | mg/kg | 10    | MCERTS | < 10  | < 10  | < 10  | 19    | < 10  |
|----------------------------------|-------|-------|--------|-------|-------|-------|-------|-------|
| TPH2 (C6 - C10)                  | mg/kg | 0.1   | MCERTS | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| TPH-CWG - Aliphatic >EC5 - EC6   | ma/ka | 0.001 | MCERTS | _     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic > EC6 - EC8  | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC8 - EC10  | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC10 - EC12 | mg/kg | 1     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC12 - EC16 | mg/kg | 2     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC16 - EC21 | mg/kg | 8     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic >EC21 - EC35 | mg/kg | 8     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aliphatic (EC5 - EC35) | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
|                                  |       |       |        |       |       |       |       |       |
| TPH-CWG - Aromatic >EC5 - EC7    | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC7 - EC8    | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC8 - EC10   | mg/kg | 0.001 | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC10 - EC12  | mg/kg | 1     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC12 - EC16  | mg/kg | 2     | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC16 - EC21  | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic >EC21 - EC35  | mg/kg | 10    | MCERTS | -     | -     | -     | -     | -     |
| TPH-CWG - Aromatic (EC5 - EC35)  | ma/ka | 10    | MCERTS | -     | -     | -     | -     | -     |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |       |                       |                         | 804167        | 804168        | 804169        | 804170        | 804171        |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                       |                         | TP114         | TP118         | TP119         | TP120         | TP121         |
| Sample Number                           |       | 5                     | 2                       | 2             | 1             | 1             |               |               |
| Depth (m)                               |       |                       |                         | 1.00-1.20     | 0.70-0.80     | 0.80-0.90     | 0.60-0.70     | 0.10-0.20     |
| Date Sampled                            |       |                       |                         | 15/08/2017    | 17/08/2017    | 17/08/2017    | 17/08/2017    | 16/08/2017    |
| Time Taken                              |       |                       |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |               |
| Environmental Forensics                 |       |                       |                         |               |               |               |               |               |

#### **Organochlorine Pesticides**

| Aldrin                                 | µg/kg | 10 | NONE | - | - | - | - | < 10 |
|----------------------------------------|-------|----|------|---|---|---|---|------|
| Alpha-HCH (Alpha BHC)                  | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Beta-HCH (Beta-BHC)                    | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Chlordane (sum of cis & trans isomers) | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Delta-HCH (Delta-BHC)                  | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Dieldrin                               | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Endosulphan A                          | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Endosulphan B                          | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Endrin                                 | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Gamma-HCH (Lindane) (Gamma-BHC)        | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| HCB (Hexachlorobenzene)                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Heptachlor                             | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Heptachlor Epoxide                     | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Isodrin                                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| pp-Methoxychlor                        | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| o,p-DDE                                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| o,p-DDT                                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| o,p-TDE (o,p-DDD)                      | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| p,p-DDE                                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| p,p-DDT                                | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| p,p-TDE (p,p-DDD)                      | µg/kg | 10 | NONE | - | - | - | - | < 10 |
| Trifluralin                            | µg/kg | 10 | NONE | - | - | - | - | < 10 |

#### Organophosphorous pesticides

| Azinphos-methyl            | µg/kg | 10 | NONE | - | - | - | - | < 25.0 |
|----------------------------|-------|----|------|---|---|---|---|--------|
| Chlorfenvinphos I (cis)    | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Chlorfenvinphos II (trans) | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Chlorfenvinphos-methyl     | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Diazinon                   | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Dichlorvos                 | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Dimethoate                 | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| E-mevinphos                | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Z-mevinphos                | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Fenitrothion               | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Fenthion                   | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Malathion                  | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Parathion-ethyl            | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Parathion-methyl           | µg/kg | 10 | NONE | - | - | - | - | < 10   |
| Phorate                    | µg/kg | 10 | NONE | - | - | - | - | < 10   |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                                                 |              | 804172   |           |               |      |      |
|-------------------------------------------------------------------|--------------|----------|-----------|---------------|------|------|
| Sample Reference                                                  |              |          |           | TD125         |      |      |
| Sample Number                                                     |              |          |           | 1             |      | <br> |
| Depth (m)                                                         |              |          |           | 0.40-0.50     |      |      |
| Date Sampled                                                      |              |          |           | 16/08/2017    |      |      |
| Time Taken                                                        |              |          |           | None Supplied |      |      |
|                                                                   |              |          | Ac        |               |      |      |
| Analytical Parameter                                              | c            | Lin      | St        |               |      |      |
| (Soil Analysis)                                                   | nits         | nit ecti | dita      |               |      |      |
| (                                                                 | •            | on of    | s         |               |      |      |
|                                                                   |              |          | 3         |               |      |      |
| Stone Content                                                     | %            | 0.1      | NONE      | < 0.1         | <br> | <br> |
| Moisture Content                                                  | %            | N/A      | NONE      | 12            |      |      |
| Total mass of sample received                                     | ĸy           | 0.001    | NONL      | 2.0           |      |      |
|                                                                   |              |          |           |               |      |      |
| Asbestos in Soil Screen / Identification Name                     | Туре         | N/A      | ISO 17025 | -             |      |      |
|                                                                   | _            |          |           |               |      |      |
| Asbestos in Soil                                                  | Туре         | N/A      | ISO 17025 | -             |      |      |
| General Inorganics                                                |              |          |           |               |      |      |
| pH - Automated                                                    | pH Units     | N/A      | MCERTS    | 7.9           |      |      |
| Total Cyanide                                                     | mg/kg        | 1        | MCERTS    | < 1           |      |      |
| Complex Cyanide                                                   | mg/kg        | 1        | MCERTS    | < 1           |      |      |
| Free Cyanide                                                      | mg/kg        | 1        | MCERTS    | < 1           | <br> | <br> |
| Water Soluble SO4 16hr extraction (2:1 Leachate                   | - /1         | 0.00125  | MCEDIC    | 0.015         |      |      |
| Equivalent)<br>Total Sulphur                                      | g/l<br>ma/ka | 50       | MCERTS    | 140           |      |      |
| Fraction Organic Carbon (EOC)                                     | N/A          | 0.001    | NONE      | 0.0041        |      |      |
| Haddon organie oarbon (100)                                       | ,,,          | 0.001    | HOHE      | 010011        |      |      |
| Total Phenols                                                     |              |          |           |               |      |      |
| Total Phenols (monohydric)                                        | mg/kg        | 1        | MCERTS    | < 1.0         |      |      |
|                                                                   |              |          |           |               |      |      |
| Speciated PAHs                                                    |              |          |           |               |      |      |
| Naphthalene                                                       | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
|                                                                   | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Fluorene                                                          | ma/ka        | 0.05     | MCERTS    | < 0.05        |      |      |
| Phenanthrene                                                      | ma/ka        | 0.05     | MCERTS    | < 0.05        |      |      |
| Anthracene                                                        | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Fluoranthene                                                      | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Pyrene                                                            | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Benzo(a)anthracene                                                | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Chrysene                                                          | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Benzo(b)Huoranthene                                               | mg/kg        | 0.05     | MCEDITS   | < 0.05        |      |      |
| Benzo(a)nvrene                                                    | ma/ka        | 0.05     | MCERTS    | < 0.05        |      |      |
| Indeno(1,2,3-cd)pyrene                                            | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Dibenz(a,h)anthracene                                             | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
| Benzo(ghi)perylene                                                | mg/kg        | 0.05     | MCERTS    | < 0.05        |      |      |
|                                                                   |              |          |           |               |      |      |
| Total PAH                                                         |              |          |           |               |      |      |
| Speciated Total EPA-16 PAHs                                       | mg/kg        | 0.8      | MCERTS    | < 0.80        |      |      |
| Heavy Metals / Metalloids                                         |              |          |           |               |      |      |
| Arsenic (agua regia extractable)                                  | ma/ka        | 1        | MCERTS    | 16            |      |      |
| Barium (aqua regia extractable)                                   | ma/ka        | 1        | MCERTS    | 85            |      |      |
| Beryllium (aqua regia extractable)                                | mg/kg        | 0.06     | MCERTS    | 1.3           |      |      |
| Boron (water soluble)                                             | mg/kg        | 0.2      | MCERTS    | 2.2           |      |      |
| Cadmium (aqua regia extractable)                                  | mg/kg        | 0.2      | MCERTS    | < 0.2         |      |      |
| Chromium (hexavalent)                                             | mg/kg        | 4        | MCERTS    | < 4.0         | <br> | <br> |
| Chromium (aqua regia extractable)                                 | mg/kg        | 1        | MCERTS    | 26            |      | <br> |
| Lopper (aqua regia extractable)                                   | mg/kg        | 1        | MCERTS    | 26            | <br> |      |
| Leau (ayud regid extractable)<br>Mercury (agua regia extractable) | mg/kg        | 1        | MCEDIC    | 14<br>< 0.3   |      |      |
| Nickel (agua regia extractable)                                   | ma/ka        | 1        | MCFRTS    | 50            |      |      |
| Selenium (aqua regia extractable)                                 | mg/kq        | 1        | MCERTS    | < 1.0         |      |      |
| Vanadium (aqua regia extractable)                                 | mg/kg        | 1        | MCERTS    | 50            |      |      |
| Zinc (aqua regia extractable)                                     | mg/kg        | 1        | MCERTS    | 86            | <br> | <br> |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       |            |                       |                         | 804172        |  |  |
|-----------------------------------------|------------|-----------------------|-------------------------|---------------|--|--|
| Sample Reference                        | TP125      |                       |                         |               |  |  |
| Sample Number                           |            |                       |                         | 1             |  |  |
| Depth (m)                               | 0.40-0.50  |                       |                         |               |  |  |
| Date Sampled                            | 16/08/2017 |                       |                         |               |  |  |
| Time Taken                              |            |                       |                         | None Supplied |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units      | Limit of<br>detection | Accreditation<br>Status |               |  |  |
|                                         |            |                       |                         |               |  |  |

| Monoaromatics                      |       |   |        |   |  |  |
|------------------------------------|-------|---|--------|---|--|--|
| Benzene                            | ug/kg | 1 | MCERTS | - |  |  |
| Toluene                            | µg/kg | 1 | MCERTS | - |  |  |
| Ethylbenzene                       | µg/kg | 1 | MCERTS | - |  |  |
| p & m-xylene                       | µg/kg | 1 | MCERTS | - |  |  |
| o-xylene                           | µg/kg | 1 | MCERTS | - |  |  |
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 1 | MCERTS | - |  |  |

#### Petroleum Hydrocarbons

| TPH C10 - C40                    | ma/ka    | 10    | MCERTS | < 10  |          | 1        |          |          |
|----------------------------------|----------|-------|--------|-------|----------|----------|----------|----------|
|                                  | iiig/iig | 10    | HELKIS |       | <u>р</u> | <u> </u> | <u>р</u> | <u>р</u> |
| TPH2 (C6 - C10)                  | mg/kg    | 0.1   | MCERTS | < 0.1 |          |          |          |          |
|                                  |          |       |        |       |          |          |          |          |
| TPH-CWG - Aliphatic >EC5 - EC6   | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC6 - EC8   | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC8 - EC10  | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC10 - EC12 | mg/kg    | 1     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC12 - EC16 | mg/kg    | 2     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC16 - EC21 | mg/kg    | 8     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic >EC21 - EC35 | mg/kg    | 8     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aliphatic (EC5 - EC35) | mg/kg    | 10    | MCERTS | -     |          |          |          |          |
|                                  |          |       |        |       |          |          |          |          |
| TPH-CWG - Aromatic >EC5 - EC7    | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC7 - EC8    | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC8 - EC10   | mg/kg    | 0.001 | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC10 - EC12  | mg/kg    | 1     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC12 - EC16  | mg/kg    | 2     | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC16 - EC21  | mg/kg    | 10    | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic >EC21 - EC35  | mg/kg    | 10    | MCERTS | -     |          |          |          |          |
| TPH-CWG - Aromatic (EC5 - EC35)  | ma/ka    | 10    | MCERTS | -     |          |          |          |          |





#### Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

| Lab Sample Number                       | 804172     |                       |                         |               |  |  |
|-----------------------------------------|------------|-----------------------|-------------------------|---------------|--|--|
| Sample Reference                        | TP125      |                       |                         |               |  |  |
| Sample Number                           | 1          |                       |                         |               |  |  |
| Depth (m)                               | 0.40-0.50  |                       |                         |               |  |  |
| Date Sampled                            | 16/08/2017 |                       |                         |               |  |  |
| Time Taken                              |            |                       |                         | None Supplied |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units      | Limit of<br>detection | Accreditation<br>Status |               |  |  |
| Environmental Forensics                 |            |                       |                         |               |  |  |

#### **Organochlorine Pesticides**

| Aldrin                                 | µg/kg | 10 | NONE | - |  |  |
|----------------------------------------|-------|----|------|---|--|--|
| Alpha-HCH (Alpha BHC)                  | µg/kg | 10 | NONE | - |  |  |
| Beta-HCH (Beta-BHC)                    | µg/kg | 10 | NONE | - |  |  |
| Chlordane (sum of cis & trans isomers) | µg/kg | 10 | NONE | - |  |  |
| Delta-HCH (Delta-BHC)                  | µg/kg | 10 | NONE | - |  |  |
| Dieldrin                               | µg/kg | 10 | NONE | - |  |  |
| Endosulphan A                          | µg/kg | 10 | NONE | - |  |  |
| Endosulphan B                          | µg/kg | 10 | NONE | - |  |  |
| Endrin                                 | µg/kg | 10 | NONE | - |  |  |
| Gamma-HCH (Lindane) (Gamma-BHC)        | µg/kg | 10 | NONE | - |  |  |
| HCB (Hexachlorobenzene)                | µg/kg | 10 | NONE | - |  |  |
| Heptachlor                             | µg/kg | 10 | NONE | - |  |  |
| Heptachlor Epoxide                     | µg/kg | 10 | NONE | - |  |  |
| Isodrin                                | µg/kg | 10 | NONE | - |  |  |
| pp-Methoxychlor                        | µg/kg | 10 | NONE | - |  |  |
| o,p-DDE                                | µg/kg | 10 | NONE | - |  |  |
| o,p-DDT                                | µg/kg | 10 | NONE | - |  |  |
| o,p-TDE (o,p-DDD)                      | µg/kg | 10 | NONE | - |  |  |
| p,p-DDE                                | µg/kg | 10 | NONE | - |  |  |
| p,p-DDT                                | µg/kg | 10 | NONE | - |  |  |
| p,p-TDE (p,p-DDD)                      | µg/kg | 10 | NONE | - |  |  |
| Trifluralin                            | µg/kg | 10 | NONE | - |  |  |

#### Organophosphorous pesticides

| Azinphos-methyl            | µg/kg | 10 | NONE | - |  |  |
|----------------------------|-------|----|------|---|--|--|
| Chlorfenvinphos I (cis)    | µg/kg | 10 | NONE | - |  |  |
| Chlorfenvinphos II (trans) | µg/kg | 10 | NONE | - |  |  |
| Chlorfenvinphos-methyl     | µg/kg | 10 | NONE | - |  |  |
| Diazinon                   | µg/kg | 10 | NONE | - |  |  |
| Dichlorvos                 | µg/kg | 10 | NONE | - |  |  |
| Dimethoate                 | µg/kg | 10 | NONE | - |  |  |
| E-mevinphos                | µg/kg | 10 | NONE | - |  |  |
| Z-mevinphos                | µg/kg | 10 | NONE | - |  |  |
| Fenitrothion               | µg/kg | 10 | NONE | - |  |  |
| Fenthion                   | µg/kg | 10 | NONE | - |  |  |
| Malathion                  | µg/kg | 10 | NONE | - |  |  |
| Parathion-ethyl            | µg/kg | 10 | NONE | - |  |  |
| Parathion-methyl           | µg/kg | 10 | NONE | - |  |  |
| Phorate                    | µg/kg | 10 | NONE | - |  |  |





#### Project / Site name: Lakeview Drive, Bicester

#### Your Order No: POR012937

| Lab Sample Number                           |          | 804173                | 804174                  | 804175        |               |               |  |
|---------------------------------------------|----------|-----------------------|-------------------------|---------------|---------------|---------------|--|
| Sample Reference                            |          |                       |                         | TP101         | TP101         | TP102         |  |
| Sample Number                               |          |                       |                         | 1             | 2             | 1             |  |
| Depth (m)                                   |          |                       |                         | 0.20-0.30     | 0.40-0.50     | 0.10-0.20     |  |
| Date Sampled                                |          |                       |                         | 15/08/2017    | 15/08/2017    | 15/08/2017    |  |
| Time Taken                                  |          |                       |                         | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Leachate Analysis) | Units    | Limit of<br>detection | Accreditation<br>Status |               |               |               |  |
| General Inorganics                          |          |                       |                         |               |               |               |  |
| рН                                          | pH Units | N/A                   | ISO 17025               | 7.9           | 8.0           | 8.2           |  |
| Total Cyanide                               | µg/l     | 10                    | ISO 17025               | < 10          | < 10          | < 10          |  |
| Sulphate as SO <sub>4</sub>                 | mg/l     | 0.1                   | ISO 17025               | 11            | 13            | 210           |  |
| Heavy Metals / Metalloids                   |          |                       |                         |               |               |               |  |
| Arsenic (dissolved)                         | µg/l     | 1.1                   | ISO 17025               | 1.7           | < 1.1         | 5.9           |  |
| Barium (dissolved)                          | µg/l     | 0.05                  | ISO 17025               | 9.9           | 5.5           | 19            |  |
| Beryllium (dissolved)                       | µg/l     | 0.2                   | ISO 17025               | < 0.2         | < 0.2         | 0.4           |  |
| Boron (dissolved)                           | µg/l     | 10                    | ISO 17025               | 94            | 70            | 300           |  |
| Cadmium (dissolved)                         | µg/l     | 0.08                  | ISO 17025               | < 0.08        | < 0.08        | < 0.08        |  |
| Chromium (dissolved)                        | µg/l     | 0.4                   | ISO 17025               | 1.8           | 0.6           | 4.7           |  |
| Copper (dissolved)                          | µg/l     | 0.7                   | ISO 17025               | 23            | 22            | 42            |  |
| Lead (dissolved)                            | µg/l     | 1                     | ISO 17025               | 2.1           | 1.8           | 6.8           |  |
| Mercury (dissolved)                         | µg/l     | 0.5                   | ISO 17025               | < 0.5         | < 0.5         | < 0.5         |  |
| Nickel (dissolved)                          | µg/l     | 0.3                   | ISO 17025               | 4.2           | 1.5           | 4.2           |  |
| Selenium (dissolved)                        | µg/l     | 4                     | ISO 17025               | < 4.0         | < 4.0         | < 4.0         |  |
| Vanadium (dissolved)                        | µg/l     | 1.7                   | ISO 17025               | < 1.7         | < 1.7         | 7.7           |  |
| Zinc (dissolved)                            | µg/l     | 0.4                   | ISO 17025               | 10            | 9.9           | 12            |  |





#### Project / Site name: Lakeview Drive, Bicester

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                                  |
|----------------------|---------------------|------------------|-----------|-------------------------------------------------------|
| 804157               | TP101               | 1                | 0.20-0.30 | Brown clay and sand with gravel and vegetation.       |
| 804158               | TP101               | 2                | 0.40-0.50 | Brown clay and sand with gravel.                      |
| 804159               | TP102               | 1                | 0.10-0.20 | Brown gravelly sand with rubble and vegetation.       |
| 804160               | TP102               | 2                | 0.40-0.50 | Brown clay and sand.                                  |
| 804161               | TP103               | 1                | 0.20-0.30 | Brown clay and sand with gravel and brick.            |
| 804162               | TP103               | 2                | 0.90-1.00 | Brown clay and sand with vegetation.                  |
| 804163               | TP105               | 1                | 0.50-0.60 | Brown clay and loam.                                  |
| 804164               | TP106               | 1                | 0.10-0.20 | Brown loam and clay with vegetation.                  |
| 804165               | TP107               | 2                | 0.50-0.60 | Light brown sandy clay with gravel.                   |
| 804166               | TP114               | 1                | 0.10-0.20 | Brown clay and loam with gravel and vegetation.       |
| 804167               | TP114               | 5                | 1.00-1.20 | Light brown gravelly sand.                            |
| 804168               | TP118               | 2                | 0.70-0.80 | Light brown clay and sand.                            |
| 804169               | TP119               | 2                | 0.80-0.90 | Light brown clay and sand with gravel.                |
| 804170               | TP120               | 1                | 0.60-0.70 | Light brown sand with gravel.                         |
| 804171               | TP121               | 1                | 0.10-0.20 | Brown clay and loam with vegetation.                  |
| 804172               | TP125               | 1                | 0.40-0.50 | Light brown clay and sand with gravel and vegetation. |





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                     | Analytical Method Description                                                                                                                                   | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Asbestos identification in soil          | Asbestos Identification with the use of polarised<br>light microscopy in conjunction with disperion<br>staining techniques.                                     | In house method based on HSG 248                                                                                      | A001-PL          | D                     | ISO 17025               |
| Boron in leachate                        | Determination of boron in leachate. Sample acidified and followed by ICP-OES.                                                                                   | In-house method based on MEWAM                                                                                        | L039-PL          | w                     | ISO 17025               |
| Boron, water soluble, in soil            | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                          | In-house method based on Second Site<br>Properties version 3                                                          | L038-PL          | D                     | MCERTS                  |
| BS EN 12457-1 (2:1) Leachate Prep        | 2:1 (as recieved, moisture adjusted) end over end<br>extraction with water for 24 hours. Eluate filtered<br>prior to analysis.                                  | In-house method based on BSEN12457-1.                                                                                 | L043-PL          | w                     | NONE                    |
| BTEX and MTBE in soil<br>(Monoaromatics) | Determination of BTEX in soil by headspace GC-<br>MS.                                                                                                           | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | MCERTS                  |
| Complex Cyanide in soil                  | Determination of complex cyanide by calculation.                                                                                                                | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | w                     | MCERTS                  |
| Fraction of Organic Carbon in soil       | Determination of fraction of organic carbon in soil<br>by oxidising with potassium dichromate followed by<br>titration with iron (II) sulphate.                 | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L023-PL          | D                     | NONE                    |
| Free cyanide in soil                     | Determination of free cyanide by distillation followed by colorimetry.                                                                                          | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | MCERTS                  |
| Hexavalent chromium in soil              | Determination of hexavalent chromium in soil by<br>extraction in water then by acidification, addition of<br>1,5 diphenylcarbazide followed by colorimetry.     | In-house method                                                                                                       | L080-PL          | W                     | MCERTS                  |
| Metals by ICP-OES in leachate            | Determination of metals in leachate by acidification followed by ICP-OES.                                                                                       | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | w                     | ISO 17025               |
| Metals in soil by ICP-OES                | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L038-PL          | D                     | MCERTS                  |
| Moisture Content                         | Moisture content, determined gravimetrically.                                                                                                                   | In-house method based on BS1377 Part 2,<br>1990, Chemical and Electrochemical Tests                                   | L019-UK/PL       | w                     | NONE                    |
| Monohydric phenols in soil               | Determination of phenols in soil by extraction with<br>sodium hydroxide followed by distillation followed<br>by colorimetry.                                    | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | MCERTS                  |
| pH at 20oC in leachate                   | Determination of pH in leachate by electrometric measurement.                                                                                                   | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L005-PL          | w                     | ISO 17025               |
| pH in soil (automated)                   | Determination of pH in soil by addition of water<br>followed by automated electrometric<br>measurement.                                                         | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | D                     | MCERTS                  |
| Speciated EPA-16 PAHs in soil            | Determination of PAH compounds in soil by<br>extraction in dichloromethane and hexane followed<br>by GC-MS with the use of surrogate and internal<br>standards. | In-house method based on USEPA 8270                                                                                   | L064-PL          | D                     | MCERTS                  |
| Stones content of soil                   | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.                                     | In-house method based on British Standard<br>Methods and MCERTS requirements.                                         | L019-UK/PL       | D                     | NONE                    |

Iss No 17-58244-1 Lakeview Drive, Bicester NTE2366

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                                  | Analytical Method Description                                                                                                                                       | Analytical Method Reference                                                                                                                 | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Sulphate in leachates                                 | Determination of sulphate in leachate by acidification followed by ICP-OES.                                                                                         | In-house method based on MEWAM 1986<br>Methods for the Determination of Metals in<br>Soil""                                                 | L039-PL          | W                     | ISO 17025               |
| Sulphate, water soluble, in soil (16hr<br>extraction) | Determination of water soluble sulphate by ICP-<br>OES. Results reported directly (leachate<br>equivalent) and corrected for extraction ratio (soil<br>equivalent). | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests,<br>2:1 water:soil extraction, analysis by ICP-<br>OES. | L038-PL          | D                     | MCERTS                  |
| TO - Organochlorine pesticides in soil                | Determination of OCPs by extraction with hexane followed by GC-MS.                                                                                                  | In-house method                                                                                                                             |                  | W                     | NONE                    |
| TO - Organophosphorous pesticides<br>in soil          | Determination of OPPs by extraction with DCM followed by GC-MS.                                                                                                     | In-house method                                                                                                                             |                  | W                     | NONE                    |
| Total cyanide in leachate                             | Determination of total cyanide by distillation followed by colorimetry.                                                                                             | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar)                       | L080-PL          | W                     | ISO 17025               |
| Total Sulphur in soil                                 | Determination of total sulphur in soil by extraction<br>with aqua-regia, potassium bromide/bromate<br>followed by ICP-OES.                                          | In-house method based on BS1377 Part 3,<br>1990, and MEWAM 2006 Methods for the<br>Determination of Metals in Soil                          | L038-PL          | D                     | MCERTS                  |
| TPH Banding in Soil by FID                            | Determination of hexane extractable hydrocarbons in soil by GC-FID.                                                                                                 | In-house method, TPH with carbon<br>banding.                                                                                                | L076-PL          | W                     | MCERTS                  |
| TPH2 (Soil)                                           | Determination of hydrocarbons C6-C10 by<br>headspace GC-MS.                                                                                                         | In-house method based on USEPA8260                                                                                                          | L088-PL          | W                     | MCERTS                  |
| TPHCWG (Soil)                                         | Determination of hexane extractable hydrocarbons<br>in soil by GC-MS/GC-FID.                                                                                        | In-house method                                                                                                                             | L088/76-PL       | W                     | MCERTS                  |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture soil analytical results the terminated convincentially using the moisture content which is carried out at a maximum of 30oC. correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



# **APPENDIX 8**

# **GROUNDWATER CHEMICAL ANALYSIS RESULTS**



Luke Cross BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ



i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

## Analytical Report Number : 17-59704

| Project / Site name: | Lakeview Drive, Bicester | Samples received on:   | 07/09/2017 |
|----------------------|--------------------------|------------------------|------------|
| Your job number:     | NTE2366                  | Samples instructed on: | 07/09/2017 |
| Your order number:   | POR013250                | Analysis completed by: | 13/09/2017 |
| Report Issue Number: | 1                        | Report issued on:      | 13/09/2017 |
| Samples Analysed:    | 4 water samples          |                        |            |

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.





Project / Site name: Lakeview Drive, Bicester

| Lab Sample Number                                                  | 812730    | 812731                | 812732                  | 812733        |               |               |               |  |
|--------------------------------------------------------------------|-----------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Sample Reference                                                   |           |                       |                         | BH103         | BH105         | BH101         | BH102         |  |
| Sample Number                                                      |           |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                                          | 0.20-3.82 | 0.86-1.60             | 1.35-2.32               | 1.20-2.20     |               |               |               |  |
| Date Sampled                                                       |           |                       |                         | 06/09/2017    | 06/09/2017    | 06/09/2017    | 06/09/2017    |  |
| Time Taken                                                         |           |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Water Analysis)                           | Units     | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| General Inorganics                                                 |           |                       |                         |               |               |               |               |  |
| pH                                                                 | pH Units  | N/A                   | ISO 17025               | 7.3           | 7.3           | 7.5           | 7.2           |  |
| Electrical Conductivity at 20 °C                                   | µS/cm     | 10                    | NONE                    | 730           | 1100          | 910           | 1100          |  |
| Total Cyanide                                                      | µg/l      | 10                    | ISO 17025               | < 10          | < 10          | < 10          | < 10          |  |
| Sulphate as SO₄                                                    | µg/l      | 45                    | ISO 17025               | 106000        | 301000        | 88400         | 168000        |  |
| Sulphate as SO₄                                                    | mg/l      | 0.045                 | ISO 17025               | 110           | 300           | 88            | 170           |  |
| Ammoniacal Nitrogen as N                                           | µg/l      | 15                    | ISO 17025               | 430           | 400           | 210           | 300           |  |
| Dissolved Organic Carbon (DOC)                                     | mg/l      | 0.1                   | NONE                    | 2.93          | 6.51          | 3.55          | 4.14          |  |
| Total Phenols       Total Phenols (monohydric)       µg/l       10 |           |                       |                         | < 10          | < 10          | < 10          | < 10          |  |
| Speciated PAHs                                                     |           |                       |                         |               |               |               |               |  |
| Naphthalene                                                        | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Acenaphthylene                                                     | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Acenaphthene                                                       | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Fluorene                                                           | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Phenanthrene                                                       | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Anthracene                                                         | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Fluoranthene                                                       | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Pyrene                                                             | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(a)anthracene                                                 | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Chrysene                                                           | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(b)fluoranthene                                               | µg/l      | 0.01                  | ISO 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(k)fluorantnene                                               | µg/I      | 0.01                  | 150 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
|                                                                    | µg/i      | 0.01                  | 150 17025               | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Indeno(1,2,3-cd)pyrene                                             | µg/l      | 0.01                  | NONE                    | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
|                                                                    | µg/i      | 0.01                  | NONE                    | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Benzo(gni)peryiene                                                 | µg/I      | 0.01                  | NONE                    | < 0.01        | < 0.01        | < 0.01        | < 0.01        |  |
| Total PAH                                                          |           |                       | •                       |               |               |               |               |  |
| Total EPA-16 PAHs                                                  | µg/l      | 0.16                  | NONE                    | < 0.16        | < 0.16        | < 0.16        | < 0.16        |  |





#### Project / Site name: Lakeview Drive, Bicester

| Your Order No: POR013250                 |       |                       |                         |               |               |               |               |  |
|------------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Lab Sample Number                        |       |                       |                         | 812730        | 812731        | 812732        | 812733        |  |
| Sample Reference                         |       |                       |                         | BH103         | BH105         | BH101         | BH102         |  |
| Sample Number                            |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                |       |                       |                         | 0.20-3.82     | 0.86-1.60     | 1.35-2.32     | 1.20-2.20     |  |
| Date Sampled                             |       |                       |                         | 06/09/2017    | 06/09/2017    | 06/09/2017    | 06/09/2017    |  |
| Time Taken                               |       | -                     |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| Heavy Metals / Metalloids                |       |                       |                         |               |               |               |               |  |
| Arsenic (dissolved)                      | µg/l  | 0.15                  | ISO 17025               | 3.06          | 1.43          | 0.35          | 0.41          |  |
| Barium (dissolved)                       | µg/l  | 0.06                  | ISO 17025               | 43            | 67            | 34            | 47            |  |
| Beryllium (dissolved)                    | µg/l  | 0.1                   | ISO 17025               | < 0.1         | < 0.1         | < 0.1         | < 0.1         |  |
| Boron (dissolved)                        | µg/l  | 10                    | ISO 17025               | 1200          | 81            | 1100          | 390           |  |
| Cadmium (dissolved)                      | µg/l  | 0.02                  | ISO 17025               | < 0.02        | < 0.02        | < 0.02        | < 0.02        |  |
| Calcium (dissolved)                      | mg/l  | 0.012                 | ISO 17025               | 87            | 150           | 52            | 150           |  |
| Chromium (hexavalent)                    | µg/l  | 5                     | ISO 17025               | < 5.0         | < 5.0         | < 5.0         | < 5.0         |  |
| Chromium (dissolved)                     | µg/l  | 0.2                   | ISO 17025               | < 0.2         | 0.7           | < 0.2         | < 0.2         |  |
| Copper (dissolved)                       | µg/l  | 0.5                   | ISO 17025               | < 0.5         | 1.7           | < 0.5         | 8.2           |  |
| Lead (dissolved)                         | µg/l  | 0.2                   | ISO 17025               | < 0.2         | 5.6           | < 0.2         | < 0.2         |  |
| Mercury (dissolved)                      | µg/l  | 0.05                  | ISO 17025               | < 0.05        | < 0.05        | < 0.05        | 0.11          |  |
| Nickel (dissolved)                       | µg/l  | 0.5                   | ISO 17025               | 1.2           | 5.0           | 0.9           | 2.6           |  |
| Selenium (dissolved)                     | µg/l  | 0.6                   | ISO 17025               | < 0.6         | < 0.6         | < 0.6         | < 0.6         |  |
| Vanadium (dissolved)                     | µg/l  | 0.2                   | ISO 17025               | < 0.2         | 0.5           | 1.6           | 0.2           |  |
| Zinc (dissolved)                         | µg/l  | 0.5                   | ISO 17025               | < 0.5         | 1.7           | < 0.5         | 2.5           |  |

#### Petroleum Hydrocarbons

| TPH1 (C10 - C40) | µg/l | 10 | NONE      | < 10 | < 10 | < 10 | < 10 |  |
|------------------|------|----|-----------|------|------|------|------|--|
|                  |      |    |           |      |      |      |      |  |
| TPH2 (C6 - C10)  | µg/l | 10 | ISO 17025 | < 10 | < 10 | < 10 | < 10 |  |

U/S = Unsuitable Sample I/S = Insufficient Sample





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammoniacal Nitrogen as N in water         | Determination of Ammonium/Ammonia/<br>Ammoniacal Nitrogen by the discrete analyser<br>(colorimetric) salicylate/nitroprusside method.<br>Accredited matrices SW, GW, PW.            | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L082-PL          | W                     | ISO 17025               |
| Boron in water                            | Determination of boron in water by acidification<br>followed by ICP-OES. Accredited matrices: SW PW<br>GW                                                                           | In-house method based on MEWAM                                                                                        | L039-PL          | W                     | ISO 17025               |
| Dissolved Organic Carbon in water         | Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.                                                                                                      | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | W                     | NONE                    |
| Electrical conductivity at 20oC of water  | Determination of electrical conductivity in water by electrometric measurement.                                                                                                     | In-house method                                                                                                       | L031-PL          | w                     | NONE                    |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by<br>acidification, addition of 1,5 diphenylcarbazide<br>followed by colorimetry.                                                    | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                       | L080-PL          | w                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                     | In-house method based on USEPA Method<br>6020 & 200.8 "for the determination of<br>trace elements in water by ICP-MS. | L012-PL          | W                     | ISO 17025               |
| Metals in water by ICP-OES<br>(dissolved) | Determination of metals in water by acidification<br>followed by ICP-OES. Accredited Matrices SW,<br>GW, PW, PrW.(Al, Cu,Fe,Zn).                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Monohydric phenols in water               | Determination of phenols in water by continuous<br>flow analyser. Accredited matrices: SW PW GW                                                                                     | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | ISO 17025               |
| pH at 20oC in water (automated)           | Determination of pH in water followed by<br>electrometric measurement.                                                                                                              | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | W                     | ISO 17025               |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.<br>Accredited matrices: SW PW GW | In-house method based on USEPA 8270                                                                                   | L0102B-PL        | w                     | NONE                    |
| Sulphate in water                         | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW<br>PW GW, PrW.                                                                  | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Total cyanide in water                    | Determination of total cyanide by distillation<br>followed by colorimetry. Accredited matrices: SW<br>PW GW                                                                         | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | ISO 17025               |
| TPH1 (Waters)                             | Determination of dichloromethane extractable hydrocarbons in water by GC-MS.                                                                                                        | In-house method                                                                                                       | L070-PL          | W                     | NONE                    |
| TPH2 (Waters)                             | Determination of hydrocarbons C6-C10 by headspace GC-MS.                                                                                                                            | In-house method based on USEPA8260                                                                                    | L088-PL          | w                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Luke Cross BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ



i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

## Analytical Report Number : 17-59706

| Project / Site name: | Lakeview Drive, Bicester | Samples received on:   | 07/09/2017 |
|----------------------|--------------------------|------------------------|------------|
| Your job number:     | NTE2366                  | Samples instructed on: | 07/09/2017 |
| Your order number:   | POR013250                | Analysis completed by: | 13/09/2017 |
| Report Issue Number: | 1                        | Report issued on:      | 13/09/2017 |
| Samples Analysed:    | 2 water samples          |                        |            |

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.





Project / Site name: Lakeview Drive, Bicester

| Your Order No: POR013250                    |               |                       |                         |               |               |  |  |
|---------------------------------------------|---------------|-----------------------|-------------------------|---------------|---------------|--|--|
| Lab Sample Number                           |               |                       |                         | 812735        | 812736        |  |  |
| Sample Reference                            |               |                       |                         | BH108         | BH104         |  |  |
| Sample Number                               | None Supplied | None Supplied         |                         |               |               |  |  |
| Depth (m)                                   | 2.95-3.15     | 1.25-2.16             |                         |               |               |  |  |
| Date Sampled                                |               |                       |                         | 06/09/2017    | 06/09/2017    |  |  |
| Time Taken                                  |               |                       |                         | None Supplied | None Supplied |  |  |
| Analytical Parameter<br>(Water Analysis)    | Units         | Limit of<br>detection | Accreditation<br>Status |               |               |  |  |
| General Inorganics                          |               |                       |                         |               |               |  |  |
| pH                                          | pH Units      | N/A                   | ISO 17025               | 7.2           | 7.2           |  |  |
| Electrical Conductivity at 20 °C            | µS/cm         | 10                    | NONE                    | 1300          | 960           |  |  |
| Total Cyanide                               | µg/l          | 10                    | ISO 17025               | < 10          | < 10          |  |  |
| Sulphate as SO₄                             | µg/l          | 45                    | ISO 17025               | 633000        | 310000        |  |  |
| Sulphate as SO <sub>4</sub>                 | mg/l          | 0.045                 | ISO 17025               | 630           | 310           |  |  |
| Ammoniacal Nitrogen as N                    | µg/l          | 15                    | ISO 17025               | 150           | 840           |  |  |
| Dissolved Organic Carbon (DOC)              | mg/l          | 0.1                   | NONE                    | 4.91          | 6.39          |  |  |
| Total Phenols<br>Total Phenols (monohydric) | µg/l          | 10                    | ISO 17025               | < 10          | < 10          |  |  |
| Speciated PAHs                              |               |                       |                         |               |               |  |  |
| Naphthalene                                 | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Acenaphthylene                              | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Acenaphthene                                | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Fluorene                                    | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Phenanthrene                                | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Anthracene                                  | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Fluoranthene                                | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Pyrene                                      | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Benzo(a)anthracene                          | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Chrysene                                    | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Benzo(b)fluoranthene                        | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Benzo(k)fluoranthene                        | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Benzo(a)pyrene                              | µg/l          | 0.01                  | ISO 17025               | < 0.01        | < 0.01        |  |  |
| Indeno(1,2,3-cd)pyrene                      | µg/l          | 0.01                  | NONE                    | < 0.01        | < 0.01        |  |  |
| Dibenz(a,h)anthracene                       | µg/l          | 0.01                  | NONE                    | < 0.01        | < 0.01        |  |  |
| Benzo(ghi)perylene                          | µg/l          | 0.01                  | NONE                    | < 0.01        | < 0.01        |  |  |
| Total PAH                                   |               |                       |                         |               |               |  |  |
| Total EPA-16 PAHs                           | µg/l          | 0.16                  | NONE                    | < 0.16        | < 0.16        |  |  |
|                                             |               |                       |                         |               |               |  |  |





#### Project / Site name: Lakeview Drive, Bicester

| Your Order No: POR013250                 |       |                       |                         |               |               |  |  |
|------------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|--|--|
| Lab Sample Number                        |       |                       |                         | 812735        | 812736        |  |  |
| Sample Reference                         |       |                       |                         | BH108         | BH104         |  |  |
| Sample Number                            |       |                       |                         | None Supplied | None Supplied |  |  |
| Depth (m)                                |       |                       |                         | 2.95-3.15     | 1.25-2.16     |  |  |
| Date Sampled                             |       |                       |                         | 06/09/2017    | 06/09/2017    |  |  |
| Time Taken                               |       |                       | -                       | None Supplied | None Supplied |  |  |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |  |  |
| Heavy Metals / Metalloids                |       |                       |                         |               |               |  |  |
| Arsenic (dissolved)                      | µg/l  | 0.15                  | ISO 17025               | 0.37          | 1.66          |  |  |
| Barium (dissolved)                       | µg/l  | 0.06                  | ISO 17025               | 62            | 86            |  |  |
| Beryllium (dissolved)                    | µg/l  | 0.1                   | ISO 17025               | < 0.1         | < 0.1         |  |  |
| Boron (dissolved)                        | µg/l  | 10                    | ISO 17025               | 170           | 78            |  |  |
| Cadmium (dissolved)                      | µg/l  | 0.02                  | ISO 17025               | 0.03          | < 0.02        |  |  |
| Calcium (dissolved)                      | mg/l  | 0.012                 | ISO 17025               | 300           | 190           |  |  |
| Chromium (hexavalent)                    | µg/l  | 5                     | ISO 17025               | < 5.0         | < 5.0         |  |  |
| Chromium (dissolved)                     | µg/l  | 0.2                   | ISO 17025               | 0.3           | 0.5           |  |  |
| Copper (dissolved)                       | µg/l  | 0.5                   | ISO 17025               | 1.8           | 1.2           |  |  |
| Lead (dissolved)                         | µg/l  | 0.2                   | ISO 17025               | < 0.2         | 0.6           |  |  |
| Mercury (dissolved)                      | µg/l  | 0.05                  | ISO 17025               | 0.16          | 0.05          |  |  |
| Nickel (dissolved)                       | µg/l  | 0.5                   | ISO 17025               | 3.4           | 31            |  |  |
| Selenium (dissolved)                     | µg/l  | 0.6                   | ISO 17025               | 5.5           | < 0.6         |  |  |
| Vanadium (dissolved)                     | µg/l  | 0.2                   | ISO 17025               | 0.2           | 1.1           |  |  |
| Zinc (dissolved)                         | µg/l  | 0.5                   | ISO 17025               | 11            | 7.8           |  |  |

#### Petroleum Hydrocarbons

| TPH1 (C10 - C40) | µg/l | 10 | NONE      | < 10 | < 10 |  |  |
|------------------|------|----|-----------|------|------|--|--|
|                  |      |    |           |      |      |  |  |
| TPH2 (C6 - C10)  | µg/l | 10 | ISO 17025 | < 10 | < 10 |  |  |

U/S = Unsuitable Sample I/S = Insufficient Sample





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammoniacal Nitrogen as N in water         | Determination of Ammonium/Ammonia/<br>Ammoniacal Nitrogen by the discrete analyser<br>(colorimetric) salicylate/nitroprusside method.<br>Accredited matrices SW, GW, PW.            | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L082-PL          | w                     | ISO 17025               |
| Boron in water                            | Determination of boron in water by acidification<br>followed by ICP-OES. Accredited matrices: SW PW<br>GW                                                                           | In-house method based on MEWAM                                                                                        | L039-PL          | W                     | ISO 17025               |
| Dissolved Organic Carbon in water         | Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.                                                                                                      | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | W                     | NONE                    |
| Electrical conductivity at 20oC of water  | Determination of electrical conductivity in water by electrometric measurement.                                                                                                     | In-house method                                                                                                       | L031-PL          | W                     | NONE                    |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.                                                          | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                       | L080-PL          | w                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.                                     | In-house method based on USEPA Method<br>6020 & 200.8 "for the determination of<br>trace elements in water by ICP-MS. | L012-PL          | w                     | ISO 17025               |
| Metals in water by ICP-OES<br>(dissolved) | Determination of metals in water by acidification<br>followed by ICP-OES. Accredited Matrices SW,<br>GW, PW, PrW.(Al, Cu,Fe,Zn).                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Monohydric phenols in water               | Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW                                                                                        | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | ISO 17025               |
| pH at 20oC in water (automated)           | Determination of pH in water followed by electrometric measurement.                                                                                                                 | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | W                     | ISO 17025               |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.<br>Accredited matrices: SW PW GW | In-house method based on USEPA 8270                                                                                   | L0102B-PL        | w                     | NONE                    |
| Sulphate in water                         | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW<br>PW GW, PrW.                                                                  | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Total cyanide in water                    | Determination of total cyanide by distillation<br>followed by colorimetry. Accredited matrices: SW<br>PW GW                                                                         | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | w                     | ISO 17025               |
| TPH1 (Waters)                             | Determination of dichloromethane extractable hydrocarbons in water by GC-MS.                                                                                                        | In-house method                                                                                                       | L070-PL          | W                     | NONE                    |
| TPH2 (Waters)                             | Determination of hydrocarbons C6-C10 by headspace GC-MS.                                                                                                                            | In-house method based on USEPA8260                                                                                    | L088-PL          | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



| Sample ID | Other_ID | Sample Type | Job      | Sample Number | Sample Deviation Code | test_name     | test_ref | Test Deviation code |
|-----------|----------|-------------|----------|---------------|-----------------------|---------------|----------|---------------------|
| BH104     |          | W           | 17-59706 | 812736        | b                     | TPH2 (Waters) | L088-PL  | b                   |
| BH108     |          | W           | 17-59706 | 812735        | b                     | TPH2 (Waters) | L088-PL  | b                   |



Luke Cross BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ



i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

## Analytical Report Number : 17-59709

| Project / Site name: | Lakeview Drive, Bicester | Samples received on:   | 07/09/2017 |
|----------------------|--------------------------|------------------------|------------|
| Your job number:     | NTE2366                  | Samples instructed on: | 07/09/2017 |
| Your order number:   | POR013250                | Analysis completed by: | 14/09/2017 |
| Report Issue Number: | 1                        | Report issued on:      | 14/09/2017 |
| Samples Analysed:    | 4 water samples          |                        |            |

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.





#### Project / Site name: Lakeview Drive, Bicester

| Your Order No: POR013250               |              |            |                   |               |               |               |               |          |
|----------------------------------------|--------------|------------|-------------------|---------------|---------------|---------------|---------------|----------|
| Lab Sample Number                      |              |            |                   | 812746        | 812747        | 812748        | 812749        |          |
| Sample Reference                       |              |            |                   | BH113         | BH110         | BH107         | BH106         |          |
| Sample Number                          |              |            |                   | None Supplied | None Supplied | None Supplied | None Supplied |          |
| Depth (m)                              |              |            |                   | 0.74-4.32     | 2.10-3.36     | 2.75-3.28     | 1.78-2.63     |          |
| Date Sampled                           |              |            |                   | 06/09/2017    | 06/09/2017    | 06/09/2017    | 06/09/2017    |          |
| Time Taken                             |              |            |                   | None Supplied | None Supplied | None Supplied | None Supplied |          |
|                                        |              |            | A                 |               |               |               |               |          |
| Analytical Parameter                   | c            | Lir<br>det | St                |               |               |               |               |          |
| (Water Analysis)                       | nit          | ect        | atu               |               |               |               |               |          |
| (                                      | 01           | g q        | s                 |               |               |               |               |          |
|                                        |              |            | •                 |               |               |               |               |          |
| • • •                                  |              |            |                   |               |               |               |               |          |
| General Inorganics                     |              | N1/A       | 100 47005         | 7.2           | 7.0           | 7.1           | 7.1           |          |
| pn<br>Electrical Conductivity at 20.8C | pH Units     | N/A<br>10  | 150 17025         | 7.2           | 7.0           | 7.1           | 7.1           |          |
|                                        | µ5/cm        | 10         | INUINE            | 990<br>< 10   | 1900          | 1900          | 1000          |          |
| Sulphate as SO <sub>4</sub>            | µg/l         | 45         | ISO 17025         | 103000        | 1090000       | 949000        | 779000        |          |
| Sulphate as SO <sub>4</sub>            | mg/l         | 0.045      | ISO 17025         | 100           | 1100          | 950           | 780           |          |
| Ammoniacal Nitrogen as N               | µg/l         | 15         | ISO 17025         | 36            | 28            | 400           | 160           |          |
| Dissolved Organic Carbon (DOC)         | mg/l         | 0.1        | NONE              | 3.22          | 5.09          | 7.23          | 2.86          |          |
|                                        |              |            |                   |               |               |               |               |          |
| Total Phenois                          |              |            |                   |               | 1             |               |               |          |
| Total Phenols (monohydric)             | µg/l         | 10         | ISO 17025         | < 10          | < 10          | < 10          | < 10          |          |
| Speciated DAHe                         |              |            |                   |               |               |               |               |          |
| Nanhthalana                            |              | 0.01       | 100 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
|                                        | µg/i         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Acenaphthene                           | μg/1<br>μα/Ι | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Fluorene                               | ua/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Phenanthrene                           | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Anthracene                             | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Fluoranthene                           | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Pyrene                                 | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Benzo(a)anthracene                     | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Chrysene                               | µg/l         | 0.01       | ISO 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Benzo(b)fluoranthene                   | µg/l         | 0.01       | 150 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Benzo(k)riuorantnene                   | µg/l         | 0.01       | 150 17025         | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Indeno(1,2,3-cd)pyrene                 | µg/i<br>ua/l | 0.01       | 130 17023<br>NONE | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Dibenz(a,h)anthracene                  | ua/l         | 0.01       | NONE              | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
| Benzo(ghi)perylene                     | µg/l         | 0.01       | NONE              | < 0.01        | < 0.01        | < 0.01        | < 0.01        |          |
|                                        |              |            |                   |               | •             |               |               |          |
| Total PAH                              |              |            |                   |               |               |               |               |          |
| Total EPA-16 PAHs                      | µg/l         | 0.16       | NONE              | < 0.16        | < 0.16        | < 0.16        | < 0.16        |          |
| Hannes Markella, C.Markella I.d.       |              |            |                   |               |               |               |               |          |
| Heavy Metals / Metalloids              |              | 0.15       | 100 17025         | 1 20          | 2.04          | 1 20          | 0.02          |          |
| Barium (dissolved)                     | µg/i         | 0.15       | ISO 17025         | 49            | 97            | 1.20          | 30            |          |
| Bervllium (dissolved)                  | ua/l         | 0.00       | ISO 17025         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |          |
| Boron (dissolved)                      | ua/l         | 10         | ISO 17025         | 150           | 400           | 540           | 240           |          |
| Cadmium (dissolved)                    | µg/l         | 0.02       | ISO 17025         | 0.04          | < 0.02        | 0.02          | 0.03          |          |
| Calcium (dissolved)                    | mg/l         | 0.012      | ISO 17025         | 160           | 480           | 400           | 380           |          |
| Chromium (hexavalent)                  | µg/l         | 5          | ISO 17025         | < 5.0         | < 5.0         | < 5.0         | < 5.0         |          |
| Chromium (dissolved)                   | µg/l         | 0.2        | ISO 17025         | < 0.2         | 0.2           | 0.7           | < 0.2         |          |
| Copper (dissolved)                     | µg/l         | 0.5        | ISO 17025         | 1.5           | 5.5           | 2.4           | 1.1           |          |
| Lead (dissolved)                       | µg/l         | 0.2        | 150 17025         | < 0.2         | 1.0           | 2.2           | < 0.2         |          |
| Mercury (dissolved)                    | µg/I         | 0.05       | 150 17025         | < 0.05        | < 0.05        | < 0.05        | < 0.05        |          |
| Selenium (dissolved)                   | μg/I         | 0.5        | 150 17025         | 4.4<br>1 Q    | 11            | 1.4           | 80            |          |
| Vanadium (dissolved)                   | μg/1<br>μα/Ι | 0.0        | ISO 17025         | 0.6           | 0.4           | 19            | < 0.0         |          |
| Zinc (dissolved)                       | р9/ч<br>Ца/I | 0.5        | ISO 17025         | 2.0           | 2.6           | 7.6           | 4.0           |          |
|                                        | - 31 -       |            |                   |               |               |               |               | <u>.</u> |
| Petroleum Hydrocarbons                 |              |            |                   |               |               |               |               |          |
|                                        |              |            |                   |               |               |               |               |          |
| TPH1 (C10 - C40)                       | µg/l         | 10         | NONE              | < 10          | < 10          | < 10          | < 10          |          |
|                                        |              |            |                   |               | · -           |               |               |          |
| 1PH2 (C6 - C10)                        | ua/l         | 10         | ISO 17025         | < 10          | < 10          | < 10          | < 10          | 4        |

U/S = Unsuitable Sample I/S = Insufficient Sample





Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammoniacal Nitrogen as N in water         | Determination of Ammonium/Ammonia/<br>Ammoniacal Nitrogen by the discrete analyser<br>(colorimetric) salicylate/nitroprusside method.<br>Accredited matrices SW, GW, PW.            | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L082-PL          | W                     | ISO 17025               |
| Boron in water                            | Determination of boron in water by acidification<br>followed by ICP-OES. Accredited matrices: SW PW<br>GW                                                                           | In-house method based on MEWAM                                                                                        | L039-PL          | W                     | ISO 17025               |
| Dissolved Organic Carbon in water         | Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.                                                                                                      | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | W                     | NONE                    |
| Electrical conductivity at 20oC of water  | Determination of electrical conductivity in water by electrometric measurement.                                                                                                     | In-house method                                                                                                       | L031-PL          | W                     | NONE                    |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by<br>acidification, addition of 1,5 diphenylcarbazide<br>followed by colorimetry.                                                    | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                       | L080-PL          | W                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                     | In-house method based on USEPA Method<br>6020 & 200.8 "for the determination of<br>trace elements in water by ICP-MS. | L012-PL          | W                     | ISO 17025               |
| Metals in water by ICP-OES<br>(dissolved) | Determination of metals in water by acidification<br>followed by ICP-OES. Accredited Matrices SW,<br>GW, PW, PrW.(Al, Cu,Fe,Zn).                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Monohydric phenols in water               | Determination of phenols in water by continuous<br>flow analyser. Accredited matrices: SW PW GW                                                                                     | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | ISO 17025               |
| pH at 20oC in water (automated)           | Determination of pH in water followed by electrometric measurement.                                                                                                                 | In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests                                      | L099-PL          | W                     | ISO 17025               |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.<br>Accredited matrices: SW PW GW | In-house method based on USEPA 8270                                                                                   | L0102B-PL        | w                     | NONE                    |
| Sulphate in water                         | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW<br>PW GW, PrW.                                                                  | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Total cyanide in water                    | Determination of total cyanide by distillation<br>followed by colorimetry. Accredited matrices: SW<br>PW GW                                                                         | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | ISO 17025               |
| TPH1 (Waters)                             | Determination of dichloromethane extractable hydrocarbons in water by GC-MS.                                                                                                        | In-house method                                                                                                       | L070-PL          | W                     | NONE                    |
| TPH2 (Waters)                             | Determination of hydrocarbons C6-C10 by headspace GC-MS.                                                                                                                            | In-house method based on USEPA8260                                                                                    | L088-PL          | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



# **APPENDIX 9**

# **GEOTECHNICAL LABORATORY TESTING RESULTS**

| Client:<br>Client Address:                                                  | TEST CERTIFICATE       i2 Analytical Ltd         Determination of Liquid and Plastic Limits       7 Woodshots Meadow         Croxley Green Business Park       Croxley Green Business Park         Watford Herts WD18 8YS       Entertion         BWB Consulting Limited       Client Reference: NTE2366         Ss:       5th Floor         Waterfront House       Job Number: 17-58424         Nottingham       Date Sampled: Not Given         NG2 3DQ       Date Received: 17/08/2017 |                                                        |                                                    |                                                     |                                                                                                |                                                                                                                                 |                             |                                                                                      |                 |                      | bontal Science                    |                              |              |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|-----------------|----------------------|-----------------------------------|------------------------------|--------------|
| Contact:<br>Site Name:<br>Site Address:                                     | Jact:Luke CrossDate Tested: 31/08/2017Name:Lakeview Drive, BicesterSampled By: Not GivenAddress:Not GivenSampled By: Not Given                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                    |                                                     |                                                                                                |                                                                                                                                 |                             |                                                                                      |                 |                      |                                   |                              |              |
| TEST RESUL<br>Description:<br>Location:<br>Sample Prepara                   | TS<br>Brown<br>BH106<br>ation:                                                                                                                                                                                                                                                                                                                                                                                                                                                            | La<br>sandy very o<br>Tested afte                      | boratory  <br>Sample  <br>gravelly C<br>er washing | Referen<br>Referen<br>CLAY<br>g to rem              | ce:<br>ce:<br>love >4;                                                                         | 805393<br>Not Given<br>25um                                                                                                     |                             |                                                                                      |                 | San<br>Dept<br>Depth | nple Typ<br>h Top [rr<br>Base [rr | e: B<br>n]: 0.50<br>n]: 1.00 |              |
| As Received<br>Content                                                      | Moisture<br>[%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Liqu                                                   | id Limit<br>1%]                                    |                                                     | Pla                                                                                            | stic Limit                                                                                                                      |                             | Plastic                                                                              | city Ind<br>[%] | dex                  | % Pa<br>BS                        | SSING 4                      | 25µm<br>ieve |
| 22                                                                          | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 71                                                 |                                                     |                                                                                                | 31                                                                                                                              |                             |                                                                                      | 40              |                      |                                   | 49                           |              |
| - 100<br>90 -<br>80 -<br>70 -<br>50 -<br>30 -<br>10 -<br>10 -<br>0 -<br>0 - | ) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CL<br>CL<br>20 30<br>Legend, based<br>C Clay<br>M Silt | CI<br>MI<br>40<br>on BS 5930                       | 50<br>2:2015 Coc<br>P<br>L<br>H<br>H<br>V<br>E<br>O | CH<br>MH<br>60<br>L<br>de of pract<br>lasticity<br>Low<br>Med<br>High<br>Very<br>Extre<br>appe | CV<br>80539:<br>MV<br>80539:<br>MV<br>70 80<br>IQUID LIMI<br>ice for site inve<br>um<br>high<br>emely high<br>and to classifica | 3<br>90<br>T<br>estigations | CE<br>ME<br>100<br>Liquid I<br>below 3<br>35 to 50<br>50 to 70<br>70 to 90<br>exceed | 110<br>         | 120                  | 130 1                             | L40 15                       | 0            |

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Ristuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Schorth

for and on behalf of i2 Analytical Ltd

|                                                                                                                                                                                  | Deteri                                                                                     | <u>TES</u><br>mination                                                                               | OT CE                         | RTIF<br>uid a                 | ICA<br>and P                                                                                                                                                            | E<br>lastic Li                                                                                                           | mits             | i2 An<br>7 Wo<br>Croxi<br>Watfe                                                            | alytical<br>oodshot<br>ley Gre<br>ord Hei                 | Ltd<br>ts Meado<br>en Busir<br>rts WD1 | ow<br>ness Pai<br>8 8YS         | rk Environ                    | mental Science |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------|----------------|
| 4041<br>Client:<br>Client Address:<br>Contact:<br>Site Name:<br>Site Address:                                                                                                    | Tested in A<br>BWB (<br>5th Flo<br>Water<br>Notting<br>NG2 3<br>Luke (<br>Lakevi<br>Not Gi | Accordance wi<br>Consulting Lin<br>For<br>Tront House<br>gham<br>DQ<br>Cross<br>ew Drive, Bio<br>ven | ): Clause                     | Point Me                      | Method<br>Client Reference: NTE2366<br>Job Number: 17-58424<br>Date Sampled: Not Given<br>Date Received: 17/08/2017<br>Date Tested: 31/08/2017<br>Sampled By: Not Given |                                                                                                                          |                  |                                                                                            |                                                           |                                        |                                 |                               |                |
| TEST RESUL<br>Description:<br>Location:<br>Sample Prepara                                                                                                                        | TS<br>Dark b<br>BH106<br>ation:                                                            | Lal<br>rown CLAY<br>Tested in n                                                                      | ooratory Sample               | Referer<br>Referer<br>ndition | nce:<br>nce:                                                                                                                                                            | 805394<br>Not Given                                                                                                      |                  |                                                                                            |                                                           | San<br>Dept<br>Depth                   | nple Typ<br>h Top [n<br>Base [n | be: B<br>n]: 1.20<br>n]: 2.00 |                |
| As Received<br>Content                                                                                                                                                           | Moisture                                                                                   | Liqui                                                                                                | d Limit<br>%]                 |                               | Pla                                                                                                                                                                     | istic Limit                                                                                                              |                  | Plasti                                                                                     | city In<br>[%]                                            | dex                                    | % Pa<br>BS                      | assing 4<br>6 Test S          | 425µm<br>Sieve |
| 41                                                                                                                                                                               |                                                                                            |                                                                                                      | 70                            |                               | 29                                                                                                                                                                      |                                                                                                                          |                  |                                                                                            | 41                                                        |                                        |                                 | 100                           |                |
| <ul> <li>100</li> <li>90</li> <li>80</li> <li>70</li> <li>60</li> <li>50</li> <li>40</li> <li>30</li> <li>20</li> <li>10</li> <li>10</li> <li>0</li> <li>0</li> <li>0</li> </ul> |                                                                                            | C Clay<br>M Silt                                                                                     | CI<br>MI<br>40<br>000 BS 5930 | 50<br>50<br>50<br>F           | CH<br>MH<br>60 L<br>de of prac<br>Plasticity<br>Low<br>Med<br>H High<br>Very<br>E Extra<br>Very                                                                         | CV<br>805394<br>NV<br>805394<br>NV<br>70 80<br>IQUID LIMIT<br>tice for site investigation<br>tice for site investigation | 90<br>stigations | CE<br>ME<br>100<br>Liquid<br>below<br>35 to 5<br>50 to 7<br>70 to 9<br>exceed<br>anic mate | 110<br>Limit<br>35<br>00<br>00<br>ding 90<br>rrial ( eg 0 | 120                                    | 130                             | line                          | 50             |

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Pistuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Schorth

for and on behalf of i2 Analytical Ltd



## **TEST CERTIFICATE**

**Determination of Liquid and Plastic Limits** 

#### i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

| Client:                     | BWB Consulting Limited                | Client Reference: NTE2366 |
|-----------------------------|---------------------------------------|---------------------------|
| Client Address:             | 5th Floor                             | Job Number: 17-58424      |
|                             | Waterfront House                      | Date Sampled: Not Given   |
|                             | Nottingham<br>NG2 3DQ                 | Date Received: 17/08/2017 |
| Contact:                    | Luke Cross                            | Date Tested: 31/08/2017   |
| Site Name:<br>Site Address: | Lakeview Drive, Bicester<br>Not Given | Sampled By: Not Given     |
|                             |                                       |                           |

### **TEST RESULTS**

805396 Laboratory Reference: Not Given Sample Reference: Mottled brown CLAY Sample Type: D Description: BH107 Location: Depth Top [m]: 2.00 Sample Preparation: Depth Base [m]: 2.45 Tested in natural condition





#### Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Postuli

07/09/2017

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

Short

for and on behalf of i2 Analytical Ltd

|                                                                             |                                                                                                                                         | TES                      | ST CEI                         | RTIF                                          | ICAT                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | i2 Ar<br>7 Wo   | nalytical<br>podshot                                         | Ltd<br>s Meado       | ow<br>December 1                        |                              | Ŀ              |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|--------------------------------------------------------------|----------------------|-----------------------------------------|------------------------------|----------------|
|                                                                             | <u>Deterr</u>                                                                                                                           | nination                 | of Liq                         | <u>uid a</u>                                  | nd Pl                                                                                                   | astic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>_imits</u>             | Watf            | ord Her                                                      | en Busir<br>ts WD18  | iess Par<br>8 8YS                       | K                            | montal Science |
| TESTING<br>4041                                                             | Tested in A                                                                                                                             | ccordance wi             | th BS1377-                     | -2: 1990                                      | : Clause                                                                                                | 4.4 & 5: Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Point M                | lethod          |                                                              |                      |                                         |                              |                |
| Client:<br>Client Address:                                                  | BWB Consulting LimitedClient Reference: NTE25th FloorJob Number: 17-58Waterfront HouseDate Sampled: Not GNottinghamDate Received: 17/08 |                          |                                |                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |                                                              |                      | NTE236<br>17-5842<br>Not Giv<br>17/08/2 | 66<br>24<br>en<br>017        |                |
| Contact:<br>Site Name:<br>Site Address:                                     | NO2 SDQLuke CrossDate Tested: 31/08/2017Lakeview Drive, BicesterSampled By: Not GivenNot GivenSampled By: Not Given                     |                          |                                |                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |                                                              |                      |                                         |                              |                |
| TEST RESUL                                                                  | тѕ                                                                                                                                      | Lal                      | ooratory F                     | Referen                                       | ce:                                                                                                     | 805398<br>Not Give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                         |                 |                                                              |                      |                                         |                              |                |
| Description:<br>Location:<br>Sample Prepara                                 | Dark b<br>BH109<br>ation:                                                                                                               | rown CLAY<br>Tested in n | atural cor                     | ndition                                       |                                                                                                         | Not Give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                 |                                                              | San<br>Dept<br>Depth | nple Typ<br>h Top [n<br>Base [n         | e: D<br>n]: 1.00<br>n]: 1.45 |                |
| As Received<br>Content                                                      | Moisture<br>[%]                                                                                                                         | Liqui<br>I               | d Limit<br>%1                  |                                               | Plas                                                                                                    | stic Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                         | Plasti          | icity In<br>[%]                                              | dex                  | % Pa<br>BS                              | assing 4<br>Test Si          | l25µm<br>ieve  |
| 29                                                                          | []                                                                                                                                      |                          | 67                             |                                               | 29                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 | 38                                                           |                      |                                         | 100                          |                |
| 100 -<br>90 -<br>70 -<br>60 -<br>50 -<br>40 -<br>30 -<br>10 -<br>0 -<br>0 - | ) 10                                                                                                                                    | C Clay<br>M Silt         | CI<br>MI<br>40<br>000 BS 5930: | 50<br>2015 Cod<br>PI<br>L<br>H<br>V<br>E<br>O | CH<br>MH<br>60<br>Llu<br>le of practio<br>asticity<br>Low<br>Mediu<br>High<br>Very h<br>Extrer<br>apper | CV<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805398<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805599<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805598<br>805590 | 90<br>IIT<br>vestigations | CE<br>ME<br>100 | 110<br>Limit 35<br>50<br>70<br>30<br>ding 90<br>erial ( eg C | 120                  | 130                                     | line                         | 50             |
| Remarks                                                                     |                                                                                                                                         |                          |                                |                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |                                                              |                      |                                         |                              |                |

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Pistuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Schorth

for and on behalf of i2 Analytical Ltd

|                                                                                     |                                                  | TES                                                             | ST CER                            | TIFICA                                                                                             | <u>TE</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | i2 Analytica<br>7 Woodsho                                                                                                 | l Ltd<br>ts Meade    | ow<br>Doce Par                   | <b>1</b>                   |
|-------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------------|
|                                                                                     | Detern                                           | nination                                                        | of Liqu                           | id and                                                                                             | Plastic L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>.imits</u>                            | Watford He                                                                                                                | rts WD1              | 8 8YS                            | Environmental Science      |
| TESTING<br>4041                                                                     | Tested in A                                      | ccordance wi                                                    | th BS1377-2:                      | 1990: Clau                                                                                         | se 4.4 & 5: On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Point Me                               | thod                                                                                                                      |                      |                                  |                            |
| Client:<br>Client Address:                                                          | BWB C<br>5th Flo<br>Waterfr<br>Notting<br>NG2 3I | onsulting Lir<br>or<br>ont House<br>ham<br>DQ                   | nited                             |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Client Reference: NTE2366<br>Job Number: 17-58424<br>Date Sampled: Not Given<br>Date Received: 17/08/2017                 |                      |                                  |                            |
| Contact:<br>Site Name:<br>Site Address:                                             | Luke C<br>Lakevie<br>Not Giv                     | ross<br>ew Drive, Bic<br>en                                     | ester                             |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>Sam                              | Tested:<br>pled By:                                                                                                       | 31/08/20<br>Not Give | )17<br>งา                        |                            |
| TEST RESUL                                                                          | TS                                               | Lat                                                             | ooratory Ref<br>Sample Ref        | ference:<br>ference:                                                                               | 805399<br>Not Giver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | า                                        |                                                                                                                           |                      |                                  |                            |
| Description:<br>Location:<br>Sample Prepara                                         | Dark br<br>BH109<br>ation:                       | own CLAY<br>Tested in n                                         | atural condi                      | ition                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                           | Sar<br>Dept<br>Depth | nple Type<br>h Top [m<br>Base [m | ): D<br>]: 2.00<br>]: 2.45 |
| As Received<br>Content                                                              | Moisture<br>[%]                                  | Liqui<br>آ                                                      | d Limit<br>%1                     | P                                                                                                  | lastic Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                        | Plasticity Ir<br>[%]                                                                                                      | ndex                 | % Pa<br>BS                       | ssing 425µm<br>Test Sieve  |
| 30                                                                                  | 1.01                                             |                                                                 | 72                                |                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 43                                                                                                                        |                      |                                  | 100                        |
| 100 -<br>90 -<br>80 -<br>70 -<br>60 -<br>50 -<br>40 -<br>20 -<br>10 -<br>0 -<br>0 - | ) 10                                             | CL<br>CL<br>CL<br>20 30<br>Legend, based of<br>C Clay<br>M Silt | CI<br>MI<br>40 5<br>00 BS 5930:20 | CH<br>CH<br>MH<br>60 60<br>15 Code of pr<br>Plasticity<br>L Ld<br>I M<br>H H<br>V V<br>E E<br>O ap | CV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>MV<br>8053<br>805<br>805<br>805<br>805<br>805<br>805<br>805<br>805 | 99<br>99<br>,<br>90<br>IT<br>estigations | CE<br>ME<br>100 110<br>Liquid Limit<br>below 35<br>35 to 50<br>50 to 70<br>70 to 90<br>exceeding 90<br>anic material ( eg | 120                  | A<br>130 1                       | line<br>40 150             |
| Remarks                                                                             |                                                  |                                                                 |                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                           |                      |                                  |                            |

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

Ristuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Schorth

for and on behalf of i2 Analytical Ltd



Approved

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

Postuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Short

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

#### Page 1 of 1



Remarks

Approved

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

Postuli

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Short

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." ····**,** 



#### Remarks

Approved

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

Postuli

07/09/2017

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

Short

for and on behalf of i2 Analytical Ltd

| _ da                       |                            | TES                               | ST CER        | <b>TIFICA</b> | <u>re</u>          | i2                |
|----------------------------|----------------------------|-----------------------------------|---------------|---------------|--------------------|-------------------|
| (><)                       | Deterr                     | nination                          | of Liqui      | d and F       | <br>Plastic I imi  | its <sup>Cr</sup> |
|                            | Deterr                     |                                   |               |               |                    | <u>w</u>          |
| 4041                       | Tested in A                | Accordance wi                     | th BS1377-2:  | 1990: Clause  | e 4.4 & 5: One Poi | nt Method         |
| Client:<br>Client Address: | BWB C<br>5th Flo<br>Waterf | Consulting Li<br>or<br>ront House | mited         |               |                    |                   |
|                            | Notting                    | ham                               |               |               |                    |                   |
| Contonti                   | NG2 3I                     | DQ                                |               |               |                    |                   |
| Site Name:                 | Lakevi                     | ew Drive. Bio                     | cester        |               |                    |                   |
| Site Address:              | Not Giv                    | ven                               |               |               |                    |                   |
|                            | rs                         | اما                               | horatory Ref  | erence.       | 805411             |                   |
|                            | 10                         | Edi                               | Sample Ref    | erence:       | Not Given          |                   |
| Description:               | Mottleo                    | brown CLA                         | Y             |               |                    |                   |
| Location:                  | TP125                      |                                   |               |               |                    |                   |
| Sample Prepara             | ition:                     | Tested in n                       | atural condit | ion           |                    |                   |
|                            |                            |                                   |               |               |                    |                   |
| As Received                | Moisture                   | Liqui                             | d Limit       | Pla           | astic Limit        | Pla               |
| Content                    | [%]                        |                                   | <u>%</u> ]    |               | [%]                |                   |
| 30                         |                            |                                   | 80            |               | 28                 |                   |
| <sup>100</sup> T           |                            |                                   |               |               |                    | <b>_</b>          |
| 90 -                       |                            |                                   |               |               |                    |                   |
| 80                         |                            |                                   |               |               |                    |                   |
| 80 -                       |                            |                                   |               |               |                    |                   |
| 70 -                       |                            |                                   |               |               |                    | CE                |
| J <sup>60</sup> -          |                            |                                   |               |               | _                  |                   |
| <b>GO</b> 50 -             |                            |                                   |               |               | CV 805             | 111               |
| ≤ 10                       |                            |                                   |               |               |                    |                   |
|                            |                            |                                   |               | CH            | MV                 |                   |
| <b>-</b> 30 <b>-</b>       |                            |                                   | СІ            |               |                    |                   |
| <b>H</b> 20                |                            |                                   |               |               |                    |                   |



Sample Type: D Depth Top [m]: 1.00 Depth Base [m]: 1.10

% Passing 425µm

**BS Test Sieve** 

100

A line

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Plasticity Index

[%]

52

CE

ME

100

Liquid Limit

below 35

35 to 50

50 to 70

70 to 90

exceeding 90

110

## Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:

20

10

0 0

10

Piotuli

07/09/2017

Signed:

append to classification for organic material ( eg CHO )

Sushil Sharda Technical Manager (Geotechnical Division)

Schooth

120

130

150

140

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

GF 105.11

MH

60

Low

High

Medium

Very high

Extremely high

MI

50

Legend, based on BS 5930:2015 Code of practice for site investigations Plasticity

L

Т Н

V Е

0

40

CL

ML

30

Clay

Silt

Organic

20

С

Μ

80

LIQUID LIMIT

90

70

#### **TEST CERTIFICATE**

#### Summary of Classification Test Results

| Client:<br>Client Address: | BWB Consulting Limited<br>5th Floor<br>Waterfront House |
|----------------------------|---------------------------------------------------------|
|                            | NG2 3DQ                                                 |
| Contact:                   | Luke Cross                                              |
| Site Name:                 | Lakeview Drive, Bicester                                |
| Site Address:              | Not Given                                               |

#### i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017 Date Tested: 31/08 - 01/09/2017 Sampled By: Not Given

# Test results

|                         |          | Sample    |                  |                   |      |                                                           | Density |       | MC  | Atterberg       |    |    |    | DD    |
|-------------------------|----------|-----------|------------------|-------------------|------|-----------------------------------------------------------|---------|-------|-----|-----------------|----|----|----|-------|
| Laboratory<br>Reference | Hole No. | Reference | Top depth<br>[m] | Base depth<br>[m] | Туре | Soil Description                                          | bulk    | dry   | W/C | % Passing 425um | LL | PL | PI | PD    |
|                         |          |           |                  |                   |      |                                                           | Mg/m3   | Mg/m3 | %   | %               | %  | %  | %  | Mg/m3 |
| 805393                  | BH106    | Not Given | 0.50             | 1.00              | В    | Brown sandy very gravelly CLAY                            |         |       | 22  | 49              | 71 | 31 | 40 |       |
| 805394                  | BH106    | Not Given | 1.20             | 2.00              | В    | Dark brown CLAY                                           |         |       | 41  | 100             | 70 | 29 | 41 |       |
| 805395                  | BH107    | Not Given | 1.00             | 1.45              | D    | Dark brown CLAY                                           |         |       | 30  |                 |    |    |    |       |
| 805396                  | BH107    | Not Given | 2.00             | 2.45              | D    | Mottled brown CLAY                                        |         |       | 35  | 100             | 80 | 29 | 51 |       |
| 805398                  | BH109    | Not Given | 1.00             | 1.45              | D    | Dark brown CLAY                                           |         |       | 29  | 100             | 67 | 29 | 38 |       |
| 805399                  | BH109    | Not Given | 2.00             | 2.45              | D    | Dark brown CLAY                                           |         |       | 30  | 100             | 72 | 29 | 43 |       |
| 805400                  | BH110    | Not Given | 0.40             | 0.90              | В    | Mottled Brown slightly sandy CLAY                         |         |       | 19  | 100             | 47 | 19 | 28 |       |
| 805401                  | BH110    | Not Given | 3.00             | 3.38              | D    | Dark brown slightly gravelly slightly sandy organic CLAY  |         |       | 82  | 92              | 54 | 24 | 30 |       |
| 805402                  | BH112    | Not Given | 0.60             | 1.00              | В    | Brown slightly gravelly slightly sandy CLAY with rootlets |         |       | 32  | 79              | 51 | 20 | 31 |       |
| 805403                  | BH112    | Not Given | 2.00             | 2.45              | D    | Greyish brown CLAY                                        |         |       | 32  |                 |    |    |    |       |

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section** 

Date Reported: 07/09/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Piotuli

Signed:

Shorta

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd
#### TEST CERTIFICATE

#### Summary of Classification Test Results

| Client:<br>Client Address: | BWB Consulting Limited<br>5th Floor<br>Waterfront House<br>Nottingham |
|----------------------------|-----------------------------------------------------------------------|
|                            | NG2 3DQ                                                               |
| Contact:                   | Luke Cross                                                            |
| Site Name:                 | Lakeview Drive, Bicester                                              |
| Site Address:              | Not Given                                                             |

#### i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017 Date Tested: 31/08 - 01/09/2017 Sampled By: Not Given

#### Sample Atterberg Densitv M/C PD Laboratory bulk dry Hole No. Soil Description % Passing 425um LL PL ΡI Top depth Base depth Reference Reference Туре [m] [m] Mg/m3 Mg/m3 % % % % % Mg/m3 805405 TP109 Not Given 1.80 1.90 D Dark brown slightly sandy CLAY 34 TP110 D 805406 Not Given 2.30 2.40 Dark grey CLAY 30 805411 TP125 Not Given 1.00 1.10 D Mottled brown CLAY 30 100 80 28 52

Comments:

Test results

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 07/09/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 2 Analytical Limited, ul. Pionierow 39, 41-711 Ruds Jaska, Poland."

Piotuli

Signed:

Short

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd



Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Postuli

Date Reported:

07/09/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Sushil Sharda

**Technical Manager** 

(Geotechnical Division)

for and on behalf of i2 Analytical Ltd

| Tested in Accordance with BS1377.Part 2:1980, dause 8.2       Client:     BWB Consulting Limited<br>Waterfront House<br>Notingham<br>NS2 3DQ     Client Reference: NTE2386<br>Job Number: 17:58424       Date Sampled:     Not Given     Date Reference: NTE2306       Contact:     Luke Cross     Date Reference: NTGW2017       Sample description:     Brownish grey very clayey very sandy GRAVEL.     Sample Reference: Not Given       Suppler:     Not Given     Sample Reference: Not Given       Suppler:     Not Given     Sample description:     Brownish grey very clayey very sandy GRAVEL.       Suppler:     Not Given     Sample Type: B     Depth Tog [m]; Not Given       Suppler:     Not Given     Sample Type: B     Depth Tog [m]; Not Given       Suppler:     Not Given     Sample Type: B     Depth Tog [m]; Not Given       Suppler:     Not Given     Sample Type: B     Depth Tog [m]; Not Given       Serving     Sample Type: B     Medum     Coarse     Fire     Medum     Coarse     Imm       Serving     Satistication     Satistication     Satistication     Satistication     Satistication       Satint     Satistication     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                |             | Deter  | <u>TES</u><br>mination | ST CER       | TIFIC                | ATE      | Distr      | ibutio   | <u>on</u> | i2 Analy<br>7 Wood<br>Croxley<br>Watford | tical Ltd<br>shots Meadov<br>Green Busine<br>Herts WD18 | w<br>ess Park<br>8YS | Environmental 8   | Bcience |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------|--------|------------------------|--------------|----------------------|----------|------------|----------|-----------|------------------------------------------|---------------------------------------------------------|----------------------|-------------------|---------|
| Client: BWB Consulting Limited<br>Client Address: Br Floor<br>Waterfront House<br>Not 3200<br>Contact: Lakeview Drive, Bicaster<br>Site Name: Lakeview Drive, Bicaster<br>Site Address: Not Given<br>TEST RESULTS<br>Laboratory Reference: 805392<br>Sample description: Browing drive very cay very sandy GRAVEL<br>Location: BH103<br>Supplier: Not Given<br>Test Result S<br>Supplier: Not Given<br>Test Result S<br>Sample description: Browing drive very cay drive very sandy GRAVEL<br>Location: BH103<br>Supplier: Not Given<br>Test Result S<br>Sample description: Browing drive very cay drive very sandy GRAVEL<br>Location: BH103<br>Supplier: Not Given<br>Test Result S<br>Sample description: Browing drive very cay drive very drive very cay drive very drive very cay drive very cay drive very cay drive very cay drive very drive very cay drive very cay drive very cay drive very drive very drive very drive very drive very drive very cay drive very dr                                                                                                                                                                                                                                                                                                                                             | 1       | esting<br>4041 |             | Tes    | ted in Accordar        | nce with BS  | 1377 <sup>.</sup> Pa | rt 2·199 | 0 cla      | use 9.2  |           |                                          |                                                         |                      |                   |         |
| Citefit deferse:<br>Sh Floor<br>Nottigham<br>NG2 3DQ<br>Contact:<br>Luke Cross<br>Sample description:<br>Supplier: Not Given<br>Supplier: Supplier: Not Given<br>Supplier: Supplier: Not Given<br>Supplier: Not Given<br>Sup                                                                                                                                                                                     |         |                |             | 100    |                        | ing Limito   | d                    |          | 0, 014     | 000 0.2  |           | Client D                                 | oforonoo, NT                                            | E2266                |                   |         |
| Other Hubbles Waterfront Husse<br>Notingham Data Status   NG2 3DQ Data Received: 17/08/2017   Contact: Luke Cross Data Tested: 31/08/2017   Site Name: Lake Cross Data Tested: 31/08/2017   Site Address: Not Given Sampled By: Not Given   Sample description: Brownish grey very clayey very sandy GRAVEL Sample Reference: Not Given   Suppler: Not Given Depth Tage [m]: 30:0   CLAV Fine Medum Coarse   70 Image: Coarse Fine Medum   000 Out Out Prec   000 Out Out Image: Coarse   100 Out Image: Coarse Fine   000 Out Out Image: Coarse   100 Out Out Image: Coarse   100 Out Image: Coarse Image: Coarse   100 Out Out Image: Coarse Image: Coarse   100 Out Out Image: Coarse Image: Coarse   100 Out Image: Coarse Image: Coarse Image: Coarse   100 Out Image: Coarse Image: Coarse Image: Coarse   100 Out Image: Coarse Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | ent.           | droce       |        | 5th Floor              |              | u                    |          |            |          |           |                                          | Numbor: 17                                              | -58/2/               |                   |         |
| Notingham<br>NG2 3DQ<br>Source Trively Construction<br>Stel Name: Lakview Drive, Bicester<br>Sampled Sectors<br>Sampled Secto | Cili    |                | uiess.      |        | Waterfront Ho          | ouse         |                      |          |            |          |           | Data                                     | Sompled: No                                             | t Given              |                   |         |
| NG2 3DQ<br>Contact: Luke Cross Bite Address: Not Given<br>Site Address: Not Given<br>Sample description: Brownish grey very clayey very sandy GRAVEL<br>Sample Type: B<br>Depth Top [m]: Not Given<br>Depth Base [m]: 3.00<br>Coarse Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse Coanse Coan                                                                                                                                                                                                                                                                                                                                                                       |         |                |             |        | Nottingham             |              |                      |          |            |          |           | Dale                                     |                                                         |                      |                   |         |
| Contact: Lukke Cross Date Testel: 3108/2217<br>Site Name: Lakeview Drive, Bicester Sampled By: Not Given<br>TEST RESULTS Laboratory Reference: 805392<br>Sample description: Brownish grey very clayey very sandy GRAVEL<br>Location: BH103<br>Supplier: Not Given<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Medium Coarse Fine Medium Coarse Fine Medium Coarse Coences (Striven)<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>Coarse Fine Medium Coarse Fine Medium Coarse Coences (Striven)<br>Sample description: Brownish grey very clayey very sandy GRAVEL<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>CLAY Fine SULT<br>Sample description: Brownish grey very clayey used GRAVEL<br>Sample description: Brownish grey very claye used Grave Mit BS1377 unless noted be<br>Sample description: Brownish grey very claye used GRAVEL<br>Sample description: Brownish grey very claye used GRAVEL<br>Sample description: Brownish grey very claye used GRAVEL<br>Sample description: Brownish grey very clayet description: Brownish grey very c                                                                                                                                                                                                                                                                                                     |         |                |             |        | NG2 3DQ                |              |                      |          |            |          |           | Date                                     | Received: 17                                            | /08/2017             |                   |         |
| Site Name:     Lakewise Dires, Blocker     Sampled by: Not Given       TEST RESULTS     Laboratory Reference:     805392     Sample Reference:     Not Given       Supple:     Not Given     Sample description:     Brownish grey very clayey very sandy GRAVEL     Sample Reference:     Not Given       Supple:     Not Given     Depth Top [m]: Not Given     Depth Top [m]: Not Given     Depth Top [m]: Not Given       Supple:     Not Given     Sample description:     Brownish grey very clayey very sandy GRAVEL     Sample description:     Brownish grey very clayey very sandy GRAVEL       Supple:     Not Given     Sample description:     Brownish grey very clayey very sandy GRAVEL     Sample description:     Brownish grey very clayey very sandy GRAVEL       Supple:     Not Given     Supple:     Sample description:     Brownish grey very clayey very sandy GRAVEL     Sample description:     Brownish grey very clayey very sandy GRAVEL       Supple:     Supple:     Supple:     Supple:     Genetic sample:     Genetic sample:     Supple:     Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co      | ntact:         |             |        | Luke Cross             | Discot       |                      |          |            |          |           | Dat                                      | te Tested: 31                                           | /08/2017             |                   |         |
| State Address.     Worksen       Sample description:     Brownish grey very clayey very sandy GRAVEL.     Sample Reference: Not Given       Sample description:     Brownish grey very clayey very sandy GRAVEL.     Sample Type: B       Location:     BH103     Suppler:     Not Given       CLAY     Fire     Medium     Coarse     Fire       100     Fire     Medium     Coarse     Coarse     Coarse       70     Medium     Coarse     Fire     Medium     Coarse     Coarse       70     Medium     Coarse     Fire     Medium     Coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site    | e Nam          | 1e:         |        | Lakeview Driv          | /e, Biceste  | ər                   |          |            |          |           | Sa                                       | mpled By: No                                            | t Given              |                   |         |
| Sample description:     Envolvish grey very dayey very sandy GRAVEL     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Sample description:     Brownish grey very dayey very sandy GRAVEL     Sample description:     Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TE      |                |             | 2      |                        |              | nco.                 | 80530    | 2          |          |           | Sample P                                 | eference: No                                            | t Given              |                   |         |
| Location:     BH103     Depth Top [m]: Not Given       Supplier:     Not Given     Depth Base [m]: 3.00       Image: CLAY     Fire     SAND     Carse     Fire     GRAVEL     CodeLES     BOULDERS       Image: Clay     Set (marking construction)     SAND     Carse     Fire     GRAVEL     CodeLES     BOULDERS       Image: Clay     Set (marking construction)     Set (marking construction)     CodeLES     BOULDERS       Image: Clay     Set (marking construction)     CodeLES     BOULDERS     CodeLES     BOULDERS       Image: Clay     Set (marking construction)     CodeLES     BOULDERS     CodeLES     BOULDERS       Image: Clay     Set (marking construction)       Image: Clay     Set (marking construction)     Set (marking construction)     Set (marking construction)     Set (marking construction)       Image: Clay     Set (marking construction)     Set (marking construction)     Set (marking construction)     Set (marking construction) <td>Sa</td> <td>mple (</td> <td>descrir</td> <td>otion:</td> <td>Brownisl</td> <td>h arev ver</td> <td>v clavev</td> <td>verv s</td> <td>∠<br/>sandv</td> <td>GRAVE</td> <td>ΞL</td> <td>Sample N</td> <td>nole Type: B</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sa      | mple (         | descrir     | otion: | Brownisl               | h arev ver   | v clavev             | verv s   | ∠<br>sandv | GRAVE    | ΞL        | Sample N                                 | nole Type: B                                            |                      |                   |         |
| Supplier:     Not Given     Depth Base [m]: 3.00 <u>CLAY</u> Fine     Modum     Coarse     Fine     Modum     Coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Loc     | cation         | :           | BH10   | 3                      | . g. c) . c. | ,,.,                 |          |            | 0        |           | Depti                                    | h Top [m]: No                                           | t Given              |                   |         |
| Source     SILT     SAND     GRAVEL     COBBLES     BOLLDERS       100     Image: Classing in accordance with BS1377 unless noted be     Fine     Medium     Coarse     Fine     Medium     Coarse     BOLLDERS     BOLLDERS     BOLLDERS     BOLLDERS       100     Image: Classing in accordance with BS1377 unless noted be     Image: Classing in accordance with BS1377 unless noted be     Image: Classing in accordance with BS1377 unless noted be     Image: Classing in accordance with BS1377 unless noted be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Su      | oplier:        |             | Not G  | liven                  |              |                      |          |            |          |           | Depth                                    | Base [m]: 3.0                                           | 00                   |                   |         |
| CLAY     Fine     Medium     Coarse     Fine     Medium     Coarse     BOUDERS       100     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | -              |             |        | SILT                   |              |                      | SA       | ND         |          |           | GRA                                      | VFI                                                     |                      |                   | -       |
| No     No<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                | CLAY        | Fine   | Medium                 | Coarse       | Fine                 | Mec      | lium       | Coarse   |           | Fine Med                                 | ium Coarse                                              | COBBLES              | BOULDERS          |         |
| Steving     Setting     Particle Size     Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 100 1          |             |        |                        |              |                      |          |            |          | _         |                                          |                                                         |                      |                   |         |
| Sieving     Sectimentation       125     100       125     100       125     100       125     100       125     100       10     10       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       10     100       11     10       10     100       11     10       10     100       11     10 <td></td> <td>90 -</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 90 -           |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| Sieving     Sedimentation       0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| Steving     Sedimentation       0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 80 -           |             |        |                        |              |                      |          |            |          | +         |                                          |                                                         |                      |                   |         |
| Sector     Sector<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 70 -           |             | _      |                        |              |                      |          |            |          | +         |                                          |                                                         |                      |                   |         |
| Sieving     Sedimentation       0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %<br>Di | 60 -           |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| Signed     Solution     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | assir   |                |             |        |                        |              |                      |          |            |          | 1         |                                          |                                                         |                      |                   |         |
| 90   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40 <td< td=""><td>еЪ</td><td>50 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | еЪ      | 50 -           |             |        |                        |              |                      |          | _          |          |           |                                          |                                                         |                      |                   |         |
| 30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30   30 <td< td=""><td>ntag</td><td>40 -</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntag    | 40 -           |             |        |                        |              |                      | _        |            |          | +         |                                          |                                                         |                      |                   |         |
| A     20     10     10     100     10       0.001     0.01     0.1     1     10     100     100       Particle Size mm       125     100     10     100     11       125     100     100     100     100     100       125     100     100     100     100     100     100       125     100     100     100     100     100     100     100       125     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erce    | 30 -           |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| 20     10     10     10     100     1       0.001     0.01     0.1     1     10     100     1       Particle Size mm       125     100     100     1     10     100     1       90     100     100     100     1433     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۵.      |                |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| 10     0     0     10     0.1     1     10     100     1       Particle Size     mm       Sieving     Sedimentation     mn     Dry Mass of sample [g]:     1433       125     100     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 20 -           |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| No.01     0.01     0.1     1     10     100     1       Particle Size mm       Particle Size     M     Particle Size     mm     Dry Mass of sample [g]:     1433       125     100     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 10 -           |             |        |                        |              |                      |          |            |          | +         |                                          |                                                         |                      |                   |         |
| 0.001 0.01 0.1 1 10 100 1   Particle Size mm   Particle Size M Passing mm   Particle Size 0 0 0 0   125 100 0 0   90 100 0 0 0   63 100 0 0   50 100 0 0   28 100 0 0   20 96 0 0   14 90 0 0   10 85 0 0   5 71 0 0   1.18 53 0 0   0.6 48 0 0   0.15 40 0 0   0.015 40 0 0   0.015 40 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 0              |             |        |                        |              |                      |          |            |          |           |                                          |                                                         |                      |                   | Шļ      |
| Sieving     Sedimentation       Particle Size     mm       Particle Size     % Passing       Particle Size     % Passing       125     100       125     100       63     100       50     100       37.5     100       28     100       28     100       14     90       14     90       10     85       14     90       10     85       11     53       10     85       118     53       0.6     48       0.425     46       0.3     44       0.212     42       0.15     40       0.063     37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 0.0            | 01          |        | 0.01                   |              | 0.1                  |          |            | 1        |           | 10                                       |                                                         | 100                  |                   | 1000    |
| Particle Size<br>mm     % Passing<br>mm     Particle Size<br>mm     % Passing<br>% Passing       125     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                |             | Siov   | ina                    | 1            | Sodimo               | ntation  | Parti      | cle Size | mm        | Mass of same                             |                                                         |                      | 1/33              |         |
| mm     % Passing     mm     % Passing       125     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Pa             | article S   | Size   |                        | Particle     | e Size               | mation   |            | _        | Diy       | IVIASS OF Samp                           | Jie [g].                                                |                      | 1455              |         |
| 125     100     Sample Proportions     % dry mass       90     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                | mm          |        | % Passing              | mi           | m                    | % P      | assing     | 9        |           |                                          |                                                         |                      |                   |         |
| 30   100   0.00     75   100   0.00     63   100   0.00     50   100   0.00     37.5   100   0.00     28   100   0.00     20   96   0.00     14   90   0.00     5   71   0.00     3.35   66   0.00     2   59   0.00     1.18   53   0.6     0.6   48   0.425     0.3   44   0.212     0.15   40   0.063     0.063   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                | 125         |        | 100                    | _            |                      |          |            |          | San       | nple Proporti                            | ons                                                     |                      | % dry mass        |         |
| 63   100   22.00     50   100   50     37.5   100   50     28   100   50     20   96   50     14   90   50     10   85   50     6.3   79   50     5   71   50     1.18   53   50     0.6   48   53     0.6   48   51     0.212   42   44     0.15   40     0.063   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                | 30<br>75    |        | 100                    |              |                      |          |            |          | Gra       | vel                                      |                                                         |                      | 41.10             |         |
| 37.5   100   Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align:                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                | 63          |        | 100                    | _            |                      |          |            |          | Sar       | ld                                       |                                                         |                      | 22.00             |         |
| 28   100   Grading Analysis     14   90   0     10   85   0     6.3   79   0     5   71   0     3.35   66   0     1.18   53   0     0.6   48   0     0.212   42     0.15   40     0.063   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                | 37.5        |        | 100                    | -            |                      |          |            | _        | Fine      | es <0.063mm                              |                                                         |                      | 36.80             |         |
| 20   96   Grading Analysis     14   90   0     10   85   0     6.3   79   0     5   71   0     3.35   66   0     2   59   0     1.18   53   0     0.6   48   0     0.425   46   0     0.3   44   0     0.212   42   0     0.15   40   0     0.063   37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                | 28          |        | 100                    |              |                      |          |            |          | _         |                                          |                                                         |                      |                   |         |
| 10   85   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                | 20          |        | 96                     | -            |                      |          |            |          | Gra       | ding Analysi                             | S mr                                                    | 2                    | 28                |         |
| 6.3   79   D30   mm     5   71   D10   mm     3.35   66   D10   mm     2   59   D10   mm     1.18   53   Curvature Coefficient   Curvature Coefficient     0.6   48   Preparation and testing in accordance with BS1377 unless noted be     0.212   42   0.15   40     0.063   37   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                | 10          |        | 85                     |              |                      |          |            |          | D60       | )                                        | mm                                                      | י<br>ז               | 2.17              |         |
| 3 71   3.35 66   2 59   1.18 53   0.6 48   0.425 46   0.3 44   0.212 42   0.15 40   0.063 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                | 6.3         |        | 79                     | _            |                      |          |            |          | D30       | )                                        | mm                                                      | n                    |                   |         |
| 2     59     Curvature Coefficient       1.18     53     Remarks       0.6     48     Preparation and testing in accordance with BS1377 unless noted be       0.3     44     0.212     42       0.15     40     0.063     37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                | 5<br>3.35   |        | 66                     |              |                      |          |            | $\neg$   | Unit      | ,<br>formity Coeffic                     | cient mr                                                | 1                    |                   |         |
| 1.18     53     Remarks       0.6     48     Preparation and testing in accordance with BS1377 unless noted be       0.3     44     Preparation and testing in accordance with BS1377 unless noted be       0.15     40     Preparation and testing in accordance with BS1377 unless noted be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                | 2           |        | 59                     |              |                      |          |            |          | Cur       | vature Coeffic                           | cient                                                   |                      |                   |         |
| 0.425     46       0.3     44       0.212     42       0.15     40       0.063     37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                | 1.18<br>0.6 |        | 53<br>48               |              |                      |          |            | _        | Rer       | narks                                    |                                                         |                      |                   |         |
| 0.3     44       0.212     42       0.15     40       0.063     37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                | 0.425       |        | 46                     | 1            |                      |          |            |          | Prep      | paration and tes                         | ting in accordance                                      | e with BS137         | 7 unless noted be | elow    |
| 0.15 40<br>0.063 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                | 0.3         |        | 44<br>42               | -1           |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
| 0.063 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                | 0.15        |        | 40                     |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                | 0.063       |        | 37                     |              |                      |          |            |          |           |                                          |                                                         |                      |                   |         |

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Date Reported:

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Shorta

for and on behalf of i2 Analytical Ltd

Page 1 of 1

|       |                        |                                   |                |         | TE                | ST C              | ER       | TIF        | ICA  | TE          | <u>.</u> |        |       |       |              | i2<br>7 \ | Ana<br>Noc   | lytica<br>odsho | al Lte<br>ots N | d<br>Aeao   | dov       | v          |          |        |        | alytical   | 5       |        |
|-------|------------------------|-----------------------------------|----------------|---------|-------------------|-------------------|----------|------------|------|-------------|----------|--------|-------|-------|--------------|-----------|--------------|-----------------|-----------------|-------------|-----------|------------|----------|--------|--------|------------|---------|--------|
|       | <b>}</b> ≮<br>каs      | <u>D</u>                          | eter           | mina    | ation             | of F              | Part     | icle       | Siz  | ze [        | Dis      | tril   | buti  | 0     | <u>n</u>     | Cr<br>W   | oxle<br>atfo | ey Gr<br>rd He  | een<br>erts     | Bus<br>WD   | ine<br>18 | ess<br>8YS | Par<br>S | k      | Er     | vironm     | antal S | cience |
| Cli   | esting<br>4041<br>ant: |                                   | Test           | ed in A | Accorda<br>Consul | nce wi<br>tina Li | th BS    | 1377:<br>d | Part | 2:19        | 90, c    | laus   | e 9.2 |       | -            | C         | liont        | Rofe            | aron            | <u>са</u> . | NT        | F23        | 366      |        |        |            |         |        |
| Cli   | ent A                  | ddress:                           | 5              | ith Flo | or                | ung E             |          | u          |      |             |          |        |       |       |              | 0         | J            | ob N            | umt             | ber:        | 17-       | -584       | 424      |        |        |            |         |        |
| -     |                        |                                   | V              | Vater   | front H           | ouse              |          |            |      |             |          |        |       |       |              |           | Dat          | te Sa           | mpl             | ed:         | No        | t Gi       | ver      | ۱      |        |            |         |        |
|       |                        |                                   |                | lotting | gham              |                   |          |            |      |             |          |        |       |       |              |           | Date         | e Re            | ceiv            | ed.         | 17/       | /08/       | 201      | 7      |        |            |         |        |
| Co    | ntact                  |                                   | 1              | uke (   | Cross             |                   |          |            |      |             |          |        |       |       |              |           | П            | ate 1           | Foot            | od.         | 31/       | /08/       | 201      | 17     |        |            |         |        |
| Sit   | e Nar                  | ne:                               | L              | .akevi  | iew Dri           | ve, Bi            | ceste    | ər         |      |             |          |        |       |       |              |           | S            | Samp            | led             | By:         | No        | t Gi       | ver      | ۱<br>۱ |        |            |         |        |
| Sit   | e Ado                  | dress:                            | Ν              | lot Gi  | ven               |                   |          |            |      |             |          |        |       |       |              |           |              | -               |                 | -           |           |            |          |        |        |            |         |        |
| TE    | ST R                   | ESULTS                            | S              | L       | aborat            | ory Re            | efere    | nce:       | 8    | 0539        | 93       |        |       |       |              | San       | nple         | Refe            | eren            | ce:         | No        | t Gi       | ver      | ۱      |        |            |         |        |
| Sa    | mple                   | descrip                           | tion:<br>BH104 | в       | srown s           | sandy             | very     | grav       | elly | CLA         | Y        |        |       |       |              |           | Sa           | ample           | e Ty            | pe:         | B         | t Ci       | vor      |        |        |            |         |        |
| Su    | Supplier: Not Given    |                                   |                |         |                   |                   |          |            |      |             |          |        |       | [     | Dept         | th Ba     | op [<br>se [ | m]:             | 1.0             | 0           | vei       | 1          |          |        |        |            |         |        |
|       | CLAY SILT SAND         |                                   |                |         |                   |                   |          |            |      |             |          |        | GF    | RAVEL |              |           |              | cc              | BBL             | ES          | В         |            | RS       |        |        |            |         |        |
|       | 400                    | 00 Fine Medium Coarse Fine Medium |                |         |                   |                   |          |            |      |             | Coars    | e      | Fine  | e     | M            | edium     |              | Coars           | se              |             |           |            |          |        |        |            |         |        |
|       | 100                    |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 | /               |             |           |            | Γ        |        |        |            |         |        |
|       | 90                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         |        |
|       | 80                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           | /            |                 | 1               |             |           |            |          |        |        |            |         | +      |
| %     | 70                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              | /         |              |                 |                 |             |           |            |          |        |        |            |         | +      |
| sing  | 60                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       | /     |              |           |              |                 | +               |             |           |            |          |        |        |            |         | +      |
| Pas   | 50                     |                                   | _              |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 | _               |             |           |            | -        |        |        |            |         |        |
| itage | 40                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 | _               |             |           |            |          |        |        |            |         | -      |
| ercer | 30                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         | _      |
| ď     | 20                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         |        |
|       | 10                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         |        |
|       | 10                     |                                   |                |         |                   |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         |        |
|       | 0<br>0.0               | 001                               |                | 0       | 0.01              | 1 1               | <u> </u> | 0.1        |      | <u>'i t</u> |          |        | 1     |       |              |           |              | 10              |                 |             | <u> </u>  | <u>.</u>   | 100      |        |        |            | 1       |        |
|       |                        |                                   | Sievi          | ng      |                   | T                 |          | Sedi       | ment | tatio       | n Pa     | rticie |       | 9     | mm<br>Drv Ma | ass o     | of sa        | mple            | [a]:            |             |           |            |          |        | 643    |            |         |        |
|       | P                      | article Si                        | ize            | % P     | assing            | Р                 | article  | e Size     | ;    | % F         | Passi    | ing    |       |       |              |           |              | •               |                 |             |           |            |          |        |        |            |         |        |
|       | -                      | mm<br>125                         |                | 1       | 100               | _                 | rnr      | n          |      |             |          | -      |       |       | Sampl        | e Pi      | opo          | rtion           | s               |             |           |            |          | 9      | 6 dr   | / mas      | s       |        |
|       |                        | 90                                |                | 1       | 100               |                   |          |            |      |             |          |        |       |       | Very co      | oars      | e            |                 |                 |             |           |            |          |        | 0.     | 00         |         |        |
|       |                        | 63                                |                | 1       | 100               |                   |          |            |      |             |          |        |       |       | Sand         |           |              |                 |                 |             |           | +          |          |        | 29     | .60<br>.80 |         |        |
|       |                        | 50                                |                | 1       | 100               |                   |          |            |      |             |          |        |       |       |              |           | ~~           |                 |                 |             |           |            |          |        |        |            |         |        |
|       | $\vdash$               | 37.5<br>28                        |                | 1       | 100               | _                 |          |            |      |             |          |        |       |       | Fines <      | <0.0      | 63m          | m               |                 |             |           |            |          |        | 30     | .60        |         |        |
|       |                        | 20                                |                |         | 94                |                   |          |            |      |             |          |        |       |       | Gradin       | ng A      | naly         | sis             |                 |             |           |            |          |        | _      |            |         |        |
|       |                        | 14<br>10                          |                |         | 85<br>81          | _                 |          |            |      |             |          |        | _     |       | D100<br>D60  |           |              |                 |                 |             | mm<br>mm  |            |          |        | 1.     | 28<br>88   |         |        |
|       |                        | 6.3                               |                |         | 73                |                   |          |            |      |             |          |        |       |       | D30          |           |              |                 |                 |             | mm        | n<br>N     |          |        |        |            |         |        |
|       | $\vdash$               | 5                                 | -+             |         | 68<br>64          |                   |          |            | -    |             |          |        | _     |       | D10          | nitv      | Cool         | fficion         | t               |             | mm        | 1          |          |        |        |            |         |        |
|       | F                      | 2                                 |                |         | 60                |                   |          |            |      |             |          |        |       |       | Curvat       | ure       | Coef         | ficien          | t               |             |           | $\pm$      |          |        |        |            |         |        |
|       | F                      | 1.18                              |                |         | 57                |                   |          |            |      |             |          |        |       |       | Remar        | ke        |              |                 |                 |             |           |            |          |        |        |            |         |        |
|       | ⊢                      | 0.6                               |                |         | 5∠<br>48          | -                 |          |            |      |             |          |        |       |       | Prepara      | ition     | and t        | estina          | in ac           | corda       | ance      | e with     | n BS     | 1377   | ' unle | ss not     | ed be   | elow   |
|       |                        | 0.3                               |                |         | 42                |                   |          |            |      |             |          |        |       |       | The mai      | teria     | l subr       | nitted,         | fails           | to m        | eet       | the n      | ninin    | num    | mass   | requi      | reme    | nts    |
|       | -                      | 0.212                             |                |         | 36<br>33          |                   |          |            |      |             |          |        |       |       | as state     | u IN      | 0013         | и Ра            | ut 2            | aDIE        | з         |            |          |        |        |            |         |        |
|       |                        | 0.063                             |                |         | 31                |                   |          |            |      |             |          |        |       |       |              |           |              |                 |                 |             |           |            |          |        |        |            |         |        |

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Date Reported:

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Shorta

for and on behalf of i2 Analytical Ltd

Page 1 of 1

|                            |                                          |                                   | Deter                         | <u>T</u><br>minatio                                                                                                    | EST CE                                          | RTIFIC                | SATE<br>Size Dis                             | tribut                      | ion                             | i2<br>7<br>C<br>W                          | Anal<br>Wood<br>roxley<br>atfor         | ytical<br>dshot<br>/ Gree<br>d Her                 | Ltd<br>s Meade<br>en Busir<br>ts WD1                               | ow<br>ness<br>8 81                             | s Par<br>/S                                      | k             | Environ   |           |   |
|----------------------------|------------------------------------------|-----------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|----------------------------------------------|-----------------------------|---------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------|-----------|-----------|---|
| Clie<br>Clie<br>Co<br>Site | 4041<br>ent:<br>ent A<br>ntact:<br>e Nar | ddress<br>:<br>ne:<br>tress:      | Tes                           | ted in Accorr<br>BWB Cons<br>5th Floor<br>Waterfront<br>Nottinghan<br>NG2 3DQ<br>Luke Cross<br>Lakeview E<br>Not Given | dance with B<br>House<br>n<br>S<br>Drive, Bices | S1377:Pa<br>ed<br>ter | ırt 2:1990, (                                | clause 9.2                  | 2                               | С                                          | lient<br>Jc<br>Date<br>Date<br>Da<br>Sa | Refer<br>b Nui<br>e Sam<br>Rece<br>ate Te<br>ample | ence: N<br>mber: 1<br>npled: N<br>eived: 1<br>ested: 3<br>ed By: N | ITE2<br>7-58<br>lot 0<br>7/08<br>1/08<br>lot 0 | 2366<br>3424<br>Giver<br>3/201<br>3/201<br>Giver | )<br> 7<br> 7 |           |           |   |
| TE<br>Sa<br>Loc<br>Su      | ST R<br>mple<br>catior<br>pplier         | <b>ESUL</b><br>descri<br>n:<br>r: | TS<br>ption:<br>BH10<br>Not G | Labor<br>Dark I<br>9<br>Siven                                                                                          |                                                 |                       | Sar                                          | nple<br>Sai<br>Dep<br>Deptł | Refer<br>mple<br>th To<br>n Bas | ence: N<br>Type: B<br>p [m]: N<br>e [m]: 1 | lot C<br>lot C<br>.00                   | Giver<br>Giver                                     | n                                                                  |                                                |                                                  |               |           |           |   |
|                            | -                                        | CLAY                              | Fine                          | SILT                                                                                                                   | Coarse                                          | Fine                  | SAND                                         | Coar                        |                                 | Fine                                       | GR.                                     | AVEL                                               | Coarse                                                             | _ (                                            | COBBLI                                           | ES            | BOULD     | ERS       |   |
|                            | 100                                      |                                   | Fine                          | wedium                                                                                                                 | Coarse                                          | Fine                  | iviedium                                     |                             | se                              | Fine                                       | Ivie                                    | aium                                               | Coarse                                                             |                                                |                                                  |               |           |           |   |
|                            | 90                                       | <u> </u>                          |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            | 80                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             | -                               |                                            | -                                       |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| .0                         | 70                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             | $\dashv$                        |                                            | _                                       |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| ∿ gu                       | 60                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| assi                       | 50                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| age F                      | 40                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| centa                      | 40                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
| Pero                       | 30                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            | 20                                       |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             | $\rightarrow$                   |                                            | -                                       |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            | 10                                       |                                   |                               |                                                                                                                        |                                                 |                       | _                                            |                             | _                               |                                            | _                                       |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            | 0                                        |                                   |                               |                                                                                                                        |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            | 0.0                                      | 001                               |                               | 0.01                                                                                                                   |                                                 | 0.1                   | _                                            | 1                           |                                 |                                            | 1                                       | 0                                                  |                                                                    |                                                | 100                                              |               |           | 1000      | ) |
|                            |                                          |                                   | Siov                          | ina                                                                                                                    |                                                 | Sodime                | Pa                                           | article Size                | e m                             | n<br>Na Mass                               | ofean                                   | anlo [a                                            | J.                                                                 |                                                |                                                  |               | 1/13      |           |   |
|                            | P                                        | Particle                          | Size                          | % Passin                                                                                                               | g Partic                                        | le Size               | % Pass                                       | ina                         | U                               | ny mass                                    | UI Sali                                 | ipie [g                                            | J] <b>.</b>                                                        |                                                |                                                  |               | 143       |           |   |
|                            | -                                        | mm                                |                               | 100                                                                                                                    | 9 r                                             | nm                    | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             | s                               | amnle P                                    | ropor                                   | tions                                              |                                                                    |                                                |                                                  | %             | dry ma    | 22        |   |
|                            |                                          | 90                                |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | V                               | ery coars                                  | se                                      | 10113                                              |                                                                    |                                                |                                                  | 70            | 0.00      | 133       |   |
|                            |                                          | 75                                |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | G                               | Gravel                                     |                                         |                                                    |                                                                    |                                                |                                                  |               | 0.00      |           |   |
|                            |                                          | <u>63</u><br>50                   |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | S                               | and                                        |                                         |                                                    |                                                                    |                                                |                                                  |               | 2.90      |           | _ |
|                            |                                          | 37.5                              | ;                             | 100                                                                                                                    |                                                 |                       |                                              |                             | F                               | ines <0.0                                  | )63mn                                   | n                                                  |                                                                    |                                                |                                                  |               | 97.10     |           |   |
|                            |                                          | 28                                |                               | 100                                                                                                                    |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           | _ |
|                            | -                                        | 20                                |                               | 100                                                                                                                    |                                                 |                       |                                              |                             |                                 | 5100 0100                                  | Analys                                  | 515                                                | m                                                                  | m                                              |                                                  |               | 3.35      |           | _ |
|                            |                                          | 10                                |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | D                               | 060                                        |                                         |                                                    | n                                                                  | m                                              |                                                  |               |           |           |   |
|                            |                                          | 6.3                               |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | D                               | 030                                        |                                         |                                                    | n                                                                  | nm                                             |                                                  |               |           |           |   |
|                            | -                                        | 3 35                              | ;                             | 100                                                                                                                    |                                                 |                       |                                              |                             | D                               | 10<br>Iniformity                           | Coeff                                   | icient                                             | rr                                                                 | nm                                             |                                                  |               |           |           | _ |
|                            |                                          | 2                                 |                               | 100                                                                                                                    |                                                 |                       |                                              |                             | C                               | Curvature                                  | Coeff                                   | icient                                             |                                                                    |                                                |                                                  |               |           |           | _ |
|                            |                                          | 1.18                              | 3                             | 100                                                                                                                    |                                                 |                       |                                              |                             | -                               | ) omenine                                  |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            |                                          | 0.6                               | 5                             | 100                                                                                                                    |                                                 |                       |                                              |                             | R                               | kemarks                                    | and to                                  | etina in                                           | accorder                                                           | 00.10                                          | ith DC                                           | 1377          |           | ted below |   |
|                            | -                                        | 0.42                              | ~                             | 99                                                                                                                     |                                                 |                       |                                              |                             | ۲                               | -sparau011                                 |                                         | Suriy II                                           | accorudi                                                           | W                                              |                                                  | .511          | uncoo 110 |           |   |
|                            |                                          | 0.212                             | 2                             | 98                                                                                                                     |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            |                                          | 0.15                              | ;                             | 98                                                                                                                     |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |
|                            |                                          | 0.06                              | 3                             | 97                                                                                                                     |                                                 |                       |                                              |                             |                                 |                                            |                                         |                                                    |                                                                    |                                                |                                                  |               |           |           |   |

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

Date Reported:

07/09/2017

#### Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Shorta

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."



Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Postuli

Date Reported:

07/09/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

for and on behalf of i2 Analytical Ltd

(Geotechnical Division)

Sushil Sharda

**Technical Manager** 

|          |                |                     | <u>TES</u>             | T CERTIFI                     | CATE           |                 |          | i2 Ana<br>7 Wo  | alytical<br>odshot | Ltd<br>s Meado       | w               | alytical      | 5             |
|----------|----------------|---------------------|------------------------|-------------------------------|----------------|-----------------|----------|-----------------|--------------------|----------------------|-----------------|---------------|---------------|
|          |                | <u>De</u>           | etermination of        | of Particle                   | Size Dist      | tributio        | <u>n</u> | Croxle<br>Watfo | ey Gre<br>ord Her  | en Busine<br>ts WD18 | ess Park<br>8YS | Environme     | Intal Science |
|          | esting<br>4041 |                     | Tested in Accordanc    | e with BS1377:P               | art 2:1990, cl | ause 9.2        |          |                 |                    |                      |                 |               |               |
| Cli      | ent:           |                     | BWB Consultin          | g Limited                     |                |                 |          | Clien           | t Refer            | ence: NT             | E2366           |               |               |
| Cli      | ent A          | ddress:             | Waterfront Hou         | ISE                           |                |                 |          | с<br>Da         | lob Nu<br>to Son   | mber: 17             | -58424          |               |               |
|          |                |                     | Nottingham             |                               |                |                 |          | Da              |                    | ipieu. No            | /08/2017        |               |               |
| Co       | ntact          |                     | NG2 3DQ                |                               |                |                 |          |                 | le Reci            | elveu. 17            | /08/2017        |               |               |
| Sit      | e Nar          | ne:                 | Lakeview Drive         | , Bicester                    |                |                 |          |                 | Sample             | ed By: No            | t Given         |               |               |
| Sit      | e Add          | lress:              | Not Given              |                               | 005101         |                 |          |                 |                    |                      |                 |               |               |
| TE<br>Sa | ST RI<br>mple  | ESULTS<br>descripti | Laborator<br>Brown ver | y Reference:<br>v clavev SANF | 805404<br>)    |                 |          | Sample          | e Refer<br>amole   | ence: No<br>Type: B  | ot Given        |               |               |
| Lo       | cation         | i: T                | P107                   | y olayoy or all               | ·              |                 |          | De              | pth To             | p [m]: No            | ot Given        |               |               |
| Su       | pplier         | : N                 | ot Given               |                               |                |                 |          | Dep             | th Bas             | e [m]: 1.            | 50              |               |               |
|          | _              | CLAY                | SILT<br>Fine Medium    | Coarse Fine                   | SAND<br>Medium | Coarse          |          | G<br>Fine M     | RAVEL<br>1edium    | Coarse               | COBBLES         | BOULDEF       | RS            |
|          | 100 -          |                     |                        |                               |                |                 | 1        |                 |                    |                      |                 |               |               |
|          | 90 -           |                     |                        |                               |                |                 | -        |                 |                    |                      |                 |               |               |
|          | 80 -           |                     |                        |                               | /              |                 |          |                 |                    |                      |                 |               |               |
|          | 70             |                     |                        |                               |                |                 |          |                 |                    |                      |                 |               |               |
| g %      | 60             |                     |                        |                               |                |                 |          |                 |                    |                      |                 |               |               |
| assing   | 60 -           |                     |                        |                               | /              |                 |          |                 |                    |                      |                 |               |               |
| je Pa    | 50 -           |                     |                        |                               |                |                 |          |                 |                    |                      |                 |               |               |
| entaç    | 40 -           |                     |                        |                               |                |                 | ┢        |                 |                    |                      |                 |               |               |
| Perc     | 30 -           |                     |                        |                               |                |                 | +        |                 |                    |                      |                 |               |               |
|          | 20 -           |                     |                        |                               |                |                 | -        |                 |                    |                      |                 |               |               |
|          | 10 -           |                     |                        |                               |                |                 |          |                 |                    |                      |                 |               |               |
|          | 0 -            |                     |                        |                               |                |                 |          |                 |                    |                      |                 |               |               |
|          | 0.0            | 001                 | 0.01                   | 0.1                           | Par            | 1<br>ticle Size | mm       |                 | 10                 |                      | 100             |               | 1000          |
|          |                |                     | Sieving                | Sedim                         | entation       |                 | Dry      | Mass of sa      | ample [g           | <b>]</b> ]:          |                 | 240           |               |
|          | P              | article Siz<br>mm   | e % Passing            | Particle Size<br>mm           | % Passir       | ng              |          |                 |                    |                      |                 |               |               |
|          |                | 125                 | 100                    |                               |                |                 | Sam      | ple Propo       | ortions            |                      |                 | % dry mas     | S             |
|          |                | 90<br>75            | 100                    |                               |                |                 | Grav     | coarse<br>vel   |                    |                      |                 | 0.00          |               |
|          |                | 63<br>50            | 100                    |                               |                |                 | San      | 4               |                    |                      | _               | 73.20         |               |
|          |                | 37.5                | 100                    |                               |                |                 | Fine     | s <0.063m       | ım                 |                      |                 | 26.70         |               |
|          |                | 28                  | 100                    |                               |                |                 | Gra      | ling Analy      | vsis               |                      |                 |               |               |
|          |                | 14                  | 100                    |                               |                |                 | D10      | )<br>)          | 7010               | mn                   | n               | 5             |               |
|          |                | 10                  | 100                    |                               |                |                 | D60      |                 |                    | mn                   | n               | 0.178         |               |
|          | -              | 5                   | 100                    |                               |                |                 | D30      |                 |                    | mn                   | n               | 0.07.10       |               |
|          |                | 3.35                | 100                    |                               |                |                 | Unif     | ormity Coe      | fficient           |                      |                 |               |               |
|          |                | 2                   | 100                    |                               |                |                 | Curv     | ature Coe       | fficient           |                      |                 |               |               |
|          |                | 0.6                 | 99                     |                               | 1              |                 | Rem      | arks            |                    |                      |                 |               |               |
|          |                | 0.425               | 99                     |                               |                |                 | Prep     | aration and     | testing ir         | n accordanc          | e with BS137    | 7 unless note | ed below      |
|          | -              | 0.3                 | 92                     |                               |                |                 |          |                 |                    |                      |                 |               |               |
|          |                | 0.15                | 49                     |                               |                |                 |          |                 |                    |                      |                 |               |               |
|          |                | 0.063               | 27                     |                               |                |                 |          |                 |                    |                      |                 |               |               |

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Piotuli

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Date Reported:

07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Shorta

#### Page 1 of 1

for and on behalf of i2 Analytical Ltd

#### **TEST CERTIFICATE**

Point Load Strength Index Tests Summary of Results

Tested in Accordance with ISRM : 2007, pages 125-132

BWB Consulting Limited Client: Client Address: 5th Floor Waterfront House Nottingham NG2 3DQ Luke Cross Contact: Site Name: Lakeview Drive, Bicester Site Address: Not Given

#### Test results

|                         |             |           | San              | nple              |      | Speci     | men       |                     | Deal Trace            | Test<br>see l        | Type<br>SRM              | lid                 |           | Dime    | nsions    |            | Force | lent<br>r, De         | Point<br>Strengt | Load<br>h Index | Parent a                                                      |
|-------------------------|-------------|-----------|------------------|-------------------|------|-----------|-----------|---------------------|-----------------------|----------------------|--------------------------|---------------------|-----------|---------|-----------|------------|-------|-----------------------|------------------|-----------------|---------------------------------------------------------------|
| Laboratory<br>Reference | Hole<br>No. | Reference | Depth<br>Top [m] | Depth<br>Base [m] | Туре | Reference | Depth [m] | Description         | and<br>Test condition | Type<br>(D, A, I, B) | Direction<br>(L, P or U) | Failure Va<br>(Y/N) | Lne<br>mm | W<br>mm | Dps<br>mm | Dps'<br>mm | P     | B Equiva<br>B diamete | ls<br>MPa        | ls(50)<br>MPa   | Kemarks<br>(including water content if<br>measured)           |
| 805407                  | TP121       | Not Given | 3.20             | 3.35              | В    | 1         |           | Dark brown MUDSTONE | MUDSTONE              | I                    | U                        | YES                 | 77.2      | 100.9   | 50.0      | 32.0       | 1.5   | 64.1                  | 0.37             | 0.41            | Unable to carry out axial test due to<br>sample dimensions    |
| 805407                  | TP121       | Not Given | 3.20             | 3.35              | В    | 2         |           | Dark brown MUDSTONE | MUDSTONE              | I                    | U                        | YES                 | 84.2      | 116.0   | 42.0      | 33.0       | 1.2   | 69.8                  | 0.24             | 0.28            | Unable to carry out diameter test<br>due to sample dimensions |
| 805409                  | TP122       | Not Given | 3.55             | 3.70              | В    | 1         |           | Dark brown MUDSTONE | MUDSTONE              | Т                    | U                        | YES                 | 61.6      | 71.6    | 26.0      | 18.0       | 0.9   | 40.5                  | 0.56             | 0.51            | Unable to carry out axial test due to<br>sample dimensions    |
| 805409                  | TP122       | Not Given | 3.55             | 3.70              | В    | 2         |           | Dark brown MUDSTONE | MUDSTONE              | Т                    | U                        | YES                 | 67.2      | 118.2   | 36.0      | 16.0       | 0.5   | 49.1                  | 0.22             | 0.21            | Unable to carry out diameter test<br>due to sample dimensions |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |
|                         |             |           |                  |                   |      |           |           |                     |                       |                      |                          |                     |           |         |           |            |       |                       |                  |                 |                                                               |

Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block

D - Diametral, A - Axial, I - Irregular Lump Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random

Dimensions Dps - Distance between platens ( platen separation ) Dps' - at failure ( see ISRM note 6)

Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P

Detailed legend for test and dimensions, based on ISRM, is shown above.

## Size factor, F = (De/50)0.45 for all tests.

#### Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 05/09/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."



Diametral

D

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Shorta

for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017 Date Tested: 31/08/2017 Sampled By: Not Given



# APPENDIX 10 DERIVATION OF BWB GSAC



## BWB HUMAN HEALTH GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

## Human Health Generic Screening Criteria

The Environment Agency published the revised CLEA framework for assessing the risk to human health from soil contamination in January 2009. The framework comprises a technical background document (EA, 2009a), toxicological assessment EA 2009b and CLEA spreadsheet model (EA 2009c). The new framework supersedes the 2002 CLEA model and subsequent briefing notes. The 2002 CLEA software and CLEA 2005 have also been withdrawn and all previously published Soil Guideline Values (SGV) have been withdrawn. The EA have issued revised SGVs for the following substances.

- Arsenic
- cadmium
- selenium
- benzene
- ethylbenzene
- xylene
- nickel
- toluene
- dioxins and dioxin like PCBS

- Phenol
- Mercury

In the absence of an SGV for a particular contaminant Generic assessment criteria have been generated by BWB using the CLEA framework. This is a similar approach to Generic screening criteria published by LQM/CIEH and CLAIRE/EIC.

The Statutory Guidance on Part IIa of the Environment Act was revised in 2012 and introduced the concept of characterising Land into 4 categories. Categories 1 and 2 were classed as "Contaminated Land" and Categories 3 and 4 as "not Contaminated Land". DEFRA commissioned a research project to develop Category 4 Screening Levels (C4SLs) which would be used to rapidly screen sites as not contaminated land. These values would be less conservative than SGVs or equivalent GSACs but still be strongly precautionary. In 2014 DEFRA published the framework for deriving C4SLs and C4SLs for six substances:

Arsenic Cadmium Chromium VI Lead Benzo(a)pyrene Benzene

The framework recommended changes to exposure parameters as well as introducing a new Health Criteria Value known as a "Low level of Toxicological Concern" (LLTC) This would be less conservative than the minimal risk approach used to derive TDIs and IDs under the 2009b CLEA framework.

In response LQM/CIEH published their third edition of Generic screening criteria for human health in January 2015. These were known and "Suitable for Use Levels" (S4ULs) and adopted the changes to exposure parameters that were developed under the Category 4 Screening Level methodology.



The report also reviewed toxicity information but adopted the minimal risk approach as set out in EA 2009b. This report presented revised data for some substances for which an SGV had been developed, therefore some of the existing SGVs have been superseded.

BWB have updated their GSACs to take into account the LQM/CIEH S4ULs and DEFRA C4SLs but have retained the CLEA exposure assumptions, the BWB GSACs represent the most conservative minimal risk approach.

The screening approach comprises tiered assessment of contaminant data against BWB GSACs in the first instance, then S4ULs and finally C4SLs if available.

## Conceptual Site Model

The standard exposure pathways and Conceptual Models for human exposure to contaminants for different site uses are set out in the updated technical background to the CLEA model (Environment Agency 2009a).

## Descriptive Conceptual Models (From Environment Agency 2009a)

### Residential

This generic scenario assumes a typical residential property consisting of a two-storey house built on a ground bearing slab with a private garden consisting of lawn, flower beds and a small fruit and vegetable patch. The occupants are assumed to be parents with young children, who make regular use of the garden area.

The key assumptions for BWB GSACs are

Critical receptor is a young female child (aged zero to six years old)

Exposure duration is six years

Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce, consumption of soil attached to home grown produce, skin contact with soils and indoor dusts, and inhalation of indoor and outdoor dust and vapours.

Soil type is a Sandy Loam with 1% organic matter

Building type is a two storey small terraced house

### Commercial/industrial

There are many different kinds of workplace and work-related activities. This generic scenario assumes a typical commercial or light industrial property consisting of a three storey building at which employees spend most time indoors and are involved in office based or relatively light physical work.

The key assumptions for BWB GSACs are

Critical receptor is a working female adult (aged 16 to 65 years)

Exposure duration is a working lifetime of 49 years

Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts, and inhalation of dust and vapours.



Soil type is a Sandy Loam with 1% organic matter

Building type is a three storey office (post 1970) (Representative of new buildings)

The 2009a report identifies 10 potential exposure pathways by which contaminated soils may impact human health and also sets out which pathways are applicable for four standard land uses. The pathways for the residential and commercial end uses are shown below.

## Screening Criteria Modelling

The CLEA model version 1.06 has been used to calculate BWB GSACs. BWB have used the model to calculate Individual criteria for each relevant pathway so, for example, in a residential with vegetable uptake scenario we would need six individual criteria:-

- Ingestion of soil and dust
- Ingestion of contaminated vegetables and soil attached to vegetables
- Dermal contact indoors and outdoors
- Particulate dust inhalation indoors and outdoors
- Vapour inhalation indoors
- Vapour inhalation outdoors

The final overall assessment criteria is calculated by adding together the reciprocal of the individual criteria for each pathway, therefore if several of the individual criteria are of similar magnitude the final criteria may be substantially lower than the lowest individual criteria so that total exposure is below the respective health threshold.

 $1/GSAC = \sum 1/ASC_{ingestion} + 1/ASC_{inhalation} + 1/ASC_{dermal}$ 

By adopting this methodology BWB are able to provide a more flexible site specific approach to generic human health risk assessment.



## Pathway Selection - Generic Site Assessment Criteria

| Pathway                                            | Residential | Commercial /<br>Industrial |  |  |  |  |  |  |
|----------------------------------------------------|-------------|----------------------------|--|--|--|--|--|--|
| Ingestion of Soil                                  | Yes         | Yes                        |  |  |  |  |  |  |
| Ingestion of site derived household dust           | Yes         | Yes                        |  |  |  |  |  |  |
| Ingestion of contaminated homegrown Optional No    |             |                            |  |  |  |  |  |  |
| produce                                            |             |                            |  |  |  |  |  |  |
| Ingestion of soil attached to homegrown            | Optional    | No                         |  |  |  |  |  |  |
| produce                                            |             |                            |  |  |  |  |  |  |
| Dermal contact with Soil                           | Yes         | Yes                        |  |  |  |  |  |  |
| Dermal contact with site derived household         | Yes         | Yes                        |  |  |  |  |  |  |
| dust                                               |             |                            |  |  |  |  |  |  |
| Inhalation of fugitive soil dust                   | Yes         | Yes                        |  |  |  |  |  |  |
| Inhalation of fugitive site derived household dust | Yes         | Yes                        |  |  |  |  |  |  |
| Inhalation of vapours outside                      | Yes         | Yes                        |  |  |  |  |  |  |
| Inhalation of vapours inside                       | Yes         | Yes                        |  |  |  |  |  |  |

## Health Criteria Values

The general hierarchy for selecting health criteria values is as follows:

- 1. EA / DEFRA TOX report
- 2. Other UK authoritative body e.g. Committee on toxicity, Food Standards Agency
- 3. EU authoritative body
- 4. Other EU body e.g. RIVM
- 5. Other US/International Body

In the absence of updated TOX reports which take into account the recommendations of EA report (2009b) TOX reports produced under the old regime have been used and GSACs will be updated accordingly as further authoritative information is issued.

## REFERENCES

Environment Agency, 2009a, Updated Technical Background to the CLEA Model, Science Report SC050021/SR3 ISBN 978-1-84432-856-7

Environment Agency, 2009b, Human health Toxicological Assessment of Contaminants in Soil, Science Report SC050021/SR2 ISBN 978-1-84432-858-1

Environment Agency 2009c, CLEA Software Handbook (version 1.06) Science Report SC050021/SR4, ISBN 978-1-84432-857-4

EIC/AGS/CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment. Environment Industries Commission (EIC), Association of Geotechnical and Geoenvironmental Specialists (AGS), Contaminated Land: Applications in Real Environments (CL:AIRE). Published by CL:AIRE. ISBN: 978-1-905046-20-1.

Nathanail, C.P., McCaffrey, C., Ashmore, M.H., Cheng, Y.Y., Gillett, A., Ogden, R. & Scott, D. (2009). The LQM/CIEH Generic Assessment Criteria for



Human Health Risk Assessment (2nd Edition). Land Quality Press, Nottingham. ISBN: 0-9547474-7-X.

Nathanail, C.P.; McCaffrey,C.; Gillett, A.G.; Ogden, R.C. & Nathanail, J.F. (2015). The LQM/CIEH Suitable 4 Use Levels. Land Quality Press, Nottingham. ISBN: 978-0-9931084-0-2.

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>1% Organic Matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
|                                                                                               | (mg/kg)                           | (mg/kg)                            | (mg/kg)                                  | (mg/kg)                                                                          | (mg/kg)                           | mg/kg               | mg/kg                       |
| Arsenic                                                                                       | NR                                | NR                                 | 3.50E+01                                 | 4.29E+02                                                                         | 8.50E+01                          | 3.24E+01            | N/A                         |
| Barium                                                                                        | NR                                | NR                                 | 1.35E+03                                 |                                                                                  | 4.25E+05                          | 1.34E+03            | N/A                         |
| Beryllium                                                                                     | NR                                | NR                                 | 1.56E+02                                 | 2.96E+03                                                                         | 1.21E+00                          | 1.21E+00            | N/A                         |
| Boron                                                                                         | NR                                | NR                                 | 1.08E+04                                 | 3.00E+02                                                                         | 3.65E+06                          | 2.91E+02            | N/A                         |
| Cadmium                                                                                       | NR                                | NR                                 | 1.21E+02                                 | 1.24E+01                                                                         | 1.27E+02                          | 1.03E+01            | N/A                         |
| Chromium III                                                                                  | NR                                | NR                                 | 1.98E+04                                 | 1.25E+06                                                                         | 6.37E+02                          | 6.17E+02            | N/A                         |
| Chromium VI                                                                                   | NR                                | NR                                 | 7.05E+01                                 | 1.22E+01                                                                         | 4.25E+00                          | 4.25E+00            | N/A                         |
| Copper                                                                                        | NR                                | NR                                 | 1.08E+04                                 | 3.54E+03                                                                         | 9.89E+03                          | 2.10E+03            | N/A                         |
| Lead                                                                                          |                                   |                                    |                                          |                                                                                  |                                   | 2.00E+02            | N/A                         |
| Inorganic Mercury                                                                             | NR                                | NR                                 | 5.71E+01                                 | 1.40E+02                                                                         | 2.55E+03                          | 3.99E+01            | N/A                         |
| Nickel                                                                                        | NR                                | NR                                 | 7.89E+02                                 | 1.64E+03                                                                         | 1.27E+02                          | 1.27E+02            | N/A                         |
| Selenium                                                                                      | NR                                | NR                                 | 4.31E+02                                 | 6.15E+02                                                                         | 1.36E+05                          | 2.53E+02            | N/A                         |
| Vanadium                                                                                      | NR                                | NR                                 | 1.17E+03                                 | 6.21E+02                                                                         | 1.03E+03                          | 2.91E+02            | N/A                         |
| Zinc                                                                                          | NR                                | NR                                 | 4.05E+04                                 | 4.13E+03                                                                         | 2.55E+07                          | 3.74E+03            | N/A                         |
| Cyanide (free)                                                                                |                                   |                                    |                                          |                                                                                  |                                   | 4.30E+01            | N/A                         |
| Cyanide (Complex)                                                                             |                                   |                                    |                                          |                                                                                  |                                   | 2.13E+02            | N/A                         |
| Phenol                                                                                        | 3.43E+02                          | 4.21E+05                           | 6.56E+02                                 | 1.55E+02                                                                         | 3.22E+05                          | 9.18E+01            | 4.16E+04                    |
| Benzene                                                                                       | 2.69E-01                          | 5.63E+03                           | 2.58E+01                                 | 1.13E-01                                                                         | 5.95E+04                          | 7.93E-02            | 1.22E+03                    |
| Toluene                                                                                       | 6.38E+02                          | 8.78E+06                           | 1.98E+04                                 | 1.48E+02                                                                         | 5.92E+07                          | 1.19E+02            | 8.69E+02                    |
| Ethylbenzene                                                                                  | 5.86E+01                          | 6.17E+05                           | 8.88E+03                                 | 1.07E+02                                                                         | 3.11E+06                          | 3.77E+01            | 5.18E+02                    |
| Total Xylene                                                                                  | 5.57E+01                          | 5.15E+05                           | 1.60E+04                                 | 1.87E+02                                                                         | 2.28E+06                          | 4.28E+01            | 4.78E+02                    |
| TPH (EC5-6) aliphatic                                                                         | 2.88E+01                          | 2.41E+06                           | 2.23E+05                                 | 4.90E+03                                                                         | 1.06E+08                          | 2.86E+01            | 3.04E+02                    |
| TPH (>EC6-8) aliphatic                                                                        | 7.02E+01                          | 3.76E+06                           | 2.23E+05                                 | 1.53E+04                                                                         | 1.06E+08                          | 6.99E+01            | 1.44E+02                    |
| TPH (>EC8-10) aliphatic                                                                       | 1.82E+01                          | 4.61E+05                           | 4.45E+03                                 | 2.17E+03                                                                         | 6.16E+06                          | 1.80E+01            | 7.77E+01                    |
| TPH (>EC10-12) aliphatic                                                                      | 9.02E+01                          | 1.03E+06                           | 4.45E+03                                 | 1.67E+04                                                                         | 6.16E+06                          | 8.79E+01            | 4.75E+01                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>1% Organic Matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| TPH (>EC12-16) aliphatic                                                                      | 7.55E+02                          | 2.97E+06                           | 4.45E+03                                 | 2.32E+05                                                                         | 6.16E+06                          | 6.43E+02            | 2.37E+01                    |
| TPH (>EC16-35) aliphatic                                                                      | 8.91E+04                          | 8.47E+07                           | 8.91E+04                                 | 1.15E+07                                                                         | 4.25E+07                          | 4.43E+04            | 8.48E+00                    |
| TPH (>EC35-44) aliphatic                                                                      | 8.91E+04                          | 8.47E+07                           | 8.91E+04                                 | 1.15E+07                                                                         | 4.25E+07                          | 4.43E+04            | 8.48E+00                    |
| TPH (>EC6-7) aromatic (benzene)                                                               | 2.69E-01                          | 5.63E+03                           | 2.58E+01                                 | 1.13E-01                                                                         | 5.95E+04                          | 7.93E-02            | 1.22E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                               | 6.26E+02                          | 8.62E+06                           | 1.98E+04                                 | 1.48E+02                                                                         | 5.81E+07                          | 1.19E+02            | 8.69E+02                    |
| TPH (>EC8-10) aromatic                                                                        | 3.22E+01                          | 2.79E+05                           | 1.78E+03                                 | 5.73E+01                                                                         | 1.28E+06                          | 2.04E+01            | 6.13E+02                    |
| TPH (>EC10-12) aromatic                                                                       | 1.75E+02                          | 6.50E+05                           | 1.78E+03                                 | 8.34E+01                                                                         | 1.28E+06                          | 5.47E+01            | 3.64E+02                    |
| TPH (>EC12-16) aromatic                                                                       | 1.94E+03                          | 2.15E+06                           | 1.78E+03                                 | 1.52E+02                                                                         | 1.28E+06                          | 1.31E+02            | 2.37E+01                    |
| TPH (>EC16-21) aromatic                                                                       | 3.54E+04                          | 5.95E+06                           | 1.34E+03                                 | 3.06E+02                                                                         | 6.38E+05                          | 2.47E+02            | 5.37E+01                    |
| TPH (>EC21-35) aromatic                                                                       | 3.99E+06                          | 2.67E+07                           | 1.34E+03                                 | 2.66E+03                                                                         | 6.38E+05                          | 8.90E+02            | 4.83E+00                    |
| TPH (>EC35-44) aromatic                                                                       | 3.99E+06                          | 2.67E+07                           | 1.34E+03                                 | 2.66E+03                                                                         | 6.38E+05                          | 8.90E+02            | 4.83E+00                    |
| Naphthalene                                                                                   | 1.64E+00                          | 3.17E+04                           | 1.58E+03                                 | 2.72E+01                                                                         | 2.93E+04                          | 1.55E+00            | 7.64E+01                    |
| Acenaphthylene                                                                                | 3.27E+03                          | 1.26E+07                           | 4.85E+03                                 | 1.84E+02                                                                         | 2.55E+06                          | 1.68E+02            | 8.61E+01                    |
| Acenaphthene                                                                                  | 3.47E+03                          | 1.32E+07                           | 4.85E+03                                 | 2.28E+02                                                                         | 2.55E+06                          | 2.05E+02            | 5.70E+01                    |
| Fluorene                                                                                      | 4.37E+03                          | 1.17E+07                           | 3.23E+03                                 | 1.79E+02                                                                         | 1.70E+06                          | 1.63E+02            | 3.09E+01                    |
| Phenanthrene                                                                                  | 5.09E+03                          | 6.29E+06                           | 1.00E+03                                 | 1.03E+02                                                                         | 5.30E+05                          | 9.17E+01            | 3.60E+01                    |
| Anthracene                                                                                    | 1.09E+05                          | 1.48E+08                           | 2.43E+04                                 | 2.55E+03                                                                         | 1.27E+07                          | 2.26E+03            | 1.17E+00                    |
| Fluoranthene                                                                                  | 2.84E+04                          | 1.26E+07                           | 1.01E+03                                 | 3.49E+02                                                                         | 5.31E+05                          | 2.57E+02            | 1.89E+01                    |
| Pyrene                                                                                        | 6.50E+04                          | 2.87E+07                           | 2.42E+03                                 | 7.43E+02                                                                         | 1.27E+06                          | 5.63E+02            | 2.20E+00                    |
| Benzo(a)anthracene                                                                            | 2.40E+01                          | 3.37E+03                           | 1.25E+01                                 | 2.11E+01                                                                         | 6.37E+01                          | 5.41E+00            | 1.71E+00                    |
| Chrysene                                                                                      | 2.53E+02                          | 5.87E+03                           | 2.51E+01                                 | 2.90E+01                                                                         | 1.27E+02                          | 1.16E+01            | 4.40E-01                    |
| Benzo(b)fluoranthene                                                                          | 9.32E+01                          | 1.05E+03                           | 3.15E+00                                 | 7.43E+00                                                                         | 1.61E+01                          | 1.90E+00            | 1.22E+00                    |
| Benzo(k)fluoranthene                                                                          | 4.04E+03                          | 3.28E+04                           | 8.33E+01                                 | 2.85E+02                                                                         | 4.25E+02                          | 5.51E+01            | 6.87E-01                    |
| Benzo(a)pyrene                                                                                | 1.04E+02                          | 9.12E+02                           | 2.51E+00                                 | 7.36E+00                                                                         | 1.27E+01                          | 1.60E+00            | 9.11E-01                    |
| Indeno(123-cd)pyrene                                                                          | 8.78E+02                          | 1.10E+04                           | 3.58E+01                                 | 6.93E+01                                                                         | 1.83E+02                          | 2.04E+01            | 6.14E-02                    |
| Dibenzo(ah)anthracene                                                                         | 5.23E+00                          | 1.13E+02                           | 2.51E-01                                 | 1.11E+00                                                                         | 1.27E+00                          | 1.70E-01            | 3.93E-03                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>1% Organic Matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| Benzo(g,h,i)perylene                                                                          | 2.34E+04                          | 1.83E+05                           | 2.78E+02                                 | 2.77E+03                                                                         | 1.40E+03                          | 2.12E+02            | 1.54E-02                    |
| Tetrachloroethene (PCE)                                                                       | 1.26E-01                          | 2.48E+04                           | 4.92E+02                                 | 4.36E+00                                                                         | 2.34E+05                          | 1.22E-01            | 4.24E+02                    |
| Trichloroethene (TCE)                                                                         | 1.21E-02                          | 2.44E+03                           | 4.45E+01                                 | 2.74E-01                                                                         | 2.42E+04                          | 1.15E-02            | 1.54E+03                    |
| cis-1,2-Dichloroethene                                                                        | 1.20E-01                          | 2.33E+04                           | 4.82E+02                                 | 1.75E+00                                                                         | 2.30E+05                          | 1.12E-01            | 3.94E+03                    |
| Vinyl Chloride (VC)                                                                           | 5.43E-04                          | 3.59E+02                           | 1.25E+00                                 | 3.70E-03                                                                         | 1.27E+04                          | 4.73E-04            | 1.36E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                               | 2.76E+00                          | 1.17E+05                           | 5.07E+02                                 | 2.72E+00                                                                         | 2.41E+05                          | 1.37E+00            | 2.67E+03                    |
| 1,1,1-Trichloroethane (TCA)                                                                   | 6.33E+00                          | 1.79E+06                           | 5.34E+04                                 | 3.22E+02                                                                         | 2.46E+07                          | 6.21E+00            | 1.43E+03                    |
| 1,2-Dichloroethane                                                                            | 6.46E-03                          | 8.09E+02                           | 1.07E+01                                 | 3.07E-02                                                                         | 5.10E+03                          | 5.33E-03            | 3.41E+03                    |
| Carbon Tetrachloride                                                                          | 1.81E-02                          | 5.07E+03                           | 5.38E+02                                 | 3.00E+00                                                                         | 6.93E+04                          | 1.80E-02            | 1.52E+03                    |
| Carbon disulphide                                                                             | 1.01E-01                          | 3.42E+04                           | 3.55E+02                                 | 3.20E+01                                                                         | 6.08E+05                          | 1.01E-01            | 2.11E+03                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
|                                                                                                 | (mg/kg)                           | (mg/kg)                            | (mg/kg)                                  | (mg/kg)                                                                          | (mg/kg)                           | mg/kg               | mg/kg                       |
| Arsenic                                                                                         | NR                                | NR                                 | 3.50E+01                                 | 4.29E+02                                                                         | 8.50E+01                          | 3.24E+01            | N/A                         |
| Barium                                                                                          | NR                                | NR                                 | 1.35E+03                                 |                                                                                  | 4.25E+05                          | 1.34E+03            | N/A                         |
| Beryllium                                                                                       | NR                                | NR                                 | 1.56E+02                                 | 2.96E+03                                                                         | 1.21E+00                          | 1.21E+00            | N/A                         |
| Boron                                                                                           | NR                                | NR                                 | 1.08E+04                                 | 3.00E+02                                                                         | 3.65E+06                          | 2.91E+02            | N/A                         |
| Cadmium                                                                                         | NR                                | NR                                 | 1.21E+02                                 | 1.24E+01                                                                         | 1.27E+02                          | 1.03E+01            | N/A                         |
| Chromium III                                                                                    | NR                                | NR                                 | 1.98E+04                                 | 1.25E+06                                                                         | 6.37E+02                          | 6.17E+02            | N/A                         |
| Chromium VI                                                                                     | NR                                | NR                                 | 7.05E+01                                 | 1.22E+01                                                                         | 4.25E+00                          | 4.25E+00            | N/A                         |
| Copper                                                                                          | NR                                | NR                                 | 1.08E+04                                 | 3.54E+03                                                                         | 9.89E+03                          | 2.10E+03            | N/A                         |
| Lead                                                                                            |                                   |                                    |                                          |                                                                                  |                                   | 2.00E+02            | N/A                         |
| Inorganic Mercury                                                                               | NR                                | NR                                 | 5.71E+01                                 | 1.40E+02                                                                         | 2.55E+03                          | 3.99E+01            | N/A                         |
| Nickel                                                                                          | NR                                | NR                                 | 7.89E+02                                 | 1.64E+03                                                                         | 1.27E+02                          | 1.27E+02            | N/A                         |
| Selenium                                                                                        | NR                                | NR                                 | 4.31E+02                                 | 6.15E+02                                                                         | 1.36E+05                          | 2.53E+02            | N/A                         |
| Vanadium                                                                                        | NR                                | NR                                 | 1.17E+03                                 | 6.21E+02                                                                         | 1.03E+03                          | 2.91E+02            | N/A                         |
| Zinc                                                                                            | NR                                | NR                                 | 4.05E+04                                 | 4.13E+03                                                                         | 2.55E+07                          | 3.74E+03            | N/A                         |
| Cyanide (free)                                                                                  |                                   |                                    |                                          |                                                                                  |                                   | 4.30E+01            | N/A                         |
| Cyanide (Complex)                                                                               |                                   |                                    |                                          |                                                                                  |                                   | 2.13E+02            | N/A                         |
| Phenol                                                                                          | 5.39E+02                          | 5.28E+05                           | 6.56E+02                                 | 2.88E+02                                                                         | 3.22E+05                          | 1.46E+02            | 8.15E+04                    |
| Benzene                                                                                         | 4.99E-01                          | 7.68E+03                           | 2.58E+01                                 | 2.30E-01                                                                         | 5.95E+04                          | 1.57E-01            | 2.26E+03                    |
| Toluene                                                                                         | 1.41E+03                          | 1.30E+07                           | 1.98E+04                                 | 3.41E+02                                                                         | 5.92E+07                          | 2.71E+02            | 1.92E+03                    |
| Ethylbenzene                                                                                    | 1.37E+02                          | 9.44E+05                           | 8.88E+03                                 | 2.58E+02                                                                         | 3.11E+06                          | 8.88E+01            | 1.22E+03                    |
| Total Xylene                                                                                    | 1.31E+02                          | 7.89E+05                           | 1.60E+04                                 | 4.50E+02                                                                         | 2.28E+06                          | 1.01E+02            | 1.12E+03                    |
| TPH (EC5-6) aliphatic                                                                           | 5.28E+01                          | 3.26E+06                           | 2.23E+05                                 | 1.14E+04                                                                         | 1.06E+08                          | 5.25E+01            | 5.58E+02                    |
| TPH (>EC6-8) aliphatic                                                                          | 1.57E+02                          | 5.62E+06                           | 2.23E+05                                 | 3.75E+04                                                                         | 1.06E+08                          | 1.56E+02            | 3.22E+02                    |
| TPH (>EC8-10) aliphatic                                                                         | 4.44E+01                          | 7.20E+05                           | 4.45E+03                                 | 5.38E+03                                                                         | 6.16E+06                          | 4.36E+01            | 1.90E+02                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| TPH (>EC10-12) aliphatic                                                                        | 2.24E+02                          | 1.62E+06                           | 4.45E+03                                 | 4.00E+04                                                                         | 6.16E+06                          | 2.12E+02            | 1.18E+02                    |
| TPH (>EC12-16) aliphatic                                                                        | 1.89E+03                          | 4.69E+06                           | 4.45E+03                                 | 3.64E+05                                                                         | 6.16E+06                          | 1.32E+03            | 5.91E+01                    |
| TPH (>EC16-35) aliphatic                                                                        | 2.23E+05                          | 1.34E+08                           | 8.91E+04                                 | 1.16E+07                                                                         | 4.25E+07                          | 6.32E+04            | 2.12E+01                    |
| TPH (>EC35-44) aliphatic                                                                        | 2.23E+05                          | 1.34E+08                           | 8.91E+04                                 | 1.16E+07                                                                         | 4.25E+07                          | 6.32E+04            | 2.12E+01                    |
| TPH (>EC6-7) aromatic (benzene)                                                                 | 4.99E-01                          | 7.68E+03                           | 2.58E+01                                 | 2.30E-01                                                                         | 5.95E+04                          | 1.56E-01            | 2.26E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                                 | 1.38E+03                          | 1.28E+07                           | 1.98E+04                                 | 3.41E+02                                                                         | 5.81E+07                          | 2.70E+02            | 1.92E+03                    |
| TPH (>EC8-10) aromatic                                                                          | 7.88E+01                          | 4.36E+05                           | 1.78E+03                                 | 1.42E+02                                                                         | 1.28E+06                          | 4.93E+01            | 1.50E+03                    |
| TPH (>EC10-12) aromatic                                                                         | 4.34E+02                          | 1.02E+06                           | 1.78E+03                                 | 2.07E+02                                                                         | 1.28E+06                          | 1.30E+02            | 8.99E+02                    |
| TPH (>EC12-16) aromatic                                                                         | 4.83E+03                          | 3.39E+06                           | 1.78E+03                                 | 3.79E+02                                                                         | 1.28E+06                          | 2.93E+02            | 5.91E+01                    |
| TPH (>EC16-21) aromatic                                                                         | 8.83E+04                          | 9.40E+06                           | 1.34E+03                                 | 7.61E+02                                                                         | 6.38E+05                          | 4.82E+02            | 1.34E+02                    |
| TPH (>EC21-35) aromatic                                                                         | 9.98E+06                          | 4.23E+07                           | 1.34E+03                                 | 6.50E+03                                                                         | 6.38E+05                          | 1.11E+03            | 1.21E+01                    |
| TPH (>EC35-44) aromatic                                                                         | 9.98E+06                          | 4.23E+07                           | 1.34E+03                                 | 6.50E+03                                                                         | 6.38E+05                          | 1.11E+03            | 1.21E+01                    |
| Naphthalene                                                                                     | 3.93E+00                          | 4.91E+04                           | 1.58E+03                                 | 6.63E+01                                                                         | 2.93E+04                          | 3.70E+00            | 1.83E+02                    |
| Acenaphthylene                                                                                  | 8.06E+03                          | 1.97E+07                           | 4.85E+03                                 | 4.56E+02                                                                         | 2.55E+06                          | 3.96E+02            | 2.12E+02                    |
| Acenaphthene                                                                                    | 8.57E+03                          | 2.07E+07                           | 4.85E+03                                 | 5.67E+02                                                                         | 2.55E+06                          | 4.79E+02            | 1.41E+02                    |
| Fluorene                                                                                        | 1.08E+04                          | 1.84E+07                           | 3.23E+03                                 | 4.45E+02                                                                         | 1.70E+06                          | 3.77E+02            | 7.65E+01                    |
| Phenanthrene                                                                                    | 1.27E+04                          | 9.91E+06                           | 1.00E+03                                 | 2.57E+02                                                                         | 5.30E+05                          | 2.01E+02            | 8.96E+01                    |
| Anthracene                                                                                      | 2.70E+05                          | 2.33E+08                           | 2.43E+04                                 | 6.34E+03                                                                         | 1.27E+07                          | 4.93E+03            | 2.91E+00                    |
| Fluoranthene                                                                                    | 7.08E+04                          | 2.00E+07                           | 1.01E+03                                 | 8.68E+02                                                                         | 5.31E+05                          | 4.63E+02            | 4.73E+01                    |
| Pyrene                                                                                          | 1.62E+05                          | 4.54E+07                           | 2.42E+03                                 | 1.85E+03                                                                         | 1.27E+06                          | 1.04E+03            | 5.49E+00                    |
| Benzo(a)anthracene                                                                              | 6.00E+01                          | 5.32E+03                           | 1.25E+01                                 | 5.18E+01                                                                         | 6.37E+01                          | 7.60E+00            | 4.28E+00                    |
| Chrysene                                                                                        | 6.32E+02                          | 9.28E+03                           | 2.51E+01                                 | 7.15E+01                                                                         | 1.27E+02                          | 1.58E+01            | 1.10E+00                    |
| Benzo(b)fluoranthene                                                                            | 2.33E+02                          | 1.66E+03                           | 3.15E+00                                 | 1.81E+01                                                                         | 1.61E+01                          | 2.28E+00            | 3.04E+00                    |
| Benzo(k)fluoranthene                                                                            | 1.01E+04                          | 5.19E+04                           | 8.33E+01                                 | 6.87E+02                                                                         | 4.25E+02                          | 6.27E+01            | 1.72E+00                    |
| Benzo(a)pyrene                                                                                  | 2.61E+02                          | 1.44E+03                           | 2.51E+00                                 | 1.78E+01                                                                         | 1.27E+01                          | 1.86E+00            | 2.28E+00                    |
| Indeno(123-cd)pyrene                                                                            | 2.20E+03                          | 1.74E+04                           | 3.58E+01                                 | 1.70E+02                                                                         | 1.83E+02                          | 2.51E+01            | 5.30E-01                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| Dibenzo(ah)anthracene                                                                           | 1.31E+01                          | 1.79E+02                           | 2.51E-01                                 | 2.65E+00                                                                         | 1.27E+00                          | 1.91E-01            | 9.82E-03                    |
| Benzo(g,h,i)perylene                                                                            | 5.85E+04                          | 2.89E+05                           | 2.78E+02                                 | 6.27E+03                                                                         | 1.40E+03                          | 2.23E+02            | 3.85E-02                    |
| Tetrachloroethene (PCE)                                                                         | 2.82E-01                          | 3.71E+04                           | 4.92E+02                                 | 1.02E+01                                                                         | 2.34E+05                          | 2.74E-01            | 9.51E+02                    |
| Trichloroethene (TCE)                                                                           | 2.52E-02                          | 3.53E+03                           | 4.45E+01                                 | 6.09E-01                                                                         | 2.42E+04                          | 2.42E-02            | 3.22E+03                    |
| cis-1,2-Dichloroethene                                                                          | 2.02E-01                          | 3.02E+04                           | 4.82E+02                                 | 3.35E+00                                                                         | 2.30E+05                          | 1.90E-01            | 6.61E+03                    |
| Vinyl Chloride (VC)                                                                             | 7.02E-04                          | 4.08E+02                           | 1.25E+00                                 | 6.67E-03                                                                         | 1.27E+04                          | 6.35E-04            | 1.76E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                                 | 5.65E+00                          | 1.68E+05                           | 5.07E+02                                 | 5.92E+00                                                                         | 2.41E+05                          | 2.87E+00            | 5.46E+03                    |
| 1,1,1-Trichloroethane (TCA)                                                                     | 1.29E+01                          | 2.55E+06                           | 5.34E+04                                 | 7.06E+02                                                                         | 2.46E+07                          | 1.27E+01            | 2.92E+03                    |
| 1,2-Dichloroethane                                                                              | 9.32E-03                          | 9.72E+02                           | 1.07E+01                                 | 5.56E-02                                                                         | 5.10E+03                          | 7.98E-03            | 4.91E+03                    |
| Carbon Tetrachloride                                                                            | 3.97E-02                          | 7.50E+03                           | 5.38E+02                                 | 6.95E+00                                                                         | 6.93E+04                          | 3.95E-02            | 3.32E+03                    |
| Carbon disulphide                                                                               | 2.02E-01                          | 4.83E+04                           | 3.55E+02                                 | 6.84E+01                                                                         | 6.08E+05                          | 2.01E-01            | 4.21E+03                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>6% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
|                                                                                               | (mg/kg)                           | (mg/kg)                            | (mg/kg)                                  | (mg/kg)                                                                          | (mg/kg)                           | mg/kg               | mg/kg                       |
| Arsenic                                                                                       | NR                                | NR                                 | 3.50E+01                                 | 4.29E+02                                                                         | 8.50E+01                          | 3.24E+01            | N/A                         |
| Barium                                                                                        | NR                                | NR                                 | 1.35E+03                                 |                                                                                  | 4.25E+05                          | 1.34E+03            | N/A                         |
| Beryllium                                                                                     | NR                                | NR                                 | 1.56E+02                                 | 2.96E+03                                                                         | 1.21E+00                          | 1.21E+00            | N/A                         |
| Boron                                                                                         | NR                                | NR                                 | 1.08E+04                                 | 3.00E+02                                                                         | 3.65E+06                          | 2.91E+02            | N/A                         |
| Cadmium                                                                                       | NR                                | NR                                 | 1.21E+02                                 | 1.24E+01                                                                         | 1.27E+02                          | 1.03E+01            | N/A                         |
| Chromium III                                                                                  | NR                                | NR                                 | 1.98E+04                                 | 1.25E+06                                                                         | 6.37E+02                          | 6.17E+02            | N/A                         |
| Chromium VI                                                                                   | NR                                | NR                                 | 7.05E+01                                 | 1.22E+01                                                                         | 4.25E+00                          | 4.25E+00            | N/A                         |
| Copper                                                                                        | NR                                | NR                                 | 1.08E+04                                 | 3.54E+03                                                                         | 9.89E+03                          | 2.10E+03            | N/A                         |
| Lead                                                                                          |                                   |                                    |                                          |                                                                                  |                                   | 2.00E+02            | N/A                         |
| Inorganic Mercury                                                                             | NR                                | NR                                 | 5.71E+01                                 | 1.40E+02                                                                         | 2.55E+03                          | 3.99E+01            | N/A                         |
| Nickel                                                                                        | NR                                | NR                                 | 7.89E+02                                 | 1.64E+03                                                                         | 1.27E+02                          | 1.27E+02            | N/A                         |
| Selenium                                                                                      | NR                                | NR                                 | 4.31E+02                                 | 6.15E+02                                                                         | 1.36E+05                          | 2.53E+02            | N/A                         |
| Vanadium                                                                                      | NR                                | NR                                 | 1.17E+03                                 | 6.21E+02                                                                         | 1.03E+03                          | 2.91E+02            | N/A                         |
| Zinc                                                                                          | NR                                | NR                                 | 4.05E+04                                 | 4.13E+03                                                                         | 2.55E+07                          | 3.74E+03            | N/A                         |
| Cyanide (free)                                                                                |                                   |                                    |                                          |                                                                                  |                                   | 4.30E+01            | N/A                         |
| Cyanide (Complex)                                                                             |                                   |                                    |                                          |                                                                                  |                                   | 2.13E+02            | N/A                         |
| Phenol                                                                                        | 9.95E+02                          | 7.17E+05                           | 6.56E+02                                 | 5.72E+02                                                                         | 3.22E+05                          | 2.34E+02            | 1.74E+05                    |
| Benzene                                                                                       | 1.04E+00                          | 1.11E+04                           | 2.58E+01                                 | 4.98E-01                                                                         | 5.95E+04                          | 3.32E-01            | 4.71E+03                    |
| Toluene                                                                                       | 3.20E+03                          | 1.97E+07                           | 1.98E+04                                 | 7.89E+02                                                                         | 5.92E+07                          | 6.13E+02            | 4.36E+03                    |
| Ethylbenzene                                                                                  | 3.22E+02                          | 1.44E+06                           | 8.88E+03                                 | 6.09E+02                                                                         | 3.11E+06                          | 2.06E+02            | 2.84E+03                    |
| Total Xylene                                                                                  | 3.06E+02                          | 1.21E+06                           | 1.60E+04                                 | 1.06E+03                                                                         | 2.28E+06                          | 2.34E+02            | 2.62E+03                    |
| TPH (EC5-6) aliphatic                                                                         | 1.09E+02                          | 4.68E+06                           | 2.23E+05                                 | 2.62E+04                                                                         | 1.06E+08                          | 1.08E+02            | 1.15E+03                    |
| TPH (>EC6-8) aliphatic                                                                        | 3.59E+02                          | 8.49E+06                           | 2.23E+05                                 | 8.91E+04                                                                         | 1.06E+08                          | 3.57E+02            | 7.36E+02                    |
| TPH (>EC8-10) aliphatic                                                                       | 1.06E+02                          | 1.11E+06                           | 4.45E+03                                 | 1.27E+04                                                                         | 6.16E+06                          | 1.03E+02            | 4.51E+02                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>6% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| TPH (>EC10-12) aliphatic                                                                      | 5.38E+02                          | 2.51E+06                           | 4.45E+03                                 | 8.76E+04                                                                         | 6.16E+06                          | 4.77E+02            | 2.83E+02                    |
| TPH (>EC12-16) aliphatic                                                                      | 4.53E+03                          | 7.27E+06                           | 4.45E+03                                 | 4.67E+05                                                                         | 6.16E+06                          | 2.23E+03            | 1.42E+02                    |
| TPH (>EC16-35) aliphatic                                                                      | 5.34E+05                          | 2.07E+08                           | 8.91E+04                                 | 1.17E+07                                                                         | 4.25E+07                          | 7.57E+04            | 5.09E+01                    |
| TPH (>EC35-44) aliphatic                                                                      | 5.34E+05                          | 2.07E+08                           | 8.91E+04                                 | 1.17E+07                                                                         | 4.25E+07                          | 7.57E+04            | 5.09E+01                    |
| TPH (>EC6-7) aromatic (benzene)                                                               | 1.04E+00                          | 1.11E+04                           | 2.58E+01                                 | 4.98E-01                                                                         | 5.95E+04                          | 3.32E-01            | 4.71E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                               | 3.14E+03                          | 1.93E+07                           | 1.98E+04                                 | 7.89E+02                                                                         | 5.81E+07                          | 6.11E+02            | 4.36E+03                    |
| TPH (>EC8-10) aromatic                                                                        | 1.88E+02                          | 6.73E+05                           | 1.78E+03                                 | 3.38E+02                                                                         | 1.28E+06                          | 1.13E+02            | 3.58E+03                    |
| TPH (>EC10-12) aromatic                                                                       | 1.04E+03                          | 1.58E+06                           | 1.78E+03                                 | 4.95E+02                                                                         | 1.28E+06                          | 2.82E+02            | 2.15E+03                    |
| TPH (>EC12-16) aromatic                                                                       | 1.16E+04                          | 5.25E+06                           | 1.78E+03                                 | 9.07E+02                                                                         | 1.28E+06                          | 5.71E+02            | 1.42E+02                    |
| TPH (>EC16-21) aromatic                                                                       | 2.12E+05                          | 1.46E+07                           | 1.34E+03                                 | 1.81E+03                                                                         | 6.38E+05                          | 7.66E+02            | 3.21E+02                    |
| TPH (>EC21-35) aromatic                                                                       | 2.39E+07                          | 6.54E+07                           | 1.34E+03                                 | 1.48E+04                                                                         | 6.38E+05                          | 1.23E+03            | 2.90E+01                    |
| TPH (>EC35-44) aromatic                                                                       | 2.39E+07                          | 6.54E+07                           | 1.34E+03                                 | 1.48E+04                                                                         | 6.38E+05                          | 1.23E+03            | 2.90E+01                    |
| Naphthalene                                                                                   | 9.28E+00                          | 7.55E+04                           | 1.58E+03                                 | 1.57E+02                                                                         | 2.93E+04                          | 8.71E+00            | 4.32E+02                    |
| Acenaphthylene                                                                                | 1.92E+04                          | 3.05E+07                           | 4.85E+03                                 | 1.09E+03                                                                         | 2.55E+06                          | 8.50E+02            | 5.06E+02                    |
| Acenaphthene                                                                                  | 2.05E+04                          | 3.20E+07                           | 4.85E+03                                 | 1.36E+03                                                                         | 2.55E+06                          | 1.01E+03            | 3.36E+02                    |
| Fluorene                                                                                      | 2.58E+04                          | 2.85E+07                           | 3.23E+03                                 | 1.06E+03                                                                         | 1.70E+06                          | 7.74E+02            | 1.83E+02                    |
| Phenanthrene                                                                                  | 3.03E+04                          | 1.53E+07                           | 1.00E+03                                 | 6.14E+02                                                                         | 5.30E+05                          | 3.75E+02            | 2.14E+02                    |
| Anthracene                                                                                    | 6.48E+05                          | 3.60E+08                           | 2.43E+04                                 | 1.52E+04                                                                         | 1.27E+07                          | 9.21E+03            | 6.96E+00                    |
| Fluoranthene                                                                                  | 1.70E+05                          | 3.09E+07                           | 1.01E+03                                 | 2.07E+03                                                                         | 5.31E+05                          | 6.75E+02            | 1.12E+02                    |
| Pyrene                                                                                        | 3.89E+05                          | 7.03E+07                           | 2.42E+03                                 | 4.40E+03                                                                         | 1.27E+06                          | 1.55E+03            | 1.32E+01                    |
| Benzo(a)anthracene                                                                            | 1.44E+02                          | 8.24E+03                           | 1.25E+01                                 | 1.20E+02                                                                         | 6.37E+01                          | 9.01E+00            | 1.03E+01                    |
| Chrysene                                                                                      | 1.52E+03                          | 1.44E+04                           | 2.51E+01                                 | 1.67E+02                                                                         | 1.27E+02                          | 1.84E+01            | 2.64E+00                    |
| Benzo(b)fluoranthene                                                                          | 5.59E+02                          | 2.57E+03                           | 3.15E+00                                 | 4.12E+01                                                                         | 1.61E+01                          | 2.47E+00            | 7.29E+00                    |
| Benzo(k)fluoranthene                                                                          | 2.43E+04                          | 8.03E+04                           | 8.33E+01                                 | 1.53E+03                                                                         | 4.25E+02                          | 6.63E+01            | 4.12E+00                    |
| Benzo(a)pyrene                                                                                | 6.27E+02                          | 2.23E+03                           | 2.51E+00                                 | 4.01E+01                                                                         | 1.27E+01                          | 1.98E+00            | 5.46E+00                    |
| Indeno(123-cd)pyrene                                                                          | 5.27E+03                          | 2.69E+04                           | 3.58E+01                                 | 3.90E+02                                                                         | 1.83E+02                          | 2.76E+01            | 3.68E-01                    |

| Residential Pathway Specific Assessment<br>Sub Criteria derived May 2015<br>6% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil<br>Ingestion &<br>dermal<br>contact | Ingestion of<br>Contaminated<br>Vegetables and soil<br>attached to<br>vegetables | Particulate<br>Dust<br>Inhalation | Residential<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|
| Dibenzo(ah)anthracene                                                                         | 3.14E+01                          | 2.78E+02                           | 2.51E-01                                 | 5.77E+00                                                                         | 1.27E+00                          | 2.01E-01            | 2.36E-02                    |
| Benzo(g,h,i)perylene                                                                          | 1.41E+05                          | 4.48E+05                           | 2.78E+02                                 | 1.24E+04                                                                         | 1.40E+03                          | 2.27E+02            | 9.23E-02                    |
| Tetrachloroethene (PCE)                                                                       | 6.47E-01                          | 5.61E+04                           | 4.92E+02                                 | 2.38E+01                                                                         | 2.34E+05                          | 6.29E-01            | 2.18E+03                    |
| Trichloroethene (TCE)                                                                         | 5.60E-02                          | 5.25E+03                           | 4.45E+01                                 | 1.39E+00                                                                         | 2.42E+04                          | 5.38E-02            | 7.14E+03                    |
| cis-1,2-Dichloroethene                                                                        | 3.93E-01                          | 4.22E+04                           | 4.82E+02                                 | 6.91E+00                                                                         | 2.30E+05                          | 3.72E-01            | 1.29E+04                    |
| Vinyl Chloride (VC)                                                                           | 1.07E-03                          | 5.05E+02                           | 1.25E+00                                 | 1.22E-02                                                                         | 1.27E+04                          | 9.83E-04            | 2.69E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                               | 1.24E+01                          | 2.49E+05                           | 5.07E+02                                 | 1.33E+01                                                                         | 2.41E+05                          | 6.34E+00            | 1.20E+04                    |
| 1,1,1-Trichloroethane (TCA)                                                                   | 2.84E+01                          | 3.78E+06                           | 5.34E+04                                 | 1.59E+03                                                                         | 2.46E+07                          | 2.79E+01            | 6.39E+03                    |
| 1,2-Dichloroethane                                                                            | 1.60E-02                          | 1.27E+03                           | 1.07E+01                                 | 1.06E-01                                                                         | 5.10E+03                          | 1.39E-02            | 8.43E+03                    |
| Carbon Tetrachloride                                                                          | 8.99E-02                          | 1.13E+04                           | 5.38E+02                                 | 1.61E+01                                                                         | 6.93E+04                          | 8.94E-02            | 7.54E+03                    |
| Carbon disulphide                                                                             | 4.37E-01                          | 7.10E+04                           | 3.55E+02                                 | 1.52E+02                                                                         | 6.08E+05                          | 4.35E-01            | 9.11E+03                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>1% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
|                                                                                                         | (mg/kg)                           | (ma/ka)                            | (mg/kg)                               | (ma/ka)                           | (mg/kg)            | ma/ka                       |
| Arsenic                                                                                                 | NR                                | NR                                 | 6.35E+02                              | 6.95E+02                          | 6.40E+02           | N/A                         |
| Barium                                                                                                  | NR                                | NR                                 | 2.22E+04                              | 3.48E+06                          | 2.21E+04           | N/A                         |
| Beryllium                                                                                               | NR                                | NR                                 | 3.97E+03                              | 1.24E+01                          | 1.24E+01           | N/A                         |
| Boron                                                                                                   | NR                                | NR                                 | 2.38E+05                              | 2.99E+07                          | 2.36E+05           | N/A                         |
| Cadmium                                                                                                 | NR                                | NR                                 | 3.99E+02                              | 2.43E+02                          | 2.30E+02           | N/A                         |
| Chromium III                                                                                            | NR                                | NR                                 | 3.31E+05                              | 9.09E+03                          | 8.84E+03           | N/A                         |
| Chromium VI                                                                                             | NR                                | NR                                 | 1.79E+03                              | 3.48E+01                          | 3.48E+01           | N/A                         |
| Copper                                                                                                  | NR                                | NR                                 | 1.89E+05                              | 9.50E+04                          | 6.33E+04           | N/A                         |
| Lead                                                                                                    |                                   |                                    |                                       |                                   | 2.33E+03           | N/A                         |
| Inorganic Mercury                                                                                       | NR                                | NR                                 | 1.18E+03                              | 2.09E+04                          | 3.60E+03           | N/A                         |
| Nickel                                                                                                  | NR                                | NR                                 | 2.22E+04                              | 1.04E+03                          | 1.04E+03           | N/A                         |
| Selenium                                                                                                | NR                                | NR                                 | 1.23E+04                              | 1.93E+06                          | 1.30E+04           | N/A                         |
| Vanadium                                                                                                | NR                                | NR                                 | 2.15E+04                              | 9.58E+03                          | 6.63E+03           | N/A                         |
| Zinc                                                                                                    | NR                                | NR                                 | 7.35E+05                              | 2.09E+08                          | 7.33E+05           | N/A                         |
| Cyanide (free)                                                                                          |                                   |                                    |                                       |                                   | 4.30E+01           | N/A                         |
| Cyanide (Complex)                                                                                       |                                   |                                    |                                       |                                   | 2.13E+02           | N/A                         |
| Phenol                                                                                                  | 8.34E+04                          | 1.09E+06                           | 4.07E+04                              | 3.28E+06                          | 2.65E+04           | 4.16E+04                    |
| Benzene                                                                                                 | 2.97E+01                          | 1.17E+04                           | 5.53E+02                              | 4.87E+05                          | 2.81E+01           | 1.22E+03                    |
| Toluene                                                                                                 | 6.91E+04                          | 1.83E+07                           | 4.25E+05                              | 4.86E+08                          | 5.92E+04           | 8.69E+02                    |
| Ethylbenzene                                                                                            | 6.28E+03                          | 1.30E+06                           | 1.91E+05                              | 2.57E+07                          | 6.05E+03           | 5.18E+02                    |
| Total Xylene                                                                                            | 6.43E+03                          | 1.17E+06                           | 3.43E+05                              | 2.03E+07                          | 6.28E+03           | 4.78E+02                    |
| TPH (EC5-6) aliphatic                                                                                   | 3.31E+03                          | 5.01E+06                           | 4.77E+06                              | 8.69E+08                          | 3.31E+03           | 3.04E+02                    |
| TPH (>EC6-8) aliphatic                                                                                  | 8.06E+03                          | 7.82E+06                           | 4.77E+06                              | 8.69E+08                          | 8.04E+03           | 1.44E+02                    |
| TPH (>EC8-10) aliphatic                                                                                 | 2.09E+03                          | 9.59E+05                           | 9.53E+04                              | 5.04E+07                          | 2.04E+03           | 7.77E+01                    |
| TPH (>EC10-12) aliphatic                                                                                | 1.04E+04                          | 2.13E+06                           | 9.53E+04                              | 5.04E+07                          | 9.33E+03           | 4.75E+01                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>1% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| TPH (>EC12-16) aliphatic                                                                                | 8.68E+04                          | 6.18E+06                           | 9.53E+04                              | 5.04E+07                          | 4.51E+04           | 2.37E+01                    |
| TPH (>EC16-35) aliphatic                                                                                | 1.02E+07                          | 1.76E+08                           | 1.91E+06                              | 3.48E+08                          | 1.59E+06           | 8.48E+00                    |
| TPH (>EC35-44) aliphatic                                                                                | 1.02E+07                          | 1.76E+08                           | 1.91E+06                              | 3.48E+08                          | 1.59E+06           | 8.48E+00                    |
| TPH (>EC6-7) aromatic (benzene)                                                                         | 4.75E+01                          | 1.17E+04                           | 5.53E+02                              | 4.87E+05                          | 4.36E+01           | 1.22E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                                         | 6.88E+04                          | 1.83E+07                           | 4.25E+05                              | 4.84E+08                          | 5.90E+04           | 8.69E+02                    |
| TPH (>EC8-10) aromatic                                                                                  | 3.70E+03                          | 5.80E+05                           | 3.81E+04                              | 1.04E+07                          | 3.35E+03           | 6.13E+02                    |
| TPH (>EC10-12) aromatic                                                                                 | 2.02E+04                          | 1.35E+06                           | 3.81E+04                              | 1.04E+07                          | 1.31E+04           | 3.64E+02                    |
| TPH (>EC12-16) aromatic                                                                                 | 2.25E+05                          | 4.48E+06                           | 3.81E+04                              | 1.04E+07                          | 3.22E+04           | 2.37E+01                    |
| TPH (>EC16-21) aromatic                                                                                 | 4.59E+06                          | 1.24E+07                           | 2.86E+04                              | 5.22E+06                          | 2.82E+04           | 5.37E+01                    |
| TPH (>EC21-35) aromatic                                                                                 | 7.57E+08                          | 5.56E+07                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 4.83E+00                    |
| TPH (>EC35-44) aromatic                                                                                 | 7.57E+08                          | 5.56E+07                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 4.83E+00                    |
| Naphthalene                                                                                             | 2.06E+02                          | 7.85E+04                           | 3.64E+04                              | 2.85E+05                          | 2.04E+02           | 7.64E+01                    |
| Acenaphthylene                                                                                          | 3.76E+05                          | 2.62E+07                           | 1.10E+05                              | 2.09E+07                          | 8.45E+04           | 8.61E+01                    |
| Acenaphthene                                                                                            | 3.87E+05                          | 2.74E+07                           | 1.10E+05                              | 2.09E+07                          | 8.50E+04           | 5.70E+01                    |
| Fluorene                                                                                                | 5.10E+05                          | 2.44E+07                           | 7.31E+04                              | 1.39E+07                          | 6.35E+04           | 3.09E+01                    |
| Phenanthrene                                                                                            | 6.87E+05                          | 1.31E+07                           | 2.28E+04                              | 4.34E+06                          | 2.19E+04           | 3.60E+01                    |
| Anthracene                                                                                              | 1.41E+07                          | 3.07E+08                           | 5.49E+05                              | 1.04E+08                          | 5.25E+05           | 1.17E+00                    |
| Fluoranthene                                                                                            | 4.36E+06                          | 2.63E+07                           | 2.29E+04                              | 4.34E+06                          | 2.26E+04           | 1.89E+01                    |
| Pyrene                                                                                                  | 1.02E+07                          | 5.98E+07                           | 5.49E+04                              | 1.04E+07                          | 5.43E+04           | 2.20E+00                    |
| Benzo(a)anthracene                                                                                      | 4.04E+03                          | 7.01E+03                           | 2.84E+02                              | 5.21E+02                          | 1.71E+02           | 1.71E+00                    |
| Chrysene                                                                                                | 5.01E+04                          | 1.22E+04                           | 5.67E+02                              | 1.04E+03                          | 3.54E+02           | 4.40E-01                    |
| Benzo(b)fluoranthene                                                                                    | 1.86E+04                          | 2.18E+03                           | 7.13E+01                              | 1.32E+02                          | 4.52E+01           | 1.22E+00                    |
| Benzo(k)fluoranthene                                                                                    | 8.14E+05                          | 6.83E+04                           | 1.88E+03                              | 3.48E+03                          | 1.20E+03           | 6.87E-01                    |
| Benzo(a)pyrene                                                                                          | 2.10E+04                          | 1.90E+03                           | 5.67E+01                              | 1.04E+02                          | 3.60E+01           | 9.11E-01                    |
| Indeno(123-cd)pyrene                                                                                    | 1.75E+05                          | 2.29E+04                           | 8.10E+02                              | 1.49E+03                          | 5.12E+02           | 6.14E-02                    |
| Dibenzo(ah)anthracene                                                                                   | 1.01E+03                          | 2.36E+02                           | 5.67E+00                              | 1.04E+01                          | 3.60E+00           | 3.93E-03                    |
| Benzo(g,h,i)perylene                                                                                    | 4.64E+06                          | 3.81E+05                           | 6.29E+03                              | 1.15E+04                          | 4.02E+03           | 1.54E-02                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>1% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| Tetrachloroethene (PCE)                                                                                 | 1.98E+01                          | 7.63E+04                           | 1.12E+04                              | 2.83E+06                          | 1.97E+01           | 4.24E+02                    |
| Trichloroethene (TCE)                                                                                   | 1.31E+00                          | 5.07E+03                           | 9.53E+02                              | 1.98E+05                          | 1.30E+00           | 1.54E+03                    |
| cis-1,2-Dichloroethene                                                                                  | 1.45E+01                          | 5.26E+04                           | 1.12E+04                              | 2.04E+06                          | 1.45E+01           | 3.94E+03                    |
| Vinyl Chloride (VC)                                                                                     | 6.31E-02                          | 7.47E+02                           | 2.67E+01                              | 1.04E+05                          | 6.29E-02           | 1.36E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                                         | 2.98E+02                          | 2.49E+05                           | 1.10E+04                              | 2.01E+06                          | 2.90E+02           | 2.67E+03                    |
| 1,1,1-Trichloroethane (TCA)                                                                             | 7.01E+02                          | 3.81E+06                           | 1.14E+06                              | 2.07E+08                          | 7.00E+02           | 1.43E+03                    |
| 1,2-Dichloroethane                                                                                      | 7.14E-01                          | 1.68E+03                           | 2.29E+02                              | 4.17E+04                          | 7.11E-01           | 3.41E+03                    |
| Carbon Tetrachloride                                                                                    | 3.04E+00                          | 1.65E+04                           | 7.62E+03                              | 8.85E+05                          | 3.04E+00           | 1.52E+03                    |
| Carbon disulphide                                                                                       | 1.16E+01                          | 7.12E+04                           | 9.53E+04                              | 4.97E+06                          | 1.16E+01           | 2.11E+03                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
|                                                                                                           | (mg/kg)                           | (mg/kg)                            | (mg/kg)                               | (mg/kg)                           | (mg/kg)            | mg/kg                       |
| Arsenic                                                                                                   | NR                                | NR                                 | 6.35E+02                              | 6.95E+02                          | 6.40E+02           | N/A                         |
| Barium                                                                                                    | NR                                | NR                                 | 2.22E+04                              | 3.48E+06                          | 2.21E+04           | N/A                         |
| Beryllium                                                                                                 | NR                                | NR                                 | 3.97E+03                              | 1.24E+01                          | 1.24E+01           | N/A                         |
| Boron                                                                                                     | NR                                | NR                                 | 2.38E+05                              | 2.99E+07                          | 2.36E+05           | N/A                         |
| Cadmium                                                                                                   | NR                                | NR                                 | 3.99E+02                              | 2.43E+02                          | 2.30E+02           | N/A                         |
| Chromium III                                                                                              | NR                                | NR                                 | 3.31E+05                              | 9.09E+03                          | 8.84E+03           | N/A                         |
| Chromium VI                                                                                               | NR                                | NR                                 | 1.79E+03                              | 3.48E+01                          | 3.48E+01           | N/A                         |
| Copper                                                                                                    | NR                                | NR                                 | 1.89E+05                              | 9.50E+04                          | 6.33E+04           | N/A                         |
| Lead                                                                                                      |                                   |                                    |                                       |                                   | 2.33E+03           | N/A                         |
| Inorganic Mercury                                                                                         | NR                                | NR                                 | 1.18E+03                              | 2.09E+04                          | 3.60E+03           | N/A                         |
| Nickel                                                                                                    | NR                                | NR                                 | 2.22E+04                              | 1.04E+03                          | 1.04E+03           | N/A                         |
| Selenium                                                                                                  | NR                                | NR                                 | 1.23E+04                              | 1.93E+06                          | 1.30E+04           | N/A                         |
| Vanadium                                                                                                  | NR                                | NR                                 | 2.15E+04                              | 9.58E+03                          | 6.63E+03           | N/A                         |
| Zinc                                                                                                      | NR                                | NR                                 | 7.35E+05                              | 2.09E+08                          | 7.33E+05           | N/A                         |
| Cyanide (free)                                                                                            |                                   |                                    |                                       |                                   | 4.30E+01           | N/A                         |
| Cyanide (Complex)                                                                                         |                                   |                                    |                                       |                                   | 2.13E+02           | N/A                         |
| Phenol                                                                                                    | 1.31E+05                          | 1.37E+06                           | 4.07E+04                              | 3.28E+06                          | 3.01E+04           | 8.15E+04                    |
| Benzene                                                                                                   | 5.53E+01                          | 1.60E+04                           | 5.53E+02                              | 4.87E+05                          | 5.01E+01           | 2.26E+03                    |
| Toluene                                                                                                   | 1.52E+05                          | 2.72E+07                           | 4.25E+05                              | 4.86E+08                          | 1.12E+05           | 1.92E+03                    |
| Ethylbenzene                                                                                              | 1.47E+04                          | 1.99E+06                           | 1.91E+05                              | 2.57E+07                          | 1.36E+04           | 1.22E+03                    |
| Total Xylene                                                                                              | 1.51E+04                          | 1.79E+06                           | 3.43E+05                              | 2.03E+07                          | 1.43E+04           | 1.12E+03                    |
| TPH (EC5-6) aliphatic                                                                                     | 6.07E+03                          | 6.79E+06                           | 4.77E+06                              | 8.69E+08                          | 6.06E+03           | 5.58E+02                    |
| TPH (>EC6-8) aliphatic                                                                                    | 1.80E+04                          | 1.17E+07                           | 4.77E+06                              | 8.69E+08                          | 1.79E+04           | 3.22E+02                    |
| TPH (>EC8-10) aliphatic                                                                                   | 5.11E+03                          | 1.50E+06                           | 9.53E+04                              | 5.04E+07                          | 4.83E+03           | 1.90E+02                    |
| TPH (>EC10-12) aliphatic                                                                                  | 2.58E+04                          | 3.37E+06                           | 9.53E+04                              | 5.04E+07                          | 2.02E+04           | 1.18E+02                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| TPH (>EC12-16) aliphatic                                                                                  | 2.17E+05                          | 9.77E+06                           | 9.53E+04                              | 5.04E+07                          | 6.57E+04           | 5.91E+01                    |
| TPH (>EC16-35) aliphatic                                                                                  | 2.56E+07                          | 2.79E+08                           | 1.91E+06                              | 3.48E+08                          | 1.76E+06           | 2.12E+01                    |
| TPH (>EC35-44) aliphatic                                                                                  | 2.56E+07                          | 2.79E+08                           | 1.91E+06                              | 3.48E+08                          | 1.76E+06           | 2.12E+01                    |
| TPH (>EC6-7) aromatic (benzene)                                                                           | 5.53E+01                          | 1.60E+04                           | 5.53E+02                              | 4.87E+05                          | 5.01E+01           | 2.26E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                                           | 1.52E+05                          | 2.71E+07                           | 4.25E+05                              | 4.84E+08                          | 1.11E+05           | 1.92E+03                    |
| TPH (>EC8-10) aromatic                                                                                    | 9.06E+03                          | 9.08E+05                           | 3.81E+04                              | 1.04E+07                          | 7.26E+03           | 1.50E+03                    |
| TPH (>EC10-12) aromatic                                                                                   | 4.99E+04                          | 2.13E+06                           | 3.81E+04                              | 1.04E+07                          | 2.13E+04           | 8.99E+02                    |
| TPH (>EC12-16) aromatic                                                                                   | 5.59E+05                          | 7.06E+06                           | 3.81E+04                              | 1.04E+07                          | 3.54E+04           | 5.91E+01                    |
| TPH (>EC16-21) aromatic                                                                                   | 1.15E+07                          | 1.96E+07                           | 2.86E+04                              | 5.22E+06                          | 2.83E+04           | 1.34E+02                    |
| TPH (>EC21-35) aromatic                                                                                   | 1.89E+09                          | 8.79E+07                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 1.21E+01                    |
| TPH (>EC35-44) aromatic                                                                                   | 1.89E+09                          | 8.79E+07                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 1.21E+01                    |
| Naphthalene                                                                                               | 4.93E+02                          | 1.21E+05                           | 3.64E+04                              | 2.85E+05                          | 4.84E+02           | 1.83E+02                    |
| Acenaphthylene                                                                                            | 9.26E+05                          | 4.11E+07                           | 1.10E+05                              | 2.09E+07                          | 9.76E+04           | 2.12E+02                    |
| Acenaphthene                                                                                              | 9.56E+05                          | 4.31E+07                           | 1.10E+05                              | 2.09E+07                          | 9.80E+04           | 1.41E+02                    |
| Fluorene                                                                                                  | 1.26E+06                          | 3.84E+07                           | 7.31E+04                              | 1.39E+07                          | 6.86E+04           | 7.65E+01                    |
| Phenanthrene                                                                                              | 1.71E+06                          | 2.07E+07                           | 2.28E+04                              | 4.34E+06                          | 2.24E+04           | 8.96E+01                    |
| Anthracene                                                                                                | 3.51E+07                          | 4.84E+08                           | 5.49E+05                              | 1.04E+08                          | 5.37E+05           | 2.91E+00                    |
| Fluoranthene                                                                                              | 1.09E+07                          | 4.16E+07                           | 2.29E+04                              | 4.34E+06                          | 2.27E+04           | 4.73E+01                    |
| Pyrene                                                                                                    | 2.54E+07                          | 9.45E+07                           | 5.49E+04                              | 1.04E+07                          | 5.45E+04           | 5.49E+00                    |
| Benzo(a)anthracene                                                                                        | 1.01E+04                          | 1.11E+04                           | 2.84E+02                              | 5.21E+02                          | 1.77E+02           | 4.28E+00                    |
| Chrysene                                                                                                  | 1.25E+05                          | 1.93E+04                           | 5.67E+02                              | 1.04E+03                          | 3.59E+02           | 1.10E+00                    |
| Benzo(b)fluoranthene                                                                                      | 4.66E+04                          | 3.45E+03                           | 7.13E+01                              | 1.32E+02                          | 4.57E+01           | 3.04E+00                    |
| Benzo(k)fluoranthene                                                                                      | 2.03E+06                          | 1.08E+05                           | 1.88E+03                              | 3.48E+03                          | 1.21E+03           | 1.72E+00                    |
| Benzo(a)pyrene                                                                                            | 5.26E+04                          | 3.00E+03                           | 5.67E+01                              | 1.04E+02                          | 3.63E+01           | 2.28E+00                    |
| Indeno(123-cd)pyrene                                                                                      | 4.38E+05                          | 3.62E+04                           | 8.10E+02                              | 1.49E+03                          | 5.17E+02           | 5.30E-01                    |
| Dibenzo(ah)anthracene                                                                                     | 2.53E+03                          | 3.73E+02                           | 5.67E+00                              | 1.04E+01                          | 3.63E+00           | 9.82E-03                    |
| Benzo(g,h,i)perylene                                                                                      | 1.16E+07                          | 6.02E+05                           | 6.29E+03                              | 1.15E+04                          | 4.03E+03           | 3.85E-02                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>2.5% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| Tetrachloroethene (PCE)                                                                                   | 4.43E+01                          | 1.14E+05                           | 1.12E+04                              | 2.83E+06                          | 4.41E+01           | 9.51E+02                    |
| Trichloroethene (TCE)                                                                                     | 2.74E+00                          | 7.34E+03                           | 9.53E+02                              | 1.98E+05                          | 2.73E+00           | 3.22E+03                    |
| cis-1,2-Dichloroethene                                                                                    | 2.43E+01                          | 6.81E+04                           | 1.12E+04                              | 2.04E+06                          | 2.42E+01           | 6.61E+03                    |
| Vinyl Chloride (VC)                                                                                       | 8.16E-02                          | 8.50E+02                           | 2.67E+01                              | 1.04E+05                          | 8.13E-02           | 1.76E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                                           | 6.11E+02                          | 3.56E+05                           | 1.10E+04                              | 2.01E+06                          | 5.78E+02           | 5.46E+03                    |
| 1,1,1-Trichloroethane (TCA)                                                                               | 1.43E+03                          | 5.46E+06                           | 1.14E+06                              | 2.07E+08                          | 1.43E+03           | 2.92E+03                    |
| 1,2-Dichloroethane                                                                                        | 1.03E+00                          | 2.02E+03                           | 2.29E+02                              | 4.17E+04                          | 1.02E+00           | 4.91E+03                    |
| Carbon Tetrachloride                                                                                      | 6.67E+00                          | 2.44E+04                           | 7.62E+03                              | 8.85E+05                          | 6.66E+00           | 3.32E+03                    |
| Carbon disulphide                                                                                         | 2.32E+01                          | 1.00E+05                           | 9.53E+04                              | 4.97E+06                          | 2.32E+01           | 4.21E+03                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>6% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
|                                                                                                         | (mg/kg)                           | (mg/kg)                            | (mg/kg)                               | (mg/kg)                           | (mg/kg)            | ma/ka                       |
| Arsenic                                                                                                 | NR                                | NR                                 | 6.35E+02                              | 6.95E+02                          | 6.40E+02           | N/A                         |
| Barium                                                                                                  | NR                                | NR                                 | 2.22E+04                              | 3.48E+06                          | 2.21E+04           | N/A                         |
| Beryllium                                                                                               | NR                                | NR                                 | 3.97E+03                              | 1.24E+01                          | 1.24E+01           | N/A                         |
| Boron                                                                                                   | NR                                | NR                                 | 2.38E+05                              | 2.99E+07                          | 2.36E+05           | N/A                         |
| Cadmium                                                                                                 | NR                                | NR                                 | 3.99E+02                              | 2.43E+02                          | 2.30E+02           | N/A                         |
| Chromium III                                                                                            | NR                                | NR                                 | 3.31E+05                              | 9.09E+03                          | 8.84E+03           | N/A                         |
| Chromium VI                                                                                             | NR                                | NR                                 | 1.79E+03                              | 3.48E+01                          | 3.48E+01           | N/A                         |
| Copper                                                                                                  | NR                                | NR                                 | 1.89E+05                              | 9.50E+04                          | 6.33E+04           | N/A                         |
| Lead                                                                                                    |                                   |                                    |                                       |                                   | 2.33E+03           | N/A                         |
| Inorganic Mercury                                                                                       | NR                                | NR                                 | 1.18E+03                              | 2.09E+04                          | 3.60E+03           | N/A                         |
| Nickel                                                                                                  | NR                                | NR                                 | 2.22E+04                              | 1.04E+03                          | 1.04E+03           | N/A                         |
| Selenium                                                                                                | NR                                | NR                                 | 1.23E+04                              | 1.93E+06                          | 1.30E+04           | N/A                         |
| Vanadium                                                                                                | NR                                | NR                                 | 2.15E+04                              | 9.58E+03                          | 6.63E+03           | N/A                         |
| Zinc                                                                                                    | NR                                | NR                                 | 7.35E+05                              | 2.09E+08                          | 7.33E+05           | N/A                         |
| Cyanide (free)                                                                                          |                                   |                                    |                                       |                                   | 4.30E+01           | N/A                         |
| Cyanide (Complex)                                                                                       |                                   |                                    |                                       |                                   | 2.13E+02           | N/A                         |
| Phenol                                                                                                  | 2.42E+05                          | 1.86E+06                           | 4.07E+04                              | 3.28E+06                          | 3.39E+04           | 1.74E+05                    |
| Benzene                                                                                                 | 1.15E+02                          | 2.30E+04                           | 5.53E+02                              | 4.87E+05                          | 9.47E+01           | 4.71E+03                    |
| Toluene                                                                                                 | 3.46E+05                          | 4.11E+07                           | 4.25E+05                              | 4.86E+08                          | 1.90E+05           | 4.36E+03                    |
| Ethylbenzene                                                                                            | 3.45E+04                          | 3.04E+06                           | 1.91E+05                              | 2.57E+07                          | 2.89E+04           | 2.84E+03                    |
| Total Xylene                                                                                            | 3.53E+04                          | 2.74E+06                           | 3.43E+05                              | 2.03E+07                          | 3.16E+04           | 2.62E+03                    |
| TPH (EC5-6) aliphatic                                                                                   | 1.25E+04                          | 9.74E+06                           | 4.77E+06                              | 8.69E+08                          | 1.25E+04           | 1.15E+03                    |
| TPH (>EC6-8) aliphatic                                                                                  | 4.12E+04                          | 1.77E+07                           | 4.77E+06                              | 8.69E+08                          | 4.08E+04           | 7.36E+02                    |
| TPH (>EC8-10) aliphatic                                                                                 | 1.21E+04                          | 2.31E+06                           | 9.53E+04                              | 5.04E+07                          | 1.07E+04           | 4.51E+02                    |
| TPH (>EC10-12) aliphatic                                                                                | 6.18E+04                          | 5.22E+06                           | 9.53E+04                              | 5.04E+07                          | 3.72E+04           | 2.83E+02                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>6% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| TPH (>EC12-16) aliphatic                                                                                | 5.20E+05                          | 1.51E+07                           | 9.53E+04                              | 5.04E+07                          | 8.00E+04           | 1.42E+02                    |
| TPH (>EC16-35) aliphatic                                                                                | 6.14E+07                          | 4.32E+08                           | 1.91E+06                              | 3.48E+08                          | 1.83E+06           | 5.09E+01                    |
| TPH (>EC35-44) aliphatic                                                                                | 6.14E+07                          | 4.32E+08                           | 1.91E+06                              | 3.48E+08                          | 1.83E+06           | 5.09E+01                    |
| TPH (>EC6-7) aromatic (benzene)                                                                         | 1.15E+02                          | 2.30E+04                           | 5.53E+02                              | 4.87E+05                          | 9.48E+01           | 4.71E+03                    |
| TPH (>EC7-8) aromatic (toluene)                                                                         | 3.45E+05                          | 4.09E+07                           | 4.25E+05                              | 4.84E+08                          | 1.89E+05           | 4.36E+03                    |
| TPH (>EC8-10) aromatic                                                                                  | 2.16E+04                          | 1.40E+06                           | 3.81E+04                              | 1.04E+07                          | 1.36E+04           | 3.58E+03                    |
| TPH (>EC10-12) aromatic                                                                                 | 1.19E+05                          | 3.29E+06                           | 3.81E+04                              | 1.04E+07                          | 2.85E+04           | 2.15E+03                    |
| TPH (>EC12-16) aromatic                                                                                 | 1.34E+06                          | 1.09E+07                           | 3.81E+04                              | 1.04E+07                          | 3.68E+04           | 1.42E+02                    |
| TPH (>EC16-21) aromatic                                                                                 | 2.75E+07                          | 3.03E+07                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 3.21E+02                    |
| TPH (>EC21-35) aromatic                                                                                 | 4.54E+09                          | 1.36E+08                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 2.90E+01                    |
| TPH (>EC35-44) aromatic                                                                                 | 4.54E+09                          | 1.36E+08                           | 2.86E+04                              | 5.22E+06                          | 2.84E+04           | 2.90E+01                    |
| Naphthalene                                                                                             | 1.16E+03                          | 1.87E+05                           | 3.64E+04                              | 2.85E+05                          | 1.11E+03           | 4.32E+02                    |
| Acenaphthylene                                                                                          | 2.21E+06                          | 6.35E+07                           | 1.10E+05                              | 2.09E+07                          | 1.04E+05           | 5.06E+02                    |
| Acenaphthene                                                                                            | 2.28E+06                          | 6.67E+07                           | 1.10E+05                              | 2.09E+07                          | 1.04E+05           | 3.36E+02                    |
| Fluorene                                                                                                | 3.02E+06                          | 5.94E+07                           | 7.31E+04                              | 1.39E+07                          | 7.09E+04           | 1.83E+02                    |
| Phenanthrene                                                                                            | 4.09E+06                          | 3.20E+07                           | 2.28E+04                              | 4.34E+06                          | 2.25E+04           | 2.14E+02                    |
| Anthracene                                                                                              | 8.41E+07                          | 7.50E+08                           | 5.49E+05                              | 1.04E+08                          | 5.42E+05           | 6.96E+00                    |
| Fluoranthene                                                                                            | 2.61E+07                          | 6.44E+07                           | 2.29E+04                              | 4.34E+06                          | 2.28E+04           | 1.12E+02                    |
| Pyrene                                                                                                  | 6.09E+07                          | 1.46E+08                           | 5.49E+04                              | 1.04E+07                          | 5.45E+04           | 1.32E+01                    |
| Benzo(a)anthracene                                                                                      | 2.42E+04                          | 1.72E+04                           | 2.84E+02                              | 5.21E+02                          | 1.80E+02           | 1.03E+01                    |
| Chrysene                                                                                                | 3.00E+05                          | 2.99E+04                           | 5.67E+02                              | 1.04E+03                          | 3.62E+02           | 2.64E+00                    |
| Benzo(b)fluoranthene                                                                                    | 1.12E+05                          | 5.34E+03                           | 7.13E+01                              | 1.32E+02                          | 4.59E+01           | 7.29E+00                    |
| Benzo(k)fluoranthene                                                                                    | 4.88E+06                          | 1.67E+05                           | 1.88E+03                              | 3.48E+03                          | 1.21E+03           | 4.12E+00                    |
| Benzo(a)pyrene                                                                                          | 1.26E+05                          | 4.65E+03                           | 5.67E+01                              | 1.04E+02                          | 3.64E+01           | 5.46E+00                    |
| Indeno(123-cd)pyrene                                                                                    | 1.05E+06                          | 5.60E+04                           | 8.10E+02                              | 1.49E+03                          | 5.20E+02           | 3.68E-01                    |
| Dibenzo(ah)anthracene                                                                                   | 6.07E+03                          | 5.78E+02                           | 5.67E+00                              | 1.04E+01                          | 3.65E+00           | 2.36E-02                    |
| Benzo(g,h,i)perylene                                                                                    | 2.78E+07                          | 9.33E+05                           | 6.29E+03                              | 1.15E+04                          | 4.04E+03           | 9.23E-02                    |

| Commercial/Industrial Pathway Specific<br>Assessment Sub Criteria derived May 2015<br>&% Organic matter | Vapour<br>Inhalation<br>(Indoors) | Vapour<br>Inhalation<br>(Outdoors) | Soil Ingestion<br>& Dermal<br>Contact | Particulate<br>Dust<br>Inhalation | Commercial<br>GSAC | Soil<br>Saturation<br>Limit |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|--------------------|-----------------------------|
| Tetrachloroethene (PCE)                                                                                 | 1.02E+02                          | 1.73E+05                           | 1.12E+04                              | 2.83E+06                          | 1.01E+02           | 2.18E+03                    |
| Trichloroethene (TCE)                                                                                   | 6.07E+00                          | 1.09E+04                           | 9.53E+02                              | 1.98E+05                          | 6.03E+00           | 7.14E+03                    |
| cis-1,2-Dichloroethene                                                                                  | 4.73E+01                          | 9.50E+04                           | 1.12E+04                              | 2.04E+06                          | 4.71E+01           | 1.29E+04                    |
| Vinyl Chloride (VC)                                                                                     | 1.25E-01                          | 1.05E+03                           | 2.67E+01                              | 1.04E+05                          | 1.24E-01           | 2.69E+03                    |
| 1,1,2,2-Tetrachloroethane (PCA)                                                                         | 1.34E+03                          | 5.27E+05                           | 1.10E+04                              | 2.01E+06                          | 1.19E+03           | 1.20E+04                    |
| 1,1,1-Trichloroethane (TCA)                                                                             | 3.14E+03                          | 8.08E+06                           | 1.14E+06                              | 2.07E+08                          | 3.13E+03           | 6.39E+03                    |
| 1,2-Dichloroethane                                                                                      | 1.77E+00                          | 2.65E+03                           | 2.29E+02                              | 4.17E+04                          | 1.76E+00           | 8.43E+03                    |
| Carbon Tetrachloride                                                                                    | 1.51E+01                          | 3.67E+04                           | 7.62E+03                              | 8.85E+05                          | 1.51E+01           | 7.54E+03                    |
| Carbon disulphide                                                                                       | 5.01E+01                          | 1.48E+05                           | 9.53E+04                              | 4.97E+06                          | 5.01E+01           | 9.11E+03                    |



# **APPENDIX** 11

# **CLEA FLOW CHART & SCREENING WORKSHEETS**



## Human Health Generic QRA Worksheet

NTE2366



lakeview Drive, Bicester

All samples have been assessed as one averageing area.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3271

| GSAC Type (BWB, LQM S4UL, C4SL, Bespoke)      | BWB_GSAC   |
|-----------------------------------------------|------------|
| Key Receptor/CSM (Residential/Commercial/POS) | Commercial |
| Organic Matter % (If unknown use 1%)          | 1          |

| Exposure Pathway Selection for BWB GSAC                 |       |
|---------------------------------------------------------|-------|
| (Residential/Commercial scenarios only)                 |       |
| Soil Ingestion, dermal contact, particulate inhalation  | TRUE  |
| Ingestion of site grown vegetables and soil attached to |       |
| vegetables                                              | FALSE |
| Inhalation of vapours Indoors                           | TRUE  |
| Inhalation of vapours Outdoors                          | TRUE  |

| Default pathways |            |  |  |  |
|------------------|------------|--|--|--|
| Residential      | Commercial |  |  |  |
| TRUE             | TRUE       |  |  |  |
|                  |            |  |  |  |
| Optional         | FALSE      |  |  |  |
| TRUE             | TRUE       |  |  |  |
| TRUE             | TRUE       |  |  |  |

V5, March 2016

| Generic Assessment Criteria     |            | D\A/D                     |
|---------------------------------|------------|---------------------------|
|                                 | ~ · ·      | DVVD                      |
| lakeview Drive, Bicester        | Commercial | CONSULTANCY   ENVIRONMENT |
| NTE2366                         |            | Source                    |
| Arsenic                         | 6.40E+02   | BWB_GSAC                  |
| Barium                          | 2.21E+U4   | BWB_GSAC                  |
| Beryllium                       | 1.24E+UI   | BWB_GSAC                  |
| Boron                           | 2.30E+U5   | BWB_GSAC                  |
|                                 | 2.3UE+U2   | BWB_GSAC                  |
|                                 | 3.41E+U1   | BWB_GSAC                  |
|                                 | 9.09E+03   | BWB_GSAC                  |
| Copper                          | 0.33E+U4   | BWB_GSAC                  |
|                                 | 2.33E+U3   | DEFRA_045L                |
| I norganic iviercury            | 3.6UE+U3   | BWB_GSAC                  |
|                                 | 1.04E+03   | BWB_GSAC                  |
| Selenium                        | 1.30E+04   | BWB_GSAC                  |
| Vanadium                        | 6.63E+U3   | BWB_GSAC                  |
|                                 | 1.33E+U5   | BWB_GSAC                  |
| Cyanide (Free)                  | 4.30E+01   | BWB_GSAC                  |
| Cyanide (Complex)               | 2.13E+02   | BWB_GSAC                  |
| Phenols (Iotal)                 | 2.65E+U4   | BWB_GSAC                  |
| Benzene                         | 2.81E+01   | BWB_GSAC                  |
| Toluene                         | 5.92E+04   | BWB_GSAC                  |
| Ethyl benzene                   | 6.05E+03   | BWB_GSAC                  |
| Total Xylene                    | 6.28E+03   | BWB_GSAC                  |
| TPH (EC5-6) aliphatic           | 3.31E+03   | BWB_GSAC                  |
| TPH (>EC6-8) aliphatic          | 8.04E+03   | BWB_GSAC                  |
| TPH (>EC8-10) aliphatic         | 2.04E+03   | BWB_GSAC                  |
| TPH (>EC10-12) aliphatic        | 9.33E+03   | BWB_GSAC                  |
| TPH (>EC12-16) aliphatic        | 4.51E+04   | BWB_GSAC                  |
| TPH (>EC16-21) aliphatic        | 1.59E+06   | BWB_GSAC                  |
| TPH (>EC21-35) aliphatic        | 1.59E+06   | BWB_GSAC                  |
| TPH (>EC35-44) aliphatic        | 1.59E+06   | BWB_GSAC                  |
| TPH (>EC6-7) aromatic (benzene) | 4.36E+01   | BWB_GSAC                  |
| TPH (>EC7-8) aromatic (toluene) | 5.90E+04   | BWB_GSAC                  |
| TPH (>EC8-10) aromatic          | 3.35E+03   | BWB_GSAC                  |
| TPH (>EC10-12) aromatic         | 1.31E+04   | BWB_GSAC                  |
| TPH (>EC12-16) aromatic         | 3.22E+04   | BWB_GSAC                  |
| TPH (>EC16-21) aromatic         | 2.82E+04   | BWB_GSAC                  |
| TPH (>EC21-35) aromatic         | 2.84E+04   | BWB_GSAC                  |
| TPH (>EC35-44) aromatic         | 2.84E+04   | BWB_GSAC                  |
| Total TPH                       | 5.00E+02   | BWB_GSAC                  |
| Naphthalene                     | 2.04E+02   | BWB_GSAC                  |
| Acenaphthylene                  | 8.45E+04   | BWB_GSAC                  |
| Acenaphthene                    | 8.50E+04   | BWB_GSAC                  |
| Fluorene                        | 6.35E+04   | BWB_GSAC                  |
| Phenanthrene                    | 2.19E+04   | BWB_GSAC                  |
| Anthracene                      | 5.25E+05   | BWB_GSAC                  |
| Fluoranthene                    | 2.26E+04   | BWB_GSAC                  |
| Pyrene                          | 5.43E+04   | BWB_GSAC                  |
| Benzo(a)anthracene              | 1.71E+02   | BWB_GSAC                  |
| Chrysene                        | 3.54E+02   | BWB_GSAC                  |
| Benzo(b)fluoranthene            | 4.52E+01   | BWB_GSAC                  |
| Benzo(k)fluoranthene            | 1.20E+03   | BWB_GSAC                  |
| Benzo(a)pyrene                  | 3.60E+01   | BWB_GSAC                  |
| Indeno(1,2,3-c,d)pyrene         | 5.12E+02   | BWB_GSAC                  |
| Generic Assessment Criteria         |            | BWB      |
|-------------------------------------|------------|----------|
| lakeview Drive, Bicester            | Commercial |          |
| NTE2366                             | mg/kg      | Source   |
| Dibenzo(a,h)anthracene              | 3.60E+00   | BWB_GSAC |
| Benzo(g,hi)perylene                 | 4.02E+03   | BWB_GSAC |
| Coal Tar (B(a)P as surrogate marker | 1.54E+01   | BWB_GSAC |
| Tetrachloroethene (PCE)             | 1.97E+01   | BWB_GSAC |
| Trichloroethene (TCE)               | 1.30E+00   | BWB_GSAC |
| <i>cis</i> -1,2-Dichloroethene      | 1.45E+01   | BWB_GSAC |
| Vinyl Chloride (VC)                 | 6.29E-02   | BWB_GSAC |
| 1,1,2,2-Tetrachloroethane (PCA)     | 2.90E+02   | BWB_GSAC |
| 1,1,1-Trichloroethane (TCA)         | 7.00E+02   | BWB_GSAC |
| 1,2-Dichloroethane                  | 7.11E-01   | BWB_GSAC |
| Carbon Tetrachloride                | 3.04E+00   | BWB_GSAC |
| Carbon disulphide                   | 1.16E+01   | BWB_GSAC |

| . Location | Sample depth | Easting  | Northing | Strata Type | Arsenic  | Barium   | Beryllium | Boron    | Cadmium  | , Chromium VI | Chromium 111 | Copper   | Lead     | I norganic Mercury | Nickel   | Selenium | Vanadium | Zinc     | Cyanide (Free) | Cyanide (Complex) | Phenols (Total) |
|------------|--------------|----------|----------|-------------|----------|----------|-----------|----------|----------|---------------|--------------|----------|----------|--------------------|----------|----------|----------|----------|----------------|-------------------|-----------------|
| Detectio   | n Limit      |          |          |             | 0.2      | 1.5      | 0.2       | 0.2      | 0.1      | 1             | 0.15         | 0.2      | 0.3      | 0.03               | 0.2      | 0.5      | 0.8      | 1        | 0.1            | 0.1               | 0.3             |
| GSAC       | 0.00.0.00    |          |          |             | 6.40E+02 | 2.21E+04 | 1.24E+01  | 2.36E+05 | 2.30E+02 | 3.41E+01      | 9.09E+03     | 6.33E+04 | 2.33E+03 | 3.60E+03           | 1.04E+03 | 1.30E+04 | 6.63E+03 | 7.33E+05 | 4.30E+01       | 2.13E+02          | 2.65E+04        |
| TP101      | 0.20-0.30    | 45/6/8.2 | 221686.4 | 66.3        | 28.0     | /2       | 1.1       | 4.5      | 0.2      | 4             | 32           | 41       | 51       | 0.3                | 28       | 1        | /1       | 95       | 1              | 1                 | 1               |
| TP101      | 0.40-0.50    | 45/6/8.2 | 221686.4 | 66.3        | 19.0     | 49       | 0.7       | 3        | 0.2      | 4             | 19           | 31       | 23       | 0.3                | 19       | 1        | 49       | 48       | 1              |                   | 1               |
| TP102      | 0.10-0.20    | 457715.5 | 221/05.1 | 66.3        | 12.0     | 130      | 0.43      | 3.3      | 0.7      | 4             | 21           | /2       | 67       | 0.3                | 14       | 1        | 31       | 170      | 1              |                   | 1               |
| TP102      | 0.40-0.50    | 457715.5 | 221705.1 | 66.3        | 20.0     | 81       | 0.61      | 2.3      | 0.2      | 4             | 21           | 35       | 40       | 0.3                | 18       | 1        | 43       | /8       | 1              | 1                 | 1               |
| TP103      | 0.20-0.30    | 457765.9 | 221691.1 | 66.2        | 22.0     | 68       | 0.72      | 1.7      | 0.2      | 4             | 22           | 36       | 30       | 0.3                | 23       | 1        | 40       | /9       | 1              | 1                 | 1               |
| TP103      | 0.90-1.00    | 457765.9 | 221691.1 | 66.2        | 19.0     | 41       | 0.85      | 2.9      | 0.2      | 4             | 23           | 25       | 16       | 0.3                | 16       | 1        | 46       | 36       | 1              | 1                 | 1               |
| TP105      | 0.50-0.60    | 457642.4 | 221475.7 | 65.0        | 9.1      | 68       | 1.3       | 8.1      | 0.4      | 4             | 26           | 59       | 15       | 0.3                | 20       | 4.8      | 61       | 21       | 1              | 1                 | 1               |
| TP106      | 0.10-0.20    | 457666.5 | 221424.0 | 64.7        | 16.0     | 68       | 0.8       | 1.1      | 0.2      | 4             | 21           | 32       | 41       | 0.3                | 15       | 1        | 43       | 52       | 1              | 1                 | 1               |
| TP107      | 0.50-0.60    | 457736.7 | 221431.4 | 64.7        | 10.0     | 28       | 0.42      | 0.6      | 0.2      | 4             | 11           | 14       | 5.6      | 0.3                | 13       | 1        | 23       | 25       | 1              | 1                 | 1               |
| TP114      | 0.10-0.20    | 458106.4 | 221405.5 | 64.6        | 18.0     | 61       | 0.86      | 4.3      | 0.2      | 4             | 29           | 41       | 29       | 0.3                | 20       | 1        | 36       | 100      | 1              | 1                 | 1               |
| TP114      | 1.00-1.20    | 458106.4 | 221405.5 | 64.6        | 9.2      | 11       | 0.2       | 0.2      | 0.2      | 4             | 8.2          | 19       | 4.7      | 0.3                | 12       | 1        | 20       | 23       | 1              | 1                 | 1               |
| TP118      | 0.70-0.80    | 458104.9 | 221556.3 | 65.4        | 8.0      | 39       | 0.71      | 2.1      | 0.2      | 4             | 22           | 27       | 12       | 0.3                | 9.3      | 1        | 32       | 32       | 1              | 1                 | 1               |
| 1P119      | 0.80-0.90    | 458141.0 | 221617.7 | 66.1        | 3.7      | 35       | 0.68      | 1.8      | 0.2      | 4             | 23           | 28       | 11       | 0.3                | 12       | 1        | 33       | 26       | 1              | 1                 | 1               |
| 10120      | 0.60-0.70    | 458069.5 | 221668.2 | 66.4        | 14.0     | 50       | 0.46      | 0.9      | 0.2      | 4             | 14           | 25       | /.1      | 0.3                | 18       | 1        | 24       | 29       | 1              | 1                 | 1               |
| 1P121      | 0.10-0.20    | 458039.0 | 221518.2 | 65.2        | 9.4      | 61       | 0.84      | 5.6      | 0.2      | 4             | 28           | 42       | 39       | 0.3                | 19       | 1        | 40       | 78       | 1              | 1                 | 1               |
| TP125      | 0.40-0.50    | 457816.5 | 221604.2 | 66.8        | 16.0     | 85       | 1.3       | 2.2      | 0.2      | 4             | 26           | 26       | 14       | 0.3                | 50       | 1        | 50       | 86       | 1              | 1                 | 1               |



| Location | Sample depth | Benzene  | Toluene  | Ethyl benzene | Total Xylene | TPH (EC5-6) aliphatic | TPH (>EC6-8) aliphatic | TPH (≻EC8-10)<br>aliphatic | TPH (>EC10-12)<br>aliphatic | TPH (>EC12-16)<br>aliphatic | TPH (>EC16-21)<br>aliphatic | TPH (>EC21-35)<br>aliphatic | TPH (≻EC35-44)<br>aliphatic | TPH (>EC6-7) aromatic<br>(benzene) | TPH (>EC7-8) aromatic<br>(toluene) | TPH (≻EC8-10)<br>aromatic | TPH (≻EC10-12)<br>aromatic | TPH (≻EC12-16)<br>aromatic | TPH(>EC16-21)<br>aromatic | TPH (>EC21-35)<br>aromatic                    | TPH(>EC35-44)<br>aromatic |
|----------|--------------|----------|----------|---------------|--------------|-----------------------|------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------|------------------------------------|---------------------------|----------------------------|----------------------------|---------------------------|-----------------------------------------------|---------------------------|
| Detectio | n Limit      | 0.01     | 0.01     | 0.01          | 0.01         | 0.01                  | 0.01                   | 0.01                       | 1.5                         | 1.2                         | 1.5                         | 3.4                         | 3.4                         | 0.01                               | 0.01                               | 0.9                       | 0.5                        | 0.6                        | 1.4                       | 1.4                                           | 0.1                       |
| GSAC     |              | 2.81E+01 | 5.92E+04 | 6.05E+03      | 6.28E+03     | 3.31E+03              | 8.04E+03               | 2.04E+03                   | 9.33E+03                    | 4.51E+04                    | 1.59E+06                    | 1.59E+06                    | 1.59E+06                    | 4.36E+01                           | 5.90E+04                           | 3.35E+03                  | 1.31E+04                   | 3.22E+04                   | 2.82E+04                  | 2.84E+04                                      | 2.84E+04                  |
| TP101    | 0.20-0.30    | 0.001    | 0.001    | 0.001         | 0.002        | 0.001                 | 0.001                  | 0.001                      | 1                           | 2                           | 8                           | 15                          |                             | 0.001                              | 0.001                              | 0.001                     | 1                          | 4.2                        | 10                        | 18                                            |                           |
| TP101    | 0.40-0.50    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ'                                            |                           |
| TP102    | 0.10-0.20    | 0.001    | 0.001    | 0.001         | 0.002        | 0.001                 | 0.001                  | 0.001                      | 1                           | 7                           | 15                          | 200                         |                             | 0.001                              | 0.001                              | 0.001                     | 4.3                        | 14                         | 33                        | 410                                           |                           |
| TP102    | 0.40-0.50    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ!                                            |                           |
| TP103    | 0.20-0.30    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ'                                            |                           |
| TP103    | 0.90-1.00    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ'                                            |                           |
| TP105    | 0.50-0.60    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ'                                            |                           |
| TP106    | 0.10-0.20    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | ļ'                                            |                           |
| TP107    | 0.50-0.60    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u>                                      |                           |
| TP114    | 0.10-0.20    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u>                                      |                           |
| TP114    | 1.00-1.20    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u>                                      |                           |
| TP118    | 0.70-0.80    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u> ــــــــــــــــــــــــــــــــــــ |                           |
| TP119    | 0.80-0.90    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u>                                      |                           |
| 1P120    | 0.60-0.70    |          |          |               |              |                       |                        |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <b>ب</b>                                      |                           |
| 1P121    | 0.10-0.20    |          |          |               |              |                       | l                      |                            |                             |                             |                             |                             |                             |                                    |                                    |                           |                            |                            |                           | <u>ا</u>                                      |                           |
| 11P125   | 0.40-0.50    |          |          |               |              |                       | 1                      | 1                          |                             |                             |                             |                             | 1                           | 1                                  | 1                                  | 1                         |                            |                            |                           | , , , , , , , , , , , , , , , , , , , ,       |                           |



| Location | Sample depth | Total TPH | Naphthalene | Acenaphthylene | Acenaphthene | Fluorene | Phenanthrene | Anthracene | Fluoranthene | Pyrene   | Benzo(a)anthracene | Chrysene | Benzo(b)fluoranthene | Benzo(k)fluoranthene | Benzo(a)pyrene | Indeno(1,2,3-<br>c,d)pyrene | Dibenzo(a,h) anthracen<br>e | Benzo(g,hi)perylene | Benzo(a)pyrene (as<br>surrogate marker) |
|----------|--------------|-----------|-------------|----------------|--------------|----------|--------------|------------|--------------|----------|--------------------|----------|----------------------|----------------------|----------------|-----------------------------|-----------------------------|---------------------|-----------------------------------------|
| Detectio | n Limit      | 10        | 0.1         | 0.1            | 0.1          | 0.1      | 0.1          | 0.1        | 0.1          | 0.1      | 0.1                | 0.1      | 0.1                  | 0.1                  | 0.1            | 0.1                         | 0.1                         | 0.1                 | 0.1                                     |
| GSAC     |              | 5.00E+02  | 2.04E+02    | 8.45E+04       | 8.50E+04     | 6.35E+04 | 2.19E+04     | 5.25E+05   | 2.26E+04     | 5.43E+04 | 1./1E+02           | 3.54E+02 | 4.52E+01             | 1.20E+03             | 3.60E+01       | 5.12E+02                    | 3.60E+00                    | 4.02E+03            | 1.54E+01                                |
| TP101    | 0.20-0.30    | 48        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.24         | 0.22     | 0.12               | 0.15     | 0.13                 | 0.13                 | 0.17           | 0.05                        | 0.05                        | 0.05                | 0.17                                    |
| TP101    | 0.40-0.50    | 27        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP102    | 0.10-0.20    | 1000      | 0.05        | 0.05           | 0.05         | 0.05     | 0.73         | 0.21       | 2.2          | 2.1      | 1.4                | 1.6      | 2                    | 1.4                  | 2.4            | 1.5                         | 0.23                        | 1.9                 | 2.4                                     |
| TP102    | 0.40-0.50    | 61        | 0.05        | 0.05           | 0.05         | 0.05     | 0.39         | 0.19       | 1.2          | 1.1      | 0.82               | 0.96     | 1.2                  | 0.59                 | 1.2            | 0.63                        | 0.14                        | 0.86                | 1.2                                     |
| TP103    | 0.20-0.30    | 40        | 0.05        | 0.05           | 0.05         | 0.05     | 0.19         | 0.05       | 0.67         | 0.6      | 0.42               | 0.45     | 0.43                 | 0.41                 | 0.55           | 0.3                         | 0.09                        | 0.39                | 0.55                                    |
| TP105    | 0.90-1.00    | 19        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP105    | 0.30-0.30    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP107    | 0.50-0.60    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP114    | 0 10-0 20    | 47        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP114    | 1.00-1.20    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP118    | 0.70-0.80    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP119    | 0.80-0.90    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP120    | 0.60-0.70    | 19        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP121    | 0.10-0.20    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |
| TP125    | 0.40-0.50    | 10        | 0.05        | 0.05           | 0.05         | 0.05     | 0.05         | 0.05       | 0.05         | 0.05     | 0.05               | 0.05     | 0.05                 | 0.05                 | 0.05           | 0.05                        | 0.05                        | 0.05                | 0.05                                    |



| Commercial/Industrial Pathway       | Vapour               | Vapour        | Soil                 | Particulate          | SGV      | Commercial           | Soil                 |
|-------------------------------------|----------------------|---------------|----------------------|----------------------|----------|----------------------|----------------------|
| Specific Assessment Sub Criteria    | Inhalation           | Inhalation    | Ingestion            | Dust                 |          | GSAC                 | Saturation           |
| derived May 2015                    | (Indoors)            | (Outdoors)    | & Dermal             | Inhalation           |          |                      | Limit                |
|                                     |                      |               | Contact              |                      |          |                      |                      |
|                                     | (mg/kg)              | (mg/kg)       | (mg/kg)              | (mg/kg)              | (mg/kg)  | (mg/kg)              | mg/kg                |
| Arsenic                             | NR                   | NR            | 6.35E+02             | 6.95E+02             |          | 6.40E+02             | N/A                  |
| Barium                              | NR                   | NR            | 2.22E+04             | 3.48E+06             |          | 2.21E+04             | N/A                  |
| Beryllium                           | NR                   | NR            | 3.97E+03             | 1.24E+01             |          | 1.24E+01             | N/A                  |
| Codmium                             | NR                   |               | 2.38E+05             | 2.99E+07             |          | 2.30E+05             | N/A                  |
| Chromium VI                         | NR                   | NR            | 1.79E±02             | 2.43E+02<br>3.48E±01 |          | 2.30E+02<br>3.41E±01 | N/A                  |
| Chromium III                        | NR                   | NR            | 3.31E+05             | 9.09E+03             |          | 9.09E+03             | N/A                  |
| Copper                              | NR                   | NR            | 1.89E+05             | 9.50E+04             |          | 6.33E+04             | N/A                  |
| Lead                                |                      |               |                      |                      |          | 2.33E+03             | N/A                  |
| Inorganic Mercury                   | NR                   | NR            | 1.18E+03             | 2.09E+04             |          | 3.60E+03             | N/A                  |
| Nickel                              | NR                   | NR            | 2.22E+04             | 1.04E+03             |          | 1.04E+03             | N/A                  |
| Selenium                            | NR                   | NR            | 1.23E+04             | 1.93E+06             |          | 1.30E+04             | N/A                  |
| Vanadium                            | NR                   | NR            | 2.15E+04             | 9.58E+03             |          | 6.63E+03             | N/A                  |
| Zinc                                | NR                   | NR            | 7.35E+05             | 2.09E+08             |          | 7.33E+05             | N/A                  |
| Cyanide (free)                      |                      |               |                      |                      | 4.30E+01 | 4.30E+01             | N/A                  |
| Cyanide (Complex)                   |                      | 1.005.01      |                      | 0.005.0/             | 2.13E+02 | 2.13E+02             | N/A                  |
| Phenol                              | 8.34E+04             | 1.09E+06      | 4.07E+04             | 3.28E+06             |          | 2.65E+04             | 4.16E+04             |
| Benzene                             | 2.97E+01             | 1.17E+04      | 5.53E+U2             | 4.8/E+05             |          | 2.81E+01             | 1.22E+03             |
| Ethylbonzono                        | 6.91E+04             | 1.83E+07      | 4.25E+05             | 4.80E+08             |          | 5.92E+04             | 5.09E+02             |
|                                     | 6.43E+03             | 1.30E+06      | 3.43E±05             | 2.03E+07             |          | 6 28F+03             | 4 78E±02             |
| TPH (EC5-6) aliphatic               | 3.31E+03             | 5.01E+06      | 4.77E+06             | 8.69E+08             |          | 3.31E+03             | 3.04E+02             |
| TPH (>EC6-8) aliphatic              | 8.06E+03             | 7.82E+06      | 4.77E+06             | 8.69E+08             |          | 8.04E+03             | 1.44E+02             |
| TPH (>EC8-10) aliphatic             | 2.09E+03             | 9.59E+05      | 9.53E+04             | 5.04E+07             |          | 2.04E+03             | 7.77E+01             |
| TPH (>EC10-12) aliphatic            | 1.04E+04             | 2.13E+06      | 9.53E+04             | 5.04E+07             |          | 9.33E+03             | 4.75E+01             |
| TPH (>EC12-16) aliphatic            | 8.68E+04             | 6.18E+06      | 9.53E+04             | 5.04E+07             |          | 4.51E+04             | 2.37E+01             |
| TPH (>EC16-21) aliphatic            | 1.02E+07             | 1.76E+08      | 1.91E+06             | 3.48E+08             |          | 1.59E+06             | 8.48E+00             |
| TPH (>EC21-35) aliphatic            | 1.02E+07             | 1.76E+08      | 1.91E+06             | 3.48E+08             |          | 1.59E+06             | 8.48E+00             |
| TPH (>EC35-44) aliphatic            | 1.02E+07             | 1.76E+08      | 1.91E+06             | 3.48E+08             |          | 1.59E+06             | 8.48E+00             |
| TPH (>EC6-7) aromatic (benzene)     | 4.75E+01             | 1.17E+04      | 5.53E+02             | 4.87E+05             |          | 4.36E+01             | 1.22E+03             |
| TPH (>EC7-8) aromatic (toluene)     | 6.88E+04             | 1.83E+07      | 4.25E+05             | 4.84E+08             |          | 5.90E+04             | 8.69E+02             |
| TPH (>EC8-10) aromatic              | 3.70E+03             | 5.80E+05      | 3.81E+04             | 1.04E+07             |          | 3.35E+03             | 6.13E+02             |
| TPH (>EC10-12) aromatic             | 2.02E+04             | 1.35E+06      | 3.81E+04             | 1.04E+07             |          | 1.31E+04             | 3.64E+02             |
| TPH (>EC12-16) aromatic             | 2.23E+03             | 4.48E+00      | 3.81E+04             | 1.04E+07             |          | 3.22E+04             | 2.37E+01             |
| TPH (>EC21-35) aromatic             | 7 57E+08             | 5 56E+07      | 2.86E+04             | 5.22E+00             |          | 2.82E+04             | 4.83E+00             |
| TPH (>EC35-44) aromatic             | 7 57E+08             | 5 56E+07      | 2.86E+04             | 5.22E+06             |          | 2 84F+04             | 4.83E+00             |
| Total TPH                           | 1072100              | 0.002707      | 2.002.101            | 0.222.100            |          | 5.00E+02             | N/A                  |
| Naphthalene                         | 2.06E+02             | 7.85E+04      | 3.64E+04             | 2.85E+05             |          | 2.04E+02             | 7.64E+01             |
| Acenaphthylene                      | 3.76E+05             | 2.62E+07      | 1.10E+05             | 2.09E+07             |          | 8.45E+04             | 8.61E+01             |
| Acenaphthene                        | 3.87E+05             | 2.74E+07      | 1.10E+05             | 2.09E+07             |          | 8.50E+04             | 5.70E+01             |
| Fluorene                            | 5.10E+05             | 2.44E+07      | 7.31E+04             | 1.39E+07             |          | 6.35E+04             | 3.09E+01             |
| Phenanthrene                        | 6.87E+05             | 1.31E+07      | 2.28E+04             | 4.34E+06             |          | 2.19E+04             | 3.60E+01             |
| Anthracene                          | 1.41E+07             | 3.07E+08      | 5.49E+05             | 1.04E+08             |          | 5.25E+05             | 1.17E+00             |
| Fluoranthene                        | 4.36E+06             | 2.63E+07      | 2.29E+04             | 4.34E+06             |          | 2.26E+04             | 1.89E+01             |
| Pyrene                              | 1.02E+07             | 5.98E+07      | 5.49E+04             | 1.04E+07             |          | 5.43E+04             | 2.20E+00             |
| Benzo(a)anthracene                  | 4.04E+03             | 7.01E+03      | 2.84E+02             | 5.21E+02             |          | 1.71E+02             | 1.71E+00             |
| Benzo(b)fluoranthene                | 1.96E+04             | 2 195+02      | 7.12E+01             | 1.04E+03             |          | 3.54E+02             | 4.40E-01             |
| Benzo(k)fluoranthene                | 8 14F+05             | 6.83E+04      | 1.88E+03             | 3 48F+03             |          | 1 20E+03             | 6.87F-01             |
| Benzo(a)pyrene                      | 2.10E+04             | 1.90E+03      | 5.67E+01             | 1.04E+02             |          | 3.60E+01             | 9.11E-01             |
| Indeno(123-cd)pyrene                | 1.75E+05             | 2.29E+04      | 8.10E+02             | 1.49E+03             |          | 5.12E+02             | 6.14E-02             |
| Dibenzo(ah)anthracene               | 1.01E+03             | 2.36E+02      | 5.67E+00             | 1.04E+01             |          | 3.60E+00             | 3.93E-03             |
| Benzo(g,h,i)perylene                | 4.64E+06             | 3.81E+05      | 6.29E+03             | 1.15E+04             |          | 4.02E+03             | 1.54E-02             |
| Coal Tar (B(a)P as surrogate marker | 2.10E+04             | 1.90E+03      | 1.83E+01             | 1.04E+02             |          | 1.54E+01             | 4.24E+02             |
| Tetrachloroethene (PCE)             | 1.98E+01             | 7.63E+04      | 1.12E+04             | 2.83E+06             |          | 1.97E+01             | 4.24E+02             |
| Trichloroethene (TCE)               | 1.31E+00             | 5.07E+03      | 9.53E+02             | 1.98E+05             |          | 1.30E+00             | 1.54E+03             |
| cis-1,2-Dichloroethene              | 1.45E+01             | 5.26E+04      | 1.12E+04             | 2.04E+06             |          | 1.45E+01             | 3.94E+03             |
| Vinyl Chloride (VC)                 | 6.31E-02             | 7.47E+02      | 2.67E+01             | 1.04E+05             |          | 6.29E-02             | 1.36E+03             |
| 1,1,2,2-Tetrachloroethane (PCA)     | 2.98E+02             | 2.49E+05      | 1.10E+04             | 2.01E+06             |          | 2.90E+02             | 2.6/E+03             |
| 1,1,1-1richioroethane (TCA)         | 7.01E+02             | 3.81E+06      | 1.14E+06             | 2.07E+08             |          | 7.00E+02             | 1.43E+03             |
| Carbon Tetrachloride                | 7.14E-01<br>3.04E±00 | 1.08E+03      | 2.29E+02<br>7.62E±02 | 4.1/E+04<br>8.85E±0F |          | 7.11E-01<br>3.04E±00 | 3.41E+U3<br>1.52E±02 |
| Carbon disulphide                   | 1.16F+01             | 7.12E+04      | 9.53F+04             | 4.97F+06             | -        | 1.16F+01             | 2.11F+03             |
|                                     |                      |               |                      |                      |          |                      |                      |
|                                     |                      | ASC exceeds s | oil saturation       | limit                |          |                      |                      |





# **APPENDIX 12**

SOIL LEACHATE ASSESSMENT SHEETS

\*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l.

| Project Name:            | Lakevie Drive, Bicester  |
|--------------------------|--------------------------|
| Project Number:          | NTE2366                  |
| Assessment for:          | Soil Leachate Assessment |
| Laboratory:              | i2                       |
| Receptor:                | Freshwater               |
| Receptor Water Hardness: | 50 to <100               |

|        | Contaminant     | Units | Detection | Guideline      | Source         | Number of | Min   | Max    | TP101    | TP101    | TP102    |
|--------|-----------------|-------|-----------|----------------|----------------|-----------|-------|--------|----------|----------|----------|
|        |                 |       | Limit     | Concentration  |                | samples   |       |        | 0.200.30 | 0.400.50 | 0.100.20 |
|        | Arsenic         | µg/l  | 1.1       | 50             | EQS Freshwater | 3         | 1.10  | 5.90   | 1.70     | 1.10     | 5.90     |
|        | Barium          | mg/l  | 0.05      | 700            | UK DWS         | 3         | 0.01  | 0.02   | 0.01     | 0.01     | 0.02     |
|        | Beryllium       | µg/l  | 0.2       | None Available |                | 3         | 0.20  | 0.40   | 0.20     | 0.20     | 0.40     |
|        | Cadmium         | µg/l  | 0.08      | 0.08           | EQS Freshwater | 3         | 0.08  | 0.08   | 0.08     | 0.08     | 0.08     |
|        | Chromium III    | µg/l  | 0.4       | 4.7            | EQS Freshwater | 3         | 0.60  | 4.70   | 1.80     | 0.60     | 4.70     |
|        | Chromium VI     | µg/l  |           | 3.4            | EQS Freshwater | 0         | 0.00  | 0.00   |          |          |          |
| tals   | Copper          | µg/l  | 0.7       | 1              | EQS Freshwater | 3         | 22.00 | 42.00  | 23.00    | 22.00    | 42.00    |
| Me     | Lead            | µg/l  | 1         | 1.2            | EQS Freshwater | 3         | 1.80  | 6.80   | 2.10     | 1.80     | 6.80     |
| ₹      | Mercury         | µg/l  | 0.5       | 0.07           | EQS Freshwater | 3         | 0.50  | 0.50   | 0.50     | 0.50     | 0.50     |
| lea    | Nickel          | µg/l  | 0.3       | 4              | EQS Freshwater | 3         | 1.50  | 4.20   | 4.20     | 1.50     | 4.20     |
| -      | Selenium        | µg/l  | 4         | 10             | UK DWS         | 3         | 4.00  | 4.00   | 4.00     | 4.00     | 4.00     |
|        | Vanadium        | µg/l  | 1.7       | None Available |                | 3         | 1.70  | 7.70   | 1.70     | 1.70     | 7.70     |
|        | Zinc            | µg/l  | 0.4       | 10.9           | EQS Freshwater | 3         | 9.90  | 12.00  | 10.00    | 9.90     | 12.00    |
|        | Sulphate        | mg/l  | 0.1       | 400            | EQS Freshwater | 3         | 11.00 | 210.00 | 11.00    | 13.00    | 210.00   |
|        | Boron           | mg/l  | 10        | 2000           | EQS Freshwater | 3         | 0.07  | 0.30   | 0.09     | 0.07     | 0.30     |
|        | рН              |       |           |                |                | 3         | 7.90  | 8.20   | 7.90     | 8.00     | 8.20     |
| Janics | Cyanide (total) | µg∕l  | 10        | 1              | EQS Freshwater | 3         | 10.00 | 10.00  | 10.00    | 10.00    | 10.00    |
| Inorg  | Phenol*         | µg/l  |           | 7.7            | EQS Freshwater | 0         | 0.00  | 0.00   |          |          |          |



# **APPENDIX 13**

# **GROUNDWATER ASSESSMENT SHEETS**

\*EQS Standard: Phenol and Benzene annual average of 300μg/l; Toluene 500μg/l for Freshwater, 400μg/l for Saltwater; 1,1,1-TCA 1,000μg/l.

| Project Name:            | Lakevie Drive, Bicester |
|--------------------------|-------------------------|
| Project Number:          | NTE2366                 |
| Assessment for:          | Water Assessment        |
| Laboratory:              | i2                      |
| Receptor:                | Freshwater              |
| Receptor Water Hardness: | 50 to <100              |
|                          |                         |

|          | Contaminant             | Units | Detection<br>Limit | Guideline<br>Concentration | Source         | Number of<br>Samples | Min   | Max     | BH101  | BH102  | BH103  | BH104  | BH105  | BH106  | BH107  | BH108  | BH110   | BH113  |
|----------|-------------------------|-------|--------------------|----------------------------|----------------|----------------------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
|          | Arsenic                 | µg/l  | 0.15               | 50                         | EQS Freshwater | 10                   | 0.35  | 3.94    | 0.35   | 0.41   | 3.06   | 1.66   | 1.43   | 0.92   | 1.28   | 0.37   | 3.94    | 1.28   |
|          | Barium                  | mg/l  | 0.06               | 700                        | UK DWS         | 10                   | 30.00 | 160.00  | 34     | 47     | 43     | 86     | 67     | 30     | 160    | 62     | 97      | 49     |
|          | Beryllium               | µg/l  | 0.10               | None Available             |                | 0                    | 0.00  | 0.00    | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1  | < 0.1   | < 0.1  |
|          | Cadmium                 | µg/l  | 0.02               | 0.08                       | EQS Freshwater | 10                   | 0.02  | 0.04    | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.03   | 0.02   | 0.03   | < 0.02  | 0.04   |
|          | Chromium III            | µg/l  | 0.20               | 4.7                        | EQS Freshwater | 10                   | 0.20  | 0.70    | < 0.2  | < 0.2  | < 0.2  | 0.5    | 0.7    | < 0.2  | 0.7    | 0.3    | 0.2     | < 0.2  |
|          | Chromium VI             | µg/l  | 5.00               | 3.4                        | EQS Freshwater | 10                   | 0.00  | 0.00    | < 5.0  | < 5.0  | < 5.0  | < 5.0  | < 5.0  | < 5.0  | < 5.0  | < 5.0  | < 5.0   | < 5.0  |
| tale     | Copper                  | µg/l  | 0.50               | 1                          | EQS Freshwater | 10                   | 1.10  | 8.20    | < 0.5  | 8.2    | < 0.5  | 1.2    | 1.7    | 1.1    | 2.4    | 1.8    | 5.5     | 1.5    |
| Ae       | Lead                    | µg/l  | 0.20               | 1.2                        | EQS Freshwater | 10                   | 0.60  | 5.60    | < 0.2  | < 0.2  | < 0.2  | 0.6    | 5.6    | < 0.2  | 2.2    | < 0.2  | 1       | < 0.2  |
| ŝ        | Mercury                 | µg/l  | 0.05               | 0.07                       | EQS Freshwater | 10                   | 0.05  | 0.16    | < 0.05 | 0.11   | < 0.05 | 0.05   | < 0.05 | < 0.05 | < 0.05 | 0.16   | < 0.05  | < 0.05 |
| Ę        | Nickel                  | µg/l  | 0.50               | 4                          | EQS Freshwater | 10                   | 0.90  | 31.00   | 0.9    | 2.6    | 1.2    | 31     | 5      | 15     | 7.4    | 3.4    | 11      | 4.4    |
|          | Selenium                | µg/l  | 0.60               | 10                         | UK DWS         | 10                   | 0.80  | 5.50    | < 0.6  | < 0.6  | < 0.6  | < 0.6  | < 0.6  | 0.8    | 1.4    | 5.5    | 1.2     | 1.9    |
|          | Vanadium                | µg/l  | 0.20               | None Available             |                | 10                   | 0.20  | 1.90    | 1.6    | 0.2    | < 0.2  | 1.1    | 0.5    | < 0.2  | 1.9    | 0.2    | 0.4     | 0.6    |
|          | Zinc                    | µg/l  | 0.50               | 10.9                       | EQS Freshwater | 10                   | 1.70  | 11.00   | < 0.5  | 2.5    | < 0.5  | 7.8    | 1.7    | 4      | 7.6    | 11     | 2.6     | 2      |
|          | Sulphate                | mg/l  | 45                 | 400                        | EQS Freshwater | 10                   | 88.40 | 1090.00 | 88.40  | 168.00 | 106.00 | 310.00 | 301.00 | 779.00 | 949.00 | 633.00 | 1090.00 | 103.00 |
|          | Boron                   | mg/l  | 10.00              | 2000                       | EQS Freshwater | 10                   | 78.00 | 1200.00 | 1100   | 390    | 1200   | 78     | 81     | 240    | 540    | 170    | 400     | 150    |
|          | рН                      |       |                    |                            |                | 10                   | 7.00  | 7.50    | 7.50   | 7.20   | 7.30   | 7.20   | 7.30   | 7.10   | 7.10   | 7.20   | 7.00    | 7.20   |
| ganics   | Cyanide (total)         | µg/l  | 10                 | 1                          | EQS Freshwater | 10                   | 10.00 | 10.00   | 10.00  | 10.00  | 10.00  | 10.00  | 10.00  | 10.00  | 10.00  | 10.00  | 10.00   | 10.00  |
| lnorg    | Phenol*                 | µg/l  | 10                 | 7.7                        | EQS Freshwater | 10                   | 0.00  | 0.00    | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10    | < 10   |
|          | Aliphatic C5-C6         | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
|          | Aliphatic C6-C8         | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| 10       | Aliphatic C8-C10        | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| 20       | Aliphatic C10-C12       | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| arb<br>d | Aliphatic C12-C16       | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| 20       | Aliphatic C16-C21       | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| ₽        | Aliphatic C21-C35       | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| Ē        | Aromatic EC5-EC7        | µg/l  |                    | 10                         | EQS Freshwater | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| le       | Aromatic EC7-EC8        | µg/l  |                    | 74                         | EQS Freshwater | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| etro     | Aromatic EC8-EC10       | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| - F      | Aromatic EC10-EC12      | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| oto      | Aromatic EC12-EC16      | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
| -        | Aromatic EC16-EC21      | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
|          | Aromatic EC21-EC35      | µg/l  |                    | 10                         | UK DWS         | 0                    | 0.00  | 0.00    |        |        |        |        |        |        |        |        |         |        |
|          | Total TPH (EC5-EC35)    | µg/l  | 10.00              | 10                         | EQS Freshwater | 10                   | 0.00  | 0.00    | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10   | < 10    | < 10   |
|          | Acenaphthene            | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
|          | Acenaphthylene          | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| SC       | Anthracene              | µg/l  | 0.01               | 0.1                        | EQS Freshwater | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| ōđ       | Benzo(a)anthracene      | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| ca       | Benzo(a)pyrene          | µg/l  | 0.01               | 0.00017                    | EQS Freshwater | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| de<br>P  | Benzo(b)fluoranthene    | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| È        | Benzo(k)fluoranthene    | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| atic C   | Benzo(g,h,i)perylene    | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| L L L    | Chrysene                | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| Arc      | Dibenzo(a,h)anthracene  | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| <u>9</u> | Fluoranthene            | µg/l  | 0.01               | 0.0063                     | EQS Freshwater | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| 5<br>S   | Fluorene                | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| _o<br>∧  | Indeno(1,2,3-c,d)pyrene | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| 1        | Naphthalene             | µg/l  | 0.01               | 2                          | EQS Freshwater | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
|          | Phenanthrene            | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |
| 1        | Pyrene                  | µg/l  | 0.01               | None Available             |                | 10                   | 0.01  | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   |



# **APPENDIX 14**

# PRELIMINARY WASTE ASSESSMENT





# Waste Classification Report



| lob name             |
|----------------------|
| ITE2366 Bicester     |
|                      |
| Description/Comments |
|                      |
|                      |
| Project              |
| NTE2366              |
|                      |
| Site                 |

**Bicester** 

# Waste Stream Template

BWB Contaminated Land Suite WM3

#### Classified by

Name: **Richard Robinson** Date: **21/09/2017 10:03:31 UTC** Telephone: **0115 924 1100**  Company: BWB Consulting Ltd 5th Floor Waterfront House, Station Street Nottingham NG2 3DQ

#### Report

Created by: Richard Robinson Created date: 21/09/2017 10:03 UTC

#### Job summary

| #  | Sample Name | Depth [m] | Classification Result | Hazard properties | Page |
|----|-------------|-----------|-----------------------|-------------------|------|
| 1  | TP101       | 0.20-0.30 | Non Hazardous         |                   | 3    |
| 2  | TP101[1]    | 0.40-0.50 | Non Hazardous         |                   | 6    |
| 3  | TP102       | 0.10-0.20 | Hazardous             | HP 7, HP 11       | 8    |
| 4  | TP102[1]    | 0.40-0.50 | Non Hazardous         |                   | 11   |
| 5  | TP103       | 0.20-0.30 | Non Hazardous         |                   | 13   |
| 6  | TP103[1]    | 0.90-1.00 | Non Hazardous         |                   | 15   |
| 7  | TP105       | 0.50-0.60 | Non Hazardous         |                   | 17   |
| 8  | TP106       | 0.10-0.20 | Non Hazardous         |                   | 19   |
| 9  | TP107       | 0.50-0.60 | Non Hazardous         |                   | 21   |
| 10 | TP114       | 0.10-0.20 | Non Hazardous         |                   | 23   |
| 11 | TP114[1]    | 1.00-1.20 | Non Hazardous         |                   | 25   |
| 12 | TP118       | 0.70-0.80 | Non Hazardous         |                   | 27   |
| 13 | TP119       | 0.80-0.90 | Non Hazardous         |                   | 29   |
| 14 | TP120       | 0.60-0.70 | Non Hazardous         |                   | 31   |
| 15 | TP121       | 0.10-0.20 | Non Hazardous         |                   | 33   |
| 16 | TP125       | 0.40-0.50 | Non Hazardous         |                   | 35   |
|    |             |           |                       |                   |      |



| Appendices                                              | Page |
|---------------------------------------------------------|------|
| Appendix A: Classifier defined and non CLP determinands | 37   |
| Appendix B: Rationale for selection of metal species    | 39   |
| Appendix C: Version                                     | 39   |



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
|                        |  |

# Sample details

| Sample Name:<br>TP101            | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil     |
|----------------------------------|-----------------------|----------------------------------------------------------------------|
| 0.20-0.30 m<br>Moisture content: | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05<br>03) |
| 16%<br>(no correction)           |                       |                                                                      |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 16% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number                                                      | CAS Number                                              | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from die                                                         | sel or petrol                                           |          | Ø                 |                 |                |                         |                   |                     |
| 2  | <b>\$</b> | arsenic {                                                                                   | 1327-53-3                                               | -        | 28 mg/kg          | 1.32            | 36.969 mg/kg   | 0.0037 %                |                   |                     |
| 3  | 4         | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1                                     | 1304-56-9                                               |          | 1.1 mg/kg         | 2.775           | 3.053 mg/kg    | 0.000305 %              |                   |                     |
| 4  | *         | boron { • boron tribromide/trichloride<br>(combined) }                                      | /trifluoride<br>10294-33-4,<br>10294-34-5,<br>7637-07-2 | _        | 4.5 mg/kg         | 13.43           | 60.435 mg/kg   | 0.00604 %               |                   |                     |
| 5  | 4         | cadmium {                                                                                   | 1306-23-6                                               | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | 4         | chromium { Chromium(III) oxide }<br>215-160-9                                               | 1308-38-9                                               |          | 32 mg/kg          | 1.462           | 46.77 mg/kg    | 0.00468 %               |                   |                     |
| 7  | 4         | copper { dicopper oxide; copper (I)                                                         | oxide }                                                 |          | 41 mg/kg          | 1.126           | 46.161 mg/kg   | 0.00462 %               |                   |                     |
| 8  | <b>\$</b> | lead { lead chromate }<br>082-004-00-2 231-846-0                                            | 7758-97-6                                               | 1        | 51 mg/kg          | 1.56            | 79.551 mg/kg   | 0.0051 %                |                   |                     |
| 9  | 4         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8                                    | 7487-94-7                                               | _        | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | *         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1]<br>234-348-1 [2]                | 12054-48-7 [1]<br>11113-74-9 [2]                        | _        | 28 mg/kg          | 1.579           | 44.226 mg/kg   | 0.00442 %               |                   |                     |
| 11 | \$        | selenium { selenium compounds with<br>cadmium sulphoselenide and those s<br>in this Annex } | the exception of<br>becified elsewhere                  |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | ~         | zinc { zinc chromate }<br>024-007-00-3                                                      |                                                         |          | 95 mg/kg          | 2.774           | 263.544 mg/kg  | 0.0264 %                |                   |                     |
| 13 | 8         | рН                                                                                          | PH                                                      |          | 7.8 pH            |                 | 7.8 pH         | 7.8 pH                  |                   |                     |



| #        |   | Determinand                                                                                                                                                                 | CAS Number                                                   | P Note | User entere | d data | Conv.<br>Factor | Compound c | onc.   | Classification value | Applied | Conc. Not<br>Used   |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------|-------------|--------|-----------------|------------|--------|----------------------|---------|---------------------|
|          |   | CLP Index number EC Number                                                                                                                                                  | CAS Number                                                   | С      |             |        |                 |            |        |                      | Σ       |                     |
| 14       | * | cyanides { salts of hydrogen cyanic<br>exception of complex cyanides such a<br>ferricyanides and mercuric oxycyanide<br>specified elsewhere in this Annex }<br>006-007-00-5 | de with the<br>as ferrocyanides,<br>e and those              |        | <1          | mg/kg  | 1.884           | <1.884     | mg/kg  | <0.000188 %          |         | <lod< th=""></lod<> |
|          |   | TPH (C6 to C40) petroleum group                                                                                                                                             |                                                              |        |             |        |                 |            | _      |                      |         |                     |
| 15       |   |                                                                                                                                                                             | ТРН                                                          | -      | 48          | mg/kg  |                 | 48         | mg/kg  | 0.0048 %             |         |                     |
|          |   | benzene                                                                                                                                                                     |                                                              | +      |             |        |                 |            |        |                      |         |                     |
| 16       |   | 601-020-00-8 200-753-7                                                                                                                                                      | 71-43-2                                                      | -      | <1          | mg/kg  |                 | <1         | mg/kg  | <0.0001 %            |         | <lod< th=""></lod<> |
| <b>—</b> |   | ethylbenzene                                                                                                                                                                |                                                              |        |             |        |                 |            |        |                      |         |                     |
| 17       | Ŭ | 601-023-00-4 202-849-4                                                                                                                                                      | 100-41-4                                                     |        | <1          | mg/kg  |                 | <1         | mg/kg  | <0.0001 %            |         | <lod< th=""></lod<> |
| 1.0      |   | toluene                                                                                                                                                                     |                                                              | 1      |             |        |                 |            |        |                      |         |                     |
| 18       |   | 601-021-00-3 203-625-9                                                                                                                                                      | 108-88-3                                                     | -      | <1          | mg/kg  |                 | <1         | mg/kg  | <0.0001 %            |         | <lod< th=""></lod<> |
|          |   | xylene                                                                                                                                                                      |                                                              |        |             |        |                 |            |        |                      |         |                     |
| 19       |   | 601-022-00-9 202-422-2 [1]<br>203-396-5 [2]<br>203-576-3 [3]<br>215-535-7 [4]                                                                                               | 95-47-6 [1]<br>106-42-3 [2]<br>108-38-3 [3]<br>1330-20-7 [4] |        | <1          | mg/kg  |                 | <1         | mg/kg  | <0.0001 %            |         | <lod< th=""></lod<> |
| 20       | 0 | acenaphthene                                                                                                                                                                |                                                              |        | <0.05       | mg/kg  |                 | <0.05      | mg/kg  | <0.000005 %          |         | <lod< th=""></lod<> |
|          |   | 201-469-6                                                                                                                                                                   | 83-32-9                                                      |        |             |        |                 |            |        |                      |         |                     |
| 21       | ۲ | acenaphthylene                                                                                                                                                              |                                                              |        | <0.05       | mg/kg  |                 | <0.05      | mg/kg  | <0.000005 %          |         | <lod< th=""></lod<> |
|          |   | 205-917-1                                                                                                                                                                   | 208-96-8                                                     | _      |             |        |                 |            |        |                      |         |                     |
| 22       | ۲ | anthracene                                                                                                                                                                  |                                                              |        | <0.05       | mg/kg  |                 | <0.05      | mg/kg  | <0.000005 %          |         | <lod< th=""></lod<> |
|          |   | 204-371-1                                                                                                                                                                   | 120-12-7                                                     | _      |             |        |                 |            |        |                      |         |                     |
| 23       |   | benzo[a]anthracene                                                                                                                                                          |                                                              |        | 0.12        | mg/kg  |                 | 0.12       | mg/kg  | 0.000012 %           |         |                     |
|          |   | 601-033-00-9 200-280-6                                                                                                                                                      | 56-55-3                                                      | -      |             |        |                 |            |        |                      |         |                     |
| 24       |   | benzo[a]pyrene; benzo[def]chrysene                                                                                                                                          |                                                              |        | 0.17        | mg/kg  |                 | 0.17       | mg/kg  | 0.000017 %           |         |                     |
|          |   | 601-032-00-3 200-028-5                                                                                                                                                      | 60-32-8                                                      | +      |             |        |                 |            |        |                      |         |                     |
| 25       |   |                                                                                                                                                                             | 205 00 2                                                     |        | 0.13        | mg/kg  |                 | 0.13       | mg/kg  | 0.000013 %           |         |                     |
|          |   | bonzo[gbi]ponylono                                                                                                                                                          | 205-99-2                                                     | +      |             |        |                 |            |        |                      |         |                     |
| 26       | ۲ | 205-883-8                                                                                                                                                                   | 101-24-2                                                     | -      | <0.05       | mg/kg  |                 | <0.05      | mg/kg  | <0.000005 %          |         | <lod< th=""></lod<> |
|          |   | henzo[k]fluoranthene                                                                                                                                                        | 131-24-2                                                     | +      |             |        |                 |            |        |                      |         |                     |
| 27       |   | 601-036-00-5 205-916-6                                                                                                                                                      | 207-08-9                                                     | -      | 0.13        | mg/kg  |                 | 0.13       | mg/kg  | 0.000013 %           |         |                     |
|          |   | chrysene                                                                                                                                                                    | F01 00 0                                                     |        |             |        |                 |            |        |                      |         |                     |
| 28       |   | 601-048-00-0 205-923-4                                                                                                                                                      | 218-01-9                                                     | -      | 0.15        | mg/kg  |                 | 0.15       | mg/kg  | 0.000015 %           |         |                     |
|          |   | dibenz[a,h]anthracene                                                                                                                                                       | 1                                                            |        | 0.05        |        |                 | 0.05       |        | 0.000005.0/          |         | 1.00                |
| 29       |   | 601-041-00-2 200-181-8                                                                                                                                                      | 53-70-3                                                      |        | <0.05       | mg/kg  |                 | <0.05      | mg/kg  | <0.000005 %          |         | <lod< th=""></lod<> |
| 20       | 8 | fluoranthene                                                                                                                                                                |                                                              | 1      | 0.04        | m ~//  |                 | 0.24       | malle  | 0.000024.0/          |         |                     |
| 30       |   | 205-912-4                                                                                                                                                                   | 206-44-0                                                     |        | 0.24        | mg/kg  |                 | 0.24       | mg/кg  | 0.000024 %           |         |                     |
| 21       | 8 | fluorene                                                                                                                                                                    |                                                              |        | <0.0E       | ma/ka  |                 | <0.0E      | malka  |                      |         |                     |
| 31       |   | 201-695-5                                                                                                                                                                   | 86-73-7                                                      | -      | <0.05       | тід/кд |                 | <0.05      | тід/кд | <0.000005 %          |         | <lod< th=""></lod<> |
| 32       | 8 | indeno[123-cd]pyrene                                                                                                                                                        |                                                              |        | <0.05       | ma/ka  |                 | <0.05      | ma/ka  |                      |         |                     |
|          |   | 205-893-2                                                                                                                                                                   | 193-39-5                                                     |        | C0.05       | mg/kg  |                 | <0.05      | ing/kg | <0.000003 %          |         |                     |
| 33       |   | naphthalene                                                                                                                                                                 |                                                              |        | <0.05       | ma/ka  |                 | <0.05      | ma/ka  | <0.000005 %          |         |                     |
|          |   | 601-052-00-2 202-049-5                                                                                                                                                      | 91-20-3                                                      |        |             |        |                 |            |        |                      |         |                     |
| 34       | 0 | phenanthrene                                                                                                                                                                |                                                              |        | < 0.05      | ma/ka  |                 | <0.05      | ma/ka  | <0.000005 %          |         | <lod< th=""></lod<> |
|          |   | 201-581-5                                                                                                                                                                   | 85-01-8                                                      |        |             |        |                 |            |        |                      |         | -                   |
| 35       | ۲ | pyrene                                                                                                                                                                      | - I                                                          |        | 0.22        | mg/ka  |                 | 0.22       | mg/kg  | 0.000022 %           |         |                     |
|          |   | 204-927-3                                                                                                                                                                   | 129-00-0                                                     |        |             |        |                 |            |        |                      |         |                     |
| 36       |   | phenol           604-001-00-2         203-632-7                                                                                                                             | 108-95-2                                                     |        | <1          | mg/kg  |                 | <1         | mg/kg  | <0.0001 %            |         | <lod< th=""></lod<> |
|          |   |                                                                                                                                                                             |                                                              |        |             |        |                 |            | Total: | 0.0612 %             |         |                     |



| Report created by Richard Robinson on 21/09/20 | )1 |
|------------------------------------------------|----|
|------------------------------------------------|----|

| Key                                                  |                                                                                                                                 |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                              |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                           |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                               |
| 4                                                    | Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                        |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                   |

# **Supplementary Hazardous Property Information**



# Classification of sample: TP101[1]

| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| i                      |  |

# Sample details

| Sample Name:      | LoW Code: |                                                                  |
|-------------------|-----------|------------------------------------------------------------------|
| TP101[1]          | Chapter:  | 17: Construction and Demolition Wastes (including excavated soil |
| Sample Depth:     |           | from contaminated sites)                                         |
| 0.40-0.50 m       | Entry:    | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content: |           | 03)                                                              |
| 10%               |           |                                                                  |
| (no correction)   |           |                                                                  |

# Hazard properties

None identified

#### **Determinands**

#### Moisture content: 10% No Moisture Correction applied (MC)

| #   |   | CLP index number                                           | Determinand<br>EC Number                  | CAS Number                                             | CLP Note | User entere | d data | Conv.<br>Factor | Compound c | conc. | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|-----|---|------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|----------|-------------|--------|-----------------|------------|-------|-------------------------|------------|---------------------|
| 1   | • | confirm TPH has N                                          | IOT arisen from die                       | sel or petrol                                          |          |             |        |                 |            |       |                         |            |                     |
| 2 1 | 4 | arsenic { arsenic tri                                      | ioxide }                                  | 1227 52 2                                              |          | 19          | mg/kg  | 1.32            | 25.086     | mg/kg | 0.00251 %               |            |                     |
| 3 1 | 4 | beryllium { berylliur                                      | n oxide }                                 | 1327-33-3                                              |          | 0.7         | ma/ka  | 2.775           | 1.943      | ma/ka | 0.000194 %              |            |                     |
|     |   | 004-003-00-8                                               | 215-133-1                                 | 1304-56-9                                              |          |             |        |                 |            |       |                         |            |                     |
| 4   | ~ | boron { <sup>●</sup> boron tri<br>(combined) }             | bromide/trichloride/                      | trifluoride<br>10294-33-4,<br>10294-34-5,<br>7637-07-2 |          | 3           | mg/kg  | 13.43           | 40.29      | mg/kg | 0.00403 %               |            |                     |
| 5   | 4 | cadmium { cadmiui                                          | m sulfide }                               | 4000.00.0                                              | 1        | <0.2        | mg/kg  | 1.285           | <0.257     | mg/kg | <0.00002 %              |            | <lod< th=""></lod<> |
| 6   | 4 | chromium {                                                 | prium(III) oxide }                        | 1308-38-9                                              |          | 19          | mg/kg  | 1.462           | 27.77      | mg/kg | 0.00278 %               |            |                     |
| 7   | 4 | copper { <sup>a</sup> dicoppe                              | er oxide; copper (I)                      | oxide }                                                |          | 31          | mg/kg  | 1.126           | 34.903     | mg/kg | 0.00349 %               |            |                     |
|     | æ | lead { lead chroma                                         | te }                                      | 1017-00-1                                              |          | 00          |        | 4.50            | 25.070     |       | 0.0000.0/               |            |                     |
| 8   |   | 082-004-00-2                                               | 231-846-0                                 | 7758-97-6                                              | 11       | 23          | тд/кд  | 1.50            | 35.876     | тд/кд | 0.0023 %                |            |                     |
| 9 * | ~ | mercury { mercury<br>080-010-00-X                          | dichloride }<br>231-299-8                 | 7487-94-7                                              |          | <0.3        | mg/kg  | 1.353           | <0.406     | mg/kg | <0.0000406 %            |            | <lod< th=""></lod<> |
|     |   | nickel { nickel dihyc                                      | droxide }                                 |                                                        |          |             |        |                 |            |       |                         |            |                     |
| 10  |   | 028-008-00-X                                               | 235-008-5 [1]<br>234-348-1 [2]            | 12054-48-7 [1]<br>11113-74-9 [2]                       |          | 19          | mg/kg  | 1.579           | 30.01      | mg/kg | 0.003 %                 |            |                     |
| 11  | 4 | selenium { seleniur<br>cadmium sulphose<br>in this Annex } | n compounds with t<br>lenide and those sp | the exception of<br>becified elsewhere                 |          | <1          | mg/kg  | 2.554           | <2.554     | mg/kg | <0.000255 %             |            | <lod< th=""></lod<> |
| 12  | 4 | zinc { zinc chromat                                        | <mark>e</mark> }                          | I                                                      |          | 48          | mg/kg  | 2.774           | 133.159    | mg/kg | 0.0133 %                |            |                     |
| 13  | 0 | pH                                                         |                                           | PH                                                     |          | 8           | pН     |                 | 8          | pН    | 8pH                     |            |                     |



|          |   | Determinand                                                                                                                                                                                                     | te  |                   | Conv     |                | Classification | lied | Conc. Not           |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|----------|----------------|----------------|------|---------------------|
| #        |   |                                                                                                                                                                                                                 | No  | User entered data | Factor   | Compound conc. | value          | App  | Used                |
|          |   | CLP index number EC Number CAS Number                                                                                                                                                                           | CLF |                   |          |                |                | MC   |                     |
| 14       | 4 | cyanides { salts of hydrogen cyanide with the<br>exception of complex cyanides such as ferrocyanides,<br>ferricyanides and mercuric oxycyanide and those<br>specified elsewhere in this Annex }<br>006-007-00-5 |     | <1 mg/kg          | 1.884    | <1.884 mg/kg   | <0.000188 %    |      | <lod< td=""></lod<> |
| 15       | 0 | TPH (C6 to C40) petroleum group                                                                                                                                                                                 |     | 27 mg/kg          |          | 27 mg/kg       | 0.0027 %       |      |                     |
|          | - | TPH                                                                                                                                                                                                             | _   |                   |          |                |                |      |                     |
| 16       | ۲ | acenaphthene                                                                                                                                                                                                    | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
|          | - | 201-469-6 83-32-9                                                                                                                                                                                               | _   |                   |          |                |                |      |                     |
| 17       | ۲ | acenaphthylene                                                                                                                                                                                                  | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
| <u> </u> | - | 205-917-1 208-96-8                                                                                                                                                                                              | _   |                   |          | <br>           |                |      |                     |
| 18       | ۲ | anthracene                                                                                                                                                                                                      | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
| <u> </u> | - | 204-371-1 120-12-7                                                                                                                                                                                              | _   |                   |          |                |                |      |                     |
| 19       |   | benzolajanthracene                                                                                                                                                                                              | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
|          | - | 601-033-00-9 200-280-6 p6-55-3                                                                                                                                                                                  | _   |                   |          |                |                |      |                     |
| 20       |   |                                                                                                                                                                                                                 | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
| -        | - | bonzo[b]fluoranthono                                                                                                                                                                                            |     |                   |          |                |                |      |                     |
| 21       |   | 601-034-00-4 205-011-0 205-00-2                                                                                                                                                                                 | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
|          |   | henzolahilnervlene                                                                                                                                                                                              |     |                   |          |                |                |      |                     |
| 22       |   | 205-883-8 191-24-2                                                                                                                                                                                              | -   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
|          |   | benzo[k]fluoranthene                                                                                                                                                                                            |     |                   |          |                |                |      |                     |
| 23       |   | 601-036-00-5 205-916-6 207-08-9                                                                                                                                                                                 |     | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
|          |   | chrysene                                                                                                                                                                                                        |     | 0.05 //           | <u> </u> | 0.05 //        | 0.000005.0/    |      | 1.00                |
| 24       |   | 601-048-00-0 205-923-4 218-01-9                                                                                                                                                                                 | -   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                                           |     | -0.0E malka       |          | -0.05 mg//rg   | -0.00000E 0/   |      |                     |
| 25       |   | 601-041-00-2 200-181-8 53-70-3                                                                                                                                                                                  | _   | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      | <lod< td=""></lod<> |
| 26       |   | fluoranthene                                                                                                                                                                                                    |     | -0.05 mg/kg       |          | -0.05 mg/kg    | -0.0000E %     |      |                     |
| 20       |   | 205-912-4 206-44-0                                                                                                                                                                                              |     | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000003 %    |      | <lod< td=""></lod<> |
| 27       |   | fluorene                                                                                                                                                                                                        |     | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.00005.94    |      |                     |
| 21       |   | 201-695-5 86-73-7                                                                                                                                                                                               |     | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000003 /8   |      | LOD                 |
| 28       |   | indeno[123-cd]pyrene                                                                                                                                                                                            |     | <0.05 mg/kg       |          | <0.05 mg/kg    | <0.000005 %    |      |                     |
| 20       |   | 205-893-2 193-39-5                                                                                                                                                                                              |     | <0.00 mg/kg       |          | <0.00 mg/kg    | <0.000000 /0   |      | LOD                 |
| 29       |   | naphthalene                                                                                                                                                                                                     |     | <0.05 mg/kg       |          | <0.05 ma/ka    | <0.000005 %    |      |                     |
| 20       |   | 601-052-00-2 202-049-5 91-20-3                                                                                                                                                                                  |     | <0.00 mg/kg       |          | <0.00 mg/kg    | <0.000000 /0   |      | LOD                 |
| 30       |   | phenanthrene                                                                                                                                                                                                    |     | <0.05 ma/ka       |          | <0.05 ma/ka    | <0.000005 %    |      | <1 OD               |
| Ľ        |   | 201-581-5 85-01-8                                                                                                                                                                                               |     |                   |          |                |                |      |                     |
| 31       | ۲ | pyrene                                                                                                                                                                                                          |     | <0.05 ma/ka       |          | <0.05 ma/ka    | <0.000005 %    |      | <lod< td=""></lod<> |
| Ľ        |   | 204-927-3 129-00-0                                                                                                                                                                                              | 1   |                   |          |                |                |      |                     |
| 32       |   | phenol                                                                                                                                                                                                          |     | <1 ma/ka          |          | <1 ma/ka       | <0.0001 %      |      | <lod< td=""></lod<> |
|          |   | 604-001-00-2 203-632-7 108-95-2                                                                                                                                                                                 |     |                   |          |                |                |      |                     |
|          |   |                                                                                                                                                                                                                 |     |                   |          | Total:         | 0.035 %        |      |                     |

Key

|                                                      | User supplied data                                                                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                           |
| Θ                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                               |
| 4                                                    | Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                        |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                   |

# Supplementary Hazardous Property Information



Report created by Richard Robinson on 21/09/2017

#### **Classification of sample: TP102**

| ;                        |
|--------------------------|
| 🛆 Hazardous Waste        |
| Classified as 17 05 03 * |
| in the List of Waste     |
|                          |

#### Sample details

| Sample Name:<br>TP102<br>Sample Depth:<br>0.10-0.20 m<br>Moisture content:<br>7.9% | LoW Code:<br>Chapter:<br>Entry: | <ul> <li>17: Construction and Demolition Wastes (including excavated soil from contaminated sites)</li> <li>17 05 03 * (Soil and stones containing hazardous substances)</li> </ul> |
|------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.9%<br>(no correction)                                                            |                                 |                                                                                                                                                                                     |

#### **Hazard properties**

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

|--|

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.1%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.1%)

#### **Determinands**

Moisture content: 7.9% No Moisture Correction applied (MC)

| # |   | CLP index number                               | Determinand<br>EC Number                    | CAS Number                                                           | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | MC Applied | Conc. Not<br>Used |
|---|---|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|-------------------|
| 1 | 8 | confirm TPH has N                              | OT arisen from die                          | sel or petrol                                                        |          |                   |                 |                |                         |            |                   |
| 2 | 4 | arsenic { arsenic tri<br>033-003-00-0          | <mark>oxide</mark> }<br>215-481-4           | 1327-53-3                                                            |          | 12 mg/k           | g 1.32          | 15.844 mg/kg   | 0.00158 %               |            |                   |
| 3 | 4 | beryllium { berylliur<br>004-003-00-8          | <mark>n oxide</mark> }<br>215-133-1         | 1304-56-9                                                            |          | 0.43 mg/k         | g 2.775         | 1.193 mg/kg    | 0.000119 %              |            |                   |
| 4 | 4 | boron { <sup>®</sup> boron tri<br>(combined) } | bromide/trichloride/                        | t <mark>rifluoride</mark><br>10294-33-4,<br>10294-34-5,<br>7637-07-2 |          | 3.3 mg/k          | g 13.43         | 44.319 mg/kg   | 0.00443 %               |            |                   |
| 5 | 4 | cadmium {                                      | <mark>n sulfide</mark> }<br>215-147-8       | 1306-23-6                                                            | 1        | 0.7 mg/k          | g 1.285         | 0.9 mg/kg      | 0.00007 %               |            |                   |
| 6 | 4 | chromium { <sup>●</sup> chro                   | <mark>mium(III) oxide</mark> }<br>215-160-9 | 1308-38-9                                                            |          | 21 mg/k           | g 1.462         | 30.693 mg/kg   | 0.00307 %               |            |                   |



| #  |           | Determinand                                                                                                                                                                   | CAS Number                                                   | P Note   | User entere | d data | Conv.<br>Factor | Compound co | inc.  | Classification value | C Applied | Conc. Not<br>Used   |
|----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|-------------|--------|-----------------|-------------|-------|----------------------|-----------|---------------------|
| 7  | 4         | copper { Chicopper oxide; copper (I) o                                                                                                                                        | <pre>&gt;xide } 1317-39-1</pre>                              | <u>ਹ</u> | 72          | mg/kg  | 1.126           | 81.064      | mg/kg | 0.00811 %            | W         |                     |
| 8  | *         | lead { lead chromate }                                                                                                                                                        | 7758-97-6                                                    | 1        | 67          | mg/kg  | 1.56            | 104.508     | mg/kg | 0.0067 %             |           |                     |
| 9  | \$        | mercury { mercury dichloride }                                                                                                                                                | 7487-94-7                                                    |          | <0.3        | mg/kg  | 1.353           | <0.406      | mg/kg | <0.0000406 %         |           | <lod< td=""></lod<> |
| 10 | 4         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1]<br>024-348-1 [2]                                                                                                  | 12054-48-7 [1]                                               | -        | 14          | mg/kg  | 1.579           | 22.113      | mg/kg | 0.00221 %            |           |                     |
| 11 | 4         | selenium { selenium compounds with t<br>cadmium sulphoselenide and those sp<br>in this Annex }                                                                                | he exception of<br>ecified elsewhere                         | _        | <1          | mg/kg  | 2.554           | <2.554      | mg/kg | <0.000255 %          |           | <lod< td=""></lod<> |
| 12 | \$        | zinc { zinc chromate }                                                                                                                                                        | [                                                            |          | 170         | mg/kg  | 2.774           | 471.605     | mg/kg | 0.0472 %             |           |                     |
| 13 | 0         | pH                                                                                                                                                                            | PH                                                           | _        | 9.7         | pН     |                 | 9.7         | pН    | 9.7 pH               |           |                     |
| 14 | <b>\$</b> | cyanides { salts of hydrogen cyanide<br>exception of complex cyanides such as<br>ferricyanides and mercuric oxycyanide<br>specified elsewhere in this Annex }<br>006-007-00-5 | e with the<br>s ferrocyanides,<br>and those                  |          | <1          | mg/kg  | 1.884           | <1.884      | mg/kg | <0.000188 %          |           | <lod< td=""></lod<> |
| 15 | 0         | TPH (C6 to C40) petroleum group                                                                                                                                               | ТРН                                                          |          | 1000        | mg/kg  |                 | 1000        | mg/kg | 0.1 %                |           |                     |
| 16 |           | benzene<br>601-020-00-8 200-753-7                                                                                                                                             | 71-43-2                                                      |          | <1          | mg/kg  |                 | <1          | mg/kg | <0.0001 %            |           | <lod< td=""></lod<> |
| 17 | 0         | ethylbenzene                                                                                                                                                                  | 100.41.4                                                     |          | <1          | mg/kg  |                 | <1          | mg/kg | <0.0001 %            |           | <lod< td=""></lod<> |
| 18 |           | toluene                                                                                                                                                                       | 400.00.0                                                     |          | <1          | mg/kg  |                 | <1 1        | mg/kg | <0.0001 %            |           | <lod< td=""></lod<> |
|    |           | 601-021-00-3 203-625-9<br>xylene                                                                                                                                              | 108-88-3                                                     |          |             |        |                 |             |       |                      |           |                     |
| 19 |           | 601-022-00-9 202-422-2 [1]<br>203-396-5 [2]<br>203-576-3 [3]<br>215-535-7 [4]                                                                                                 | 95-47-6 [1]<br>106-42-3 [2]<br>108-38-3 [3]<br>1330-20-7 [4] | _        | <1          | mg/kg  |                 | <1 1        | mg/kg | <0.0001 %            |           | <lod< td=""></lod<> |
| 20 | 8         | acenaphthene<br>201-469-6                                                                                                                                                     | 83-32-9                                                      | _        | <0.05       | mg/kg  |                 | <0.05       | mg/kg | <0.000005 %          |           | <lod< td=""></lod<> |
| 21 | 0         | acenaphthylene                                                                                                                                                                | 208-96-8                                                     |          | <0.05       | mg/kg  |                 | <0.05       | mg/kg | <0.000005 %          |           | <lod< td=""></lod<> |
| 22 | 0         | anthracene 204-371-1                                                                                                                                                          | 120-12-7                                                     | _        | 0.21        | mg/kg  |                 | 0.21        | mg/kg | 0.000021 %           |           |                     |
| 23 |           | benzo[a]anthracene<br>601-033-00-9 200-280-6                                                                                                                                  | 56-55-3                                                      |          | 1.4         | mg/kg  |                 | 1.4         | mg/kg | 0.00014 %            |           |                     |
| 24 |           | benzo[a]pyrene; benzo[def]chrysene<br>601-032-00-3 200-028-5                                                                                                                  | 50-32-8                                                      |          | 2.4         | mg/kg  |                 | 2.4         | mg/kg | 0.00024 %            |           |                     |
| 25 |           | benzo[b]fluoranthene<br>601-034-00-4 205-911-9                                                                                                                                | 205-99-2                                                     |          | 2           | mg/kg  |                 | 2           | mg/kg | 0.0002 %             |           |                     |
| 26 | 8         | benzo[ghi]perylene                                                                                                                                                            | 191-24-2                                                     |          | 1.9         | mg/kg  |                 | 1.9         | mg/kg | 0.00019 %            |           |                     |
| 27 |           | benzo[k]fluoranthene                                                                                                                                                          | 207-08-9                                                     | -        | 1.4         | mg/kg  |                 | 1.4         | mg/kg | 0.00014 %            |           |                     |
| 28 |           | chrysene<br>601-048-00-0 205-023-4                                                                                                                                            | 218-01-9                                                     | -        | 1.6         | mg/kg  |                 | 1.6         | mg/kg | 0.00016 %            |           |                     |
| 29 |           | dibenz[a,h]anthracene                                                                                                                                                         | 53-70-3                                                      |          | 0.23        | mg/kg  |                 | 0.23        | mg/kg | 0.000023 %           |           |                     |
| 30 | 8         | fluoranthene                                                                                                                                                                  | boe 44.0                                                     | _        | 2.2         | mg/kg  |                 | 2.2         | mg/kg | 0.00022 %            |           |                     |
| 31 | 0         | fluorene                                                                                                                                                                      | L00-77-0                                                     |          | <0.05       | mg/kg  |                 | <0.05       | mg/kg | <0.000005 %          |           | <lod< td=""></lod<> |
| 32 | 8         | indeno[123-cd]pyrene                                                                                                                                                          | 102 20 5                                                     |          | 1.5         | mg/kg  |                 | 1.5         | mg/kg | 0.00015 %            |           |                     |
|    |           | 205-893-2                                                                                                                                                                     | 193-38-5                                                     |          |             |        |                 |             |       |                      |           |                     |



| #  |   | CLP index number            | Determinand<br>EC Number | CAS Number | CLP Note | User entere | ed data | Conv.<br>Factor | Compound | l conc. | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|----|---|-----------------------------|--------------------------|------------|----------|-------------|---------|-----------------|----------|---------|-------------------------|------------|---------------------|
| 33 |   | naphthalene<br>601-052-00-2 | 202-049-5                | 91-20-3    |          | <0.05       | mg/kg   |                 | <0.05    | mg/kg   | <0.000005 %             |            | <lod< th=""></lod<> |
| 34 | 8 | phenanthrene                | 201-581-5                | 85-01-8    |          | 0.73        | mg/kg   |                 | 0.73     | mg/kg   | 0.000073 %              |            |                     |
| 35 | ۵ | pyrene                      | 204-927-3                | 129-00-0   |          | 2.1         | mg/kg   |                 | 2.1      | mg/kg   | 0.00021 %               |            |                     |
| 36 |   | phenol<br>604-001-00-2      | 203-632-7                | 108-95-2   |          | <1          | mg/kg   |                 | <1       | mg/kg   | <0.0001 %               |            | <lod< th=""></lod<> |
|    |   | 4                           |                          |            | •        |             |         |                 |          | Total:  | 0.176 %                 | Γ          |                     |

ĸ

| кеу                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
|                                                      | Hazardous result                                                                                                               |
|                                                      | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |

CLP: Note 1 Only the metal concentration has been used for classification

#### **Supplementary Hazardous Property Information**



| Non Hazardous Waste                     |  |
|-----------------------------------------|--|
| Classified as 17 05 04                  |  |
| in the List of Waste                    |  |
| ••••••••••••••••••••••••••••••••••••••• |  |

# Sample details

| Sample Name:      | LoW Code: |                                                                  |
|-------------------|-----------|------------------------------------------------------------------|
| TP102[1]          | Chapter:  | 17: Construction and Demolition Wastes (including excavated soil |
| Sample Depth:     |           | from contaminated sites)                                         |
| 0.40-0.50 m       | Entry:    | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content: |           | 03)                                                              |
| 12%               |           |                                                                  |
| (no correction)   |           |                                                                  |
|                   |           |                                                                  |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 12% No Moisture Correction applied (MC)

| #   |    | Determinand                                                                      |                               | o Note | User entered data | Conv.<br>Factor | Compound conc. | Classification value | Applied | Conc. Not<br>Used   |
|-----|----|----------------------------------------------------------------------------------|-------------------------------|--------|-------------------|-----------------|----------------|----------------------|---------|---------------------|
|     |    | CLP index number EC Number                                                       | CAS Number                    | U.L.   |                   |                 |                |                      | MC      |                     |
| 1   |    | confirm TPH has NOT arisen from diesel                                           | or petrol                     |        |                   |                 |                |                      |         |                     |
|     |    |                                                                                  |                               |        |                   |                 |                |                      |         |                     |
| 2   | 4  | arsenic { arsenic trioxide }                                                     |                               |        | 20 mg/kg          | 1.32            | 26.407 mg/kg   | 0.00264 %            |         |                     |
|     |    | 033-003-00-0 215-481-4 13                                                        | 27-53-3                       |        |                   |                 |                |                      |         |                     |
| 3   | 4  | beryllium { beryllium oxide }                                                    |                               |        | 0.61 mg/kg        | 2.775           | 1.693 mg/kg    | 0.000169 %           |         |                     |
|     |    | 004-003-00-8 215-133-1 13                                                        | 04-56-9                       |        |                   |                 |                |                      |         |                     |
|     | 4  | boron { • boron tribromide/trichloride/trifl                                     | luoride                       |        |                   |                 |                |                      |         |                     |
| 4   |    | (combined) }                                                                     |                               |        | 2.2 ma/ka         | 12 12           | 20.990 ma/ka   | 0.00200.9/           |         |                     |
| 4   |    | 10                                                                               | 294-33-4,                     |        | 2.5 Hig/kg        | 13.43           | 30.009 Hig/kg  | 0.00309 %            |         |                     |
|     |    | 10                                                                               | 294-34-5,                     |        |                   |                 |                |                      |         |                     |
|     |    | cadmium { cadmium sulfide }                                                      | 01 01 2                       |        |                   |                 |                |                      |         |                     |
| 5   | ** | 048-010-00-4 215-147-8 13                                                        | 06-23-6                       | 1      | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %           |         | <lod< td=""></lod<> |
| 6   | 4  | chromium { <sup>•</sup> chromium(III) oxide }                                    |                               |        | 21 ma/ka          | 1.462           | 30.693 ma/ka   | 0.00307 %            |         |                     |
| -   |    | 215-160-9 13                                                                     | 08-38-9                       |        |                   |                 |                | ,-                   |         |                     |
| 7   | 4  | copper { • dicopper oxide; copper (I) oxid                                       | de }                          |        | 35 mg/kg          | 1.126           | 39.406 mg/kg   | 0.00394 %            |         |                     |
|     |    | 029-002-00-X 215-270-7 13                                                        | 17-39-1                       |        |                   |                 |                |                      |         |                     |
| 8   | 4  | lead { <mark>lead chromate</mark> }                                              |                               | 1      | 40 mg/kg          | 1.56            | 62.393 mg/kg   | 0.004 %              |         |                     |
|     |    | 082-004-00-2 231-846-0 77                                                        | 758-97-6                      |        |                   |                 |                |                      |         |                     |
| 9   | 4  | mercury { mercury dichloride }                                                   |                               |        | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %         |         | <lod< td=""></lod<> |
|     |    | 080-010-00-X 231-299-8 74                                                        | 87-94-7                       |        |                   |                 |                |                      |         |                     |
| 10  | 4  | nickel { nickel dihydroxide }                                                    |                               |        | 40                | 4 5 70          | 00.404         | 0.00004.0/           |         |                     |
| 10  |    | 028-008-00-X 235-008-5 [1] 12<br>234-348-1 [2] 11                                | 2054-48-7 [1]<br>113-74-9 [2] |        | 18 mg/kg          | 1.579           | 28.431 mg/kg   | 0.00284 %            |         |                     |
| 11  | 4  | selenium { selenium compounds with the<br>cadmium sulphoselenide and those speci | exception of ified elsewhere  |        | <1 ma/ka          | 2 554           | <2.554 ma/ka   | <0 000255 %          |         |                     |
| ' ' |    | in this Annex }                                                                  |                               |        | <1 IIIg/kg        | 2.004           | ~2.004 ing/kg  | 0.000200 /0          |         |                     |
|     |    | 034-002-00-8                                                                     |                               |        |                   |                 |                |                      |         |                     |
| 12  | 4  | zinc { zinc chromate }                                                           |                               |        | 78 mg/kg          | 2.774           | 216.383 mg/kg  | 0.0216 %             |         |                     |
|     |    | 024-007-00-3                                                                     |                               |        |                   |                 |                |                      |         |                     |
| 13  | ۲  | pH                                                                               | 4                             |        | 8.1 pH            |                 | 8.1 pH         | 8.1 pH               |         |                     |
| L   |    | FI FI                                                                            | 1                             |        |                   |                 | l              |                      |         |                     |



| #  |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                                            | CLP Note | User entered d | lata  | Conv.<br>Factor | Compound conc. | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | ~ | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }<br>006-007-00-5 |          | <1 m           | ng/kg | 1.884           | <1.884 mg/kg   | <0.000188 %             |            | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                                        |          | 61 m           | ng/kg |                 | 61 mg/kg       | 0.0061 %                |            |                     |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                                         |          | <0.05 m        | ng/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 |   | acenaphthylene 205-917-1 208-96-8                                                                                                                                                                      |          | <0.05 m        | ng/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | 0 | anthracene 204-371-1 120-12-7                                                                                                                                                                          |          | 0.19 m         | ng/kg |                 | 0.19 mg/kg     | 0.000019 %              |            |                     |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                                   |          | 0.82 m         | ng/kg |                 | 0.82 mg/kg     | 0.000082 %              |            |                     |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                                            |          | 1.2 m          | ng/kg |                 | 1.2 mg/kg      | 0.00012 %               |            |                     |
| 21 |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                                |          | 1.2 m          | ng/kg |                 | 1.2 mg/kg      | 0.00012 %               |            |                     |
| 22 | ۲ | benzo[ghi]perylene<br>205-883-8  191-24-2                                                                                                                                                              |          | 0.86 m         | ng/kg |                 | 0.86 mg/kg     | 0.000086 %              |            |                     |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                                |          | 0.59 m         | ng/kg |                 | 0.59 mg/kg     | 0.000059 %              |            |                     |
| 24 |   | chrysene<br>601-048-00-0 205-923-4 218-01-9                                                                                                                                                            |          | 0.96 m         | ng/kg |                 | 0.96 mg/kg     | 0.000096 %              |            |                     |
| 25 |   | dibenz[a,h]anthracene<br>601-041-00-2 200-181-8 53-70-3                                                                                                                                                |          | 0.14 m         | ng/kg |                 | 0.14 mg/kg     | 0.000014 %              |            |                     |
| 26 | 0 | fluoranthene 205-912-4 206-44-0                                                                                                                                                                        |          | 1.2 m          | ng/kg |                 | 1.2 mg/kg      | 0.00012 %               |            |                     |
| 27 | 0 | fluorene 201-695-5 86-73-7                                                                                                                                                                             |          | <0.05 m        | ng/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | ۲ | indeno[123-cd]pyrene<br>205-893-2  193-39-5                                                                                                                                                            |          | 0.63 m         | ng/kg |                 | 0.63 mg/kg     | 0.000063 %              |            |                     |
| 29 |   | naphthalene<br>601-052-00-2 202-049-5 91-20-3                                                                                                                                                          |          | <0.05 m        | ng/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 |   | phenanthrene 201-581-5 85-01-8                                                                                                                                                                         |          | 0.39 m         | ng/kg |                 | 0.39 mg/kg     | 0.000039 %              |            |                     |
| 31 | ۵ | pyrene 204-927-3 129-00-0                                                                                                                                                                              |          | 1.1 m          | ng/kg |                 | 1.1 mg/kg      | 0.00011 %               |            |                     |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                                              |          | <1 m           | ng/kg |                 | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   |                                                                                                                                                                                                        |          |                |       |                 | Total          | 0.049 %                 |            |                     |

Kev

| Ney                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                  |

# **Supplementary Hazardous Property Information**



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:                 | LoW Code: | 17: Construction and Demolition Wastes (including excavated soil                          |
|------------------------------|-----------|-------------------------------------------------------------------------------------------|
| Sample Depth:<br>0 20-0 30 m | Entry:    | from contaminated sites)<br>17 05 04 (Soil and stopes other than those mentioned in 17 05 |
| Moisture content:            | Lifti y.  | 03)                                                                                       |
| 11%<br>(no correction)       |           |                                                                                           |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 11% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Numb                                                                            | er       | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>AC Applied</b> | Conc. Not<br>Used   |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                           |          | 0        |                   |                 |                |                         | 2                 |                     |
| 2  | <b>\$</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                           |          |          | 22 mg/kg          | 1.32            | 29.047 mg/kg   | 0.0029 %                |                   |                     |
| 3  | <b>\$</b> | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                          |          |          | 0.72 mg/kg        | 2.775           | 1.998 mg/kg    | 0.0002 %                |                   |                     |
| 4  | *         | boron {      boron tribromide/trichloride/trifluoride     (combined) }     10294-33-4,     10294-34-5,     7637-07-2       |          |          | 1.7 mg/kg         | 13.43           | 22.831 mg/kg   | 0.00228 %               |                   |                     |
| 5  | <b>\$</b> | cadmium {                                                                                                                  |          | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | 4         | chromium { Chromium(III) oxide }<br>215-160-9 1308-38-9                                                                    |          |          | 22 mg/kg          | 1.462           | 32.154 mg/kg   | 0.00322 %               |                   |                     |
| 7  | <b>\$</b> | copper { dicopper oxide; copper (I) oxide }                                                                                |          |          | 36 mg/kg          | 1.126           | 40.532 mg/kg   | 0.00405 %               |                   |                     |
| 8  | *         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                                 |          | 1        | 30 mg/kg          | 1.56            | 46.794 mg/kg   | 0.003 %                 |                   |                     |
| 9  | 4         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                         |          |          | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | *         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1<br>234-348-1 [2] 11113-74-9 [2                   | ]        |          | 23 mg/kg          | 1.579           | 36.328 mg/kg   | 0.00363 %               |                   |                     |
| 11 | \$        | selenium { selenium compounds with the exception c<br>cadmium sulphoselenide and those specified elsewh<br>in this Annex } | f<br>ere |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | *         | zinc { zinc chromate }                                                                                                     |          |          | 79 mg/kg          | 2.774           | 219.158 mg/kg  | 0.0219 %                |                   |                     |
| 13 | 8         | pH PH                                                                                                                      |          |          | 8.1 pH            |                 | 8.1 pH         | 8.1 pH                  |                   |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                      | CLP Note | User entered da | ata  | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | ~ | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 m            | g/kg | 1.884           | <1.884 mg/kg   | <0.000188 %             | 2          | <lod< td=""></lod<> |
| 15 | ۲ | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | 46 mg           | g/kg |                 | 46 mg/kg       | 0.0046 %                |            |                     |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 m         | g/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | 0 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      |          | <0.05 mį        | g/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | 0 | anthracene 204-371-1 120-12-7                                                                                                                                                          |          | <0.05 m         | g/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   |          | 0.42 mį         | g/kg |                 | 0.42 mg/kg     | 0.000042 %              |            |                     |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                            |          | 0.55 mę         | g/kg |                 | 0.55 mg/kg     | 0.000055 %              |            |                     |
| 21 |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                |          | 0.43 mg         | g/kg |                 | 0.43 mg/kg     | 0.000043 %              |            |                     |
| 22 | ۵ | benzo[ghi]perylene<br>205-883-8 191-24-2                                                                                                                                               |          | 0.39 mg         | g/kg |                 | 0.39 mg/kg     | 0.000039 %              |            |                     |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | 0.41 mg         | g/kg |                 | 0.41 mg/kg     | 0.000041 %              |            |                     |
| 24 |   | chrysene<br>601-048-00-0 205-923-4 218-01-9                                                                                                                                            |          | 0.45 mg         | g/kg |                 | 0.45 mg/kg     | 0.000045 %              |            |                     |
| 25 |   | dibenz[a,h]anthracene<br>601-041-00-2 200-181-8 53-70-3                                                                                                                                |          | 0.09 mg         | g/kg |                 | 0.09 mg/kg     | 0.000009 %              |            |                     |
| 26 | 8 | fluoranthene 205-912-4 206-44-0                                                                                                                                                        |          | 0.67 m          | g/kg |                 | 0.67 mg/kg     | 0.000067 %              |            |                     |
| 27 | 8 | fluorene 201-695-5 86-73-7                                                                                                                                                             |          | <0.05 m         | g/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | ۲ | indeno[123-cd]pyrene<br>205-893-2 193-39-5                                                                                                                                             |          | 0.3 m           | g/kg |                 | 0.3 mg/kg      | 0.00003 %               |            |                     |
| 29 |   | naphthalene<br>601-052-00-2 202-049-5 91-20-3                                                                                                                                          |          | <0.05 mg        | g/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | ۵ | phenanthrene 201-581-5 85-01-8                                                                                                                                                         |          | 0.19 mg         | g/kg |                 | 0.19 mg/kg     | 0.000019 %              |            |                     |
| 31 | ۲ | pyrene 204-927-3 129-00-0                                                                                                                                                              |          | 0.6 mg          | g/kg |                 | 0.6 mg/kg      | 0.00006 %               |            |                     |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                              | _        | <1 m            | g/kg |                 | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                  |          |                 |      |                 | Total          | 0.0469 %                |            |                     |

Kev

| хсу                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                  |

# Supplementary Hazardous Property Information



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:      | LoW Code: |                                                                  |
|-------------------|-----------|------------------------------------------------------------------|
| TP103[1]          | Chapter:  | 17: Construction and Demolition Wastes (including excavated soil |
| Sample Depth:     |           | from contaminated sites)                                         |
| 0.90-1.00 m       | Entry:    | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content: |           | 03)                                                              |
| 18%               |           |                                                                  |
| (no correction)   |           |                                                                  |
|                   |           |                                                                  |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 18% No Moisture Correction applied (MC)

| #        |   | Determinand                                                                            |                            | ' Note | User entered data | Conv.<br>Factor | Compound conc. | Classification value | Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------|----------------------------|--------|-------------------|-----------------|----------------|----------------------|---------|---------------------|
|          |   | CLP index number EC Number C                                                           | CAS Number                 | Ľ.     |                   |                 |                |                      | ВC      |                     |
| 1        | 0 | confirm TPH has NOT arisen from diesel or                                              | r petrol                   |        | M                 |                 |                |                      |         |                     |
|          |   |                                                                                        |                            |        |                   |                 |                |                      |         |                     |
| 2        | 4 | arsenic { arsenic trioxide }                                                           |                            |        | 19 mg/kg          | 1.32            | 25.086 mg/kg   | 0.00251 %            |         |                     |
|          |   | 033-003-00-0 215-481-4 1327                                                            | 7-53-3                     |        |                   |                 |                |                      |         |                     |
| 3        | 4 | beryllium { beryllium oxide }                                                          |                            |        | 0.85 mg/kg        | 2.775           | 2.359 mg/kg    | 0.000236 %           |         |                     |
|          |   | 004-003-00-8 215-133-1 1304                                                            | 4-56-9                     |        |                   |                 |                |                      |         |                     |
|          | 4 | boron { <pre> boron tribromide/trichloride/trifluc boron {</pre>                       | oride                      |        |                   |                 |                |                      |         |                     |
| 4        |   | (combined) }                                                                           |                            |        | 20 ma/ka          | 12 12           | 29.047 ma/ka   | 0 00280 %            |         |                     |
| 4        |   | 1029                                                                                   | 94-33-4,                   |        | 2.9 Hig/kg        | 13.43           | 36.947 Hig/kg  | 0.00369 %            |         |                     |
|          |   | 1029                                                                                   | 94-34-5,<br>7-07-2         |        |                   |                 |                |                      |         |                     |
|          |   | cadmium { cadmium sulfide }                                                            | 1012                       |        |                   |                 |                |                      |         |                     |
| 5        | ~ | 048-010-00-4 215-147-8 1306                                                            | 5-23-6                     | 1      | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %           |         | <lod< td=""></lod<> |
| 6        | 4 | chromium { <sup>•</sup> chromium(III) oxide }                                          | 200                        |        | 23 mg/kg          | 1 462           | 33 616 mg/kg   | 0 00336 %            | H       |                     |
| 0        |   | 215-160-9 1308                                                                         | 8-38-9                     |        | 20                |                 | soloro nignig  | 0100000 /0           |         |                     |
| 7        | 4 | copper {                                                                               | }                          |        | 25 mg/kg          | 1.126           | 28.147 mg/kg   | 0.00281 %            |         |                     |
|          |   | 029-002-00-X 215-270-7 1317                                                            | 7-39-1                     |        |                   |                 |                |                      |         |                     |
| 8        | 4 | lead { <mark>lead chromate</mark> }                                                    |                            | 1      | 16 mg/kg          | 1.56            | 24.957 mg/kg   | 0.0016 %             |         |                     |
|          |   | 082-004-00-2 231-846-0 7758                                                            | 8-97-6                     |        |                   |                 |                |                      |         |                     |
| 9        | 4 | mercury { mercury dichloride }                                                         |                            |        | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %         |         | <lod< td=""></lod<> |
|          |   | 080-010-00-X 231-299-8 7487                                                            | 7-94-7                     |        |                   |                 |                |                      |         |                     |
|          | 4 | nickel { nickel dihydroxide }                                                          |                            |        |                   |                 |                |                      |         |                     |
| 10       |   | 028-008-00-X 235-008-5 [1] 1205<br>234-348-1 [2] 1111                                  | 54-48-7 [1]<br>13-74-9 [2] |        | 16 mg/kg          | 1.579           | 25.272 mg/kg   | 0.00253 %            |         |                     |
|          | 4 | selenium { selenium compounds with the ex<br>cadmium sulphoselenide and those specifie | xception of                |        |                   |                 |                |                      |         |                     |
| 11       |   | in this Annex }                                                                        |                            |        | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %          |         | <lod< td=""></lod<> |
|          |   | 034-002-00-8                                                                           |                            |        |                   |                 |                |                      |         |                     |
| 12       | 4 | zinc { zinc chromate }                                                                 |                            |        | 36 ma/ka          | 2 774           | 99.869 ma/ka   | 0 00999 %            |         |                     |
| <u> </u> |   | 024-007-00-3                                                                           |                            |        |                   | 2.114           |                | 0.00000 /0           |         |                     |
| 13       | 0 | pH                                                                                     |                            |        | 7.9 pH            |                 | 7.9 pH         | 7.9 pH               |         |                     |
|          |   | PH                                                                                     |                            |        |                   |                 |                |                      |         |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                                   | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | ~ | cyanides { <sup>•</sup> salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/k           | <b>1.884</b>    | <1.884 mg/kg   | <0.000188 %             |            | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                                     |          | 19 mg/k           | 9               | 19 mg/kg       | 0.0019 %                |            |                     |
| 16 | 0 | acenaphthene 201-469-6 83-32-9                                                                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | 8 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                                   |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | ۵ | anthracene 204-371-1 120-12-7                                                                                                                                                                       |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                                |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                                         |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21 |   | benzo[b]fluoranthene           601-034-00-4         205-911-9         205-99-2                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22 | 0 | benzo[ghi]perylene<br>205-883-8  191-24-2                                                                                                                                                           |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                             |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24 |   | chrysene           601-048-00-0         205-923-4         218-01-9                                                                                                                                  |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25 |   | dibenz[a,h]anthracene           601-041-00-2         200-181-8         53-70-3                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26 | ۵ | fluoranthene 205-912-4 206-44-0                                                                                                                                                                     |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27 | ۵ | fluorene 201-695-5 86-73-7                                                                                                                                                                          |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | ۵ | indeno[123-cd]pyrene<br>205-893-2 193-39-5                                                                                                                                                          |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29 |   | naphthalene           601-052-00-2         202-049-5         91-20-3                                                                                                                                |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | ۲ | phenanthrene 201-581-5 85-01-8                                                                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31 | 9 | pyrene 204-927-3 129-00-0                                                                                                                                                                           |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                                           |          | <1 mg/k           | 9               | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
| 1  |   |                                                                                                                                                                                                     |          |                   |                 | Total:         | 0.0295 %                |            |                     |

Kev

| Ney                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                  |

# **Supplementary Hazardous Property Information**



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:     LoW Code:       TP105     Chapter:     17: Construction and Demolition Water       Sample Depth:     from contaminated sites)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | astes (including excavated soil |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| U.SU-U.60 m     Entry:     17 05 04 (Soll and stones other that of the stones other the stones other the stones other the stones other that of the stones other the stones othe stones other the stones other the stones other the stones other | n those mentioned in 17 05      |
| (no correction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 41% No Moisture Correction applied (MC)

| #  |              | CLP index number EC Number CAS Number                                                                                    | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 1  |              | confirm TPH has NOT arisen from diesel or petrol                                                                         | -        |                   |                 |                |                         | 2          |                     |
| 2  | <b>&amp;</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                         | -        | 9.1 mg/kg         | 1.32            | 12.015 mg/kg   | 0.0012 %                |            |                     |
| 3  | <b>\$</b>    | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                        | -        | 1.3 mg/kg         | 2.775           | 3.608 mg/kg    | 0.000361 %              |            |                     |
| 4  | *            | boron { • boron tribromide/trichloride/trifluoride<br>(combined) }<br>10294-33-4,<br>10294-34-5,<br>7637-07-2            |          | 8.1 mg/kg         | 13.43           | 108.783 mg/kg  | 0.0109 %                |            |                     |
| 5  | *            | cadmium {                                                                                                                | _ 1      | 0.4 mg/kg         | 1.285           | 0.514 mg/kg    | 0.00004 %               |            |                     |
| 6  | 4            | chromium {         chromium(III) oxide }           215-160-9         1308-38-9                                           |          | 26 mg/kg          | 1.462           | 38 mg/kg       | 0.0038 %                |            |                     |
| 7  | 4            | copper { <pre>     dicopper oxide; copper (I) oxide } 029-002-00-X</pre>                                                 |          | 59 mg/kg          | 1.126           | 66.427 mg/kg   | 0.00664 %               |            |                     |
| 8  | ~            | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                               | _ 1      | 15 mg/kg          | 1.56            | 23.397 mg/kg   | 0.0015 %                |            |                     |
| 9  | \$           | mercury { mercury dichloride }           080-010-00-X         231-299-8         7487-94-7                                | _        | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |            | <lod< th=""></lod<> |
| 10 | 4            | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1]<br>234-348-1 [2] 11113-74-9 [2]               | _        | 20 mg/kg          | 1.579           | 31.59 mg/kg    | 0.00316 %               |            |                     |
| 11 | 8            | selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } |          | 4.8 mg/kg         | 2.554           | 12.257 mg/kg   | 0.00123 %               |            |                     |
| 12 | *            | zinc { zinc chromate }                                                                                                   |          | 21 mg/kg          | 2.774           | 58.257 mg/kg   | 0.00583 %               |            |                     |
| 13 | 8            | pH                                                                                                                       |          | 7.4 pH            |                 | 7.4 pH         | 7.4 pH                  |            |                     |



| #        |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                            | CLP Note | User entered da | ata   | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------|-----------------|----------------|-------------------------|------------|---------------------|
| 14       | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mį           | ıg/kg | 1.884           | <1.884 mg/kg   | <0.000188 %             |            | <lod< td=""></lod<> |
| 15       | 8 | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 m(          | ig/kg |                 | <10 mg/kg      | <0.001 %                |            | <lod< td=""></lod<> |
| 16       | 8 | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17       | 8 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18       | 8 | anthracene 204-371-1 120-12-7                                                                                                                                                          | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19       |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20       |   | benzo[a]pyrene; benzo[def]chrysene                                                                                                                                                     |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21       |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22       | 0 | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                  |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23       |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24       |   | chrysene                                                                                                                                                                               |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                  |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26       | 8 | fluoranthene                                                                                                                                                                           |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27       | 8 | fluorene                                                                                                                                                                               |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28       | 0 | indeno[123-cd]pyrene                                                                                                                                                                   | +        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29       |   | naphthalene                                                                                                                                                                            |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30       | ۲ | phenanthrene                                                                                                                                                                           |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31       | 0 | pyrene                                                                                                                                                                                 |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32       |   | phenol                                                                                                                                                                                 |          | <1 m            | g/kg  |                 | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
| $\vdash$ |   |                                                                                                                                                                                        |          |                 |       | (               | Total:         | 0.036 %                 |            |                     |

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification



|                        | : |
|------------------------|---|
| Non Hazardous Waste    |   |
| Classified as 17 05 04 |   |
| in the List of Waste   |   |
| i                      |   |

# Sample details

| Sample Name:<br>TP106            | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil     |
|----------------------------------|-----------------------|----------------------------------------------------------------------|
| O.10-0.20 m<br>Moisture content: | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05<br>03) |
| 28%<br>(no correction)           |                       |                                                                      |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 28% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Numb                                                           | er  | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|-----------------------------------------------------------------------------------------------------------|-----|----------|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                          |     |          |                   |                 |                |                         |                   |                     |
| 2  | 4         | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                          |     |          | 16 mg/kg          | 1.32            | 21.125 mg/kg   | 0.00211 %               |                   |                     |
| 3  | <b>\$</b> | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                         |     |          | 0.8 mg/kg         | 2.775           | 2.22 mg/kg     | 0.000222 %              |                   |                     |
| 4  | *         | boron {  boron tribromide/trichloride/trifluoride (combined) }  10294-33-4, 10294-34-5, 7637-07-2         |     |          | 7.7 mg/kg         | 13.43           | 103.411 mg/kg  | 0.0103 %                |                   |                     |
| 5  | 4         | cadmium {                                                                                                 |     | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | 4         | chromium { Chromium(III) oxide }<br>215-160-9  1308-38-9                                                  |     |          | 21 mg/kg          | 1.462           | 30.693 mg/kg   | 0.00307 %               |                   |                     |
| 7  | 4         | copper { dicopper oxide; copper (I) oxide }                                                               |     |          | 32 mg/kg          | 1.126           | 36.028 mg/kg   | 0.0036 %                |                   |                     |
| 8  | *         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                |     | 1        | 41 mg/kg          | 1.56            | 63.952 mg/kg   | 0.0041 %                |                   |                     |
| 9  | <b>\$</b> | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                        |     |          | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | <b>Å</b>  | nickel { nickel dihydroxide }<br>028-008-00-X                                                             |     |          | 15 mg/kg          | 1.579           | 23.692 mg/kg   | 0.00237 %               |                   |                     |
| 11 | \$        | selenium { selenium compounds with the exception of<br>cadmium sulphoselenide and those specified elsewhe | ere |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | *         | zinc { zinc chromate }                                                                                    |     |          | 52 mg/kg          | 2.774           | 144.256 mg/kg  | 0.0144 %                |                   |                     |
| 13 | 9         | pH                                                                                                        |     |          | 7.6 pH            |                 | 7.6 pH         | 7.6 pH                  |                   |                     |



| #        |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                            | CLP Note | User entered data | Conv<br>Facto         | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------------|----------------|-------------------------|------------|---------------------|
| 14       | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/            | <mark>(g</mark> 1.884 | 4 <1.884 mg/kg | <0.000188 %             | 2          | <lod< th=""></lod<> |
| 15       | 8 | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 mg/           | g                     | <10 mg/kg      | <0.001 %                |            | <lod< td=""></lod<> |
| 16       | 8 | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17       | 8 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      | _        | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18       | 8 | anthracene 204-371-1 120-12-7                                                                                                                                                          | _        | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19       |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   | _        | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20       |   | benzo[a]pyrene; benzo[def]chrysene                                                                                                                                                     |          | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21       |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                | _        | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22       | 0 | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                  | _        | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23       |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24       |   | chrysene                                                                                                                                                                               |          | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                  | _        | <0.05 mg/         | g                     | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26       | 0 | fluoranthene                                                                                                                                                                           |          | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27       | 0 | fluorene                                                                                                                                                                               |          | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28       | 0 | indeno[123-cd]pyrene                                                                                                                                                                   | _        | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29       |   | naphthalene                                                                                                                                                                            |          | <0.05 mg/         | kg                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30       | 0 | phenanthrene                                                                                                                                                                           |          | <0.05 mg/         | (g                    | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31       | 8 | pyrene                                                                                                                                                                                 |          | <0.05 mg/         | <mark>(g</mark>       | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32       |   | phenol                                                                                                                                                                                 |          | <1 mg/            | g                     | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
| $\vdash$ | L | 004-001-00-2 <u>203-032-7</u> [108-93-2                                                                                                                                                |          |                   |                       | Total:         | 0.0419 %                | -          |                     |

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:<br>TP107 | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil |
|-----------------------|-----------------------|------------------------------------------------------------------|
| Sample Depth:         |                       | from contaminated sites)                                         |
| 0.50-0.60 m           | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content:     |                       | 03)                                                              |
| 12%                   |                       |                                                                  |
| (no correction)       |                       |                                                                  |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 12% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Number                                                                             | CI P Note |   | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----------|---|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                              |           |   | Ø                 |                 |                |                         |                   |                     |
| 2  | <b>\$</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                              |           |   | 10 mg/kg          | 1.32            | 13.203 mg/kg   | 0.00132 %               |                   |                     |
| 3  | 4         | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                             |           |   | 0.42 mg/kg        | 2.775           | 1.166 mg/kg    | 0.000117 %              |                   |                     |
| 4  | *         | boron { • boron tribromide/trichloride/trifluoride<br>(combined) }<br>10294-33-4,<br>10294-34-5,<br>7637-07-2                 |           |   | 0.6 mg/kg         | 13.43           | 8.058 mg/kg    | 0.000806 %              |                   |                     |
| 5  | 4         | cadmium {                                                                                                                     |           | 1 | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | \$        | chromium { Chromium(III) oxide }                                                                                              | _         |   | 11 mg/kg          | 1.462           | 16.077 mg/kg   | 0.00161 %               |                   |                     |
| 7  | 4         | copper { dicopper oxide; copper (I) oxide }                                                                                   |           |   | 14 mg/kg          | 1.126           | 15.762 mg/kg   | 0.00158 %               |                   |                     |
| 8  | *         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                                    | - '       | 1 | 5.6 mg/kg         | 1.56            | 8.735 mg/kg    | 0.00056 %               |                   |                     |
| 9  | 4         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                            |           |   | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | *         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1]<br>234-348-1 [2] 11113-74-9 [2]                    |           |   | 13 mg/kg          | 1.579           | 20.533 mg/kg   | 0.00205 %               |                   |                     |
| 11 | *         | selenium { selenium compounds with the exception of<br>cadmium sulphoselenide and those specified elsewher<br>in this Annex } | e         |   | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | *         | zinc { zinc chromate }                                                                                                        |           |   | 25 mg/kg          | 2.774           | 69.354 mg/kg   | 0.00694 %               |                   |                     |
| 13 | 8         | рН РН                                                                                                                         |           |   | 8.1 pH            |                 | 8.1 pH         | 8.1 pH                  |                   |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                      | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | IC Applied | Conc. Not<br>Used   |
|----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/k           | g 1.884         | <1.884 mg/kg   | <0.000188 %             | 2          | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 mg/k          | g               | <10 mg/kg      | <0.001 %                |            | <lod< td=""></lod<> |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | ۵ | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | 0 | anthracene 204-371-1 120-12-7                                                                                                                                                          |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene<br>601-032-00-3 200-028-5 50-32-8                                                                                                                   |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21 |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22 | 8 | benzo[ghi]perylene<br>205-883-8  191-24-2                                                                                                                                              |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24 |   | chrysene<br>601-048-00-0 205-923-4 218-01-9                                                                                                                                            |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25 |   | dibenz[a,h]anthracene<br>601-041-00-2 200-181-8 53-70-3                                                                                                                                |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26 | 8 | fluoranthene 205-912-4 206-44-0                                                                                                                                                        |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27 | ۵ | fluorene 201-695-5 86-73-7                                                                                                                                                             |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | ۵ | indeno[123-cd]pyrene<br>205-893-2  193-39-5                                                                                                                                            |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29 |   | naphthalene<br>601-052-00-2 202-049-5 91-20-3                                                                                                                                          |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | ۲ | phenanthrene 201-581-5 85-01-8                                                                                                                                                         |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31 | ۲ | pyrene 204-927-3  129-00-0                                                                                                                                                             |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                              |          | <1 mg/k           | g               | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   | · · · ·                                                                                                                                                                                |          |                   |                 | Total:         | 0.0167 %                |            |                     |

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification



| Non Hazardous Waste<br>Classified as 17 05 04 |  |
|-----------------------------------------------|--|
| in the List of Waste                          |  |
|                                               |  |

# Sample details

| Sample Name:<br>TP114            | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil     |
|----------------------------------|-----------------------|----------------------------------------------------------------------|
| 0.10-0.20 m<br>Moisture content: | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05<br>03) |
| 18%<br>(no correction)           |                       |                                                                      |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 18% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Nu                                                                          | Imber          | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                       |                |          | Ø                 |                 |                |                         |                   |                     |
| 2  | <b>\$</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                       |                |          | 18 mg/kg          | 1.32            | 23.766 mg/kg   | 0.00238 %               |                   |                     |
| 3  | 4         | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                      |                |          | 0.86 mg/kg        | 2.775           | 2.387 mg/kg    | 0.000239 %              |                   |                     |
| 4  | *         | boron { boron tribromide/trichloride/trifluoride<br>(combined) }<br>10294-33<br>10294-34-5<br>7637-07-2                | 4,<br>5,       |          | 4.3 mg/kg         | 13.43           | 57.749 mg/kg   | 0.00577 %               |                   |                     |
| 5  | 4         | cadmium {                                                                                                              |                | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | 4         | chromium { • chromium(III) oxide }<br>215-160-9  1308-38-9                                                             |                |          | 29 mg/kg          | 1.462           | 42.385 mg/kg   | 0.00424 %               |                   |                     |
| 7  | 4         | copper { dicopper oxide; copper (I) oxide }                                                                            |                |          | 41 mg/kg          | 1.126           | 46.161 mg/kg   | 0.00462 %               |                   |                     |
| 8  | 4         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                             |                | 1        | 29 mg/kg          | 1.56            | 45.235 mg/kg   | 0.0029 %                |                   |                     |
| 9  | 4         | mercury { mercury dichloride }           080-010-00-X         231-299-8         7487-94-7                              |                |          | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | *         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7<br>234-348-1 [2] 11113-74-5                     | 7 [1]<br>9 [2] |          | 20 mg/kg          | 1.579           | 31.59 mg/kg    | 0.00316 %               |                   |                     |
| 11 | \$        | selenium { selenium compounds with the exception<br>cadmium sulphoselenide and those specified else<br>in this Annex } | n of<br>where  |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | 4         | zinc { zinc chromate }                                                                                                 |                |          | 100 mg/kg         | 2.774           | 277.415 mg/kg  | 0.0277 %                |                   |                     |
| 13 | 9         | pH PH                                                                                                                  |                |          | 7.7 pH            |                 | 7.7 pH         | 7.7 pH                  |                   |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                                   | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | ~ | cyanides { <sup>•</sup> salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/k           | g 1.884         | <1.884 mg/kg   | <0.000188 %             |            | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                                     |          | 47 mg/k           | g               | 47 mg/kg       | 0.0047 %                |            |                     |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                                      |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | 0 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                                   |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | 8 | anthracene 204-371-1 120-12-7                                                                                                                                                                       |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                                |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                                         |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21 |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                             |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22 | ۵ | benzo[ghi]perylene<br>205-883-8  191-24-2                                                                                                                                                           |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                             |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24 |   | chrysene           601-048-00-0         205-923-4         218-01-9                                                                                                                                  |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25 |   | dibenz[a,h]anthracene<br>601-041-00-2 200-181-8 53-70-3                                                                                                                                             |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26 | Θ | fluoranthene 205-912-4 206-44-0                                                                                                                                                                     |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27 | 8 | fluorene 201-695-5 86-73-7                                                                                                                                                                          |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | 8 | indeno[123-cd]pyrene<br>205-893-2  193-39-5                                                                                                                                                         |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29 |   | naphthalene<br>601-052-00-2 202-049-5 91-20-3                                                                                                                                                       |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | ۵ | phenanthrene 201-581-5 85-01-8                                                                                                                                                                      |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31 | ۲ | pyrene 204-927-3 129-00-0                                                                                                                                                                           |          | <0.05 mg/k        | g               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                                           |          | <1 mg/k           | g               | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   | · · ·                                                                                                                                                                                               | •        |                   |                 | Total:         | 0.0564 %                |            |                     |

Kev

| Ney                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                  |

# **Supplementary Hazardous Property Information**



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| <u>.</u>               |  |

# Sample details

| Sample Name:      | LoW Code: |                                                                  |
|-------------------|-----------|------------------------------------------------------------------|
| TP114[1]          | Chapter:  | 17: Construction and Demolition Wastes (including excavated soil |
| Sample Depth:     |           | from contaminated sites)                                         |
| 1.00-1.20 m       | Entry:    | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content: |           | 03)                                                              |
| 13%               |           |                                                                  |
| (no correction)   |           |                                                                  |
|                   |           |                                                                  |

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 13% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Number                                                                              | CLP Note | User entered o | lata  | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                               | _        |                |       |                 |                |                         |                   |                     |
| 2  | <b>\$</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                               | _        | 9.2 r          | ng/kg | 1.32            | 12.147 mg/kg   | 0.00121 %               |                   |                     |
| 3  | <b>\$</b> | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                              |          | 0.2 r          | ng/kg | 2.775           | 0.555 mg/kg    | 0.0000555 %             |                   |                     |
| 4  | *         | boron { • boron tribromide/trichloride/trifluoride<br>(combined) }<br>10294-33-4,<br>10294-34-5,<br>7637-07-2                  |          | 0.2 r          | ng/kg | 13.43           | 2.686 mg/kg    | 0.000269 %              |                   |                     |
| 5  | 4         | cadmium {                                                                                                                      | _ 1      | <0.2 r         | ng/kg | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | 4         | chromium { Chromium(III) oxide }                                                                                               |          | 8.2 r          | ng/kg | 1.462           | 11.985 mg/kg   | 0.0012 %                |                   |                     |
| 7  | *         | copper { dicopper oxide; copper (I) oxide }                                                                                    |          | 19 r           | ng/kg | 1.126           | 21.392 mg/kg   | 0.00214 %               |                   |                     |
| 8  | *         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                                     | 1        | 4.7 r          | ng/kg | 1.56            | 7.331 mg/kg    | 0.00047 %               |                   |                     |
| 9  | 4         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                             | _        | <0.3 r         | ng/kg | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | 4         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1]<br>234-348-1 [2] 11113-74-9 [2]                     |          | 12 r           | ng/kg | 1.579           | 18.954 mg/kg   | 0.0019 %                |                   |                     |
| 11 | *         | selenium { selenium compounds with the exception of<br>cadmium sulphoselenide and those specified elsewhere<br>in this Annex } |          | <1 r           | ng/kg | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | 4         | zinc { zinc chromate }                                                                                                         | +        | 23 r           | ng/kg | 2.774           | 63.805 mg/kg   | 0.00638 %               |                   |                     |
| 13 | 9         | pH PH                                                                                                                          |          | 8.2 p          | ын    |                 | 8.2 pH         | 8.2 pH                  |                   |                     |



| #        |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                            | CLP Note | User entered data | Con<br>Facto | v.<br>or Compound conc. | Classification<br>value | IC Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|--------------|-------------------------|-------------------------|------------|---------------------|
| 14       | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/            | kg 1.88      | 34 <1.884 mg/kg         | <0.000188 %             |            | <lod< th=""></lod<> |
| 15       | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 mg/           | kg           | <10 mg/kg               | <0.001 %                |            | <lod< td=""></lod<> |
| 16       | 8 | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 17       | 0 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      | -        | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 18       | 0 | anthracene 204-371-1 120-12-7                                                                                                                                                          | _        | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 19       |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 20       |   | benzo[a]pyrene; benzo[def]chrysene<br>601-032-00-3 200-028-5 50-32-8                                                                                                                   |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 21       |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 22       | ۵ | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                  |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 23       |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 24       |   | chrysene                                                                                                                                                                               |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                  |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 26       | 8 | fluoranthene                                                                                                                                                                           |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 27       | ۵ | fluorene 201-695-5 86-73-7                                                                                                                                                             |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 28       | ۵ | indeno[123-cd]pyrene                                                                                                                                                                   |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 29       |   | naphthalene                                                                                                                                                                            |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 30       | ۵ | phenanthrene                                                                                                                                                                           |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 31       | ۵ | pyrene                                                                                                                                                                                 |          | <0.05 mg/         | kg           | <0.05 mg/kg             | <0.000005 %             |            | <lod< td=""></lod<> |
| 32       |   | phenol                                                                                                                                                                                 |          | <1 mg/            | kg           | <1 mg/kg                | <0.0001 %               |            | <lod< td=""></lod<> |
| $\vdash$ | L | 100-001 00 2 <u>200-002-1</u> 100-90-2                                                                                                                                                 |          |                   |              | Total:                  | 0.0153 %                |            |                     |

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification


| Non Hazardous Waste<br>Classified as 17 05 04 |  |
|-----------------------------------------------|--|
| in the List of Waste                          |  |
|                                               |  |

# Sample details

| Sample Name:<br>TP118 | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil |
|-----------------------|-----------------------|------------------------------------------------------------------|
| Sample Depth:         |                       | from contaminated sites)                                         |
| 0.70-0.80 m           | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content:     |                       | 03)                                                              |
| 16%                   |                       |                                                                  |
| (no correction)       |                       |                                                                  |
|                       |                       |                                                                  |

## Hazard properties

None identified

### **Determinands**

### Moisture content: 16% No Moisture Correction applied (MC)

| #  |           | Determinand CLP index number EC Number CAS Number                                                                             | r I |   | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | <b>MC Applied</b> | Conc. Not<br>Used   |
|----|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----|---|-------------------|-----------------|----------------|-------------------------|-------------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                              |     |   |                   |                 |                |                         |                   |                     |
| 2  | <b>\$</b> | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53-3                                                              |     |   | 8 mg/kg           | 1.32            | 10.563 mg/kg   | 0.00106 %               |                   |                     |
| 3  | 4         | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                             |     |   | 0.71 mg/kg        | 2.775           | 1.97 mg/kg     | 0.000197 %              |                   |                     |
| 4  | *         | boron {      boron tribromide/trichloride/trifluoride     (combined) }     10294-33-4,     10294-34-5,     7637-07-2          |     |   | 2.1 mg/kg         | 13.43           | 28.203 mg/kg   | 0.00282 %               |                   |                     |
| 5  | 4         | cadmium {                                                                                                                     |     | 1 | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |                   | <lod< td=""></lod<> |
| 6  | \$        | chromium { Chromium(III) oxide }                                                                                              |     |   | 22 mg/kg          | 1.462           | 32.154 mg/kg   | 0.00322 %               |                   |                     |
| 7  | 4         | copper { dicopper oxide; copper (I) oxide }                                                                                   |     |   | 27 mg/kg          | 1.126           | 30.399 mg/kg   | 0.00304 %               |                   |                     |
| 8  | <b>\$</b> | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                                    |     | 1 | 12 mg/kg          | 1.56            | 18.718 mg/kg   | 0.0012 %                |                   |                     |
| 9  | 4         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                            |     |   | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |                   | <lod< td=""></lod<> |
| 10 | 4         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1]<br>234-348-1 [2] 11113-74-9 [2]                    |     |   | 9.3 mg/kg         | 1.579           | 14.689 mg/kg   | 0.00147 %               |                   |                     |
| 11 | \$        | selenium { selenium compounds with the exception of<br>cadmium sulphoselenide and those specified elsewher<br>in this Annex } | e   |   | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |                   | <lod< td=""></lod<> |
| 12 | *         | zinc { zinc chromate }                                                                                                        |     |   | 32 mg/kg          | 2.774           | 88.773 mg/kg   | 0.00888 %               |                   |                     |
| 13 | 8         | pH PH                                                                                                                         |     |   | 7.3 pH            |                 | 7.3 pH         | 7.3 pH                  |                   |                     |



| #        |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                            | CLP Note | User entered o | data  | Conv.<br>Factor | Compound conc. | Classification<br>value | IC Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|-----------------|----------------|-------------------------|------------|---------------------|
| 14       | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 1           | mg/kg | 1.884           | <1.884 mg/kg   | <0.000188 %             |            | <lod< th=""></lod<> |
| 15       | 8 | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 r          | mg/kg |                 | <10 mg/kg      | <0.001 %                |            | <lod< td=""></lod<> |
| 16       | 8 | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17       | 8 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18       | 8 | anthracene 204-371-1 120-12-7                                                                                                                                                          | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19       |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20       |   | benzo[a]pyrene; benzo[def]chrysene                                                                                                                                                     |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21       |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22       | 0 | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                  | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23       |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24       |   | chrysene                                                                                                                                                                               |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                  |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26       | 0 | fluoranthene                                                                                                                                                                           |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27       | 0 | fluorene                                                                                                                                                                               |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28       | 0 | indeno[123-cd]pyrene                                                                                                                                                                   | _        | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29       |   | naphthalene                                                                                                                                                                            |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30       | 0 | phenanthrene                                                                                                                                                                           |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31       | 8 | pyrene                                                                                                                                                                                 |          | <0.05 r        | mg/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32       |   | phenol                                                                                                                                                                                 |          | <1 r           | mg/kg |                 | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
| $\vdash$ | L | 004-001-00-2 <u>203-032-7</u> [108-93-2                                                                                                                                                |          |                |       |                 | Total:         | 0.0236 %                |            |                     |

Key



| Non Hazardous Waste<br>Classified as 17 05 04 |  |
|-----------------------------------------------|--|
| in the List of Waste                          |  |
|                                               |  |

# Sample details

| Sample Name:<br>TP119 | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil |
|-----------------------|-----------------------|------------------------------------------------------------------|
| Sample Depth:         | Entry                 | from contaminated sites)                                         |
| Moisture content:     | Lifti y.              | 03)                                                              |
| 13%                   |                       |                                                                  |
| (no correction)       |                       |                                                                  |

## Hazard properties

None identified

### **Determinands**

### Moisture content: 13% No Moisture Correction applied (MC)

| #  |    | Determinand CLP index number EC Number CAS                                                                     | 3 Number                           | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|----|----------------------------------------------------------------------------------------------------------------|------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 1  | 8  | confirm TPH has NOT arisen from diesel or pe                                                                   | etrol                              | 0        | Ø                 |                 |                |                         |            |                     |
| 2  | *  | arsenic { arsenic trioxide }<br>033-003-00-0 215-481-4 1327-53                                                 | 3-3                                |          | 3.7 mg/kg         | 1.32            | 4.885 mg/kg    | 0.000489 %              |            |                     |
| 3  | 4  | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-50                                                | 6-9                                |          | 0.68 mg/kg        | 2.775           | 1.887 mg/kg    | 0.000189 %              |            |                     |
| 4  | *  | boron { • boron tribromide/trichloride/trifluorid<br>(combined) }<br>10294-<br>10294-<br>7637-0                | <b>le</b><br>33-4,<br>34-5,<br>7-2 |          | 1.8 mg/kg         | 13.43           | 24.174 mg/kg   | 0.00242 %               |            |                     |
| 5  | 4  | cadmium {                                                                                                      | 3-6                                | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |            | <lod< td=""></lod<> |
| 6  | 4  | chromium { Chromium(III) oxide }<br>215-160-9 1308-36                                                          | 8-9                                |          | 23 mg/kg          | 1.462           | 33.616 mg/kg   | 0.00336 %               |            |                     |
| 7  | 4  | copper { dicopper oxide; copper (I) oxide }                                                                    | 9-1                                |          | 28 mg/kg          | 1.126           | 31.525 mg/kg   | 0.00315 %               |            |                     |
| 8  | *  | lead { lead chromate } 082-004-00-2 231-846-0 7758-9                                                           | 7-6                                | 1        | 11 mg/kg          | 1.56            | 17.158 mg/kg   | 0.0011 %                |            |                     |
| 9  | 4  | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-9-                                               | 4-7                                |          | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |            | <lod< td=""></lod<> |
| 10 | *  | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-<br>234-348-1 [2] 11113-                     | 48-7 [1]<br>74-9 [2]               |          | 12 mg/kg          | 1.579           | 18.954 mg/kg   | 0.0019 %                |            |                     |
| 11 | \$ | selenium { selenium compounds with the exce<br>cadmium sulphoselenide and those specified o<br>in this Annex } | eption of<br>elsewhere             |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |            | <lod< td=""></lod<> |
| 12 | *  | zinc { <mark>zinc chromate</mark> }                                                                            |                                    |          | 26 mg/kg          | 2.774           | 72.128 mg/kg   | 0.00721 %               |            |                     |
| 13 | 9  | pH PH                                                                                                          |                                    |          | 7.9 pH            |                 | 7.9 pH         | 7.9 pH                  |            |                     |



| #        |   | Determinand           CLP index number         EC Number         CAS Number                                                                                                            | CLP Note | User entered da | ata   | Conv.<br>Factor | Compound conc. | Classification<br>value | IC Applied | Conc. Not<br>Used   |
|----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------|-----------------|----------------|-------------------------|------------|---------------------|
| 14       | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mį           | ıg/kg | 1.884           | <1.884 mg/kg   | <0.000188 %             |            | <lod< th=""></lod<> |
| 15       | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 m(          | ig/kg |                 | <10 mg/kg      | <0.001 %                |            | <lod< td=""></lod<> |
| 16       | 8 | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17       | 0 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18       | 0 | anthracene 204-371-1 120-12-7                                                                                                                                                          | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19       |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   | _        | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20       |   | benzo[a]pyrene; benzo[def]chrysene<br>601-032-00-3 200-028-5 50-32-8                                                                                                                   |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21       |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22       | ۵ | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                  | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23       |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24       |   | chrysene                                                                                                                                                                               |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25       |   | dibenz[a,h]anthracene                                                                                                                                                                  |          | <0.05 m         | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26       | 8 | fluoranthene                                                                                                                                                                           | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27       | ۵ | fluorene 201-695-5 86-73-7                                                                                                                                                             | _        | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28       | ۵ | indeno[123-cd]pyrene                                                                                                                                                                   |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29       |   | naphthalene                                                                                                                                                                            |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30       | ۵ | phenanthrene                                                                                                                                                                           |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31       | ۵ | pyrene                                                                                                                                                                                 |          | <0.05 mg        | ig/kg |                 | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32       |   | phenol                                                                                                                                                                                 |          | <1 m            | g/kg  |                 | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
| $\vdash$ | L | 100-001 00 2 <u>200-002-1</u> 100-90-2                                                                                                                                                 |          |                 |       | (               | Total:         | 0.0215 %                |            |                     |

Key



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:<br>TP120<br>Sample Depth: | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) |
|----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|
| 0.60-0.70 m<br>Moisture content:       | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05<br>03)                      |
| 5%<br>(no correction)                  |                       |                                                                                           |

## Hazard properties

None identified

### **Determinands**

### Moisture content: 5% No Moisture Correction applied (MC)

| #  |           | CLP index number EC Number CAS Number                                                                                          | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 1  | 8         | confirm TPH has NOT arisen from diesel or petrol                                                                               | -        |                   |                 |                |                         |            |                     |
| 2  | *         | arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3                                                                  | _        | 14 mg/kg          | 1.32            | 18.485 mg/kg   | 0.00185 %               |            |                     |
| 3  | *         | beryllium { beryllium oxide }<br>004-003-00-8 215-133-1 1304-56-9                                                              | _        | 0.46 mg/kg        | 2.775           | 1.277 mg/kg    | 0.000128 %              |            |                     |
| 4  | 4         | boron { • boron tribromide/trichloride/trifluoride<br>(combined) }<br>10294-33-4,<br>10294-34-5,<br>7637-07-2                  |          | 0.9 mg/kg         | 13.43           | 12.087 mg/kg   | 0.00121 %               |            |                     |
| 5  | 4         | cadmium {                                                                                                                      | 1        | <0.2 mg/kg        | 1.285           | <0.257 mg/kg   | <0.00002 %              |            | <lod< th=""></lod<> |
| 6  | <b>\$</b> | chromium { Chromium(III) oxide }                                                                                               |          | 14 mg/kg          | 1.462           | 20.462 mg/kg   | 0.00205 %               |            |                     |
| 7  | \$        | copper { dicopper oxide; copper (I) oxide }                                                                                    |          | 25 mg/kg          | 1.126           | 28.147 mg/kg   | 0.00281 %               |            |                     |
| 8  | ~         | lead { lead chromate }<br>082-004-00-2 231-846-0 7758-97-6                                                                     | _ 1      | 7.1 mg/kg         | 1.56            | 11.075 mg/kg   | 0.00071 %               |            |                     |
| 9  | *         | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                             | _        | <0.3 mg/kg        | 1.353           | <0.406 mg/kg   | <0.0000406 %            |            | <lod< th=""></lod<> |
| 10 | 4         | nickel { nickel dihydroxide }<br>028-008-00-X 235-008-5 [1] 12054-48-7 [1]<br>234-348-1 [2] 11113-74-9 [2]                     | _        | 18 mg/kg          | 1.579           | 28.431 mg/kg   | 0.00284 %               |            |                     |
| 11 | <b>\$</b> | selenium { selenium compounds with the exception of<br>cadmium sulphoselenide and those specified elsewhere<br>in this Annex } |          | <1 mg/kg          | 2.554           | <2.554 mg/kg   | <0.000255 %             |            | <lod< th=""></lod<> |
| 12 | *         | zinc { zinc chromate }                                                                                                         |          | 29 mg/kg          | 2.774           | 80.45 mg/kg    | 0.00805 %               |            |                     |
| 13 | 8         | pH                                                                                                                             |          | 8.2 pH            |                 | 8.2 pH         | 8.2 pH                  |            |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                                   | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|-------------------------|------------|---------------------|
| 14 | ~ | cyanides { <sup>•</sup> salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/k           | <b>1.884</b>    | <1.884 mg/kg   | <0.000188 %             |            | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                                     |          | 19 mg/k           | 9               | 19 mg/kg       | 0.0019 %                |            |                     |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | 8 | acenaphthylene 205-917-1 208-96-8                                                                                                                                                                   |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | • | anthracene 204-371-1 120-12-7                                                                                                                                                                       |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                                |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                                         |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 21 |   | benzo[b]fluoranthene           601-034-00-4         205-911-9         205-99-2                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 22 | 8 | benzo[ghi]perylene 205-883-8 191-24-2                                                                                                                                                               |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                             |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 24 |   | chrysene           601-048-00-0         205-923-4         218-01-9                                                                                                                                  |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 25 |   | dibenz[a,h]anthracene           601-041-00-2         200-181-8         53-70-3                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 26 | 8 | fluoranthene 205-912-4 206-44-0                                                                                                                                                                     |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 27 | 0 | fluorene 201-695-5 86-73-7                                                                                                                                                                          |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | 0 | indeno[123-cd]pyrene<br>205-893-2  193-39-5                                                                                                                                                         |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 29 |   | naphthalene           601-052-00-2         202-049-5         91-20-3                                                                                                                                |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | • | phenanthrene 201-581-5 85-01-8                                                                                                                                                                      |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 31 | ۲ | pyrene 204-927-3 129-00-0                                                                                                                                                                           |          | <0.05 mg/k        | 9               | <0.05 mg/kg    | <0.000005 %             |            | <lod< td=""></lod<> |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                                           |          | <1 mg/k           | 9               | <1 mg/kg       | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                               |          |                   |                 | Total:         | 0.0222 %                |            |                     |

Kev

| хсу                                                  |                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                      | User supplied data                                                                                                             |
|                                                      | Determinand values ignored for classification, see column 'Conc. Not Used' for reason                                          |
| 0                                                    | Determinand defined or amended by HazWasteOnline (see Appendix A)                                                              |
| 4                                                    | Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration |
| <lod< th=""><th>Below limit of detection</th></lod<> | Below limit of detection                                                                                                       |
| CLP: Note 1                                          | Only the metal concentration has been used for classification                                                                  |

# Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| Sample Name:<br>TP121 | LoW Code:<br>Chapter: | 17: Construction and Demolition Wastes (including excavated soil |
|-----------------------|-----------------------|------------------------------------------------------------------|
| Sample Depth:         |                       | from contaminated sites)                                         |
| 0.10-0.20 m           | Entry:                | 17 05 04 (Soil and stones other than those mentioned in 17 05    |
| Moisture content:     |                       | 03)                                                              |
| 15%                   |                       |                                                                  |
| (no correction)       |                       |                                                                  |
|                       |                       |                                                                  |

## Hazard properties

None identified

### **Determinands**

### Moisture content: 15% No Moisture Correction applied (MC)

| #  |   |                                                                         | Determinand                               |                                         | Note | User entered data | User entered data Conv.<br>Factor Compound conc. |               | Classification value | Applied | Conc. Not<br>Used   |
|----|---|-------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|------|-------------------|--------------------------------------------------|---------------|----------------------|---------|---------------------|
|    |   | CLP index number                                                        | EC Number                                 | CAS Number                              | CLP  |                   |                                                  |               |                      | MC      |                     |
| 1  | 8 | confirm TPH has N                                                       | IOT arisen from dies                      | sel or petrol                           |      | R                 |                                                  |               |                      |         |                     |
|    |   |                                                                         |                                           |                                         |      |                   |                                                  |               |                      |         |                     |
| 2  | 4 | arsenic { arsenic tr                                                    | ioxide }                                  |                                         |      | 9.4 mg/ka         | 1.32                                             | 12.411 mg/kg  | 0.00124 %            |         |                     |
|    |   | 033-003-00-0                                                            | 215-481-4                                 | 1327-53-3                               |      |                   |                                                  |               |                      |         |                     |
| 3  | 4 | beryllium { <mark>berylliur</mark>                                      | m oxide }                                 |                                         |      | 0.84 ma/ka        | 2.775                                            | 2.331 ma/ka   | 0.000233 %           |         |                     |
| Ŭ  |   | 004-003-00-8                                                            | 215-133-1                                 | 1304-56-9                               |      |                   |                                                  | 21001         |                      |         |                     |
|    | 4 | boron { <sup>•</sup> boron tri<br>(combined) }                          | bromide/trichloride/                      | trifluoride                             |      |                   |                                                  |               |                      |         |                     |
| 4  |   | (                                                                       |                                           | 10294-33-4,<br>10294-34-5,<br>7637-07-2 | _    | 5.6 mg/kg         | 13.43                                            | 75.208 mg/kg  | 0.00752 %            |         |                     |
| 5  | æ | cadmium { cadmiu                                                        | m sulfide }                               |                                         | 1    | -0.2 mg///        | 1 205                                            | -0.257 ma/ka  | -0.00002.9/          |         |                     |
| 5  |   | 048-010-00-4                                                            | 215-147-8                                 | 1306-23-6                               | 1    | <0.2 mg/kg        | 1.200                                            | <0.257 Hig/kg | <0.00002 %           |         | <lod< td=""></lod<> |
| 6  | 4 | chromium { • chro                                                       | mium(III) oxide }                         | 1208 28 0                               |      | 28 mg/kg          | 1.462                                            | 40.924 mg/kg  | 0.00409 %            |         |                     |
|    |   |                                                                         | 213-100-9                                 | 1308-38-9                               |      |                   |                                                  |               |                      |         |                     |
| 7  |   | copper { <sup>a</sup> dicoppe                                           | er oxide; copper (I) o                    | <mark>oxide</mark> }                    |      | 42 mg/kg          | 1.126                                            | 47.287 mg/kg  | 0.00473 %            |         |                     |
|    |   | 029-002-00-X                                                            | 215-270-7                                 | 1317-39-1                               |      |                   |                                                  |               |                      |         |                     |
| 8  | 4 | lead { lead chroma                                                      | te }                                      |                                         | 1    | 39 mg/kg          | 1.56                                             | 60.833 mg/kg  | 0.0039 %             |         |                     |
|    |   | 082-004-00-2                                                            | 231-846-0                                 | 7758-97-6                               |      |                   |                                                  |               |                      |         |                     |
| 9  | 4 | mercury { mercury                                                       | dichloride }                              |                                         |      | <0.3 mg/kg        | 1.353                                            | <0.406 mg/kg  | <0.0000406 %         |         | <lod< th=""></lod<> |
|    |   | 080-010-00-X                                                            | 231-299-8                                 | 7487-94-7                               |      |                   |                                                  |               |                      |         |                     |
| 10 | 4 | nickel { nickel dihyo                                                   | droxide }                                 |                                         |      | 10 mg///          | 1 570                                            | 20.01 ma/ka   | 0.002.9/             |         |                     |
|    |   | 028-008-00-X                                                            | 235-008-5 [1]<br>234-348-1 [2]            | 12054-48-7 [1]<br>11113-74-9 [2]        |      | 19 mg/kg          | 1.579                                            | 30.01 mg/kg   | 0.003 %              |         |                     |
| 11 | 4 | selenium { <mark>seleniur</mark><br>cadmium sulphose<br>in this Annex } | n compounds with t<br>lenide and those sp | he exception of<br>ecified elsewhere    |      | <1 mg/kg          | 2.554                                            | <2.554 mg/kg  | <0.000255 %          |         | <lod< th=""></lod<> |
|    |   | 034-002-00-8                                                            |                                           |                                         |      |                   |                                                  |               |                      |         |                     |
| 12 | 4 | zinc { zinc chromat                                                     | e }                                       |                                         |      | 78 ma/ka          | 2.774                                            | 216.383 ma/ka | 0.0216 %             |         |                     |
|    |   | 024-007-00-3                                                            |                                           |                                         | 1    |                   |                                                  |               |                      |         |                     |
| 13 | 8 | pН                                                                      |                                           | PH                                      |      | 7 pH              |                                                  | 7 pH          | 7рН                  |         |                     |



| #  |   | Determinand                                                                                                                                                                                     | P Note | User entered | data   | Conv.<br>Factor | Compound conc. | Classification value | C Applied | Conc. Not<br>Used   |
|----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------|-----------------|----------------|----------------------|-----------|---------------------|
| -  |   |                                                                                                                                                                                                 | ರ      |              |        |                 |                |                      | м         |                     |
| 14 | ~ | cyanides { Salts of hydrogen cyanide with the<br>exception of complex cyanides such as ferrocyanides,<br>ferricyanides and mercuric oxycyanide and those<br>specified elsewhere in this Annex } |        | <1           | mg/kg  | 1.884           | <1.884 mg/kg   | <0.000188 %          |           | <lod< td=""></lod<> |
| 15 |   | TPH (C6 to C40) petroleum group                                                                                                                                                                 |        | ~10          | ma/ka  |                 | <10 mg/kg      | <0.001 %             |           |                     |
|    |   | ТРН                                                                                                                                                                                             |        |              | шу/ку  |                 | <10 mg/kg      | <0.001 //            |           |                     |
| 16 | 0 | acenaphthene 201-469-6 83-32-9                                                                                                                                                                  |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 17 | 8 | acenaphthylene                                                                                                                                                                                  |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
|    |   | 205-917-1 208-96-8                                                                                                                                                                              | -      |              |        |                 |                |                      |           |                     |
| 18 | ۲ | 204-371-1 120-12-7                                                                                                                                                                              | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene                                                                                                                                                                              |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
|    |   | 601-033-00-9 200-280-6 p6-55-3                                                                                                                                                                  | -      |              |        |                 |                |                      |           |                     |
| 20 |   | 601-032-00-3 200-028-5 50-32-8                                                                                                                                                                  | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| -  |   | benzo[b]fluoranthene                                                                                                                                                                            | +      |              |        |                 |                |                      |           |                     |
| 21 |   | 601-034-00-4 205-911-9 205-99-2                                                                                                                                                                 | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 22 | 8 | benzo[ghi]perylene                                                                                                                                                                              |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
|    |   | 205-883-8 191-24-2                                                                                                                                                                              | _      |              |        |                 |                |                      |           |                     |
| 23 |   | 601-036-00-5 205-916-6 207-08-9                                                                                                                                                                 | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 24 |   | chrysene                                                                                                                                                                                        |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
|    |   | 601-048-00-0 205-923-4 218-01-9                                                                                                                                                                 | +      |              |        |                 |                |                      |           |                     |
| 25 |   | 601-041-00-2 200-181-8 53-70-3                                                                                                                                                                  |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 26 |   | fluoranthene                                                                                                                                                                                    |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| -  |   | 205-912-4 206-44-0                                                                                                                                                                              |        |              |        |                 |                |                      |           |                     |
| 27 | - | 201-695-5 86-73-7                                                                                                                                                                               | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 28 | ٥ | indeno[123-cd]pyrene                                                                                                                                                                            |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
|    |   | 205-893-2 [193-39-5<br>naphthalene                                                                                                                                                              |        | -0.05        |        |                 | .0.05 mg/kg    | -0.000005.0/         |           |                     |
| 29 |   | 601-052-00-2 202-049-5 91-20-3                                                                                                                                                                  |        | <0.05        | тід/кд |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 30 | ۲ | phenanthrene                                                                                                                                                                                    |        | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| -  | _ | pyrene                                                                                                                                                                                          | +      |              |        |                 |                |                      |           |                     |
| 31 |   | 204-927-3  129-00-0                                                                                                                                                                             | -      | <0.05        | mg/kg  |                 | <0.05 mg/kg    | <0.000005 %          |           | <lod< td=""></lod<> |
| 22 |   | phenol                                                                                                                                                                                          |        | -1           | ma/ka  |                 |                | <0.0001 %            |           |                     |
|    |   | 604-001-00-2 203-632-7 108-95-2                                                                                                                                                                 |        |              | ту/ку  |                 |                | <b>10.0001</b> /0    |           |                     |
|    |   |                                                                                                                                                                                                 |        |              |        |                 | Total:         | 0.048 %              |           |                     |

Key



| Non Hazardous Waste    |  |
|------------------------|--|
| Classified as 17 05 04 |  |
| in the List of Waste   |  |
| •                      |  |

# Sample details

| ample Name:       | LoW Code: | 17. Construction and Demolition Wester (including everyted coil |
|-------------------|-----------|-----------------------------------------------------------------|
| P125              | Chapter   | 17. Construction and Demontion wastes (including excavated soil |
| ample Depth:      |           | from contaminated sites)                                        |
| 40-0.50 m         | Entry:    | 17 05 04 (Soil and stones other than those mentioned in 17 05   |
| loisture content: |           | 03)                                                             |
| 2%                |           |                                                                 |
| no correction)    |           |                                                                 |

## Hazard properties

None identified

### **Determinands**

### Moisture content: 12% No Moisture Correction applied (MC)

| #        |    |                                                            | Determinand                               | CAC Number                           | P Note | User entered data | User entered data Conv.<br>Facto |                | Classification value | : Applied | Conc. Not<br>Used   |
|----------|----|------------------------------------------------------------|-------------------------------------------|--------------------------------------|--------|-------------------|----------------------------------|----------------|----------------------|-----------|---------------------|
|          |    | CLP index number                                           | EC Number                                 | CAS Number                           | CL     |                   |                                  |                |                      | Σ         |                     |
| 1        | Θ  | confirm TPH has N                                          | OT arisen from dies                       | sel or petrol                        |        |                   |                                  |                |                      |           |                     |
|          |    |                                                            |                                           |                                      |        |                   |                                  |                |                      |           |                     |
| 2        | 4  | arsenic { arsenic tri                                      | oxide }                                   |                                      | _      | 16 mg/k           | g 1.32                           | 21.125 mg/kg   | 0.00211 %            |           |                     |
|          |    | 033-003-00-0                                               | 215-481-4                                 | 1327-53-3                            |        |                   |                                  |                |                      |           |                     |
| 3        | -4 | beryllium { berylliur                                      | n oxide }                                 | 4004 50 0                            |        | 1.3 mg/k          | g 2.775                          | 5 3.608 mg/kg  | 0.000361 %           |           |                     |
|          |    | 004-003-00-8                                               | 215-133-1                                 | 1304-56-9                            |        |                   |                                  |                |                      |           |                     |
|          | 4  | boron { 🎴 boron tri                                        | bromide/trichloride/t                     | rifluoride                           |        |                   |                                  |                |                      |           |                     |
| 4        |    | (combined) }                                               |                                           |                                      |        | 2.2 ma/k          | 13.43                            | 29 546 mg/kg   | 0.00295 %            |           |                     |
| ·        |    |                                                            |                                           | 10294-33-4,                          |        | 2.2 119/1         | 9 10.10                          | 20.010 mg/ng   | 0.00230 /1           |           |                     |
|          |    |                                                            |                                           | 7637-07-2                            |        |                   |                                  |                |                      |           |                     |
| -        |    | cadmium { cadmiur                                          | n sulfide }                               |                                      |        |                   |                                  | 0.057 //       | 0.00000.0/           |           | 1.00                |
| 5        | ~  | 048-010-00-4                                               | 215-147-8                                 | 1306-23-6                            | 1      | <0.2 mg/k         | g 1.285                          | о <0.257 mg/кg | <0.00002 %           |           | <lod< td=""></lod<> |
| 6        | 4  | chromium { 🏾 Chro                                          | mium(III) oxide }                         |                                      |        | 26 mg/k           | g 1.462                          | 2 38 mg/kg     | 0.0038 %             |           |                     |
|          |    |                                                            | 215-160-9                                 | 1308-38-9                            |        |                   |                                  |                |                      |           |                     |
| 7        | 4  | copper { <sup>®</sup> <mark>dicoppe</mark>                 | er oxide; copper (I) o                    | <mark>xide</mark> }                  |        | 26 mg/k           | g 1.126                          | 5 29.273 mg/kg | 0.00293 %            |           |                     |
|          |    | 029-002-00-X                                               | 215-270-7                                 | 1317-39-1                            |        |                   |                                  |                |                      |           |                     |
| 8        | 4  | lead { lead chromat                                        | te }                                      |                                      | 1      | 14 mg/k           | g 1.56                           | 21.837 mg/kg   | 0.0014 %             |           |                     |
|          |    | 082-004-00-2                                               | 231-846-0                                 | 7758-97-6                            |        |                   |                                  |                |                      |           |                     |
| 9        | 4  | mercury { mercury                                          | dichloride }                              |                                      |        | <0.3 mg/k         | g 1.353                          | <0.406 mg/kg   | <0.0000406 %         |           | <lod< td=""></lod<> |
|          |    | 080-010-00-X                                               | 231-299-8                                 | 7487-94-7                            |        |                   |                                  |                |                      |           |                     |
| 10       | 4  | nickel { nickel dihyd                                      | lroxide }                                 |                                      |        | 50 //             | 4 5 7 6                          | 70.075 //      | 0.0070.0/            |           |                     |
| 10       |    | 028-008-00-X                                               | 235-008-5 [1]<br>234-348-1 [2]            | 12054-48-7 [1]<br>11113-74-9 [2]     |        | 50 mg/k           | g 1.578                          | 9 78.975 mg/kg | 0.0079 %             |           |                     |
| 11       | 4  | selenium { seleniur<br>cadmium sulphose<br>in this Annex } | n compounds with t<br>lenide and those sp | he exception of<br>ecified elsewhere |        | <1 mg/k           | g 2.554                          | <2.554 mg/kg   | <0.000255 %          |           | <lod< td=""></lod<> |
|          |    | 034-002-00-8                                               |                                           |                                      |        |                   |                                  |                |                      |           |                     |
| 12       | 4  | zinc { zinc chromat                                        | e}                                        |                                      |        | 86 ma/k           | a 2.774                          | 238.577 ma/ka  | 0.0239 %             |           |                     |
| <u> </u> |    | 024-007-00-3                                               |                                           |                                      |        |                   |                                  |                |                      |           |                     |
| 13       | 8  | рН                                                         |                                           |                                      |        | 7.9 pH            |                                  | 7.9 pH         | 7.9 pH               |           |                     |
|          |    |                                                            |                                           | РН                                   |        |                   |                                  |                |                      |           |                     |



| #  |   | Determinand CLP index number EC Number CAS Number                                                                                                                                      | CLP Note | User entered data | Conv.<br>Facto | r Compound conc. | Classification<br>value | AC Applied | Conc. Not<br>Used   |
|----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----------------|------------------|-------------------------|------------|---------------------|
| 14 | 4 | cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <1 mg/            | .g 1.884       | <1.884 mg/kg     | <0.000188 %             |            | <lod< td=""></lod<> |
| 15 | ۵ | TPH (C6 to C40) petroleum group                                                                                                                                                        |          | <10 mg/           | g              | <10 mg/kg        | <0.001 %                |            | <lod< td=""></lod<> |
| 16 | ۵ | acenaphthene 201-469-6 83-32-9                                                                                                                                                         |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 17 | ۵ | acenaphthylene 205-917-1 208-96-8                                                                                                                                                      |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 18 | 9 | anthracene 204-371-1 120-12-7                                                                                                                                                          |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 19 |   | benzo[a]anthracene<br>601-033-00-9 200-280-6 56-55-3                                                                                                                                   |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 20 |   | benzo[a]pyrene; benzo[def]chrysene           601-032-00-3         200-028-5         50-32-8                                                                                            |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 21 |   | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2                                                                                                                                |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 22 | ۵ | benzo[ghi]perylene<br>205-883-8  191-24-2                                                                                                                                              |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 23 |   | benzo[k]fluoranthene<br>601-036-00-5 205-916-6 207-08-9                                                                                                                                |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 24 |   | chrysene<br>601-048-00-0 205-923-4 218-01-9                                                                                                                                            |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 25 |   | dibenz[a,h]anthracene<br>601-041-00-2 200-181-8 53-70-3                                                                                                                                |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 26 | 0 | fluoranthene 205-912-4 206-44-0                                                                                                                                                        |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 27 | 0 | fluorene 201-695-5 86-73-7                                                                                                                                                             |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 28 | 8 | indeno[123-cd]pyrene<br>205-893-2  193-39-5                                                                                                                                            |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 29 |   | naphthalene<br>601-052-00-2 202-049-5 91-20-3                                                                                                                                          |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 30 | ۲ | phenanthrene 201-581-5 85-01-8                                                                                                                                                         |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 31 | ۵ | pyrene 204-927-3 129-00-0                                                                                                                                                              |          | <0.05 mg/         | g              | <0.05 mg/kg      | <0.000005 %             |            | <lod< td=""></lod<> |
| 32 |   | phenol<br>604-001-00-2 203-632-7 108-95-2                                                                                                                                              |          | <1 mg/            | g              | <1 mg/kg         | <0.0001 %               |            | <lod< td=""></lod<> |
|    |   | · · · ·                                                                                                                                                                                |          |                   |                | Total:           | 0.047 %                 |            |                     |

Key



### Appendix A: Classifier defined and non CLP determinands

### • confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

#### • boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06/08/2015 Risk Phrases: R14, T+ R26/28, C R34, C R35 Hazard Statements: EUH014, Acute Tox. 2 H330, Acute Tox. 2 H300, Skin Corr. 1A H314, Skin Corr. 1B H314

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R20, R22, R36, R37, R38, R42, R43, R50/53, R60, R61 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### • dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53, N R50/53 >= 0.25 % Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s)/Risk Phrase(s): 10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

#### • salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5 Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Risk Phrases: None. Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s): 14/12/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R10, R45, R46, R51/53, R63, R65 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411



# HazWasteOnline<sup>™</sup>

Report created by Richard Robinson on 21/09/2017

#### • ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, N R50/53, N R51/53 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

• acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R22, R26, R27, R36, R37, R38 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

• anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, R43, N R50/53 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23/07/2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

<sup>e</sup> fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xn R22, N R50/53 Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R40 Hazard Statements: Carc. 2 H351

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R22, R36, R37, R38, R40, R43, N R50/53 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400 , Aquatic Chronic 1 H410, Skin Irrit. 2 H315



# 

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xi R36/37/38, N R50/53

Hazard Statements: Skin Irrit. 2 H315 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

### Appendix B: Rationale for selection of metal species

| arsenic {arsenic trioxide}                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Worst case species based on risk phrases                                                                                                                                             |
| beryllium {beryllium oxide}                                                                                                                                                          |
| Worst case species based on risk phrases                                                                                                                                             |
| boron {boron tribromide/trichloride/trifluoride (combined)}                                                                                                                          |
| Worst case species based on risk phrases                                                                                                                                             |
| cadmium {cadmium sulfide}                                                                                                                                                            |
| Worst case species based on risk phrases                                                                                                                                             |
| chromium {chromium(III) oxide}                                                                                                                                                       |
| No significant Chromium VI recorded.                                                                                                                                                 |
| copper {dicopper oxide; copper (I) oxide}                                                                                                                                            |
| Most likely common species                                                                                                                                                           |
| lead {lead chromate}                                                                                                                                                                 |
| Worst case species based on risk phrases                                                                                                                                             |
| mercury {mercury dichloride}                                                                                                                                                         |
| Worst case species based on risk phrases                                                                                                                                             |
| nickel {nickel dihydroxide}                                                                                                                                                          |
| Worst case species based on risk phrases                                                                                                                                             |
| selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}                                                               |
| Worst case species based on risk phrases                                                                                                                                             |
| zinc {zinc chromate}                                                                                                                                                                 |
| Worst case species based on risk phrases                                                                                                                                             |
| cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex} |
| Worst case species                                                                                                                                                                   |

## **Appendix C: Version**

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2017.248.3389.6849 (05 Sep 2017) HazWasteOnline Database: 2017.261.3397.6865 (18 Sep 2017)





Report created by Richard Robinson on 21/09/2017

This classification utilises the following guidance and legislation: WM3 - Waste Classification - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 **4th ATP** - Regulation 487/2013/EU of 8 May 2013 **Correction to 1st ATP** - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010





www.bwbconsultina.com