

Lince Lane, Kirtlington

Reference: 402 - Rev - V2

Aug-23 www.rida-reports.co.uk

arge@rida-reports.co.uk

	Section
Introduction	1
Site Characteristics	2.0
Discharge Arrangement	3.0
Peak Runoff	4.0
Proposed Sustainable Drainage	5.0
Maintenance and Management Plan	6.0
Appendices	
Distribution Existing and Proposed Areas	А
Site Investigation results	В
Drainage Calculations	С
Drainage System General Arrangement	D

079 721 44579

Produced by: ARD

Rev 1

Oxford Innospace, Old Music Hall, 106-108 Cowley Road, Oxford, OX4 1JE England and Wales number 10590566

Purpose of this report

1.1 The purpose of this statement is to accompany the technical drawings and details showing the proposed Surface Water drainage system as part of the planning application for this development.

Site Characteristics

2.1 The site background is clearly identified through answers to the questions in table 1 below.

Table 1: Site Characteristics . See appendix B for support documentation

TOPIC	QUESTION	ANSWER
Protected species or habitat	Is the site near to designated sites and priority habitats?	No
Flood Plain	Is the site located in the flood plain?	No
Soils and Geology	Soil permeability? - See appendix B for results	Yes
Space constraints	Space for SuDS components?	Yes
	Sited on a flat site?	Yes
Topography	Sited on a steep slope (5-15%)	No
	Sited on a very steep slope (>15%)	No
Groundwater	Is the site at groundwater flood risk?	No
Contaminated land	Are there contaminated soils on site?	No
Source Protection Zone	Is the site within a SPZ 3?	No
Runoff characteristics	Is the development in a high risk flooding area?	No

Existing and Proposed Site

2.2 The distribution of catchment areas for existing and proposed site is as per table 2 below. See appendix A for details

Table 2 : Existing and Proposed catchment areas in hectares

Description		Existing Site	Proposed Site
Impermeable Area	S	0.000	0.111
Permeable Areas	Connected to Drainage	0.000	0.000
Permeable Areas	Self Draining Areas	0.000	0.225
Areas Draining Aw	ay from drainage System	0.914	0.578
	Total Development Area	0.914	0.914

2.3 It has been assumed that the positively drained areas will have different runoff coefficients depending on the type of surface as follow:

Impermeable Surface	1.0
Permeable Surfaces	0.5
Grass Areas	0.3

Evaluation of Discharge Point

- 3.1 The SuDS design takes into account Building Regulations Section H3 and the National Planning Practice Guidance. The aim is to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:
 - 1. into the ground (infiltration);
 - 2. to a surface water body;
 - 3. to a surface water sewer, highway drain, or another drainage system;
 - 4. to a combined sewer.
- 3.2 The discharge point has been evaluated following the NPPG and Building regulations. The findings are in table 3 below.

Table 3: Drainage Hierarchy evaluation

Superficial geology classification	The British Geological Society records show that the superficial deposits are Hanborough Gravel Member - Sand and Gravel.
Bedrock geology classification	The British Geological Society records of the site show that it is located within the Peterborough Member - Mudstone.
Landis Top Soil Infiltration	The SOILSCAPE's records of the site show that it is located within an area of freely draining soils.
Groundwater	The British Geological Survey's flood risk susceptibility maps show that the development has limited susceptibility to ground water flooding. The risk from groundwater flood to the site is considered very low.
Is infiltration feasible?	Soakaway tests were undertaken for the site. The lowest infiltration rate for this site is 0.000008m/s or 0.0288m/hr. See appendix B for details.
Is a discharge to a watercourse possible?	There are no watercourses in the proximity to the site.
Is a discharge to a surface water sewer possible?	There is no surface water sewer in the proximity to the site.
Is a discharge to a combined sewer possible?	There is no combined water sewers in the proximity to the site.

Existing and Proposed Peak Run-off Calculations

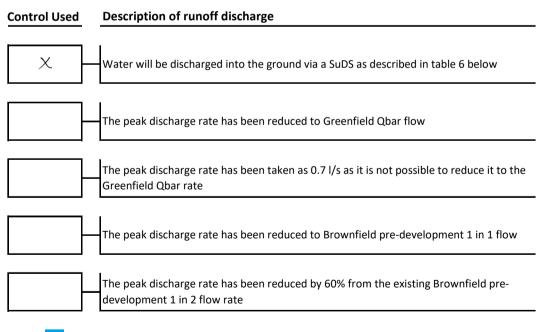

4.1 The current site is a Greenfield. The peak runoff rate for the existing site was calculated as per table 4 and discharge rates as per table 5.

Table 4: Peak run-off rate calculation method for existing site

Method Used	Calculation Method
X	Report 124 Flood Estimation for Small Catchments method has been used to estimate the site peak flow rates
	This is a brownfield site, runoff rates are calculated in accordance with best practice simulation modelling and using the modified rational method
	This is a brownfield site where the pre-development drainage isn't known. The runoff rates are calculated using the Greenfield model with soil type 5

4.2 The runoff flow produced by the development will be controlled as per table5.

Table 5: Runoff discharge rate control

Run-off flows

4.3 The size of the SuDS has been calculated for all events up to the 1 in 100 including an allowance for climate change of 40%. As per tables above, it is proposed to infiltrate all the flows. See table 6 for values and appendix C for calculations.

Table 6: Peak discharge rates for SuDS

Return Period Event		Infiltration Rate		
	Existing Greenfield	Existing Brownfield	Proposed	(m/hr)
Qbar	0.10	N/A	N/A	0.0288
1 in 1	0.10	N/A	0.0	0.0288
1 in 2	0.10	N/A	0.0	0.0288
1 in 30	0.30	N/A	0.0	0.0288
1 in 30 + CC	N/A	N/A	0.0	0.0288
1 in 100	0.40	N/A	0.0	0.0288
1 in 100 + CC	N/A	N/A	0.0	0.0288

Proposed Sustainable Drainage System

5.1 The following sustainable drainage systems have been used for this site. The drainage design uses these drainage system through out the site. See table 7 for details.

Table 7: Proposed Drainage System

SuDS Proposed	Feasible	Proposed
Use of green roofs	No	No
Store rainwater for later use	No	No
Use infiltration techniques, for instance soakaways, permeable surfaces	Yes	Yes
Attenuate rainwater in ponds or open water features for gradual release	No	No
Attenuate rainwater by storing in tanks or sealed water features for gradual release	No	No
Discharge Point Proposed		
Discharge rainwater direct to a watercourse	No	No
Discharge rainwater to a surface water sewer/drain	No	No
Discharge rainwater to the combined sewer	No	No

- 5.2 The location and details of the SuDS can be seen drainage layouts in appendixD. Calculations are in appendix C.
- 5.3 The drainage calculations demonstrate:

- No flooding occurs for the 1 in 30 storm events.

- Any flooding for the 1 in 100 year + 40% climate change event can be safely contained on site
- 5.4 The proposed drainage strategy presents one possible solution to demonstrate that the development can be sustainably drained, to comply with the requirements of the NPPF. Other solutions may be feasible and may prove to be better suited to the site. These will become apparent during the detailed design stage. The strategy above should not therefore be interpreted as the definitive scheme solution.

Management of Exceedance Flows

5.5 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP + CC(1 in 100 years). However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded. Surface water will flow to the lowest points within the site. The flood risk to the buildings would therefore remain low. See appendix D.

Water Quality Assessment

5.6 The pollution hazard indices for this development has been taken from the CIRIA C753 publication 'The SuDS Manual' – Table 26.2. The tables below shows the mitigation measure for the highest pollution hazard indices presented in the development.

Table 8: Pollution Hazard Indices

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very low	0.2	0.2	0.05
	TOTAL	0.2	0.2	0.05

Table 9: SuDS Mitigation Indices for worst case**

Type of SuDS	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Crate Storage/ Soakaway	0.4	0.3	0.3
TOTAL	0.4	0.3	0.3

** Values already reduced as per CIRIA C753

5.7 It is demonstrated that the proposed sustainable systems exceeds the required pollution indices and provides sufficient treatment as part of the surface water management train in accordance with the 2015 SuDS Manual (CIRIA C753)

Maintenance and Management plan responsibility

6.1 The SuDS will be maintained by The Owner the property

Maintenance and Management plan for proposed SuDS

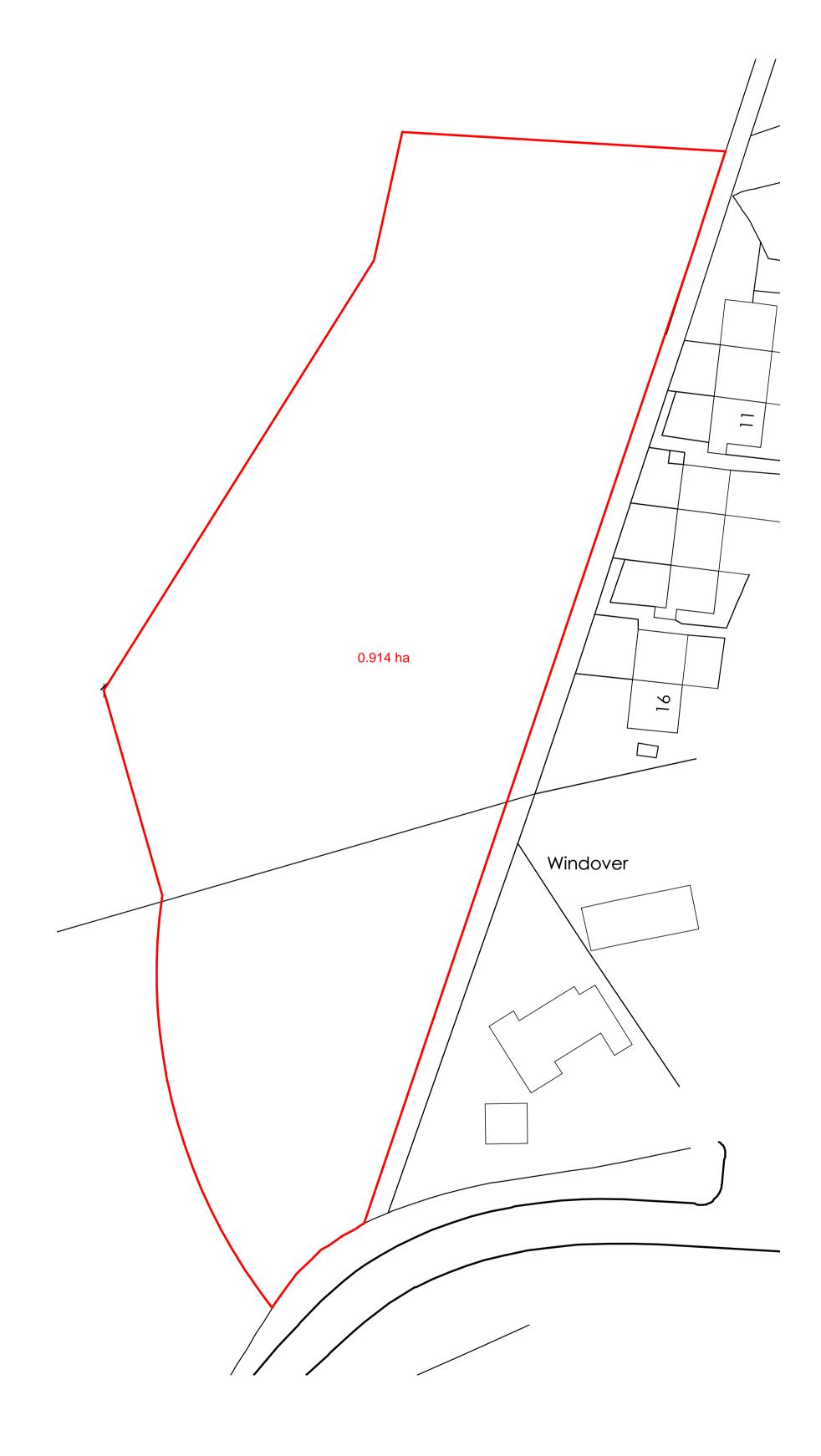
6.2 The maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined above. The maintenance for SuDS structures are as follow:

INLETS, OUTLETS, CONTROLS AND INSPECTION CHAMBERS	
Regular Maintenance	Frequency
Inlets, outlets and surface control structures	
Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage.	Monthly
Strim vegetation 1m min. surround to structures and keep hard aprons free from silt and debris	Monthly
Inspection chambers and below ground control chambers	
Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in autumn	
Occasional Maintenance	
Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage	As necessary
Remedial work	Frequency
Unpack stone in basket features and unblock or repair and repack stone as design detail as necessary.	As required
Repair physical damage if necessary.	As required

Maintenance schedule	Required action	Typical frequency	
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually	
Regular maintenance	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)	
	Trimming any roots that may be causing blockages	Annually (or as required	
Occasional maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections	
Remedial actions	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required	
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway)	As required	
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually	
2020 - Contra Co	Check soakaway to ensure emptying is occurring	Annually	

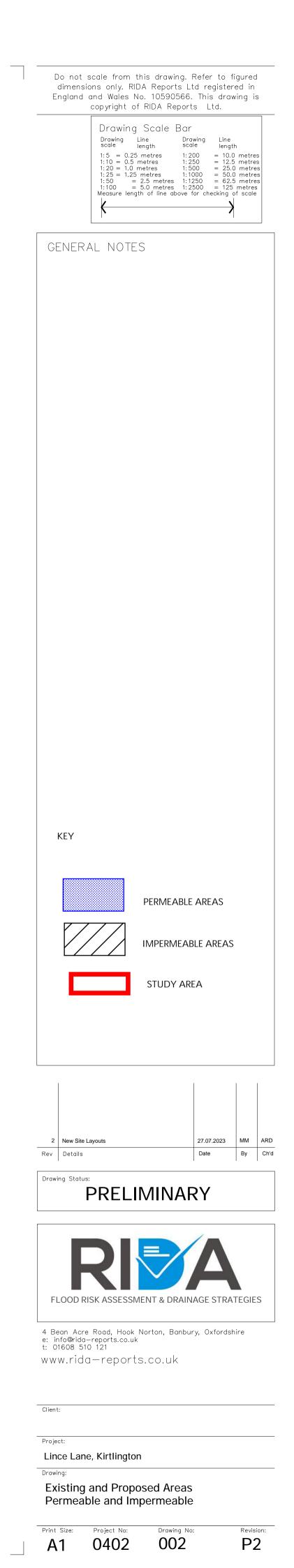
Maintenance and Management Plan

Maintenance schedule	Required action	Typical frequency		
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment		
	Stabilise and mow contributing and adjacent areas	As required		
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements		
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required		
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required		
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)		
	Initial inspection	Monthly for three months after installation		
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months		
5	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually		
	Monitor inspection chambers	Annually		


Operation and maintenance requirements for pervious pavements

6

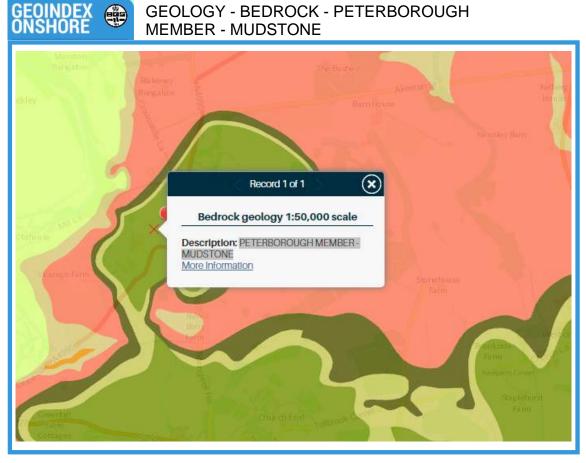
Appendix A

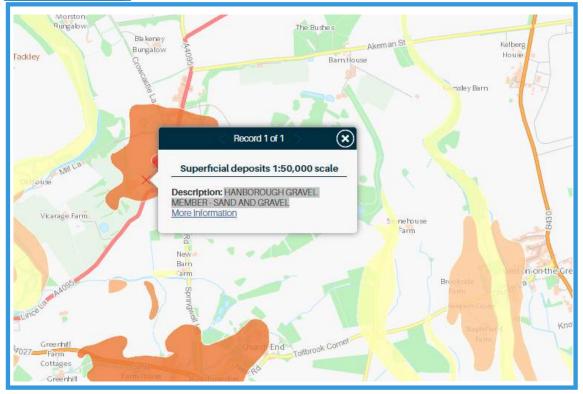


EXISTING SITE 1:500

PROPOSED SITE 1:500

Appendix B

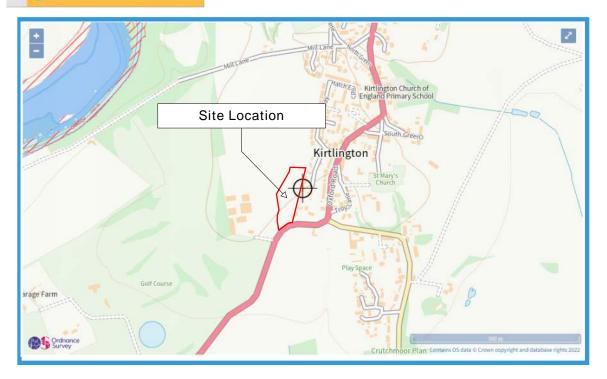



GEOINDEX ONSHORE

SITE GEOLOGY

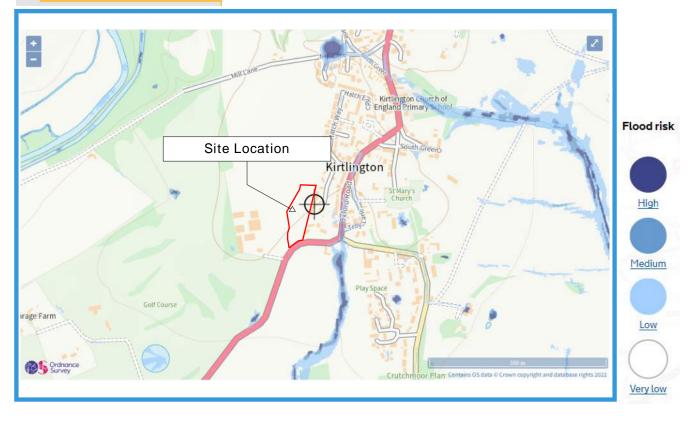
GEOLOGY - BEDROCK - PETERBOROUGH MEMBER - MUDSTONE

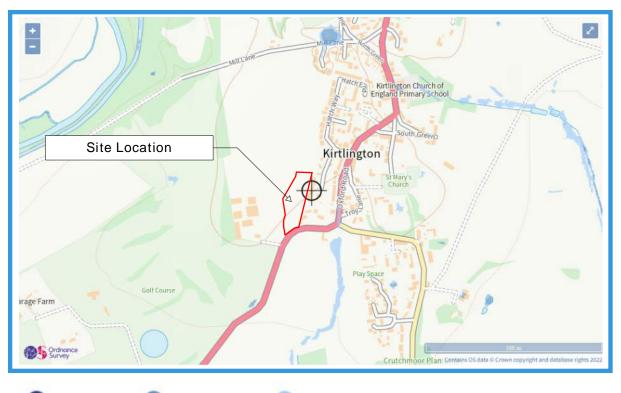
GEOLOGY - SUPERFICIAL DEPOSITS - HANBOROUGH GRAVEL MEMBER - SAND AND GRAVEL



SITE HYDROGEOLOGY

Renew Main River Map

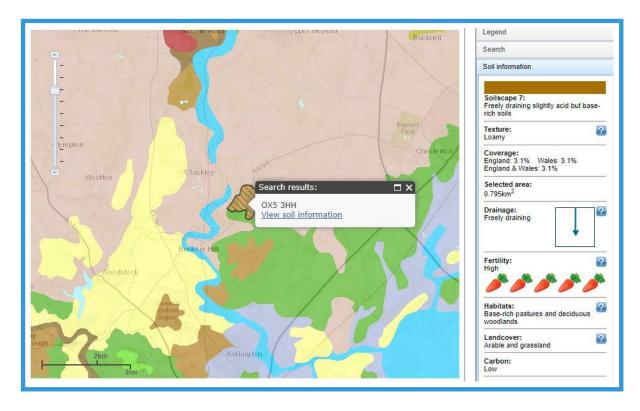



SITE FLOOD RISK

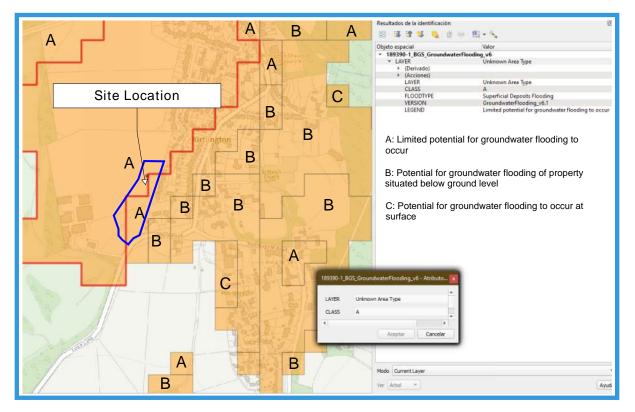
Extent of flooding

High risk means a chance of flooding greater than 3.3% (1:30) Medium risk means a chance of flooding of btw 1% (1:100) and 3.3% Low risk means a chance of flooding of btw 0.1% (1:1000) and 1% Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding

MAGIC RESULTS


	Tackley ANDS
<i>[</i>]	
Ref:SP49731945	(c) Crown Copyright and database rights 2022. Ordnance Survey 100022861.

Site Check Results		×
You selected the loca	rt generated on Tue Aug 16 2022 tion: Centroid Grid Ref: SP49731949 ave been found in your search area:	
Aquifer Designation	1ap (Bedrock) (England)	
Typology	Secondary B	
Туроlоду	Unproductive	
Aquifer Designation	Iap (Superficial Drift) (England)	
Туроlоду	Secondary A	
Source Protection Zo No Features found	nes merged (England)	
	-	
4		
	OK Cancel Export to CSV Print	



SOILSCAPES MAP

GROUND WATER FLOOD RISK

Flood map for planning

Your reference **OX5 3HH**

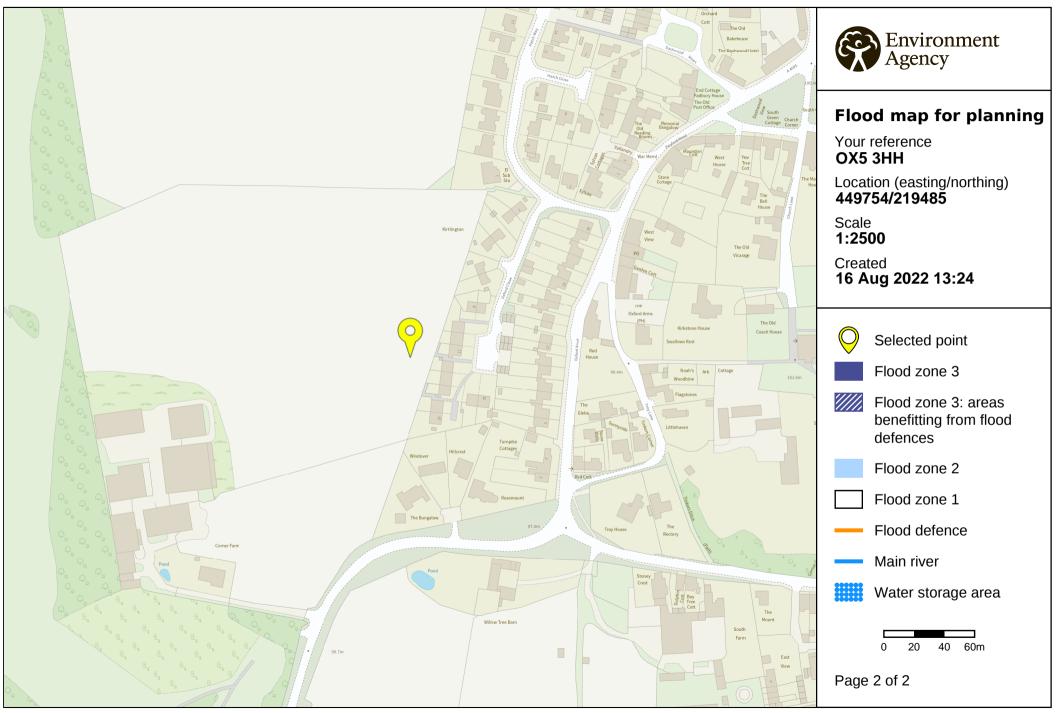
Location (easting/northing) 449754/219485

Created **16 Aug 2022 13:24**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2021 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

SSSI Impact Risk Zones - to assess planning applications for likely impacts on SSSIs/SACs/SPAs & Ramsar sites (England)

	F2. IF YES, CHECK THE CORRESPONDING DESCRIPTION(S) BELOW. LPA SHOULD CONSULT
THE CATEGORIES BELOW?	NATURAL ENGLAND ON LIKELY RISKS FROM THE FOLLOWING:
All Planning Applications Infrastructure	Airports, helipads and other aviation proposals.
Wind & Solar Energy	Alipoits, nelipaus and other aviation proposals.
Minerals, Oil & Gas	Planning applications for quarries, including: new proposals, Review of Minerals Permissions
	(ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction.
Rural Non Residential	
Residential	
Rural Residential	
Air Pollution	Livestock & poultry units with floorspace > 500m ² , slurry lagoons & digestate stores > 750m ² , manure stores > 3500t.
Combustion	General combustion processes >50MW energy input. Incl: energy from waste incineration, other
	incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage
	treatment works, other incineration/ combustion.
Waste	
Composting	
Discharges	
Water Supply Notes 1	
Notes 2	
GUIDANCE - How to use the Impact Risk Zones	/Metadata_for_magic/SSSI IRZ User Guidance MAGIC.pdf
·	
Nitrate Vulnerable Zones 2017 Designations (England)	
Nitrate Vulnerable Zone ID	472
Nitrate Vulnerable Zone Name	Cherwell (Ray to Thames) and Woodeaton Brook NVZ
Type of Nitrate Vulnerable Zone	Surface Water
Status of NVZ since 2013 designations	Existing
Unique Reference number	S472
Aquifer Designation Map (Bedrock) (England)	
Туроlоду	Unproductive
Aquifer Designation Map (Superficial Drift) (England)	
Туроlоду	Secondary A
Soilscape (England)	
Reference	7
Name	FREELY DRAINING SLIGHTLY ACID BUT BASE-RICH SOILS
Main Surface Texture Class	LOAMY
Natural Drainage Type	
Natural Fertility Characteristic Semi-natural Habitats	HIGH BASE-RICH PASTURES AND DECIDUOUS WOODLANDS
Main Land Cover	ARABLE AND GRASSLAND
Hyperlink	/Metadata for magic/soilscape summary.pdf
	<u></u>
Areas of Outstanding Natural Beauty (England) No Features found	
Limestone Pavement Orders (England) No Features found	
Local Nature Reserves (England) - points No Features found	
Local Nature Reserves (England) No Features found	
Moorland Line (England)	

Moorland Line (England) No Features found

National Nature Reserves (England) - points No Features found

National Nature Reserves (England) No Features found National Parks (England) No Features found

Ramsar Sites (England) - points No Features found

Ramsar Sites (England) No Features found

Proposed Ramsar Sites (England) - points No Features found

Proposed Ramsar Sites (England) No Features found

Sites of Special Scientific Interest Units (England) - points No Features found

Sites of Special Scientific Interest Units (England) No Features found

Sites of Special Scientific Interest (England) - points No Features found

Sites of Special Scientific Interest (England) No Features found

Special Areas of Conservation (England) - points No Features found

Special Areas of Conservation (England) No Features found

Possible Special Areas of Conservation (England) - points No Features found

Possible Special Areas of Conservation (England) No Features found

Special Protection Areas (England) - points No Features found

Special Protection Areas (England) No Features found

Potential Special Protection Areas (England) - points No Features found

Potential Special Protection Areas (England) No Features found

Biosphere Reserves (England) - points No Features found

Biosphere Reserves (England) No Features found

Less Favoured Areas (England) No Features found

Wild Bird General Licence Protected Sites Condition Zone (England) No Features found

Source Protection Zones merged (England) No Features found

Appendix B

The **Brown**field Consultancy

Woodstock Memorial Road Fenny Compton. CV47 2XU

Your Ref:

Our Ref: BC624 L.001 / JT

Dan Moore Manorwood Homes 4 Wroslyn Road Freeland Oxfordshire OX29 8HU

22nd July 2022

Dear Dan

LINCE LANE, KIRTLINGTON Results of Infiltration Testing

The Brownfield Consultancy was commissioned by Manorwood Homes to undertake trial pit soakaway (infiltration) testing in accordance with BRE 365 at the above site. The fieldwork was undertaken on 18th July 2022. The site comprises of an irregular shaped field with its long axis north – south, located south of Kirtlington. A residential development is proposed for the plot comprising of seven dwellings with garages and driveways. A Location Plan and proposals are presented in Appendix A.

1. FIELDWORK

Soakaway tests were undertaken within four trial pits denoted SA1 – SA4 to depths of 1.00m to 1.50m. One further pit denoted TP1 was excavated to 1.90m to confirm ground conditions. The locations of the trial pits are denoted on the Exploratory Hole Location Plan in Appendix A.

The pits were excavated by a backhoe excavator, their dimensions carefully measured and then flooded using a mobile water bowser. The time taken for the water to drain was then measured.

2. GROUND CONDITIONS

Reference to the online BGS Mapping Index indicates that the site is underlain by superficial deposits of Hanborough Gravel Member (sand and gravel) overlying the Peterborough Member (Clay and Mudstone). The investigation confirmed the anticipated geology of Hanborough Gravel; the Peterborough Member was not reached.

A summary of the strata encountered during the investigation is described in the following sections but for full details reference should be made to the exploratory hole logs presented in Appendix B.

Topsoil

Topsoil ranging in depth from 0.20-0.30m was encountered in all pits and comprised dark brown SAND with varying quantities of gravel.

The Brownfield Consultancy Woodstock Memorial Road Fenny Compton. CV47 2XU

Hanborough Gravel

The Hanborough Gravel was encountered to the base of each pit and comprised brown SAND with varying quantities of quartzite, limestone and ironstone gravel. In some pits it was described as 'locally clayey'.

Groundwater

A 'Very Slow' ingress of groundwater was encountered in TP1 at 1.90m. After 4 hours the level was recorded at 1.80m. Soils were described as 'damp' in TP1 at a depth of 1.20-1.30m.

3. INFILTRATION

3No. successful repeat tests were accomplished in all pits. The following soil infiltration rates (f) are calculated:-

- SA1 $f = 3.8 \times 10^{-5} \text{ m/sec}, 3.0 \times 10^{-5} \text{ m/sec}, 4.6 \times 10^{-5} \text{ m/sec}$
- SA2 $f = 1.3 \times 10^{-5} \text{ m/sec}, 8.0 \times 10^{-6} \text{ m/sec}, 8.9 \times 10^{-6} \text{ m/sec}$
- SA3 $f = 1.2 \times 10^{-5} \text{ m/sec}, 1.1 \times 10^{-5} \text{ m/sec}, 8.3 \times 10^{-6} \text{ m/sec}$
- SA4 $f = 2.6 \times 10^{-5} \text{ m/sec}, 1.6 \times 10^{-5} \text{ m/sec}, 1.4 \times 10^{-5} \text{ m/sec}$

The soakaway spreadsheets are presented in Appendix C.

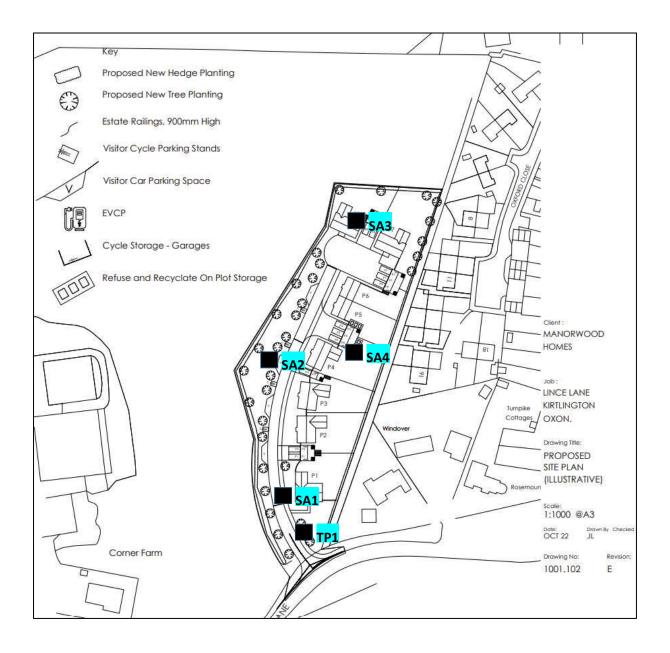
4. **RECOMMENDATIONS**

It is clear from the results that infiltration in the Hanborough Gravel is a viable means of surface water disposal. Groundwater was encountered at 1.90m and this needs to be further investigated and monitored. The adoption of a 1m 'freeboard' is often necessary which, on the evidence so far, would suggest that all soakways need to be constructed at a maximum depth of 0.90m. We would recommend that at a future date, soakaway tests are conducted at depths of 0.30-0.90m also.

We trust the above is satisfactory for your purposes. Should you have any queries please do not hesitate to contact me.

Yours sincerely

Alexado


Jim Twaddle cGeol Director

Appendix AExploratory Hole Location PlanAppendix BExploratory Hole LogsAppendix CSoakaway Test Calculations

APPENDIX A

Exploratory Hole Location Plan

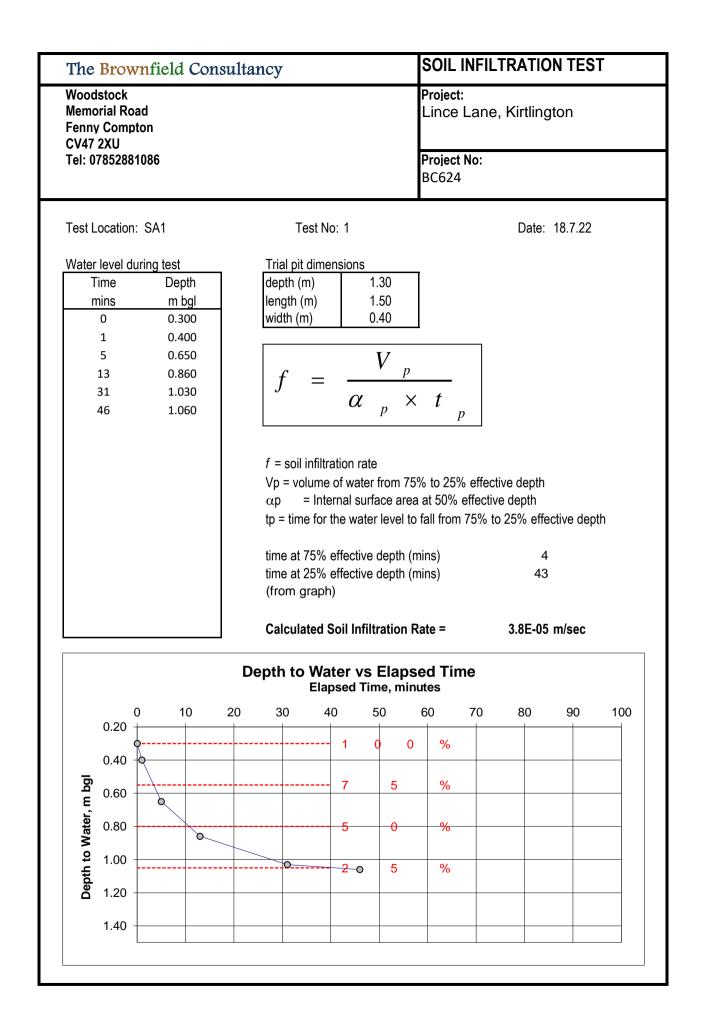
LINCE LANE, KIRKLINGTON EXPLORATORY HOLE LOCATION PLAN

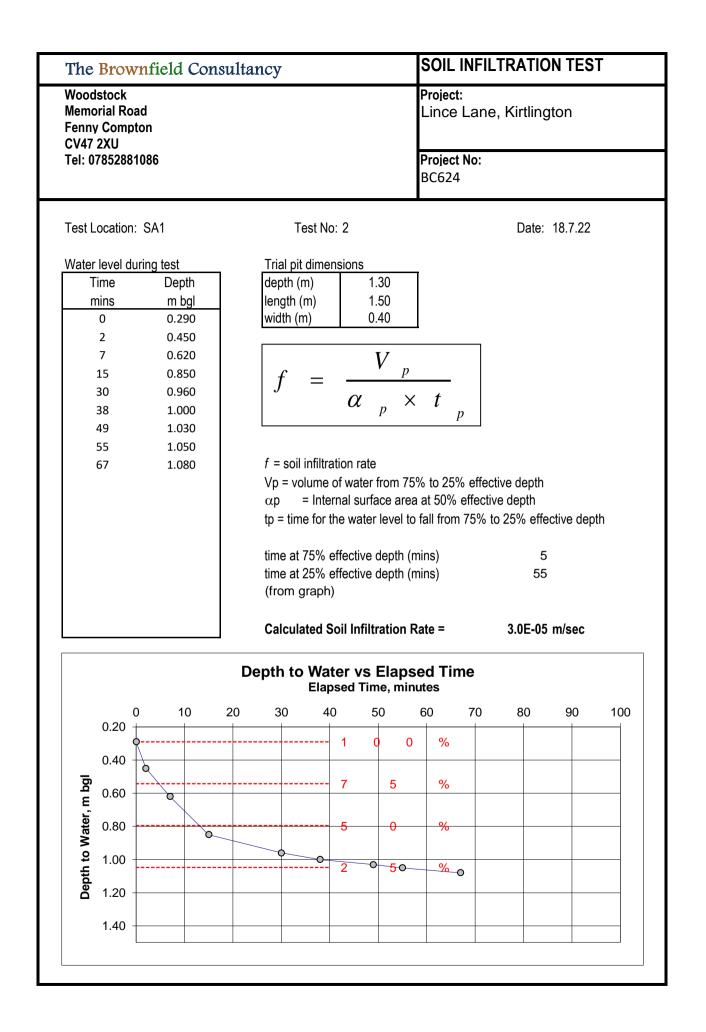
APPENDIX B

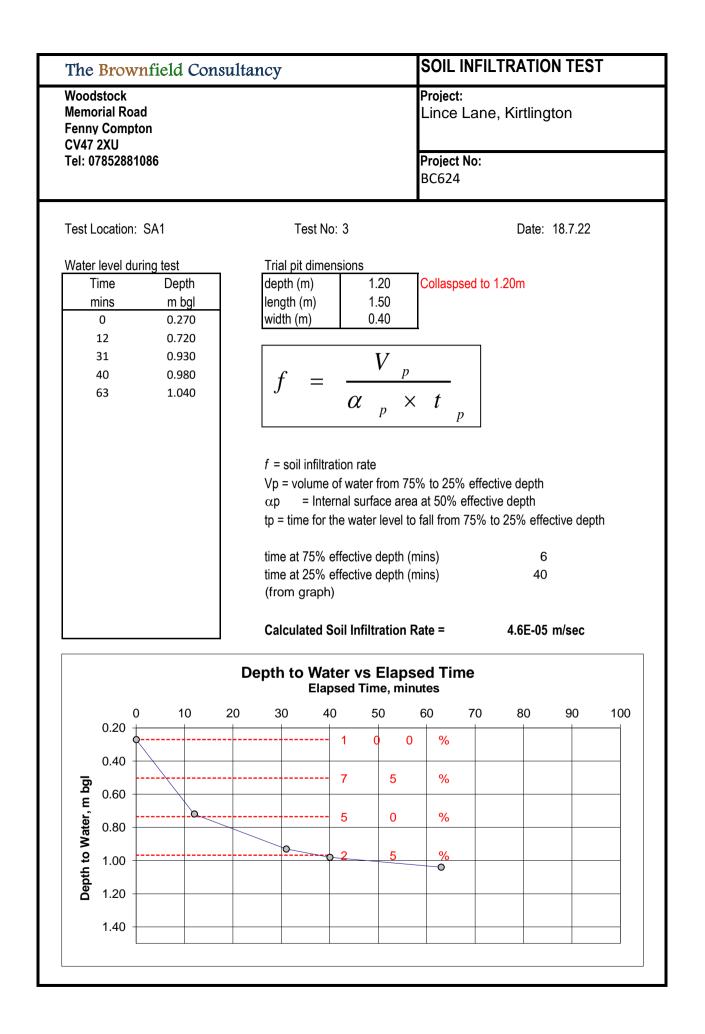
Exploratory Hole Logs

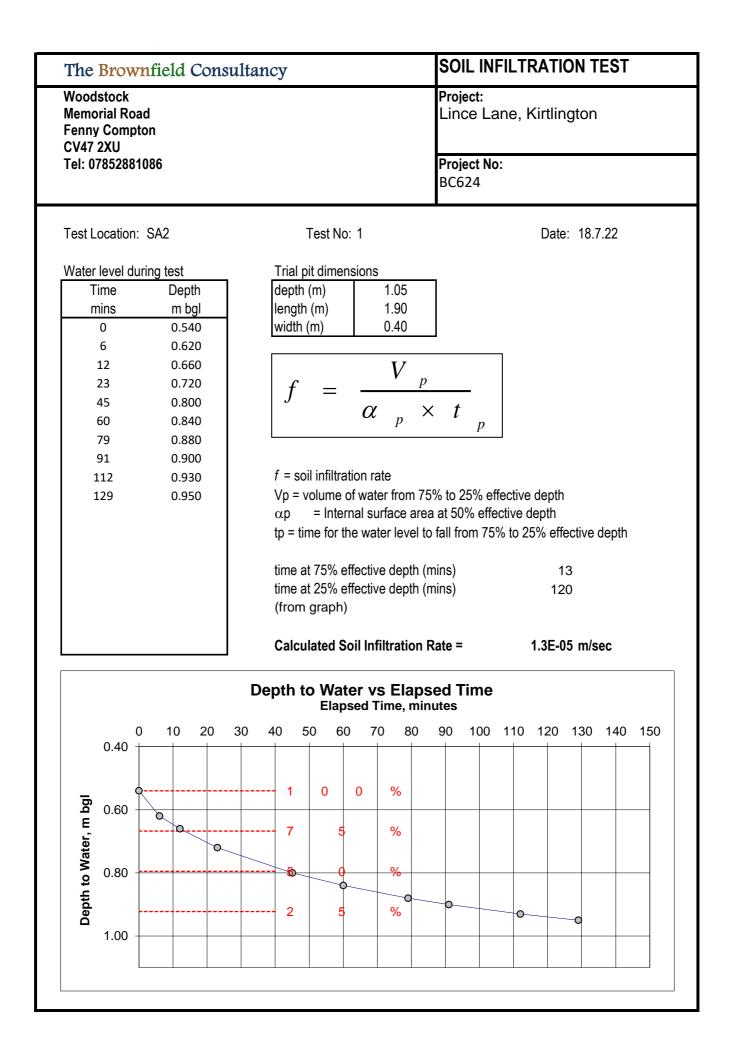
Project	Project								RIAL PIT No
	Lince Lane, Kirtlington								SA1
Job No		Date		Ground Level (n	n)	Co-Ordinates ()			JAI
	2624	18-0)7-22						
Contractor								Shee	t 1 of 1
The	The Brownfield Consultancy Ltd								
	STRATA SAM								ES & TESTS
							Depth	No	Remarks/Tests
Depth 0.00-0.20 0.20-0.85		GRAVEL)	onally coarse	tly gravelly SAND. quartzite, limeston	e and rare i	ngular to subrounded fine an onstone. (HANBOROUGH	ıd		
		Brown slightly occasionally co (HANBOROU	arse quartzite	e, limestone and rar	ar to subrou e ironstone.	nded fine and medium Sand is fine to coarse.			
0.85-1.30		subrounded fine	e and medium coarse.(HAN	cally clayey SAND 1 occasionally coars BOROUGH GRAV	se quartzite.	onal gravel of angular to limestone and rare ironstone	2.		
1.30			-	1. No obvious grour	ndwater.				
Shoring/S	Support								
Stability:									EMARKS ay test undertaken. ed with arisings.
D	С	B 0.	.4			I			
All dimen	sions in r de 1:25	netres Client	Manorwoo	od Homes	Method/ Plant Used	Backhoe excavator		Logged	By JT

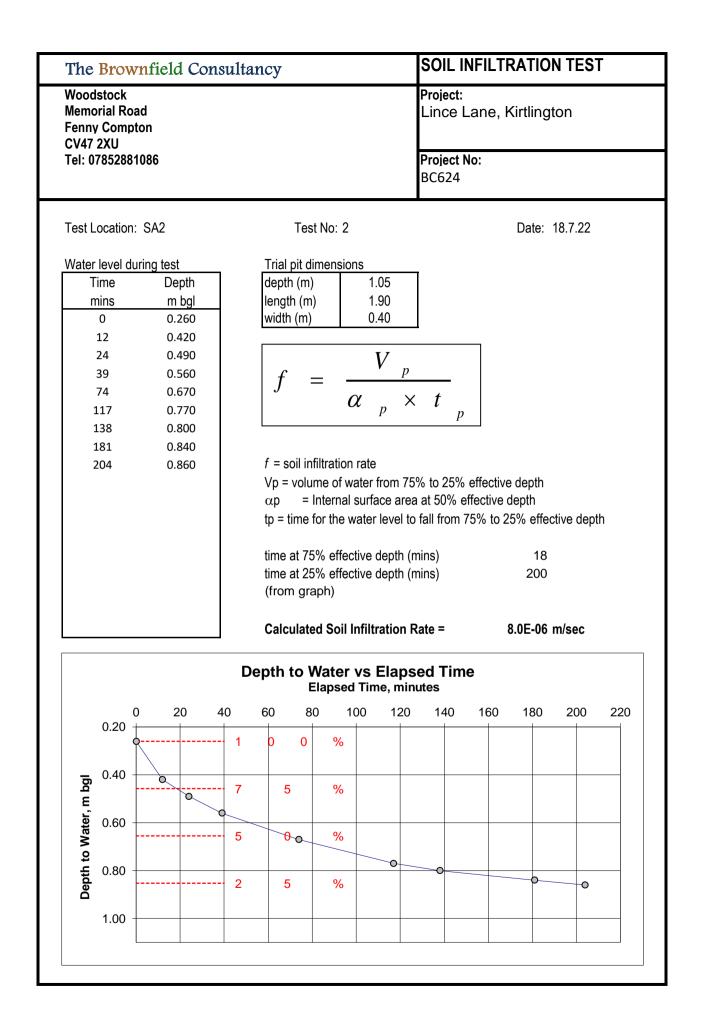
Project	02001								TF	RIAL PIT No
	Lince Lane, Kirtlington									SA2
Job No										JAZ
	624		18-	-07-22						
Contractor									Sheet	t 1 of 1
The	The Brownfield Consultancy Ltd									
	STRATA S									ES & TESTS
Depth 0.00-0.20			ss over da	rk brown sligh	tly gravelly SAND.	RIPTION Gravel is	angular to subrounded fine and ironstone. (HANBOROUGH	Depth	No	Remarks/Tests
0.20-1.05		GR/ Brov	AVEL) wn slightly asionally c	y gravelly SAI	ND. Gravel is angula	ar to subro	unded fine and medium . Sand is fine to coarse.			
1.05		o ¹		cally clayey. at target dept	h. No obvious groun	ndwater.		_		
Shoring/S Stability: D All dimen										
Shoring/S Stability:	Suppo Stab	rt: le.							R	ENERAL EMARKS
-	A Backfil									y test undertaken. ed with arisings.
D		С	В	▲ 0.4 ↓						
All dimen										By JT

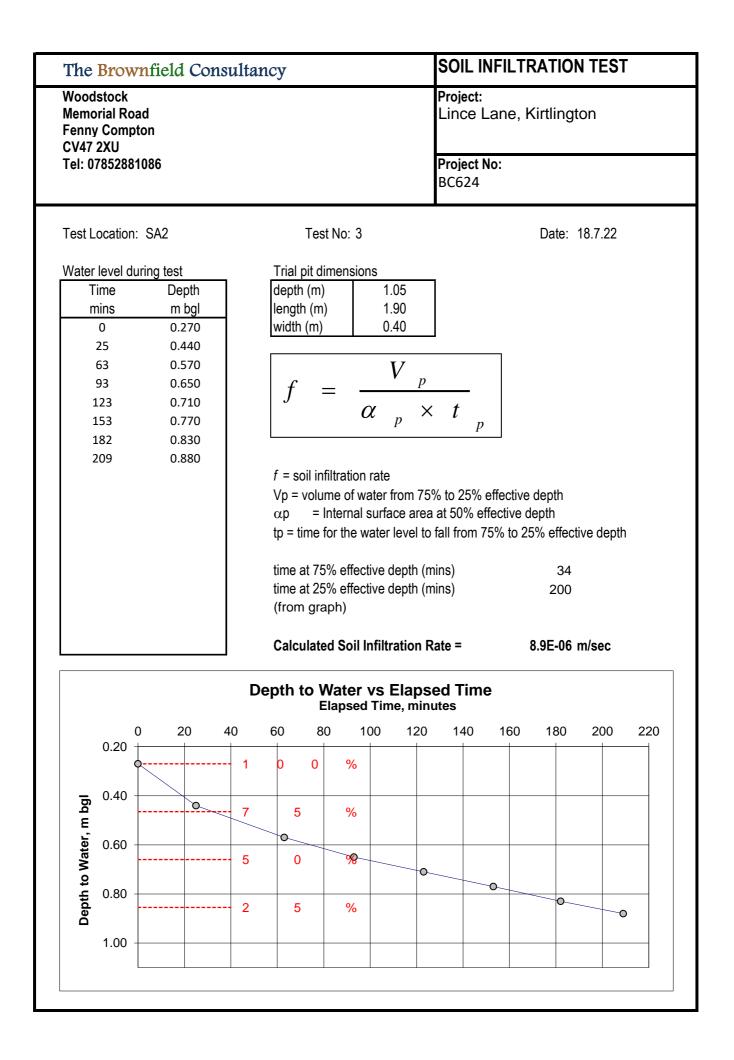

Phone: 078 Project									TF	RIAL PIT No
	ce La	ine, Kirt	-						_	SA3
Job No	1624	1	Date	07.22	Ground Level (n	n) Co	o-Ordinates ()			•••••
Contractor	624		18	-07-22					Sheet	t
	Brov	wnfield	Consulta	ancy Ltd					Shee	1 of 1
					STRATA			SA	MPLE	S & TESTS
								Depth	No	Remarks/Tests
Depth 0.00-0.30		<u>, u</u>			htly gravelly SAND. e quartzite and limes		ular to subrounded fine and OROUGH GRAVEL)			
0.30-1.00	•	occa (HA	isionally c NBOROU	y gravelly SA oarse quartzi JGH GRAVI cally clayey,	te, limestone and ran EL)	ar to subround e ironstone. S	led fine and medium and is fine to coarse.			
]						_		
Shoring/S Stability:	Suppo Stab	ort: le.							R	ENERAL EMARKS
D		2 A C	B	₩ 0.4					Soakawa Backfille	ay test undertaken. ed with arisings.
All dimen Sca	sions in ale 1:2:	n metres 5	Client	Manorwo	od Homes	Method/ Plant Used	Backhoe excavator.]	Logged I	By JT

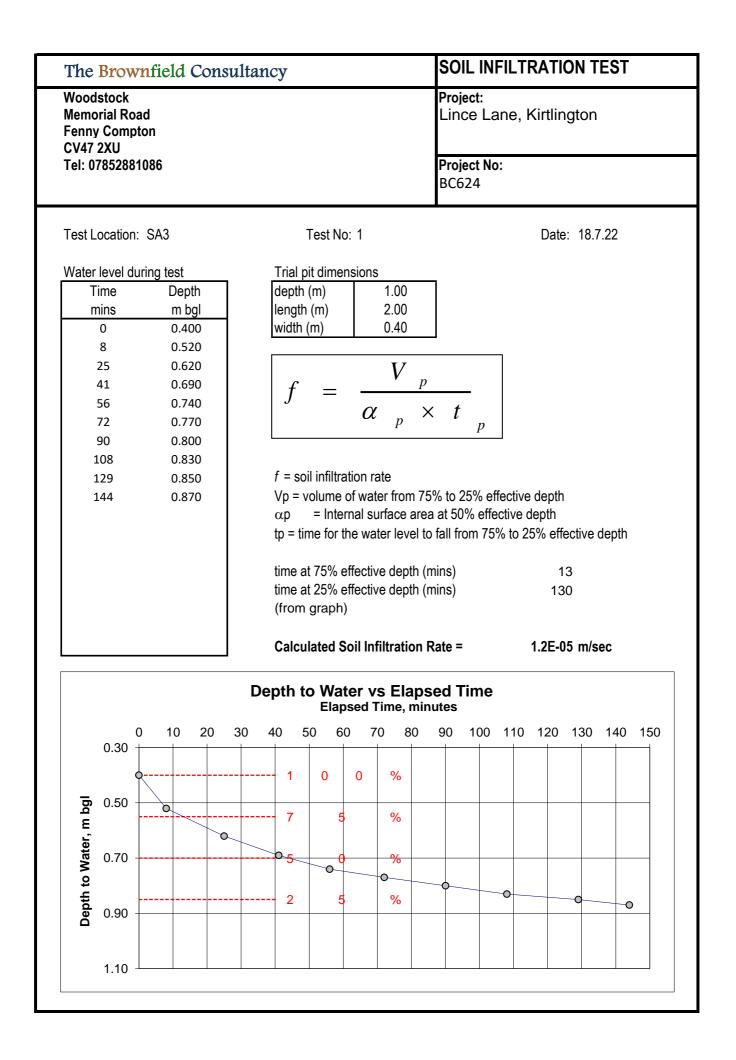

Project	2881086	, 				TR	RIAL PIT No
	ce Lane	, Kirtlington					SA4
Job No		Date	Ground Level (m)	Co-Ordinates ()			0/11
Contractor	624	18-07-22				Sheet	
	Brown	field Consultancy Ltd				Sheet	1 of 1
	Brown		STRATA		SAN		S & TESTS
			SIRAIA		Depth		Remarks/Tests
Depth 0.00-0.30	No $\frac{\sqrt{l_x}}{\sqrt{l_x}}$	Grass over dark brown slig medium occasionally coar	DESCRII ghtly gravelly SAND. Gr se quartzite and limestor	PTION ravel is angular to subrounded fine a ne. (HANBOROUGH GRAVEL)			
0.30-1.10		Brown SAND with occasi occasionally coarse quartz (HANBOROUGH GRAV	tite, limestone and rare ir	subrounded fine and medium onstone. Sand is fine to coarse.			
1.10-1.50		Brown fine to coarse SAN	ID.(HANBOROUGH GI	RAVEL)			
1.50		Pit terminated at target de					
Shoring/S Stability:	upport: Stable.					R	ENERAL EMARKS
D	2 - A	■ B 0.4		N + N	B	oakawa ackfille	y test undertaken. d with arisings.
All dimens	sions in m le 1:25	etres Client Manorwo		lethod/ ant Used Backhoe excavator	L	ogged E	^{3y} JT

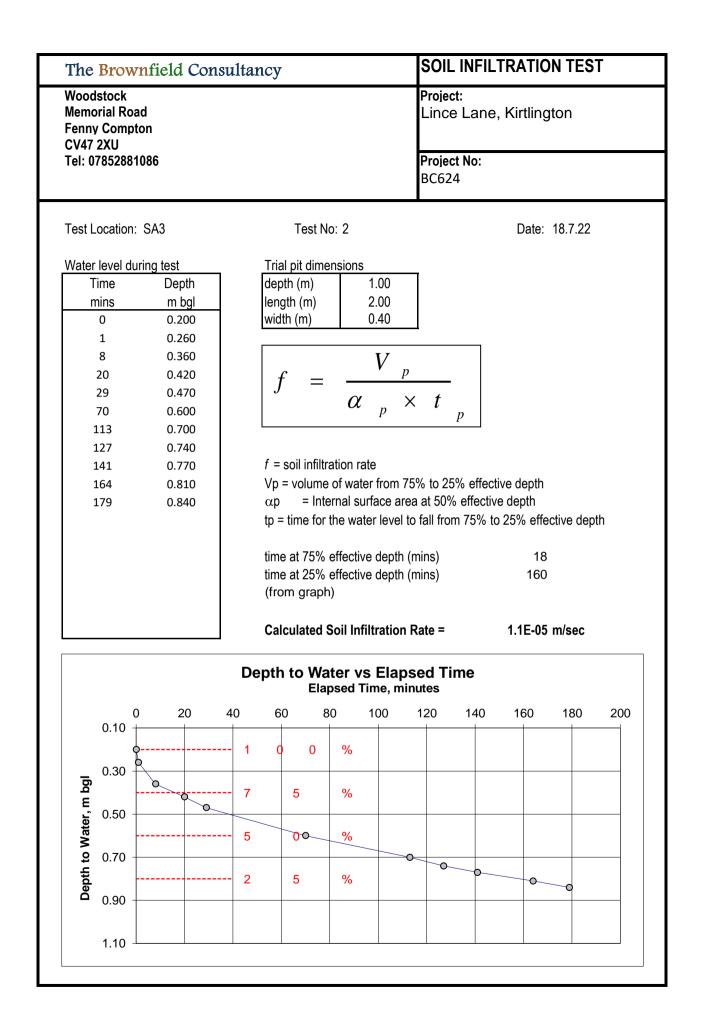

<u> Phone: 07852881086</u> Project					TRIAL PIT No
Lince Lane,	Kirtlington				
Job No	Date	Ground Level (m)	Co-Ordinates ()		TP1
BC624	18-07-22				
Contractor	·	L			Sheet
The Brownf	ield Consultancy Ltd				1 of 1
		STRATA		SAN	APLES & TESTS
ii				Depth	No Remarks/Test
Depth No 0.00-0.30	occasionally coarse quartz	ite, limestone and rare ire	ngular to subrounded fine and medium nstone. (HANBOROUGH GRAVEL)	
0.30-1.90	Brown slightly gravelly SA occasionally coarse quartz (HANBOROUGH GRAV) 1.70 - 1.90 Gravelly. Pit terminated at target dep Very slow groundwater in,	ite, limestone and rare in EL) pth.	9 subrounded fine and medium onstone. Sand is fine to coarse. 80m after 4 hours.		
Shoring/Support: Stability: Stable.					GENERAL REMARKS
A D C	B		N 4 1 1	B	ackfilled with arisings.
All dimensions in mo Scale 1:25	etres Client Manorwo	ood Homes M Pl	ethod/ ant Used Backhoe excavator.		ogged By JT

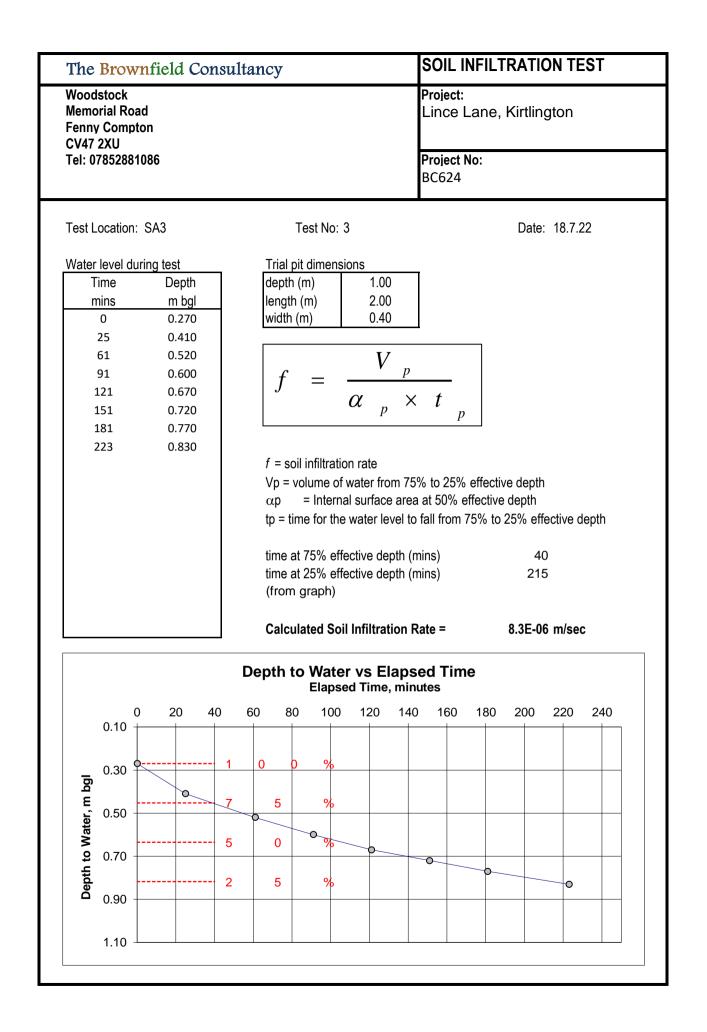

APPENDIX C

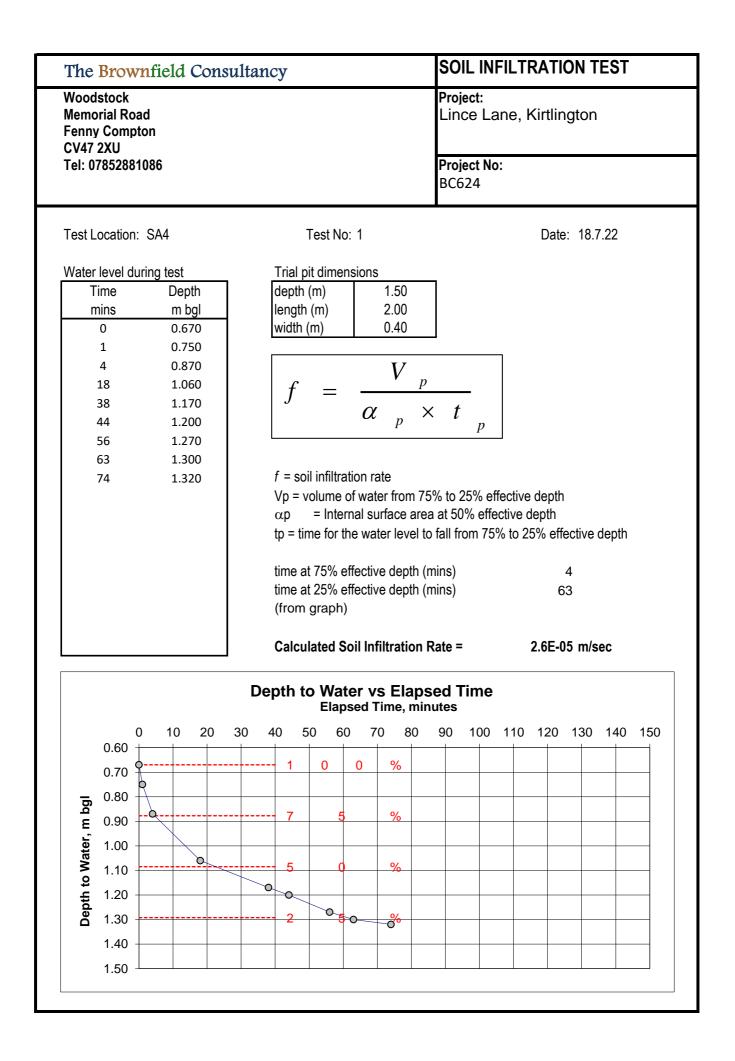

Soakaway Calculation Sheets

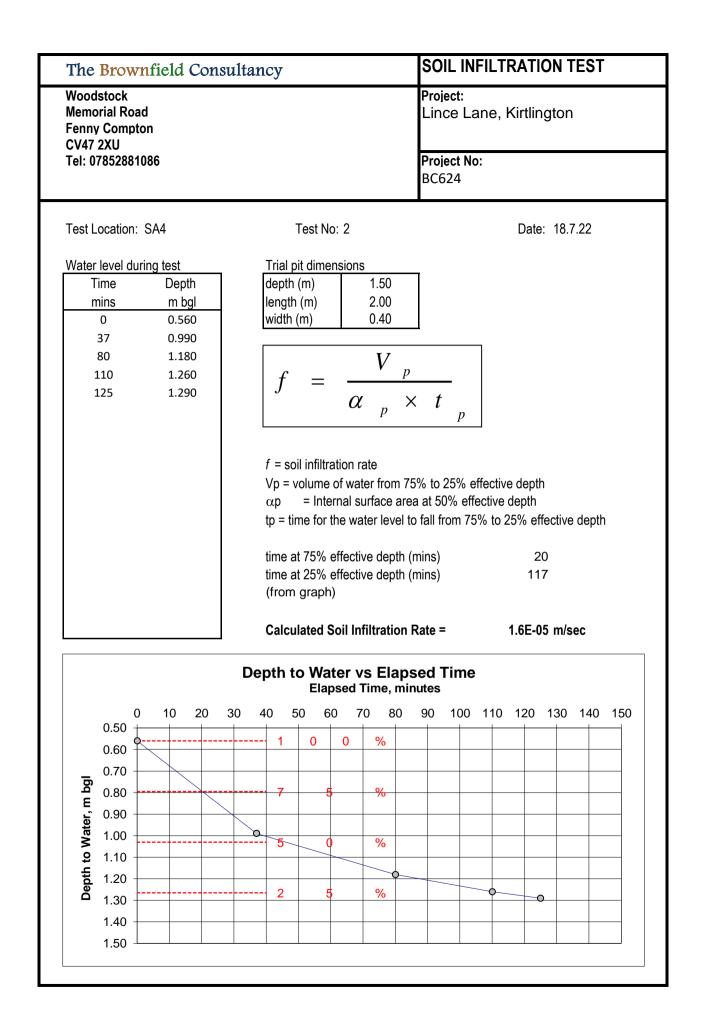


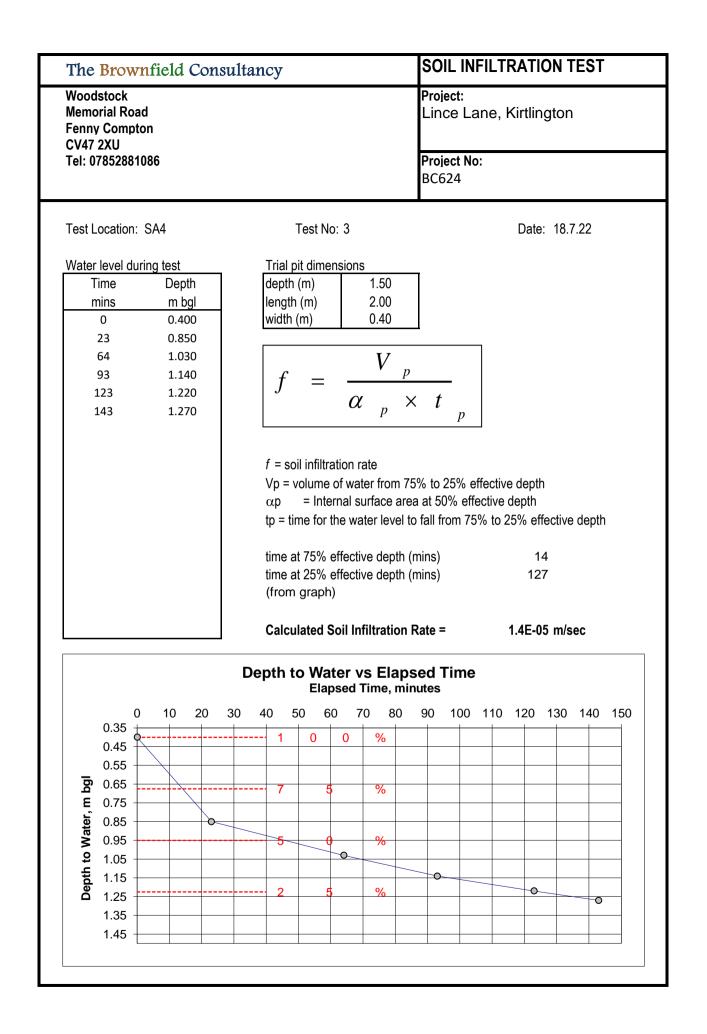










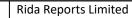


Registered Office:-

The Brownfield Consultancy Woodstock Memorial Road Fenny Compton CV47 2XU

Company No: 8143932

Jim.twaddle@brownfieldconsultancy.co.uk


Tel: 07852 881086

Appendix C

	Rida Reports Lir	nited	File	: Lince Lane.pf	fd	Page 1
			Net	work: Storm N	letwork	
CAUSEWAY				rio Mora		
			27/	07/2023		
		S	imulation Set	<u>tings</u>		
Rainfal	• •	FSR			wn Time (mins	
	-	-	and Wales		Storage (m³∕ha	
	· · ·	20.000		Check Di	scharge Rate(s	
		0.400			1 year (l/s	
		0.750			2 year (l/s	
		0.840			30 year (l/s	
		Normal			100 year (l/s	
Sk	ip Steady State	x		Check Dis	charge Volume	e x
			Storm Durati	ons		
15 30 6	50 120 18		240 360		500 720	960 144
F		imate C	-		Additional Flo	w
	(voarc)	(CC %	6)	(A %)	(0 %)	
	(years)		-		(Q %)	0
	1		0	0	(0,70)	0
	1 2		0 0	0	(2,70)	0
	1 2 30		0 0 0	0 0 0	(4 //)	0 0
	1 2 30 30		0 0 0 40	0 0 0 0	(470)	0 0 0
	1 2 30		0 0 0	0 0 0	(4,70)	0 0
	1 2 30 30 100		0 0 0 40 0	0 0 0 0 0	(4,70)	0 0 0 0
	1 2 30 30 100 100		0 0 0 40 0	0 0 0 0 0	(4,70)	0 0 0 0
	1 2 30 30 100 100	Pre-deve	0 0 40 0 40	0 0 0 0 0 0 0 0	actor 30 year	0 0 0 0
	1 2 30 30 100 100	Pre-deve	0 0 40 0 40 20	0 0 0 0 0 0 0 charge Rate Growth Fa		0 0 0 0
Posi	1 2 30 30 100 100 100	Pre-deve akeup ethod	0 0 40 0 40 elopment Dis	0 0 0 0 0 0 charge Rate Growth Fa	actor 30 year	0 0 0 0 0 2.40
Posi	1 2 30 30 100 100 100 Site Ma Greenfield Ma	Pre-deve akeup ethod a (ha)	0 0 40 40 elopment Dis Greenfield IH124	0 0 0 0 0 0 charge Rate Growth Fa	actor 30 year stor 100 year	0 0 0 0 0 2.40 3.19
Posi	1 2 30 30 100 100 <u>Site Ma</u> Greenfield Ma tively Drained Are SAAR	Pre-deve akeup ethod a (ha)	0 0 40 40 elopment Dis Greenfield IH124 0.914	0 0 0 0 0 0 charge Rate Growth Fac Bet	actor 30 year ttor 100 year tterment (%)	0 0 0 0 0 2.40 3.19 0
Posi	1 2 30 30 100 100 <u>Site Ma</u> Greenfield Ma tively Drained Are SAAR	Pre-deve akeup ethod a (ha) (mm)	0 0 40 40 elopment Dis Greenfield IH124 0.914 639 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	actor 30 year tor 100 year tterment (%) QBar	0 0 0 0 0 2.40 3.19 0 0.1
Posi	1 2 30 30 100 100 Site Ma Greenfield Ma tively Drained Are SAAR Soil	Pre-deve akeup ethod a (ha) (mm) Index SPR	0 0 40 40 elopment Dis Greenfield IH124 0.914 639 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	actor 30 year ctor 100 year tterment (%) QBar Q 1 year (I/s) Q 2 year (I/s) 30 year (I/s)	0 0 0 0 0 2.40 3.19 0 0.1 0.1
Posi	1 2 30 30 100 100 Site Ma Greenfield Ma tively Drained Are SAAR Soil	Pre-deve akeup ethod a (ha) (mm) Index SPR egion L year	0 0 40 40 elopment Dis Greenfield IH124 0.914 639 1 0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	actor 30 year ctor 100 year tterment (%) QBar Q 1 year (l/s) Q 2 year (l/s)	0 0 0 0 0 0 2.40 3.19 0 0.1 0.1 0.1 0.1

AUSEWAY 😜		Network: Storm Network Mario Mora 27/07/2023	
	Desi	gn Settings	
Rainfall Methodology Return Period (years) Additional Flow (%) FSR Region M5-60 (mm) Ratio-R CV Time of Entry (mins)	FSR 2 0 England and Wales 20.000 0.400 0.750 6.00	Maximum Time of Concentration (m Maximum Rainfall (mm, Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro Enforce best practice design re	/hr) 50.0 n/s) 1.00 ype Level Inverts (m) 0.200 (m) 1.200 und √
	<u>Circul</u>	ar Link Type	
	Shape Circular Barrels 1	Auto Increment (mm) 75 Follow Ground x	
	Available 100	Diameters (mm) 150	
		<u>Nodes</u>	
Name	Area T of E Cover (ha) (mins) Level (m)	Diameter Easting Northing (mm) (m) (m)	Depth (m)
House Soakaway Dummy	0.010 6.00 101.000 101.000 101.000	0 10.326 0.308	0.500 1.000 1.100
		Links	
NameUSDSNodeNode1.000HouseSoakaway1.001SoakawayDummy		US IL (m) DS IL (m) Fall (m) Slope (1:X) .00.500 100.000 0.500 20.0 .00.000 99.900 0.100 100.00	Dia T of C Rain (mm) (mins) (mm/hr) 100 6.10 50.0 100 6.31 50.0
Name Vel (m/s 1.000 1.734 1.001 0.765) (I/s) (I/s) Depth (m) 4 13.6 1.4 0.400	DS Σ Area Σ Add Pro Depth (ha) Inflow Depth (m) (l/s) (mm) 0.900 0.010 0.0 21 1.000 0.010 0.0 32	Pro Velocity (m/s) 1.110 0.621
	<u>Pipeli</u>	ne Schedule	
Link Length Slope (m) (1:X) 1.000 10.000 20.0 1.001 10.000 100.0 Link US Node		(m) (m) (m) 0 100.500 0.400 101.000	
1.000 House 1.001 Soakaway		ptable Soakaway Junctic Dummy 450 Manho	n

CAUSEWAY 🛟	Rida Reports Limited	pfd twork	Page 2			
	<u>Node So</u>	akaway Or	nline Pump Control			
		Invert Lev Design Dep Design Flo	oth (m) 1.000		depth (m) depth (m)	1.000 0.010
Depth Flov (m) (l/s) 0.001 0.00	(m) (l/s)	Depth (m) 0.500	Flow Depth (l/s) (m) 0.000 0.750	Flow (I/s) 0.000		ow /s) 000
	<u>Node Soaka</u>	way Soaka	way Storage Structu	<u>re</u>		
Base Inf Coefficient (n Side Inf Coefficient (n Safety Fa Por	n/hr) 0.02880 Ti	me to half I	vert Level (m) 100.0 empty (mins) Pit Width (m) 3.000 Vit Length (m) 7.000) Nur	Depth (Inf Depth (nber Requir	(m)
		<u>Approval</u>	Settings			
Node Size x Node Losses x Link Size x Link Length x	Crossings x Cover Depth x	Propor	l Bore Velocity x tional Velocity x charged Depth x Flooding x	Return Pe Disc	9 Half Empty eriod (years) charge Rates arge Volume) 10 s x
		Rair	<u>nfall</u>			
Event	Intensity I	Average ntensity mm/hr)	Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute sur 1 year 15 minute wir	nmer 109.521 iter 76.857	30.991 30.991	2 year 60 minute s 2 year 60 minute v	vinter	61.301 40.727	16.200 16.200
1 year 30 minute sur 1 year 30 minute wir 1 year 60 minute sur	iter 50.133	20.215 20.215	2 year 120 minute 2 year 120 minute	winter	37.449 24.880	9.897 9.897 7.278
1 year 60 minute sur 1 year 60 minute wir 1 year 120 minute su	iter 32.179	12.800 12.800 7.942	2 year 180 minute 2 year 180 minute 2 year 240 minute	winter	28.672 18.637 22.636	7.378 7.378 5.982
1 year 120 minute se 1 year 120 minute w 1 year 180 minute su	inter 19.966	7.942 5.979	2 year 240 minute 2 year 360 minute	winter	15.039 17.235	5.982 4.435
1 year 180 minute w 1 year 240 minute su		5.979 4.882	2 year 360 minute 2 year 480 minute		11.203 13.550	4.435 3.581

1 year 240 minute summer	18.475	4.882	2 year 480 minute summer	13.550	3.581
1 year 240 minute winter	12.274	4.882	2 year 480 minute winter	9.003	3.581
1 year 360 minute summer	14.169	3.646	2 year 600 minute summer	11.088	3.033
1 year 360 minute winter	9.210	3.646	2 year 600 minute winter	7.576	3.033
1 year 480 minute summer	11.185	2.956	2 year 720 minute summer	9.878	2.647
1 year 480 minute winter	7.431	2.956	2 year 720 minute winter	6.639	2.647
1 year 600 minute summer	9.182	2.511	2 year 960 minute summer	8.113	2.136
1 year 600 minute winter	6.274	2.511	2 year 960 minute winter	5.374	2.136
1 year 720 minute summer	8.203	2.199	2 year 1440 minute summer	5.891	1.579
1 year 720 minute winter	5.513	2.199	2 year 1440 minute winter	3.959	1.579
1 year 960 minute summer	6.768	1.782	30 year 15 minute summer	268.706	76.035
1 year 960 minute winter	4.483	1.782	30 year 15 minute winter	188.566	76.035
1 year 1440 minute summer	4.949	1.326	30 year 30 minute summer	174.929	49.499
1 year 1440 minute winter	3.326	1.326	30 year 30 minute winter	122.757	49.499
2 year 15 minute summer	141.566	40.058	30 year 60 minute summer	116.589	30.811
2 year 15 minute winter	99.345	40.058	30 year 60 minute winter	77.459	30.811
2 year 30 minute summer	91.753	25.963	30 year 120 minute summer	70.438	18.615
2 year 30 minute winter	64.388	25.963	30 year 120 minute winter	46.797	18.615

File: Lince Lane M1.pfd Network: Storm Network Mario Mora 27/07/2023

<u>Rainfall</u>

Event	Peak	Average	Event	Peak	Average
	Intensity (mm/hr)	Intensity (mm/hr)		Intensity (mm/hr)	Intensity (mm/hr)
30 year 180 minute summer	53.298	13.715	100 year 60 minute summer	153.288	40.510
30 year 180 minute winter	34.645	13.715	100 year 60 minute winter	101.841	40.510
30 year 240 minute summer	41.604	10.995	100 year 120 minute summer	92.562	24.461
30 year 240 minute winter	27.641	10.995	100 year 120 minute winter	61.496	24.461
30 year 360 minute summer	31.221	8.034	100 year 180 minute summer	69.806	17.964
30 year 360 minute winter	20.295	8.034	100 year 180 minute winter	45.376	17.964
30 year 480 minute summer	24.324	6.428	100 year 240 minute summer	54.269	14.342
30 year 480 minute winter	16.160	6.428	100 year 240 minute winter	36.055	14.342
30 year 600 minute summer	19.756	5.404	100 year 360 minute summer	40.484	10.418
30 year 600 minute winter	13.498	5.404	100 year 360 minute winter	26.315	10.418
30 year 720 minute summer	17.490	4.687	100 year 480 minute summer	31.414	8.302
30 year 720 minute winter	11.754	4.687	100 year 480 minute winter	20.871	8.302
30 year 960 minute summer	14.215	3.743	100 year 600 minute summer	25.431	6.956 6.956
30 year 960 minute winter	9.416 10.161	3.743 2.723	100 year 600 minute winter	17.376 22.452	6.017
30 year 1440 minute summer 30 year 1440 minute winter	6.829	2.723	100 year 720 minute summer 100 year 720 minute winter	15.089	6.017
30 year +40% CC 15 minute summer	376.189	106.449	100 year 960 minute summer	18.166	4.784
30 year +40% CC 15 minute winter	263.992	106.449	100 year 960 minute winter	12.033	4.784
30 year +40% CC 30 minute summer	244.900	69.298	100 year 1440 minute summer	12.896	3.456
30 year +40% CC 30 minute winter	171.860	69.298	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 180 minute summer	97.729	25.149
30 year +40% CC 360 minute winter	28.413	11.248	100 year +40% CC 180 minute winter	63.526	25.149
30 year +40% CC 480 minute summer 30 year +40% CC 480 minute winter	34.053 22.624	8.999 8.999	100 year +40% CC 240 minute summer 100 year +40% CC 240 minute winter	75.977 50.477	20.078 20.078
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 720 minute summer	31.433	8.424
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 720 minute winter	21.125	8.424
100 year 15 minute summer	348.738	98.681	100 year +40% CC 960 minute summer	25.432	6.697
100 year 15 minute winter	244.728	98.681	100 year +40% CC 960 minute winter	16.847	6.697
100 year 30 minute summer	228.965	64.789	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 30 minute winter	160.677	64.789	100 year +40% CC 1440 minute winter	12.134	4.839

Results for 1	year Critical Storm Duration.	Lowest mass balance: 96.74%

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute winter	- House	10	100.523	0.023	1.3	0.0128	0.0000	OK	
1440 minute win	ter Soaka	way 930	100.101	0.101	0.1	2.0223	0.0000	SURCH	ARGED
15 minute summ	er Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflo	w Velo	city Flov	v/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	1.	.3 1.	.510	0.097	0.0123	
1440 minute winter	Soakaway	Pump	Dummy	0.	.0				0.0
1440 minute winter	Soakaway	Infiltration		0.	.0				

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute winter	- House	10	100.526	0.026	1.7	0.0144	0.0000	OK	
1440 minute win	ter Soaka	way 960	100.118	0.118	0.1	2.3455	0.0000	SURCH	ARGED
15 minute summ	er Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflo	w Velo	ocity Flov	v/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)		Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	Soakaway	1.	.7 1.	.562	0.127	0.0166	
1440 minute winter	Soakaway	Pump	Dummy	0.	.0				0.0
1440 minute winter	Soakaway	Infiltration		0.	.0				

Results for 30 y	ear Critical Storm Duration.	Lowest mass balance: 96.74%

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	10	100.534	0.034	3.2	0.0189	0.0000	OK	
600 minute win	ter Soakav	way 570	100.225	0.225	0.3	4.4975	0.0000	SURCH	IARGED
15 minute sumr	ner Dumm	ıy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m,	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	3.	21.	678	0.235	0.0352	
600 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
600 minute winter	Soakaway	Infiltration		0.	0				

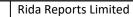
960 minute winter Soakaway Infiltration

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 96.74%

Node Event	US Nod	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	11	100.539	0.039	4.4	0.0219	0.0000) ОК	
960 minute win	ter Soakav	vay 900	100.339	0.339	0.3	6.7643	0.0000	SURCH	IARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflov	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m,	/s)		Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	Soakaway	4.	4 1.	730	0.323	0.0470	
960 minute winter	Soakaway	Pump	Dummy	0.	0				0.0

	Results for 100	year Critical Storm Duration. Lowest mass balance: 96.74%
--	-----------------	---

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winte	er House	11	100.538	0.038	4.1	0.0211	0.0000	ОК	
720 minute win	ter Soaka	way 690	100.297	0.297	0.4	5.9182	0.0000	SURCH	ARGED
15 minute sumr	ner Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m,	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	4.	1 1.	713	0.301	0.0444	
720 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
720 minute winter	Soakaway	Infiltration		0.	0				



1440 minute winter Soakaway

Infiltration

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 96.74%

Node Event	U: No			Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
1440 minute wi	nter House	e 132	0 100.933	0.433	0.3	0.2420	0.0000	FLOOI	D RISK
1440 minute wi	nter Soaka	away 132	0 100.933	0.933	0.3	7.9900	0.0000	FLOOI	D RISK
15 minute sumr	ner Dumr	ny	1 99.900	0.000	0.0	0.0000	0.0000	OK	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	v Veloci (m/s	, ,		Link ol (m³)	Discharge Vol (m³)
1440 minute winter	House	1.000	Soakaway	0.3	0.6	15 0	.022	0.0782	
1440 minute winter	Soakaway	Pump	Dummy	0.0)				0.0

AUSE	SEVVAT 😡					Ma	Network: Storm Network Mario Mora 27/07/2023					
					<u>Desi</u>	<u>gn Settir</u>	<u>ıgs</u>					
Re /		od (years) Flow (%) 5R Region -60 (mm) Ratio-R CV	FSR 2 0 England 20.000 0.400 0.750 6.00	and Wa			Maxi M Minimur Pref Include	mum Rai linimum \ Cor m Backdro erred Cov e Interme	tration (m nfall (mm, /elocity (n nection T ⁻ op Height /er Depth diate Grou e design ru	/hr) 50 n/s) 1.0 ype Le (m) 0.2 (m) 1.2 und √		ts
					<u>Circula</u>	ar Link T	<u>ype</u>					
			Shap Barre		cular		crement Follow Gr		5			
				А	vailable I 100		• •					
					<u> </u>	<u>Nodes</u>						
		Name		T of E (mins)	Cover Level (m)	Diam (m		asting N (m)	Northing (m)	Depth (m)		
	S	louse Joakaway Dummy	0.009	6.00	101.000 101.000 101.000)	1	0.039 0.351 9.921	0.555 0.321 0.430	0.500 1.000 1.100		
						<u>Links</u>						
1.000 Ho	US Node Duse Dakaway	DS Node Soakaway Dummy	Length (m) 10.000 10.000	1 (n).600 1	US IL (m) 00.500 00.000	DS IL (m) 100.000 99.900		Slope (1:X) 20.0 100.0	Dia (mm) 100 100	T of C (mins) 6.10 6.31	Rain (mm/hr) 50.0 50.0
	Na 1.0 1.0		13.6	Flow (I/s) 1.2 1.2	US Depth (m) 0.400 0.900	DS Depth (m) 0.900 1.000	Σ Area (ha) 0.009 0.009	Σ Add Inflow (I/s) 0.0 0.0	Pro Depth (mm) 20 31	Pro Velocity (m/s) 1.060 0.605)	
					<u>Pipeliı</u>	ne Schee	<u>dule</u>					
Link 1.000 1.001		(1:X) 20.0 100.0 US	100 (Dia	Link Type Circular Circular Node		0 100. 1H	n) 500 000 DS	0.900 Dia	DS CL (m) 101.000 101.000 Node		(r) C) C () () () () () () () () () () () () ()	9epth n) 0.900 1.000
		Node House Soakaway	(mm) 450	Type Manho Junctio	le Adop	pe otable	Node Soakawa Dummy	(mm) y 450	Junctio	n	ype ptable	

AUSEWAY 🛟	Rida Reports Limited	ł	File: Lince Network: Mario Mo 27/07/202	Storm Ne ra	Page 2		
	<u>Node S</u>	oakaway Or	nline Pump	<u>Control</u>			
	lap Valve x eam Link 1.001 eam Link √	Invert Lev Design Dep Design Flo	oth (m) 1.	00.000 000 1		n depth (m) f depth (m)	1.000 0.010
Depth Flow (m) (l/s) 0.001 0.000	(m) (l/s)	Depth (m) 0.500	Flow (I/s) 0.000	Depth (m) 0.750	Flow (I/s) 0.000	(m) (l,	ow /s) 000
	Node Soak	away Soaka	way Storag	<u>e Structu</u>	<u>re</u>		
Base Inf Coefficient (n Side Inf Coefficient (n Safety Fa Por	n/hr) 0.02880 T	ime to half o	vert Level (n empty (min Pit Width (r it Length (r	s) n) 2.500) Ni	Depth (Inf Depth (Imber Requii	m)
		<u>Approval</u>	<u>Settings</u>				
Node Size x Node Losses x Link Size x Link Length x	Crossings x Cover Depth x	Propor Sure	l Bore Veloo tional Veloo charged De Flood	city x oth x	Return F Dis	o Half Empty Period (years charge Rates arge Volume) 10 5 x
		<u>Rair</u>	<u>nfall</u>				
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)		Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute sun 1 year 15 minute wir		30.991 30.991	2 year 60 minute summer 2 year 60 minute winter			61.301 40.727	16.200 16.200
1 year 30 minute sun 1 year 30 minute wir	ter 50.133	20.215 20.215	2 year 12	20 minute		37.449 24.880	9.897 9.897
1 year 60 minute sun 1 year 60 minute wir	ter 32.179	12.800 12.800	2 year 18	30 minute		28.672 18.637	7.378 7.378
1 year 120 minute su 1 year 120 minute w	nter 19.966	7.942 7.942 5.979	2 year 24	10 minute		22.636 15.039	5.982 5.982
1 year 180 minute su 1 year 180 minute w 1 year 240 minute su	nter 15.102	5.979 5.979 4.882	2 year 36	60 minute	summer winter summer	17.235 11.203 13.550	4.435 4.435 3.581
1 year 240 minute w 1 year 360 minute su	nter 12.274	4.882 3.646	2 year 48	30 minute		9.003 11.088	3.581 3.033
1 year 360 minute w	nter 9.210	3.646	2 year 60	00 minute	winter	7.576	3.033

11.185

7.431

9.182

6.274

8.203

5.513

6.768

4.483

4.949

3.326

141.566

99.345

91.753

64.388

1 year 480 minute summer

1 year 600 minute summer

1 year 720 minute summer

1 year 960 minute summer

1 year 1440 minute summer

1 year 1440 minute winter

2 year 15 minute summer

2 year 30 minute summer

2 year 15 minute winter

2 year 30 minute winter

1 year 480 minute winter

1 year 600 minute winter

1 year 720 minute winter

1 year 960 minute winter

2.956

2.956

2.511

2.511

2.199

2.199

1.782

1.782

1.326

1.326

40.058

40.058

25.963

25.963

2 year 720 minute summer

2 year 960 minute summer

2 year 1440 minute summer

2 year 1440 minute winter

30 year 15 minute summer

30 year 30 minute summer

30 year 60 minute summer

30 year 120 minute summer

30 year 15 minute winter

30 year 30 minute winter

30 year 60 minute winter

30 year 120 minute winter

2 year 720 minute winter

2 year 960 minute winter

9.878

6.639

8.113

5.374

5.891

3.959

268.706

188.566

174.929

122.757

116.589

77.459

70.438

46.797

2.647

2.647

2.136

2.136

1.579

1.579

76.035

76.035

49.499

49.499

30.811

30.811

18.615

File: Lince Lane M2.pfd Network: Storm Network Mario Mora 27/07/2023

<u>Rainfall</u>

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity
	, (mm/hr)	, (mm/hr)		, (mm/hr)	(mm/hr)
30 year 180 minute summer	53.298	13.715	100 year 60 minute summer	153.288	40.510
30 year 180 minute winter	34.645	13.715	100 year 60 minute winter	101.841	40.510
30 year 240 minute summer	41.604	10.995	100 year 120 minute summer	92.562	24.461
30 year 240 minute winter	27.641	10.995	100 year 120 minute winter	61.496	24.461
30 year 360 minute summer	31.221	8.034	100 year 180 minute summer	69.806	17.964
30 year 360 minute winter	20.295	8.034	100 year 180 minute winter	45.376	17.964
30 year 480 minute summer	24.324	6.428	100 year 240 minute summer	54.269	14.342
30 year 480 minute winter	16.160	6.428	100 year 240 minute winter	36.055	14.342
30 year 600 minute summer	19.756	5.404	100 year 360 minute summer	40.484	10.418
30 year 600 minute winter	13.498 17.490	5.404 4.687	100 year 360 minute winter	26.315 31.414	10.418 8.302
30 year 720 minute summer 30 year 720 minute winter	17.490	4.687	100 year 480 minute summer 100 year 480 minute winter	20.871	8.302
30 year 960 minute summer	14.215	3.743	100 year 600 minute summer	25.431	6.956
30 year 960 minute winter	9.416	3.743	100 year 600 minute summer	17.376	6.956
30 year 1440 minute summer	10.161	2.723	100 year 720 minute summer	22.452	6.017
30 year 1440 minute winter	6.829	2.723	100 year 720 minute winter	15.089	6.017
30 year +40% CC 15 minute summer	376.189	106.449	100 year 960 minute summer	18.166	4.784
30 year +40% CC 15 minute winter	263.992	106.449	100 year 960 minute winter	12.033	4.784
30 year +40% CC 30 minute summer	244.900	69.298	100 year 1440 minute summer	12.896	3.456
30 year +40% CC 30 minute winter	171.860	69.298	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 120 minute summer	129.587	34.246 34.246
30 year +40% CC 240 minute winter 30 year +40% CC 360 minute summer	38.697 43.710	15.393 11.248	100 year +40% CC 120 minute winter 100 year +40% CC 180 minute summer	86.094 97.729	25.149
30 year +40% CC 360 minute summer	28.413	11.248	100 year +40% CC 180 minute summer	63.526	25.149
30 year +40% CC 480 minute summer	34.053	8.999	100 year +40% CC 240 minute summer	75.977	20.078
30 year +40% CC 480 minute winter	22.624	8.999	100 year +40% CC 240 minute winter	50.477	20.078
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 720 minute summer	31.433	8.424
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 720 minute winter	21.125	8.424
100 year 15 minute summer	348.738	98.681	100 year +40% CC 960 minute summer	25.432	6.697
100 year 15 minute winter	244.728	98.681	100 year +40% CC 960 minute winter	16.847	6.697
100 year 30 minute summer	228.965	64.789	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 30 minute winter	160.677	64.789	100 year +40% CC 1440 minute winter	12.134	4.839

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winte	er House	10	100.522	0.022	1.2	0.0112	0.0000	OK	
960 minute win	ter Soakav	way 645	100.101	0.101	0.1	1.6820	0.0000	SURCH	IARGED
15 minute sumr	ner Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m,	-	v/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	1.	2 1.	422	0.090	0.0134	
960 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
960 minute winter	Soakaway	Infiltration		0.	0				

Results for 2	year Critical Storm Duration.	Lowest mass balance: 93.75%

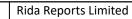
Node Event	US Noc		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute winter	- House	e 10	100.524	0.024	1.5	0.0123	0.0000	ОК	
1440 minute win	ter Soaka	way 930	100.120	0.120	0.1	2.0023	0.0000	SURCH	ARGED
15 minute summ	er Dumn	ny 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		ocity Flov /s)	w/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	1	.5 1.	.429	0.112	0.0180	
1440 minute winter	Soakaway	Pump	Dummy	0	.0				0.0
1440 minute winter	Soakaway	Infiltration		0	.0				

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winte	er House	11	100.531	0.031	2.8	0.0160	0.0000	ОК	
600 minute win	ter Soaka	way 555	100.239	0.239	0.3	3.9681	0.0000	SURCH	ARGED
15 minute sumr	ner Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m,	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	2.	81.	551	0.206	0.0369	
600 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
600 minute winter	Soakaway	Infiltration		0.	0				

720 minute winter Soakaway Infiltration

Results for 30	year +40% CC Critica	I Storm Duration.	Lowest mass balance: 93.75%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	11	100.537	0.037	4.0	0.0193	0.0000) OK	
720 minute win	ter Soakav	vay 690	100.342	0.342	0.3	5.6829	0.0000	SURCH	IARGED
15 minute sumn	ner Dumm	у 1	99.900	0.000	0.0	0.0000	0.0000	OK	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	(m	/s)		Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	4.	0 1.	606	0.294	0.0477	
720 minute winter	Soakaway	Pump	Dummy	0.	0				0.0


Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	11	100.536	0.036	3.7	0.0185	0.0000	ОК	
720 minute win	ter Soaka	way 690	100.322	0.322	0.3	5.3569	0.0000	SURCH	IARGED
15 minute sumr	ner Dumn	ıy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	3.	71.	615	0.272	0.0460	
720 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
720 minute winter	Soakaway	Infiltration		0.	0				

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 93.75%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
960 minute winter	House	930	100.972	0.472	0.4	0.2448	0.0000	FLOOD RISK
960 minute winter	Soakaway	930	100.972	0.972	0.4	6.6583	0.0000	FLOOD RISK
15 minute summer	Dummy	1	99.900	0.000	0.0	0.0000	0.0000	ОК
	US I	.ink	DS	Outflow		ity Flow/	•	Link Discharge

			20	outilon	releting	non, cap		2100110190
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute winter	House	1.000	Soakaway	0.4	0.758	0.029	0.0782	
960 minute winter	Soakaway	Pump	Dummy	0.0				0.0
960 minute winter	Soakaway	Infiltration		0.0				

	House Soakaway	450 Manh Junctio	ole Adopt		vay	Junctior	ı	ē
Link	US Node	Dia Nod (mm) Type				Node) Type	МН Туре	
Link Length (m) 1.000 10.000 1.001 10.000	(1:X) (120.0	Dia Link mm) Type 100 Circular 100 Circular		US IL ((m) 100.500 100.000	JS Depth (m) 0.400 0.900	DS CL (m) 101.000 101.000	DS IL DS (m) 100.000 99.900	5 Depth (m) 0.900 1.000
			<u>Pipeline</u>	<u>e Schedule</u>				
	000 1.734 001 0.769	13.6 1.1 6.0 1.1		(m) 0.900 0.00 1.000 0.00			(m/s) 1.035 0.579	
Na	me Vel (m/s)	Cap Flow (l/s) (l/s)	US Depth [DS ΣAre Depth (ha)		Pro Depth	Pro Velocity	
Name US Node 1.000 House 1.001 Soakaway	DS Node Soakaway Dummy	Length ks ((m) 10.000 10.000	n (0.600 100	IS IL DS I (m) (m) 0.500 100.0 0.000 99.9	(m) 00 0.500	20.0	Dia T of 0 (mm) (mins) 100 6.1 100 6.3	(mm/hr) 0 50.0
			<u>Li</u>	<u>inks</u>				
S	House Soakaway Dummy	0.008 6.00	101.000 101.000 101.000	450 450	-0.039 10.351 19.921	0.555 0.354 0.430	0.500 1.000 1.100	
	Name	Area T of E (ha) (mins)	Cover Level (m)	Diameter (mm)	Easting M (m)	Northing (m)	Depth (m)	
				odes				
			Available Di 100	ameters (mm	ı)			
		Shape Ci Barrels 1	rcular A	Auto Incremer Follow	nt (mm) 7 Ground x	75 (
			<u>Circular</u>	Link Type				
	SR Region -60 (mm) Ratio-R CV	0 England and W 20.000 0.400 0.750 6.00	/ales	Pr Inclu	Cor um Backdro eferred Cov de Interme	Velocity (m, nnection Ty op Height (ver Depth (ediate Grou e design rul	pe Level Inv m) 0.200 m) 1.200 nd √	rerts
Rainfall Met Return Perio		FSR 2	_	<mark>i Settings</mark> aximum Time Ma		tration (mir nfall (mm/l	-	
AUSEWAY				Network: S Mario Mor 27/07/202	itorm Netw a			

	Rida Reports Limited	l Fi	e: Lince Lane M3	.pfd	Page 2	
			etwork: Storm Ne	-	_	
AUSEWAY 🛟		N	ario Mora			
		2	/07/2023			
	<u>Node S</u>	<u>oakaway Onlir</u>	<u>e Pump Control</u>			
F	lap Valve x	Invert Level	m) 100.000	Switch on	depth (m)	1.000
Downstr	eam Link 1.001	Design Depth	m) 1.000	Switch off	depth (m)	0.010
Replaces Downstr	eam Link 🗸	Design Flow	l/s) 0.1			
Depth Flow	Depth Flow	Depth F	ow Depth	Flow	Depth Flo	w
(m) (l/s)		-	/s) (m)	(I/s)	(m) (l/	
0.001 0.000			000 0.750	0.000	1.000 0.0	-
	Nodo Sook	away Soakawa	Ctorago Structu	r0		
	Node Soak	<u>away suakawa</u>	y Storage Structu	<u>re</u>		
Base Inf Coefficient (m			Level (m) 100.0	000	Depth (-
Side Inf Coefficient (m		ime to half em			Inf Depth (-
Safety Fa			Width (m) 2.500		nber Requir	ed 1
Por	osity 0.95	Pit I	ength (m) 7.000)		
		Approval Se	ttings			
			-			,
Node Size x			re Velocity x		Half Empty	
Node Losses x	0-		nal Velocity x		eriod (years	
Link Size x		Surcha	rged Depth x		harge Rates	
Link Length x	Backdrops x		Flooding x	Discha	irge Volume	e x
		<u>Rainfa</u>	1			
Event	Peak	Average	Event		Peak	Average
		Intensity			Intensity	Intensity
		(mm/hr)			, (mm/hr)	, (mm/hr)
1 year 15 minute sun			year 60 minute s	summer	61.301	16.200
, 1 year 15 minute win			year 60 minute v		40.727	16.200
, 1 year 30 minute sun			, year 120 minute		37.449	9.897
, 1 year 30 minute win			2 year 120 minute		24.880	9.897
, 1 year 60 minute sun			, 2 year 180 minute		28.672	7.378
1 year 60 minute win			year 180 minute		18.637	7.378
, 1 year 120 minute su			, 2 year 240 minute		22.636	5.982
1 year 120 minute wi			year 240 minute		15.039	5.982
1 year 180 minute su			year 360 minute		17.235	4.435
1 year 180 minute wi			year 360 minute		11.203	4.435
1 year 240 minute su			year 480 minute		13.550	3.581
1 year 240 minute wi			year 480 minute		9.003	3.581
1 year 360 minute su			year 600 minute		11.088	3.033
				-		
1 year 360 minute wi	inter 9.210		year 600 minute	winter	7.576	3.033

2.956

2.956

2.511

2.511

2.199

2.199

1.782

1.782

1.326

1.326

40.058

40.058

25.963

25.963

2 year 720 minute summer

2 year 960 minute summer

2 year 1440 minute summer

2 year 1440 minute winter

30 year 15 minute summer

30 year 30 minute summer

30 year 60 minute summer

30 year 120 minute summer

30 year 120 minute winter

30 year 15 minute winter

30 year 30 minute winter

30 year 60 minute winter

2 year 720 minute winter

2 year 960 minute winter

11.185

7.431

9.182

6.274

8.203

5.513

6.768

4.483

4.949

3.326

141.566

99.345

91.753

64.388

1 year 480 minute summer

1 year 600 minute summer

1 year 720 minute summer

1 year 960 minute summer

1 year 1440 minute summer

1 year 1440 minute winter

2 year 15 minute summer

2 year 30 minute summer

2 year 15 minute winter

2 year 30 minute winter

1 year 480 minute winter

1 year 600 minute winter

1 year 720 minute winter

1 year 960 minute winter

9.878

6.639

8.113

5.374

5.891

3.959

268.706

188.566

174.929

122.757

116.589

77.459

70.438

46.797

2.647

2.647

2.136

2.136

1.579

1.579

76.035

76.035

49.499

49.499

30.811

30.811

18.615

File: Lince Lane M3.pfd Network: Storm Network Mario Mora 27/07/2023

<u>Rainfall</u>

Event	Peak	Average	Event	Peak	Average
	Intensity	Intensity		Intensity	Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 180 minute summer	53.298 34.645	13.715 13.715	100 year 60 minute summer	153.288 101.841	40.510 40.510
30 year 180 minute winter 30 year 240 minute summer	41.604	10.995	100 year 60 minute winter 100 year 120 minute summer	92.562	24.461
30 year 240 minute summer	27.641	10.995	100 year 120 minute summer	61.496	24.461
30 year 360 minute summer	31.221	8.034	100 year 180 minute summer	69.806	17.964
30 year 360 minute winter	20.295	8.034	100 year 180 minute winter	45.376	17.964
30 year 480 minute summer	24.324	6.428	100 year 240 minute summer	54.269	14.342
30 year 480 minute winter	16.160	6.428	100 year 240 minute winter	36.055	14.342
30 year 600 minute summer	19.756	5.404	100 year 360 minute summer	40.484	10.418
30 year 600 minute winter	13.498	5.404	100 year 360 minute winter	26.315	10.418
30 year 720 minute summer	17.490	4.687	100 year 480 minute summer	31.414	8.302
30 year 720 minute winter	11.754	4.687	100 year 480 minute winter	20.871	8.302
30 year 960 minute summer	14.215	3.743	100 year 600 minute summer	25.431	6.956
30 year 960 minute winter	9.416	3.743	100 year 600 minute winter	17.376	6.956
30 year 1440 minute summer	10.161	2.723	100 year 720 minute summer	22.452	6.017
30 year 1440 minute winter	6.829 376.189	2.723 106.449	100 year 720 minute winter	15.089 18.166	6.017 4.784
30 year +40% CC 15 minute summer 30 year +40% CC 15 minute winter	263.992	106.449	100 year 960 minute summer 100 year 960 minute winter	12.033	4.784
30 year +40% CC 30 minute summer	244.900	69.298	100 year 1440 minute summer	12.896	3.456
30 year +40% CC 30 minute winter	171.860	69.298	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 180 minute summer	97.729	25.149 25.149
30 year +40% CC 360 minute winter 30 year +40% CC 480 minute summer	28.413 34.053	11.248 8.999	100 year +40% CC 180 minute winter 100 year +40% CC 240 minute summer	63.526 75.977	20.078
30 year +40% CC 480 minute summer	22.624	8.999	100 year +40% CC 240 minute summer	50.477	20.078
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 720 minute summer	31.433	8.424
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 720 minute winter	21.125	8.424
100 year 15 minute summer	348.738	98.681	100 year +40% CC 960 minute summer	25.432	6.697
100 year 15 minute winter	244.728	98.681	100 year +40% CC 960 minute winter	16.847	6.697
100 year 30 minute summer	228.965	64.789	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 30 minute winter	160.677	64.789	100 year +40% CC 1440 minute winter	12.134	4.839

Results for 1	year Critical Storm Duration.	Lowest mass balance: 99.09%

Node Ev	ent	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Stat	tus
15 minute si	ummer	House	10	100.520	0.020	1.0	0.0097	0.0000	OK	
960 minute	winter	Soakaway	630	100.091	0.091	0.1	1.5190	0.0000	ОК	
15 minute si	ummer	Dummy	1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link		DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Ca	ip Lin Vol (i		Discharge Vol (m ³)
15 minute summer	House	1.000	Sc	akaway	1.0	1.381	0.07	' 5 0.01	100	
960 minute winter 960 minute winter	Soakav Soakav	<i>'</i>		ummy	0.0 0.0					0.0

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute sumn	ner House	9	100.522	0.022	1.2	0.0107	0.0000	OK	
960 minute wint	er Soakav	vay 645	100.101	0.101	0.1	1.6820	0.0000	SURCH	ARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		ocity Flov /s)	v/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	House	1.000	Soakaway	1	.2 1.	462	0.090	0.0137	
960 minute winter	Soakaway	Pump	Dummy	0	.0				0.0
960 minute winter	Soakaway	Infiltration		0	.0				

Results for 30 year	r Critical Storm Duration.	Lowest mass balance: 99.09%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute sumn	ner House	9	100.529	0.029	2.3	0.0140	0.0000	OK	
480 minute wint	er Soakav	vay 448	100.209	0.209	0.3	3.4759	0.0000	SURCH	ARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		ocity Flov /s)	v/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	House	1.000	Soakaway	2	.3 1.	.594	0.170	0.0282	
480 minute winter	Soakaway	Pump	Dummy	0	.0				0.0
480 minute winter	Soakaway	Infiltration		0	.0				

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 99.09%

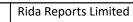
Node Event	US Nod	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	r House	11	100.535	0.035	3.5	0.0166	0.0000	OK	
720 minute wint	er Soakav	way 675	100.314	0.314	0.3	5.2145	0.0000	SURCH	IARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	OK	
Link Event	US	Link	DS	Outflo	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)	-	Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	Soakaway	3.	.5 1.	589	0.257	0.0445	
720 minute winter	Soakaway	Pump	Dummy	0.	.0				0.0

0.0

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.09%

Node Event	US Nod	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	11	100.534	0.034	3.3	0.0161	0.0000	OK	
600 minute win	ter Soakav	vay 585	100.286	0.286	0.3	4.7612	0.0000	SURCH	IARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflo	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)		Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	Soakaway	3.	.3 1.	588	0.242	0.0421	
600 minute winter	Soakaway	Pump	Dummy	0.	.0				0.0


0.0

Results for 100	year +40% CC C	ritical Storm Duration.	Lowest mass balance: 99.09%

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
960 minute win	ter House	915	100.570	0.070	0.3	0.0337	0.0000	ОК	
960 minute win	ter Soakav	way 915	100.570	0.570	0.3	6.6583	0.0000	SURCH	IARGED
15 minute sumr	ner Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velo (m		/Cap	Link Vol (m³)	Discharge Vol (m ³)
960 minute winter	House	1.000	Soakaway	0.	3 0.	758	0.022	0.0686	
960 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
				-	-				

0.0

AUSE	WAY					Ma	work: Stor rio Mora 07/2023	rm Netw	vork			
					Des	sign Settir	<u>ıgs</u>					
Re /		od (years) Flow (%) SR Region -60 (mm) Ratio-R CV	FSR 2 0 England 20.000 0.400 0.750 6.00	l and Wa	ales		Maxin Mi Minimun Prefe Include	mum Rai inimum ' Cor n Backdr erred Cov Interme	tration (m infall (mm, Velocity (n nnection T op Height ver Depth ediate Grou e design ru	/hr) 50 n/s) 1.0 ype Le (m) 0 (m) 1 und √		ts
					<u>Circu</u>	ılar Link T	<u>ype</u>					
			Shaj Barre		cular		crement (Follow Gro		75 (
				A	vailable 10	e Diamete 00 15						
						<u>Nodes</u>						
		Name	Area (ha)	T of E (mins)	Cove Leve (m)			sting I (m)	Northing (m)	Depth (m)		
	S	louse oakaway Jummy	0.006	6.00	101.00 101.00 101.00	00	10).039).351 9.921	0.555 0.354 0.430	0.500 1.000 1.100		
						<u>Links</u>						
1.000 Ho	US Node ouse oakaway	DS Node Soakaway Dummy	Length (m) 10.000 10.000)		US IL (m) 100.500 100.000	DS IL (m) 100.000 99.900			Dia (mm) 100 100	T of C (mins) 6.10 6.31	Rain (mm/hr) 50.0 50.0
	Na 1.0 1.0	(m/s 00 1.73	(I/s)4 13.6	Flow (I/s) 0.8 0.8	US Depth (m) 0.400 0.900	DS Depth (m) 0.900 1.000	Σ Area (ha) 0.006 0.006	Σ Add Inflow (I/s) 0.0 0.0	Pro Depth (mm) 17 25	Pro Velocit (m/s) 0.95 0.53	4	
					<u>Pipe</u>	line Schee	<u>dule</u>					
Link 1.000 1.001		(1:X) 20.0		Link Type Circular Circular	US C (m) 101.0 101.0	(n 00 100.	า) 500	Depth (m) 0.400 0.900	DS CL (m) 101.000 101.000	DS IL (m) 100.00 99.90	() 0 (9 epth n) 0.900 1.000
		US Node House Soakaway	Dia (mm) 450	Node Type Manho Junctio	le Ado	MH Type optable	DS Node Soakaway Dummy	Dia (mm) / 450	Junctio	n 1	MH Type Optable	

AUSEWAY 🛟	Rida Reports Limit	ed			-	Page 2	
	Node	Soakaway O	nline Pum	<u>p Control</u>			
	Flap Valve x ream Link 1.001 ream Link √	Invert Le Design Der Design Flo	oth (m)	100.000 1.000).1		n depth (m) ff depth (m)	1.000 0.010
Depth Flow (m) (l/s 0.001 0.00	s) (m) (l/s)	(m)	Flow (I/s) 0.000	Depth (m) 0.750	Flow (I/s) 0.000	(m) (l,	ow /s) 000
	Node Soa	akaway Soaka	way Stora	ige Structu	<u>re</u>		
Base Inf Coefficient (Side Inf Coefficient (Safety F Po	m/hr) 0.02880	Time to half	vert Level empty (mi Pit Width Pit Length	ns) (m) 2.000	D N	Depth (Inf Depth (umber Requii	m)
		<u>Approva</u>	l Settings				
Node Losses Link Size	x Coordinates x Crossings x Cover Depth x Backdrops	x Propor x Sur x		ocity x	Return Di	to Half Empty Period (years scharge Rates harge Volume) 10 5 x
		<u>Rai</u>	<u>nfall</u>				
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)		Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute su 1 year 15 minute wi	nter 76.857	30.991 30.991 20.215	2 year	50 minute : 50 minute :	winter	61.301 40.727 37.449	16.200 16.200 9.897
1 year 30 minute su 1 year 30 minute wi 1 year 60 minute su	nter 50.133	20.215 20.215 12.800	2 year	120 minute 120 minute 180 minute	winter	24.880 28.672	9.897 9.897 7.378
1 year 60 minute wi 1 year 120 minute s	ummer 30.053	12.800 7.942	2 year 2	180 minute 240 minute	summer	18.637 22.636	7.378 5.982
1 year 120 minute v 1 year 180 minute s 1 year 180 minute v	ummer 23.233	7.942 5.979 5.979	2 year 3	240 minute 360 minute 360 minute	summer	15.039 17.235 11.203	5.982 4.435 4.435
1 year 240 minute s 1 year 240 minute v	ummer 18.475 vinter 12.274	4.882 4.882	2 year 2 year	180 minute 180 minute	e summer e winter	13.550 9.003	3.581 3.581
1 year 360 minute s 1 year 360 minute v 1 year 480 minute s	vinter 9.210	3.646 3.646 2.956	2 year	500 minute 500 minute 720 minute	winter	11.088 7.576 9.878	3.033 3.033 2.647
1 year 480 minute v	vinter 7.431	2.956	2 year	720 minute	winter	6.639	2.647

2.511

2.511

2.199

2.199

1.782

1.782

1.326

1.326

40.058

40.058

25.963

25.963

2 year 960 minute summer

2 year 1440 minute summer

2 year 1440 minute winter

30 year 15 minute summer

30 year 30 minute summer

30 year 60 minute summer

30 year 120 minute summer

30 year 120 minute winter

30 year 15 minute winter

30 year 30 minute winter

30 year 60 minute winter

2 year 960 minute winter

8.113

5.374

5.891

3.959

268.706

188.566

174.929

122.757

116.589

77.459

70.438

46.797

2.136

2.136

1.579

1.579

76.035

76.035

49.499

49.499

30.811

30.811

18.615

18.615

9.182

6.274

8.203

5.513

6.768

4.483

4.949

3.326

141.566

99.345

91.753

64.388

1 year 600 minute summer

1 year 720 minute summer

1 year 960 minute summer

1 year 1440 minute summer

1 year 1440 minute winter

2 year 15 minute summer

2 year 30 minute summer

2 year 15 minute winter

2 year 30 minute winter

1 year 600 minute winter

1 year 720 minute winter

1 year 960 minute winter

File: Lince Lane M4.pfd Network: Storm Network Mario Mora 27/07/2023

<u>Rainfall</u>

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 180 minute summer	53.298	13.715	100 year 60 minute summer	153.288	40.510
30 year 180 minute winter	34.645	13.715	100 year 60 minute winter	101.841	40.510
30 year 240 minute summer	41.604	10.995	100 year 120 minute summer	92.562	24.461
30 year 240 minute winter	27.641	10.995	100 year 120 minute winter	61.496	24.461
30 year 360 minute summer	31.221	8.034	100 year 180 minute summer	69.806	17.964
30 year 360 minute winter	20.295	8.034	100 year 180 minute winter	45.376	17.964
30 year 480 minute summer	24.324	6.428	100 year 240 minute summer	54.269	14.342
30 year 480 minute winter	16.160	6.428	100 year 240 minute winter	36.055	14.342
30 year 600 minute summer	19.756	5.404	100 year 360 minute summer	40.484	10.418
30 year 600 minute winter	13.498	5.404	100 year 360 minute winter	26.315	10.418
30 year 720 minute summer 30 year 720 minute winter	17.490	4.687 4.687	100 year 480 minute summer	31.414	8.302 8.302
30 year 960 minute summer	11.754 14.215	3.743	100 year 480 minute winter 100 year 600 minute summer	20.871 25.431	6.956
30 year 960 minute winter	9.416	3.743	100 year 600 minute summer	17.376	6.956
30 year 1440 minute summer	10.161	2.723	100 year 720 minute summer	22.452	6.017
30 year 1440 minute winter	6.829	2.723	100 year 720 minute winter	15.089	6.017
30 year +40% CC 15 minute summer	376.189	106.449	100 year 960 minute summer	18.166	4.784
30 year +40% CC 15 minute winter	263.992	106.449	100 year 960 minute winter	12.033	4.784
30 year +40% CC 30 minute summer	244.900	69.298	100 year 1440 minute summer	12.896	3.456
30 year +40% CC 30 minute winter	171.860	69.298	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 180 minute summer	74.617 48.503	19.202 19.202	100 year +40% CC 60 minute summer	214.603 142.577	56.713 56.713
30 year +40% CC 180 minute winter 30 year +40% CC 240 minute summer	48.303 58.245	15.393	100 year +40% CC 60 minute winter 100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 180 minute summer	97.729	25.149
30 year +40% CC 360 minute winter	28.413	11.248	100 year +40% CC 180 minute winter	63.526	25.149
30 year +40% CC 480 minute summer	34.053	8.999	100 year +40% CC 240 minute summer	75.977	20.078
30 year +40% CC 480 minute winter	22.624	8.999	100 year +40% CC 240 minute winter	50.477	20.078
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 960 minute winter 30 year +40% CC 1440 minute summer	13.183 14.225	5.240 3.812	100 year +40% CC 600 minute winter 100 year +40% CC 720 minute summer	24.327 31.433	9.738 8.424
30 year +40% CC 1440 minute summer	9.560	3.812	100 year +40% CC 720 minute winter	21.125	8.424
100 year 15 minute summer	348.738	98.681	100 year +40% CC 960 minute summer	25.432	6.697
100 year 15 minute winter	244.728	98.681	100 year +40% CC 960 minute winter	16.847	6.697
100 year 30 minute summer	228.965	64.789	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 30 minute winter	160.677	64.789	100 year +40% CC 1440 minute winter	12.134	4.839

Results for 1 year Critical Storm Duration. Lowest mass balance: 93.59%

Node Ev	ent	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Stat	tus
15 minute si	ummer	House	9	100.517	0.017	0.7	0.0069	0.0000	ОК	
600 minute	winter	Soakaway	405	100.096	0.096	0.1	1.0054	0.0000	ОК	
15 minute si	ummer	Dummy	1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link		DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Ca	ıp Lin Vol (ı	-	Discharge Vol (m ³)
15 minute summer	House	1.000	Sc	akaway	0.7	1.256	0.05	63 0.01	L10	
600 minute winter	Soakaw	vay Pump	Du	ummy	0.0					0.0
600 minute winter	Soakaw	vay Infiltrat	ion		0.0					

Results for 2	year Critical Storm Duration.	Lowest mass balance: 93.59%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute sumn	ner House	9	100.519	0.019	0.9	0.0074	0.0000	OK	
600 minute wint	er Soakav	vay 420	100.112	0.112	0.1	1.1696	0.0000	SURCH	ARGED
15 minute sumn	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velo (m	•	v/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	House	1.000	Soakaway	0.	9 1.	220	0.068	0.0162	
600 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
600 minute winter	Soakaway	Infiltration		0.	0				

<u>Results for 30 year Critical Storm Duration. Lowest mass balance: 93.59%</u>

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	er House	11	100.525	0.025	1.9	0.0101	0.0000	OK	
360 minute win	ter Soakav	way 328	100.225	0.225	0.3	2.3528	0.0000	SURCH	IARGED
15 minute sumr	ner Dumm	iy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	(m	/s)		Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	1.	91.	310	0.139	0.0373	
360 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
360 minute winter	Soakaway	Infiltration		0.	0				

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 93.59%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
15 minute winte	r House	11	100.530	0.030	2.7	0.0121	0.000) OK	
480 minute wint	er Soakav	vay 456	100.341	0.341	0.3	3.5680	0.000) SURCH	IARGED
15 minute summ	ner Dumm	y 1	99.900	0.000	0.0	0.0000	0.0000) ОК	
Link Event	US	Link	DS	Outflo	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m	/s)		Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	Soakaway	2.	.7 1.	310	0.198	0.0460	
480 minute winter	Soakaway	Pump	Dummy	0.	.0				0.0

0.0

Flow+ v10.6.234 Copyright © 1988-2023 Causeway Technologies Ltd

<u>Results for 100 year Critical Storm Duration. Lowest mass balance: 93.59%</u>
--

Node Event	US Nod		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winte	er House	11	100.529	0.029	2.5	0.0116	0.0000	ОК	
480 minute win	ter Soakav	way 448	100.317	0.317	0.3	3.3145	0.0000	SURCH	IARGED
15 minute sumr	ner Dumm	ıy 1	99.900	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	w Velo	city Flow	/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m,	/s)	,	Vol (m³)	Vol (m³)
15 minute winter	House	1.000	Soakaway	2.	51.	294	0.183	0.0449	
480 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
480 minute winter	Soakaway	Infiltration		0.	0				

720 minute winter

720 minute winter

720 minute winter

House

Soakaway

Soakaway

1.000

Pump

Infiltration

27/07/2023

0.3

0.0

0.0

0.651

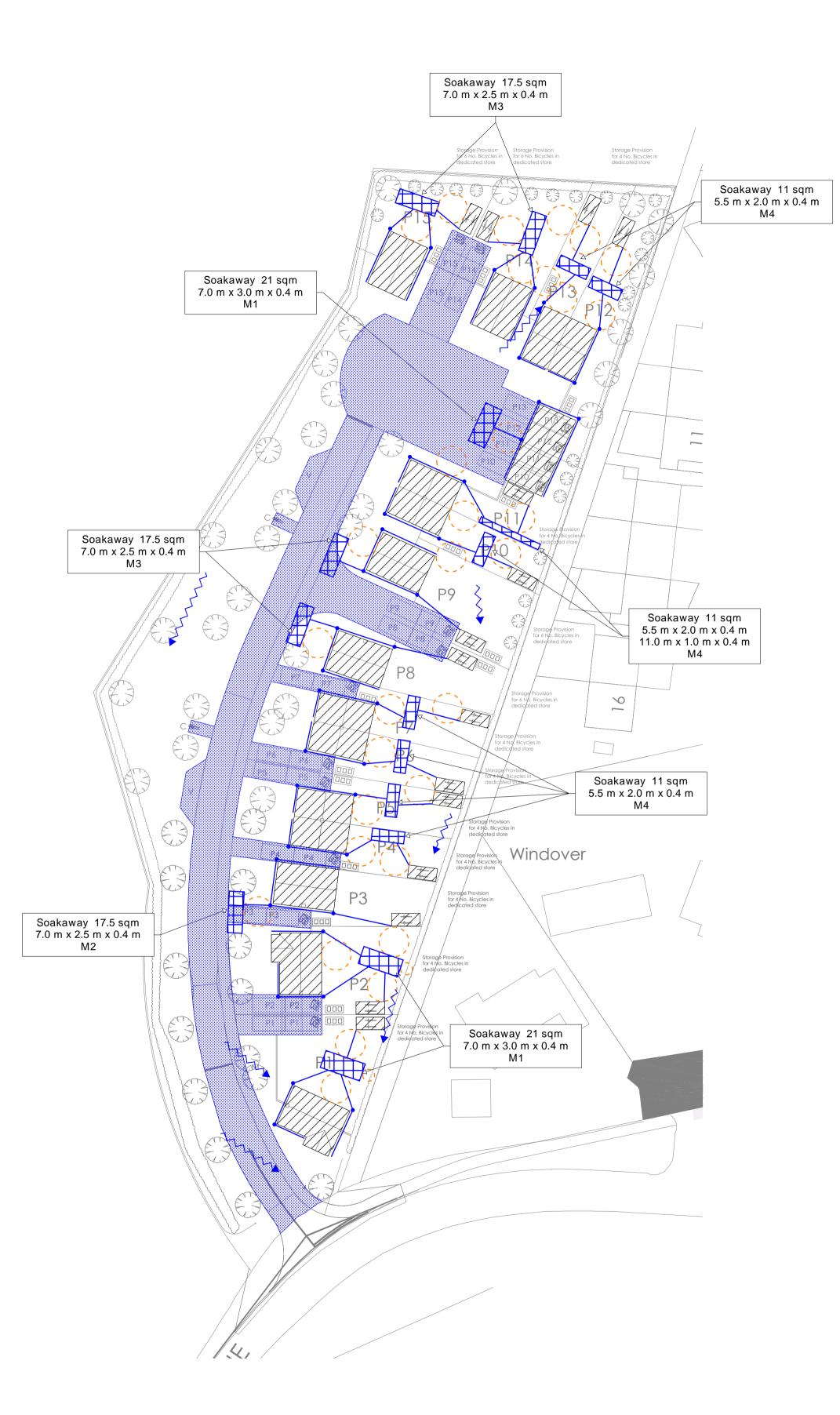
0.022

0.0782

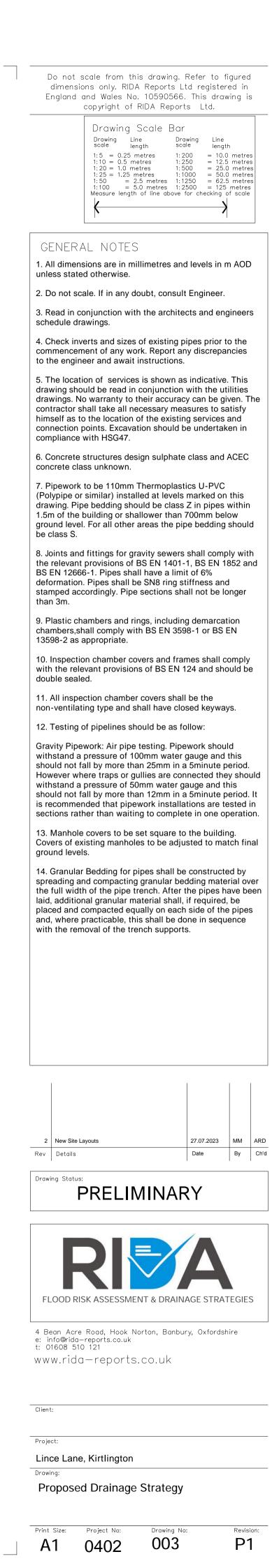
0.0

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 93.59%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
720 minute winte	r House	675	100.795	0.295	0.3	0.1176	0.0000	FLOOD RISK
720 minute winte	r Soakaway	675	100.795	0.795	0.3	4.1852	0.0000	FLOOD RISK
15 minute summe	er Dummy	1	99.900	0.000	0.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Veloci (m/s		•	Link Discharge ol (m ³) Vol (m ³)

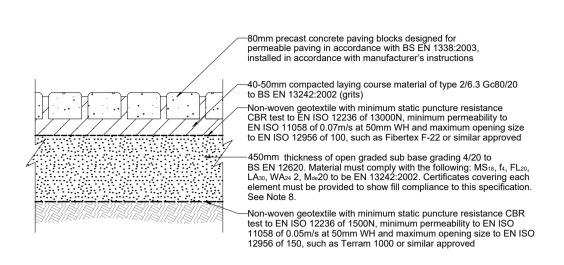

Soakaway

Dummy

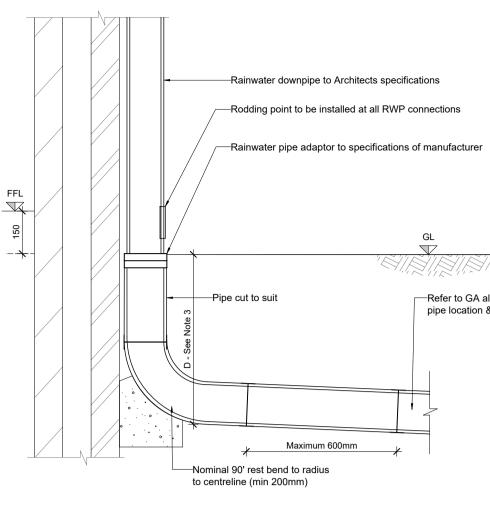


Appendix D

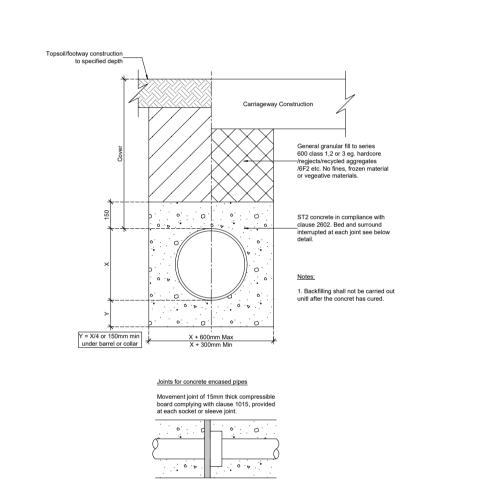
KEY

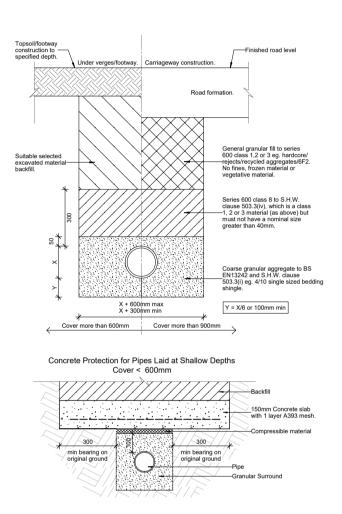


Proposed Surface Water Sewer Pipe Exceedance Flows

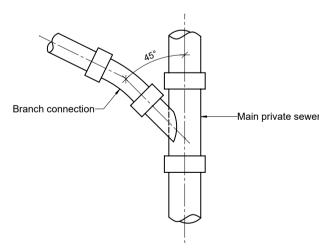

> Permeable Paving 80mm Block Paving 50mm Grids 450mm Type 3

Silt Trap

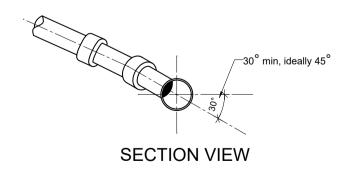

Permeable Paving



8251 - External Rainwater Pipe Connection Detail

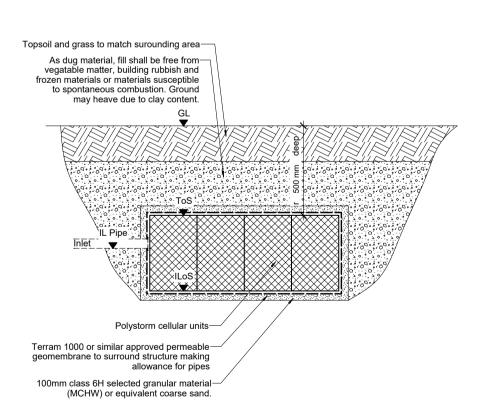

-Refer to GA all levels,

pipe location & material



Pipe Bedding Detail Type S

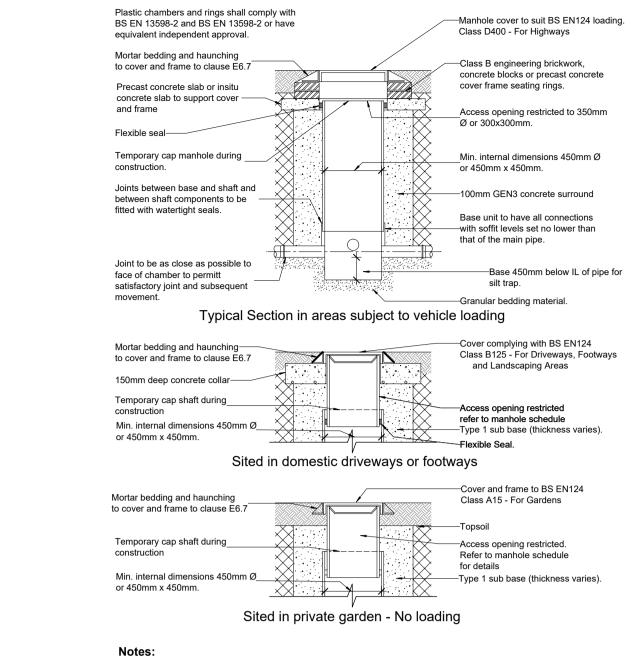
Pipe Bedding Detail Type Z


PLAN VIEW

NOTES:

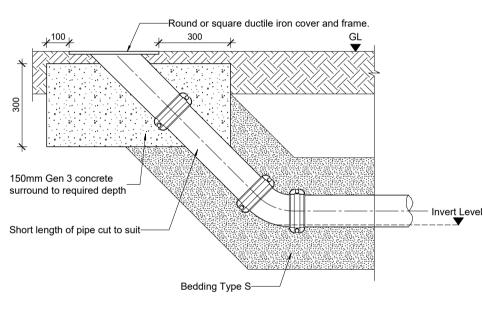
1. The vertical angle between the connecting pipe and the horizontal should be greater than 0° and not more than 60°. 2. Where the connection is being made to a sewer with a nominal internal diameter of 300 mm or less, connections should be made using 45° angle, or 90° angle, curved square junctions. 3. Connections made with junction fittings should be made by cutting the existing pipe, inserting the junction fitting and jointing with flexible repair couplings or slip couplers.

Lateral Connection to private sewer

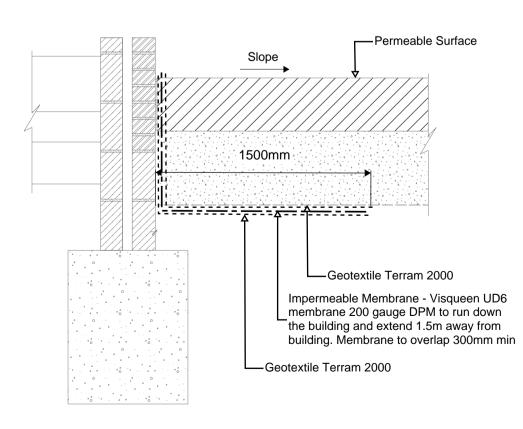

NOTES:

1. Permeable modular storage cell with 95% minimum void ratio. Maximum load 20 tonnes/m².

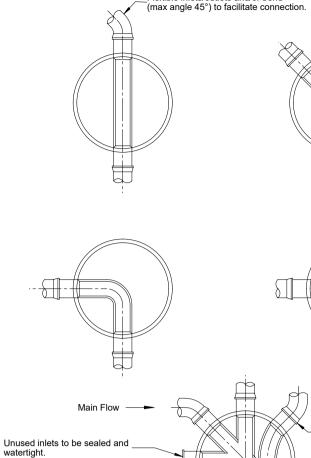
2. Installation of units as per supplier recommendations.


3. Ground may heave due to clay content in the as dug material. Contractor to level ground where required. 4. The area of the infiltration unit and the minimum total storage volume should be as per approved by the local planning authority documents.

Cellular Infiltration System - Landscape Area



Silt Trap Plastic



External Rodding Eye Detail

Permeable Surface Against Building

Flexible inlets/outlets and/or bend

watertight. Where chambers are postioned on 90° corners, always use the main channelbu fitting a 45° bend on the inlet and outlet.

Where a bend is used immediatly outside the manhole, this may be used as a rocker pipe.

Chamber Type 3 Base Layouts

