

Environment Group

Peveril Securities Ltd Lakeview Drive Bicester, Oxfordshire

Phase 2 Geo-Environmental Assessment

Birmingham more Business

Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

Leeds

W hitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

London

11 Borough High Street, London SE1 9SE T: 0207 407 3879

Manchester 4th Floor Carvers Warehouse, 77 Dale Street Manchester, M1 2HG T: 01612334260

Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

September 2017

BIM Document Ref: LDB-BWB-00-XX-EN-RP-0001_PH2_P1

Project Number: NTE2366

DOCUMENT ISSUE RECORD

Rev	Date of Issue	Status	Author:	Checked:	Geotech Approved:	Land Approved:
P1	September	DRAFT	Luke Cross BSc (Hons)	Redmond Parker- Dunn BSc (Hons)	Jamie Rushton BEng CEng MICE	Richard Robinson BSc (Hons) MCIWEM
	2017					

Limitations

This report has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this report by any third party. No part of this report shall be copied or reproduced in any form without the prior written permission of BWB.

EXECUTIVE SUMMAR	γ
Site Address	Land off Lakeview Drive, Bicester, Oxfordshire, OX26 1DE
Proposed	The proposed development is anticipated to comprise the development of up
Development	to 55,000m² of office space.
Site Setting and History	The site is irregular in shape and occupies approximately 21.0ha of land. The site currently comprises three large open fields used for grass / hay making and a landscaped area to the north including a large pond. Two dry drainage ditches cut north to south across the site.
	The site has remained relatively undeveloped since the earliest mapping produced in 1881. The site has been shown to comprise agricultural land with several small buildings located in the western extents of the site, believed to be associated with farming activities.
	The surrounding land has been utilised for agricultural uses, with a sewage works and railway line located immediately south and east of the site since 1880.
Scope of investigation works	The ground investigation comprised the advancement of 12 cable percussive boreholes to a maximum depth of 4.4m below ground level (bgl) and 26 machine excavated trial pits to a maximum depth of 3.7mbgl.
Ground Conditions Encountered	Ground conditions were found to comprise varying thicknesses of topsoil overlying weathered deposits of the Cornbrash Formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
	A small amount of Made Ground was recorded in the north western area of the site.
Geotechnical Appraisal	Shallow spread foundations within the Cornbrash Formation or Kellaways Clay Member should be suitable for the proposed buildings along the western boundary of the site (buildings 1 & 11). For the proposed buildings in the central and eastern area of site ground improvement techniques comprising vibrostone columns maybe required.
	A ground bearing floor slab should be achievable for the proposed development, however the floor slab should avoid spanning different geological strata to avoid differential settlement issues.
	Design sulphate class DS-2 and ACEC Class AC-2 is required for concrete to resist attack from sulphate levels across the site.
Environmental Assessment	The environmental risk assessment has identified limited sources of contamination that represent a risk to human health. A hotspot of Total TPH and loose Asbestos fibres have been recorded with the shallow Made Ground deposits encountered.
	Elevated concentrations of sulphate have been identified within the groundwater beneath the site which could represent a risk to concrete foundations. Impact to secondary A Aquifers and surface water features is likely to be restricted based upon the predominately hardstanding cover of the proposed development.
	Ground gas monitoring has indicated that the site can be characterised as a CS1 site whereby ground gas protection measures are not required.
Recommendations	To mitigate the risk posed to human health from asbestos fibres, a clean soil cover system will be required in landscaped areas positioned above the existing

EXECUTIVE SUMMARY

Made Ground deposits. The movement of Made Ground should be tracked if excavated as part of the development scheme to ensure appropriate mitigation is required. This may be by use of a Material Management Plan.

The foundation solutions for the proposed development should be re-assessed once final loadings are known.

This summary should be read in conjunction with BWB's full report (ref. LDB-BWB-00-XX-EN-RP-0001_PH2_P1) and reflects an assessment of the site based on information received by BWB at the time of production.

CONTENTS PAGE

1	INTRODUCTION	1
	Instruction	1
	Objectives	1
	Scope of Works	2
2	THE SITE	3
	Site Location	3
	Site Description	3
3	GEO-ENVIRONMENTAL SETTING	4
	Published Geology	4
	Hydrogeology	4
	Hydrology	4
4	PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT	5
	Introduction	5
5	PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION	8
	Scope of Works	8
	Sampling Strategy	8
	Chemical Analytical Strategy	9
	Geotechnical Strategy	10
6	GROUND CONDITIONS ENCOUNTERED	11
	Geological Summary	11
	Geological Descriptions	11
	In Situ Testing	14
	Hydrogeology	16
	Hydrology	16
	Contamination Observations	1 <i>7</i>
7	GEOTECHNICAL ASSESSMENT	18
	Introduction	18
	Foundation Solutions	18
	Floor Slabs	19
	Roads and Pavements	20
	Drainage	20
	Excavations	20

	Groundwater	20
	Chemical Attack on Buried Concrete	21
	Earthworks	21
8	GROUND GAS ASSESSMENT	22
	Introduction	22
	Methodology	22
	Results	22
	Risk Assessment	24
	Recommendations	24
9	HUMAN HEALTH RISK ASSESSMENT	25
	Pathways	25
	Sources	26
10	CONTROLLED WATERS RISK ASSESSMENT	27
	Pathways	27
	Soil Leachability	27
	Groundwater	28
	Surface Water	29
	Summary	29
11	ENVIRONMENTAL RISK ASSESSMENT	30
	Summary of Potentially Significant Pollutant Linkages	30
12	ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS	33
	Statutory Liability	33
	Third Party Liability	33
	Public Relations	34
	Development Implications	34
13	WASTE MANAGEMENT	35
	Waste Classification	35
14	CONCLUSIONS AND RECOMMENDATIONS	36
	Conclusions	36
	Recommendations	36
15	REFERENCES	38

TABLES							
Table 1	Preliminary Conceptual Site Model	6					
Table 2	Borehole Installation Summary	9					
Table 3	Summary of Ground Conditions	11					
Table 4	PSD Results Summary						
Table 5	DCP TRL Results Summary						
Table 6	DCP TRL Results Summary						
Table 7	Water Strikes 1						
Table 8	Summary of Safe Bearing Capacities – Western Buildings (No. 1 & 11)						
Table 9	Summary of Recorded Ground Gas Results						
Table 10	Controlled Water Exposure Pathways						
Table 11	11 Summary of Leachable Contamination Exceedances						
Table 12	Summary of Recorded Exceedances in Groundwater	28					
Table 13	Revised Conceptual Site Model	31					
FIGURES (in	cluded in main text)						
Figure 1	Site Location Plan						
Figure 2	Corrected SPT 'N' Value (N ₆₀) Versus Depth						
DRAWINGS							
Drawing 1	Site Layout Plan						
Drawing 2	Exploratory Hole Location Plan						
APPENDICE	S						
Appendix 1	Proposed Development Plan						
Appendix 2	2 Exploratory Hole Logs						
Appendix 3	B Drillers' Logs						
Appendix 4	Trip Hammer Calibration Certificate						
Appendix 5	Gas and Groundwater Monitoring Results						
Appendix 6	TRL Dynamic Cone Penetration Results						
Appendix 7	Soil and Leachate Chemical Analysis Results						
Appendix 8	Groundwater Chemical Analysis Results						
Appendix 9	Geotechnical Laboratory Testing Results						
Appendix 1	0 Derivation of GSACs						
Appendix 1	1 CLEA Flow Chart & Screening Worksheets						

Appendix 12 Soil Leachate Assessment Sheets
Appendix 13 Groundwater Assessments Sheets

Appendix 14 Preliminary Waste Assessment

1 INTRODUCTION

Instruction

- 1.1 BWB Consulting (BWB) was instructed by Peveril Securities Ltd (the Client) to carry out a Phase 2 Geo-Environmental Assessment for the site at Lakeview Drive, Bicester, Oxfordshire. Details of the project brief are included in BWB proposal reference 170623/01/NTE2366/RPD/LC, dated June 2017
- 1.2 The proposed development is anticipated to comprise the development of up to 55,000m² of office space. Details on the design of the proposed development have not been provided to date, however BWB anticipate that development will be no taller than 3 stories and include areas of car parking and limited soft landscaping.
- 1.3 A proposed development plan (drawing reference 16SK109, undated) and assumed current at the time of writing this report is presented as **Appendix 1**.

Objectives

- 1.4 The objectives of the report are to assess:
 - The prevailing ground and groundwater conditions across the site;
 - The potential presence and extent of contamination in shallow soil and groundwater beneath the site;
 - The significance and magnitude of the observed contamination through comparison of analytical data to appropriate published environmental screening criteria;
 - The strength properties of the soil beneath the site to enable foundation design;
 and
 - The ground gas regime beneath the site.
- 1.5 The above objectives will allow the preliminary Conceptual Site Model presented in the Phase 1 report to be verified and updated. The report has been completed in accordance with BS10175:2011(+A1:2013) 'Investigation of Potentially Contaminated Sites, Code of Practice' and CLR11 'Model Procedures for the Management of Land Contamination'.
- 1.6 This report presents the information obtained from a desk study and the supplementary ground investigations. Sections 2 to 5 of the report, together with the associated Figures and Appendices, provides a Ground Investigation Report (GIR), as defined in BS EN 1997-1;2004 and BS EN 1997-2;2007
- 1.7 The report also includes information required to form a Geotechnical Design Report as defined in BS EN 1997-1:2004, and the salient information, assessments and recommendations are presented in Sections 6 to 11 of the report, together with the associated Figures and Appendices.

Scope of Works

- 1.8 The ground investigation scope of works was completed on Thursday13th September 2017 and comprised the following;
 - Non-intrusive survey of excavation locations for underground utilities;
 - 26 machine excavated trial pits;
 - 12 cable percussive boreholes;
 - Insitu TRL DCP testing at select location;
 - Four gas and groundwater monitoring visits;
 - Chemical analysis of soils and groundwater; and
 - Geotechnical testing of soil.

2 THE SITE

Site Location

2.1 The site is located at Lakeview Drive Bicester, Oxfordshire, centred at National Grid reference 457953, 221555. The approximate location of the site is shown in **Figure 1**.

BICESTER

Bicester

Copse

Works

Langford Park
Farm

Figure 1 Site Location Plan

Reproduced from the Ordnance Survey Open Map with the permission of the controller of Her Majesty's Stationery Office Crown Copyright Reserved.

Site Description

2.2 The layout of the site with the main features is presented as **Drawing 1**. A detailed description of the key features of the site and its surroundings is included in the Phase 1 Report (ref: LDB-BWB-00-XX-RP-EN-0001_PH1, dated August 2017).

3 GEO-ENVIRONMENTAL SETTING

Published Geology

- 3.1 British Geological Survey (BGS) mapping for the site indicates that the site is directly underlain by Alluvium overlying River Terrace Deposits (RTD) to the east, south and western areas of the site, no superficial deposits are mapped across the centre and northern areas. The solid geology beneath the site comprises the Kellaways Clay Member underlain by the Cornbrash Formation, with the Kellaways Clay Member absent in the west.
- 3.2 No Made Ground is mapped across the site, however limited Made Ground deposits are anticipated to the north west area as a result of historical developments and recent construction works across the neighbouring plots (Tesco Superstore). The Groundsure Report indicates Made Ground is present along the northern boundary (A41 roadway) and eastern boundary (railway line).
- 3.3 Varying thicknesses of Topsoil are anticipated across the site.
- 3.4 Several historical BGS borehole records are located within the site boundary. Borehole log SP25SE81 is located along the eastern boundary and details topsoil to 0.25m below ground level (bgl), Alluvium deposits to 3.7m bgl, dense clayey sand to 6.2m bgl, Kellaways Clay member to 9.3m bgl overlying the Cornbrash Formation (limestone).
- 3.5 Additional borehole records (refs: SP25SE78 & SP25SE82) also located along the eastern boundary generally confirm the ground conditions detailed above, with the Cornbrash Formation encountered between 8.05m and 10.6m bgl respectively.

Hydrogeology

- 3.6 The underlying ground conditions have been classified by the Environment Agency (EA) as follows:
 - River Terrace Deposits: Secondary A Aquifer; and
 - Cornbrash Formation: Secondary A Aquifer.

Hydrology

- 3.7 Two drainage ditches are present on site cutting east to west. One is located to the north of the site with the second located to the south. Both are listed as unnamed tertiary rivers and were noted to be dry during the site walkover undertaken as part of the Phase 1 Assessment.
- 3.8 The southern and eastern areas of the site lie within an EA designated Zone 2 and 3 floodplain.

4 PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT

Introduction

- 4.1 The risk posed by any contaminants in soil or groundwater will depend on the nature of the hazard, the probability of exposure, the pathway by which exposure occurs, and the likely effects on the receptors. A contaminant is defined as a substance that has the potential to cause harm, while a risk is considered to exist if such a substance is present in sufficient concentration to cause harm and a pathway exists for a receptor to be exposed to the substance.
- 4.2 The following sections discuss all the identified potential on and off site sources, pathways and receptors in the context of the proposed development and plausible pollutant linkages which may represent a risk to identified receptors such as human health and/or controlled waters from the data gained from the desk study. At this stage the assessment is qualitative and aimed to determine all pollutant linkages, irrespective of significance or allowing for uncertainty.
- 4.3 Three impact potentials exist for any given site, these are:
 - The site impacting upon itself;
 - The site impacting on its surroundings; and
 - The surroundings impacting on the site.
- 4.4 All three impacts need to be considered in a risk assessment.
- 4.5 A Source, Pathway, Receptor analysis has been undertaken for the site based on the information provided in the preceding sections. This is presented as **Table 1**.
- 4.6 **Sources (S)**; These are potential or known sources of contamination that may relate to a former land use or present site feature or process (e.g. fuel storage tanks).
- 4.7 **Pathways (P)**; A pathway is defined as a mechanism or route by which a contaminant comes into contact with, or otherwise affects a receptor. Pathways by which the identified receptors may be impacted upon in the context of the proposed development.
- 4.8 **Receptors (R)**; Receptors are defined as people, living organisms, ecological systems, controlled waters, atmosphere, structures and utilities that could be adversely affected by contaminant(s).

Table 1 Preliminary Conceptual Site Model

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
	P1: Direct contact	R1: Construction personnel	Md	Lw	M/L	A ground investigation is recommended in order to assess current concentrations of organic and inorganic contaminants within soils and
\$1: On site: Ground	and incidental ingestion.	R2 : Future site users (commercial)	Md	UI	L	groundwater at the site that are likely to impact construction workers and future site users via ingestion, direct contact, and inhalation pathways.
conditions and historical site uses, most notably						If present, it is likely that these contaminant linkages will be easily severed through
agricultural uses, infilled ponds, out buildings (unknown uses) & construction yard (temporary). Possible contaminants to include – agrochemicals, fuel oils, heavy metals and hazardous ground gases.	P2: Vertical migration of contaminants in the soil leachate. P3: Migration and accumulation of	R3: Underlying Secondary A Aquifer (RTD)	Md	Lw	M/L	remediation/mitigation measures such as the provision of a hardstanding surface layer, capping layers in areas of soft landscaping and ground gas/vapour protection measures.
		R4: Underlying Secondary A Aquifer (Cornbrash Formation)	Md	UI	L	The risk to the Aquifer present within the Cornbrash Formation is likely to be reduced due to the relatively impermeable cohesive Kellaways Clay Member present above.
		R1: Construction personnel	Sv	Lw	-w M	Ground gas assessment in line with guidance detailed in CIRIA 665 and BS8485: 2015 should b
	ground gasses in enclosed spaces.	R2 : Future site users (commercial)				undertaken to calculate the gassing regime beneath the site.
\$2: Offsite – Land uses including the STW, petrol filling station and infilled ground.	P4: Leaching and permeation through the soil profile and migration	R3: Underlying Secondary A Aquifer (RTD) R4: Underlying Secondary A	Md	UI	L	Ground investigation with consideration of the ground gas regime will aid in the assessment of potential contamination to risks to human health and controlled water receptors.

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation	
Contaminants to potentially include hydrocarbons, heavy metals, inorganics.		Aquifer (Cornbrash Formation)				Low permeability of the surrounding geology may have reduced leaching of contaminated groundwater onto site.	
asbestos, organic compounds, micro- organisms and hazardous	groundwater	R5: Unnamed Primary River	Md	UI	L		
ground gases.	P3 : Migration and accumulation of ground gasses in enclosed spaces.	R2: Future site users (commercial)	Sv	UI	M/L		
VH = Very High, H = High, M = Moderate, M/L = Moderate/Low, L = Low, VL = Very Low KEY: Sv = Severe, Md = Medium, Mi = Mild, Mr = Minor Hi = High, Li = Likely, Lw = Low Likelihood, UI = Unlikely							

5 PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

Scope of Works

- 5.1 Intrusive ground investigation works were undertaken between 14th August and 13th of September 2017 and comprised the following works:
 - Clearance of investigation locations by a specialist buried services tracing company;
 - Collection of coordinates and elevations of exploratory hole locations;
 - The advancement of 12 cable percussive boreholes (BH101 to BH110, BH112 & BH113) to a maximum depth of 4.4mbgl with completion of SPTs and installations of gas and groundwater monitoring wells;
 - The advancement of 26 machine excavated trial pits (TP101 to TP126 inclusive) to a maximum depth of 3.7mbgl;
 - TRL dynamic probe penetration (TRL DCP) testing at selected locations in order to infer CBR values;
 - Collection of environmental soil and groundwater water samples for chemical analysis at a UKAS and MCERTS accredited laboratory;
 - Collection of bulk and disturbed soil samples for geotechnical analysis at a UKAS accredited laboratory; and
 - Four post investigation ground gas and groundwater level monitoring visits.
- An exploratory hole location plan is presented as **Drawing 2**. BWB exploratory hole records are presented as **Appendix 2**, Drillers' Logs are presented as **Appendix 3**, the SPT calibration certificate is presented in **Appendix 4**, the post investigation gas and groundwater monitoring data is presented as **Appendix 5** and the TRL DCP results are presented as **Appendix 6**.
- 5.3 The site investigation works were carried out in general accordance with BS5930:2015 'Code of Practice for Site Investigations' and BS10175:2011 'Investigation of Potentially Contaminated Sites'.

Sampling Strategy

- 5.4 A review of the Phase 1 Desk Study Report revealed limited potential contamination sources across the site. Therefore, the intrusive locations were positioned to provide site wide coverage.
- 5.1 Each borehole location was installed with a 50mm HDPE well screen, bung and gas tap to facilitate ground gas and groundwater monitoring. **Table 2** below summarises the response zone in each borehole and their targeted geology.

Table 2 Borehole Installation Summary

Location	Slotted Well S	creen (m bgl)	Targeted Geology		
Locullon	Top Base		ruigeleu Geology		
BH101	1.0	2.55	Cornbrash Formation		
BH102	1.0	3.4	Cornbrash Formation		
BH103	1.0	4.0	RiverTerrace / Kellaways Clay Member		
BH104	0.5	2.0	Alluvium		
BH105	0.5	1.4	Cornbrash Formation		
BH106	1.0	2.5	Kellaways Clay Member		
BH107	1.0	3.4	Alluvium/Kellaways Clay Member		
BH108	1.0	3.0	Alluvium		
BH109	1.0	3.3	Alluvium		
BH110	1.0	3.5	Alluvium/Kellaways Clay Member		
BH112	1.0	3.0	Alluvium/Kellaways Clay Member		
BH113	1.0	4.0	Alluvium/Kellaways Clay Member		

Chemical Analytical Strategy

Soil Strategy

- 5.2 Selected soil samples collected from exploratory hole locations were sent to 12 Analytical Services (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:
 - 16 soil samples tested for a soil suite (BWB Standard Suite) comprising arsenic, barium, beryllium, water soluble boron, cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate (2:1 extract), total phenols, total cyanide, free cyanide, complex cyanide, fraction of organic carbon, pH, Polycyclic Aromatic Hydrocarbons (PAHs) (United States Environment Protection Agency priority 16 compounds) and Total Petroleum Hydrocarbons (TPH) C6-C40;
 - Two soil samples tested for TPH speciated to the UK Criteria Working Group (TPHCWG) aliphatic and aromatic compounds;
 - Three Soil samples for Organochloride and Organiohos pesticides;
 - Five soil samples for asbestos screening; and
 - Three soil samples tested for a suite of common leachable contaminants, namely arsenic, barium, beryllium, water soluble boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, sulphate, total cyanide and pH.
- 5.3 The results of the soil chemical testing are presented as **Appendix 7**.

Groundwater Strategy

- 5.4 Groundwater samples were obtained using a bailer following the removal of 3 times the well volume of water or the well bailed dry and allowed to recharge. The groundwater samples were sent to 12 Analytical Services (UKAS and MCERTS accredited) for the following suite of groundwater chemical testing:
 - Ten water samples tested for arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, conductivity, soluble

sulphate, ammoniacal nitrogen, total phenols, total cyanide, pH, total organic carbon, PAHs (US EPA priority 16 compounds).

5.5 The results of the water chemical testing are presented as **Appendix 8**.

Geotechnical Strategy

- 5.6 The cable percussive borehole locations were positioned beneath the proposed building footprint to assess underlying ground conditions for geotechnical purposes. The trial pits were positioned to assess ground conditions, strength properties and characteristics across the wider site.
- 5.7 In-situ soil strength testing comprising SPTs were undertaken within the cable percussive boreholes. SPT 'N' values are included on the exploratory hole logs presented as **Appendix 2**. Dynamic Cone Penetration tests (DCP) were undertaken at selected locations across the site.
- 5.8 Selected disturbed and bulk samples were collected from the investigation locations and sent to the geotechnical project laboratory (I2 Analytical Services), which is UKAS accredited. The following geotechnical testing was undertaken;
 - 13 samples tested for moisture content;
 - Nine samples tested for Atterberg (liquid and plastic) limits;
 - Six samples tested for particle size distribution (by wet Sieve);
 - Two point load tests: and
 - Six samples tested for BRE Suite comprising aqueous sulphate and pH.
- 5.9 The results of the geotechnical testing are included as **Appendix 9**.

6 GROUND CONDITIONS ENCOUNTERED

Geological Summary

- 6.1 The ground conditions recorded confirmed the published geology discussed within the Phase 1 report. In general the ground conditions were found to comprise varying thicknesses of topsoil overly weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 6.2 A small amount of Made Ground was recorded in the north western area of the site.
- 6.3 A summary of the encountered ground conditions is presented below in **Table 3**. BWB exploratory hole records are presented as **Appendix 2**.

Table 3 Summary of Ground Conditions

Stratum	Top Depth (m)		Base Depth (m)		Thickness (m)		SPT N ₆₀ Value	
	Min	Max	Min	Max	Min	Max	Min	Max
Topsoil	Grour	nd lev el	0.2	0.6	0.2	0.6	-	-
Made Ground	0.0	0.3	0.2	1.0	0.2	1.0	-	-
Alluvium	0.2	0.8	0.5	2.8	0.2	2.55	6	15
RiverTerrace Deposits	0.3	1.5	0.75	2.35	0.2	1.55	40	-
Kellaways Clay Member	0.4	2.8	2.1	4.3	0.4	3.2	9	59 (refusal)
Combrash Formation	0.2	4.3	1.44	4.4	Not P	rov en	55 (refusal)	59 (refusal)

Geological Descriptions

<u>Topsoil</u>

- 6.4 Topsoil was encountered at all locations with the exceptions on BH101, BH102, TP101, TP102, TP103 and TP124, where Made Ground was recorded from ground level. Topsoil was encountered at thicknesses of between 0.2m and 0.6m, the composition generally displayed consistency, typically comprising brown or greyish brown slightly clayey slightly gravelly sand with rootlets.
- 6.5 The depth of topsoil over the site may vary from that encountered at the locations investigated within the scope of this investigation which may result in inaccurate estimations of topsoil quantities on the site.

Made Ground

6.6 As mentioned above, Made Ground deposits were recorded at BH101, BH102, TP101, TP102, TP103 and TP124, all located in the north western area of site. The Made Ground deposits were recorded with a thickness ranging between 0.2m and 1.0m and were typically recorded as;

- Firm brown, dark brown, yellow or grey sandy gravelly clay;
- Brown gravelly sand;
- Brown occasionally yellow sandy gravelly cobbles; and
- Firm brown mottled grey clayey gravelly sand (reworked natural ground).
- 6.7 No in-situ testing or geotechnical testing was undertaken within the Made Ground deposits due to the limited thicknesses and limited coverage of the deposits.

Alluvium

- 6.8 Alluvium deposits were recorded in 29 locations, commonly across the central and eastern areas of the site and was generally recorded as the following;
 - Firm brown or grey mottled yellow or orange slightly sandy gravelly clay;
 - Brown mottled grey clayey gravel;
 - Soft brown to dark brown clayey pseudo-fibrous peat; and
 - Orange gravelly sand.
- 6.9 Alluvium deposits were often recorded to include organic matter and relic rootlets.
- 6.10 Typically the thicker Alluvium deposits were recorded in the eastern area of site with a maximum thickness of 2.55m. This area is a flood relief area for the neighbouring sewage treatment works and is currently not designated for development.
- 6.11 SPT N_{60} results undertaken within the cohesive Alluvium deposits ranged between 5 (recorded at various locations at 5.0m bgl) and 15 blows (BH104 at 1.0m & BH110 at 2.0m bgl), indicating soft to firm deposits. No SPTs were undertaken within the granular Alluvium arising's. Graphs presenting the SPT results are presented within the text of this report later in this section as **Figure 2**.
- 6.12 Seven samples of the Alluvium were sent for moisture content analysis, recording results of between 19% and 35%, the samples were also tested for plasticity recording a plasticity index ranging between 28 (low plasticity) and 52 (high plasticity). Plasticity classification charts are included within **Appendix 9**.
- 6.13 Three PSD tests were undertaken on samples from the Alluvium deposits, a summary of the results is provided in **Table 4** below.

Table 4 PSD Results Summary

Location	Depth (m bgl)	Cobble Content (%)	Gravel Content (%)	Sand Content (%)	Clay/ Silt Content (%)	Earthworks Classification
BH106	1.0	0.0	39.6	28.8	30.6	2C
BH109	1.0	0.0	0.0	2.9	97.1	2A/B
BH112	1.0	0.0	9.5	36.7	53.8	2A/B

River Terrace Deposits

- 6.14 River Terrace Deposits were recorded in 12 locations across the site, typically recorded between the Alluvium and bedrock formation. The deposits were generally recorded as the following;
 - Dense yellow and grey or light brown and yellowish brown slightly sandy gravel;
 - Grey sandy gravel; and
 - Orange, brownish orange or light brown sand and gravel.
- 6.15 One SPT was undertaken within the River Terrace Deposits, recoding an N₆₀ value of 40 blows (BH103 at 1.2mbgl), indicating dense deposits.
- 6.16 One sample of the River Terrace Deposits was tested for PSD, recording a silt /clay content of 26.7%, sand content of 7.32% and gravel content of 0.1%. Based upon these results the material is considered likely to be classified as a 2A/B material based upon Series 600 Earthworks specification.

Kellaways Clay Formation

- 6.17 The Kellaways Clay Member was recorded in 28 locations across the site and was encountered to a maximum depth of 4.3m bgl, although in ten locations the thickness of the deposits was not proven. This stratum was typically encountered as:
 - Dark grey sandy gravelly clay;
 - Stiff dark grey clay;
 - Very dense dark grey clayey gravel; and
 - Dark grey weathered mudstone arising as a very clayey gravel.
- 6.18 N_{60} SPT results obtained within the cohesive Kellaways Clay Member recorded results of between 9 (BH112 at 2.0m bgl) and 48 blows (BH110 at 3.0m bgl), indicating soft to very stiff deposits. All N_{60} results within the granular deposits of the Kellaways Clay Member recorded a blow count of 55 and 59 blows (refusal) at various depths, indicating very dense deposits.
- 6.19 Two samples of the cohesive Kellaways arisings were sent for moisture content analysis, recording results of between 41% and 82%, the samples were also tested for plasticity recording a plasticity index ranging between 30 (low plasticity) and 41 (medium plasticity).
- 6.20 One sample of the granular Kellaways Clay Member arisings was tested for PSD, recording a silt /clay content of 36.8%, sand content of 22.0% and gravel content of 41.1%. Based upon these results the material is considered likely to be classified as a 2C material based upon Series 600 Earthworks specification.

Cornbrash Formation

- 6.21 The Cornbrash Formation was recorded in 29 locations across the site and was encountered to a maximum depth of 4.0m bgl, although the maximum thickness of the deposits was not proven in any location. This stratum was typically encountered as:
 - Dark grey, brown, brownish orange or yellowish grey slightly sandy gravel with low to high cobble content;
 - Stiff dark grey weather limestone arisings as slightly sandy gravel with low to moderate cobble content; and
 - Extremely strong dark grey limestone (no arising returned to surface).
- 6.22 The arising of the Cornbrash Formation was often recorded to contain fine shell fragments.
- 6.23 SPT N₆₀ results were recorded between 55 and 59 blows (refusal) at all locations encountered at various depths, indicating very dense / strong deposits.
- 6.24 One sample of the Cornbrash Formation was tested for PSD, recording a silt /clay content of 18.3%, sand content of 25.0%, a gravel content of 51.5% and a cobble content of 5.3%. Based upon these results the material is considered likely to be classified as a 2C material based upon Series 600 Earthworks specification.
- 6.25 Four point load tests were undertaken on bulk samples retrieved from the Cornbrash Formation at two locations. The results are summarised below in **Table 5**.

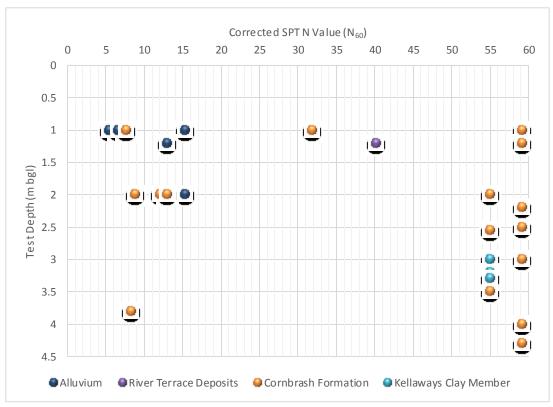
Table 5 DCP TRL Results Summary

Location	Depth (mbgl)	Sample Type	Test Type	Is(50) MPa	Calculated Unconfined Compressive Stregth	Inferred Rock Strength
TP121	3.2 – 3.35	В	Irregular	0.41	9.02	Weak
TP121	3.2 – 3.55	В	Irregular	0.28	5.5	Weak
TP122	3.55 – 3.7	В	Irregular	0.51	11.22	Weak
Tp122	3.55 – 3.7	В	Irregular	0.21	4.62	Very weak

In Situ Testing

Dynamic Cone Penetrometer Testing

6.26 Dynamic Cone Penetrometer Tests were undertaken adjacent to a number of exploratory hole locations following the removal of the topsoil in order to infer California Bearing Ratio (CBR) values to inform pavement design. The testing was undertaken in accordance with Transport Research Laboratory (TRL) methodology. The results of the testing are presented as **Appendix 6** and are summarised in **Table 6** below.


Location	Stratum	Min CBR (%)	Max CBR (%)
TP101	Made Ground	9.8	29.1
TP103	Made Ground	28.0	>100*
TP104	Cornbrash Formation	4.2	>100
TP105	Alluvium	3.1	44.7
TP107	Alluvium	5.8	21.8
TP108	Alluvium	3.1	39.8
TP111	Alluvium	4.2	29.6
TP112	Alluvium	2.6	7.5
TP119	Alluvium	2.6	3.3
TP120	River Terrace Deposits	7.1	7.3
TP121	Alluvium	4.0	-
TP122	Alluvium	4.2	-
TP124	Made Ground	27.7	57.5
TP126	Made Ground (Reworked Natural)	3.0	3.2

^{*}Probe likely encountered a cobble during the test, the result should be discounted from any future design.

Standard Penetration Tests

6.27 SPT results collected from the borehole locations are presented on the exploratory hole records presented in **Appendix 1**. A plot of corrected SPT 'N' Value vs. Depth is presented as **Figure 2** overleaf.

Figure 2 Corrected SPT N Value vs. Depth

Hydrogeology

6.28 Groundwater strikes encountered during the ground investigation are summarised in **Table7** below.

Table 7 Water Strikes

idbic /	Table 7 Water Strikes						
Location	Depth (m bgl)	Strata	Comments				
BH102	2.5	Cornbrash Formation	Rising to 1.0m after 20minutes				
BH106	2.5	Kellaways Clay Member	Rising to 1.8m after 20minutes				
BH113	1.2	Alluvium	Rising to 1.0m after 20minutes				
TP101	1.3	Cornbrash Formation	Seepage noted				
TP102	1.7	Cornbrash Formation	-				
TP103	1.7	Cornbrash Formation	Steadyingress				
TP104	1.6	Cornbrash Formation	Slowingress				
TP105	1.25	Cornbrash Formation	Seepage noted				
TP106	1.1	River Terrace Deposits	Steadyingress				
TP107	1.1	River Terrace Deposits	Steadyingress				
TP108	2.5	Cornbrash Formation	Seepage noted				
TP110	2.15	Kellaways Clay Member	Slowingress				
TP111	1.2	River Terrace Deposits	Steadyingress				
TP112	1.15	River Terrace Deposits	Slowingress				
TP113	1.1	Alluvium	Seepage noted				
TP113	1.5	River Terrace Deposits	Steadyingress				
TP114	1.35	River Terrace Deposits	-				
TP115	3.0	Cornbrash Formation	Seepage noted				
TP117	2.5	Cornbrash Formation	-				
TP118	2.95	Cornbrash Formation	Rising to 2.85m after 20 minutes				
TP120	3.0	Cornbrash Formation	Seepage noted				
TP121	3.3	Cornbrash Formation	Slowingress noted				
TP124	1.1	Cornbrash Formation	Seepage noted				

- 6.29 Standing water levels were recorded within the installed boreholes on four occasions between 24th August and 13th September 2017. Groundwater was recorded between 0.72m bgl (64.1 AOD) at location BH105 installed into the Cornbrash Formation and 3.48m bgl (62.41m AOD) at location BH09 installed into the Alluvium deposits. Locations BH108 and BH109 was recorded as 'dry' during the first two monitoring visits.
- 6.30 On the basis of the groundwater strikes and the geological formations, it is likely that a continuous body of groundwater is present at shallow depth beneath the Site. Given the identified geology, groundwater is not limited to a single formation.
- 6.31 Groundwater monitoring data is presented as **Appendix 5**.

Hydrology

6.32 No surface water monitoring has been undertaken as part of this investigation.

Lakeview Drive, Bicester, Oxfordshire Phase 2 Geo-Environment al Assessment Sept ember 2017 LDB-BW B-00-XX-EN-RP-0001_PH2_P1

Contamination Observations

6.33 No contamination observations were made during the intrusive ground investigation works or the following ground as a groundwater monitoring period.

7 GEOTECHNICAL ASSESSMENT

Introduction

- 7.1 The proposed development is anticipated to comprise up to 55,000m² of office space. Details on the design of the proposed development have not been provided to date, however BWB anticipate that development will be no taller than 3 stories and include areas of car parking and limited soft landscaping.
- 7.2 A preliminary development plan (drawing reference 16SK109, undated) is presented as **Appendix 1**. Given the preliminary nature of the development masterplans, no design loadings are available for the proposed development.
- 7.3 Ground conditions were generally found to comprise varying thicknesses of topsoil overlying weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 7.4 A small amount of Made Ground was recorded in the north western area of the site.

Foundation Solutions

- 7.5 Given the competency of the underlying natural strata in the west of the site, it is considered that shallow spread foundations bearing onto the Kellaways Clay Member and Cornbrash Formation should be suitable for the proposed developments (buildings 1 & 11). Where Alluvium deposits are present (≥2.5m in central and eastern areas (buildings 2 10)), ground improvement techniques may have to be utilised to provide a suitable bearing capacity.
- 7.6 Deeper foundations such as piles are not considered necessary for the proposed development.

<u>Traditional Spread Foundations</u>

- 7.7 The Topsoil and Made Ground are not suitable materials for setting foundations within due to their potential variable nature leading to excessive settlements when loaded.
- 7.8 Whilst two of the strata encountered underlying the site could all potentially support the likely deign loads for the proposed development, foundations that cross two or more geological boundaries have the potential to be impacted by differential settlement characteristics. Foundations should therefore seek to be founded solely within one strata.
- 7.1 **Table 8** presents estimated safe bearing capacities that could be achieved in the western area of the site for the different foundation types and sizes within the Cornbrash Formation and Kellaways Clay Member.

Table 8 Summary of Safe Bearing Capacities – Western Buildings (No. 1 & 11)

Founding Medium -	Foundation Size & Type					
Description - Depth	0.6m Strip		1.0m x 1.0m Pad		2.0m x 2.0m Pad	
	(kN/m³	Load (KN)	(kN/m³	Load (KN)	(kN/m³	Load (KN)
Cornbrash Formation – very dense slightly clayey sandy gravel – 1.0m bgl – circa 65.67mAOD	220	130	320	320	360	1440
Kellaways Clay Member – very dense slightly sandy gravel – 2.0m bgl	310	180	375	375	375	1500

7.2 The above bearing capacities have been calculated by applying a safety factor or three to the ultimate bearing capacity for the stratum present on site. Due to limited information provided to BWB regarding potential loadings settlement could not be calculated for the proposed developments. Once design loads are known for the developments then a foundation assessment should be undertaken. Final foundation solutions will have to be re-assessed when the proposed development plan and foundation loadings are confirmed.

Piles

7.3 A piled foundation solution has not been considered at this stage.

Ground Improvement Techniques

- 7.4 Ground improvement techniques are likely to be required in the central and eastern areas of site (building no. 2 to 10). Ground improvements in the form of vibro stone columns are anticipated to provide a bearing capacity in the region of 150kn/m². However, this would be dependent on the columns terminating into either the firm / stiff mudstone (Kellaways Clay Member) or very dense Cornbrash Formation which are within no more than 2.8m of the current around level.
- 7.5 A suitable experienced specialist ground improvement contractor should be appointed to confirm the suitability of this technique for use across the site.

Floor Slabs

- 7.6 Loadings on to a ground bearing floor slab are currently unknown. For the purposes of this assessment it has been assumed that the proposed buildings floor slabs would not exert pressures of more than 25kN/m². Once formation level has been achieved, the material beneath the building footprints should be proof rolled and inspected for signs of soft spots by an engineer. Where identified, these soft spots should be excavated and replaced with an engineered granular material.
- 7.7 Setting floor slabs across different geological strata should be avoided as it could lead to differential settlement issues.
- 7.8 The floor slab settlements should be re-assessed once further details of its construction / loadings are known.

Roads and Pavements

- 7.9 In total 14 TRL DCP tests were undertaken at selected locations across the Site with inferred CBR results ranging between 3.0 and >100%. It is anticipated that reengineering of the near surface Made Ground and shallow natural ground would be required to provide a suitable development platform.
- 7.10 As a guide it is recommended that roads be designed for 5% CBR, which should be confirmed by in-situ testing once detailed designs are available.
- 7.11 Interim Advice Note 73/06 (IAN73/06) Revision 1 2009 advises that where the in-situ subgrade has an estimated CBR value less than 2.5% it must be improved.

Drainage

7.12 No permeability testing was undertaken as part of the site investigation. Given the presence of significant thicknesses of cohesive material across the central and eastern areas of site, the construction of shallow soakaways is unlikely to be suitable. Soakaway drainage may be plausible to the west, however this will require confirmation through testing in line with BRE 365 guidance.

Excavations

Ease of Excavation

7.13 Excavations using backhoe excavators are expected to be suitable within shallow Made Ground and natural strata across the site.

Stability of Excavation

7.14 Excavations advanced into the Made Ground and granular deposits are expected to be prone to instability. Where personnel entry is required for inspection; excavations should be sufficiently enlarged and an assessment of safe temporary angles should be assessed. Alternatively, temporary shoring should be provided.

<u>Legislation on Personnel Entry to Excavations</u>

7.15 It is recommended that no excavations should be entered into without appropriate support and a full risk assessment should be completed prior to entry. Mitigation measures to protect from accumulating ground gases should be implemented.

Groundwater

- 7.16 Groundwater has been recorded at standing depths of between 0.72m and 3.48m bgl across the site.
- 7.17 Any encountered groundwater across the site may be removed using conventional construction of sumps and submersible pumps, depending on depths and any shoring techniques in place.

Chemical Attack on Buried Concrete

- 7.18 Design Sulphate (DS) and Aggressive Chemical Environment for Concrete (AC) classes have been determined from BRE digest 2005.
- 7.19 Soluble sulphate concentrations in the soil extracts ranged from 10mg/l to 1000mg/l with pH values ranging from 7.0 to 7.9. Total sulphur concentration ranged from 0.01 % to 0.26 %.
- 7.20 Sulphate concentrations in the groundwater ranged from 88 mg/l to 1100 mg/l with groundwater pH values ranging from 7 to 7.5.
- 7.21 In accordance with the recommendations of BRE Special Digest 1, 'Concrete in Aggressive Ground' 2005, the conditions of the soils at the site would therefore be classified as Design Sulphate Class DS-2 and ACEC Class AC-2 for soils and groundwater, when considering the most appropriate type of concrete to be used at the site in order to resist chemical attack from elevated sulphate present in the soils (assuming mobile groundwater in non pyritic soils).

Earthworks

7.22 No specific earthworks assessments have been undertaken as part of this investigation.

8 GROUND GAS ASSESSMENT

Introduction

- 8.1 A ground gas assessment has been undertaken to assess the risks associated with ground gases and volatile vapours to new buildings and their occupants. The results obtained have been assessed in line with relevant guidance (notably CIRIA 665).
- 8.2 Four gas monitoring visits have been undertaken as part of this assessment.

Methodology

- 8.3 The ground gas monitoring visits were undertaken by BWB at the site between 24th August and 13th September 2017.
- 8.4 All borehole locations were installed with ground gas monitoring wells, with response zones targeting the Alluvium, Kellaways Clay Formation and Cornbrash Formation. Exploratory hole records showing the monitoring well construction are presented as **Appendix 2**.
- 8.5 The assessment of potential ground gas generation is based on the observation of trends and changes in gas evolution by the direct measurement of ground gases from gas wells. The works included measurement of methane, carbon dioxide, oxygen, hydrogen sulphide, carbon monoxide, gas flows and barometric pressure. A PID survey was undertaken to measure volatile organic compounds within the borehole response zones.

Results

8.6 The minimum and maximum steady state concentrations recorded for borehole flow, oxygen, carbon dioxide and methane are summarised below in **Table 9**.

Table 9 Summary of Recorded Ground Gas Results

Table 1							
Borehole Targeted Geology ID		Steady Flo	ow (I/hr)		n Dioxide sv/v)	Methar	ne (%v/v)
		min.	max.	min.	max.	min.	max.
BH101	Cornbrash Formation	<0.1	<0.1	0.1	3.5	<0.1	<0.1
BH102	Cornbrash Formation	<0.1	<0.1	0.4	3.7	<0.1	<0.1
BH103	Kellaways Clay Formation	<0.1	<0.1	0.1	0.7	<0.1	<0.1
BH104	Alluvium	<0.1	<0.1	0.5	1.0	<0.1	<0.1
BH105	Cornbrash Formation	<0.1	<0.1	0.3	0.9	<0.1	<0.1
BH106	Kellaways Clay Formation	<0.1	<0.1	0.8	1.8	<0.1	<0.1
BH107	Kellaways Clay Formation	<0.1	<0.1	0.6	1.5	<0.1	<0.1
BH108	Kellaways Clay Formation	<0.1	0.4	0.2	1.1	<0.1	<0.1

Borehole ID	Targeted Geology	Steady Flo	Steady Flow (I/hr) Carbon Dioxide (%v/v)		Methane (%v/v)		
		min.	max.	min.	max.	min.	max.
BH109	Alluvium / Kellaways Clay Formation	<0.1	0.4	0.9	1.8	<0.1	<0.1
BH110	Alluvium / Kellaways Clay Formation	<0.1	<0.1	1.0	1.7	<0.1	<0.1
BH112	Alluvium / Kellaways Clay Formation	<0.1	<0.1	0.4	1.1	<0.1	<0.1
BH113	Alluvium / Kellaways Clay Formation	<0.1	<0.1	0.1	0.8	<0.1	<0.1

<u>Atmospheric Pressure and Flow</u>

- 8.7 During the monitoring programme completed at the site the atmospheric pressure ranged between 991mb (recorded on 13th September 2017) and 1013mb (recorded on 24th August 2017).
- 8.8 One monitoring visit was undertaken when atmospheric pressure was recorded below 1000mB, representing a low pressure event and the worst case scenario for the site.
- 8.9 The pressure was recorded as rising during one monitoring visit (13th September 2017), as static during one monitoring visits (6th September 2017) and falling during two monitoring visits 24th & 31st August 2017).
- 8.10 On this basis, the monitoring is considered likely to have captured the worst case gassing scenario at the site as generally, ground gas emissions tend to increase when atmospheric pressure falls and particularly when the pressure drops below 1000mB.
- 8.11 During the monitoring period, steady flow rates ranged between <0.1/hr (recorded at multiple locations on numerous visits) and 0.4l/hr (recorded on 31st August 2017 in boreholes BH108 & BH109).

Hazardous Ground Gas and Volatile Vapours

- 8.12 Steady carbon dioxide concentrations recorded ranged between 0.1% v/v (recorded in several boreholes on several occasions) and 3.7% v/v (recorded on 31st August 2017 in BH102).
- 8.13 Steady methane concentrations were recorded at <0.1%v/v in all locations throughout the monitoring period.
- 8.14 Hydrogen sulphide concentrations were not recorded above the limit of detection of the equipment during the monitoring visits.
- 8.15 Carbon monoxide concentrations were generally not recorded above the limit of detection of the equipment during the monitoring visits with the exception of boreholes BH101 and BH103 where concentration ranging between 1ppm and 31ppm were recorded during the visits completed on 24th & 31st August 2017.

- 8.16 PID concentrations were recorded between <0.1ppm (the limit of detection of the equipment) and a maximum of 0.2ppm in borehole BH110 recorded on 31st August 2017.
- 8.17 Ground gas monitoring results are presented in **Appendix 5**.

Risk Assessment

8.18 CIRIA Report 665 "Assessing Risks Posed by Hazardous Ground Gases to Buildings" presents current best practice on the assessment of ground gases for commercial and residential buildings (with the exception of low rise traditional housing). The report presents a risk based approach based on gas screening levels which depend on both the concentration and emission rate of gas from the ground. Gas screening levels are calculated as follows:

Gas screening value (l/hr) =
$$\frac{gas\ concentration\ (\%)\ X\ measured\ borehole\ flow\ rate\ (l/h)}{100}$$

8.19 From the above results, a maximum gas screening value (GSV) of 0.0148 has been calculated for the site, giving a classification of a Characteristic Situation 1 (CS1) site.

Recommendations

8.20 It is assumed that the development will fall within a Type C building (office spaces). Based upon the guidance within BS8485:2015, for a CS1 categorisation, ground gas protection measures are not required.

9 HUMAN HEALTH RISK ASSESSMENT

- 9.1 Soil contaminant data have been compared against Generic Site Assessment Criteria (GSAC) developed by BWB using the CLEA model 1.06 and the updated CLEA framework (2009) for assessing risk from soil contamination to human health. Details of the derivation of the GSACs are presented in **Appendix 10**. The results of the soil chemical laboratory results are provided within **Appendix 7** with a table summarising the results presented as **Appendix 11**.
- 9.2 The GSACs have been developed with the following assumptions which have been changed from the CLEA default parameter set. Soil type is a sandy loam with an organic matter content of 1%. This is considered to be more representative of shallow Made Ground found on most Brownfield sites than the CLEA default of 6% organic matter. The building type for a commercial development is assumed to be a post 1970s office which is representative of new commercial buildings.

Pathways

- 9.3 BWB understand that the site will be developed for a commercial/warehouse end use, with associated offices, car parking and limited soft landscaping areas.
- 9.4 On this basis, contamination data has been compared to the GSACs for a commercial end use (i.e. using all pathways for that end use) based on an organic matter content of 1%. The key receptor for such a site is considered to be an adult female worker.
- 9.5 Exposure pathways considered in this assessment are presented in **Table 10**.

Table 10 Commercial Exposure Pathways

Source	Shallow	Deep Soils	
Pathway	Commercial / Industrial with managed landscaped areas	Commercial / Industrial with Hard standing areas	Commercial / Industrial
Ingestion of Soil	✓	×	×
Ingestion of site derived household dust	✓	×	×
Ingestion of contaminated vegetables	×	*	×
Ingestion of soil attached to vegetables	×	*	×
Dermal contact with Soil	✓	*	×
Dermal contact with site derived household dust	✓	×	×
Inhalation of fugitive soil dust	✓	*	×

Source	Shallow Soils		Deep Soils
Inhalation of fugitive site derived household dust	✓	×	×
Inhalation of vapours outside	✓	✓	✓
Inhalation of vapours inside	√	✓	√

9.6 CLAIRE report "Guidance on Comparing Soil Contamination Data with a Critical Concentration" sets out a structured approach for the statistical assessment of contaminant data with respect to risks to human health. A flow chart showing the approach along with soil screening sheets are presented as **Appendix 11**.

Sources

Chemical

- 9.7 The results have shown that all samples sent for analysis have concentrations below the relevant screening criteria for each contaminants.
- 9.8 One hot spot of Total TPH from the sample of Made Ground retrieved from TP102 at 0.1m 0.2m bgl with a concentration of 1,000mg/kg, against an initial screening criteria of 500mg/kg. However, speciated analysis on the same sample has confirmed that all split aliphatic and aromatic banding concentrations are below their relevant screening criteria and therefore do not represent a risk to human health, based on the proposed development.

<u>Asbestos</u>

9.9 As part of the site investigation, 5 soil samples collected from the Made Ground were tested for the presence of asbestos. A summary of the samples which tested positive for asbestos are summarised in **Table 11** below. Asbestos fibres may present a risk to human health through inhalation of fibres.

Table 11 Summary of Asbestos Results

Location	Depth (m bgl)	Asbestos Type
TP102	0.1 – 0.2	Chrysotile – loose fibres
TP103	0.2 – 0.3	Chrysotile – loose fibres

9.10 It is noted at this time that the areas where ACMs have been identified are to be located beneath the footprint of a proposed office and car park and, as such, are unlikely to represent a risk to future Site users. During redevelopment the risk to ground workers is increased. Should the Made Ground materials be excavated and placed elsewhere on site appropriate remedial measures must be used i.e. a soil cover system in landscaped areas. Any movement of the Made Ground should therefore be tracked.

10 CONTROLLED WATERS RISK ASSESSMENT

- 10.1 The results of soil leachate analysis and groundwater sampling are presented as **Appendix 7** and **Appendix 8** respectively.
- 10.2 The controlled waters assessment considers the potential impact of on-site contamination to pertinent controlled waters receptors identified at the site including:
 - Secondary A Aquifer beneath the central and eastern areas of site within the River Terrace Deposits;
 - Secondary A Aquifer within the Cornbrash Formation;
 - Two drainage ditches present on site (tertiary rivers);
 - Onsite ponds; and
 - Nearby offsite surface water features.

Pathways

10.3 Controlled water risk assessment has been undertaken through assessment of leachable concentrations of contaminants in soil referring to exposure pathways considered and referencing **Table 10**.

Table 10 Controlled Water Exposure Pathways

Controlled Waters Exposure Pathway	Receptor
Leaching of soil contamination into recharge infiltration	✓
Vertical migration of impacted pore water through unsaturated zone into underlying aquifer	✓
Horizontal migration of groundwater through aquifer to off site receptors	✓

Soil Leachability

- 10.4 As part of this investigation, eight soil samples were tested for a leachable metals suite, cyanide, sulphide and pH.
- 10.5 Soil leachate results have been compared directly to water quality standards quoted in Environmental Quality Standards (EQS). A conservative water hardness level of between 50mg/l and 100mg/l CaCO3 has been adopted therefore the upper limit of the EQS standards have been adopted. Where these are not available the UK Drinking Water Standards (UK DWS) 2000 have been used. A summary of the soil leachate concentrations which exceed the guideline concentrations are presented within **Table** 11.

Table 11 Summary of Leachable Contamination Exceedances

	••••••			•
Leachable Contaminant	Concentration Range (µg/I)	Location and depth (m bgl)	EQS (µg/I)	UK DWS (µg/I)
Copper	22.0 – 42.0	TP101 (0.2-0.3m), TP101 (0.4-0.5m) & TP102 (0.1-0.2m)	1.0	-
Lead	1.8 - 6.8	TP101 (0.2-0.3m), TP101 (0.4-0.5m) & TP102 (0.1-0.2m)	1.2	-
Nickel	4.2	TP101 (0.1-0.2m) & TP102 (0.1-0.2m)	4	-
Zinc	12	TP102 (0.1-0.2m)	10.9	-

- 10.6 The leachate screening worksheets are presented as **Appendix 12**.
- 10.7 Several contaminants including cyanide (total) and mercury are indicated to be elevated on the leachate screening sheet. However, the laboratories lowest detection limit is higher than the screening value used and, therefore, these contaminants are considered to represent a low risk.
- 10.8 The exceedances highlighted above are believed to be marginal due to the limited concentrations of heavy metals recorded within the soils across the site. The proposed development is understood to comprise significant hardstanding and limited soft landscaping, therefore reducing the risks associated with leachable contaminants.

Groundwater

- 10.9 Ten groundwater samples were collected from installed boreholes on one occasion for subsequent laboratory testing. The groundwater chemical analysis results are presented as **Appendix 8**.
- 10.10 The groundwater testing results have been compared directly to water quality standards and the recorded exceedances are summarised in **Table 12** below.

Table 12 Summary of Recorded Exceedances in Groundwater

Contaminant	Range of Recorded Exceedances (µg/I)	EQS Screening Criteria (µg/l)	UK DWS Screening Criteria (µg/l)	Locations of Exceedances
Copper	1.1 - 8.2	1.0	-	BH102, BH104, BH105, BH106, BH107, BH108, BH110 & BH113
Lead	2.2 - 5.6	1.2	-	BH105 & BH107
Mercury	0.11 - 0.16	0.07	-	BH102 & BH108
Nickel	4.4 – 31.0	4.0	-	BH104, BH105, BH106, BH107, BH110 & BH113
Zinc	11.0	10.9	-	BH108
Sulphate	633 – 1090	400	-	BH106, BH107, BH108 & BH113

10.11 The groundwater screening worksheets are presented as **Appendix 13**.

- 10.12 Several contaminants including cyanide (total), benzo(a)pyrene and dibenzo(a,h)anthracene are indicated to be elevated on the groundwater screening sheet. However, the laboratories lowest detection limit is higher than the screening value used and, therefore, these contaminants are not considered to represent a risk to the underlying aquifers.
- 10.13 The exceedances of mercury and zinc are only marginally above the screening criteria and are therefore considered unlikely to represent a significant risk to controlled waters when transport mechanism are taken into account.

Surface Water

10.14 No surface water monitoring has been undertaken as part of this assessment.

Summary

10.15 Based on the above findings it is considered that the recorded contaminant concentrations are unlikely to pose an unacceptable risk to controlled waters receptors (Secondary A Aquifers within the River terrace deposits and Cornbrash Formation).

11 ENVIRONMENTAL RISK ASSESSMENT

11.1 An updated assessment of identified pollutant linkages has been made following completion of a ground investigation. The preliminary risk assessment presented in **Section 3** has been updated in the light of the findings of the ground investigation and the revised conceptual site model developed, as presented in **Table 13**.

Sources

- Asbestos fibres have been identified within the shallow Made Ground; and
- Elevated inorganics within the groundwater beneath site.

<u>Pathway</u>

- Inhalation of asbestos fibres; and
- Vertical and lateral migration of contaminated groundwater.

Receptor

- Future site users
- Groundworkers;
- Underground concrete surfaces; and
- Wider Secondary A Aquifer.

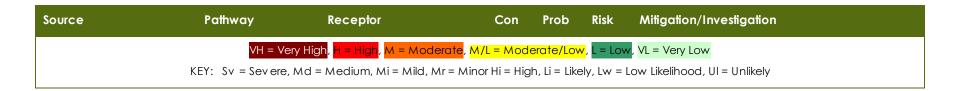
Summary of Potentially Significant Pollutant Linkages

11.2 A summary of the identified significant pollutant linkages is provided below. The updated conceptual site model is presented in **Table 13**.

Ground Contamination Impact to Human Health (Commercial)

- 11.1 Asbestos fibres have been identified within the Made Ground, this presents a risk to human health receptors associated with a commercial end use through particle dust inhalation.
- 11.2 To mitigate the risk, landscaping areas above areas of Made Ground (including if moved elsewhere on site) will require a soil cover system, with all exposed Made Ground required to be kept damp during the construction phase. The specification should be set out in a remediation strategy and agreed with the local authority before implementation.

Groundwater Contamination to Controlled Waters


11.1 Slightly elevated concentrations of heavy metals and sulphate have been identified within groundwater samples, with leachable forms of heavy metals recorded at low concentrations within the Made Ground soil samples. The majority of the heavy metal concentrations have been identified at low concentrations and are considered to present a limited risk.

Following redevelopment, much of the site will be covered (hard standing and buildings) thereby reducing the potential for rainwater to infiltrate the ground and mobilise contamination.

Table 13 Revised Conceptual Site Model

Source	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
\$1: Made Ground – presence of asbestos fibres and hotspot of Total TPH	P1: Inhalation of dust particles and dermal contact	R1: End site users	Md	UI	L	It is understood that the development is likely to be predominantly covered by buildings and hardstanding surface cover, therefore limiting any potential contact by the future site user.
						A clean soil cover system is recommended in areas of soft landscaping overlying the Made Ground deposits (including if moved on site) to break the pathway between the asbestos fibres and future site users.
		R2: Construction workers	Md	Lw	M/L	The risks to construction and ground workers can be minimised by the adoption of appropriate PPE and respiratory protective equipment (RPE). It is recommended the ground surface is kept damp to minimise the movement of free fibres.
\$4: Elevated inorganic contaminants (sulphate) within the groundwater beneath the site.	P3: Migration of contaminated groundwater	R3: Concrete foundations	Md	Lw	M/L	In accordance with the recommendations of BRE Special Digest 1, 'Concrete in Aggressive Ground' 2005, the conditions of the soils at the site would therefore be classified as Design Sulphate Class DS-2 and ACEC Class AC-2 for soils and groundwater.
		R3: Secondary A Aquifer	Mi	Lw	L	The concentrations recorded are only slightly elevated. Furthermore, it is understood that the
		R4: Tertiaryrivers on site (drainage ditches)	Mi	Lw	L	development is likely to be predominantly covered by buildings and hard standing surface cover, therefore limiting leaching and migration of contaminants.

Lakeview Drive, Bicester, Oxfordshire Phase 2 Geo-Environment al Assessment Sept ember 2017 LDB-BW B-00-XX-EN-RP-0001_PH2_P1

Pollutant Linkage Assessment Summary

The assessment has established numerous source-pathway-receptor pollutant linkages at the site, which when assessed in the context of proposed development are considered to pose a **low to moderate** risk to human health and **low to moderate** risk to controlled waters.

The majority of pollutant linkages can be easily severed by the use of hardstanding and the use of a clean soil capping layer in landscaped areas above Made Ground deposits.

12 ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS

Statutory Liability

- 12.1 The contaminated land regime has implications for those who cause or knowingly permit land to be contaminated, or who own or occupy land that is contaminated.
- 12.2 Contaminated land is defined in Section 78A(2) of Part IIA of the Environmental Protection Act 1990 as:
- 12.3 "Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under land, that:
 - a) Significant harm is being caused or there is a significant possibility of such harm being caused: or
 - b) Pollution of controlled waters is being or is likely to be, caused."
- 12.4 Harm is defined in Section 78(4) of the Environmental Protection Act 1990 as:
- 12.5 "Harm to the health of living organisms or other interference with ecological systems of which them form part and, in the case of man, includes harm to property."
- 12.6 Once an area of land has been identified as contaminated land, appropriate persons will be identified as being responsible for the cost of cleaning up the land by the enforcing authority. The appropriate person will be liable for all or part of the remediation of the land. Two classes of appropriate person have been identified:
 - Class A appropriate persons are those who cause or knowingly permit the pollutants to be in, on or under the land.
 - Class B appropriate persons are the owners(s) or occupier(s) of the land.
- 12.7 Where no Class A appropriate persons can be identified, then Class B appropriate persons may become liable.
- 12.8 Based on the information available regarding the site, the potential for Statutory Authority action based on "pollution of controlled water" or "significant harm" as defined by Part IIA of the Environmental Protection Act 1990 is considered to be **LOW**.

Third Party Liability

12.9 Based on the information contained in this report, it is the opinion of BWB that the potential for legal action by surrounding landowners, based on the potential for contamination to migrate off-site, is considered to be **LOW**.

Public Relations

12.10 The likelihood of public relations being tarnished due to contamination issues at the site are considered to be **LOW**.

Development Implications

- 12.11 It is likely that clay land drains will be present across the site, theses may require tracing and removal prior to development of the office units.
- 12.12 Given the presence of ACMs within Made Ground, appropriate mitigation measures will need to be implemented at the time of redevelopment to ensure free fibres are not released into the atmosphere.
- 12.13 A clean capping soil system will be required in landscaped areas positioned above the existing areas of Made Ground. It is possible that the Made Ground could be excavated and used elsewhere on site as part of an earthworks scheme. If this is the case then the material will need to be tracked so the appropriate clean soil cover is provided, or it is placed beneath hard stand to mitigate the risk of asbestos fibre inhalation. A Material Management Plan and CL:AIRE Definition of Waste: Code of Practice (DoW:CoP) declaration represents best practice for such an operation.

13 WASTE MANAGEMENT

Waste Classification

- 13.1 Soil samples have been characterised against hazardous waste criteria using Hazwasteonline. The results of the waste classification are presented in **Appendix 14**. The assessment indicates that the Made Ground analysed may be classified as hazardous in the area that a hotspot of hydrocarbons were recorded. However, the speciated testing indicates that the concentration is lower than the 1,000mg/kg threshold and so could be reduced to Non-Hazardous. All other samples of the Made Ground were classified as non-hazardous. The waste classification assessment only applies to those soils that have been tested. For the purpose of this assessment, BWB has assumed the materials on site are non-flammable, further laboratory testing is recommended to confirm this.
- 13.2 If other soils are to be disposed of off-site then further analysis may be required.
- 13.3 Asbestos has been found within Made Ground deposits at the site. The presence of visible asbestos containing materials in waste or at concentrations exceeding 0.1% by weight will classify the waste as mixed and require disposal as hazardous waste irrespective of the chemical properties of the waste.
- 13.4 Should any soils require disposal off site an assessment of waste classification of the soils for disposal should be made by a competent person. Further chemical analysis may be required to fully characterise waste soils for disposal to landfill or re-use off site. WAC analysis may be required for disposal of soils as inert or hazardous.

14 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 14.1 The ground conditions were found to comprise varying thicknesses of topsoil overlying weathered deposits of the Cornbrash formation to the west of site, with central and eastern areas recording thin deposits of Alluvium and River Terrace Deposits overlying the weathered Kellaways Clay Member underlain by the Cornbrash Formation.
- 14.2 A small amount of Made Ground was recorded in the north western area of the site.

Environmental

- 14.3 The environmental risk assessment has identified limited sources of contamination that represent a risk to human health. Loose Asbestos fibres have been recorded with the shallow Made Ground deposits encountered.
- 14.4 Slightly elevated concentrations of sulphate have been identified within the groundwater beneath the site which could represent a risk to concrete foundations. Impact to secondary A Aquifers and surface water features is likely to be restricted based upon the predominately hardstanding cover of the proposed development.
- 14.5 Ground gas monitoring has indicated that the site can be characterised as a CS1 site whereby ground gas protection measures are not required.
- 14.6 The majority of soils across the site are indicated to be classified as non-hazardous with respect to off-site disposal.

<u>Geotechnical</u>

- 14.7 Shallow spread foundations within the Cornbrash Formation or Kellaways Clay Member should be suitable for the proposed buildings along the western boundary of the site (buildings 1 & 11). For the proposed buildings in the central and eastern area of site ground improvement techniques in the form of vibro stone columns maybe required.
- 14.8 A ground bearing floor slab should be achievable for the proposed development, however the floor slab should avoid spanning different geological strata in order to avoid differential settlement issues.
- 14.9 Design sulphate class DS-2 and ACEC Class AC-2 is required for concrete to resist attack from sulphate levels across the site.

Recommendations

14.10 In order to mitigate the risk posed to human health from asbestos fibres, a clean soil cover system will be required in landscaped areas positioned above the existing Made Ground deposits. It is possible that the Made Ground could be excavated and used elsewhere on site as part of an earthworks scheme. If this is the case then the material will need to be tracked so the appropriate clean soil cover is provided, or it is placed beneath hard stand to mitigate the risk of asbestos fibre inhalation. A Material

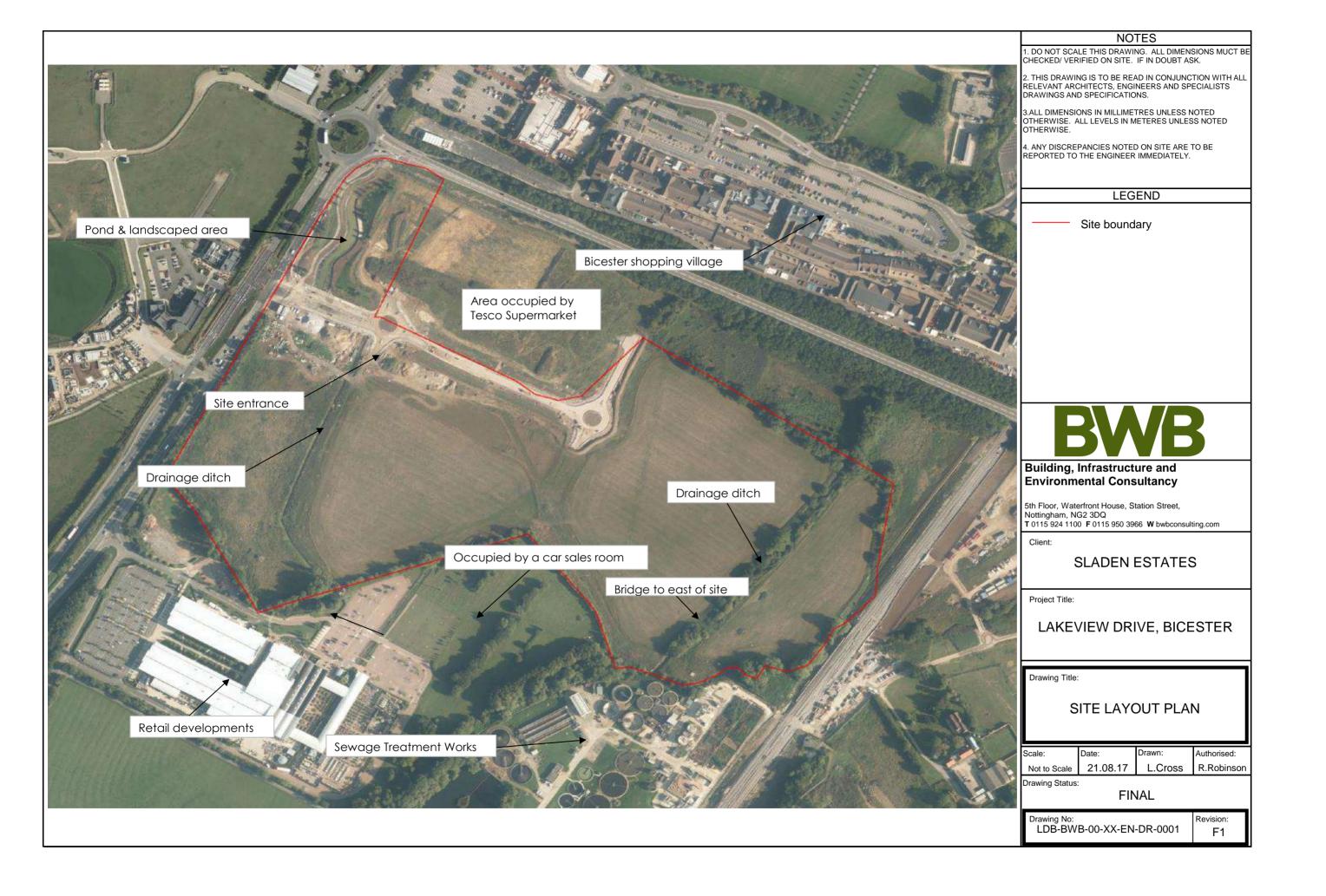
Management Plan and CL:AIRE DoW:CoP declaration represents best practice for such an operation.

14.11 The foundation solutions for the proposed development should be re-assessed once final loadings are known.

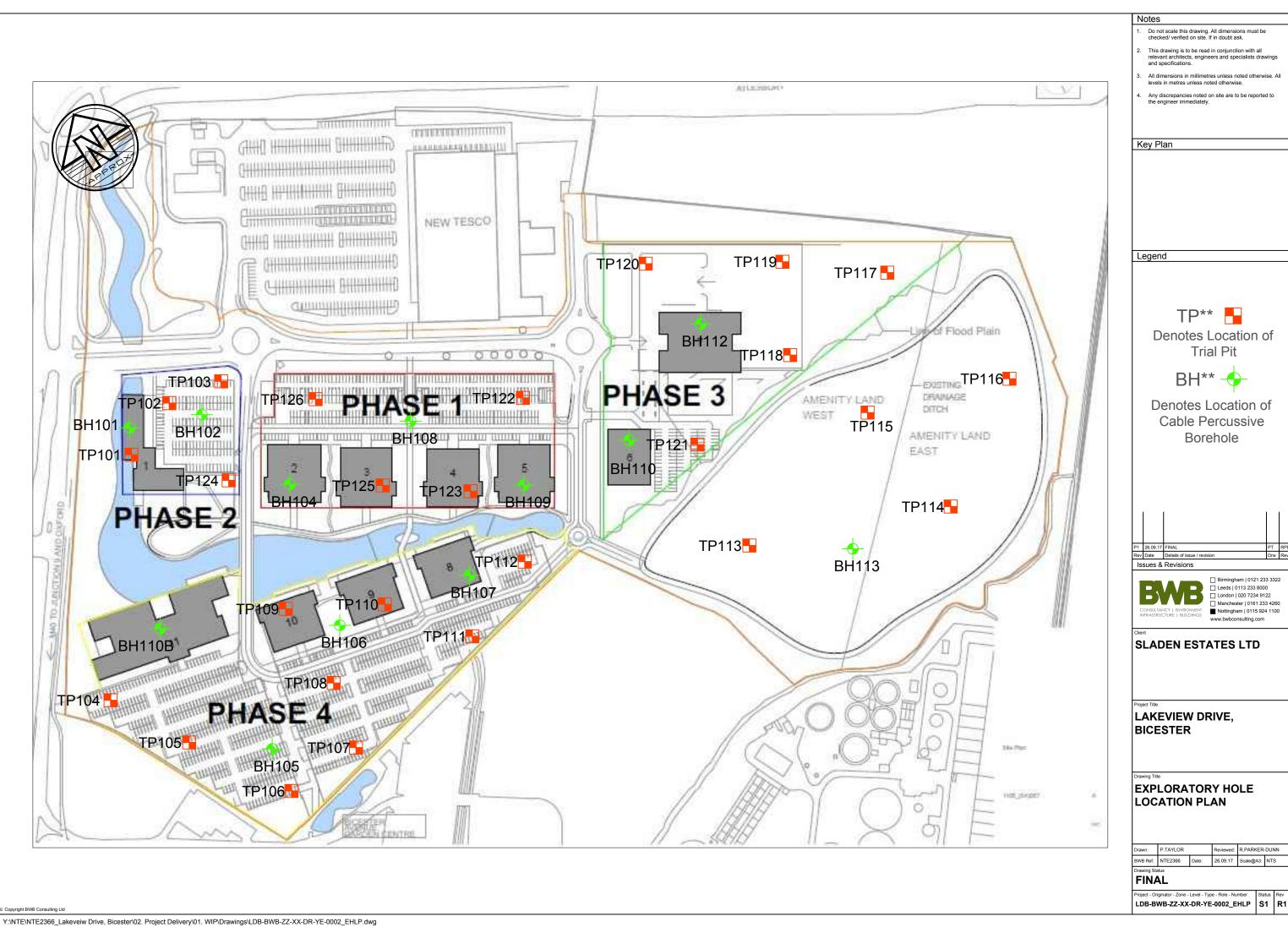
15 REFERENCES

- 1. British Standards Institute, (BSI), BS 8485:2015, Code of Practice for the characterization and remediation from ground gas in affected developments
- 2. British Standards Institute, (BSI), BS 8576:2013, Guidance on investigations for ground gas

 Permanent gases and Volatile Organic Compounds (VOCs)
- 3. British Standards Institute, (BSI), BS 10175:2011+A1:2013, Investigation of Contaminated Sites Code of Practice
- 4. British Standards Institute, (BSI), BS5930:2015 Code of practice for Ground investigations
- 5. British Standards Institute, (BSI), BS EN 1997-1:2004 Incorporating corrigendum February 2009, Eurocode 7 Geotechnical Design Part 1: General rules.
- 6. British Standards Institute, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 7. Building Research Establishment Special Digest 1 *Third Edition*. Concrete in Aggressive Ground (2005)
- 8. Building Research Establishment (BRE) BR211, Radon; Guidance on Protective Measures for New Buildings (2015)
- 9. Construction Industry Research and Information Association (CIRIA), Report 132, A Guide to Safe working on Contaminated Sites (1996).
- 10. Construction Industry Research and Information Association (CIRIA). 2001, C522 Contaminated land risk assessment, A guide to good practice.
- 11. Construction Industry Research and Information Association (CIRIA). 2007, Report C665, Assessing Risk Posed by on Hazardous Ground Gases to Buildings
- 12. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 13. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 14. Environment Agency report CLR11 'Model Procedures for the Management of Land Contamination'.
- 15. Environment Agency 2008, Updated technical background to the CLEA model Science Report SC050021/SR3
- 16. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2
- 17. Environment Agency 2009, CLEA Software (Version 1.05) Handbook Better Regulation Science Programme Science report: SC050021/SR4

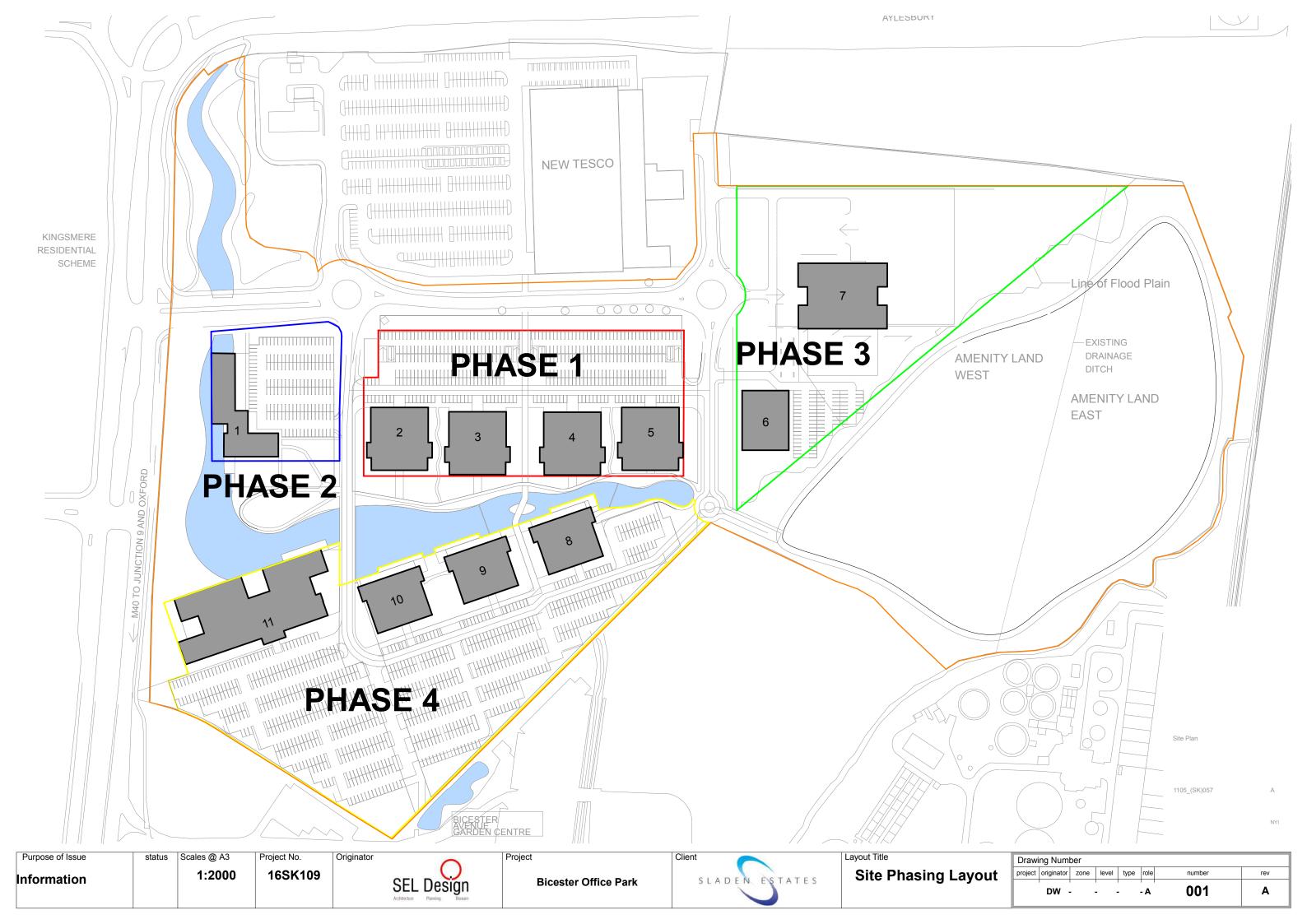

- 18. Environment Agency 2008, A review of body weight and height data used within the Contaminated Land Exposure Assessment model (CLEA) Project SC050021/ Technical Review 1
- 19. Environment Agency, 2006, Remedial Targets Methodology, Hydrogeological Risk Assessment for Land Contamination
- 20. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).
- 21. Nathanail, C.P, McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 22. NHBC Guidance for the Safe Development of Housing on Land Affected by Contamination, R&D Publication 66: 2008

DRAWINGS



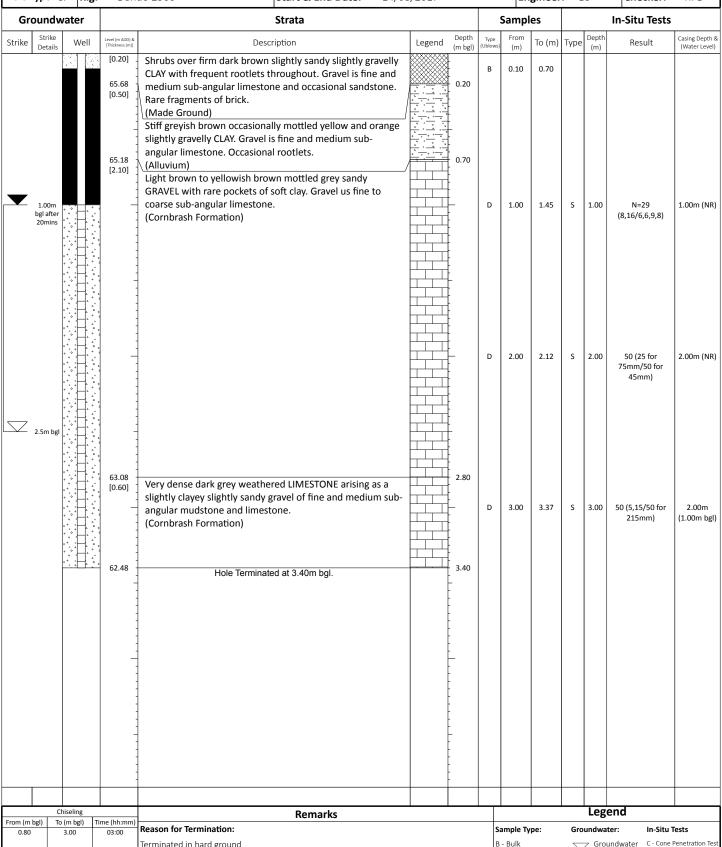
DRAWING 1 SITE LAYOUT PLAN

DRAWING 2 EXPLORATORY HOLE LOCATION PLAN



APPENDICES

APPENDIX 1 PROPOSED DEVELOPMENT PLAN



APPENDIX 2 EXPLORATORY HOLE LOGS

Hole Type: CP Rig:		Dando 2500 Start & End Date: 14/08/2017					ngineer: Lo		_C	RPD	
Ground	water		Strata			Samp	les			In-Situ Tests	
Strike Strike Details	Well	Level (m AOD) & [Thickness (m)]	Description	Legend Depth		From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth & (Water Level)
		[1.00]	Firm brown, yellow and grey slightly sandy gravelly CLAY with low to moderate cobble content. Gravel is fine to coarse sub-angular to sub-rounded brick, concrete, asphalt, flint and quartzite with rare timber, ceramic and glass. Cobbles of sub-angular brick and concrete. (Made Ground)	-	В	0.00	1.00				
		65.67 — [1.00]	Very dense light brown to yellowish brown occasionally grey slightly clayey sandy GRAVEL of fine to coarse subangular limestone. (Cornbrash Formation)	1.00	B D	1.00	1.40 2.00	S	1.00	50 (9,13/50 for 250mm)	1.00m (NR)
		64.67 — [0.55] = - - - - -	Very dense dark grey slightly clayey sandy GRAVEL with low cobble content. Gravel is fine to coarse sub-angular limestone. Cobbles of sub-angular limestone. (Cornbrash Formation)	2.00	D U (100)	2.00	2.10				
		64.12	Hole Terminated at 2.55m bgl.	2.55						15mm/50 for 10mm)	
	Chiseling To (m bgl) Tir	me (hh:mm)	Remarks						Leg	end	
2.10	2.50	00:30	Reason for Termination: Terminated in hard ground			ample Ty - Bulk	/pe:		oundwa	ter: In-Situ 1 undwater C - Cone	

	Chiseling		Remarks		Legend			
From (m bgl) 2.10	To (m bgl) 2.50	Time (hh:mm) 00:30	Reason for Termination:	Sample Type:	Groundwater:	In-Situ Tests		
			Terminated in hard ground	B - Bulk C - Core	Groundwater Strike	C - Cone Penetration Tes HSV - Hand Shear Vane		
			Groundwater Remarks:	D - Disturbed ES - Environmental	Resting Groundwater	Test PID - Photo Ionisation Detection Screen		
	Water Added		No groundwater encountered.	Sample U - Undisturbed	NR = Not Recorded	S - Standard Penetration		
From (m bgl)	To (m bgl)	Volume (I)	Other Remarks:			Test		
			No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE well screen, gas tap and flush cover.	BWB Consulting Ltd Waterfront House Station Street Nottingham NG2 3DQ	Web: bwbconsulting.com P: 0115 9241100 E: nottingham @bwbconsulting.com	CONSULTANCY ENVIRONMENT		

LOCATION ID | Project Name: Lakeview Drive, Bicester Ground Level (m AOD): 65.88 Eastings: Project Number: NTE2366 457757.57 **BH102** Client: Sladen Estates Ltd Northings: 221669.84 Dando 2500 Hole Type: CP Rig: Start & End Date: **Engineer:** LC Checker: RPD 14/08/2017

Terminated in hard ground B - Bulk Groundwater HSV - Hand Shear Va C - Core Strike D - Disturbed Resting Test Groundwater Remarks: PID - Photo Ionisation ES - Environmental Groundwater Detection Screen S - Standard Penetration Groundwater encountered at 2.5m, rising to 1.0m after 20 minutes Sample NR = Not Water Added U - Undisturbed Recorded From (m bgl) To (m bgl) Volume (I) BWB Consulting Ltd 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE well bwbconsulting.com Waterfront House Station Street P: 0115 9241100 screen, gas tap and flush cover. Nottingham E: nottingham NG2 3DQ @bwbconsulting.com

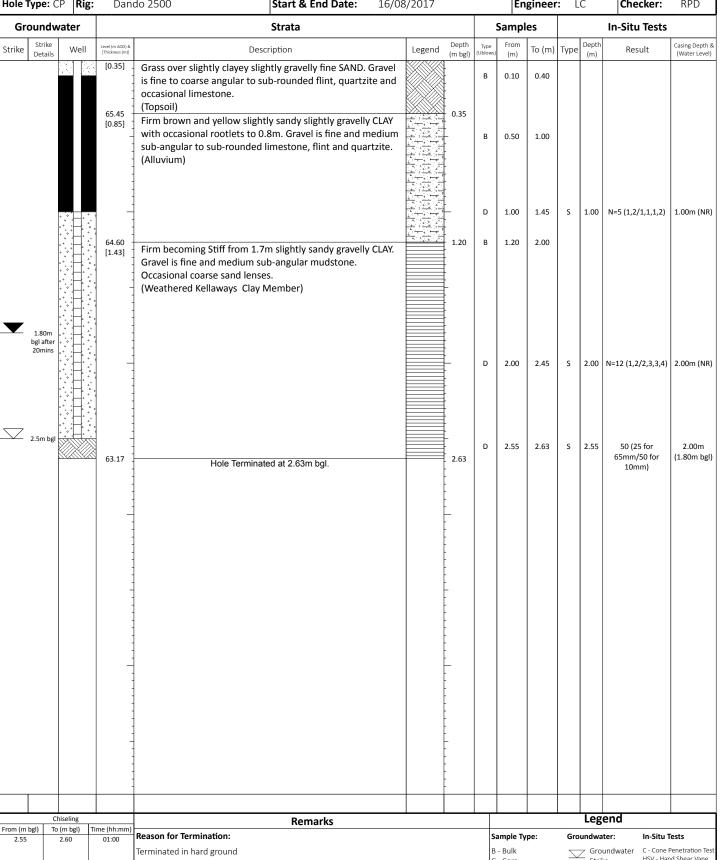
Hole Type: (CP Rig:	Dan	do 2500 Start & End Date: 14/08	/2017 -	15/08	/201	7 E n	ginee	r: l	_C	Checker:	RPD
Groundy	water		Strata				Samp	les			In-Situ Tests	
Strike Strike Details	Well	Level (m AOD) & [Thickness (m)]	Description	Legend	Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth 8 (Water Level)
		[0.60]	Grass over brown fine SAND with rootlets to 0.25m. (Topsoil) Dense yellow and grey slightly clayey slightly sandy GRAVEL		0.60	В	0.00	1.20				
		-	of fine to coarse sub-angular limestone, quartzite and flint. (River Terrace Deposits)			D	1.20	1.65	S	1.20	N=34 (1,4/6,6,10,12)	1.00m (NR)
		[0.45] -	Dense light brown to yellowish brown slightly sandy GRAVEL of fine to coarse sub-angular limestone, flint and quartzite. (River Terrace Deposits)		1.45							
		[2.35] -	Very dense grey to dark grey slightly sandy GRAVEL of fine to coarse angular to sub-angular mudstone. (Weathered Kellaways Clay Member)		1.90	В	1.90	2.20				
		- - - - - - - -				B D	2.20 2.20	2.50 3.00	S	2.20	50 (4,12/50 for 150mm)	2.00m (1.60m bgl)
		- - - - - - -				D	3.00	3.45	S	3.00	N=50 (5,5/10,10,10,20)	2.00m (1.60m bgl)
		-			6 	В	3.45	4.00				
		 - - -	Hole Terminated at 4.25m bgl.		4.25	D	4.00	4.12	S	4.00	50 (25 for 110mm/50 for 10mm)	2.00m (1.00m bgl)
	Chiseling	-	Remarks		-					Leg	end	
2.00 To	o (m bgl) Ti	me (hh:mm) 03:00	Reason for Termination:			s	ample Ty	/pe:	Gro	oundwa	iter: In-Situ	Tests

	Chisel	ling		Remarks						Legend												
From (m bgl)		0,	ne (hh:mm)	Reason for Termination:		Sar	nnle Tv	ne.	Grou	undwater:	In-Situ Te	ectc										
2.00	4.00	U	03:00	Terminated in hard ground		B - C -	B - Bulk		B - Bulk C - Core		B - Bulk		B - Bulk C - Core		B - Bulk C - Core		· Bulk · Core		· ·		C - Cone Pe	enetration Te d Shear Vane
	Water A	ddad		Groundwater Remarks: No groundwater encountered.		ES -	Disturb - Enviroi nple	ed nmental		Resting Groundwater NR = Not	PID - Photo Detection :	o Ionisation Screen rd Penetratio										
From (m bgl)			/olume (I)	Other Remarks:		Ē	Undistu		l	Recorded	Test	- Circulation										
				No olfactory or visual evidence of contamination noted. 2. Installed with 50mm screen, gas tap and flush cover. 3. Coordinates taken from a hand held GPS unit.	n HDPE w	vell Wat Stat Not	B Consul terfront I tion Street tingham	House et	P: 01 E: no	: consulting.com 15 9241100 ttingham		VE CY ENVIRONME										

LOCATION ID	Project Name:	Lakeview Drive, Bicest	ter		Ground Level (m AOD)	: 66.52	
DU104	Project Number:	NTE2366			Eastings:	457786	5.90
BH104	Client:	Sladen Estates Ltd			Northings:	221621	1.63
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	14/08/2017	Engineer: LC (Checker:	RPD

Hole Typ	e: CP	Rig:	Dan	do 2500 Start & End Date: 14	/08/2017		En	gineer	։ և	.C	Checker:	RPD
Grour	ndwat	er		Strata			Sampl	es			In-Situ Tests	
	rike tails	Well	Level (m AOD) & [Thickness (m)]	Description	Legend Depti		From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth & (Water Level)
			[0.25]	(Topsoil) Firm brown slightly sandy CLAY. Gravel is fine and subangular to sub-rounded, limestone and flint. Occasional rootlet to 0.6m.	0.25	В	0.20	0.70				
				(Alluvium)		D	1.00	1.45	S	1.00	N=14 (5,9/6,4,2,2)	0.80m (NR)
			-	1.7m - 2.0m: Becomes orangish brown.		В	1.70	2.00				
			64.52 — [0.40]	Stiff dark grey weather MUDSTONE arising's as a gravelly clay.	2.00	D D	2.00	2.10 2.13	S S	2.00	50 (25 for 55mm/50 for 35mm) 50 (25 for	1.00m (NR) 1.00m (NR)
			64.12	(Weathered Kellaways Formation) Hole Terminated at 2.40m bgl.	2.40						10mm/50 for 20mm)	
	Chisel	ling	-	Remarks						Leø	end	
From (m bgl) 2.00	To (m	bgl) Tir	me (hh:mm) 01:30	Reason for Termination:		s	ample Ty	pe:	Gro	undwa		ests
2.00	2.10		01.30	Terminated in hard ground		В	- Bulk - Core				undwater C - Cone F	enetration Tes d Shear Vane

From (m bgl) To (m bgl) Time (hh:mn) 2.00 2.10 01:30 | Complete | Complete


LOCATION ID	Project Name:	Lakeview Drive, Bicest	ter		Ground Level (m AOD)	: 64.82	
DIIIOE	Project Number:	NTE2366			Eastings:	45768	2.02
BH105	Client:	Sladen Estates Ltd			Northings:	22145	7.75
Hole Type: CP	Rig: Dando 250	00	Start & End Date:	15/08/2017	Engineer: LC (Checker:	RPD

Hole Type:	CP Rig:	Dan	do 2500 Start & End Date: 15/08	8/2017		En	gineeı	r: l	.C	Checker:	RPD
Ground	water		Strata			Sampl	nples			In-Situ Tests	
Strike Strike		Level (m AOD) & [Thickness (m)]	Description	Legend Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth (Water Level
·		[0.20] 64.62 [1.24]	Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine to coarse angular to sub-rounded flint, quartzite and occasional limestone. (Topsoil) Light brown to yellow slightly sandy GRAVEL of fine to coarse angular to sub-angular limestone. (Cornbrash Formation)	0.20	В	0.20	1.20				
		63.38	1.2m - 1.4m: Moderate cobble content noted. Hole Terminated at 1.44m bgl.	1.44	D	1.20	1.44	S	1.20	50 (4,14/50 for 85mm)	1.00m (NF
				-							
		-		-							
		_		-							
		-									
		-		-							
	Chiseling	1	Remarks	1 1			1		Leg	end	<u>I</u>
om (m bgl) T	To (m bgl) T 1.40	ime (hh:mm) 01:00	Reason for Termination:		s	ample Ty	pe:	Groundwater:			ests
	20	02.00	Terminated in hard ground			- Bulk				undwater C - Cone I	

		hiseling		Remarks		Legend				
From (m b	ogl) To	(m bgl) T	01:00	Reason for Termination:	s	ample Ty	pe:	Grou	ndwater:	In-Situ Tests
				Terminated in hard ground Groundwater Remarks:	C	- Bulk - Core - Disturb S - Enviro		$\mathbf{\nabla}$	Groundwater Strike Resting Groundwater	C - Cone Penetration Test HSV - Hand Shear Vane Test PID - Photo Ionisation Detection Screen
From (m b		ter Added (m bgl)	Volume (I)			Sample J - Undisturbed			NR = Not Recorded	S - Standard Penetration Test
				Other Remarks: 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE v screen, gas tap and flush cover.	vell w	WB Consul Vaterfront I tation Stree Iottingham IG2 3DQ	House et	P: 011 E: not	onsulting.com 15 9241100 tingham oconsulting.com	CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS

BOREHOLE LOG Sheet 1 of 1

LOCATION ID	Project Name:	Lakeview Drive, Bices	ter		Ground Level (m AOD)	: 65.80	
DU106	Project Number:	NTE2366			Eastings:	45777	2.49
BH106	Client:	Sladen Estates Ltd			Northings:	22149	9.77
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	16/08/2017	Engineer: LC C	hecker:	RPD

	Chiseling		Para ada				Legend	
From (m bgl) 2.55	To (m bgl) 2.60	Time (hh:mm) 01:00	Remarks Reason for Termination: Terminated in hard ground	Sample Typ	oe:	Gro	undwater: 7 Groundwater	In-Situ Tests C - Cone Penetration Te
	Water Added		Groundwater Remarks: Groundwater encountered at 2.5m, rising to 1.8m	C - Core D - Disturbe ES - Environ Sample U - Undistu	nmental	T	Strike	HSV - Hand Shear Vane Test PID - Photo Ionisation Detection Screen S - Standard Penetratio
From (m bgl)	To (m bgl)		Other Remarks: 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE we screen, gas tap and flush cover.	BWB Consult	ting Ltd House	P: 01 E: no		BVE CONSULTANCY ENVIRONME INFRASTRUCTURE BUILDING

LOCATION ID	Project Name:	Lakeview Drive, Bices	ter		Ground Level (m AOD)	: 65.22	
BH107	Project Number:	NTE2366			Eastings:	45786	7.57
ритол	Client:	Sladen Estates Ltd			Northings:	22150	3.18
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	16/08/2017	Engineer: LC (hecker:	RPD

Strike Strike Details Well Continue Continue		In-Situ Tests th) Result Casi (W	sing Depth & Vater Level)
Comparison Com	i) Type (m	th) Result Casi (W	
Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine to coarse angular to sub-rounded flint, quartzite and occasional limestone. (Topsoil) Firm orange slightly sandy slightly gravelly CLAY. Gravel is fine and medium sub-angular to sub-rounded flint, quartzite and limestone. (Alluvium) B 0.10 0.60 0.35 Firm orange slightly sandy slightly gravelly CLAY. Gravel is fine and medium sub-angular to sub-rounded flint, quartzite and limestone. (Alluvium)			
B 0.70 1.00			
[1.10 D 1.00 1.50	S 1.0		
Firm grey mottled orange slightly gravelly CLAY with occasional sand lenses. Gravel is fine and medium subangular to sub-rounded flint and limestone. (Alluvium)		0 N=5 (2,1/1,1,1,2) 1.0	00m (NR)
D 2.00 2.45	S 2.0	0 N=8 (2,1/2,2,2,2) 1.0	00m (NR)
Stiff dark grey gravelly CLAY. Gravel is fine and medium subangular mudstone. Rare shell fragments. (Weathered Kellaways Clay Member)			
62.27 Very stiff dark grey weather MUDSTONE arising's as a gravelly clay. (Kellaways Clay Member)	S 3.0	0 50 (25 for 1.0 15mm/50 for 5mm)	00m (NR)
61.82 Hole Terminated at 3.40m bgl.	S 3.3	0 50 (25 for 5mm/50 for 5mm)	00m (NR)
Chiseling To (m bgt) To (m bgt) Time (hh:mm)	Le	gend	
3.20 3.40 01:00 Reason for Termination: Sample Type:	Ground	water: In-Situ Tests froundwater C - Cone Penet	

		iseling		Remarks						Legend		
From (m bgl 3.20	_	(m bgl) 3.40	01:00	Reason for Termination:			ample Ty	rpe:	Gro	undwater:	In-Situ Te	
				Terminated in hard ground Groundwater Remarks: No groundwater encountered.		C C	- Bulk - Core - Disturb S - Enviro		\	Groundwater Strike Resting Groundwater	HSV - Hand Test PID - Photo Detection :	
From (m bgl	_	er Added (m bgl)	Volume (I)	Other Remarks:			ample I - Undist	urbed		NR = Not Recorded	S - Standar Test	rd Penetration
				No olfactory or visual evidence of contamination noted. 2. Installed with 5 screen, gas tap and flush cover.	50mm HDPE	well v	WB Consulaterfront tation Stree ottingham G2 3DQ	House et	P: 01 E: no	: consulting.com 115 9241100 ottingham vbconsulting.com		SY ENVIRONMENT TURE BUILDINGS

LOCATION ID	Project Name:	Lakeview Drive, Bices	ter		Ground Level (m AOD)	: 67.15
BH108	Project Number:	NTE2366			Eastings:	457853.66
рштоо	Client:	Sladen Estates Ltd			Northings:	221611.33
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	15/08/2017	Engineer: LC (Checker: RPD

Hole Typ	oe: C	P Rig:	Dan	do 2500 Start & End Date: 15/08	3/2017		En	gineer	: 1	_C	Checker:	RPD
Grou	ndw	<i>r</i> ater		Strata			Sampl	es			In-Situ Tests	
	trike etails	Well	Level (m AOD) & [Thickness (m)]	Description	Legend Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth 8 (Water Level)
יט	etalis		[0.40]	Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine to coarse angular to sub-rounded flint, quartzite and occasional limestone. (Topsoil)	(mug)	В	0.10	0.40		(111)		(water zever)
			66.75 - [2.10] _	Firm grey to greyish brown slightly gravelly CLAY with occasional rootlets to 0.65m. Gravel is fine and medium sub-angular to sub-rounded sandstone and occasional quartzite. Rare shell fragments. (Alluvium)	0.40	В	0.40	1.00				
						D	1.00	1.45	S	1.00	N=7 (1,1/1,2,2,2)	1.00m (NR)
			-			D	2.00	2.45	S	2.00	N=11 (1,2/2,2,3,4)	2.00m (NR)
			64.65 — [0.50] =	Stiff dark grey CLAY with occasional lenses of fine sand. Occasional fine shell fragments. (Weathered Kellaways Clay Member)	2.50	В	2.50	3.00				
		H	64.15 — [0.25]	Dark grey MUDSTONE arising as a slightly clayey gravel of fine to coarse sub-angular mudstone.	3.00				S	3.00	50 (25 for 0mm/50 for	2.00m (NR
			63.90	(Kellaways Clay Member) Hole Terminated at 3.25m bgl.	3.25				S	3.20	10mm) 50 (25 for 0mm/50 for 5mm)	2.00m (NR
			-		-							
			- - - - - - -		-							
			- - - - - - -		-							
		Chiseling Remarks				Legend						
From (m bgl) 3.00					S	ample Ty	pe:	Gre	oundwa	nter: In-Situ 1	Tests	
-	Terminated in hard ground				B - Bulk Groundwater C - Cone			undwater C - Cone I	Penetration Tr			

	Chiseling		Remarks			Legend	
From (m bgl) 3.00	To (m bgl) 3.20	Time (hh:mm) 01:00	Reason for Termination:	Sample Type	:	Groundwater:	In-Situ Tests
			Terminated in hard ground	B - Bulk C - Core		Groundwater Strike	C - Cone Penetration Te HSV - Hand Shear Vane
			Groundwater Remarks:	D - Disturbed ES - Environn		Resting Groundwater	Test PID - Photo Ionisation Detection Screen
	Water Added		No groundwater encountered.	Sample		NR = Not	S - Standard Penetratio
From (m bgl)	To (m bgl)	Volume (I)	Other Remarks:	U - Undisturk		Recorded	Test
			No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE well screen, gas tap and flush cover.	BWB Consultir Waterfront Ho Station Street Nottingham NG2 3DO	ouse	Web: bwbconsulting.com P: 0115 9241100 E: nottingham	BWB CONSULTANCY ENVIRONMENT INSPASSIBILITIES BILLIONIS

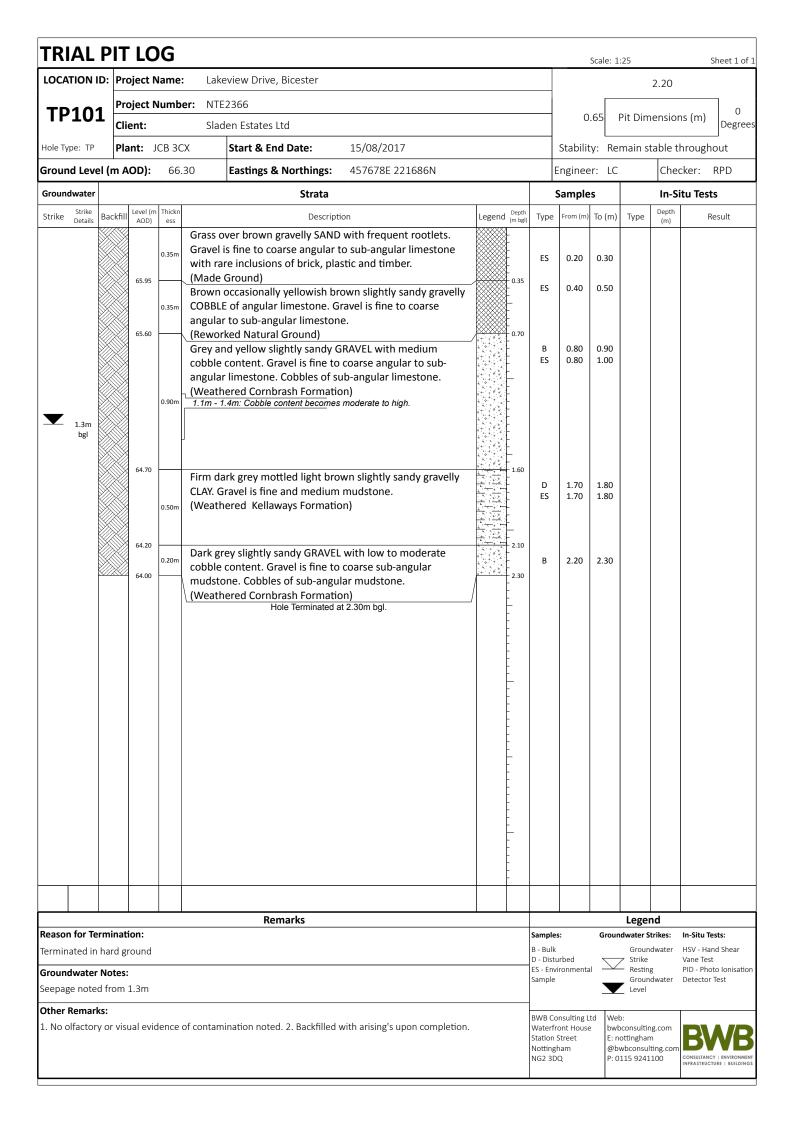
LOCATION ID	Project Name:	Lakeview Drive, Bicest	ter		Ground Level (m AOD)	: 65.89	
DU100	Project Number:	NTE2366			Eastings:	45793	0.93
ВН109	Client:	Sladen Estates Ltd			Northings:	22154	1.14
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	17/08/2017	Engineer: LC C	hecker:	RPD

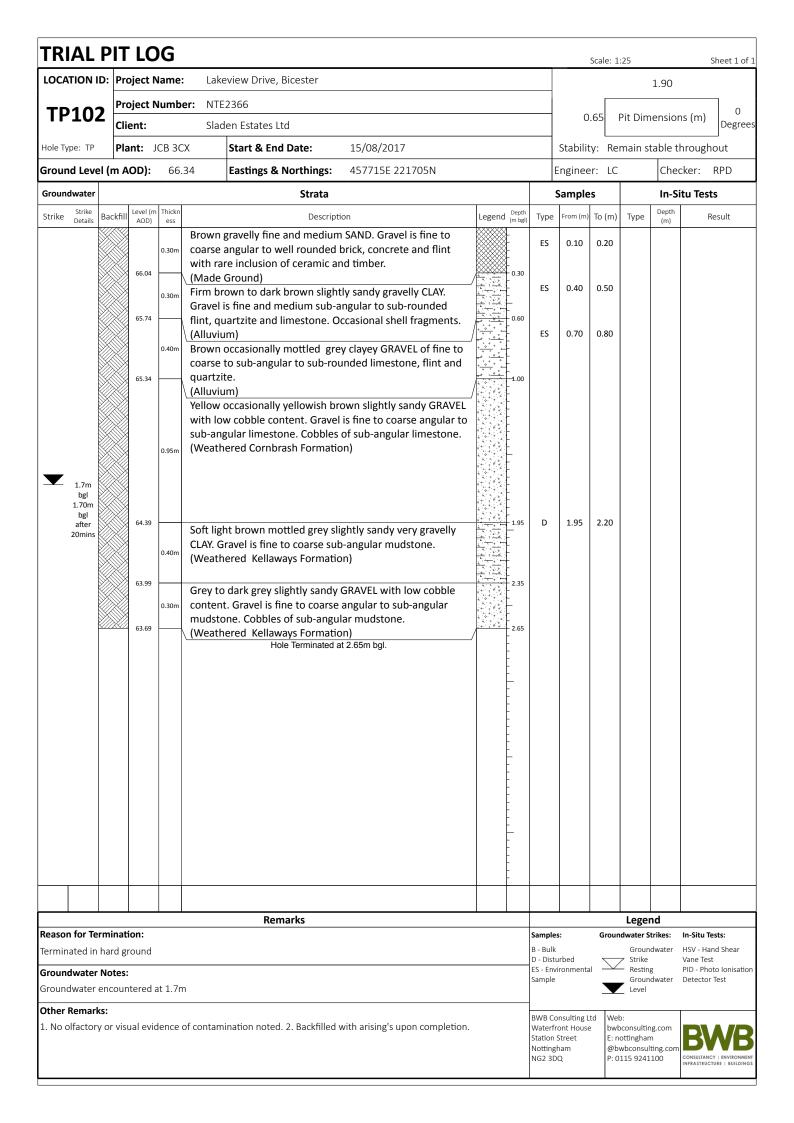
Hole Type: (CP Rig:	Dan	do 2500	Start & End Date: 17,	08/2017			En	gineeı	r: L	.C	Checker:	RPD
Groundw	vater			Strata				Sampl	es			In-Situ Tests	
Strike Strike Details	Well	Level (m AOD) & [Thickness (m)]	Des	cription		Depth m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth 8 (Water Level)
		[0.35] - 65.54 - [2.25] -		.75m. Gravel is fine and rounded flint, quartzite and	1	0.35	В	0.10	0.60		(,		
							D	1.00	1.45	S	1.00	N=6 (1,1/1,1,2,2)	1.00m (NR
							D	2.00	2.45	S	2.00	N=11 (1,2/2,2,3,4)	1.00m (NR)
		63.29 - [0.45] - - - - 62.84 - [0.30] -	Stiff dark grey gravelly CLAY. mudstone. Occasional shell i (Weathered Kellaways Clay Very dense dark grey weaths slightly sandy gravel of fine s	Member) ered LIMESTONE arising as a		2.60 3.05	D	3.00	3.01	S	3.00	50 (25 for 5mm/50 for 0mm)	1.00m (NR
		62.54	(Cornbrash Formation) Hole Termina	ted at 3.30m bgl.	3	3.35				S	3.30	50 (25 for 0mm/50 for 0mm)	1.00m (NR
					-								
		-											
	hiseling o (m bgl)	ime (hh:mm)		Remarks								end	
	3.30	01:00	Reason for Termination: Terminated in hard ground Groundwater Remarks: No groundwater encountered.				B C D	ample Ty - Bulk - Core - Disturb S - Enviro	ed	Z	Stri Res Gro	ke C - Cone in HSV - Har Test PID - Pho Detection	Penetration Te nd Shear Vane to Ionisation

U - Undisturbed Recorded From (m bgl) To (m bgl) Volume (l) Other Remarks: 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE well screen, gas tap and flush cover. BWB Consulting Ltd Waterfront House Station Street Nottingham NG2 3DQ Web: bwbconsulting.com P: 0115 9241100 E: nottingham @bwbconsulting.com

LOCATION ID	Project Name:	Lakeview Drive, Bices	ter		Ground Level (m AOD):	65.65	
BH110	Project Number:	NTE2366			Eastings:	45800	2.12
PUTIO	Client:	Sladen Estates Ltd			Northings:	22153	9.73
Hole Type: CP	Rig: Dando 25	00	Start & End Date:	17/08/2017	Engineer: LC C	hecker:	RPD

Hole Type: CP Rig:	Dan	do 2500 Start & End Date: 17/0	8/2017			En	gineeı	r: L	.C	Checker:	RPD
Groundwater		Strata				Sampl	es			In-Situ Tests	
Strike Strike Details Well	Level (m AOD) & [Thickness (m)]	Description	Legend	Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth (Water Level)
	[0.35]	Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine to coarse angular to sub-rounded flint, quartzite and occasional limestone. (Topsoil) Firm light brown slightly sandy CLAY with rare fine and medium sub-angular to sub-rounded quartzite and sandstone gravels. Rare relic rootlets to 0.55m. (Alluvium)		0.35	В	0.10	0.40				
					D	1.00	1.45	S	1.00	N=7 (1,1/1,2,2,2)	1.00m (NR
	63.45 -	Firm dark grey gravelly becoming very gravelly CLAY. Gravel is fine and medium sub-angular mudstone. (Weathered Kellaways Clay Member)		2.20	D B	2.00	3.00	S	2.00	N=14 (1,2/3,3,4,4)	2.00m (NR
	62.25 -	3.0m - 3.4m: Becomes stiff. Very dense dark grey weathered LIMESTONE arising as a slightly sandy gravel of fine and medium subangular		3.40	D	3.00	3.38	S	3.00	48 (2,3/48 for 230mm) 50 (25 for 5mm/50 for 0mm)	3.00m (NI
		limestone. (Cornbrash Formation) Hole Terminated at 3.55m bgl.								, , , , ,	
Chiseling	ime (hh·mm)	Remarks					•		Leg	end	
	01:00	Reason for Termination: Terminated in hard ground			B C	ample Ty - Bulk - Core - Disturb		\geq	undwa	undwater C - Cone F HSV - Han	enetrat

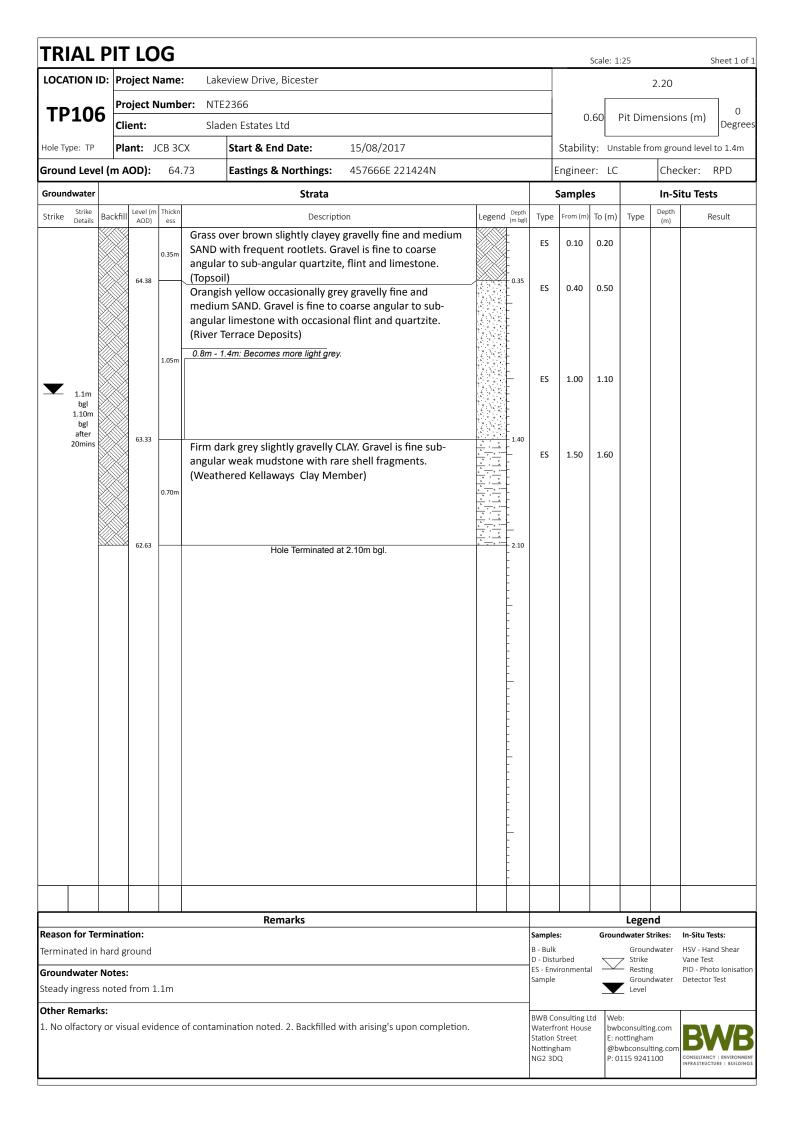

		hiseling		Remarks				gend				
From (m b	gl) To	(m bgl) T	01:00	Reason for Termination:	Samp	Sample Type: B - Bulk C - Core			undw	vater:	In-Situ Tests C - Cone Penetration Test HSV - Hand Shear Vane	
				Terminated in hard ground					/	roundwater rike		
				Groundwater Remarks: No groundwater encountered.	- 1	isturbe Environ		Resting Groundwate NR = Not			Test PID - Photo Ionisation Detection Screen	
From (m b		er Added (m bgl)	Volume (I)	Other Remarks:		- Undisturbed				Recorded	S - Standard Penetrat Test	
				No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE we screen, gas tap and flush cover.	ell Water Statio	on Street ngham	louse	P: 01 E: no	oconsu 115 92 ottingh	ulting.com 241100 ham nsulting.com		AB

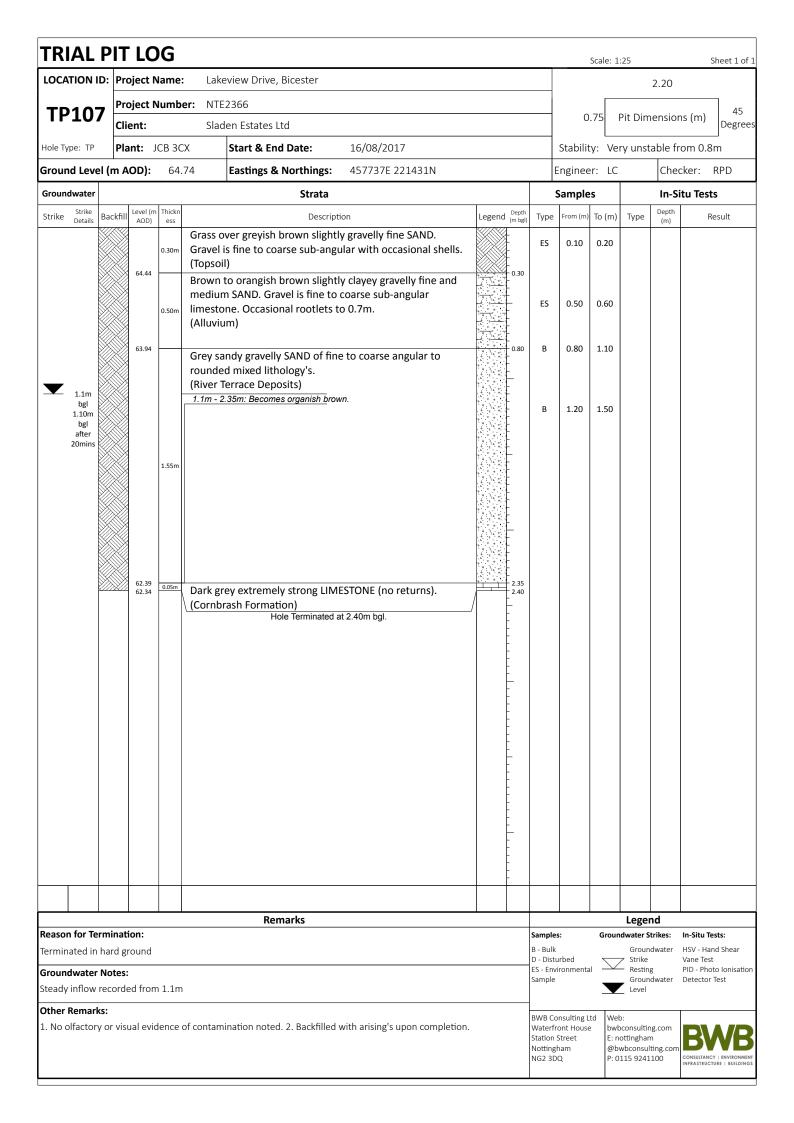

	CP Rig:	Dan	do 2500 Start & End Date: 17/08	3/2017		En	gineer	r: L	_C	Checker:	RPD
Groundy	vater		Strata			Sampl	les			In-Situ Tests	
Strike Strike	Well	Level (m AOD) & [Thickness (m)]	Description	Legend Depth		From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth (Water Level
Details		[0.20]	Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine to coarse angular to sub-rounded flint, quartzite and occasional limestone. (Topsoil) Firm orange slightly sandy slightly gravelly CLAY. Gravel is fine and medium sub-angular to sub-rounded flint, quartzite and limestone. (Alluvium)	0.20	В	0.10	1.00		()		
		-			D	1.00	1.45	S	1.00	N=6 (1,1/1,2,1,2)	1.00m (NF
		63.97 — [1.00] =	Stiff dark grey gravelly CLAY. Gravel is fine and medium sub- angular mudstone. (Weathered Kellaways Clay Member)	2.00	B D	2.00 2.00	2.45 2.50	S	2.00	N=8 (1,1/1,2,2,3)	1.00m (N
		62.97 — [0.14] = 62.83 =	Very dense dark grey weathered LIMESTONE arising as a slightly sandy gravel of fine and medium subangular limestone. (Cornbrash Formation) Hole Terminated at 3.14m bgl.	3.00	D	3.00	3.14	s s	3.00	50 (37 for 140mm/50 for 0mm) 50 (25 for 5mm/50 for 0mm)	0.10m (N
		-									
						-		\vdash			
1	1			1 1	1	1	1	I	1		1
c	hiseling		Remarks						Leg	end	

	Chiseling		Remarks						Legend		
From (m bg 3.10	To (m bgl) 3.20) Time (hh:mm 01:00	Reason for Termination:	ample Ty	pe:	Grou	ındwater:	In-Situ Tests			
			Terminated in hard ground			- Bulk - Core		\searrow	Groundwater Strike	C - Cone Penetration	
			Groundwater Remarks:		- Disturb S - Enviro			Resting Groundwater	Test PID - Photo Ionisati Detection Screen	tion	
	Water Added		lo groundwater encountered.			Sample U - Undisturbed			NR = Not	S - Standard Penetration	
From (m bg	l) To (m bgl)) Volume (I)	Other Remarks:		<u> </u>				Recorded	Test	
			1. No olfactory or visual evidence of contamination noted. 2. Installed with 5 screen, gas tap and flush cover.	50mm HDP	E well v	tation Stre Iottingham	House et	P: 011 E: not	onsulting.com 15 9241100 ttingham	BW/	B
	1				N	IG2 3DQ		@bwl	bconsulting.com	INFRASTRUCTURE BUIL	

Hole Type:	CP Rig:	Dan	do 2500 Start & End Date: 15/08	8/2017			En	gineeı	r: I	_C	Checker:	RPD
Ground	water		Strata				Samp	les			In-Situ Tests	
Strike Strike		Level (m AOD) & [Thickness (m)]	Description	Legend	Depth (m bgl)	Type (Ublows)	From (m)	To (m)	Туре	Depth (m)	Result	Casing Depth 8 (Water Level)
		[0.20] 64.43 [1.30]	Grass over slightly clayey slightly gravelly fine SAND. Gravel is fine light coarse angular light sub-rounded flint, quartzite and occasional limestone. (Topsoil) Soft light brown mottled grey and occasionally orange slightly sandy slightly gravelly CLAY with occasional roots to 0.6m. Gravel is fine and medium sandstone and occasional shell fragments. Occasional sand lenses. (Alluvium)		0.20	В	0.20	1.20				
1.00m bgl afte 20mins 1.2m bg						D	1.20	1.65	S	1.20	N=11 (1,2/3,3,3,2)	1.00m (NR)
		63.13 -	Light brown and orange gravelly fine to coarse SAND. Gravel is fine and medium sub-angular sandstone and quartzite. (River Terrace Deposits)		1.50	D	1.50	1.90				
		62.73 - [2.40] _	Firm dark grey CLAY with occasional lenses of fine sand. Rare fine shell fragments. (Weathered Kellaways Clay Member)		1.90	B D	1.90 2.00	2.00 2.45	S	2.00	N=11 (1,2/3,3,3,2)	2.00m (NR)
						В	2.45	3.00				
					- - - - - - - - - -	U (32)	3.00	3.45				
		-			-	D	3.45	3.55				
		- -			- - - - - - - - - -	D B	3.80 3.90	4.15 4.10	S	3.80	N=7 (1,1/1,2,2,2)	3.00m (1.00m bgl
		60.33 - [0.10] - 60.23	Very dense dark grey weathered LIMESTONE arisings as a slightly sandy gravel. (Cornbrash Formation) Hole Terminated at 4.40m bgl.		4.30				S	4.30	50 (25 for 0mm/50 for 0mm)	3.00m (1.00m bgl
		-	1									
	Chiseling		Remarks			Т.		1		Leg	end	ı
rom (m bgl)	To (m bgl) Ti	ime (hh:mm)	Reason for Termination:			S	ample Ty	/pe:	Gre	oundwa	iter: In-Situ 1	ests

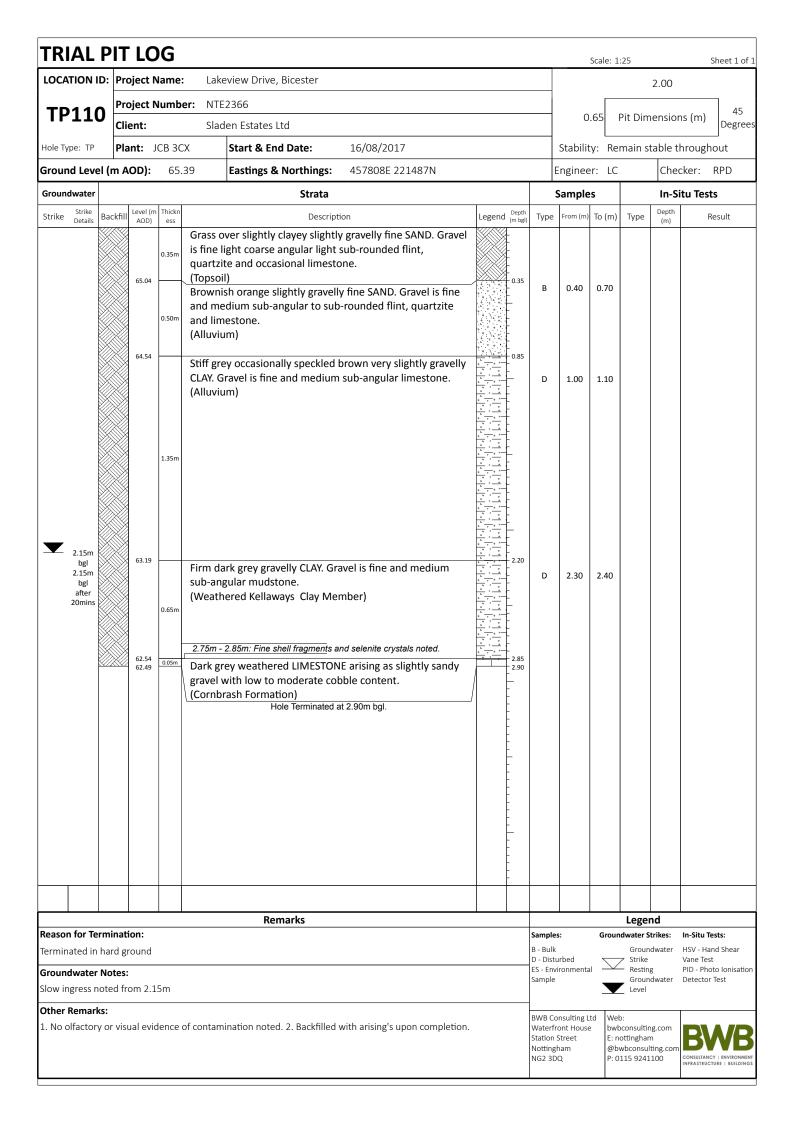
	Chiseling						Legend	
From (m bgl)	To (m bgl)	Time (hh:mm)	Reason for Termination: Terminated in hard ground	Sample T B - Bulk C - Core	уре:	Gro	undwater: Groundwater Strike	In-Situ Tests C - Cone Penetration Test HSV - Hand Shear Vane
From (m bgl)	Water Added	Volume (I)	Groundwater Remarks: Groundwater encountered at 1.2m, rising to 1.0m	D - Distur ES - Envir Sample U - Undis	onmental	•	Resting Groundwater NR = Not Recorded	Test PID - Photo Ionisation Detection Screen S - Standard Penetration Test
			Other Remarks: 1. No olfactory or visual evidence of contamination noted. 2. Installed with 50mm HDPE wascreen, gas tap and flush cover.	BWB Cons Waterfron Station Str Nottinghal NG2 3DQ	t House eet	P: 01 E: no	o: consulting.com 115 9241100 ottingham vbconsulting.com	BWB CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS

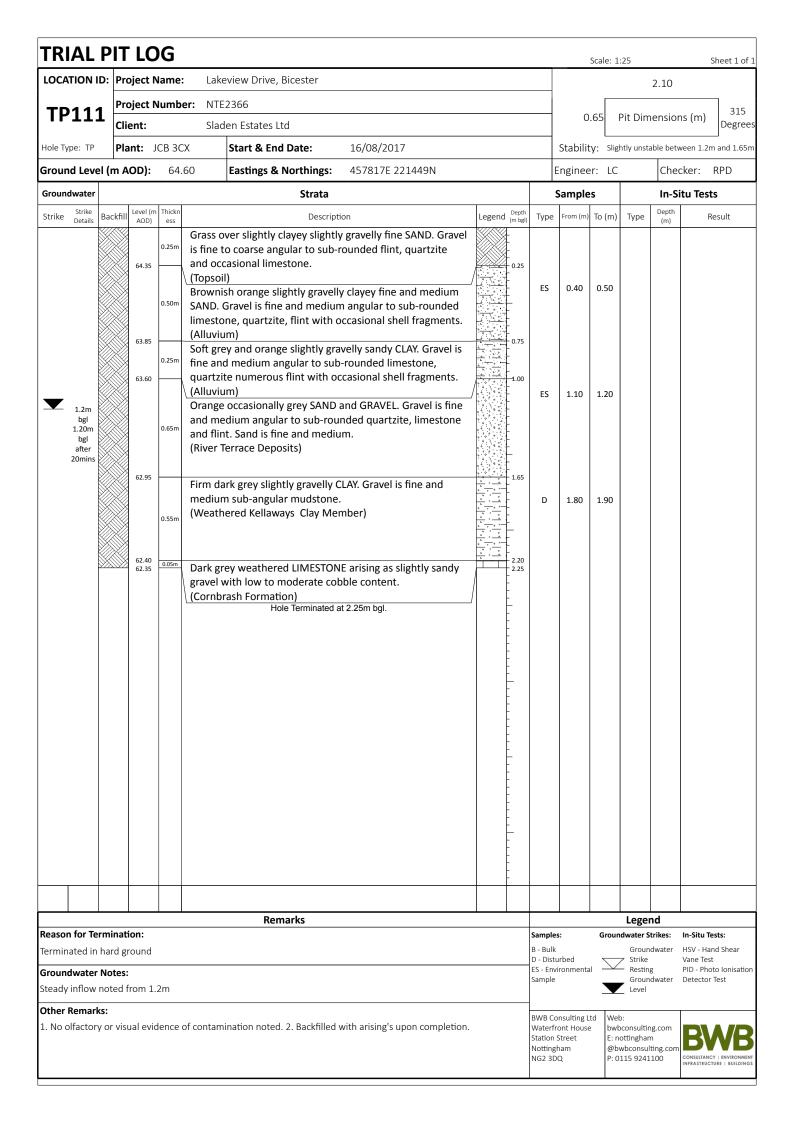


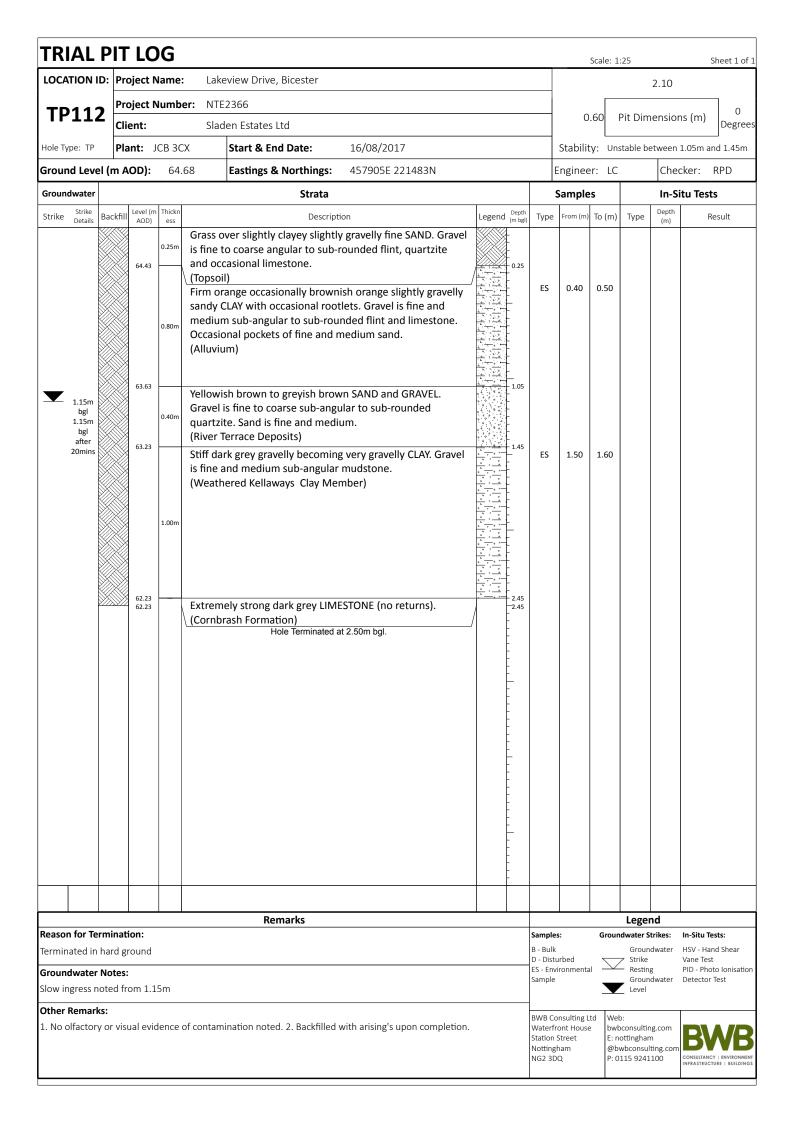


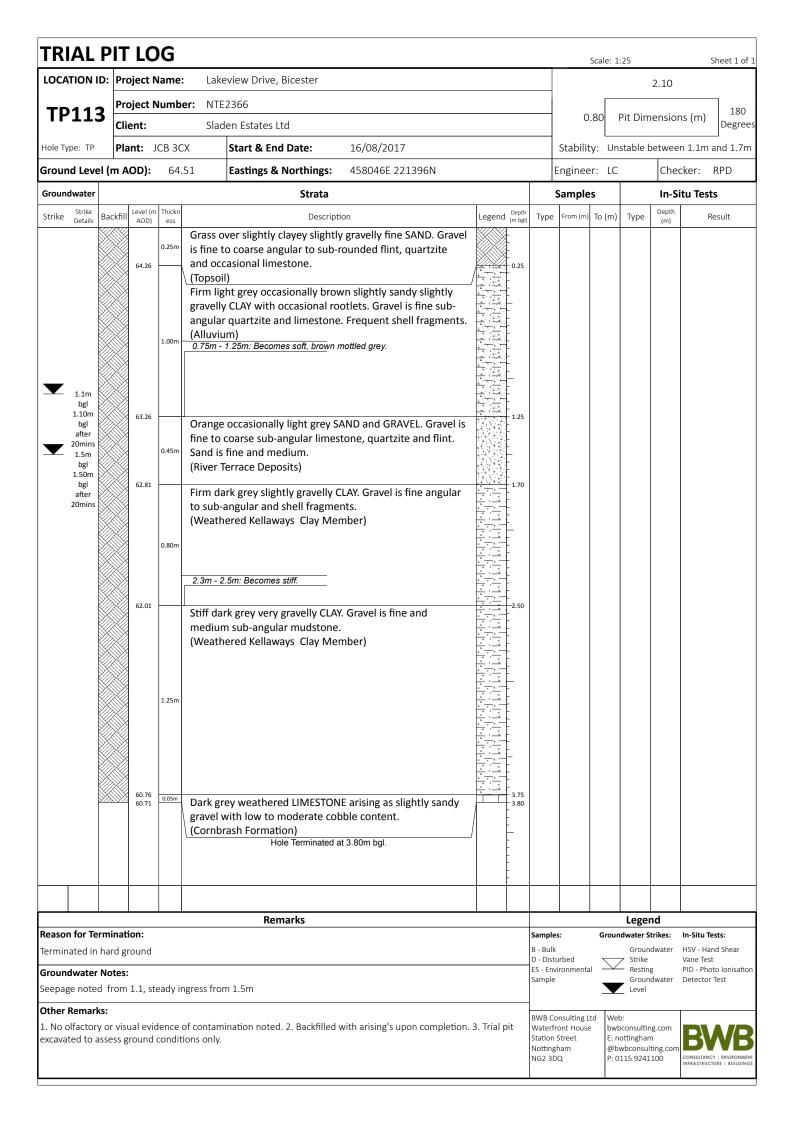
TRIAL I	PIT	LO	G											Scale: 1	:25		Shee	et 1 of 1		
LOCATION ID	: Pro	ject N	lame:	: Lak	eview Driv	e, Bicester								2.10						
TP103	Pro	ject N	lumb	per: NTE2366													, ,	7 270		
11103	Clie	ent:		Slac	den Estates	Ltd							Stability: Remain stable the Engineer: LC Check Samples In-Si From (m) To (m) Type Depth (m) 0.20 0.30 0.90 1.00 Legend Si Groundwater Strikes: Kurbed vironmental Strikes: Resting	ns (m) D						
Hole Type: TP	Pla	nt: J	CB 3C	CX	Start & E	nd Date:	1	5/08/2017					Stabili	2.10 0.65 Pit Dimensions (m) Degree positive: Remain stable throughout neer: LC Checker: RPD ples In-Situ Tests (m) To (m) Type Depth (m) 0 0.30						
Ground Level	(m A	OD):	66.	.22	Eastings	& Northings	s: 4	57766E 221691N				E	ngine	ıgineer: LC			Checker: RPD			
Groundwater						Strata	1						Sample	ıples			In-Situ Tests			
Strike Strike Details	ackfill	Level (m AOD)	Thickn ess				ription			Legend	Depth (m bgl)	Туре	From (m)	To (m)	Туре		Resul	t		
		65.42	0.80m	fine to with or concre (Made	coarse ang ccasional g te from 0.4 Ground)	gular to sub-i lass, timber a 15m.	round and pl	ravelly SAND. Gravel i ed brick, concrete, fli lastic. Cobbles of sional rootlets. Grave	nt		0.80	ES								
1.7m bgl 1.70m bgl after 20mins					65.12	0.30m	is fine a limesto (Alluvio Light go cobble angula	and mediu one and qu um) rey and ora content. G r limestone nered Corn	m sub-angul artzite. ange slightly Gravel is fine	sandy to coa f sub-a ation)	sub-rounded flint, GRAVEL with mediu arse angular to sub- angular limestone.	/:		1.10	ES		1.00			
	63.87																			
													L	<u> </u>	L_					
Reason for Teri Terminated in h Groundwater N Steady ingress i	ard gr lotes: noted	ound	.7m		R	emarks						Sample: B - Bulk D - Distu ES - Env Sample	ırbed		Groun Strike Restin Groun	i trikes: idwater	In-Situ Tests: HSV - Hand Sh Vane Test PID - Photo Io Detector Test	near onisation		
		ıal evic	dence	of contam	nination not	ed. 2. Backfille	ed with	arising's upon complet	ion.				ham	e bwb E: n @b	b: oconsultir ottinghar wbconsul 115 9241	n Iting.com	BM CONSULTANCY EN INFRASTRUCTURE	VIRONMEN		

TRIAL	PIT I	LO	G						Scale: 1	:25		Sheet 1 of 1
LOCATION ID	: Proje	ect N	ame:	: Lakeview Drive, Bicester							2.00	
TP104	Proje		umb	er: NTE2366				0	.65 1	Dit Dim	nensio	90 gs (m)
11 10-	Clien	it:		Sladen Estates Ltd				U	.03	PIL DIII	lensioi	Degrees
Hole Type: TP	Plant	t: J(CB 3C	X Start & End Date:	15/08/2017			Stabilit	ty: Re	main s	table t	hroughout
Ground Level	(m AOI	D):	65.	63 Eastings & Northings:	457606E 221547N			Engine	er: LC		Che	cker: RPD
Groundwater				Strata				Sample	es			itu Tests
Strike Strike Details B		vel (m AOD)	Thickn ess	Description		Legend Dept	Type	From (m)	To (m)	Туре	Depth (m)	Result
	6	55.28	0.35m	Grass over slightly clayey slightly a rootlets. Gravel is fine and medium and occasional quartzite. (Topsoil)	m sub-angular limestone	0.35						
			1.40m	Brownish orange and yellow slight high cobble content. Gravel is fine sub-angular limestone. Cobbles of (Weathered Cornbrash Formation	to coarse angular to flimestone.		B ES	0.40	0.50 1.00			
1.6m bgl 1.60m bgl after 20mins	6	53.88		Hole Terminated at 1	1.75m bgl.	1.75						
				Remarks						Lege	nd	
Reason for Terr Terminated in h Groundwater N Slow ingress no	ard grou	und	n	Nemars			Sample B - Bulk D - Distr ES - Env Sample	urbed ironmenta		dwater S Groun Strike Restin	strikes: idwater	In-Situ Tests: HSV - Hand Shear Vane Test PID - Photo Ionisation Detector Test
Other Remarks 1. No olfactory		l evid	ence (of contamination noted. 2. Backfilled wi	th arising's upon completion.			ham	e bwb E: no @bv	o: oconsultir ottinghar wbconsul 115 9241	n Iting.com	BWB CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS

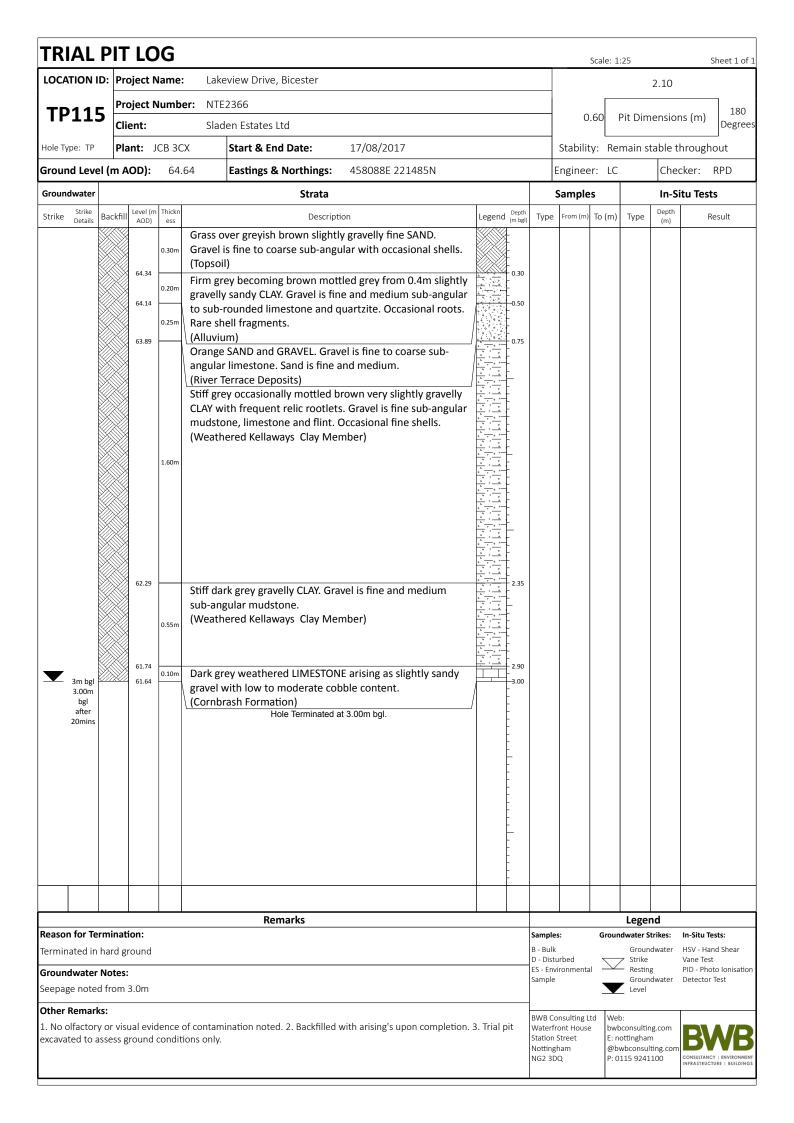

TRIA	\L P	Ή	LO	G												Scale: 1	:25		Sheet	t 1 of 1
LOCATIO	ON ID:	Pro	ject N	lame	: Lak	eview Dri	ve, Biceste	r										2.00		
TP1	05	Pro	ject N	lumb	er: NTE	E2366											Di+ Dix	nensior	20 (20)	45
	.03	Clie	ent:		Slad	den Estati	es Ltd								Ü).65	PIL DIII	Terision	De	egree
Hole Type:	TP	Pla	nt: J	CB 30	CX	Start &	End Date:		15/08/2	1017					Stabili	ty: Re	main s	table t	hroughout	
Ground L	Level (m A	OD):	65.	.00	Easting	s & Northi	ngs:	457642	E 221476N				E	ngine	er: LC		Che	cker: RPD)
Groundwa							Str	ata						9	Sample	es			itu Tests	
	trike etails Ba	ckfill	Level (m AOD)	Thickn ess				escription				Legend	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result	
			64.60	0.40m	SAND vangula (Topso	with frequent or to quar il) own to d	uent rootle tzite, flint a ark brown	ets. Grav and lime clayey P	rel is find stone. seudo-f	ine and med e to coarse iibrous PEAT		12 alto 2 alto alto	- 0.40	D	0.50	0.60				
			64.30	0.30m	(Alluvi	um)	s and orga			oarse angula	ar to	2 21/2 2 21/2 21/2 2 21/2 2	0.70	ES	0.50	0.60				
				0.50m	sub-an	gular limo		l shell fr		s. Occasiona		NG.	- - - - - - - - - - - - - - - - - - -	ES	0.80	0.90				
b 1.2 b afi	25m ogl 25m ogl fter mins		63.80	0.80m	conten limesto	nt. Gravel one. Cobb		oarse ar angular	ngular to limesto	high cobble o sub-angula one.			- 1.20							
			63.00				Hole Termin	nated at 2	.00m bgl.				-2.00							
Reason fo Terminate Groundwa Seepage n	ed in ha	otes:	ound				Remarks							Samples B - Bulk D - Distu ES - Envi Sample			Z Strike Restir	Strikes: ndwater	In-Situ Tests: HSV - Hand She Vane Test PID - Photo Ion Detector Test	
Other Ren 1. No olfac			ial evid	lence	of contam	nination no	oted. 2. Back	xfilled wit	ch arising	's upon comp	letion.				nam	e bwl E: r @b	b: bconsulti ottingha wbconsu 1115 924:	m Iting.com	BW CONSULTANCY ENVI	IRONMEN

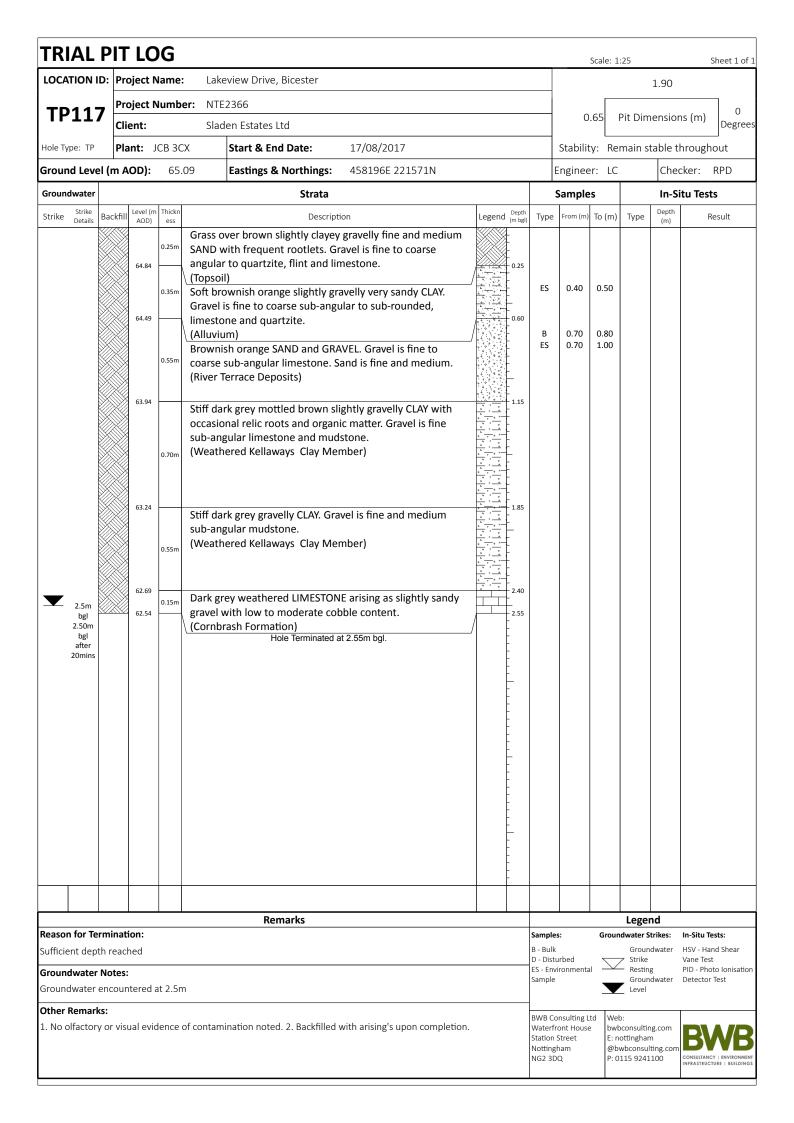


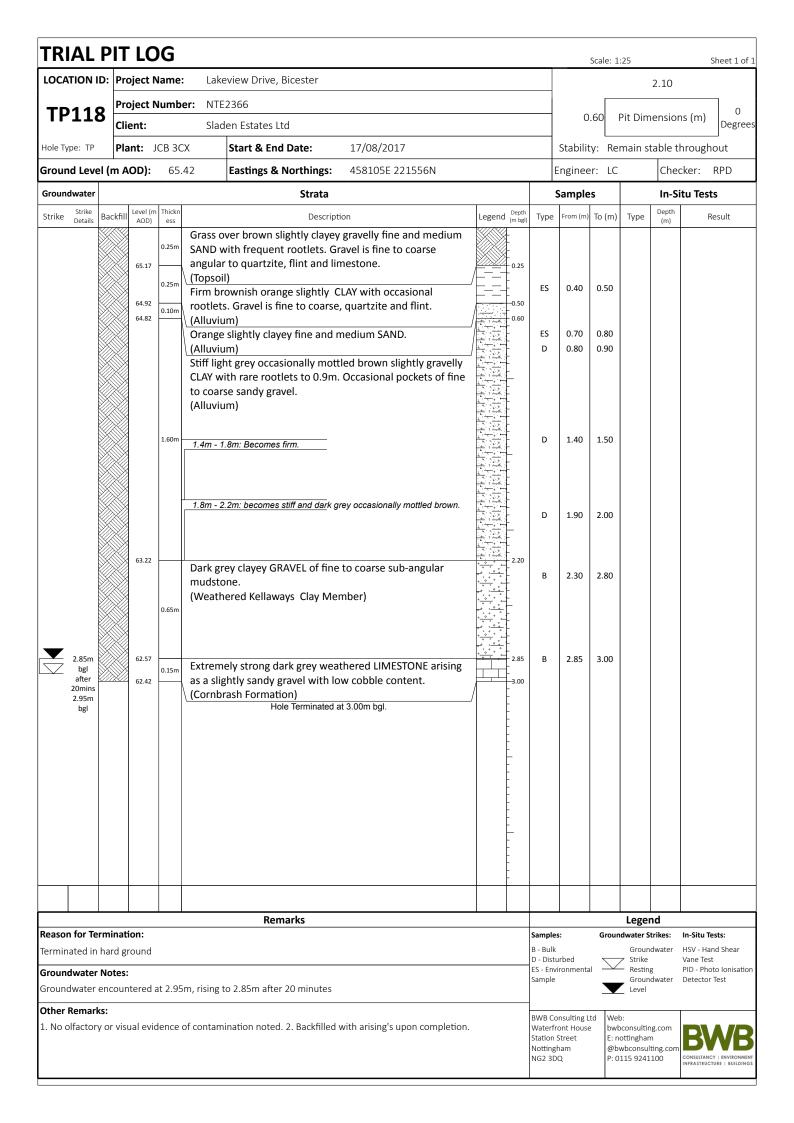



TR	IAL	PIT	LC	G										Scale: 1	:25		Sheet 1 of 1
LOCA	TION II	D: Pro	oject N	Name	: Lake	eview Drive, I	Bicester									2.00	
TD	108	Pro	oject N	Numb	er: NTE	2366							0		D:+ D:		45
' '	100	Cli	ent:		Slad	len Estates Lt	d						U	.60	PIT DIN	nensio	Degrees
Hole Ty	/pe: TP	Pla	ant: J	CB 30	CX	Start & End	Date:	16/08/2017					Stabilit	ty: Re	main s	table t	hroughout
Grour	nd Leve	l (m A	OD):	65	.49	Eastings &	Northings:	457751E 221471N				E	ngine	er: LC		Che	cker: RPD
Groun	dwater		I	I	Г		Strata						Sample	es			itu Tests
Strike	Strike Details	Backfill	Level (m AOD)	Thickn ess			Descrip		Le	egend	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result
				0.30m				ly gravelly fine SAND. ular with occasional she	ls.								
			65.19		(Topsoi		o cliabtly co	ndy CLAY. Gravel is fine a	nd .		0.30	D	0.30	0.40			
				0.40m	sub-an	gular to sub-	rounded, lin	nestone and flint.	iiu								
				0.10	Occasio (Alluviu	onal rootlet t im)	o 0.6m.										
			64.79		Stiff gre	ey slightly gra		with occasional pockets of			0.70	D	0.80	0.90			
				0.40m		sand lenses. casional quar		e sub-angular limestone									
			64.39		(Alluviu	ım)					1.10						
				0.35m				coarse SAND. Gravel is find lar limestone and flint.	ie .								
				0.55	(Alluviu	ım)											
			64.04					n speckling gravelly CLAY. angular mudstone.			1.45	D	1.50	1.60			
						ered Kellawa											
				1.00m							_						
	2.5m		63.04 62.99	0.05m	Dark gr	ey weathere	d LIMESTON	NE arising as slightly sand	у		2.45						
	bgl 2.50m				gravel v		noderate co	bble content. Occasiona		-							
	bgl after 20mins					rash Formati	on)			-							
	205					Hol	e Terminated	at 2.50m bgl.		-							
										-	_						
										E							
										E							
										[-						
										-							
										-							
										-	_						
Reaso	n for Ter	minat	ion:			Rem	arks					Samples	s:	Grour	Lege dwater s		In-Situ Tests:
Termin	nated in	hard g	round									B - Bulk D - Distu			Grour	ndwater	HSV - Hand Shear Vane Test
	dwater seepage			2.5m								1	ironmenta		Restir		PID - Photo Ionisation Detector Test
ł	Remark											BWB Co	nsulting L				
1. No c	olfactory	or vis	ual evid	dence	of contam	ination noted.	2. Backfilled	with arising's upon comple	ion.			Waterfr Station :	ont House Street	e bwl E: n	oconsulti ottingha	m	BWR
												Nottingl NG2 3D			wbconsu 115 924:		CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS

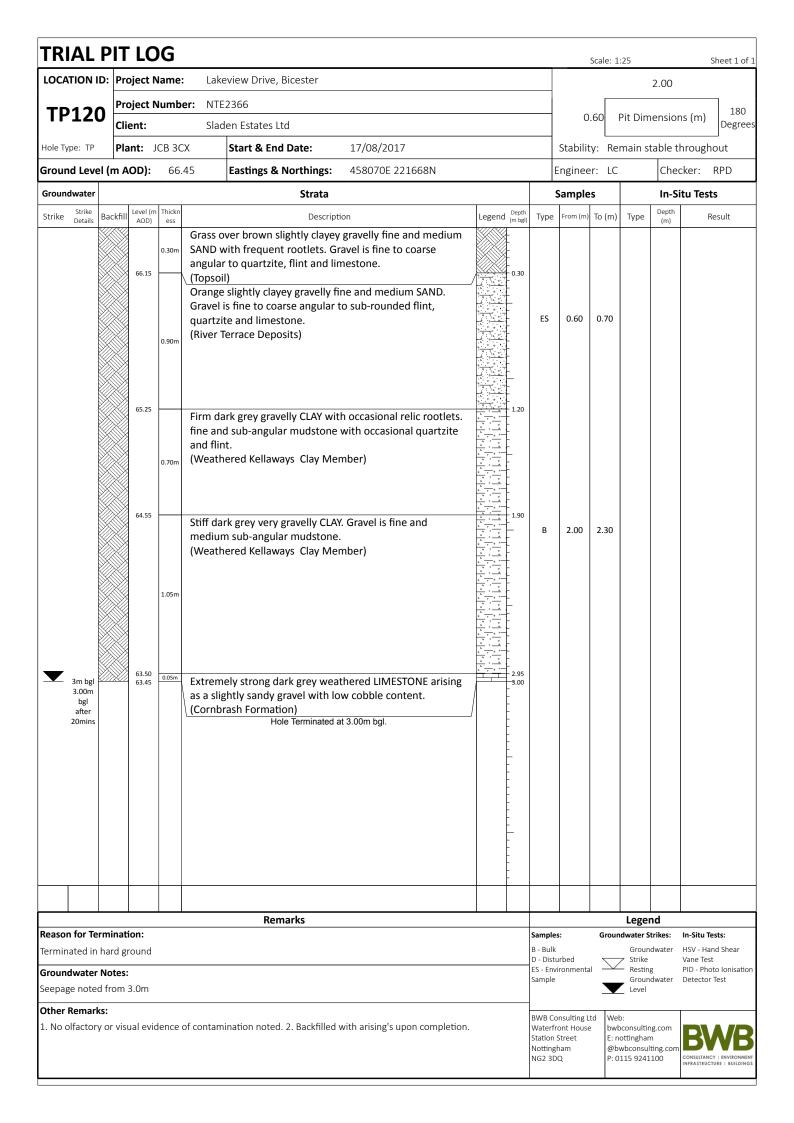
TRIAL F	PΙΤ	LO	G										Scale: 1	:25		Shee	et 1 of 1
LOCATION ID	: Pro	ject N	lame	: Lake	eview Drive, B	Bicester									2.00		
TP109	Pro	ject N	lumb	er: NTE	2366							0	.65	Dit Dim	oncio	as (m)	225
11 103	Clie	ent:		Slad	len Estates Lto	d						U	.05	חווט ווו	nensior	D [15]	egrees
Hole Type: TP		nt: J	CB 30	CX	Start & End	Date:	16/08/2017					Stabilit	y: Uns	table be	1	ound level and	
Ground Level	(m A	OD):	66.	.25	Eastings & N	Northings:	457753E 2215	535N			E	nginee	er: LC		Che	cker: RPI	D
Groundwater Strike D		Level (m	Thickn			Strata			1	Donth		Sample			In-S Depth	itu Tests	
Strike Details B	ackfill	AOD)	ess	Grace o	vor grovich h	Descrip	tly gravelly fine SA	A NID	Legend	(m bgl)	Туре	From (m)	To (m)	Type	(m)	Resul	t
		65.90	0.35m	Gravel i (Topsoil Orange	is fine to coar I)	se sub-ang	gular with occasion	onal shells.		0.35	B ES	0.40 0.40	0.50 0.90				
		65.25	0.65m	(Alluviu	ım)					1.00							
			0.75m	fragme			with occasional s	ihell			D	1.10	1.20				
		64.50	0.65m	mediun Ienses.		r mudstone	y CLAY. Gravel is f e. Occasional coa ember)			1.75	D	1.80	1.90				
		63.85	0.05m	gravel v fine she	with low to mell fragments rash Formatic	oderate co noted. on)	NE arising as sligh obble content. Oc at 2.45m bgl.			2.40							
					Rem	arks								Lege	nd		
Reason for Tern Terminated in ha Groundwater N No groundwater	ard gro	ound	ed		neill	uina					Samples B - Bulk D - Distu ES - Envi Sample			Groun Strike Restin	trikes: idwater	In-Situ Tests: HSV - Hand SI Vane Test PID - Photo Io Detector Test	hear onisatior
Other Remarks: 1. No olfactory of		al evic	lence	of contam	ination noted.	2. Backfilled	l with arising's upor	n completion.				nam	bwb E: n @b	o: oconsultir ottinghar wbconsul 115 9241	n Iting.com	BW CONSULTANCY EN INFRASTRUCTURE	BIVIRONMEN BUILDING:

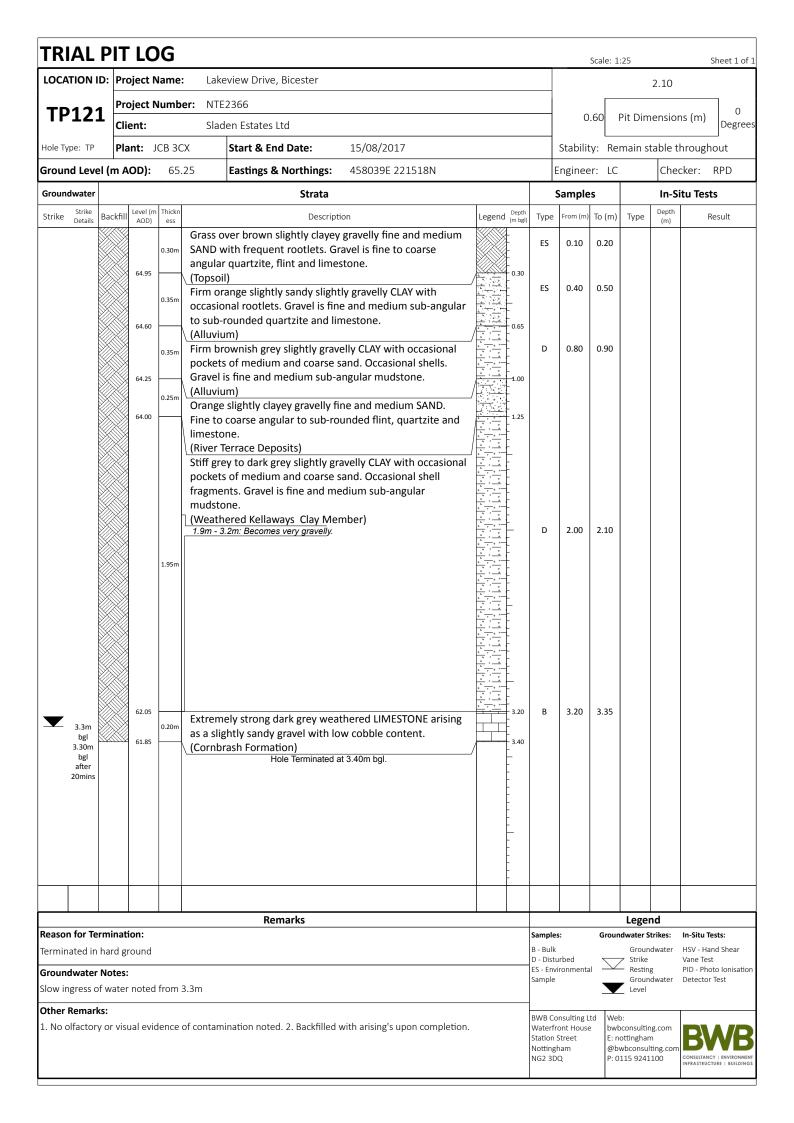


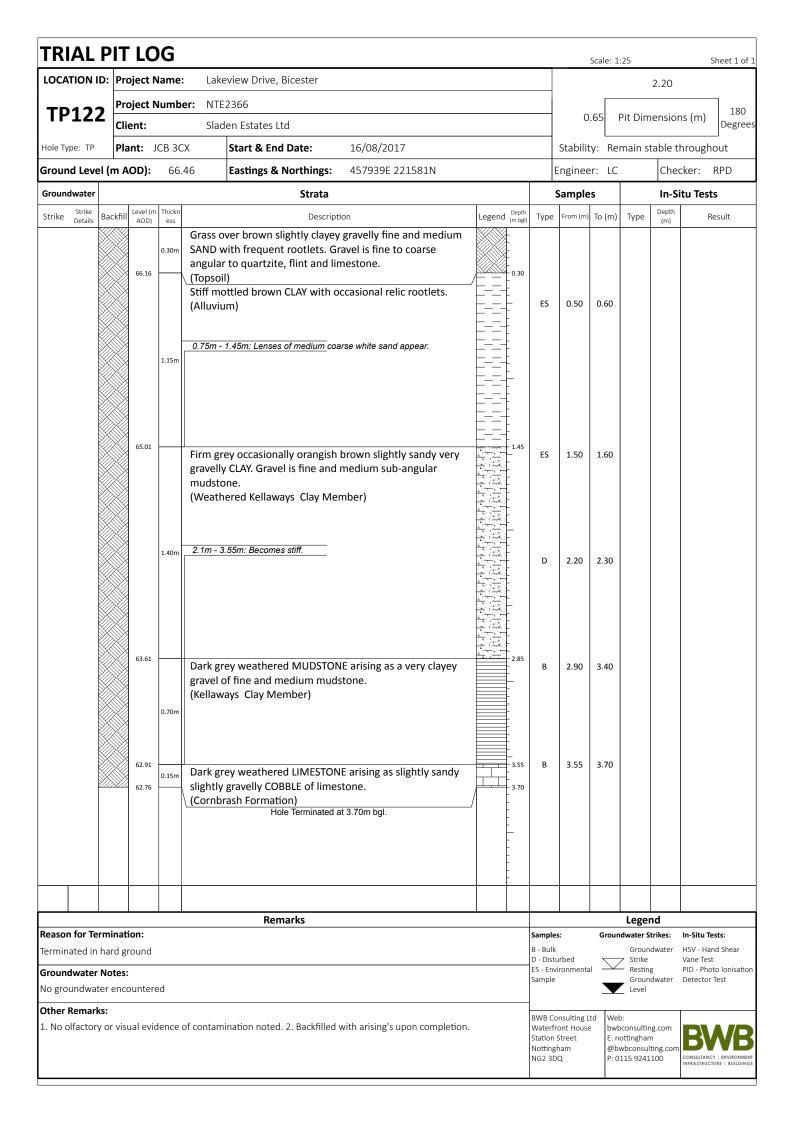


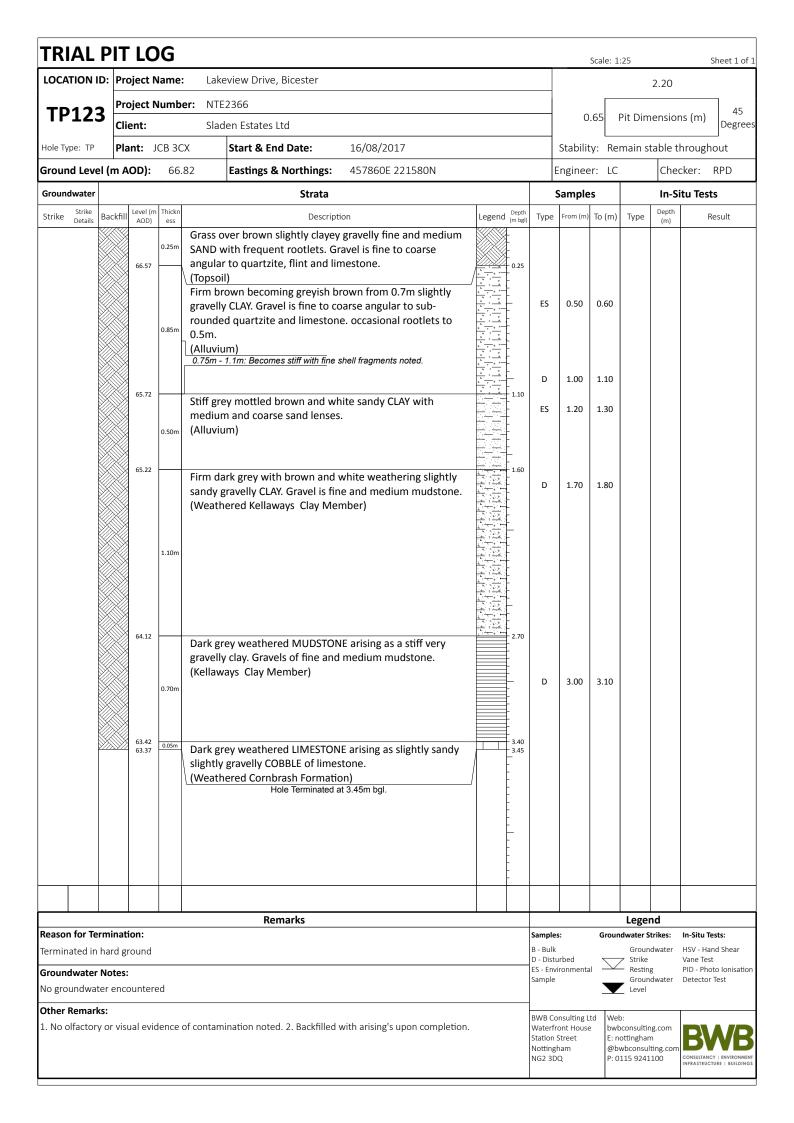


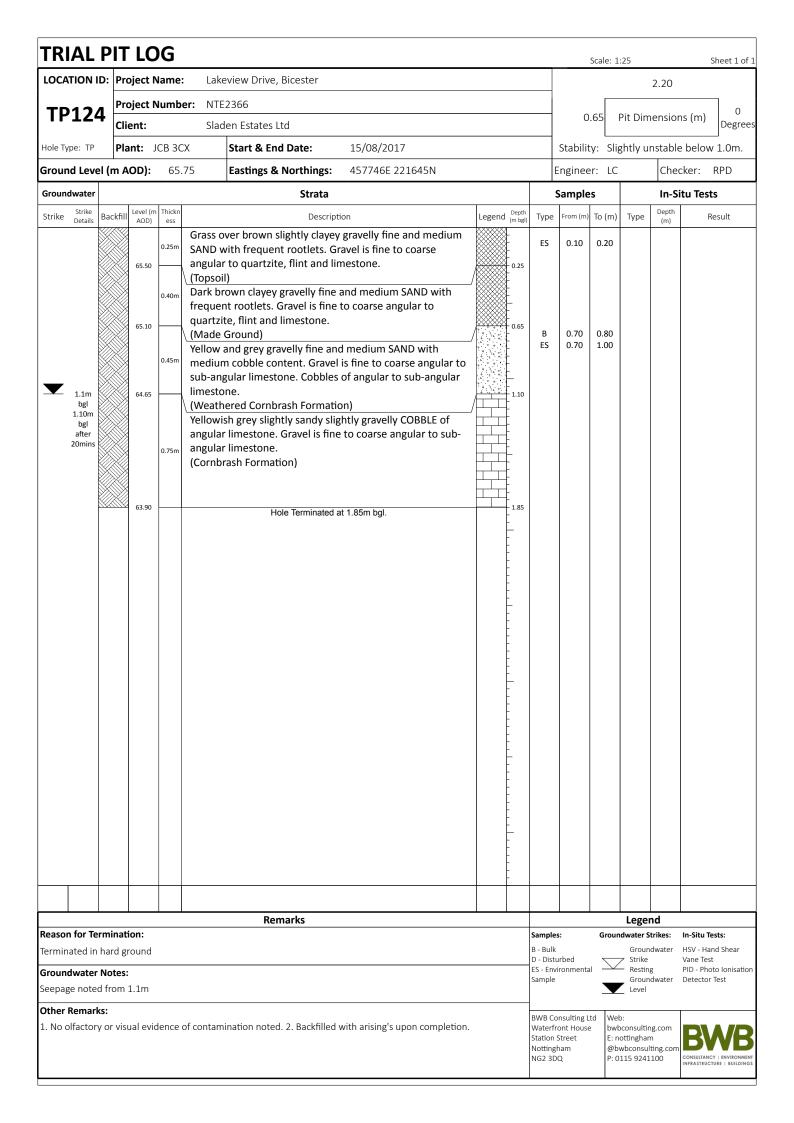
TRIAL	PIT	LO	G											Scale: 1	:25		Sheet 1 of
LOCATION IE): Pro	oject N	lame	: Lak	eview Dri	ve, Biceste	er									2.20	
TP114	Pro	oject N	lumb	er: NT	E2366									7.	D.1 D.		, , 270
17114	Clie	ent:		Slad	den Estate	es Ltd							0	.75	Pit Dim	nensior	Degree
Hole Type: TP	Pla	nt: J	CB 30	CX	Start &	End Date:	:	15/08/2017	,				Stabilit	t y : Uns	table be	tween gr	ound level and 1.65
Ground Level	(m A	OD):	64	.62	Eastings	& Northi	ings:	458106E 22	1405N			E	ngine	er: LC		Che	cker: RPD
Groundwater						Stı	rata					9	Sample	es		In-Si	tu Tests
Strike Strike Details	Backfill	Level (m AOD)	Thickn ess			[Description	ı		Legend	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result
1.35m bgl 1.35m bgl after 20mins		63.62 62.97 62.67	0.30m 0.70m 0.65m	Gravel occasion (Topso Firm both gravell sub-roof fragme (Alluviii 0.6m - (0.6m - (0.6	is fine to conal shells (il) (il) (il) (il) (il) (il) (il) (il)	tled and coravel is fine and quant of fine and q	b-angular brange sign and martzite was brange	cly gravelly Cak mudstone	y slightly angular to all shell and. AVEL. Sand is angular to		1.05	ES ES D ES B	0.10 0.40 0.80 1.00 1.10	0.20 0.50 0.90 1.20 1.50			
					ı	Remarks				1	1		ı	I	Lege	nd	
Reason for Ter Sufficient depth Groundwater I	n reach	ned										B - Bulk D - Distu ES - Envi Sample			StrikeRestin	idwater g	In-Situ Tests: HSV - Hand Shear Vane Test PID - Photo Ionisatio Detector Test
Groundwater e		tered a	at 1.35	5m								pic			Level		
Other Remarks 1. No olfactory		ual evid	dence	of contan	nination no	rted. 2. Bac	kfilled wi	th arising's up	oon completion.	-			nam	e bwb E: n @b	o: oconsultir ottinghar wbconsul 115 9241	n Iting.com	BWB CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDING

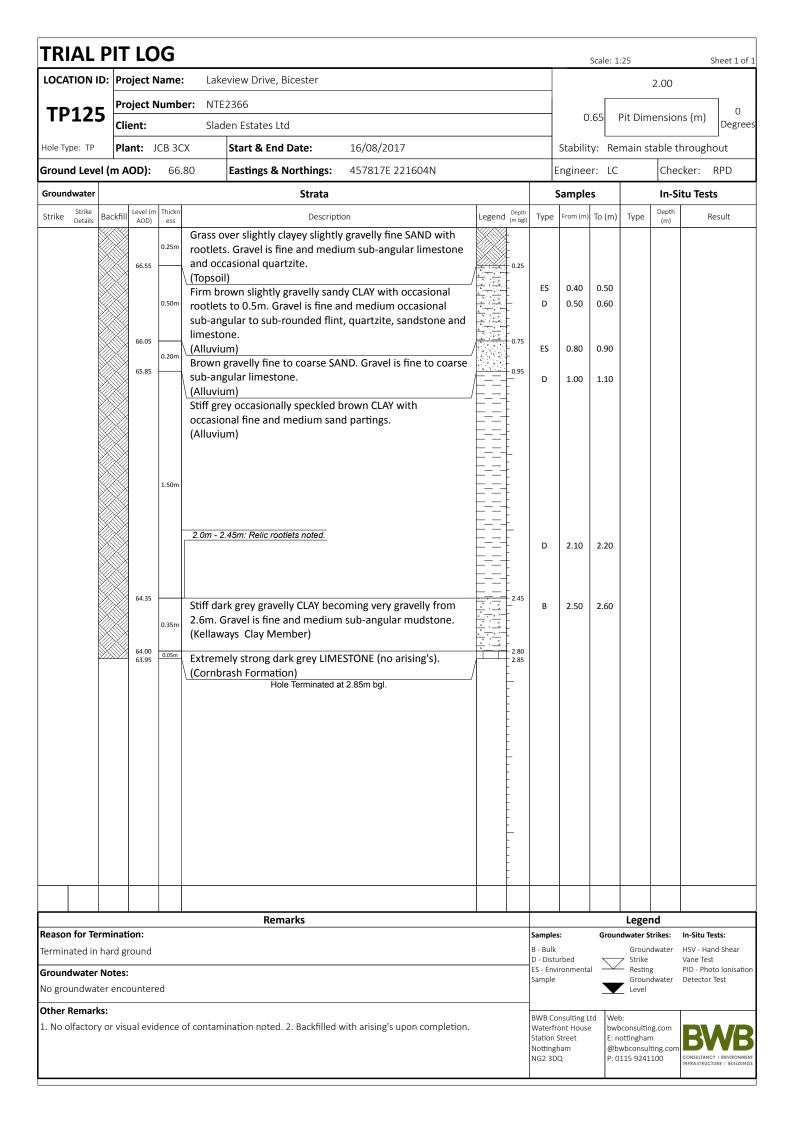


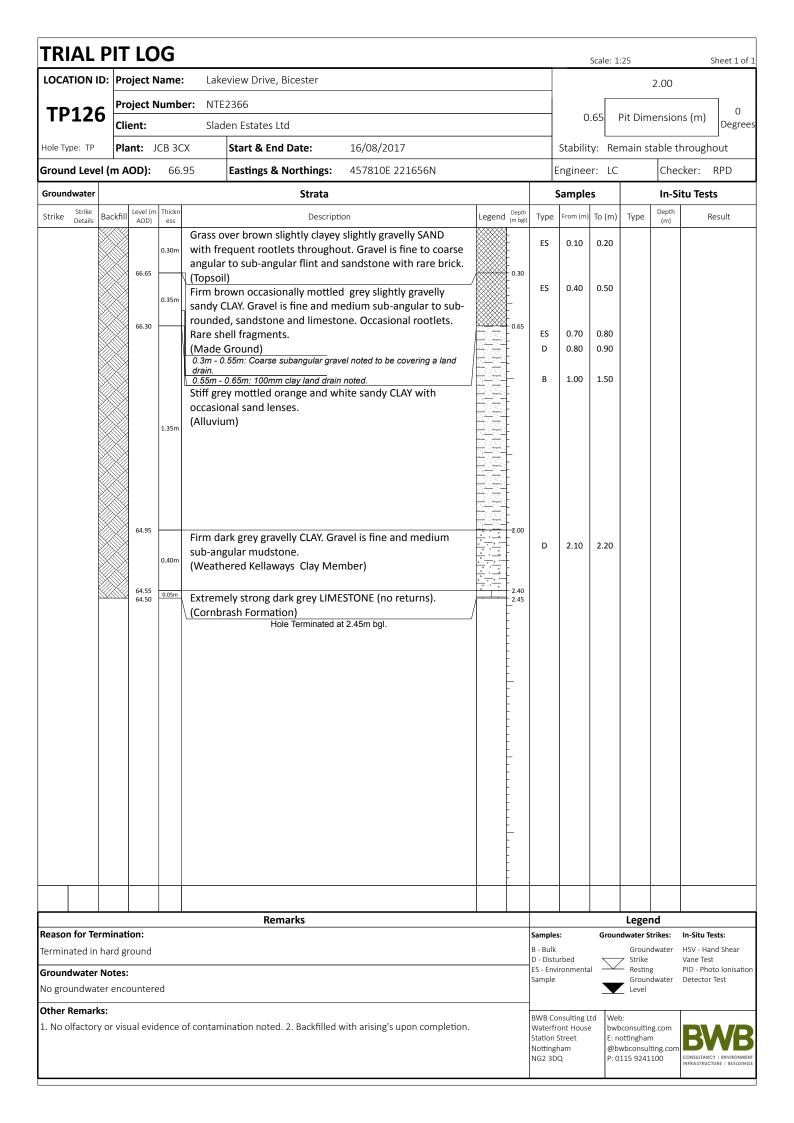

TRIAL F	PIT	LO	G										Scale: 1	:25		Sheet 1 of 1
LOCATION ID	: Proj	ject N	lame	: Lak	eview Drive	, Bicester									2.30	
TP116	Proj	ject N	lumb	er: NTE	2366											, , 270
15110	Clie	nt:		Slad	den Estates	Ltd						0	.60	Pit Dim	nensior	ns (m) Degrees
Hole Type: TP	Plar	nt: J	CB 3C	CX	Start & En	d Date:	15/08/2017					Stabilit	y: Re	main s	table t	hroughout
Ground Level	(m AC)):	64.	.63	Eastings 8	Northings:	458142E 22	1462N			E	nginee	er: LC		Che	cker: RPD
Groundwater						Strata					9	Sample	es .			itu Tests
Strike Strike Details B	ackfill ^l	Level (m AOD)	Thickn ess	C		Descrip		la fore account	Legend	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result
		64.38	0.25m	rootlet (Topso	s throughou il)	ut.	y fine SAND wit			0.25						
			0.55m	CLAY. C	occasional s um)	hell fragment		siigntiy sandy		-						
										-						
		63.63	0.20m	mediui \ (River -	m sub-angu Terrace Dep	lar weak sand osits)	m SAND. Grave dstone and qua	rtzite.		1.00	_					
			0.50m		ccasional sh	asionally mot ell fragments	tled orangish b s.	rown CLAY			D	1.10	1.20			
		63.13		Firm da matter (Alluvio	•	Y with frequ	ent relic roots a	and organic	alk	1.50	D	1.60	1.70			
			1.30m													
		61.83	0.50m	mudsto	one. nered Kellav	vays Clay Me	·	to coarse		2.80						
					F	ole Terminated	at 3.30m bgl.			-						
					Re	marks				<u> </u>				Lege	nd	
Reason for Terr Sufficient depth Groundwater N No groundwate	reache	ed	ed								Samples B - Bulk D - Distu ES - Envi Sample			Groun Strike Restin	trikes: idwater	In-Situ Tests: HSV - Hand Shear Vane Test PID - Photo Ionisation Detector Test
Other Remarks 1. No olfactory of		al evid	lence	of contan	nination note	d. 2. Backfilled	with arising's up	on completion.				nam	bwb E: n @b	o: oconsultir ottinghar wbconsu 115 9241	n Iting.com	BWB CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS






LOCATION ID:	Proje	ct N	ame:	: Lake	eview	Drive,	Bicest	ter											2.00	
	Proje	ct N	umb	er: NTE	2366															
TP119	Client				len Est	ates L	_td									C	.60	Pit Din	nensio	ns (m) 180 Degre
Hole Type: TP	Plant	: JC	CB 3C	CX	Start	& End	d Date	e:	17	7/08/20)17					Stabili	ty: Re	main s	table t	 hroughout
Ground Level (ı	m AOD):	66.	11	Easti	ngs &	North	nings:	45	58141E	221618	N			E	ngine	er: LC		Che	cker: RPD
Groundwater							St	trata							9	Sample	es		In-S	itu Tests
Strike Strike Details Bac		rel (m OD)	Thickn ess					Descript	tion				Legen	Depth (m bgl)	Туре	From (m)	To (m)	Туре	Depth (m)	Result
		5.86	0.25m	Grass o SAND w angular (Topsoi Firm or with fre	vith fro to qu l) angish	equen artzite n brow	nt root e, flint vn sligl	lets. G and lii	mest ndy s	l is fine tone. slightly	gravelly	CLAY		0.25	ES	0.30	0.40		()	
	65	5.36 -	1.65m	sub-rou (Alluviu Stiff gre	inded im) eyish b casior d med te and ered l	orown nal pool ium al limes Kellaw	mottle ckets congular stone.	ed broof of fine to sub	e. wn s and b-rou	lightly (mediur unded f	gravelly n sand.	CLAY Gravel is		0.75	ES D	0.80	0.90			
	63	3.71		Stiff da	rk grev	, very	grave	Ily CLA	.Y. Gr	avel is f	ine and			2.40	D	1.80	1.90			
			1.55m	mediun (Weath	n sub-	angul	ar mu	dstone	9.					┸╌╀╌╸┸╀╸╼╀ ╸╸┠╸╸┠╸╸┠╸╸┠╸╸╏╸╸╻╏╸╸╻╏╸╸╻╻╸╸ ┇	D	2.50	2.60			
		2.16	0.05m		shtly s t.	andy g	gravel ion)		ow to	o mode	ESTONE rate cob	_		3.95 4.00 - - -						
eason for Termi	ination					Ren	marks								Samples	e·	Groun	Lege		In-Situ Tests:
erminated in har Groundwater No No groundwater	rd grou	nd													B - Bulk D - Distu			Grour Strike Restir	ndwater	HSV - Hand Shear Vane Test PID - Photo Ionisati Detector Test
Other Remarks: No olfactory or	rvisual	evide	ence (of contam	ination	noted	d. 2. Ba	ckfilled	with	arising's	s upon co	mpletion.				ham	e bwl E: n @b	b: oconsulti ottingha wbconsu 115 924:	n Iting.com	BV/E





APPENDIX 3 DRILLERS' LOGS

Name N-¢	Rig Type DQ								From To	Casing Reduced from	Service Pit	Rig Set Up	Remarks: (standing time, dayworks, in situ testing, visitors etc.)		Borehole s						•	soll's	in the state	15 mic		710 11		W11-1 08:0	200	+	Depth	JOB Ref: ME2366		ם ס
N A MAN	Dando								Description	3	up to 1 hour	up to 1 hour	time, dayworks, in situ		forehole completed at (m)									glay		MJH C			grass			1366	(
Time off site	Time on Site									5	X	×	u testing, visitors etc.)											limestone		glay clay		range/a	0000			Site Location:	5	_ _ _
Wd 3	7.30 AM									at metres Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)			Borehole continues						*			J6		Clay		orange/aray/brown sandy clay	Aller DIOMUS Saling CIAS	- 1	Strata Description	Bicester		DRILLING LOG
F	SPT/CPT										(s)		Dayworks S hours											57	1	35 2	1		200	0	Test Type	Client:		
_	U/UT D,	Sample q		Main	0	T	1	_	T			$\overline{}$	Standing		_								-	2250	300	2:00 2:50		8	100	000	from (m) To	BWB	Tel:	KIS Crew
w	D/SD B W	Sample quantities	Quantity (bags)	Well Materials Used	-	Well Diameter					3.10-320		Chiselling From (m) to (m)											0/05 5/52		8	F -	1 57.1	00	0.60	-	S	Unit EZ016, Warmto Industry Park, Manchester Road, Mossley, DLS 9AY. Tel: 01457 833910, Fax: 01457 833920, Email: info@geotronuk.co.uk, www.geotronuk.co.uk	
Foreman's Signature	Foreman's Name		U	en ZM	_						60 MIN	-	Hing Time (mins)											10	13/15 50/0		7	1 2		150-225	SP	Da	o Industry Park, Manch 7 833920, Email: info@)	215ナナバ
ture	8			ð							7		Time														n	_		225-300 300-375 375-450		Day: Hhursday	ester Road, Mossley, geotronuk.co.uk, www	>
						Other Ma							Depth (m) Rate of Rise								-						so W	,			N Value or KPA	sday	ots 9AY; v.geotronuk.co	
						aterials Used						5			-																e or U100/	Date:	uk	
Engineer	Engine					d (e.g. lost o						10	Water Strikes Rising		r															-	Recovery (%)	17		porel
Engineer's Signature	Engineer's Name					Other Materials Used (e.g. lost cones/shoes etc.)						15 20	ikes Rising to (mins)											1.00014	630 00·1		1.00 O(4	0.30 064			Casing Water level	18/17	Sheet of	poleliole velelelice
						-							Total														-	_			vel Liner size		Weather	
		WellTag		1300			1	_					31	a	S	ol	9	iav	el	_	_	_	1		b	enr	0		J	in see		Borehol	00	BHILL
							+	_		7		21	M	5	104	He	d	1	1	1	1	1	1	1	P	lair	_			myddigaeth Deddio	- I	Borehole Diameter(s)	2)	1

Name V	Rig Type								From To	educe	Service Pit	RigSetUp	Remarks: (Sandi		Ebreho	T						MICEINE / ACCUMA		00.0		C 09.7	and the latest l	0.70			Depth (mbgl)	-		n D
N. Binnal	Rando				1				Description		up to 1 hour	up to 1 hour	ng time, dayworks, in s		forehole completed at (m)									Stand		HAC		3				NTE2366		
Time off site	Time on Site									to	×	~	Remarks: (2anding time, dayworks, in situ testing, visitors etc.)		3.30 M									limestone		عام	, 4	Glay/b	over In			Site Location:		<u></u>
5 PM	7.30AM									at metres Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)			Borehole continues									tone		S129 C129		CON MOTTER CIAN	w pland salvas cras	1/ 2 - 1/0 //614	Strata Description	Bicester		DRILLING LOG
F	SPT/CPT U/UT	Sa									orks)	orks)	Dayworks Standing hours												>6 5:30		54 2.00	-	B20.70	81 0.10	Test Type From (m)	Client:		Rig
2	D/SD B	Sample quantities	Quantity (bags)	II Materials	Plain i M Sc	Well Diameter					310-350		From (m) to (25/6	5 FE 578	2.45 1	-	00-1-00	0.60	To (m) 0-75	WB	Unit E2018, Warn Tel: 01457 833910, Fax: 01-	Rig crew
Foreman's Signature	W Foreman's Name		3	_ 3	Screen 3M to						V:W09	+	Chiselling Time (mins)								è				70/6		2 2 2	-			75-150 150-225 225-300	Day:	Unit E2018, Warmen Industry Park, Manchester Road, Mossley, OLS 9AY; Tel: 01457 833910, Fax: 01457 833920, Email: info@geotronuk.co.uk, www.geotronuk.co.uk	450
ř				<u>. 1</u>	- 1	Of .							Time Depth (m) Rate of Rise														3 4				300-375 375-450	Trucs	ter Road, Mossley, Ot5 9AY otronuk.co.uk, www.geptrc	T-
						ter Materials Used (e.g.						UT	Rate of Rise Risin														=	0			N Value or U100/ R KPA Piston blows		nuk.co.uk	
Engineer's Signature	Engineer's Name					Other Materials Used (e.g. lost cones/shoes etc.)						10 15 20	Rising to (mins)												1.0001	1.00 019	1.00 014	F10 300	040		Recovery Casing Water level (%) Depth (m) (m)	118/11	Sheet of	Borenole Kererence
		Well Tag							6			-	Total 3	ha	اعرد	() 	Off.	uy	e (en				П	Liner size		weather)	171109
		Tag		310.00			79	_			1	7	2 1	1		51	04	10	20	1		1	_		IM	9	lai	1	P	7)	Installation Details	Borehole Diameter(s)	55	109

The above are the driller's	_	Rig Type Dando Time on Site								Description	from	4	Rig Set Up up to 1 hour	Remarks: (Standing time, dayworks, in situ testing, visitors etc.)		BH Cont. N Y/N Casing (depth m) · 1 / Y					2 2 2 1 WE 5+00G	200	à	1.30 Still gray ciay	5 25	110 Stiff 21 25 10000 Clay			OF SILL OFFICE OFF	or grass over stit	20.00	Depth (mbgf)	Job Ref: NTE 2366 Site Location:		7.0015	
$\sum \rho(r)$ site descriptions and factual data only and are	1	7.30 AM									at metres Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)			an complete (deptin)					300			2	(20100			Sanda Cian	and stiff plant savors class	h here esade you	Strata Description	Bicester		DRILLING LOG	1
The above are the driller's site descriptions and factual data only and are subject to amendment after checking by or under the supervision of an engineer or geologist.	Foreman's Signature	SPT/CPT U/UT D/SD B W Foreman's Name	Sample quantities	7	'eli Materials Used Gr	Plain Screen 7 11 to	Well Diameter Other Materials Used				3.20-340	A SOLIN	rion (ii) to (iii) time (mins) time orbot (ii) mass or more	iselling									1111	5/ 300 3:035/ 50/	75		200	100 1.00	53 100 115 2 1 1 1 7 5			Test Type Fram (m) To (m) 6-75 75-150 150-225 225-300 300-375 375-450 KPA blows	client: BUB Day: Wednesday Date:	Unit E2015, Warmto Industry Park, Manchester Road, Mossley, OLS 9AY; Tel: 01457 839510, Fax: 01457 839502, Email: Info@geotronuk.co.uk, www.geotronuk.co.uk	Rig crew NO+AN	
n engineer or geologist.	Engineer's Signature	Engineer's Name	WellTag			(Other Materials Used (e.g. lost cones/shoes etc.)		1			i+	10 15 20 1014	13	5		10	9	4	1		7)		3	it	3000	2				Recovery Casing Depth Water level Uner size (%) (m) (m)	16/8/17 Borehole Diameter(s)	Sheet of Weather Pfy	Borehole Reference RH 107	**************************************

The a	Now N.Binnal	OFWGO OCNAD							From To Description	Casing Reduced from	-	Rig Set Up up to 1 hour	Remarks: (Standing time, dayworks, in situ testing, visitors etc.)	BH Cont N/N							, ,	250 c/ou MH 1200	15 WHYS 02.1	5 5180	0.50 P.CM	-	el grass	Depth (mbgl)	Job Ref: NTE236	מים כי	C-potroo I IV	
bove are the driller's	Q 1 Time off site	Time on Site								to ,	4	<	situ testing, visitors etc.)	Casing (depth m) - 2M							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.	lay clar		yenow/	,	aver sti		Site Location:		\	
The above are the driller's site descriptions and factual data only and are subject to amendment aft	いる。	7.30								at metres Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)		BH Complete (depth) - 2.70 M		8					TONE		_		oso him yellow/ brown sandy gravely	,	over Still brown Sandy Clay	Strata Description	Ricester		DRILLING LOG	
subject to amendment after	4 3	SPT/CPT U/UT D/SD B	Sample quantities	Quantity (bags)	Plain (M	_ 9					2.55-2.60		Dayworks/Standing Ch									5 1 6.00.10 515 8	25/1/25 55/1/25	2.451	2.00	£	82 0.90 1.00	tType From (m) To (m) 0.75	Client: BWB	Tel: 01457 833910, Fax: 0	Rig crew	
er checking by or under the supervision of an engineer or geologist.	roreman s signature	W Foreman's Name		3	en I V	0					60Min	and farmed	iselling Time (mins) Time									50/2	Solve	2 3		2 1		75-150 150-225 225-300 300-375	Day: Wed	Unit E2018, Warmoo Industry Park, Manchester Road, Mossley, OL5 9AY; Tel: 01.457 833910, Fax: 01.457 833920, Email: Info@gaotronuk.co.uk, www.geotronuk.co.uk	23447	
ne supervision of an e	- 5						Other Materials Used (e.g. lost cones/shoes etc.)				250 Fast	5	Depth (m) Rate of Rise Risir											4 12		2		375-450 KPA blows (%)	Date:	, OLS 9AY; w.geotronuk.co.uk		
ngineer or geolog	ll and the second	Engineer's Signature					ost cones/shoes etc.)				1.80		ikes Rising to (mins)									000	08-180-7	1.90 004		0.50 024		(m) (m)	1811	Sheet of W	Borehole Reference	
yist.			Well Tag					1			5	9/	av No		1		1	1	I	1		1	b m	P	gi	, Hn	1	Liner size Installation Details	IN O M N	weather OCO	BHIOG	

Namo	Rig Type	-							From To	Casing Reduced from	Service Pit	Rig Set Up	Remarks: (Stand			BH Cont									242		2.20	. •	0.5	5	+	Depth (mbgl)	Job Ref: Z		ה ס
N'BINNA	Oprac						~		o Description		-	up to 1 hour	ing time, dayworks, i		7	7 //								2	200		3		3	50000	0000		NTE2366		
Time off site	Time on Site									80	N.	\$	Remarks: (Standing time, dayworks, in situ testing, visitors etc.)		i	Casing (depth m) - 7 M								J. 62.111	- MON	(aran	7.21.00	50000	0	7010		Site Location:		,
The off site COM The off site COM Commission of an engineer or aeologist.	7.30 AM									at metres	Time	Time			7	SH Complete (depth) - ST								7		7	aravely clay	in charitye/ blown sandy clay			tim bouns	Strata Description	Biecster		DRILLING LOG
eta only and are subject	spт/срт				7					Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)	Daywo			3												Clay St	5.	100 1 100 100 BZ	andd Clair B1	TestType	Client:		06
t to amendm	CPT U/UT D/SD	Sample quantities	8	Plain	Ι						3.4		Dayworks/Standing		-										3.50	1		200245		_	0.10 0.40	Fro	D	Tet 01	Rig crew
S S	8 W	ntities	Ouantity (bags)	Screen	Well Diameter		7				3.40-3.50	took and food to the	Chiseling From (m) to (m)												27/5 50/0	2 2	S	523	-	0		0-75 75-150	G	Unit E2018, Warmco In 457 833910, Fax: 01457 83	2
Foreman's Signature	Foreman's Name	7	A Gravel Sento	2.5 10				R			60 Mil		Time (mins)													かん		1 3	12			SPT 150-225 225-300	Day:	Justry Park, Manchester R 3920, Email: Info@geotror	BHAM
nder the supervi					Other Ma							_	Time Depth (m) Rate of Rise													4 31/5		7 4 4 12	2 2 7			300-375 375-450 KPA	Tuesday	Unit E2018, Warmco Industry Park, Manchester Road, Mossley, OLS 9AY; Tel: 01457 833910, Fax: 01457 833920, Email: info@geofronuk.co.uk, www.geofronuk.co.uk	_
sion of an er					iterials Used (e.g. lo							5	De Jahren															1				blows (%)	1		
Engineer's Signature	Enginaer's Name				Other Materials Used (e.g. lost cones/shoes etc.)							0 15 20	Rising to (mins)				2 0															(m) (m) (m)	18/17	Sheet of	Borehole Reference
logist.		-1											Total																			el Liner size		Weather	BH
		Well Tag				1	7	7	2.	7	/	1	M \ \ S	0	7	1	\	110	20	1	7	_	1			be		40	Ĵ	7		Installation Details	Borehole Diameter(s)	079	Ø

	Name	Rig Type								From	Casing Reduced from	Service Pit	Rig Set Up	Remarks: (S			<u> </u>							8	,	05.7	7		0,40			9	1	Depth (mbgl)	Job Ref:	7		
	ح 0	Dando	-							To Desc	1		Ц	tanding time, da			BH Cont Z						1	3.00 9604		1118 05.7			100		217	91955	,		Johnef: NTEZZG			
The abov	Binnall.	ido								Description		up to 1 hour	up to 1 hour	yworks, in situ t			Y/N Casin							<u></u>		7	Si		ノ (で				- 1		33.			
The above are the driller's site descriptions and factual data only and are subject to amendment after checking by or under the supervision of an engineer or geologist.	Time off site	Time on Site									to .	2	S	Remarks: (Standing time, dayworks, in situ testing, visitors etc.)			Casing (dapth m) - 2						Line Stone	Auch Stone	(gray clay			out from blown / gray Mottles cray	`		over tim brown sand y			Site Location:		=	
ller's site o											at		Н				З ВН Сол				506	1	5401	+000		2			101au			1100		Strata I	.5			
descriptio	6	ڔ														100000000000000000000000000000000000000	BH Complete (depth) -						9	11		راهن			3			5		Strata Description	BLCSTCI	_		
ns and fac	NA 3	30 A									metres						3.20												041			6001			20	77155	DBILLING LOG	
tual data		AM									Time	Time taker	Time taker				3												60		(8				0	2	-
only and											Time taken (dayworks)	Time taken over 1 hour (dayworks)	Time taken over 1 hour (dayworks)																7004	?		2				•	1)	
are subje	Г	SPT/CPT	+								٣	yworks)	yworks)	раум													וני			S		202	£0 -	TestType	Client:			
et to ame		срт и/ит	Samp											Dayworks/standing	Chanding							0 02 1				000	3.20	11 3	2.50 3.00	2:00	- 1	F	10.600	Fram (m)	BWB		Rig crew	
ndment a	3	D/SD B	Sample quantities	Quantity (bags)	Plain (Scree	Well Diameter						5-5.4	3	From (m) to (m)													25/0	33	2,00	245 1	154	8		To (m) 0-75	38	Unit E20 Tel: 01457 83391	ew	
fter check		٧		_	3								L	to (m)	Chiselling											2017		o X		4	_			75-150		1B, Warmco indust), Fax: 01457 83392	Z	
ing by or	Foreman's Signature	Foreman's Name		\dashv	2 to							MAIOO		Time (mins)																2 2	2			SPT 150-225 225-300	Day:	Unit E2018, Warmco Industry Park, Manchester Road, Mossley, OL5 9AY; Tel: 01457 839910, Fax: 01457 839920, Email: info@geotronuk.co.uk, www.geotronuk.co.uk	JR+PM	_
under the					1254	,					ļ			Time De																W	2			300-375	THES	r Road, Mossley, O ronuk.co.uk, www.	43	
supervisi							Other Mate			-	-			Depth (m) Rate of Rise							4-0									11 +	2 7			N Value or 375-450 KPA		L5 9AY; geotronuk.co.uk		
on of an e					Shoe	riais Osed (e.g.	rials Used (a a						5		Water Strikes	*																		U100/ Piston Rec blows (Date:		Вс	-
engineer c	Engineer's ogname	Engineer's Name			da	Other Materials Osed (e-8: lost rolles) sines erri	lost cones/shor			T	1		10 15	Rising to (mins)	ikes															1.80	0.80			Recovery Casing Depth (%) (m)	18/5	Sheet	Borehole Reference	
or geologi				,	damaged	9	os etc.)						20																	610	620			Water level (m)	1	of W	erence	
st.			Well Tag	,	200						4	Ь	ai	Total	0) r	av	10	1	1		1	1				2	b	er	4	0	 	Л	Liner size Inst	Boreh	Weather Dry	BH 108	
			ag			1	\	/	2	\	M	1	SH.)) }	+	1	1	1	1			1	_				ī	m	- (310	λìγ	F	1	nstallation Details	Borehole Diameter(s)	نی	80	

DRILLING LOG RIG Crew NRE 2366 Site Location: Strata Description Strata Description Strata Description MATE 2366 Site Location: Strata Description Strata Description MATE 2366 ALC GLAY CLAY CLAY CLAY STRAN OT (PLOYS) DO (PLOYS) PLOY OF (PLOYS) STRAN OT (PLOYS) DO (PLOYS) DO (PLOYS) DO (PLOYS) DO (PLOYS) STRAN OT (PLOYS) DO (PLOYS) DO (PLOYS) STRAN OT (PLOYS) S
Rig crew
Rig crew
Park Park Manchester Road, Mossley, OLS 9AV; Tel: 0.1457 83930, Family Park Manchester Road, Mossley, OLS 9AV; Tel: 0.1457 83930, Family Info@genetronuk.co.uk, www.genetronuk.co.uk Water 1 4/8 1
Borehole Refe
Borehole Refe Sheet Usaa Piston Recover Called Depth Home (19) 30
Borehole Refe

Ceotron UK	DRILLING LOG	Rig crew	W Unit E2018, Warmon industry Park, Manchester Road, Mossley, 015 9NY; Tel: 01457 833930, Fmil: Info@genetomik.co.uk, www.geotronuk.co.uk	Mossley, OL5 9AY; a.uk, www.geotronuk.co.uk	Borehole Reference	Weather DIY
Job Ref: NTE236 Site Location:	Ricester	client: BWB	Day: N	Monday Date:	(1/8/41	Borehold Diameter(s)
	Strata Description	Test Type From (m) To (m)	9PT S975-150 150-225 225-300 300	300-375 375-450 KPA blows	Recovery Casing Depth Water level (%) (m) (m)	Liner size installation Details
GL grass over brown	on clay	32100000	3 16 6 6 9	8 29	6.80 OS	耳
0.6 Mcorrerd Sind Store	Store)	1	25 20/14 5 15 15 15 20	2/15	2.00 PM	1+0 P1411
Scal mudstone						2 6
,						1
) \
) \
						ave
						1
BH Cont N Y/N Casing (dapth m) - 2 M	BH Complete (depth) - 3M					0
	8					1
Remarks: (Standing time, dayworks, in situ tosting, visitors etc.)		Dayworks/Standing From	Chiselling From (m) to (m) Time (mins) T	Time Depth (m) Rate of Rise	Water Strikes Rising to (mins)	29.51
up to 1 hour	Time taken over 1 hour (dayworks)		0110		10 15 20	+ 1
Service Pit up to 1 hour to	at metres Time taken over 1 hour (dayworks)	3	000		-	1
Description		28				
MOB 129 & Equipment	quipment to ste	ne				
Chin Rom 080 - 3,00 Que	0-3:00 Aus	П	Diameter	Other Materials Used	Other Materials Used (e.g. lost cones/shoes etc.)	
to hard	Strave	Plain	IM Screen 2M to			
		200 Well Material Quantity (b	s Used ags)			
	•	Sample qua				Well Tag
Big Type OGO OO Time on Site	a.hSAM	SPT/CPT U/UT D/SD	B W Foreman's Name		Engineer's Name	
Name N. R. 1996	NOW.	3	Foreman's Signature		Engineer's Signature	

Name Jan	Mg Type		_	34 1921						\dagger	From	Casing Reduced from	Service Pit	Rig Set Up	lemarks: (Standing t	-		Borehale co		1100	S	 7	×		2.		1 70	^	ر د		Depth (mag)	╁		
0 2506	1	3							,	pescuption	Description		up to 1 hour	up to 1 hour	ime, dayworks, in si			Borahole completed at (m)			,	mussione	大クラ	122		2	0100	clar	1405	1		Nx2366		
O G Isma off site		lime on Ste							ているこ			100	1	1	Remarks: (Standing time, dayworks, in situ testing, visitors etc.)							, d, -	Clay.	and have	?		1.ch ? L	nedi	Lingray			Site Location:		
The orbition of the defiliation	4.45										iner in iner iner	To Oracle	Time taken over 1 hour (dayworks)					Borehole continues						and snot state		Comment of the comment	5001	0350	Server Server		Strata Description	Bredier		DKILLING LOG
12	SPT/CPT U								Ş			<u>(8)</u>	<u>Iŝ</u>	hours	N.		v		-					370	0		25	777	1 12		TestType	Client:		
1 1 2	m a posta min	Sample quantities	Quantity (bags)	ell Materials L	Plain \ \ Screen	Well Diameter						2.1		hours From (m) to (m)	Standing Chiselling									2.5 2.54925		1	1 2-	11 1300 9 13	1	_	From (m) To (m)		Unit E2018, Warm Tel: 01457 833910, Fax: 014;	
Foreman's Signature	Foreman's Name	,	-	······································	2.5	59						2.5	1	Time (mins)	Bu Su									Co	1			5 13 15		50 150-225 225-300	SPT	Day	o Industry Perk, Manches 7 833920, Email: Info@ea	1
						Other Materials Used						129		Time Depth (m) Rute of Rise	Wat										160			15 7		6 900-375 375-450 KPA Piston blow	NValue or	Date	Unit E2018, Warmoo industry Park, Manchester Road, Mossley, O15 9AY, Tel: 01457 833910, Fax: 01457 833920. Ernali; Info@sentronuk on uk varuus aostronuk on uk	(S)(S)
Engineer's Signature	Engineer's Name		yell		p.T.	Other Materials Used (e.g. lost cones/shoes etc.)							10 15 20	Rising to (mins)	Water Strikes										Ì		2		-	ows (%) Dayth (m) (m)	1414	- 0	Sheet of	poreriore vererence
		Well Tag	/	/	\ \	\	\	\	\ \	1	1	/		Total																m) Liner size Installation Details	6:		Weather	loce /O/

20

Well Tag

Job Ref:

NTE 2366

Site Location:

BICESter Strata Description

Test Type Client:

From (m)

To (m)

75-150

150-225 225-300 300-375 375-450

N Value or KPA

U100/ Pisto blows Date:

(%)

(m)

Liner size

W

1102/30/41

Sheet | of 2

Weather Cloudie

Borehole Diameter(s) ISOMA Installation Datails

monday

800

Unit E2018, Warmoo industry Park, Manchester Road, Mossley, OLS 9AY; Tel: 01457 833910, Fax: 01457 833920, Email: info@geotronuk.co.uk, www.geotronuk.co.uk

CSFOM

Borehole Reference

BH103

Ceotron LK

DRILLING LOG

Rig crew

Depth (mbgl)

Foreman's Signature
D/SD B W
Sample quantities
Well Materials Used Quantity (bags)
Well Diameter
From (m) to (m)
Chiselling
To (m) 0-75 75-150
Tel: 01457 833910, Fax: 01457 833920, Email: info@geotronuk.co.uk, wvw.geotronuk.co.uk
CS
Rig Crew

20

Well Tag

Job Ref: Depth (mbgl)

WTE2366

Site Location:

Bicester Strata Description

Test Type Client:

75-150 150-225 225-300 300-375 375-450

N Value or KPA

U180/ Piston blows Date:

Recovery (%)

Casing Depth Water level (m) (m)

Liner size

Benco

Grashe

1111111

15/08/2017

Sheet of

Weather Sunny

Borehole Diameter(s) 20

Tuesday

Ceotron UK

DRILLING LOG

Rig crew

CS

とつえ

Borehole Reference

BHIOS

Unit E2018, Warmco Industry Park, Manchester Road, Mossley, 015 9AY; Tel: 01457 839310, Fax: 01457 839320, Email: info@gestronuk.co.uk, www.geotronuk.co.uk

Sectrolic time Storie 14.30 Borehole continues Cr Chisting visitors etc.) Time off site 17:00 Time off site 17:00	Depth (mbet) 1. 50 Sort yellow Sund 1. 90 March Gray Clay 1. 90 March Gray Clay 1. 90 March Gray Clay
Borehole continues at metres	rock timestone
metres metres	
Tim metres Tim	Borehole continues
at metres	tors etc.)
Chisting Time of the 17:00	Time taken over 1 hour (da
Or Chisting Time on site OF: 31	to at metres
tull Scoli Time on site Shaplerd Time of site	
Escoli Time on Site Shafterd Time off site	200
25co/1 Time on Site	16:00 install
2Sco/) Time on Site Time off site	
2Scoli Time on Sites C7:31	
Stopland Time of site (7:3)	
2Scoli Time on site C7:31	
2Scoli Time of the 17:00	
Shaplerd Time off sites 17:00	Time on Site

APPENDIX 4 TRIP HAMMER CALIBRATION CERTIFICATE

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE

HX59JP

SPT Hammer Ref: AR95

Test Date:

13/04/2017

Report Date:

13/04/2017

File Name:

AR95.spt

Test Operator:

SH

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.0

Assumed Modulus Ea (GPa): 208

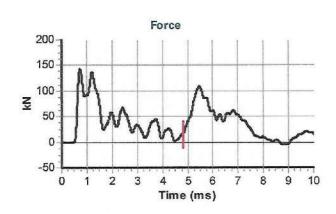
Accelerometer No.1:

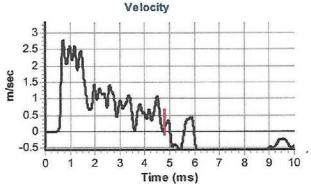
7080

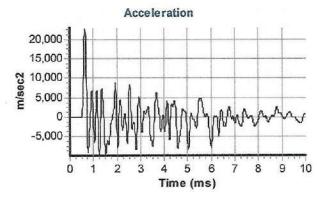
Accelerometer No.2:

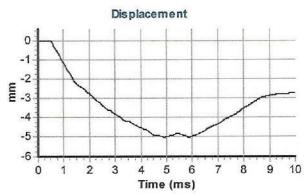
11609

SPT Hammer Information


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

CALIBRATION

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

338

Energy Ratio E, (%):

71

Signed: M.GARDNER

Title:

FITTER

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Archway Engineering Ainleys Industrial Estate

Elland

West Yorkshire

HX5 9JP

SPT Hammer Ref: AR932

Test Date: 21/06/2016

Report Date:

6/21/2016

File Name:

AR932.spt

Velocity

Test Operator:

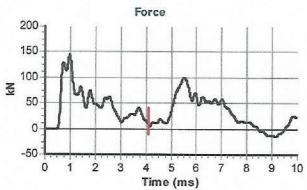
SH

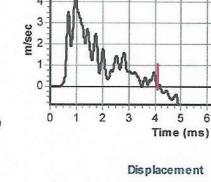
Instrumented Rod Data

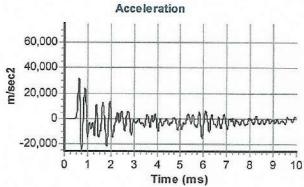
Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.1 Assumed Modulus E_a (GPa): 200

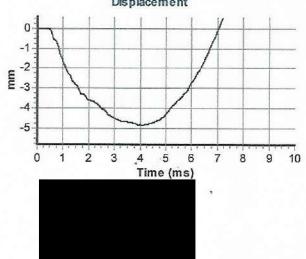
Accelerometer No.1:

7080


Accelerometer No.2: 7079


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0


Comments / Location

CALIBRATION

Calculations

Area of Rod A (mm2): 918 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 314

Energy Ratio E r (%):

66

Signed: S. HOWARTH Title:

APPENDIX 5 GAS AND GROUNDWATER MONITORING RESULTS

Site:		Lakeview Drive, Bicester					
Client:		Sladen Estates					
Job No.:		NTE2366					
Date:		24 August 2017					
Start / End Time:		11:30 - 13:40					
Engineer:		EMS					
Monitoring Equipment:	Gas Meter ID	BWB00956					
	PIDID	BWB00998					
	Dip Tape	BWB00945					
	Other						

NR = Not Recorded

Weather Conditions	Start	End
(Dry / Raining)	Dry	Dry
Cloud Cover (Oktas)	8/8	8/8
Wind Strength (m/s)	7.0	8.0
Wind Direction (from)	SSE	SE
Temperature (°C)	19.0	22.0
Barometric Pressure (mb)	1013	1010
(Rising/ Falling)		
PID - Air	0	0
PID - Calibration Gas		

											l				PID - Callola	ition ous	
Location	Relative Pressure		(I/hr) Steady	Methane Peak	(%v/v)	(%	Dioxide v/v) Steady	Oxygen Min	(%v/v) Steady	Hydrogen Sulphide (ppm)	Carbon Monoxide (ppm)	PID (ppm)	Depth to water (m)	Base of Response Zone (m)	Free-Phase Product Level Top	Groundwater Elevation	Notes
Reference	(mbar)	Peak	Steady	Peak	Steady	Peak	Steady	IVIIII	Steady	()	(1-1-1-)		()		(m)	(m AOD)	
Ambient Air Start																	
(Calibration) Ambient Air Finish																	
(Calibration)																	
BH101			<0.1		<0.1		0.1		16.9	<0.1	21.0	<0.1	1.15	2.32		65.52	
BH102			<0.1		<0.1		0.6		20.2	<0.1	<0.1	<0.1	1.10	2.90		64.78	
BH103			<0.1		<0.1		0.1		20.3	<0.1	31.0	<0.1	0.82	3.82		-0.82	
BH104													2.05	2.18		64.47	No bung in borehole therefore gas not measured
BH105			<0.1		<0.1		0.3		19.7	<0.1	<0.1	<0.1	0.72	1.60		64.10	
BH106			<0.1		<0.1		0.8		16.5	<0.1	<0.1	<0.1	1.75	2.64		64.05	Silt on dip
BH107			<0.1		<0.1		0.6		17.8	<0.1	<0.1	<0.1	3.17	3.28		62.05	
BH108			<0.1		<0.1		0.2		17.8	<0.1	<0.1	<0.1	Dry	3.18			
BH109			<0.1		<0.1		0.9		16.6	<0.1	<0.1	<0.1	Dry	3.48			
BH110			<0.1		<0.1		1.0		16.0	<0.1	<0.1	<0.1	2.98	3.36		62.67	
BH112			<0.1		<0.1		0.6		15.4	<0.1	<0.1	<0.1	NR	NR			Bentonite/cement set over bung, can not remove
BH113			<0.1		<0.1		0.3		17.0	<0.1	<0.1	<0.1	0.72	4.32		63.91	
			1			1	l	l	1		l	l		l			

Site:		Lakeview Drive, Bicester					
Client:		Sladen Estates					
Job No.:		NTE2366					
Date:		31/08/2017					
Start / End Time:		11:00-13:30					
Engineer:		EMS					
Monitoring Equipment:	Gas Meter ID	BWB00956					
	PID ID	BWB00998					
	Dip Tape	BWB00945					
	Other						

Weather Conditions	Start	End
(Dry / Raining)	Spitting	Dry
Cloud Cover (Oktas)	6/8	5/8
Wind Strength (m/s)	3.0	3.0
Wind Direction (from)	SSW	SW
Temperature (°C)	13.0	13.0
Barometric Pressure (mb)	1010	1008
(Rising/ Falling)		
PID - Air	0	0
PID - Calibration Gas		

	Relative	Flow	(I/hr)	Methane (%v/v)		Carbon Dioxide (%v/v)		Oxygen (%v/v)		Hydrogen Sulphide	Carbon Monoxide	PID	Depth to water	Base of Response	Free-Phase Product	Groundwater	Notes
Location Reference	Pressure (mbar)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	(m)	Zone (m)	Level Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)																	
Ambient Air Finish (Calibration)																	
BH101			<0.1		<0.1		0.4		19.2	<0.1	<0.1	<0.1	1.30	2.32		65.37	
BH102			<0.1		<0.1		3.7		15.0	<0.1	<0.1	<0.1	1.18	2.90		64.70	
BH103			<0.1		<0.1		0.1		20.5	<0.1	<0.1	<0.1	0.87	3.80		-0.87	
BH104			<0.1		<0.1		1.0		19.3	<0.1	<0.1	0.1	1.96	2.18		64.56	
BH105			<0.1		<0.1		0.4		20.2	<0.1	<0.1	<0.1	0.78	1.62		64.04	
BH106			<0.1		<0.1		1.8		17.8	<0.1	<0.1	<0.1	1.78	2.65		64.02	silt on dip
BH107			<0.1		<0.1		1.5		18.2	<0.1	<0.1	<0.1	2.92	3.29		62.30	
BH108			0.4		<0.1		0.7		18.3	<0.1	<0.1	<0.1	3.05	3.15		64.10	
BH109			0.4		<0.1		1.2		15.3	<0.1	<0.1	<0.1	3.38	3.48		62.51	
BH110			<0.1		<0.1		1.7		17.4	<0.1	<0.1	0.2	2.98	3.35		62.67	
BH112			<0.1		<0.1		1.1		18.7	<0.1	<0.1	<0.1	NR	NR			Bung sealed over - could not remove
BH113			<0.1		<0.1		0.1		20.6	<0.1	<0.1	<0.1	0.78	4.32		63.85	
								·									

	Lakeview Drive, Bicester					
	Sladen Estates					
	NTE2366					
	06/09/2017					
	10:00 - 15:00					
	EMS					
Gas Meter ID	BWB00956					
PID ID	BWB00998					
Dip Tape	BWB00945					
Other						
	PID ID Dip Tape					

Westher Conditions	Start	End
Weather Conditions	Start	Ena
(Dry / Raining)	Dry	Dry
Cloud Cover (Oktas)	4/8	5/8
Wind Strength (m/s)	13.0	13.0
Wind Direction (from)	W	WNW
Temperature (°C)	15.0	17.0
Barometric Pressure (mb)	1011	1011
(Rising/ Falling)		
PID - Air	0	0
PID - Calibration Gas		

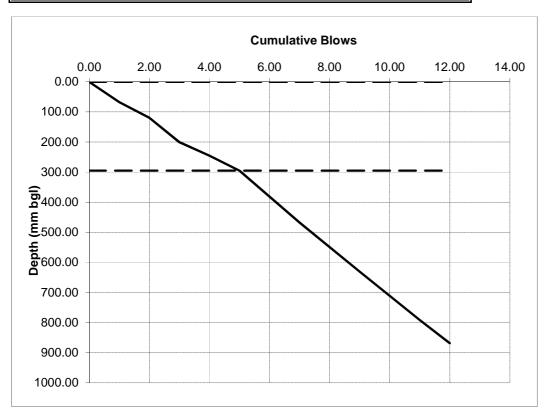
													For Share			
Relative	Flow	(l/hr)	Methane (%v/v)	Carbon (%)	Dioxide //v)	Oxygen	(%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID			Product	Groundwater	Notes
	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	(m)	Zone (m)			
(maar)														()	(III AOD)	
1011 0000		-0.1		-0.1		2 5		15.1	-1	-1	-0.1	1 20	2.00		45 47	
1011.0000																
		<0.1		<0.1				20.4	<1	<1	0.0				63.96	
		<0.1		<0.1		1.7		18.6	<1	<1	<0.1	1.78	2.63		64.02	
		<0.1		<0.1		1.0		19.5	<1	<1	<0.1	2.75	3.28		62.47	
		<0.1		<0.1		0.8		19.3	<1	<1	<0.1	2.95	3.15		64.20	
		<0.1		<0.1		1.5		17.5	<1	<1	<0.1	3.48	3.48		62.41	
		<0.1		<0.1		1.4		19.1	<1	<1	0.1	2.10	3.36		63.55	
		<0.1		<0.1		0.4		20.3	<1	<1	<0.1	NR	NR			bung cemented over- cannot remove
		<0.1		<0.1		0.8		19.2	<1	<1	<0.1	0.74	4.32		63.89	
	Relative Pressure (mbar)	Pressure (mbar) Peak	Pressure (mbar) Peak Steady 1011.0000	Peak Steady Peak Peak	No.1 No.1	Pressure (mbar) Peak Steady Peak Steady Peak 1011.0000 <0.1	Pressure (mbar) Peak Steady Peak Steady Peak Steady 1011.0000 <0.1	Pressure (mbar) Peak Steady Peak Steady Peak Steady Min 1011.0000 <0.1	Pressure (mbar) Peak Steady Peak Steady Peak Steady Min Steady 1011.0000 <0.1	No. Peak Steady Peak Steady Peak Steady Peak Steady Min Steady Steady Peak Steady Peak Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Min Steady Peak Steady Min Steady Peak Steady Min Steady Peak Steady Min Steady Peak Steady Min Steady Min Steady Peak Peak Steady Min Steady Peak Peak Steady Peak Pe	Pressure (mbar) Peak Steady Peak Steady Peak Steady Min Steady Min <td>Pressure (mbar) Peak Steady Peak Steady Peak Steady Min Steady (ppm) (ppm) (ppm) (ppm) 1011.0000 <0.1</td> <0.1	Pressure (mbar) Peak Steady Peak Steady Peak Steady Min Steady (ppm) (ppm) (ppm) (ppm) 1011.0000 <0.1	Pressure (mbar) Peak Steady Peak Steady Min Steady (ppm) (ppm) (ppm) (m) 1011.0000 <0.1	Peak Steady Peak Steady Peak Steady Min Steady M	Peak Steady Peak Steady Peak Steady Peak Steady Min Steady (ppm) (ppm) (ppm) (m) Zone (m) Level Top (ppm) (p	Peak (mbar) Peak (mbar) Steady Peak (mbar) Steady Peak (ppm) Min (ppm) (ppm) (ppm) Min (ppm) (ppm) (ppm) (ppm) Min (ppm) (ppm) (ppm) (ppm) (ppm) Min (ppm) (p

Site:		Lakeview Drive, Bicester					
Client:		Sladen Estates					
Job No.:		NTE2366					
Date:		13.9.17					
Start / End Time:		3:25 / 11:25					
Engineer:		Y Lawson					
Monitoring Equipment:	Gas Meter ID	BWB00957					
	PIDID	BWB00998					
	Dip Tape	BWB00944					
	Other						

NR = Not Recorded Dry = No Groundwater

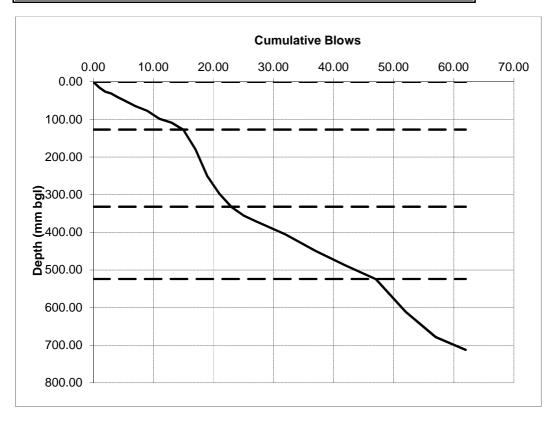
Weather Conditions	Start	End
(Dry / Raining)	Dry	Dry
Cloud Cover (Oktas)	1	3
Wind Strength (m/s)	2.9	3.5
Wind Direction (from)	SW	SW
Temperature (°C)	12.0	23.0
Barometric Pressure (mb)	991	992
(Rising/ Falling)		
PID - Air	0	0
PID - Calibration Gas		

	Relative			Methane	: (%v/v)		Dioxide v/v)	Oxyger	ı (%v/v)	Hydrogen Sulphide	Carbon Monoxide	PID	Depth to water	Base of Response	Free-Phase Product	Groundwater	Notes
Location Reference	Pressure (mbar)	Peak	Steady	Peak	Steady	Peak	Steady	Min	Steady	(ppm)	(ppm)	(ppm)	(m)	Zone (m)	Level Top (m)	Elevation (m AOD)	
Ambient Air Start (Calibration)	(IIIbai)														()	(III AOD)	
Ambient Air Finish (Calibration)																	
BH101			<0.1		<0.1		0.6		19.7	<1	<1	<0.1	1.28	2.33		65.39	
BH102			<0.1		<0.1		2.4		18.5	<1	<1	<0.1	1.25	2.85		64.63	
BH103			<0.1		<0.1		0.7		17.5	<1	<1	<0.1	0.89	3.80		-0.89	
BH104			<0.1		<0.1		0.5		16.9	<1	<1	<0.1	0.78	1.60		65.74	
BH105		23.0	<0.1		<0.1		0.9		19.8	<1	<1	<0.1	1.97	2.00		62.85	
BH106			<0.1		<0.1		1.7		17.9	<1	<1	<0.1	1.84	2.65		63.96	
BH107			<0.1		<0.1		1.1		19.1	<1	<1	<0.1	1.69	3.29		63.53	
BH108			<0.1		<0.1		1.1		19.1	<1	<1	<0.1	1.93	3.16		65.22	
BH109		0.3	<0.1		<0.1		1.8		17.4	<1	<1	<0.1	3.15	3.45		62.74	
BH110			<0.1		<0.1		1.3		19.0	<1	<1	<0.1	2.51	3.37		63.14	
BH112			<0.1		<0.1		0.7		19.9	<1	<1	<0.1	1.78	3.28		64.19	
BH113			<0.1		<0.1		0.3		19.5	<1	<1	<0.1	0.79	4.33		63.84	
		-															
		-															

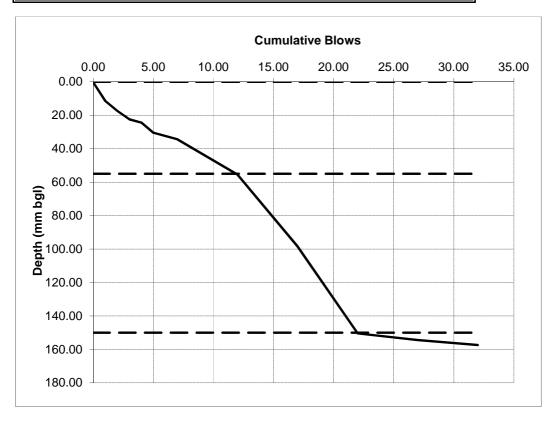


APPENDIX 6 TRL DYNAMIC CONE PENETATION RESULTS

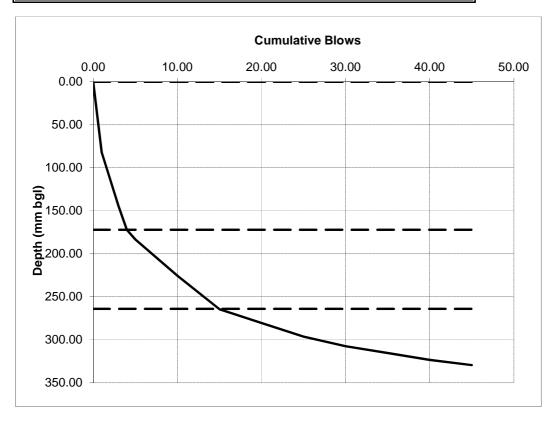
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP126
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.30
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	4	4	295	295	3.2
2	5	9	391	686	3.0

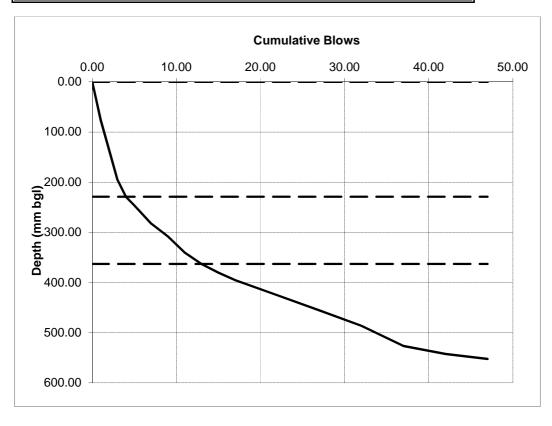
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP101
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.3
WEATHER/ GROUND CONDITION	Dry


Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	13	13	127	127	27.2
2	8	21	205	332	9.8
3	21	42	192	524	29.1
4	15	57	188	712	20.9

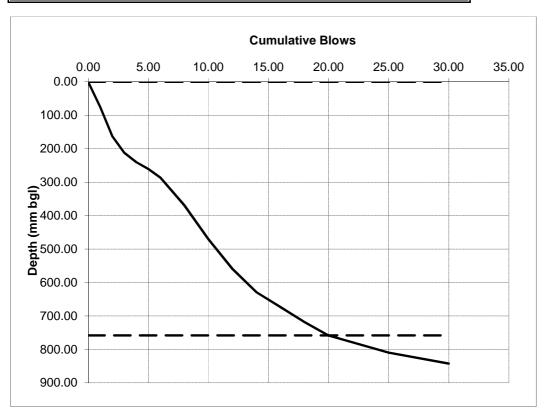
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP103
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.40
WEATHER/ GROUND CONDITION	Dry


Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	7	7	55	55	34.4
2	10	17	95	150	28.0
3	10	27	7	157	>100

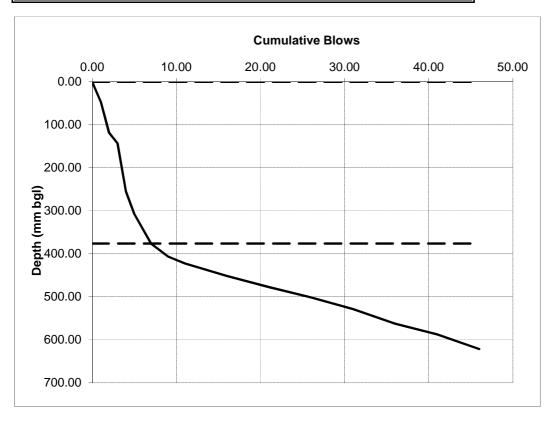
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP104
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.35
WEATHER/ GROUND CONDITION	Dry


Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	3	3	172	172	4.2
2	7	10	92	264	19.8
3	30	40	65	329	>100

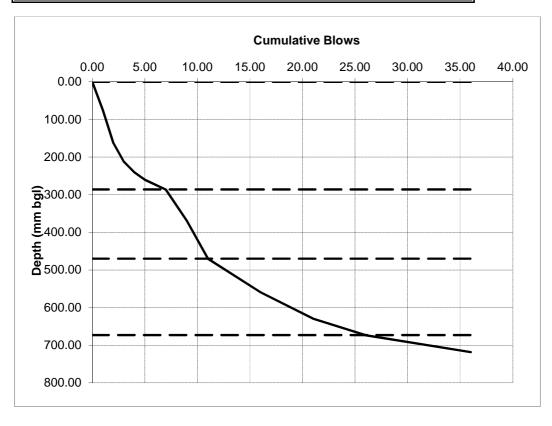
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP105
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.40
WEATHER/ GROUND CONDITION	Dry


Laver	Blows	Cumulative Blows	Layer Thickness	Total	CBD (9/)
Layer	BIOWS	Cumulative Blows	(mm)	Depth (mm bgl)	CBR (%)
1	3	3	229	229	3.1
2	8	11	134	363	15.4
3	31	42	189	552	44.7

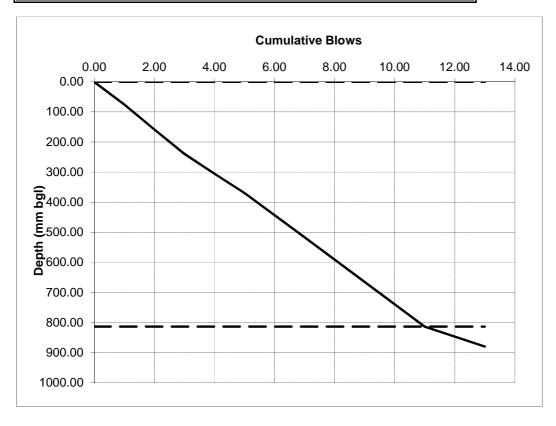
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP107
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.30
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	1
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
Layer	Biows	Gamalative Blows			OBIT (70)
			(mm)	bgl)	
1	18	18	758	758	5.8
2	7	25	84	842	21.8

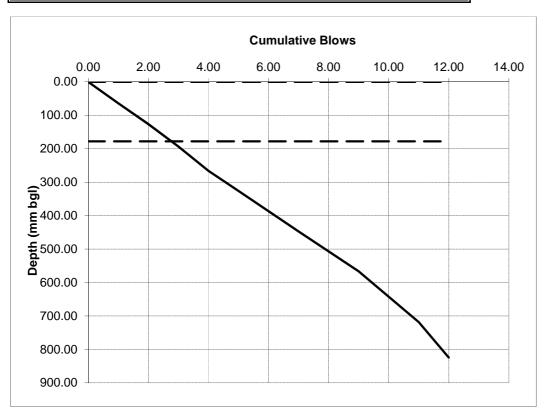
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP108
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.35
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	5	5	376	376	3.1
2	36	41	245	621	39.8

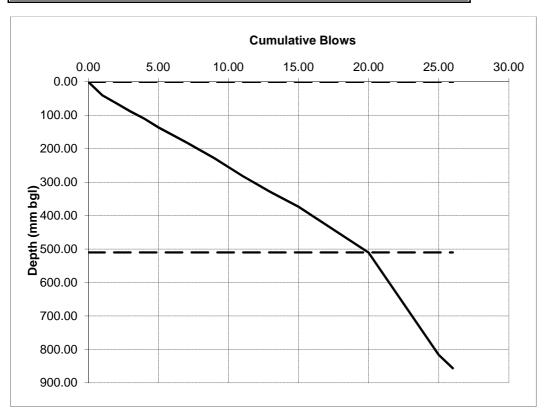
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP111
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.25
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	5	5	286	286	4.2
2	4	9	184	470	5.3
3	12	21	203	673	15.2
4	5	26	45	718	29.6

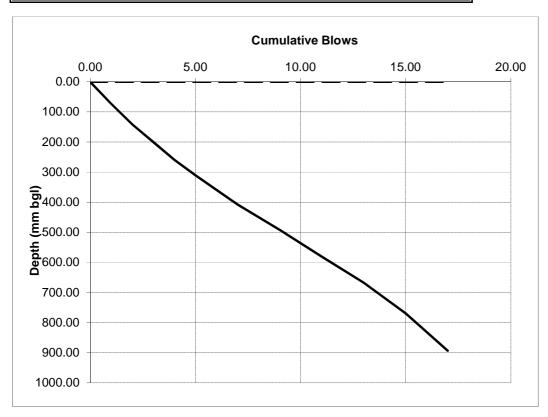
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP112
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.25
WEATHER/ GROUND CONDITION	Dry


			Lavar	Total	
ll <u>.</u>		O	Layer		ODD (0/)
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	9	9	813	813	2.6
2	2	11	66	879	7.5

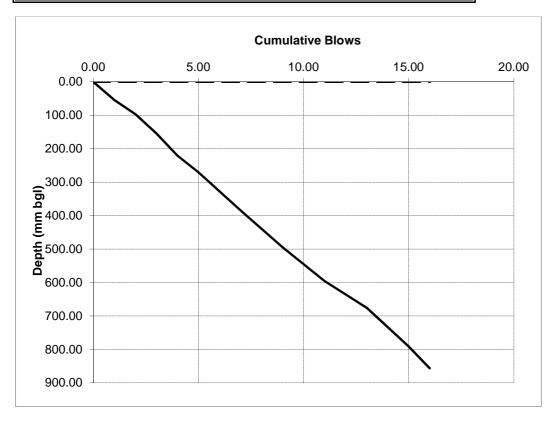
PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP119
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.30
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	2	2	178	178	2.6
2	9	11	646	824	3.3

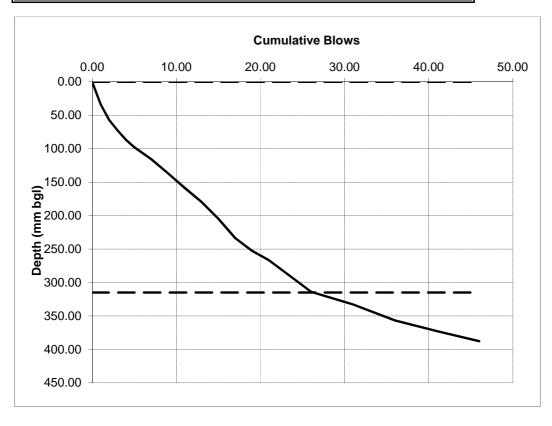
PROJECT NUMBER	NTE2366	
PROJECT TITLE	Lakeview Drive, Bicester	
TEST REFERENCE	TP120	
DATE	15-Aug-17	
MATERIAL/ STRATA TYPE	Natural	
START DEPTH (mm bgl)	0.30	
WEATHER/ GROUND CONDITION	Dry	


			Lavor	Total	
	Diama	Cumulativa Blavia	Layer		CDD (0/)
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	15	15	510	510	7.3
2	10	25	346	856	7.1

PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP121
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.30
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	1
ll .	۱ ـ.	OI-ti Di			ODD (0/)
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	15	15	893	893	4.0

PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP122
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.35
WEATHER/ GROUND CONDITION	Dry


			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
	2.00		(mm)	bgl)	02.1 (70)
1	4.5	45			4.2
1	15	15	856	856	4.2

PROJECT NUMBER	NTE2366
PROJECT TITLE	Lakeview Drive, Bicester
TEST REFERENCE	TP124
DATE	15-Aug-17
MATERIAL/ STRATA TYPE	Natural
START DEPTH (mm bgl)	0.7
WEATHER/ GROUND CONDITION	Dry

			Layer	Total	
Layer	Blows	Cumulative Blows	Thickness	Depth (mm	CBR (%)
			(mm)	bgl)	
1	26	26	314	315	21.7
2	15	41	72	387	57.5

APPENDIX 7 SOIL AND SOIL LEACHATE CHEMICAL ANALYSIS RESULTS

Luke Cross

BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number: 17-58560

Project / Site name: Lakeview Drive, Bicester Samples received on: 17/08/2017

Your job number: NTE2366 Samples instructed on: 23/08/2017

Your order number: POR012935 Analysis completed by: 06/09/2017

Report Issue Number: 1 Report issued on: 06/09/2017

Samples Analysed: 6 soil samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 17-58560 Project / Site name: Lakeview Drive, Bicester Your Order No: POR012935

Lab Sample Number				806393	806394	806395	806396	806397
Sample Reference				BH101	BH102	BH103	BH106	BH110
Sample Number				1	1	2	3	5
Depth (m)				0.00-1.00	1.00-1.45	1.20-1.65	0.50-1.00	2.50-3.00
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.7	8.4	9.4	14	19
Total mass of sample received	kg	0.001	NONE	0.69	0.91	0.82	0.39	0.60
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.5	8.4	8.4	8.1	7.6
Water Soluble SO4 16hr extraction (2:1 Leachate			I					

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.5	8.4	8.4	8.1	7.6
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	a/l	0.00125	MCERTS	0.36	0.035	0.020	0.042	1.0

Analytical Report Number: 17-58560 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012935

Lab Sample Number		806398				
Sample Reference	BH112					
Sample Number				5		
Depth (m)				2.00-2.50		
Date Sampled				Deviating		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1		
Moisture Content	%	N/A	NONE	19		
Total mass of sample received	kg	0.001	NONE	0.33		

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.8		
Water Soluble SO4 16hr extraction (2:1 Leachate						
Equivalent)	g/l	0.00125	MCERTS	0.36		

Analytical Report Number : 17-58560 Project / Site name: Lakeview Drive, Bicester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
806393	BH101	1	0.00-1.00	Light brown loam and clay with gravel.
806394	BH102	1	1.00-1.45	Light brown clay and sand with gravel.
806395	BH103	2	1.20-1.65	Light brown clay and sand.
806396	BH106	3	0.50-1.00	Brown clay and sand with gravel and vegetation.
806397	BH110	5	2.50-3.00	Grey clay.
806398	BH112	5	2.00-2.50	Grey clay.

Analytical Report Number: 17-58560 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH101	1	S	17-58560	806393	a			
BH102	1	S	17-58560	806394	а			
BH103	2	S	17-58560	806395	а			
BH106	3	S	17-58560	806396	a			
BH110	5	S	17-58560	806397	а			
BH112	5	S	17-58560	806398	а			

Luke Cross

BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester Samples received on: 17/08/2017

Your job number: NTE2366 Samples instructed on: 23/08/2017

Your order number: POR012937 Analysis completed by: 04/09/2017

Report Issue Number: 1 Report issued on: 04/09/2017

Samples Analysed: 3 leachate samples - 16 soil samples

Signed:

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Iss No 17-58244-1 Lakeview Drive, Bicester NTE2366

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

								_
Lab Sample Number				804157	804158	804159	804160	804161
Sample Reference				TP101	TP101	TP102	TP102	TP103
Sample Number				1	2	1	2	1
Depth (m)				0.20-0.30	0.40-0.50 15/08/2017	0.10-0.20	0.40-0.50	0.20-0.30
Date Sampled Time Taken				15/08/2017 None Supplied	None Supplied	15/08/2017 None Supplied	15/08/2017 None Supplied	15/08/2017 None Supplied
Tille Takeli				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	10	7.9	12	11
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile- Loose Fibres	-	Chrysotile- Loose Fibres
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Detected	-	Detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	8.0	9.7	8.1	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide Water Soluble SO4 16hr outraction (2.11 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.025	0.021	0.64	0.049	0.85
Total Sulphur	mg/kg	50	MCERTS	790	650	1500	610	1300
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.044	0.024	0.017	0.020	0.015
Total Phenois				.10	. 1.0	.10	. 1.0	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene Anthracene	mg/kg	0.05 0.05	MCERTS	< 0.05	< 0.05 < 0.05	0.73 0.21	0.39	0.19
Fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 0.24	< 0.05 < 0.05	2.2	0.19 1.2	< 0.05 0.67
Pyrene	mg/kg	0.05	MCERTS	0.22	< 0.05	2.1	1.1	0.60
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.12	< 0.05	1.4	0.82	0.42
Chrysene	mg/kg	0.05	MCERTS	0.15	< 0.05	1.6	0.96	0.45
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.13	< 0.05	2.0	1.2	0.43
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.13	< 0.05	1.4	0.59	0.41
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05	MCERTS MCERTS	0.17 < 0.05	< 0.05 < 0.05	2.4 1.5	1.2 0.63	0.55 0.30
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	0.23	0.63	0.30
Benzo(ghi)perylene	mg/kg		MCERTS	< 0.05	< 0.05	1.9	0.86	0.39
15 / - /								
Total PAH					•			•
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.16	< 0.80	17.5	9.29	4.50
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	28	19	12	20	22
Barium (aqua regia extractable)	mg/kg	1	MCERTS	72	49	130	81	68
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	0.70	0.43	0.61	0.72
Boron (water soluble)	mg/kg	0.2	MCERTS	4.5	3.0	3.3	2.3	1.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.7	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	19	21	21	22
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	41 51	31 23	72 67	35 40	36 30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	19	14	18	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	71	49	31	43	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	95	48	170	78	79

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

Lab Sample Number				804157	804158	804159	804160	804161
Sample Reference				TP101	TP101	TP102	TP102	TP103
Sample Number Depth (m) Date Sampled				1	2	1	2	1
				0.20-0.30	0.40-0.50	0.10-0.20	0.40-0.50	0.20-0.30
				15/08/2017	15/08/2017	15/08/2017	15/08/2017	15/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
		1	MCERTS	< 1.0	-	< 1.0	-	-
o-xylene	μg/kg		TIGETTIG					
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
				< 1.0	- 27	< 1.0	- 61	46
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons	µg/kg	1	MCERTS			-		
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	µg/kg mg/kg mg/kg	10 0.1	MCERTS MCERTS	48 < 0.1	27	1000	61	46
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6	µg/kg mg/kg mg/kg	10	MCERTS MCERTS	48	27 < 0.1	1000	61 < 0.1	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	µg/kg mg/kg mg/kg	1 10 0.1	MCERTS MCERTS MCERTS	48 < 0.1 < 0.001	27 < 0.1	1000 < 0.1 < 0.001	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	рд/kg mg/kg mg/kg mg/kg mg/kg	1 10 0.1 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	48 < 0.1 < 0.001 < 0.001	27 < 0.1	1000 < 0.1 < 0.001 < 0.001	61 < 0.1	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	мд/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 0.001	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 0.001	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0	61 < 0.1 - - - -	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.1 0.001 0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200	61 < 0.1	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1 0.1 0.001 0.001 0.001 1 2 8	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15	61 < 0.1	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic EC5 - EC35	mg/kg	1 0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg	1 0.1 0.001 0.001 0.001 1 2 8 8 10	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7	mg/kg	1 0.1 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001 < 0.001 < 0.001	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001 < 0.001 < 0.001	61 < 0.1	46 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC8 - EC8	mg/kg	1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001 < 0.001 < 0.001 < 0.001	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001 < 0.001 < 0.001 < 0.001	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1 0.1 0.001 0.001 0.001 2 8 8 10 0.001 0.001 0.001	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001 < 0.001 < 0.001 < 1.0 < 1.0	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1 0.1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 0.001 1 2	MCERTS MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001 < 0.001 < 0.001 < 1.0 4.2	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001 < 0.001 < 0.001 4.3 14	61 < 0.1	46 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aliphatic >EC50 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1 0.1 0.001 0.001 0.001 2 8 8 10 0.001 0.001 0.001	MCERTS	48 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 15 19 < 0.001 < 0.001 < 0.001 < 1.0 < 1.0	27 < 0.1	1000 < 0.1 < 0.001 < 0.001 < 0.001 < 1.0 7.0 15 200 220 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	61 < 0.1	46 < 0.1

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

Lab Sample Number				804157	804158	804159	804160	804161
Sample Reference				TP101	TP101	TP102	TP102	TP103
Sample Number				1	2	1	2	1
Depth (m)				0.20-0.30	0.40-0.50	0.10-0.20	0.40-0.50	0.20-0.30
				15/08/2017	15/08/2017	15/08/2017	15/08/2017	15/08/2017
Date Sampled Time Taken				None Supplied				
Time raken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Environmental Forensics				<u> </u>				
Organochlorine Pesticides								
Aldrin	μg/kg	10	NONE	_	_	_	_	-
Alpha-HCH (Alpha BHC)	μg/kg	10	NONE	_	_	-	_	_
Beta-HCH (Beta-BHC)	μg/kg	10	NONE	-	_	-	_	-
Chlordane (sum of cis & trans isomers)	μg/kg	10	NONE	_	_	_	_	_
Delta-HCH (Delta-BHC)	μg/kg	10	NONE	-	_	-	_	-
Dieldrin	μg/kg	10	NONE	-	_	-	_	_
Endosulphan A	μg/kg	10	NONE	-	_	_	_	_
Endosulphan B	μg/kg	10	NONE	-	_	_	_	_
Endrin	μg/kg	10	NONE	-	_	_	_	_
Gamma-HCH (Lindane) (Gamma-BHC)	μg/kg	10	NONE	-	_	_	_	_
HCB (Hexachlorobenzene)	μg/kg	10	NONE	-	_	_	_	_
Heptachlor	μg/kg	10	NONE	-	_	_	_	_
Heptachlor Epoxide	μg/kg	10	NONE	-	_	_	-	-
Isodrin	μg/kg	10	NONE	-	-	-	-	-
pp-Methoxychlor	μg/kg	10	NONE	-	-	-	-	-
o,p-DDE	μg/kg	10	NONE	-	-	-	-	-
o,p-DDT	μg/kg	10	NONE	-	-	-	-	-
o,p-TDE (o,p-DDD)	μg/kg	10	NONE	-	-	-	-	-
p,p-DDE	μg/kg	10	NONE	-	-	-	-	-
p,p-DDT	μg/kg	10	NONE	-	-	-	-	-
p,p-TDE (p,p-DDD)	μg/kg	10	NONE	-	-	-	-	-
Trifluralin	μg/kg	10	NONE	-	-	-	-	-
Organophosphorous pesticides								
Azinphos-methyl	μg/kg	10	NONE	-	-	-	-	-
Chlorfenvinphos I (cis)	μg/kg	10	NONE	-	-	-	-	-
Chlorfenvinphos II (trans)	μg/kg	10	NONE	-	-	-	-	-
Chlorfenvinphos-methyl	μg/kg	10	NONE	-	-	-	-	-
Diazinon	μg/kg	10	NONE	-	-	-	-	-
Dichlorvos	μg/kg	10	NONE	-	-	-	-	-
Dimethoate	μg/kg	10	NONE	-	-	-	-	-
E-mevinphos	μg/kg	10	NONE	-	-	-	-	-
Z-mevinphos	μg/kg	10	NONE	-	-	-	-	-
Fenitrothion	μg/kg	10	NONE	-	-	-	-	-
Fenthion	μg/kg	10	NONE	-	-	-	-	-
Malathion	μg/kg	10	NONE	-	-	-	-	-
Parathion-ethyl	μg/kg	10	NONE	-	-	-	-	-
Parathion-methyl	μg/kg	10	NONE	-	-	-	-	-
Phorate	μg/kg	10	NONE	-	-	-	-	-

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

Lab Cannala Name				004465	004465	00446:	00446=	004465
Lab Sample Number			804162	804163	804164	804165	804166	
Sample Reference				TP103	TP105	TP106	TP107	TP114
Sample Number				2	1	1	2	1
Depth (m)				0.90-1.00	0.50-0.60	0.10-0.20	0.50-0.60	0.10-0.20
Date Sampled Time Taken				15/08/2017 None Supplied	15/08/2017 None Supplied	15/08/2017 None Supplied	16/08/2017 None Supplied	15/08/2017 None Supplied
Time taken				топе заррнеа	None Supplied	нопе заррпеа	None Supplied	None Supplied
		윤ᆫ	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edi					
(Soil Analysis)	Ŗ	ti of	us					
		_	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	41	28	12	18
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
	1	1	1				I	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	_	_	-	_	_
A DE COLOR DE COLOR A LA COLOR A COLOR	.,,,,							
Asbestos in Soil	Type	N/A	ISO 17025	-	-	Not-detected	-	Not-detected
General Inorganics			I	7.	7.	7.	I	
pH - Automated	pH Units	N/A	MCERTS	7.9	7.4	7.6	8.1	7.7
Total Cyanide Complex Cyanide	mg/kg mg/kg	1	MCERTS MCERTS	< 1 < 1	< 1	< 1	< 1 < 1	< 1 < 1
Free Cyanide	mg/кg mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg		PICENTS	\ <u>1</u>	` 1	` 1	` 1	` 1
Equivalent)	g/l	0.00125	MCERTS	0.22	0.045	0.021	0.025	0.028
Total Sulphur	mg/kg	50	MCERTS	610	2600	1000	190	750
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.015	0.094	0.060	0.0015	0.029
Total Phenols								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friendis (monoriyane)	mg/kg		MCERTS	< 1.0	< 1.0	V 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene Fluoranthene	mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05				
Pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-					_	-	-	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	9.1	16	10	18
Barium (aqua regia extractable)	mg/kg	1	MCERTS	41	68	68	28	61
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.85	1.3	0.80	0.42	0.86
Boron (water soluble)	mg/kg	0.2	MCERTS	2.9	8.1	7.7	0.6	4.3
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg	0.2 4	MCERTS MCERTS	< 0.2 < 4.0	0.4 < 4.0	< 0.2 < 4.0	< 0.2 < 4.0	< 0.2 < 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	26	21	11	29
Copper (agua regia extractable)	mg/kg	1	MCERTS	25	59	32	14	41
Lead (aqua regia extractable)	mg/kg	1	MCERTS	16	15	41	5.6	29
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	20	15	13	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	4.8	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	46	61	43	23	36
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	36	21	52	25	100

Analytical Report Number: 17-58244 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

Lab Sample Number								
Eur campie Humber				804162	804163	804164	804165	804166
Sample Reference				TP103	TP105	TP106	TP107	TP114
Sample Number				2	1	1	2	1
Depth (m)				0.90-1.00	0.50-0.60	0.10-0.20	0.50-0.60	0.10-0.20
Date Sampled	15/08/2017	15/08/2017	15/08/2017	16/08/2017	15/08/2017			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	_	_	_	-
Toluene	µg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
								_
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40	µg/kg mg/kg	10	MCERTS MCERTS	19	< 10	< 10	< 10	47
Petroleum Hydrocarbons								
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	mg/kg mg/kg	10	MCERTS MCERTS	19	< 10	< 10	< 10	47
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6	mg/kg mg/kg mg/kg	10 0.1	MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	mg/kg mg/kg	10	MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg mg/kg mg/kg	10 0.1 0.001 0.001	MCERTS MCERTS MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg	10 0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC15 - EC21 TPH-CWG - Aliphatic >EC15 - EC35 TPH-CWG - Aliphatic >EC25 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC55 - EC35 TPH-CWG - Aliphatic >EC55 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10	MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC9 - EC12 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS MCERTS	19 < 0.1	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	47 < 0.1

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

Lab Sample Number				804162	804163	804164	804165	804166
Sample Reference				TP103	TP105	TP106	TP107	TP114
Sample Number				2	1	1	2	1
Depth (m)				0.90-1.00	0.50-0.60	0.10-0.20	0.50-0.60	0.10-0.20
Date Sampled				15/08/2017	15/08/2017	15/08/2017	16/08/2017	15/08/2017
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Environmental Forensics								
Organochlorine Pesticides				1			1	
Aldrin	μg/kg 	10	NONE	-	-	< 10	-	< 10
Alpha-HCH (Alpha BHC)	μg/kg	10	NONE	-	-	< 10	-	< 10
Beta-HCH (Beta-BHC)	μg/kg	10 10	NONE	<u>-</u>	-	< 10 < 10	-	< 10 < 10
Chlordane (sum of cis & trans isomers) Delta-HCH (Delta-BHC)	μg/kg	10	NONE	-	-	< 10		< 10 < 10
Delta-псп (Delta-впс) Dieldrin	μg/kg	10	NONE NONE	-		< 10	-	< 10
Endosulphan A	μg/kg	10	NONE			< 10		< 10
Endosulphan B	μg/kg μg/kg	10	NONE	-		< 10		< 10
Endrin	μg/kg μg/kg	10	NONE			< 10		< 10
Gamma-HCH (Lindane) (Gamma-BHC)	μg/kg	10	NONE	-	_	< 10	-	< 10
HCB (Hexachlorobenzene)	μg/kg μg/kg	10	NONE	_	_	< 10	_	< 10
Heptachlor	μg/kg	10	NONE	_	_	< 10	_	< 10
Heptachlor Epoxide	μg/kg	10	NONE	-	_	< 10	-	< 10
Isodrin	μg/kg	10	NONE	-	_	< 10	-	< 10
pp-Methoxychlor	μg/kg	10	NONE	-	-	< 10	-	< 10
o,p-DDE	μg/kg	10	NONE	-	-	< 10	-	< 10
o,p-DDT	μg/kg	10	NONE	-	-	< 10	-	< 10
o,p-TDE (o,p-DDD)	μg/kg	10	NONE	-	-	< 10	-	< 10
p,p-DDE	μg/kg	10	NONE	-	-	< 10	-	< 10
p,p-DDT	μg/kg	10	NONE	-	-	< 10	-	< 10
p,p-TDE (p,p-DDD)	μg/kg	10	NONE	-	-	< 10	-	< 10
Trifluralin	μg/kg	10	NONE	-	-	< 10	-	< 10
Organophosphorous pesticides								
Azinphos-methyl	μg/kg	10	NONE	_	_	< 25.0	_	< 25.0
Chlorfenvinphos I (cis)	μg/kg	10	NONE	_	_	< 10	_	< 10
Chlorfenvinphos II (trans)	μg/kg	10	NONE	-	_	< 10	-	< 10
Chlorfenvinphos-methyl	μg/kg	10	NONE	_	_	< 10	-	< 10
Diazinon	μg/kg	10	NONE	-	-	< 10	-	< 10
Dichlorvos	μg/kg	10	NONE	-	-	< 10	-	< 10
Dimethoate	μg/kg	10	NONE	-	-	< 10	-	< 10
E-mevinphos	μg/kg	10	NONE	-	-	< 10	-	< 10
Z-mevinphos	μg/kg	10	NONE	-	-	< 10	-	< 10
Fenitrothion	μg/kg	10	NONE	-	-	< 10	-	< 10
Fenthion	μg/kg	10	NONE	-	-	< 10	-	< 10
Malathion	μg/kg	10	NONE	-	-	< 10	-	< 10
Parathion-ethyl	μg/kg	10	NONE	-	-	< 10	-	< 10
Parathion-methyl	μg/kg	10	NONE	-	-	< 10	-	< 10
Phorate	μg/kg	10	NONE	-	-	< 10	-	< 10

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

Lab Sample Number				804167	804168	804169	804170	804171
Sample Reference				TP114	TP118	TP119	TP120	TP121
Sample Number				5	2	2	1	1
Depth (m)				1.00-1.20	0.70-0.80	0.80-0.90	0.60-0.70	0.10-0.20
Date Sampled Time Taken				15/08/2017 None Supplied	17/08/2017 None Supplied	17/08/2017 None Supplied	17/08/2017 None Supplied	16/08/2017 None Supplied
Tille Takeli				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	16	13	5.0	15
Total mass of sample received	kg	0.001	NONE	2.0	1.6	1.4	2.0	1.5
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	7.3	7.9	8.2	7.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.019	0.019	0.13	0.011	0.0098
Total Sulphur	mg/kg	50	MCERTS	270	190	320	280	560
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0022	0.0037	0.0044	0.0024	0.028
Total Phenols Total Phenols (monohydric)		1	MCERTS	< 1.0	< 1.0	< 1.0	- 10	< 1.0
Total Phenois (mononyunc)	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg		MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Speciated rotal Er A 10 FAIS	mg/kg	0.0	PICERTS	₹ 0.00	V 0.00	V 0.00	₹ 0.00	V 0.00
Heavy Metals / Metalloids			1	0.5		2 -	1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.2	8.0	3.7	14	9.4
Barium (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg mg/kg	0.06	MCERTS MCERTS	0.20	39 0.71	35 0.68	50 0.46	61 0.84
Boron (water soluble)	mg/kg	0.06	MCERTS	0.20	2.1	1.8	0.46	5.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.2	22	23	14	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	27	28	25	42
Lead (aqua regia extractable)	mg/kg	1	MCERTS	4.7	12	11	7.1	39
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 12	< 0.3 9.3	< 0.3 12	< 0.3 18	< 0.3 19
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0	9.3 < 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	20	32	33	24	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	23	32	26	29	78

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

Lab Sample Number				804167	804168	804169	804170	804171
Sample Reference				TP114	TP118	TP119	TP120	TP121
Sample Number				5	2	2	1	1
Depth (m)				1.00-1.20	0.70-0.80	0.80-0.90	0.60-0.70	0.10-0.20
Date Sampled	15/08/2017	17/08/2017	17/08/2017	17/08/2017	16/08/2017			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics		l						
Benzene	ug/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	1	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xvlene	μg/kg	1	MCERTS	-	-	-	-	-
O AYICHC								
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
		10	MCERTS MCERTS	< 10	< 10	< 10	19	< 10
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons	μg/kg							
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	μg/kg mg/kg	10	MCERTS MCERTS	< 10	< 10	< 10	19	< 10
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40	μg/kg mg/kg	10	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6	μg/kg mg/kg mg/kg	10 0.1	MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	μg/kg mg/kg mg/kg mg/kg mg/kg	10 0.1 0.001 0.001	MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16	mg/kg	0.1 0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC35 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aliphatic >EC20 - EC35 TPH-CWG - Aliphatic >EC50 - EC35	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC3 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC6 - EC10 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC6 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 1 1 2	MCERTS MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1	< 10 < 0.1	< 10 < 0.1	19 < 0.1	< 10 < 0.1

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937

Lab Sample Number				804167	804168	804169	804170	804171
Sample Reference				TP114	TP118	TP119	TP120	TP121
Sample Number				5	2	2	1	1
Depth (m)				1.00-1.20	0.70-0.80	0.80-0.90	0.60-0.70	0.10-0.20
Date Sampled				15/08/2017	17/08/2017	17/08/2017	17/08/2017	16/08/2017
	Time Taken			None Supplied				
Time Taken				попе заррнеа	None Supplied	топе заррнеа	Hone Supplied	Horic Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Environmental Forensics								
Ourse address Bastlette								
Organochlorine Pesticides		10	NONE	I			I	. 10
Aldrin	μg/kg	10	NONE	-	-	-	-	< 10
Alpha-HCH (Alpha BHC)	μg/kg	10	NONE	-	-	-	-	< 10
Beta-HCH (Beta-BHC)	μg/kg	10	NONE	-	-	-	-	< 10
Chlordane (sum of cis & trans isomers)	μg/kg	10	NONE	-	-	-	-	< 10
Delta-HCH (Delta-BHC)	μg/kg	10	NONE	-	-	-	-	< 10
Dieldrin	μg/kg	10	NONE		-	-	-	< 10
Endosulphan A	μg/kg	10	NONE	-	-	-	-	< 10
Endosulphan B	μg/kg	10	NONE	-	-	-	-	< 10
Endrin	μg/kg	10	NONE	-	-	-	-	< 10
Gamma-HCH (Lindane) (Gamma-BHC)	μg/kg	10	NONE	-	-	-	-	< 10
HCB (Hexachlorobenzene)	μg/kg	10	NONE	-	-	-	-	< 10
Heptachlor	μg/kg	10	NONE	-	-	-	-	< 10
Heptachlor Epoxide	μg/kg	10	NONE	-	-	-	-	< 10
Isodrin	μg/kg	10	NONE	-	-	-	-	< 10
pp-Methoxychlor	μg/kg	10	NONE	-	-	-	-	< 10
o,p-DDE	μg/kg	10	NONE	-	-	-	-	< 10
o,p-DDT	μg/kg	10	NONE	-	-	-	-	< 10
o,p-TDE (o,p-DDD)	μg/kg	10	NONE	-	-	-	-	< 10
p,p-DDE	μg/kg	10	NONE	-	-	-	-	< 10
p,p-DDT	μg/kg	10	NONE	-	-	-	-	< 10
p,p-TDE (p,p-DDD)	μg/kg	10	NONE	-	-	-	-	< 10
Trifluralin	μg/kg	10	NONE	-	-	-	-	< 10
Organophosphorous pesticides								
Azinphos-methyl	μg/kg	10	NONE	-	-	-	-	< 25.0
Chlorfenvinphos I (cis)	μg/kg	10	NONE	-	-	-	-	< 10
Chlorfenvinphos II (trans)	μg/kg	10	NONE	-	-	-	-	< 10
Chlorfenvinphos-methyl	μg/kg	10	NONE	-	-	-	-	< 10
Diazinon	μg/kg	10	NONE	-	-	-	-	< 10
Dichlorvos	μg/kg	10	NONE	-	-	-	-	< 10
Dimethoate	μg/kg	10	NONE	-	-	-	-	< 10
E-mevinphos	μg/kg	10	NONE	-	-	-	-	< 10
Z-mevinphos	μg/kg	10	NONE	-	-	-	-	< 10
Fenitrothion	μg/kg	10	NONE	-	-	-	-	< 10
Fenthion	μg/kg	10	NONE	-	-	-	-	< 10
Malathion	μg/kg	10	NONE	-	-	-	-	< 10
Parathion-ethyl	ug/kg	10	NONE	-	-	-	-	< 10
Parathion-methyl	μg/kg	10	NONE	-	-	-	-	< 10
Phorate	μg/kg	10	NONE	-	_	_	-	< 10

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Bicester
Your Order No: POR012937

Lab Sample Number				804172				
Sample Reference				TD12F				
Sample Number				TP125 1				
Depth (m)				0.40-0.50				
Date Sampled				16/08/2017				
ime Taken			None Supplied					
			A					
Analytical Parameter	_	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	ect ai	dita					
(Son Analysis)	6,	을 약	s					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content Total mass of sample received	% kg	N/A 0.001	NONE NONE	12 2.0				
Total mass of sample received	kg	0.001	NONE	2.0				
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-				
A.L	+							
Asbestos in Soil	Type	N/A	ISO 17025	-				
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9				
Total Cyanide	mg/kg	1	MCERTS	< 1				
Complex Cyanide	mg/kg	1	MCERTS	< 1				
Free Cyanide	mg/kg	1	MCERTS	< 1				
Water Soluble SO4 16hr extraction (2:1 Leachate	- "	0.00135	MCERTS	0.015				
Equivalent) Total Sulphur	g/l mg/kg	0.00125 50	MCERTS	0.015 140				
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0041				
Traction organic carbon (1 oc)	14/1	0.001	NONE	0.0011	I		I	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthene Fluorene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05				
Anthracene	mg/kg	0.05	MCERTS	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Pyrene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Chrysene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05				
<u> </u>					•		•	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80				
Heavy Metals / Metalloids				10	ı		I	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	16 85				
Barium (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg mg/kg	0.06	MCERTS	1.3				
Boron (water soluble)	mg/kg	0.06	MCERTS	2.2				
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2				
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	26				
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	14				
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3				
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	50				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0				
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	50 86				
Enic Jaqua regia extractable)	ilig/kg		LICEVIA	00	1	I	I	

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Biceste
Your Order No: POR012937

Lab Sample Number				804172			
Sample Reference				TP125			
Sample Number				1			
Depth (m)				0.40-0.50			
Date Sampled	16/08/2017						
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	ug/kg	1	MCERTS	-			
Toluene	μg/kg	1	MCERTS	-			
Ethylbenzene	μg/kg	1	MCERTS	-			
p & m-xylene	μg/kg	1	MCERTS	-			
o-xylene	μg/kg	1	MCERTS	-			
			110555	_			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	<u> </u>	I	
	μg/kg mg/kg	10	MCERTS MCERTS	< 10			
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons							
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10)	mg/kg mg/kg	10	MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6	mg/kg mg/kg mg/kg	10 0.1 0.001	MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001	MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kq mg/kg mg/kg mg/kg mg/kq mg/kq	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC10	mg/kg mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC10	mg/kg mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC50 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001 0.001 0.001 0.001 1 2 8 8 10	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aromatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	10 0.1 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC7 - EC35 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC9 - EC12 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS MCERTS	< 10 < 0.1			
Petroleum Hydrocarbons TPH C10 - C40 TPH2 (C6 - C10) TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC15 TPH-CWG - Aliphatic >EC10 - EC21 TPH-CWG - Aliphatic >EC10 - EC35 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 10 < 0.1			

Analytical Report Number: 17-58244

Project / Site name: Lakeview Drive, Biceste
Your Order No: POR012937

Lab Sample Number				804172		
Sample Reference				TP125		
Sample Number				1		
Depth (m)				0.40-0.50		
Date Sampled				16/08/2017		
Time Taken	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Environmental Forensics						
Organochlorine Pesticides						
Aldrin	μg/kg	10	NONE	-		
Alpha-HCH (Alpha BHC)	μg/kg	10	NONE	_		
Beta-HCH (Beta-BHC)	μg/kg μg/kg	10	NONE			
Chlordane (sum of cis & trans isomers)	μg/kg	10	NONE	_		
Delta-HCH (Delta-BHC)	μg/kg	10	NONE	-		
Dieldrin	μg/kg μg/kg	10	NONE	-		
Endosulphan A	μg/kg μg/kg	10	NONE	-		
Endosulphan B	μg/kg μg/kg	10	NONE	-		
Endosciphan B Endrin	μg/kg μg/kg	10	NONE	-		
Gamma-HCH (Lindane) (Gamma-BHC)	μg/kg	10	NONE	-		
HCB (Hexachlorobenzene)	μg/kg μg/kg	10	NONE	-		
Heptachlor	μg/kg μg/kg	10	NONE	-		
Heptachlor Epoxide	μg/kg μg/kg	10	NONE	-		
Isodrin	μg/kg μg/kg	10	NONE	-		
pp-Methoxychlor	μg/kg μg/kg	10	NONE	-		
o,p-DDE	μg/kg μg/kg	10	NONE	-		
o,p-DDT	μg/kg μg/kg	10	NONE	-		
o,p-TDE (o,p-DDD)		10	NONE	-		
	μg/kg	10	NONE	-		
p,p-DDE p,p-DDT	μg/kg μg/kg	10	NONE	-		
p,p-TDE (p,p-DDD)	μg/kg μg/kg	10	NONE	-		
Trifluralin	μg/kg μg/kg	10	NONE	-		
TTITIUTAIIT	µg/ку	10	NONE	-		
Organophosphorous pesticides					 	
Azinphos-methyl	μg/kg	10	NONE	-		
Chlorfenvinphos I (cis)	μg/kg	10	NONE	-		
Chlorfenvinphos II (trans)	μg/kg	10	NONE	-		
Chlorfenvinphos-methyl	μg/kg	10	NONE	-		
Diazinon	μg/kg	10	NONE	-		
Dichlorvos	μg/kg	10	NONE	-		
Dimethoate	μg/kg	10	NONE	-		
E-mevinphos	μg/kg	10	NONE	-		
Z-mevinphos	μg/kg	10	NONE	-		
Fenitrothion	μg/kg	10	NONE	-		
Fenthion	μg/kg	10	NONE	-		
Malathion	μg/kg	10	NONE	-		
Parathion-ethyl	μg/kg	10	NONE	-		
Parathion-methyl	μg/kg	10	NONE	-		
Phorate	μg/kg	10	NONE	-		

Analytical Report Number: 17-58244 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR012937							
Lab Sample Number				804173	804174	804175	
Sample Reference				TP101	TP101	TP102	
Sample Number				1	2	1	
Depth (m)	Pepth (m)					0.10-0.20	
Date Sampled		15/08/2017	15/08/2017	15/08/2017			
Time Taken	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.9	8.0	8.2	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	
Sulphate as SO ₄	mg/l	0.1	ISO 17025	11	13	210	
Heavy Metals / Metalloids							
Arsenic (dissolved)	μg/l	1.1	ISO 17025	1.7	< 1.1	5.9	
Barium (dissolved)	μg/l	0.05	ISO 17025	9.9	5.5	19	
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.4	
Boron (dissolved)	μg/l	10	ISO 17025	94	70	300	
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.8	0.6	4.7	
Copper (dissolved)	μg/l	0.7	ISO 17025	23	22	42	
Lead (dissolved)	μg/l	1	ISO 17025	2.1	1.8	6.8	
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	μg/l	0.3	ISO 17025	4.2	1.5	4.2	
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	
Vanadium (dissolved)	μg/l	1.7	ISO 17025	< 1.7	< 1.7	7.7	
Zinc (dissolved)	μg/l	0.4	ISO 17025	10	9.9	12	

Analytical Report Number : 17-58244 Project / Site name: Lakeview Drive, Bicester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
804157	TP101	1	0.20-0.30	Brown clay and sand with gravel and vegetation.
804158	TP101	2	0.40-0.50	Brown clay and sand with gravel.
804159	TP102	1	0.10-0.20	Brown gravelly sand with rubble and vegetation.
804160	TP102	2	0.40-0.50	Brown clay and sand.
804161	TP103	1	0.20-0.30	Brown clay and sand with gravel and brick.
804162	TP103	2	0.90-1.00	Brown clay and sand with vegetation.
804163	TP105	1	0.50-0.60	Brown clay and loam.
804164	TP106	1	0.10-0.20	Brown loam and clay with vegetation.
804165	TP107	2	0.50-0.60	Light brown sandy clay with gravel.
804166	TP114	1	0.10-0.20	Brown clay and loam with gravel and vegetation.
804167	TP114	5	1.00-1.20	Light brown gravelly sand.
804168	TP118	2	0.70-0.80	Light brown clay and sand.
804169	TP119	2	0.80-0.90	Light brown clay and sand with gravel.
804170	TP120	1	0.60-0.70	Light brown sand with gravel.
804171	TP121	1	0.10-0.20	Brown clay and loam with vegetation.
804172	TP125	1	0.40-0.50	Light brown clay and sand with gravel and vegetation.

Analytical Report Number : 17-58244 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

Analytical Report Number: 17-58244 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
TO - Organochlorine pesticides in soil	Determination of OCPs by extraction with hexane followed by GC-MS.	In-house method		W	NONE
TO - Organophosphorous pesticides in soil	Determination of OPPs by extraction with DCM followed by GC-MS.	In-house method		W	NONE
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 8 GROUNDWATER CHEMICAL ANALYSIS RESULTS

Luke CrossBWB Consulting Limited
5th Floor
Waterfront House
Nottingham
NG2 3DQ

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number: 17-59704

Project / Site name: Lakeview Drive, Bicester Samples received on: 07/09/2017

Your job number: NTE2366 Samples instructed on: 07/09/2017

Your order number: POR013250 Analysis completed by: 13/09/2017

Report Issue Number: 1 Report issued on: 13/09/2017

Samples Analysed: 4 water samples

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 17-59704 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR013250

Your Order No: POR013250								
Lab Sample Number				812730	812731	812732	812733	
Sample Reference				BH103	BH105	BH101	BH102	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20-3.82	0.86-1.60	1.35-2.32	1.20-2.20	
Date Sampled				06/09/2017	06/09/2017	06/09/2017	06/09/2017	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.3	7.3	7.5	7.2	
Electrical Conductivity at 20 °C	μS/cm	10	NONE	730	1100	910	1100	
Total Cvanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Sulphate as SO ₄	μg/l	45	ISO 17025	106000	301000	88400	168000	
Sulphate as SO ₄	mg/l	0.045	ISO 17025	110	300	88	170	
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	430	400	210	300	
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	2.93	6.51	3.55	4.14	
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	μq/l	0.16	NONE	< 0.16	< 0.16	< 0.16	< 0.16	
I OWI LIT TO I TIID	μ9/1	0.10	INOINL	< U.10	< U.10	× 0.10	× 0.10	

Analytical Report Number: 17-59704 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR013250

Your Order No: PORU13250								
Lab Sample Number				812730	812731	812732	812733	
Sample Reference				BH103	BH105	BH101	BH102	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20-3.82	0.86-1.60	1.35-2.32	1.20-2.20	
Date Sampled				06/09/2017	06/09/2017	06/09/2017	06/09/2017	
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	3.06	1.43	0.35	0.41	
Barium (dissolved)	μg/l	0.06	ISO 17025	43	67	34	47	
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	
Boron (dissolved)	μg/l	10	ISO 17025	1200	81	1100	390	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	
Calcium (dissolved)	mg/l	0.012	ISO 17025	87	150	52	150	
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.7	< 0.2	< 0.2	
Copper (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.7	< 0.5	8.2	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	5.6	< 0.2	< 0.2	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	0.11	
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.2	5.0	0.9	2.6	
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.5	1.6	0.2	
Zinc (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.7	< 0.5	2.5	
Petroleum Hydrocarbons								
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH2 (C6 - C10)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 17-59704 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method	L031-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Luke CrossBWB Consulting Limited
5th Floor
Waterfront House
Nottingham
NG2 3DQ

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number: 17-59706

Project / Site name: Lakeview Drive, Bicester Samples received on: 07/09/2017

Your job number: NTE2366 Samples instructed on: 07/09/2017

Your order number: POR013250 Analysis completed by: 13/09/2017

Report Issue Number: 1 Report issued on: 13/09/2017

Samples Analysed: 2 water samples

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 17-59706 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR013250

Your Order No: POR013250					T		
Lab Sample Number				812735	812736		
Sample Reference				BH108	BH104		<u> </u>
Sample Number				None Supplied	None Supplied		
Depth (m)				2.95-3.15	1.25-2.16		
Date Sampled				06/09/2017	06/09/2017		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.2	7.2		
Electrical Conductivity at 20 °C	μS/cm	10	NONE	1300	960		
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO ₄	μg/l	45	ISO 17025	633000	310000		
Sulphate as SO ₄	mg/l	0.045	ISO 17025	630	310		
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	150	840		
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	4.91	6.39		
Total Phenols Total Phenols (monohydric) Speciated PAHs	μg/l	10	ISO 17025	< 10	< 10		
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01		
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01		
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01		
Total PAH							
Total EPA-16 PAHs	μq/l	0.16	NONE	< 0.16	< 0.16		
1000. 2.7. 20 17010	■ P9/1	0.10	INOINE	, 0.10			1

Analytical Report Number: 17-59706 Project / Site name: Lakeview Drive, Bicester

Your Order No: POR013250

Lab Sample Number				812735	812736		
Sample Reference				BH108	BH104		
Sample Number				None Supplied	None Supplied		
Depth (m)				2.95-3.15	1.25-2.16		
Date Sampled				06/09/2017	06/09/2017		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.37	1.66		
Barium (dissolved)	μg/l	0.06	ISO 17025	62	86		
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1		
Boron (dissolved)	μg/l	10	ISO 17025	170	78		
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03	< 0.02		
Calcium (dissolved)	mg/l	0.012	ISO 17025	300	190		
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0		
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.3	0.5		
Copper (dissolved)	μg/l	0.5	ISO 17025	1.8	1.2		
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.6		
Mercury (dissolved)	μg/l	0.05	ISO 17025	0.16	0.05		
Nickel (dissolved)	μg/l	0.5	ISO 17025	3.4	31		
Selenium (dissolved)	μg/l	0.6	ISO 17025	5.5	< 0.6		
Vanadium (dissolved)	μg/l	0.2	ISO 17025	0.2	1.1		
Zinc (dissolved)	μg/l	0.5	ISO 17025	11	7.8		
Petroleum Hydrocarbons							
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10		
TPH2 (C6 - C10)	μg/l	10	ISO 17025	< 10	< 10		1

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 17-59706 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method	L031-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	ISO 17025
<u>i</u>				l	

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH104		W	17-59706	812736	b	TPH2 (Waters)	L088-PL	b
BH108		W	17-59706	812735	b	TPH2 (Waters)	L088-PL	b

Luke CrossBWB Consulting Limited
5th Floor
Waterfront House
Nottingham
NG2 3DQ

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: luke.cross@bwbconsulting.com

Analytical Report Number: 17-59709

Project / Site name: Lakeview Drive, Bicester Samples received on: 07/09/2017

Your job number: NTE2366 Samples instructed on: 07/09/2017

Your order number: POR013250 Analysis completed by: 14/09/2017

Report Issue Number: 1 Report issued on: 14/09/2017

Samples Analysed: 4 water samples

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Iss No 17-59709-1 Lakeview Drive, Bicester NTE2366

Analytical Report Number: 17-59709 Project / Site name: Lakeview Drive, Bicester

VALLE	Ordor	No:	DOD	013250

Your Order No: POR013250			012746	012747	012740	012740		
Lab Sample Number				812746	812747	812748	812749	
Sample Reference				BH113	BH110	BH107	BH106	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.74-4.32	2.10-3.36	2.75-3.28	1.78-2.63	
Date Sampled				06/09/2017	06/09/2017	06/09/2017	06/09/2017	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
			_					
General Inorganics								
pН	pH Units	N/A	ISO 17025	7.2	7.0	7.1	7.1	
Electrical Conductivity at 20 °C	μS/cm	10	NONE	990	1900	1900	1600	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Sulphate as SO ₄	μg/l	45	ISO 17025	103000	1090000	949000	779000	
Sulphate as SO ₄	mg/l	0.045	ISO 17025	100	1100	950	780	
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	36	28	400	160	
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	3.22	5.09	7.23	2.86	
Total Phenois								
Total Phenois (monohydric)	μq/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Speciated PAHs	руді	10	130 17023	110	110	110	110	
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
	μg/l							
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	-
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	-
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	-
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	-
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	-
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH						1		1
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16	< 0.16	< 0.16	
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.28	3.94	1.28	0.92	
Barium (dissolved)	μg/l	0.06	ISO 17025	49	97	160	30	
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	
Boron (dissolved)	μg/l	10	ISO 17025	150	400	540	240	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.04	< 0.02	0.02	0.03	
Calcium (dissolved)	mg/l	0.012	ISO 17025	160	480	400	380	
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.2	0.7	< 0.2	
Copper (dissolved)	μg/l	0.5	ISO 17025	1.5	5.5	2.4	1.1	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	1.0	2.2	< 0.2	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	
Nickel (dissolved)	μg/l	0.5	ISO 17025	4.4	11	7.4	15	
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.9	1.2	1.4	0.8	
Vanadium (dissolved)	μg/l	0.2	ISO 17025	0.6	0.4	1.9	< 0.2	
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.0	2.6	7.6	4.0	
Petroleum Hydrocarbons								
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH2 (C6 - C10)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
							-	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 17-59709 Project / Site name: Lakeview Drive, Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method	L031-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 9 GEOTECHNICAL LABORATORY TESTING RESULTS

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Date Tested: 31/08/2017

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

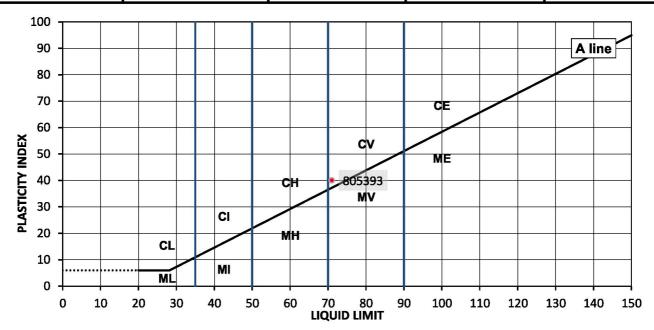
Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: **Luke Cross**

Lakeview Drive, Bicester Sampled By: Not Given Site Name:

Site Address: Not Given


805393 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Brown sandy very gravelly CLAY Description: Sample Type: B **BH106** Location: Depth Top [m]: 0.50

Sample Preparation: Depth Base [m]: 1.00 Tested after washing to remove >425um

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[%]	[%]	[%]	BS Test Sieve
22	71	31	40	49

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

07/09/2017 Date Reported:

Sushil Sharda **Technical Manager** (Geotechnical Division)

Signed:

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: BWB Consulting Limited

Client Address: 5th Floor

5th Floor Job Number: 17-58424
Waterfront House Date Sampled: Not Given
Nottingham
NG2 3DQ Date Received: 17/08/2017

Contact: Luke Cross Date Tested: 31/08/2017

Site Name: Lakeview Drive, Bicester Sampled By: Not Given

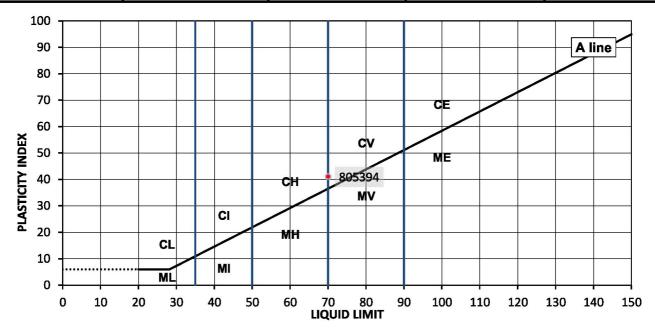
Site Address: Not Given

TEST RESULTS Laboratory Reference: 805394

Sample Reference: Not Given

Description: Dark brown CLAY

Location: BH106


Sample Type: B

Depth Top [m]: 1.20

Sample Preparation: Tested in natural condition

Depth Base [m]: 2.00

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm		
Content [%]	[%]	[%]	[%]	BS Test Sieve		
41	70	29	41	100		

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

Organic O append to classification for organic material (eg CHO)

Remarks

Approved: Signed:

Dariusz Piotrowski
PL Laboratory
Manager Geotechnical

Section

Date Reported: 07/09/2017

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

Page 1 of 1 GF 105.11

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

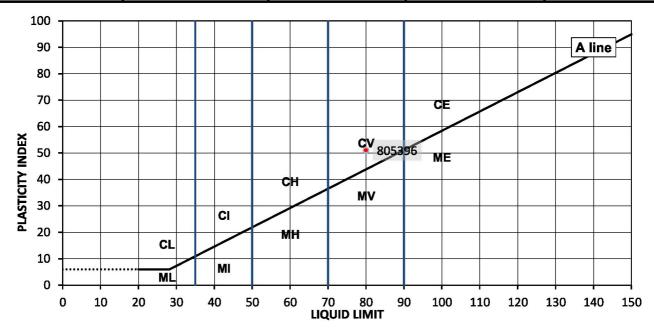
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: **Luke Cross** Date Tested: 31/08/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:


Not Given Site Address:

805396 **TEST RESULTS** Laboratory Reference:

Not Given Sample Reference:

Mottled brown CLAY Description: Sample Type: D **BH107** Location: Depth Top [m]: 2.00 Sample Preparation: Depth Base [m]: 2.45 Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
35	80	29	51	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Signed:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Sushil Sharda **Technical Manager** (Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

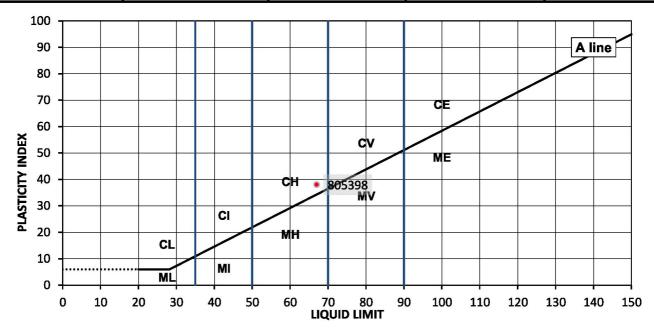
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: **Luke Cross** Date Tested: 31/08/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:


Not Given Site Address:

805398 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Dark brown CLAY Description: Sample Type: D **BH109** Location: Depth Top [m]: 1.00 Sample Preparation: Depth Base [m]: 1.45 Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
29	67	29	38	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical

Technical Manager

Signed:

Section

07/09/2017 Date Reported:

Sushil Sharda (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

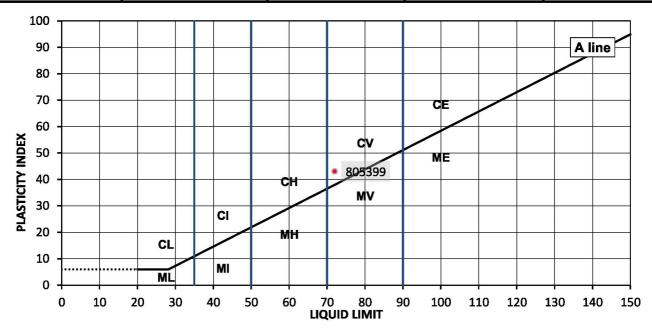
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: Luke Cross Date Tested: 31/08/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:


Not Given Site Address:

805399 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Dark brown CLAY Description: Sample Type: D **BH109** Location: Depth Top [m]: 2.00 Sample Preparation: Depth Base [m]: 2.45 Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	72	29	43	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Signed:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Sushil Sharda **Technical Manager**

(Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

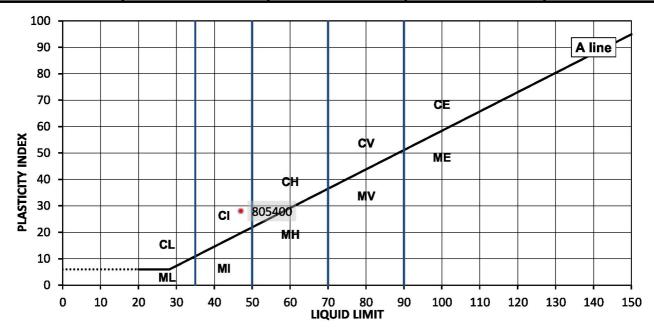
Client: **BWB Consulting Limited**

Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: Luke Cross Date Tested: 31/08/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:

Site Address: Not Given


805400 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Mottled Brown slightly sandy CLAY Description: Sample Type: B **BH110** Location: Depth Top [m]: 0.40

Sample Preparation: Depth Base [m]: 0.90 Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
19	47	19	28	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

append to classification for organic material (eg CHO) Organic

Remarks

Approved:

PL Laboratory

Dariusz Piotrowski

Manager Geotechnical Section

07/09/2017 Date Reported:

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Date Tested: 31/08/2017

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: BWB Consulting Limited

Client Address: 5th Floor

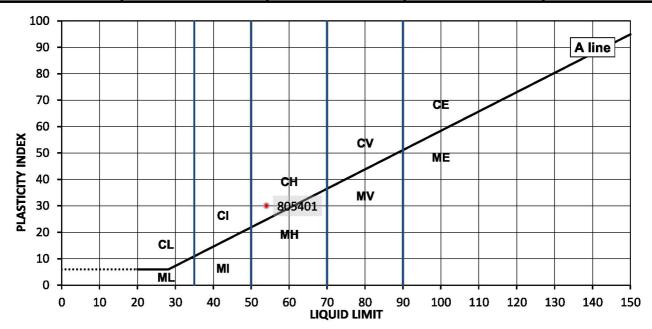
5th Floor Job Number: 17-58424
Waterfront House Date Sampled: Not Given
Nottingham
NG2 3DQ Date Received: 17/08/2017

Contact: Luke Cross

Site Name: Lakeview Drive, Bicester Sampled By: Not Given

Site Address: Not Given

TEST RESULTS Laboratory Reference: 805401


Sample Reference: Not Given

Description: Dark brown slightly gravelly slightly sandy organic CLAY Sample Type: D

Location: BH110 Depth Top [m]: 3.00

Sample Preparation: Tested after washing to remove >425um Depth Base [m]: 3.38

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
82	54	24	30	92

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

Organic O append to classification for organic material (eg CHO)

Remarks

Approved:

Dariusz Piotrowski
PL Laboratory
Manager Geotechnical
Section

Date Reported: 07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

Page 1 of 1 GF 105.11

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

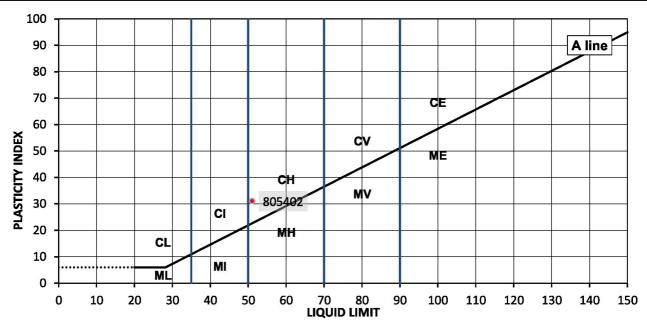
Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: Luke Cross

Date Tested: 01/09/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:

Site Address: Not Given


805402 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Brown slightly gravelly slightly sandy CLAY with rootlets Description: Sample Type: B **BH112** Location: Depth Top [m]: 0.60 Depth Base [m]: 1.00

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
32	51	20	31	79

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit C Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

0 append to classification for organic material (eg CHO) Organic

Remarks

Approved: Signed:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Sushil Sharda **Technical Manager** (Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

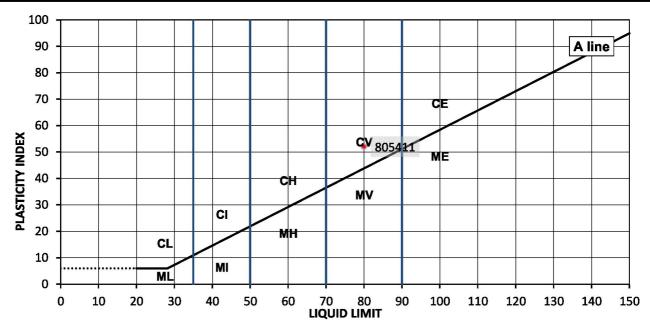
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: **BWB Consulting Limited**

Client Address: 5th Floor

Job Number: 17-58424 Waterfront House Date Sampled: Not Given Nottingham Date Received: 17/08/2017 NG2 3DQ

Contact: Luke Cross Date Tested: 31/08/2017 Lakeview Drive, Bicester Sampled By: Not Given Site Name:


Site Address: Not Given

805411 **TEST RESULTS** Laboratory Reference:

> Not Given Sample Reference:

Mottled brown CLAY Description: Sample Type: D **TP125** Location: Depth Top [m]: 1.00 Sample Preparation: Depth Base [m]: 1.10 Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	80	28	52	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 М Silt Medium 35 to 50 Н 50 to 70 High 70 to 90 Very high Ε exceeding 90 Extremely high

0 append to classification for organic material (eg CHO) Organic

Remarks

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

07/09/2017 Date Reported:

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: BWB Consulting Limited

Client Address: 5th Floor

Waterfront House Nottingham

NG2 3DQ

Contact: Luke Cross

Site Name: Lakeview Drive, Bicester

Site Address: Not Given

Client Reference: NTE2366
Job Number: 17-58424
Date Sampled: Not Given
Date Received: 17/08/2017

Date Tested: 31/08 - 01/09/2017

Sampled By: Not Given

Test results

			Sar	mple			Dei	nsity	M/C		Atte	rberg		PD
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soll Description	bulk	dry	IN/O	% Passing 425um	LL	PL	PI	
			,,,,,	[[1]]			Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
805393	BH106	Not Given	0.50	1.00	В	Brown sandy very gravelly CLAY			22	49	71	31	40	
805394	BH106	Not Given	1.20	2.00	В	Dark brown CLAY			41	100	70	29	41	
805395	BH107	Not Given	1.00	1.45	D	Dark brown CLAY			30					
805396	BH107	Not Given	2.00	2.45	D	Mottled brown CLAY			35	100	80	29	51	
805398	BH109	Not Given	1.00	1.45	D	Dark brown CLAY			29	100	67	29	38	
805399	BH109	Not Given	2.00	2.45	D	Dark brown CLAY			30	100	72	29	43	
805400	BH110	Not Given	0.40	0.90	В	Mottled Brown slightly sandy CLAY			19	100	47	19	28	
805401	BH110	Not Given	3.00	3.38	D	Dark brown slightly gravelly slightly sandy organic CLAY			82	92	54	24	30	
805402	BH112	Not Given	0.60	1.00	В	Brown slightly gravelly slightly sandy CLAY with rootlets			32	79	51	20	31	
805403	BH112	Not Given	2.00	2.45	D	Greyish brown CLAY			32					

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.
This report may not be reproduced other than in full without the prior written approval of the Issuing laboratory.
The results included within the report are representative of the samples submitted for analysis.
The analysis was carried out at 12 Analytical Limited, ul. Plonlerow 39, 4.7-11 Ruda Slaska, Poland."

Page 1 of 1 GF 159.4

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: BWB Consulting Limited

Client Address: 5th Floor

Waterfront House Nottingham

NG2 3DQ

Contact: Luke Cross

Site Name: Lakeview Drive, Bicester Site Address: Not Given

Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017

Date Tested: 31/08 - 01/09/2017

Sampled By: Not Given

Test results

			Sar	mple			De	nsity	м/с		Atte	rberg		PD
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soll Description	bulk	dry		% Passing 425um	LL	PL	PI	
							Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
805405	TP109	Not Given	1.80	1.90	D	Dark brown slightly sandy CLAY			34					
805406	TP110	Not Given	2.30	2.40	D	Dark grey CLAY			30					
805411	TP125	Not Given	1.00	1.10	D	Mottled brown CLAY			30	100	80	28	52	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 07/09/2017

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

*Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.
This report may not be reproduced other than in full without the prior written approval of the Issuing laboratory.
The results included within the report are representative of the samples submitted for analysis.
The analysis was carried out at 12 Analytical Limited, ul. Plonierow 49, 41-711. Ruda Slaska, Poland.*

Page 1 of 1 GF 159.4

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Job Number: 17-58424

Date Sampled: Not Given

Date Received: 17/08/2017

Date Tested: 31/08/2017

Sampled By: Not Given

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: **BWB Consulting Limited**

Client Address: 5th Floor

Waterfront House Nottingham NG2 3DQ

Contact: **Luke Cross**

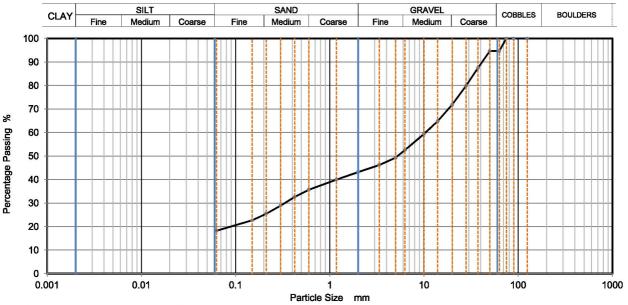
Lakeview Drive, Bicester Site Name:

Not Given Site Address:

> Laboratory Reference: 805391

Mottled brown clayey very sandy GRAVEL with

Location: BH101 Not Given Supplier:


TEST RESULTS

Sample description:

Sample Reference: Not Given

Sample Type: B

Depth Top [m]: Not Given Depth Base [m]: 1.00

Sie	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	95		
50	95		
37.5	88		
28	80		
20	72		
14	65		
10	59		
6.3	53		
5	49		
3.35	46		
2	43		
1.18	40		
0.6	36		
0.425	33		
0.3	29		
0.212	26		
0.15	23		
0.063	18		

Dry Mass of sample [g]: 9532

Sample Proportions	% dry mass
Very coarse	5.30
Gravel	51.50
Sand	25.00
_	
Fines <0.063mm	18.30

Grading Analysis		
D100	mm	75
D60	mm	10.4
D30	mm	0.333
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below The material submitted, fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at I2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Contact:

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

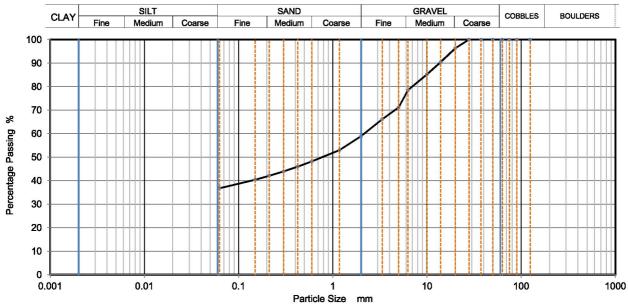
Client: **BWB Consulting Limited**

5th Floor Client Address:

Waterfront House Nottingham NG2 3DQ

Luke Cross

Lakeview Drive, Bicester Site Name:


Site Address: Not Given

Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017 Date Tested: 31/08/2017

Sampled By: Not Given

Sample Type: B Depth Top [m]: Not Given

TEST RESULTS Laboratory Reference: 805392 Sample Reference: Not Given Sample description: Brownish grey very clayey very sandy GRAVEL BH103 Location: Supplier: Not Given Depth Base [m]: 3.00

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	96		
14	90		
10	85		
6.3	79		
5	71		
3.35	66		
2	59		
1.18	53		
0.6	48		
0.425	46		
0.3	44		
0.212	42		
0.15	40		
0.063	37		

Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	41.10
Sand	22.00
Fines <0.063mm	36.80

Grading Analysis		
D100	mm	28
D60	mm	2.17
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

1433

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

TEST RESULTS

Location:

Supplier:

Sample description:

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: **BWB Consulting Limited**

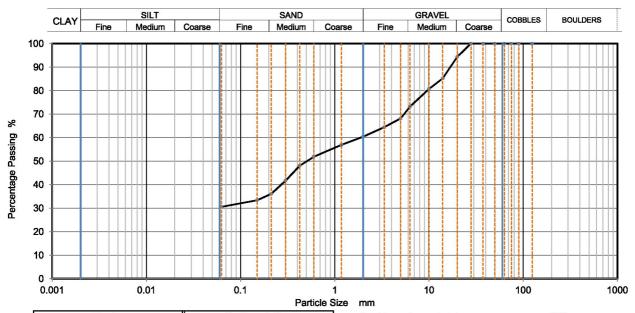
5th Floor Client Address:

Waterfront House Nottingham NG2 3DQ

Luke Cross

Contact: Site Name: Lakeview Drive, Bicester

BH106


Not Given

Site Address: Not Given Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given

Date Received: 17/08/2017 Date Tested: 31/08/2017

Sampled By: Not Given

Laboratory Reference: 805393 Sample Reference: Not Given Brown sandy very gravelly CLAY Sample Type: B Depth Top [m]: Not Given Depth Base [m]: 1.00

Siev	ving	Sedime	entation	
Particle Size	% Passing	Particle Size	% Passing	
mm	70 Fassing	mm	70 Fassing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	94			
14	85			
10	81			
6.3	73			
5	68			
3.35	64			
2	60			
1.18	57			
0.6	52			
0.425	48			
0.3	42			
0.212	36			
0.15	33			
0.063	31			

Dry M	lass of	sample [g]]:	643

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	39.60
Sand	29.80
Fines < 0.063mm	30.60

Grading Analysis		
D100	mm	28
D60	mm	1.88
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below The material submitted, fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Contact:

Location:

Supplier:

TEST RESULTS

Sample description:

TEST CERTIFICATE

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: **BWB Consulting Limited**

5th Floor Client Address:

Waterfront House Nottingham NG2 3DQ

Laboratory Reference:

Dark brown CLAY

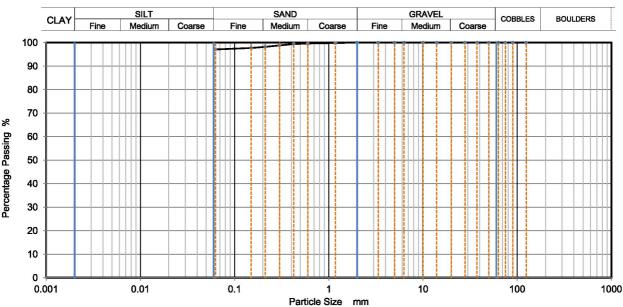
Luke Cross

Lakeview Drive, Bicester Site Name:

Site Address: Not Given

BH109

Not Given


Client Reference: NTE2366 Job Number: 17-58424 Date Sampled: Not Given

Date Received: 17/08/2017 Date Tested: 31/08/2017

Sampled By: Not Given

Sample Reference: Not Given Sample Type: B

Depth Top [m]: Not Given Depth Base [m]: 1.00

805397

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	98		
0.15	98		
0.063	97		

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	2.90
•	
Fines <0.063mm	97 10

Grading Analysis		
D100	mm	3.35
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Dry Mass of sample [g]:

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

143

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Job Number: 17-58424

Date Sampled: Not Given

Date Received: 17/08/2017

Date Tested: 01/09/2017

Sampled By: Not Given

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Client: BWB Consulting Limited

Client Address: 5th Floor

Waterfront House Nottingham NG2 3DQ

Contact: Luke Cross

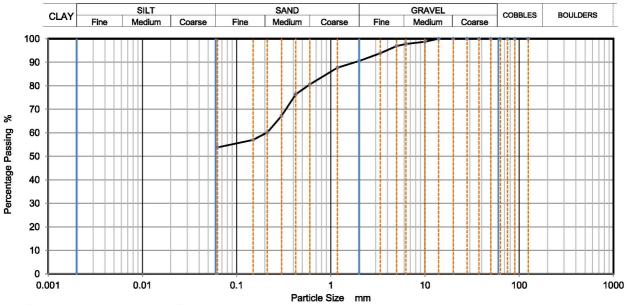
Site Name: Lakeview Drive, Bicester

Site Address: Not Given

Laboratory Reference: 805402 Sample Refer

Brown slightly gravelly slightly sandy CLAY with

Sample description:


Location: BH112 Supplier: Not Given

TEST RESULTS

Sample Reference: Not Given

Sample Type: B

Depth Top [m]: Not Given Depth Base [m]: 1.00

			T ditiolo t
Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	97	·	
3.35	94		
2	91	·	
1.18	88		
0.6	81		
0.425	76		
0.3	67		
0.212	60		
0.15	57		
0.063	54		

Mass of sample [g]:	138
Mass of sample [g]:	138

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	9.50
Sand	36.70
Fines <0.063mm	53.80

Grading Analysis		
D100	mm	14
D60	mm	0.21
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda Technical Manager (Geotechnical Division)

Date Reported: 07/09/2017

for and on behalf of i2 Analytical Ltd

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 100.8

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTE2366

Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Laboratory Reference:

Brown very clayey SAND

Client: **BWB Consulting Limited**

5th Floor Client Address:

Waterfront House Nottingham NG2 3DQ

Luke Cross

Contact: Site Name:

Lakeview Drive, Bicester

TP107

Not Given

Site Address: Not Given

TEST RESULTS

Location:

Supplier:

Sample description:

Job Number: 17-58424 Date Sampled: Not Given Date Received: 17/08/2017 Date Tested: 31/08/2017 Sampled By: Not Given

Sample Reference: Not Given

Sample Type: B

Depth Top [m]: Not Given Depth Base [m]: 1.50

-											
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
OLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
100						ПП					
90											
80											
70					/						
60				/							
50											
40											
30											
20											
10											
۰ ـــــا				Щ							
0.001		0.01		0.1		1 cle Size in	nm	10		100	•

805404

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99			
0.425	99			
0.3	92			
0.212	71			
0.15	49			
0.063	27			

Dry Mass of sample [g]:	240

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.10
Sand	73.20
Fines <0.063mm	26.70

Grading Analysis		
D100	mm	5
D60	mm	0.178
D30	mm	0.0716
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Signed:

Sushil Sharda **Technical Manager** (Geotechnical Division)

07/09/2017 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Point Load Strength Index Tests Summary of Results

Tested in Accordance with ISRM: 2007, pages 125-132

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

BWB Consulting Limited Client:

Client Address: 5th Floor

Waterfront House Nottingham NG2 3DQ

Luke Cross Contact:

Site Name: Lakeview Drive, Bicester

Site Address: Not Given Client Reference: NTE2366 Job Number: 17-58424

Date Sampled: Not Given Date Received: 17/08/2017

Date Tested: 31/08/2017

Sampled By: Not Given

Test results

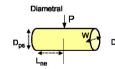
			Sar	mple		Speci	men		W. J. W		Type SRM	₽		Dime	nsions		Force	lent r, De		Load th Index	
Laboratory Reference	Hole No.	Reference	Depth Top [m]	Depth Base [m]	Туре	Reference	Depth [m]	Description	Rock Type and Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Va (Y/N)	Lne mm	W mm	Dps mm	Dps' mm	P	3 Equiva 3 diamete	ls MPa	ls(50) MPa	Remarks (including water content if measured)
805407	TP121	Not Given	3.20	3.35	В	1		Dark brown MUDSTONE	MUDSTONE	1	٥	YES	77.2	100.9	50.0	32.0	1.5	64.1	0.37	0.41	Unable to carry out axial test due to sample dimensions
805407	TP121	Not Given	3.20	3.35	В	2		Dark brown MUDSTONE	MUDSTONE	Ţ	5	YES	84.2	116.0	42.0	33.0	1.2	69.8	0.24	0.28	Unable to carry out diameter test due to sample dimensions
805409	TP122	Not Given	3.55	3.70	В	1		Dark brown MUDSTONE	MUDSTONE	1	U	YES	61.6	71.6	26.0	18.0	0.9	40.5	0.56	0.51	Unable to carry out axial test due to sample dimensions
805409	TP122	Not Given	3.55	3.70	В	2		Dark brown MUDSTONE	MUDSTONE	1	U	YES	67.2	118.2	36.0	16.0	0.5	49.1	0.22	0.21	Unable to carry out diameter test due to sample dimensions

Test Type D - Dlametral, A - Axial, I - Irregular Lump, B - Block

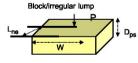
D - Diametral, A - Axial, I - Irregular Li Direction L - parallel to planes of weakness P - perpendicular to planes of weakne U - unknown or random

U - Uniform or reason.
Dise - Distance between platers (platen separation)
Dps' - at feiture (see ISRM note 6)
Lne - Length from platers to nearest free end
W - Width of shortest dimension perpendicular to load, P

Detailed legend for test and dimensions, based on ISRM, is shown above.


Size factor, F = (De/50)0.45 for all tests.

Comments: Approved:


Dariusz Piotrowski

PL Laboratory Manager Geotechnical Section

Date Reported: 05/09/2017

Sushil Sharda Technical Manager (Geotechnical Division)

for and on behalf of i2 Analytical Ltd

GF 134.4

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1

APPENDIX 10 DERIVATION OF BWB GSAC

BWB HUMAN HEALTH GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

Human Health Generic Screening Criteria

The Environment Agency published the revised CLEA framework for assessing the risk to human health from soil contamination in January 2009. The framework comprises a technical background document (EA, 2009a), toxicological assessment EA 2009b and CLEA spreadsheet model (EA 2009c). The new framework supersedes the 2002 CLEA model and subsequent briefing notes. The 2002 CLEA software and CLEA 2005 have also been withdrawn and all previously published Soil Guideline Values (SGV) have been withdrawn. The EA have issued revised SGVs for the following substances.

- Arsenic
- selenium
- ethylbenzene
- cadmiumbenzene
- xylene
- , -

- nickel
- toluene
- dioxins and dioxin like PCBS

- Phenol
- Mercury

In the absence of an SGV for a particular contaminant Generic assessment criteria have been generated by BWB using the CLEA framework. This is a similar approach to Generic screening criteria published by LQM/CIEH and CLAIRE/EIC.

The Statutory Guidance on Part IIa of the Environment Act was revised in 2012 and introduced the concept of characterising Land into 4 categories. Categories 1 and 2 were classed as "Contaminated Land" and Categories 3 and 4 as "not Contaminated Land". DEFRA commissioned a research project to develop Category 4 Screening Levels (C4SLs) which would be used to rapidly screen sites as not contaminated land. These values would be less conservative than SGVs or equivalent GSACs but still be strongly precautionary. In 2014 DEFRA published the framework for deriving C4SLs and C4SLs for six substances:

Arsenic
Cadmium
Chromium VI
Lead
Benzo(a)pyrene
Benzene

The framework recommended changes to exposure parameters as well as introducing a new Health Criteria Value known as a "Low level of Toxicological Concern" (LLTC) This would be less conservative than the minimal risk approach used to derive TDIs and IDs under the 2009b CLEA framework.

In response LQM/CIEH published their third edition of Generic screening criteria for human health in January 2015. These were known and "Suitable for Use Levels" (S4ULs) and adopted the changes to exposure parameters that were developed under the Category 4 Screening Level methodology.

The report also reviewed toxicity information but adopted the minimal risk approach as set out in EA 2009b. This report presented revised data for some substances for which an SGV had been developed, therefore some of the existing SGVs have been superseded.

BWB have updated their GSACs to take into account the LQM/CIEH S4ULs and DEFRA C4SLs but have retained the CLEA exposure assumptions, the BWB GSACs represent the most conservative minimal risk approach.

The screening approach comprises tiered assessment of contaminant data against BWB GSACs in the first instance, then S4ULs and finally C4SLs if available.

Conceptual Site Model

The standard exposure pathways and Conceptual Models for human exposure to contaminants for different site uses are set out in the updated technical background to the CLEA model (Environment Agency 2009a).

Descriptive Conceptual Models (From Environment Agency 2009a)

Residential

This generic scenario assumes a typical residential property consisting of a two-storey house built on a ground bearing slab with a private garden consisting of lawn, flower beds and a small fruit and vegetable patch. The occupants are assumed to be parents with young children, who make regular use of the garden area.

The key assumptions for BWB GSACs are

Critical receptor is a young female child (aged zero to six years old)

Exposure duration is six years

Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce, consumption of soil attached to home grown produce, skin contact with soils and indoor dusts, and inhalation of indoor and outdoor dust and vapours.

Soil type is a Sandy Loam with 1% organic matter

Building type is a two storey small terraced house

Commercial/industrial

There are many different kinds of workplace and work-related activities. This generic scenario assumes a typical commercial or light industrial property consisting of a three storey building at which employees spend most time indoors and are involved in office based or relatively light physical work.

The key assumptions for BWB GSACs are

Critical receptor is a working female adult (aged 16 to 65 years)

Exposure duration is a working lifetime of 49 years

Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts, and inhalation of dust and vapours.

Soil type is a Sandy Loam with 1% organic matter

Building type is a three storey office (post 1970) (Representative of new buildings)

The 2009a report identifies 10 potential exposure pathways by which contaminated soils may impact human health and also sets out which pathways are applicable for four standard land uses. The pathways for the residential and commercial end uses are shown below.

Screening Criteria Modelling

The CLEA model version 1.06 has been used to calculate BWB GSACs. BWB have used the model to calculate Individual criteria for each relevant pathway so, for example, in a residential with vegetable uptake scenario we would need six individual criteria:-

- Ingestion of soil and dust
- Ingestion of contaminated vegetables and soil attached to vegetables
- Dermal contact indoors and outdoors
- Particulate dust inhalation indoors and outdoors
- Vapour inhalation indoors
- Vapour inhalation outdoors

The final overall assessment criteria is calculated by adding together the reciprocal of the individual criteria for each pathway, therefore if several of the individual criteria are of similar magnitude the final criteria may be substantially lower than the lowest individual criteria so that total exposure is below the respective health threshold.

$$1/GSAC = \sum 1/ASC_{ingestion} + 1/ASC_{inhalation} + 1/ASC_{dermal}$$

By adopting this methodology BWB are able to provide a more flexible site specific approach to generic human health risk assessment.

Pathway Selection - Generic Site Assessment Criteria

Pathway	Residential	Commercial / Industrial
Ingestion of Soil	Yes	Yes
Ingestion of site derived household dust	Yes	Yes
Ingestion of contaminated homegrown produce	Optional	No
Ingestion of soil attached to homegrown produce	Optional	No
Dermal contact with Soil	Yes	Yes
Dermal contact with site derived household dust	Yes	Yes
Inhalation of fugitive soil dust	Yes	Yes
Inhalation of fugitive site derived household dust	Yes	Yes
Inhalation of vapours outside	Yes	Yes
Inhalation of vapours inside	Yes	Yes

Health Criteria Values

The general hierarchy for selecting health criteria values is as follows:

- 1. EA / DEFRA TOX report
- 2. Other UK authoritative body e.g. Committee on toxicity, Food Standards Agency
- 3. EU authoritative body
- 4. Other EU body e.g. RIVM
- 5. Other US/International Body

In the absence of updated TOX reports which take into account the recommendations of EA report (2009b) TOX reports produced under the old regime have been used and GSACs will be updated accordingly as further authoritative information is issued.

REFERENCES

Environment Agency, 2009a, Updated Technical Background to the CLEA Model, Science Report SC050021/SR3 ISBN 978-1-84432-856-7

Environment Agency, 2009b, Human health Toxicological Assessment of Contaminants in Soil, Science Report SC050021/SR2 ISBN 978-1-84432-858-1

Environment Agency 2009c, CLEA Software Handbook (version 1.06) Science Report SC050021/SR4, ISBN 978-1-84432-857-4

EIC/AGS/CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment. Environment Industries Commission (EIC), Association of Geotechnical and Geoenvironmental Specialists (AGS), Contaminated Land: Applications in Real Environments (CL:AIRE). Published by CL:AIRE. ISBN: 978-1-905046-20-1.

Nathanail, C.P., McCaffrey, C., Ashmore, M.H., Cheng, Y.Y., Gillett, A., Ogden, R. & Scott, D. (2009). The LQM/CIEH Generic Assessment Criteria for

Human Health Risk Assessment (2nd Edition). Land Quality Press, Nottingham. ISBN: 0-9547474-7-X.

Nathanail, C.P.; McCaffrey,C.; Gillett, A.G.; Ogden, R.C. & Nathanail, J.F. (2015). The LQM/CIEH Suitable 4 Use Levels. Land Quality Press, Nottingham. ISBN: 978-0-9931084-0-2.

Residential Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic Matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg	mg/kg
Arsenic	NR	NR	3.50E+01	4.29E+02	8.50E+01	3.24E+01	N/A
Barium	NR	NR	1.35E+03		4.25E+05	1.34E+03	N/A
Beryllium	NR	NR	1.56E+02	2.96E+03	1.21E+00	1.21E+00	N/A
Boron	NR	NR	1.08E+04	3.00E+02	3.65E+06	2.91E+02	N/A
Cadmium	NR	NR	1.21E+02	1.24E+01	1.27E+02	1.03E+01	N/A
Chromium III	NR	NR	1.98E+04	1.25E+06	6.37E+02	6.17E+02	N/A
Chromium VI	NR	NR	7.05E+01	1.22E+01	4.25E+00	4.25E+00	N/A
Copper	NR	NR	1.08E+04	3.54E+03	9.89E+03	2.10E+03	N/A
Lead						2.00E+02	N/A
Inorganic Mercury	NR	NR	5.71E+01	1.40E+02	2.55E+03	3.99E+01	N/A
Nickel	NR	NR	7.89E+02	1.64E+03	1.27E+02	1.27E+02	N/A
Selenium	NR	NR	4.31E+02	6.15E+02	1.36E+05	2.53E+02	N/A
Vanadium	NR	NR	1.17E+03	6.21E+02	1.03E+03	2.91E+02	N/A
Zinc	NR	NR	4.05E+04	4.13E+03	2.55E+07	3.74E+03	N/A
Cyanide (free)						4.30E+01	N/A
Cyanide (Complex)						2.13E+02	N/A
Phenol	3.43E+02	4.21E+05	6.56E+02	1.55E+02	3.22E+05	9.18E+01	4.16E+04
Benzene	2.69E-01	5.63E+03	2.58E+01	1.13E-01	5.95E+04	7.93E-02	1.22E+03
Toluene	6.38E+02	8.78E+06	1.98E+04	1.48E+02	5.92E+07	1.19E+02	8.69E+02
Ethylbenzene	5.86E+01	6.17E+05	8.88E+03	1.07E+02	3.11E+06	3.77E+01	5.18E+02
Total Xylene	5.57E+01	5.15E+05	1.60E+04	1.87E+02	2.28E+06	4.28E+01	4.78E+02
TPH (EC5-6) aliphatic	2.88E+01	2.41E+06	2.23E+05	4.90E+03	1.06E+08	2.86E+01	3.04E+02
TPH (>EC6-8) aliphatic	7.02E+01	3.76E+06	2.23E+05	1.53E+04	1.06E+08	6.99E+01	1.44E+02
TPH (>EC8-10) aliphatic	1.82E+01	4.61E+05	4.45E+03	2.17E+03	6.16E+06	1.80E+01	7.77E+01
TPH (>EC10-12) aliphatic	9.02E+01	1.03E+06	4.45E+03	1.67E+04	6.16E+06	8.79E+01	4.75E+01

Residential Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic Matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
TPH (>EC12-16) aliphatic	7.55E+02	2.97E+06	4.45E+03	2.32E+05	6.16E+06	6.43E+02	2.37E+01
TPH (>EC16-35) aliphatic	8.91E+04	8.47E+07	8.91E+04	1.15E+07	4.25E+07	4.43E+04	8.48E+00
TPH (>EC35-44) aliphatic	8.91E+04	8.47E+07	8.91E+04	1.15E+07	4.25E+07	4.43E+04	8.48E+00
TPH (>EC6-7) aromatic (benzene)	2.69E-01	5.63E+03	2.58E+01	1.13E-01	5.95E+04	7.93E-02	1.22E+03
TPH (>EC7-8) aromatic (toluene)	6.26E+02	8.62E+06	1.98E+04	1.48E+02	5.81E+07	1.19E+02	8.69E+02
TPH (>EC8-10) aromatic	3.22E+01	2.79E+05	1.78E+03	5.73E+01	1.28E+06	2.04E+01	6.13E+02
TPH (>EC10-12) aromatic	1.75E+02	6.50E+05	1.78E+03	8.34E+01	1.28E+06	5.47E+01	3.64E+02
TPH (>EC12-16) aromatic	1.94E+03	2.15E+06	1.78E+03	1.52E+02	1.28E+06	1.31E+02	2.37E+01
TPH (>EC16-21) aromatic	3.54E+04	5.95E+06	1.34E+03	3.06E+02	6.38E+05	2.47E+02	5.37E+01
TPH (>EC21-35) aromatic	3.99E+06	2.67E+07	1.34E+03	2.66E+03	6.38E+05	8.90E+02	4.83E+00
TPH (>EC35-44) aromatic	3.99E+06	2.67E+07	1.34E+03	2.66E+03	6.38E+05	8.90E+02	4.83E+00
Naphthalene	1.64E+00	3.17E+04	1.58E+03	2.72E+01	2.93E+04	1.55E+00	7.64E+01
Acenaphthylene	3.27E+03	1.26E+07	4.85E+03	1.84E+02	2.55E+06	1.68E+02	8.61E+01
Acenaphthene	3.47E+03	1.32E+07	4.85E+03	2.28E+02	2.55E+06	2.05E+02	5.70E+01
Fluorene	4.37E+03	1.17E+07	3.23E+03	1.79E+02	1.70E+06	1.63E+02	3.09E+01
Phenanthrene	5.09E+03	6.29E+06	1.00E+03	1.03E+02	5.30E+05	9.17E+01	3.60E+01
Anthracene	1.09E+05	1.48E+08	2.43E+04	2.55E+03	1.27E+07	2.26E+03	1.17E+00
Fluoranthene	2.84E+04	1.26E+07	1.01E+03	3.49E+02	5.31E+05	2.57E+02	1.89E+01
Pyrene	6.50E+04	2.87E+07	2.42E+03	7.43E+02	1.27E+06	5.63E+02	2.20E+00
Benzo(a)anthracene	2.40E+01	3.37E+03	1.25E+01	2.11E+01	6.37E+01	5.41E+00	1.71E+00
Chrysene	2.53E+02	5.87E+03	2.51E+01	2.90E+01	1.27E+02	1.16E+01	4.40E-01
Benzo(b)fluoranthene	9.32E+01	1.05E+03	3.15E+00	7.43E+00	1.61E+01	1.90E+00	1.22E+00
Benzo(k)fluoranthene	4.04E+03	3.28E+04	8.33E+01	2.85E+02	4.25E+02	5.51E+01	6.87E-01
Benzo(a)pyrene	1.04E+02	9.12E+02	2.51E+00	7.36E+00	1.27E+01	1.60E+00	9.11E-01
Indeno(123-cd)pyrene	8.78E+02	1.10E+04	3.58E+01	6.93E+01	1.83E+02	2.04E+01	6.14E-02
Dibenzo(ah)anthracene	5.23E+00	1.13E+02	2.51E-01	1.11E+00	1.27E+00	1.70E-01	3.93E-03

Residential Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic Matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
Benzo(g,h,i)perylene	2.34E+04	1.83E+05	2.78E+02	2.77E+03	1.40E+03	2.12E+02	1.54E-02
Tetrachloroethene (PCE)	1.26E-01	2.48E+04	4.92E+02	4.36E+00	2.34E+05	1.22E-01	4.24E+02
Trichloroethene (TCE)	1.21E-02	2.44E+03	4.45E+01	2.74E-01	2.42E+04	1.15E-02	1.54E+03
cis-1,2-Dichloroethene	1.20E-01	2.33E+04	4.82E+02	1.75E+00	2.30E+05	1.12E-01	3.94E+03
Vinyl Chloride (VC)	5.43E-04	3.59E+02	1.25E+00	3.70E-03	1.27E+04	4.73E-04	1.36E+03
1,1,2,2-Tetrachloroethane (PCA)	2.76E+00	1.17E+05	5.07E+02	2.72E+00	2.41E+05	1.37E+00	2.67E+03
1,1,1-Trichloroethane (TCA)	6.33E+00	1.79E+06	5.34E+04	3.22E+02	2.46E+07	6.21E+00	1.43E+03
1,2-Dichloroethane	6.46E-03	8.09E+02	1.07E+01	3.07E-02	5.10E+03	5.33E-03	3.41E+03
Carbon Tetrachloride	1.81E-02	5.07E+03	5.38E+02	3.00E+00	6.93E+04	1.80E-02	1.52E+03
Carbon disulphide	1.01E-01	3.42E+04	3.55E+02	3.20E+01	6.08E+05	1.01E-01	2.11E+03

Residential Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg	mg/kg
Arsenic	NR	NR	3.50E+01	4.29E+02	8.50E+01	3.24E+01	N/A
Barium	NR	NR	1.35E+03		4.25E+05	1.34E+03	N/A
Beryllium	NR	NR	1.56E+02	2.96E+03	1.21E+00	1.21E+00	N/A
Boron	NR	NR	1.08E+04	3.00E+02	3.65E+06	2.91E+02	N/A
Cadmium	NR	NR	1.21E+02	1.24E+01	1.27E+02	1.03E+01	N/A
Chromium III	NR	NR	1.98E+04	1.25E+06	6.37E+02	6.17E+02	N/A
Chromium VI	NR	NR	7.05E+01	1.22E+01	4.25E+00	4.25E+00	N/A
Copper	NR	NR	1.08E+04	3.54E+03	9.89E+03	2.10E+03	N/A
Lead						2.00E+02	N/A
Inorganic Mercury	NR	NR	5.71E+01	1.40E+02	2.55E+03	3.99E+01	N/A
Nickel	NR	NR	7.89E+02	1.64E+03	1.27E+02	1.27E+02	N/A
Selenium	NR	NR	4.31E+02	6.15E+02	1.36E+05	2.53E+02	N/A
Vanadium	NR	NR	1.17E+03	6.21E+02	1.03E+03	2.91E+02	N/A
Zinc	NR	NR	4.05E+04	4.13E+03	2.55E+07	3.74E+03	N/A
Cyanide (free)						4.30E+01	N/A
Cyanide (Complex)						2.13E+02	N/A
Phenol	5.39E+02	5.28E+05	6.56E+02	2.88E+02	3.22E+05	1.46E+02	8.15E+04
Benzene	4.99E-01	7.68E+03	2.58E+01	2.30E-01	5.95E+04	1.57E-01	2.26E+03
Toluene	1.41E+03	1.30E+07	1.98E+04	3.41E+02	5.92E+07	2.71E+02	1.92E+03
Ethylbenzene	1.37E+02	9.44E+05	8.88E+03	2.58E+02	3.11E+06	8.88E+01	1.22E+03
Total Xylene	1.31E+02	7.89E+05	1.60E+04	4.50E+02	2.28E+06	1.01E+02	1.12E+03
TPH (EC5-6) aliphatic	5.28E+01	3.26E+06	2.23E+05	1.14E+04	1.06E+08	5.25E+01	5.58E+02
TPH (>EC6-8) aliphatic	1.57E+02	5.62E+06	2.23E+05	3.75E+04	1.06E+08	1.56E+02	3.22E+02
TPH (>EC8-10) aliphatic	4.44E+01	7.20E+05	4.45E+03	5.38E+03	6.16E+06	4.36E+01	1.90E+02

Residential Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
TPH (>EC10-12) aliphatic	2.24E+02	1.62E+06	4.45E+03	4.00E+04	6.16E+06	2.12E+02	1.18E+02
TPH (>EC12-16) aliphatic	1.89E+03	4.69E+06	4.45E+03	3.64E+05	6.16E+06	1.32E+03	5.91E+01
TPH (>EC16-35) aliphatic	2.23E+05	1.34E+08	8.91E+04	1.16E+07	4.25E+07	6.32E+04	2.12E+01
TPH (>EC35-44) aliphatic	2.23E+05	1.34E+08	8.91E+04	1.16E+07	4.25E+07	6.32E+04	2.12E+01
TPH (>EC6-7) aromatic (benzene)	4.99E-01	7.68E+03	2.58E+01	2.30E-01	5.95E+04	1.56E-01	2.26E+03
TPH (>EC7-8) aromatic (toluene)	1.38E+03	1.28E+07	1.98E+04	3.41E+02	5.81E+07	2.70E+02	1.92E+03
TPH (>EC8-10) aromatic	7.88E+01	4.36E+05	1.78E+03	1.42E+02	1.28E+06	4.93E+01	1.50E+03
TPH (>EC10-12) aromatic	4.34E+02	1.02E+06	1.78E+03	2.07E+02	1.28E+06	1.30E+02	8.99E+02
TPH (>EC12-16) aromatic	4.83E+03	3.39E+06	1.78E+03	3.79E+02	1.28E+06	2.93E+02	5.91E+01
TPH (>EC16-21) aromatic	8.83E+04	9.40E+06	1.34E+03	7.61E+02	6.38E+05	4.82E+02	1.34E+02
TPH (>EC21-35) aromatic	9.98E+06	4.23E+07	1.34E+03	6.50E+03	6.38E+05	1.11E+03	1.21E+01
TPH (>EC35-44) aromatic	9.98E+06	4.23E+07	1.34E+03	6.50E+03	6.38E+05	1.11E+03	1.21E+01
Naphthalene	3.93E+00	4.91E+04	1.58E+03	6.63E+01	2.93E+04	3.70E+00	1.83E+02
Acenaphthylene	8.06E+03	1.97E+07	4.85E+03	4.56E+02	2.55E+06	3.96E+02	2.12E+02
Acenaphthene	8.57E+03	2.07E+07	4.85E+03	5.67E+02	2.55E+06	4.79E+02	1.41E+02
Fluorene	1.08E+04	1.84E+07	3.23E+03	4.45E+02	1.70E+06	3.77E+02	7.65E+01
Phenanthrene	1.27E+04	9.91E+06	1.00E+03	2.57E+02	5.30E+05	2.01E+02	8.96E+01
Anthracene	2.70E+05	2.33E+08	2.43E+04	6.34E+03	1.27E+07	4.93E+03	2.91E+00
Fluoranthene	7.08E+04	2.00E+07	1.01E+03	8.68E+02	5.31E+05	4.63E+02	4.73E+01
Pyrene	1.62E+05	4.54E+07	2.42E+03	1.85E+03	1.27E+06	1.04E+03	5.49E+00
Benzo(a)anthracene	6.00E+01	5.32E+03	1.25E+01	5.18E+01	6.37E+01	7.60E+00	4.28E+00
Chrysene	6.32E+02	9.28E+03	2.51E+01	7.15E+01	1.27E+02	1.58E+01	1.10E+00
Benzo(b)fluoranthene	2.33E+02	1.66E+03	3.15E+00	1.81E+01	1.61E+01	2.28E+00	3.04E+00
Benzo(k)fluoranthene	1.01E+04	5.19E+04	8.33E+01	6.87E+02	4.25E+02	6.27E+01	1.72E+00
Benzo(a)pyrene	2.61E+02	1.44E+03	2.51E+00	1.78E+01	1.27E+01	1.86E+00	2.28E+00
Indeno(123-cd)pyrene	2.20E+03	1.74E+04	3.58E+01	1.70E+02	1.83E+02	2.51E+01	5.30E-01

Residential Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
Dibenzo(ah)anthracene	1.31E+01	1.79E+02	2.51E-01	2.65E+00	1.27E+00	1.91E-01	9.82E-03
Benzo(g,h,i)perylene	5.85E+04	2.89E+05	2.78E+02	6.27E+03	1.40E+03	2.23E+02	3.85E-02
Tetrachloroethene (PCE)	2.82E-01	3.71E+04	4.92E+02	1.02E+01	2.34E+05	2.74E-01	9.51E+02
Trichloroethene (TCE)	2.52E-02	3.53E+03	4.45E+01	6.09E-01	2.42E+04	2.42E-02	3.22E+03
cis-1,2-Dichloroethene	2.02E-01	3.02E+04	4.82E+02	3.35E+00	2.30E+05	1.90E-01	6.61E+03
Vinyl Chloride (VC)	7.02E-04	4.08E+02	1.25E+00	6.67E-03	1.27E+04	6.35E-04	1.76E+03
1,1,2,2-Tetrachloroethane (PCA)	5.65E+00	1.68E+05	5.07E+02	5.92E+00	2.41E+05	2.87E+00	5.46E+03
1,1,1-Trichloroethane (TCA)	1.29E+01	2.55E+06	5.34E+04	7.06E+02	2.46E+07	1.27E+01	2.92E+03
1,2-Dichloroethane	9.32E-03	9.72E+02	1.07E+01	5.56E-02	5.10E+03	7.98E-03	4.91E+03
Carbon Tetrachloride	3.97E-02	7.50E+03	5.38E+02	6.95E+00	6.93E+04	3.95E-02	3.32E+03
Carbon disulphide	2.02E-01	4.83E+04	3.55E+02	6.84E+01	6.08E+05	2.01E-01	4.21E+03

Residential Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg	mg/kg
Arsenic	NR	NR	3.50E+01	4.29E+02	8.50E+01	3.24E+01	N/A
Barium	NR	NR	1.35E+03		4.25E+05	1.34E+03	N/A
Beryllium	NR	NR	1.56E+02	2.96E+03	1.21E+00	1.21E+00	N/A
Boron	NR	NR	1.08E+04	3.00E+02	3.65E+06	2.91E+02	N/A
Cadmium	NR	NR	1.21E+02	1.24E+01	1.27E+02	1.03E+01	N/A
Chromium III	NR	NR	1.98E+04	1.25E+06	6.37E+02	6.17E+02	N/A
Chromium VI	NR	NR	7.05E+01	1.22E+01	4.25E+00	4.25E+00	N/A
Copper	NR	NR	1.08E+04	3.54E+03	9.89E+03	2.10E+03	N/A
Lead						2.00E+02	N/A
Inorganic Mercury	NR	NR	5.71E+01	1.40E+02	2.55E+03	3.99E+01	N/A
Nickel	NR	NR	7.89E+02	1.64E+03	1.27E+02	1.27E+02	N/A
Selenium	NR	NR	4.31E+02	6.15E+02	1.36E+05	2.53E+02	N/A
Vanadium	NR	NR	1.17E+03	6.21E+02	1.03E+03	2.91E+02	N/A
Zinc	NR	NR	4.05E+04	4.13E+03	2.55E+07	3.74E+03	N/A
Cyanide (free)						4.30E+01	N/A
Cyanide (Complex)						2.13E+02	N/A
Phenol	9.95E+02	7.17E+05	6.56E+02	5.72E+02	3.22E+05	2.34E+02	1.74E+05
Benzene	1.04E+00	1.11E+04	2.58E+01	4.98E-01	5.95E+04	3.32E-01	4.71E+03
Toluene	3.20E+03	1.97E+07	1.98E+04	7.89E+02	5.92E+07	6.13E+02	4.36E+03
Ethylbenzene	3.22E+02	1.44E+06	8.88E+03	6.09E+02	3.11E+06	2.06E+02	2.84E+03
Total Xylene	3.06E+02	1.21E+06	1.60E+04	1.06E+03	2.28E+06	2.34E+02	2.62E+03
TPH (EC5-6) aliphatic	1.09E+02	4.68E+06	2.23E+05	2.62E+04	1.06E+08	1.08E+02	1.15E+03
TPH (>EC6-8) aliphatic	3.59E+02	8.49E+06	2.23E+05	8.91E+04	1.06E+08	3.57E+02	7.36E+02
TPH (>EC8-10) aliphatic	1.06E+02	1.11E+06	4.45E+03	1.27E+04	6.16E+06	1.03E+02	4.51E+02

Residential Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
TPH (>EC10-12) aliphatic	5.38E+02	2.51E+06	4.45E+03	8.76E+04	6.16E+06	4.77E+02	2.83E+02
TPH (>EC12-16) aliphatic	4.53E+03	7.27E+06	4.45E+03	4.67E+05	6.16E+06	2.23E+03	1.42E+02
TPH (>EC16-35) aliphatic	5.34E+05	2.07E+08	8.91E+04	1.17E+07	4.25E+07	7.57E+04	5.09E+01
TPH (>EC35-44) aliphatic	5.34E+05	2.07E+08	8.91E+04	1.17E+07	4.25E+07	7.57E+04	5.09E+01
TPH (>EC6-7) aromatic (benzene)	1.04E+00	1.11E+04	2.58E+01	4.98E-01	5.95E+04	3.32E-01	4.71E+03
TPH (>EC7-8) aromatic (toluene)	3.14E+03	1.93E+07	1.98E+04	7.89E+02	5.81E+07	6.11E+02	4.36E+03
TPH (>EC8-10) aromatic	1.88E+02	6.73E+05	1.78E+03	3.38E+02	1.28E+06	1.13E+02	3.58E+03
TPH (>EC10-12) aromatic	1.04E+03	1.58E+06	1.78E+03	4.95E+02	1.28E+06	2.82E+02	2.15E+03
TPH (>EC12-16) aromatic	1.16E+04	5.25E+06	1.78E+03	9.07E+02	1.28E+06	5.71E+02	1.42E+02
TPH (>EC16-21) aromatic	2.12E+05	1.46E+07	1.34E+03	1.81E+03	6.38E+05	7.66E+02	3.21E+02
TPH (>EC21-35) aromatic	2.39E+07	6.54E+07	1.34E+03	1.48E+04	6.38E+05	1.23E+03	2.90E+01
TPH (>EC35-44) aromatic	2.39E+07	6.54E+07	1.34E+03	1.48E+04	6.38E+05	1.23E+03	2.90E+01
Naphthalene	9.28E+00	7.55E+04	1.58E+03	1.57E+02	2.93E+04	8.71E+00	4.32E+02
Acenaphthylene	1.92E+04	3.05E+07	4.85E+03	1.09E+03	2.55E+06	8.50E+02	5.06E+02
Acenaphthene	2.05E+04	3.20E+07	4.85E+03	1.36E+03	2.55E+06	1.01E+03	3.36E+02
Fluorene	2.58E+04	2.85E+07	3.23E+03	1.06E+03	1.70E+06	7.74E+02	1.83E+02
Phenanthrene	3.03E+04	1.53E+07	1.00E+03	6.14E+02	5.30E+05	3.75E+02	2.14E+02
Anthracene	6.48E+05	3.60E+08	2.43E+04	1.52E+04	1.27E+07	9.21E+03	6.96E+00
Fluoranthene	1.70E+05	3.09E+07	1.01E+03	2.07E+03	5.31E+05	6.75E+02	1.12E+02
Pyrene	3.89E+05	7.03E+07	2.42E+03	4.40E+03	1.27E+06	1.55E+03	1.32E+01
Benzo(a)anthracene	1.44E+02	8.24E+03	1.25E+01	1.20E+02	6.37E+01	9.01E+00	1.03E+01
Chrysene	1.52E+03	1.44E+04	2.51E+01	1.67E+02	1.27E+02	1.84E+01	2.64E+00
Benzo(b)fluoranthene	5.59E+02	2.57E+03	3.15E+00	4.12E+01	1.61E+01	2.47E+00	7.29E+00
Benzo(k)fluoranthene	2.43E+04	8.03E+04	8.33E+01	1.53E+03	4.25E+02	6.63E+01	4.12E+00
Benzo(a)pyrene	6.27E+02	2.23E+03	2.51E+00	4.01E+01	1.27E+01	1.98E+00	5.46E+00
Indeno(123-cd)pyrene	5.27E+03	2.69E+04	3.58E+01	3.90E+02	1.83E+02	2.76E+01	3.68E-01

Residential Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & dermal contact	Ingestion of Contaminated Vegetables and soil attached to vegetables	Particulate Dust Inhalation	Residential GSAC	Soil Saturation Limit
Dibenzo(ah)anthracene	3.14E+01	2.78E+02	2.51E-01	5.77E+00	1.27E+00	2.01E-01	2.36E-02
Benzo(g,h,i)perylene	1.41E+05	4.48E+05	2.78E+02	1.24E+04	1.40E+03	2.27E+02	9.23E-02
Tetrachloroethene (PCE)	6.47E-01	5.61E+04	4.92E+02	2.38E+01	2.34E+05	6.29E-01	2.18E+03
Trichloroethene (TCE)	5.60E-02	5.25E+03	4.45E+01	1.39E+00	2.42E+04	5.38E-02	7.14E+03
cis-1,2-Dichloroethene	3.93E-01	4.22E+04	4.82E+02	6.91E+00	2.30E+05	3.72E-01	1.29E+04
Vinyl Chloride (VC)	1.07E-03	5.05E+02	1.25E+00	1.22E-02	1.27E+04	9.83E-04	2.69E+03
1,1,2,2-Tetrachloroethane (PCA)	1.24E+01	2.49E+05	5.07E+02	1.33E+01	2.41E+05	6.34E+00	1.20E+04
1,1,1-Trichloroethane (TCA)	2.84E+01	3.78E+06	5.34E+04	1.59E+03	2.46E+07	2.79E+01	6.39E+03
1,2-Dichloroethane	1.60E-02	1.27E+03	1.07E+01	1.06E-01	5.10E+03	1.39E-02	8.43E+03
Carbon Tetrachloride	8.99E-02	1.13E+04	5.38E+02	1.61E+01	6.93E+04	8.94E-02	7.54E+03
Carbon disulphide	4.37E-01	7.10E+04	3.55E+02	1.52E+02	6.08E+05	4.35E-01	9.11E+03

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg
Arsenic	NR	NR	6.35E+02	6.95E+02	6.40E+02	N/A
Barium	NR	NR	2.22E+04	3.48E+06	2.21E+04	N/A
Beryllium	NR	NR	3.97E+03	1.24E+01	1.24E+01	N/A
Boron	NR	NR	2.38E+05	2.99E+07	2.36E+05	N/A
Cadmium	NR	NR	3.99E+02	2.43E+02	2.30E+02	N/A
Chromium III	NR	NR	3.31E+05	9.09E+03	8.84E+03	N/A
Chromium VI	NR	NR	1.79E+03	3.48E+01	3.48E+01	N/A
Copper	NR	NR	1.89E+05	9.50E+04	6.33E+04	N/A
Lead					2.33E+03	N/A
Inorganic Mercury	NR	NR	1.18E+03	2.09E+04	3.60E+03	N/A
Nickel	NR	NR	2.22E+04	1.04E+03	1.04E+03	N/A
Selenium	NR	NR	1.23E+04	1.93E+06	1.30E+04	N/A
Vanadium	NR	NR	2.15E+04	9.58E+03	6.63E+03	N/A
Zinc	NR	NR	7.35E+05	2.09E+08	7.33E+05	N/A
Cyanide (free)					4.30E+01	N/A
Cyanide (Complex)					2.13E+02	N/A
Phenol	8.34E+04	1.09E+06	4.07E+04	3.28E+06	2.65E+04	4.16E+04
Benzene	2.97E+01	1.17E+04	5.53E+02	4.87E+05	2.81E+01	1.22E+03
Toluene	6.91E+04	1.83E+07	4.25E+05	4.86E+08	5.92E+04	8.69E+02
Ethylbenzene	6.28E+03	1.30E+06	1.91E+05	2.57E+07	6.05E+03	5.18E+02
Total Xylene	6.43E+03	1.17E+06	3.43E+05	2.03E+07	6.28E+03	4.78E+02
TPH (EC5-6) aliphatic	3.31E+03	5.01E+06	4.77E+06	8.69E+08	3.31E+03	3.04E+02
TPH (>EC6-8) aliphatic	8.06E+03	7.82E+06	4.77E+06	8.69E+08	8.04E+03	1.44E+02
TPH (>EC8-10) aliphatic	2.09E+03	9.59E+05	9.53E+04	5.04E+07	2.04E+03	7.77E+01
TPH (>EC10-12) aliphatic	1.04E+04	2.13E+06	9.53E+04	5.04E+07	9.33E+03	4.75E+01

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
TPH (>EC12-16) aliphatic	8.68E+04	6.18E+06	9.53E+04	5.04E+07	4.51E+04	2.37E+01
TPH (>EC16-35) aliphatic	1.02E+07	1.76E+08	1.91E+06	3.48E+08	1.59E+06	8.48E+00
TPH (>EC35-44) aliphatic	1.02E+07	1.76E+08	1.91E+06	3.48E+08	1.59E+06	8.48E+00
TPH (>EC6-7) aromatic (benzene)	4.75E+01	1.17E+04	5.53E+02	4.87E+05	4.36E+01	1.22E+03
TPH (>EC7-8) aromatic (toluene)	6.88E+04	1.83E+07	4.25E+05	4.84E+08	5.90E+04	8.69E+02
TPH (>EC8-10) aromatic	3.70E+03	5.80E+05	3.81E+04	1.04E+07	3.35E+03	6.13E+02
TPH (>EC10-12) aromatic	2.02E+04	1.35E+06	3.81E+04	1.04E+07	1.31E+04	3.64E+02
TPH (>EC12-16) aromatic	2.25E+05	4.48E+06	3.81E+04	1.04E+07	3.22E+04	2.37E+01
TPH (>EC16-21) aromatic	4.59E+06	1.24E+07	2.86E+04	5.22E+06	2.82E+04	5.37E+01
TPH (>EC21-35) aromatic	7.57E+08	5.56E+07	2.86E+04	5.22E+06	2.84E+04	4.83E+00
TPH (>EC35-44) aromatic	7.57E+08	5.56E+07	2.86E+04	5.22E+06	2.84E+04	4.83E+00
Naphthalene	2.06E+02	7.85E+04	3.64E+04	2.85E+05	2.04E+02	7.64E+01
Acenaphthylene	3.76E+05	2.62E+07	1.10E+05	2.09E+07	8.45E+04	8.61E+01
Acenaphthene	3.87E+05	2.74E+07	1.10E+05	2.09E+07	8.50E+04	5.70E+01
Fluorene	5.10E+05	2.44E+07	7.31E+04	1.39E+07	6.35E+04	3.09E+01
Phenanthrene	6.87E+05	1.31E+07	2.28E+04	4.34E+06	2.19E+04	3.60E+01
Anthracene	1.41E+07	3.07E+08	5.49E+05	1.04E+08	5.25E+05	1.17E+00
Fluoranthene	4.36E+06	2.63E+07	2.29E+04	4.34E+06	2.26E+04	1.89E+01
Pyrene	1.02E+07	5.98E+07	5.49E+04	1.04E+07	5.43E+04	2.20E+00
Benzo(a)anthracene	4.04E+03	7.01E+03	2.84E+02	5.21E+02	1.71E+02	1.71E+00
Chrysene	5.01E+04	1.22E+04	5.67E+02	1.04E+03	3.54E+02	4.40E-01
Benzo(b)fluoranthene	1.86E+04	2.18E+03	7.13E+01	1.32E+02	4.52E+01	1.22E+00
Benzo(k)fluoranthene	8.14E+05	6.83E+04	1.88E+03	3.48E+03	1.20E+03	6.87E-01
Benzo(a)pyrene	2.10E+04	1.90E+03	5.67E+01	1.04E+02	3.60E+01	9.11E-01
Indeno(123-cd)pyrene	1.75E+05	2.29E+04	8.10E+02	1.49E+03	5.12E+02	6.14E-02
Dibenzo(ah)anthracene	1.01E+03	2.36E+02	5.67E+00	1.04E+01	3.60E+00	3.93E-03
Benzo(g,h,i)perylene	4.64E+06	3.81E+05	6.29E+03	1.15E+04	4.02E+03	1.54E-02

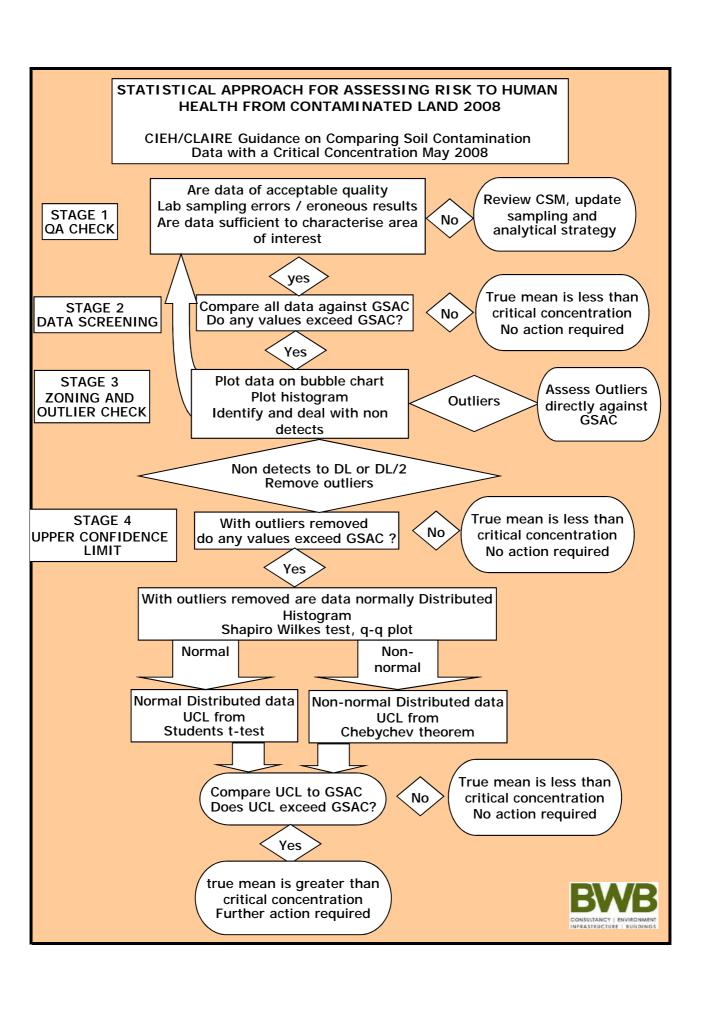
Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 1% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
Tetrachloroethene (PCE)	1.98E+01	7.63E+04	1.12E+04	2.83E+06	1.97E+01	4.24E+02
Trichloroethene (TCE)	1.31E+00	5.07E+03	9.53E+02	1.98E+05	1.30E+00	1.54E+03
cis-1,2-Dichloroethene	1.45E+01	5.26E+04	1.12E+04	2.04E+06	1.45E+01	3.94E+03
Vinyl Chloride (VC)	6.31E-02	7.47E+02	2.67E+01	1.04E+05	6.29E-02	1.36E+03
1,1,2,2-Tetrachloroethane (PCA)	2.98E+02	2.49E+05	1.10E+04	2.01E+06	2.90E+02	2.67E+03
1,1,1-Trichloroethane (TCA)	7.01E+02	3.81E+06	1.14E+06	2.07E+08	7.00E+02	1.43E+03
1,2-Dichloroethane	7.14E-01	1.68E+03	2.29E+02	4.17E+04	7.11E-01	3.41E+03
Carbon Tetrachloride	3.04E+00	1.65E+04	7.62E+03	8.85E+05	3.04E+00	1.52E+03
Carbon disulphide	1.16E+01	7.12E+04	9.53E+04	4.97E+06	1.16E+01	2.11E+03

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg
Arsenic	NR	NR	6.35E+02	6.95E+02	6.40E+02	N/A
Barium	NR	NR	2.22E+04	3.48E+06	2.21E+04	N/A
Beryllium	NR	NR	3.97E+03	1.24E+01	1.24E+01	N/A
Boron	NR	NR	2.38E+05	2.99E+07	2.36E+05	N/A
Cadmium	NR	NR	3.99E+02	2.43E+02	2.30E+02	N/A
Chromium III	NR	NR	3.31E+05	9.09E+03	8.84E+03	N/A
Chromium VI	NR	NR	1.79E+03	3.48E+01	3.48E+01	N/A
Copper	NR	NR	1.89E+05	9.50E+04	6.33E+04	N/A
Lead					2.33E+03	N/A
Inorganic Mercury	NR	NR	1.18E+03	2.09E+04	3.60E+03	N/A
Nickel	NR	NR	2.22E+04	1.04E+03	1.04E+03	N/A
Selenium	NR	NR	1.23E+04	1.93E+06	1.30E+04	N/A
Vanadium	NR	NR	2.15E+04	9.58E+03	6.63E+03	N/A
Zinc	NR	NR	7.35E+05	2.09E+08	7.33E+05	N/A
Cyanide (free)					4.30E+01	N/A
Cyanide (Complex)					2.13E+02	N/A
Phenol	1.31E+05	1.37E+06	4.07E+04	3.28E+06	3.01E+04	8.15E+04
Benzene	5.53E+01	1.60E+04	5.53E+02	4.87E+05	5.01E+01	2.26E+03
Toluene	1.52E+05	2.72E+07	4.25E+05	4.86E+08	1.12E+05	1.92E+03
Ethylbenzene	1.47E+04	1.99E+06	1.91E+05	2.57E+07	1.36E+04	1.22E+03
Total Xylene	1.51E+04	1.79E+06	3.43E+05	2.03E+07	1.43E+04	1.12E+03
TPH (EC5-6) aliphatic	6.07E+03	6.79E+06	4.77E+06	8.69E+08	6.06E+03	5.58E+02
TPH (>EC6-8) aliphatic	1.80E+04	1.17E+07	4.77E+06	8.69E+08	1.79E+04	3.22E+02
TPH (>EC8-10) aliphatic	5.11E+03	1.50E+06	9.53E+04	5.04E+07	4.83E+03	1.90E+02
TPH (>EC10-12) aliphatic	2.58E+04	3.37E+06	9.53E+04	5.04E+07	2.02E+04	1.18E+02

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
TPH (>EC12-16) aliphatic	2.17E+05	9.77E+06	9.53E+04	5.04E+07	6.57E+04	5.91E+01
TPH (>EC16-35) aliphatic	2.56E+07	2.79E+08	1.91E+06	3.48E+08	1.76E+06	2.12E+01
TPH (>EC35-44) aliphatic	2.56E+07	2.79E+08	1.91E+06	3.48E+08	1.76E+06	2.12E+01
TPH (>EC6-7) aromatic (benzene)	5.53E+01	1.60E+04	5.53E+02	4.87E+05	5.01E+01	2.26E+03
TPH (>EC7-8) aromatic (toluene)	1.52E+05	2.71E+07	4.25E+05	4.84E+08	1.11E+05	1.92E+03
TPH (>EC8-10) aromatic	9.06E+03	9.08E+05	3.81E+04	1.04E+07	7.26E+03	1.50E+03
TPH (>EC10-12) aromatic	4.99E+04	2.13E+06	3.81E+04	1.04E+07	2.13E+04	8.99E+02
TPH (>EC12-16) aromatic	5.59E+05	7.06E+06	3.81E+04	1.04E+07	3.54E+04	5.91E+01
TPH (>EC16-21) aromatic	1.15E+07	1.96E+07	2.86E+04	5.22E+06	2.83E+04	1.34E+02
TPH (>EC21-35) aromatic	1.89E+09	8.79E+07	2.86E+04	5.22E+06	2.84E+04	1.21E+01
TPH (>EC35-44) aromatic	1.89E+09	8.79E+07	2.86E+04	5.22E+06	2.84E+04	1.21E+01
Naphthalene	4.93E+02	1.21E+05	3.64E+04	2.85E+05	4.84E+02	1.83E+02
Acenaphthylene	9.26E+05	4.11E+07	1.10E+05	2.09E+07	9.76E+04	2.12E+02
Acenaphthene	9.56E+05	4.31E+07	1.10E+05	2.09E+07	9.80E+04	1.41E+02
Fluorene	1.26E+06	3.84E+07	7.31E+04	1.39E+07	6.86E+04	7.65E+01
Phenanthrene	1.71E+06	2.07E+07	2.28E+04	4.34E+06	2.24E+04	8.96E+01
Anthracene	3.51E+07	4.84E+08	5.49E+05	1.04E+08	5.37E+05	2.91E+00
Fluoranthene	1.09E+07	4.16E+07	2.29E+04	4.34E+06	2.27E+04	4.73E+01
Pyrene	2.54E+07	9.45E+07	5.49E+04	1.04E+07	5.45E+04	5.49E+00
Benzo(a)anthracene	1.01E+04	1.11E+04	2.84E+02	5.21E+02	1.77E+02	4.28E+00
Chrysene	1.25E+05	1.93E+04	5.67E+02	1.04E+03	3.59E+02	1.10E+00
Benzo(b)fluoranthene	4.66E+04	3.45E+03	7.13E+01	1.32E+02	4.57E+01	3.04E+00
Benzo(k)fluoranthene	2.03E+06	1.08E+05	1.88E+03	3.48E+03	1.21E+03	1.72E+00
Benzo(a)pyrene	5.26E+04	3.00E+03	5.67E+01	1.04E+02	3.63E+01	2.28E+00
Indeno(123-cd)pyrene	4.38E+05	3.62E+04	8.10E+02	1.49E+03	5.17E+02	5.30E-01
Dibenzo(ah)anthracene	2.53E+03	3.73E+02	5.67E+00	1.04E+01	3.63E+00	9.82E-03
Benzo(g,h,i)perylene	1.16E+07	6.02E+05	6.29E+03	1.15E+04	4.03E+03	3.85E-02

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 2.5% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
Tetrachloroethene (PCE)	4.43E+01	1.14E+05	1.12E+04	2.83E+06	4.41E+01	9.51E+02
Trichloroethene (TCE)	2.74E+00	7.34E+03	9.53E+02	1.98E+05	2.73E+00	3.22E+03
cis-1,2-Dichloroethene	2.43E+01	6.81E+04	1.12E+04	2.04E+06	2.42E+01	6.61E+03
Vinyl Chloride (VC)	8.16E-02	8.50E+02	2.67E+01	1.04E+05	8.13E-02	1.76E+03
1,1,2,2-Tetrachloroethane (PCA)	6.11E+02	3.56E+05	1.10E+04	2.01E+06	5.78E+02	5.46E+03
1,1,1-Trichloroethane (TCA)	1.43E+03	5.46E+06	1.14E+06	2.07E+08	1.43E+03	2.92E+03
1,2-Dichloroethane	1.03E+00	2.02E+03	2.29E+02	4.17E+04	1.02E+00	4.91E+03
Carbon Tetrachloride	6.67E+00	2.44E+04	7.62E+03	8.85E+05	6.66E+00	3.32E+03
Carbon disulphide	2.32E+01	1.00E+05	9.53E+04	4.97E+06	2.32E+01	4.21E+03

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg
Arsenic	NR	NR	6.35E+02	6.95E+02	6.40E+02	N/A
Barium	NR	NR	2.22E+04	3.48E+06	2.21E+04	N/A
Beryllium	NR	NR	3.97E+03	1.24E+01	1.24E+01	N/A
Boron	NR	NR	2.38E+05	2.99E+07	2.36E+05	N/A
Cadmium	NR	NR	3.99E+02	2.43E+02	2.30E+02	N/A
Chromium III	NR	NR	3.31E+05	9.09E+03	8.84E+03	N/A
Chromium VI	NR	NR	1.79E+03	3.48E+01	3.48E+01	N/A
Copper	NR	NR	1.89E+05	9.50E+04	6.33E+04	N/A
Lead					2.33E+03	N/A
Inorganic Mercury	NR	NR	1.18E+03	2.09E+04	3.60E+03	N/A
Nickel	NR	NR	2.22E+04	1.04E+03	1.04E+03	N/A
Selenium	NR	NR	1.23E+04	1.93E+06	1.30E+04	N/A
Vanadium	NR	NR	2.15E+04	9.58E+03	6.63E+03	N/A
Zinc	NR	NR	7.35E+05	2.09E+08	7.33E+05	N/A
Cyanide (free)					4.30E+01	N/A
Cyanide (Complex)					2.13E+02	N/A
Phenol	2.42E+05	1.86E+06	4.07E+04	3.28E+06	3.39E+04	1.74E+05
Benzene	1.15E+02	2.30E+04	5.53E+02	4.87E+05	9.47E+01	4.71E+03
Toluene	3.46E+05	4.11E+07	4.25E+05	4.86E+08	1.90E+05	4.36E+03
Ethylbenzene	3.45E+04	3.04E+06	1.91E+05	2.57E+07	2.89E+04	2.84E+03
Total Xylene	3.53E+04	2.74E+06	3.43E+05	2.03E+07	3.16E+04	2.62E+03
TPH (EC5-6) aliphatic	1.25E+04	9.74E+06	4.77E+06	8.69E+08	1.25E+04	1.15E+03
TPH (>EC6-8) aliphatic	4.12E+04	1.77E+07	4.77E+06	8.69E+08	4.08E+04	7.36E+02
TPH (>EC8-10) aliphatic	1.21E+04	2.31E+06	9.53E+04	5.04E+07	1.07E+04	4.51E+02
TPH (>EC10-12) aliphatic	6.18E+04	5.22E+06	9.53E+04	5.04E+07	3.72E+04	2.83E+02


Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
TPH (>EC12-16) aliphatic	5.20E+05	1.51E+07	9.53E+04	5.04E+07	8.00E+04	1.42E+02
TPH (>EC16-35) aliphatic	6.14E+07	4.32E+08	1.91E+06	3.48E+08	1.83E+06	5.09E+01
TPH (>EC35-44) aliphatic	6.14E+07	4.32E+08	1.91E+06	3.48E+08	1.83E+06	5.09E+01
TPH (>EC6-7) aromatic (benzene)	1.15E+02	2.30E+04	5.53E+02	4.87E+05	9.48E+01	4.71E+03
TPH (>EC7-8) aromatic (toluene)	3.45E+05	4.09E+07	4.25E+05	4.84E+08	1.89E+05	4.36E+03
TPH (>EC8-10) aromatic	2.16E+04	1.40E+06	3.81E+04	1.04E+07	1.36E+04	3.58E+03
TPH (>EC10-12) aromatic	1.19E+05	3.29E+06	3.81E+04	1.04E+07	2.85E+04	2.15E+03
TPH (>EC12-16) aromatic	1.34E+06	1.09E+07	3.81E+04	1.04E+07	3.68E+04	1.42E+02
TPH (>EC16-21) aromatic	2.75E+07	3.03E+07	2.86E+04	5.22E+06	2.84E+04	3.21E+02
TPH (>EC21-35) aromatic	4.54E+09	1.36E+08	2.86E+04	5.22E+06	2.84E+04	2.90E+01
TPH (>EC35-44) aromatic	4.54E+09	1.36E+08	2.86E+04	5.22E+06	2.84E+04	2.90E+01
Naphthalene	1.16E+03	1.87E+05	3.64E+04	2.85E+05	1.11E+03	4.32E+02
Acenaphthylene	2.21E+06	6.35E+07	1.10E+05	2.09E+07	1.04E+05	5.06E+02
Acenaphthene	2.28E+06	6.67E+07	1.10E+05	2.09E+07	1.04E+05	3.36E+02
Fluorene	3.02E+06	5.94E+07	7.31E+04	1.39E+07	7.09E+04	1.83E+02
Phenanthrene	4.09E+06	3.20E+07	2.28E+04	4.34E+06	2.25E+04	2.14E+02
Anthracene	8.41E+07	7.50E+08	5.49E+05	1.04E+08	5.42E+05	6.96E+00
Fluoranthene	2.61E+07	6.44E+07	2.29E+04	4.34E+06	2.28E+04	1.12E+02
Pyrene	6.09E+07	1.46E+08	5.49E+04	1.04E+07	5.45E+04	1.32E+01
Benzo(a)anthracene	2.42E+04	1.72E+04	2.84E+02	5.21E+02	1.80E+02	1.03E+01
Chrysene	3.00E+05	2.99E+04	5.67E+02	1.04E+03	3.62E+02	2.64E+00
Benzo(b)fluoranthene	1.12E+05	5.34E+03	7.13E+01	1.32E+02	4.59E+01	7.29E+00
Benzo(k)fluoranthene	4.88E+06	1.67E+05	1.88E+03	3.48E+03	1.21E+03	4.12E+00
Benzo(a)pyrene	1.26E+05	4.65E+03	5.67E+01	1.04E+02	3.64E+01	5.46E+00
Indeno(123-cd)pyrene	1.05E+06	5.60E+04	8.10E+02	1.49E+03	5.20E+02	3.68E-01
Dibenzo(ah)anthracene	6.07E+03	5.78E+02	5.67E+00	1.04E+01	3.65E+00	2.36E-02
Benzo(g,h,i)perylene	2.78E+07	9.33E+05	6.29E+03	1.15E+04	4.04E+03	9.23E-02

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived May 2015 6% Organic matter	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion & Dermal Contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
Tetrachloroethene (PCE)	1.02E+02	1.73E+05	1.12E+04	2.83E+06	1.01E+02	2.18E+03
Trichloroethene (TCE)	6.07E+00	1.09E+04	9.53E+02	1.98E+05	6.03E+00	7.14E+03
cis-1,2-Dichloroethene	4.73E+01	9.50E+04	1.12E+04	2.04E+06	4.71E+01	1.29E+04
Vinyl Chloride (VC)	1.25E-01	1.05E+03	2.67E+01	1.04E+05	1.24E-01	2.69E+03
1,1,2,2-Tetrachloroethane (PCA)	1.34E+03	5.27E+05	1.10E+04	2.01E+06	1.19E+03	1.20E+04
1,1,1-Trichloroethane (TCA)	3.14E+03	8.08E+06	1.14E+06	2.07E+08	3.13E+03	6.39E+03
1,2-Dichloroethane	1.77E+00	2.65E+03	2.29E+02	4.17E+04	1.76E+00	8.43E+03
Carbon Tetrachloride	1.51E+01	3.67E+04	7.62E+03	8.85E+05	1.51E+01	7.54E+03
Carbon disulphide	5.01E+01	1.48E+05	9.53E+04	4.97E+06	5.01E+01	9.11E+03

APPENDIX 11 CLEA FLOW CHART & SCREENING WORKSHEETS

Human Health Generic QRA Worksheet

lakeview Drive, Bicester	NTE2366
All samples have been assessed as one averageing area.	

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3271

GSAC Type (BWB, LQM S4UL, C4SL, Bespoke)	BWB_GSAC
Key Receptor/CSM (Residential/Commercial/POS)	Commercial
Organic Matter % (If unknown use 1%)	1

Exposure Pathway Selection for BWB GSAC	
(Residential/Commercial scenarios only)	
Soil Ingestion, dermal contact, particulate inhalation	TRUE
Ingestion of site grown vegetables and soil attached to	
vegetables	FALSE
Inhalation of vapours Indoors	TRUE
Inhalation of vapours Outdoors	TRUE

Default	Default pathways			
Residential	Commercial			
TRUE	TRUE			
Optional	FALSE			
TRUE	TRUE			
TRUE	TRUE			

Generic Assessment Criteria		
		BMB
lakeview Drive, Bicester	Commercial	CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS
NTE2366	mg/kg	Source
Arsenic	6.40E+02	BWB_GSAC
Barium	2.21E+04	BWB_GSAC
Beryllium	1.24E+01	BWB_GSAC
Boron	2.36E+05	BWB_GSAC
Cadmium	2.30E+02	BWB_GSAC
Chromium VI	3.41E+01	BWB_GSAC
Chromium III	9.09E+03	BWB_GSAC
Copper	6.33E+04	BWB_GSAC
Lead*	2.33E+03	DEFRA_C4SL
Inorganic Mercury	3.60E+03	BWB_GSAC
Nickel	1.04E+03	BWB_GSAC
Selenium	1.30E+04	BWB_GSAC
Vanadium	6.63E+03	BWB_GSAC
Zinc	7.33E+05	BWB_GSAC
Cyanide (Free)	4.30E+01	BWB_GSAC
Cyanide (Complex)	2.13E+02	BWB_GSAC
Phenols (Total)	2.65E+04	BWB_GSAC
Benzene	2.81E+01	BWB GSAC
Toluene	5.92E+04	BWB_GSAC
Ethyl benzene	6.05E+03	BWB_GSAC
Total Xylene	6.28E+03	BWB GSAC
TPH (EC5-6) aliphatic	3.31E+03	BWB_GSAC
TPH (>EC6-8) aliphatic	8.04E+03	BWB_GSAC
TPH (>EC8-10) aliphatic	2.04E+03	BWB_GSAC
TPH (>EC10-12) aliphatic	9.33E+03	BWB_GSAC
TPH (>EC12-16) aliphatic	4.51E+04	BWB_GSAC
TPH (>EC16-21) aliphatic	1.59E+06	BWB_GSAC
TPH (>EC21-35) aliphatic	1.59E+06	BWB_GSAC
TPH (>EC35-44) aliphatic	1.59E+06	BWB_GSAC
TPH (>EC6-7) aromatic (benzene)	4.36E+01	BWB_GSAC
TPH (>EC7-8) aromatic (toluene)	5.90E+04	BWB_GSAC
TPH (>EC8-10) aromatic	3.35E+03	BWB_GSAC
TPH (>EC10-12) aromatic	1.31E+04	BWB_GSAC
TPH (>EC12-16) aromatic	3.22E+04	BWB_GSAC
TPH (>EC16-21) aromatic	2.82E+04	BWB_GSAC
TPH (>EC21-35) aromatic	2.84E+04	BWB GSAC
TPH (>EC35-44) aromatic	2.84E+04	BWB_GSAC
Total TPH	5.00E+02	BWB_GSAC
Naphthalene	2.04E+02	BWB_GSAC
Acenaphthylene	8.45E+04	BWB_GSAC
Acenaphthene	8.50E+04	BWB_GSAC
Fluorene	6.35E+04	BWB_GSAC
Phenanthrene	2.19E+04	BWB_GSAC
Anthracene	5.25E+05	BWB_GSAC
Fluoranthene	2.26E+04	BWB_GSAC
Pyrene	5.43E+04	BWB_GSAC
Benzo(a)anthracene	1.71E+02	BWB_GSAC
Chrysene	3.54E+02	BWB_GSAC
Benzo(b)fluoranthene	4.52E+01	BWB_GSAC
Benzo(k)fluoranthene	1.20E+03	BWB_GSAC
Benzo(a)pyrene	3.60E+01	BWB_GSAC
Indeno(1,2,3-c,d)pyrene	5.12E+02	BWB_GSAC
11140113(11210 014) PJ1 0110	J. 12L 1 UZ	5175_00/10

Generic Assessment Criteria		RWR
lakeview Drive, Bicester	Commercial	CONSULTANCY ENVIRONMENT
NTE2366	mg/kg	Source
Dibenzo(a,h)anthracene	3.60E+00	BWB_GSAC
Benzo(g,hi)perylene	4.02E+03	BWB_GSAC
Coal Tar (B(a)P as surrogate marker	1.54E+01	BWB_GSAC
Tetrachloroethene (PCE)	1.97E+01	BWB_GSAC
Trichloroethene (TCE)	1.30E+00	BWB_GSAC
cis-1,2-Dichloroethene	1.45E+01	BWB_GSAC
Vinyl Chloride (VC)	6.29E-02	BWB_GSAC
1,1,2,2-Tetrachloroethane (PCA)	2.90E+02	BWB_GSAC
1,1,1-Trichloroethane (TCA)	7.00E+02	BWB_GSAC
1,2-Dichloroethane	7.11E-01	BWB_GSAC
Carbon Tetrachloride	3.04E+00	BWB_GSAC
Carbon disulphide	1.16E+01	BWB_GSAC

Location	Sample depth	Easting	Northing	Strata Type	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium VI	Chromium III	Copper	Lead	Inorganic Mercury	Nickel	Selenium	Vanadium	Zinc	Cyanide (Free)	Cyanide (Complex)	Phenols (Total)
Detectio	n Limit				0.2	1.5	0.2	0.2		1	0.15				0.2	0.5			0.1	0.1	0.3
GSAC					6.40E+02		1.24E+01			3.41E+01					1.04E+03	1.30E+04			4.30E+01	2.13E+02	2.65E+04
	0.20-0.30	457678.2	221686.4	66.3	28.0	72	1.1	4.5		4	32		51	0.3	28	1	71		1	1	1
	0.40-0.50	457678.2	221686.4	66.3	19.0	49		3	0.2	4	19		23		19	1	49		1	1	1
	0.10-0.20	457715.5		66.3	12.0	130	0.43	3.3		4	21		67	0.3	14	1	31		1	1	1
	0.40-0.50	457715.5	221705.1	66.3	20.0	81		2.3		4	21		40		18	1	43		1	1	1
	0.20-0.30	457765.9	221691.1	66.2	22.0	68		1.7	0.2	4	22				23	1	40		1	1	1
	0.90-1.00	457765.9	221691.1	66.2	19.0	41		2.9		4	23				16	1	46		1	1	1
	0.50-0.60	457642.4	221475.7	65.0	9.1	68	1.3	8.1	0.4	4	26				20	4.8			1	1	1
	0.10-0.20	457666.5		64.7	16.0	68		7.7		4	21				15	1	43		1	1	1
	0.50-0.60	457736.7		64.7	10.0	28	0.42	0.6		4	11				13	1	23		1	1	1
	0.10-0.20	458106.4	221405.5	64.6	18.0	61		4.3		4	29		29		20	1	36		1	1	1
TP114	1.00-1.20	458106.4	221405.5	64.6	9.2	11		0.2		4	8.2				12	1	20		1	1	1
	0.70-0.80	458104.9	221556.3	65.4	8.0	39		2.1	0.2	4	22		12		9.3	1	32		1	1	1
	0.80-0.90	458141.0	221617.7	66.1	3.7	35	0.68	1.8		4	23		11		12	1	33		1	1	1
	0.60-0.70	458069.5	221668.2	66.4	14.0	50	0.46	0.9		4	14				18	1	24		1	1	1
	0.10-0.20	458039.0		65.2	9.4	61		5.6		4	28		39		19	1	40		1	1	1
TP125	0.40-0.50	457816.5	221604.2	66.8	16.0	85	1.3	2.2	0.2	4	26	26	14	0.3	50	1	50	86	1	1	1

Location	San	Benzene	Toluene	Ethyl benzene	Total Xylene	TPH (EC5-6) aliphatic	TPH (>EC6-8) aliphatic	TPH (>EC8-10) aliphatic	TPH (>EC10-12) aliphatic	TPH (>EC12-16) aliphatic	TPH (>EC16-21) aliphatic	TPH (>EC21-35) aliphatic	TPH (>EC35-44) aliphatic	TPH (>EC6-7) aromatic (benzene)	TPH (>EC7-8) aromatic (toluene)	TPH (>EC8-10) aromatic	TPH (>EC10-12) aromatic	TPH (>EC12-16) aromatic	TPH (>EC16-21) aromatic	TPH (>EC21-35) aromatic	TPH (>EC35-44) aromatic
Detection	n Limit	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1.5	1.2		3.4		0.01	0.01	0.9		0.6	1.4	1.4	0.1
GSAC		2.81E+01	5.92E+04	6.05E+03	6.28E+03				9.33E+03	4.51E+04					5.90E+04	3.35E+03	1.31E+04		2.82E+04		
TP101	0.20-0.30	0.001	0.001	0.001	0.002	0.001	0.001	0.001	1	2	8	15		0.001	0.001	0.001	1	4.2	10	18	
TP101	0.40-0.50																				——
TP102	0.10-0.20	0.001	0.001	0.001	0.002	0.001	0.001	0.001	1	/	15	200		0.001	0.001	0.001	4.3	14	33	410	——
TP102	0.40-0.50																				
TP103	0.20-0.30																				——
TP103	0.90-1.00																				——
TP105	0.50-0.60																				
TP106 TP107	0.10-0.20 0.50-0.60																				
TP107	0.50-0.60																				
TP114	1.00-1.20																				
TP114	0.70-0.80																				\vdash
TP119	0.80-0.90																				
TP120	0.60-0.70																				
TP121	0.10-0.20																				
TP125	0.40-0.50																				

Location	Sample depth	Total TPH	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3- c,d)pyrene	Dibenzo(a,h) anthracen e	Benzo(g,hi)perylene	Benzo(a)pyrene (as surrogate marker)
Detection GSAC	on Limit	10 5.00E+02	0.1 2.04E+02	0.1 8.45E+04	0.1 8.50E+04	0.1 6.35E+04	0.1 2.19E+04	0.1	0.1 2.26E+04	0.1 5.43E+04	0.1 1.71E+02	0.1 3.54E+02	0.1 4.52E+01	0.1 1.20E+03	0.1 3.60E+01	0.1 5.12E+02	0.1 3.60E+00	0.1 4.02E+03	0.1 1.54E+01
TP101	0.20-0.30	5.00E+02 48	0.05	0.05	0.05	0.05	0.05	5.25E+05 0.05	0.24	0.22	0.12	0.15	0.13	0.13	0.17	0.05	0.05	0.05	0.17
TP101	0.40-0.50	27	0.05	0.05	0.05	0.05	0.05	0.05	0.24	0.22	0.12	0.15	0.13	0.13	0.17	0.05	0.05	0.05	0.05
TP101	0.10-0.20	1000	0.05	0.05	0.05	0.05	0.03	0.03	2.2	2.1	1.4	1.6	2	1.4	2.4	1.5	0.03	1.9	2.4
TP102	0.40-0.50	61	0.05	0.05	0.05	0.05	0.39	0.19	1.2	1.1	0.82	0.96	1.2	0.59	1.2	0.63	0.14	0.86	1.2
TP103	0.20-0.30	46	0.05	0.05	0.05	0.05	0.19	0.05	0.67	0.6	0.42	0.45	0.43	0.41	0.55	0.3	0.09	0.39	0.55
TP103	0.90-1.00	19	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP105	0.50-0.60	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP106	0.10-0.20	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP107	0.50-0.60	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP114	0.10-0.20	47	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP114	1.00-1.20	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP118	0.70-0.80	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP119	0.80-0.90	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP120	0.60-0.70	19	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP121	0.10-0.20	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TP125	0.40-0.50	10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05

Commercial/Industrial Pathway	Vapour	Vapour	Soil	Particulate	SGV	Commercial	Soil
Specific Assessment Sub Criteria	Inhalation	Inhalation	Ingestion	Dust		GSAC	Saturation
derived May 2015	(Indoors)	(Outdoors)	& Dermal	Inhalation			Limit
	(maga (lem)	(mag (lem)	Contact	(magazitem)	(mag (lem)	(mag (lem)	mg/kg
Arsenic	(mg/kg) NR	(mg/kg) NR	(mg/kg) 6.35E+02	(mg/kg) 6.95E+02	(mg/kg)	(mg/kg) 6.40E+02	N/A
Barium	NR	NR	2.22E+04	3.48E+06		2.21E+04	N/A
Beryllium	NR	NR	3.97E+03	1.24E+01		1.24E+01	N/A
Boron	NR	NR	2.38E+05	2.99E+07		2.36E+05	N/A
Cadmium	NR	NR	3.99E+02	2.43E+02		2.30E+02	N/A
Chromium VI	NR	NR	1.79E+03	3.48E+01		3.41E+01	N/A
Chromium III	NR	NR	3.31E+05	9.09E+03		9.09E+03	N/A
Copper	NR	NR	1.89E+05	9.50E+04		6.33E+04	N/A N/A
Lead Inorganic Mercury	NR	NR	1.18E+03	2.09E+04		2.33E+03 3.60E+03	N/A N/A
Nickel	NR	NR NR	2.22E+04	1.04E+03		1.04E+03	N/A
Selenium	NR	NR	1.23E+04	1.93E+06		1.30E+04	N/A
Vanadium	NR	NR	2.15E+04	9.58E+03		6.63E+03	N/A
Zinc	NR	NR	7.35E+05	2.09E+08		7.33E+05	N/A
Cyanide (free)					4.30E+01	4.30E+01	N/A
Cyanide (Complex)	0.045.04	4.005.06	4.075.61	2.005.61	2.13E+02	2.13E+02	N/A
Phenol Benzene	8.34E+04 2.97E+01	1.09E+06 1.17E+04	4.07E+04 5.53E+02	3.28E+06 4.87E+05		2.65E+04 2.81E+01	4.16E+04 1.22E+03
Toluene	6.91E+04	1.17E+04 1.83E+07	4.25E+05	4.86E+08		5 92E+04	8.69E+02
Ethylbenzene	6.28E+03	1.30E+06	1.91E+05	2.57E+07		6.05E+03	5.18E+02
Total Xylene	6.43E+03	1.17E+06	3.43E+05	2.03E+07		6.28E+03	4.78E+02
TPH (EC5-6) aliphatic	3.31E+03	5.01E+06	4.77E+06	8.69E+08		3.31E+03	3.04E+02
TPH (>EC6-8) aliphatic	8.06E+03	7.82E+06	4.77E+06	8.69E+08		8.04E+03	1.44E+02
TPH (>EC8-10) aliphatic	2.09E+03 1.04F+04	9.59E+05	9.53E+04	5.04E+07		2.04E+03 9.33F+03	7.77E+01
TPH (>EC10-12) aliphatic	1.04E+04 8.68F±04	2.13E+06 6.18F+06	9.53E+04 9.53E+04	5.04E+07		9.33E+03 4.51F+04	4.75E+01
TPH (>EC12-16) aliphatic TPH (>EC16-21) aliphatic	8.68E+04 1.02E+07	1.76E+06	9.53E+04 1.91E+06	5.04E+07 3.48E+08		4.51E+04	2.37E+01 8.48E+00
TPH (>EC21-35) aliphatic	1.02E+07	1.76E+08	1.91E+06	3.48E+08		1.59E+06	8.48E+00
TPH (>EC35-44) aliphatic	1.02E+07	1.76E+08	1.91E+06	3.48E+08		1.59E+06	8.48E+00
TPH (>EC6-7) aromatic (benzene)	4.75E+01	1.17E+04	5.53E+02	4.87E+05		4.36E+01	1.22E+03
TPH (>EC7-8) aromatic (toluene)	6.88E+04	1.83E+07	4.25E+05	4.84E+08		5.90E+04	8.69E+02
TPH (>EC8-10) aromatic	3.70E+03	5.80E+05	3.81E+04	1.04E+07		3.35E+03	6.13E+02
TPH (>EC10-12) aromatic	2.02E+04	1.35E+06	3.81E+04	1.04E+07		1.31E+04	3.64E+02
TPH (>EC12-16) aromatic TPH (>EC16-21) aromatic	2.25E+05 4.59E+06	4.48E+06 1.24E+07	3.81E+04 2.86E+04	1.04E+07 5.22E+06		3.22E+04 2.82E+04	2.37E+01 5.37E+01
TPH (>EC16-21) aromatic	7.57E+08	5.56E+07	2.86E+04	5.22E+06		2.84E+04	4.83E+00
TPH (>EC35-44) aromatic	7.57E+08	5.56E+07	2.86E+04	5.22E+06		2.84E+04	4.83E+00
Total TPH						5.00E+02	N/A
Naphthalene	2.06E+02	7.85E+04	3.64E+04	2.85E+05		2.04E+02	7.64E+01
Acenaphthylene	3.76E+05	2.62E+07	1.10E+05	2.09E+07		8.45E+04	8.61E+01
Acenaphthene	3.87E+05 5.10E+05	2.74E+07	1.10E+05	2.09E+07		8.50E+04 6.35E+04	5.70E+01
Fluorene		2.44E+07 1.31E+07	7.31E+04 2.28E+04	1.39E+07 4.34E+06		6.35E+04 2.19E+04	3.09E+01 3.60E+01
Phenanthrene Anthracene	6.87E+05 1.41E+07	3.07E+08	5.49E+05	1.04E+08		5.25E+05	1.17E+00
Fluoranthene	4.36E+06	2.63E+07	2.29E+04	4.34E+06		2.26E+04	1.89E+01
Pyrene	1.02E+07	5.98E+07	5.49E+04	1.04E+07		5.43E+04	2.20E+00
Benzo(a)anthracene	4.04E+03	7.01E+03	2.84E+02	5.21E+02		1.71E+02	1.71E+00
Chrysene	5.01E+04	1.22E+04	5.67E+02	1.04E+03		3.54E+02	4.40E-01
Benzo(b)fluoranthene	1.86E+04	2.18E+03	7.13E+01	1.32E+02		4.52E+01	1.22E+00
Benzo(k)fluoranthene	8.14E+05	6.83E+04	1.88E+03	3.48E+03		1.20E+03	6.87E-01
Benzo(a)pyrene	2.10E+04 1.75E+05	1.90E+03 2.29E+04	5.67E+01 8.10E+02	1.04E+02 1.49E+03		3.60E+01 5.12E+02	9.11E-01 6.14E-02
Indeno(123-cd)pyrene Dibenzo(ah)anthracene	1.75E+05 1.01E+03	2.29E+04 2.36E+02	5.67E+00	1.49E+03 1.04E+01		5.12E+02 3.60E+00	3.93E-03
Benzo(g,h,i)perylene	4.64E+06	3.81E+05	6.29E+03	1.15E+04		4.02E+03	1.54E-02
Coal Tar (B(a)P as surrogate marker	2.10E+04	1.90E+03	1.83E+01	1.04E+02		1.54E+01	4.24E+02
Tetrachloroethene (PCE)	1.98E+01	7.63E+04	1.12E+04	2.83E+06		1.97E+01	4.24E+02
Trichloroethene (TCE)	1.31E+00	5.07E+03	9.53E+02	1.98E+05		1.30E+00	1.54E+03
cis-1,2-Dichloroethene	1.45E+01	5.26E+04	1.12E+04	2.04E+06		1.45E+01	3.94E+03
Vinyl Chloride (VC)	6.31E-02	7.47E+02	2.67E+01	1.04E+05		6.29E-02	1.36E+03
1,1,2,2-Tetrachloroethane (PCA) 1,1,1-Trichloroethane (TCA)	2.98E+02 7.01E+02	2.49E+05 3.81E+06	1.10E+04 1.14E+06	2.01E+06 2.07E+08		2.90E+02 7.00E+02	2.67E+03 1.43E+03
1,2-Dichloroethane	7.01E+02 7.14E-01	3.81E+06 1.68E+03	2.29E+02	4.17E+04		7.00E+02 7.11E-01	3.41E+03
Carbon Tetrachloride	3.04E+00	1.65E+04	7.62E+03	8.85E+05		3.04E+00	1.52E+03
Carbon disulphide	1.16E+01	7.12E+04	9.53E+04	4.97E+06		1.16E+01	2.11E+03
		ASC exceeds s	soil saturation	limit			

APPENDIX 12 SOIL LEACHATE ASSESSMENT SHEETS

*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l.

Project Name:	Lakevie Drive, Bicester
Project Number:	NTE2366
Assessment for:	Soil Leachate Assessment
Laboratory:	i2
Receptor:	Freshwater
Receptor Water Hardness:	50 to <100

	Contaminant	Units	Detection	Guideline	Source	Number of	Min	Max	TP101	TP101	TP102
			Limit	Concentration		Samples			0.200.30	0.400.50	0.100.20
	Arsenic	μg/l	1.1	50	EQS Freshwater	3	1.10	5.90	1.70	1.10	5.90
	Barium	mg/l	0.05	700	UK DWS	3	0.01	0.02	0.01	0.01	0.02
	Beryllium	μg/l	0.2	None Available	-	3	0.20	0.40	0.20	0.20	0.40
	Cadmium	μg/l	0.08	0.08	EQS Freshwater	3	0.08	0.08	0.08	0.08	0.08
	Chromium III	μg/l	0.4	4.7	EQS Freshwater	3	0.60	4.70	1.80	0.60	4.70
	Chromium VI	μg/l		3.4	EQS Freshwater	0	0.00	0.00			
Metals	Copper	μg/l	0.7	1	EQS Freshwater	3	22.00	42.00	23.00	22.00	42.00
Me	Lead	μg/l	1	1.2	EQS Freshwater	3	1.80	6.80	2.10	1.80	6.80
avy	Mercury	μg/l	0.5	0.07	EQS Freshwater	3	0.50	0.50	0.50	0.50	0.50
Hea	Nickel	μg/l	0.3	4	EQS Freshwater	3	1.50	4.20	4.20	1.50	4.20
1	Selenium	μg/l	4	10	UK DWS	3	4.00	4.00	4.00	4.00	4.00
	Vanadium	μg/l	1.7	None Available	•	3	1.70	7.70	1.70	1.70	7.70
	Zinc	μg/l	0.4	10.9	EQS Freshwater	3	9.90	12.00	10.00	9.90	12.00
	Sulphate	mg/l	0.1	400	EQS Freshwater	3	11.00	210.00	11.00	13.00	210.00
	Boron	mg/l	10	2000	EQS Freshwater	3	0.07	0.30	0.09	0.07	0.30
	рН					3	7.90	8.20	7.90	8.00	8.20
Inorganics	Cyanide (total)	μg/l	10	1	EQS Freshwater	3	10.00	10.00	10.00	10.00	10.00
Inorg	Phenol*	μg/l		7.7	EQS Freshwater	0	0.00	0.00			

APPENDIX 13 GROUNDWATER ASSESSMENT SHEETS

*EQS Standard: Phenol and Benzene annual average of 300µg/l; Toluene 500µg/l for Freshwater, 400µg/l for Saltwater; 1,1,1-TCA 1,000µg/l.

Project Name:	Lakevie Drive, Bicester
Project Number:	NTE2366
Assessment for:	Water Assessment
Laboratory:	i2
Receptor:	Freshwater
Receptor Water Hardness:	50 to <100

	Contaminant	Units	Detection Limit	Guideline Concentration	Source	Number of Samples	Min	Max	BH101	BH102	BH103	BH104	BH105	BH106	BH107	BH108	BH110	BH113
	Arsenic	μg/l	0.15	50	EQS Freshwater	10	0.35	3.94	0.35	0.41	3.06	1.66	1.43	0.92	1.28	0.37	3.94	1.28
	Barium	mg/l	0.06	700	UK DWS	10	30.00	160.00	34	47	43	86	67	30	160	62	97	49
	Beryllium	μg/l	0.10	None Available		0	0.00	0.00	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Cadmium	μg/l	0.02	0.08	EQS Freshwater	10	0.02	0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03	0.02	0.03	< 0.02	0.04
	Chromium III	μg/l	0.20	4.7	EQS Freshwater	10	0.20	0.70	< 0.2	< 0.2	< 0.2	0.5	0.7	< 0.2	0.7	0.3	0.2	< 0.2
	Chromium VI	µg/l	5.00	3.4	EQS Freshwater	10	0.00	0.00	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
tals	Copper	µg/l	0.50	1	EQS Freshwater	10	1.10	8.20	< 0.5	8.2	< 0.5	1.2	1.7	1.1	2.4	1.8	5.5	1.5
Metals	Lead	μg/l	0.20	1.2	EQS Freshwater	10	0.60	5.60	< 0.2	< 0.2	< 0.2	0.6	5.6	< 0.2	2.2	< 0.2	1	< 0.2
ανλ	Mercury	μg/l	0.05	0.07	EQS Freshwater	10	0.05	0.16	< 0.05	0.11	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.16	< 0.05	< 0.05
Peo	Nickel	µg/l	0.50	4	EQS Freshwater	10	0.90	31.00	0.9	2.6	1.2	31	5	15	7.4	3.4	- 11	4.4
_	Selenium	μg/l	0.60	10	UK DWS	10	0.80	5.50	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	0.8	1.4	5.5	1.2	1.9
	Vanadium	μg/l	0.20	None Available		10	0.20	1.90	1.6	0.2	< 0.2	1.1	0.5	< 0.2	1.9	0.2	0.4	0.6
	Zinc	μg/l	0.50	10.9	EQS Freshwater	10	1.70	11.00	< 0.5	2.5	< 0.5	7.8	1.7	4	7.6	11	2.6	2
	Sulphate	mg/l	45	400	EQS Freshwater	10	88.40	1090.00	88.40	168.00	106.00	310.00	301.00	779.00	949.00	633.00	1090.00	103.00
	Boron	mg/l	10.00	2000	EQS Freshwater	10	78.00	1200.00	1100	390	1200	78	81	240	540	170	400	150
	pH					10	7.00	7.50	7.50	7.20	7.30	7.20	7.30	7.10	7.10	7.20	7.00	7.20
norganics	Cyanide (total)	μg/l	10	1	EQS Freshwater	10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
lnorg	Phenol*	μg/l	10	7.7	EQS Freshwater	10	0.00	0.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Aliphatic C5-C6	μg/l		10	UK DWS	0	0.00	0.00										ĺ
	Aliphatic C6-C8	μg/l		10	UK DWS	0	0.00	0.00										
S	Aliphatic C8-C10	μg/l		10	UK DWS	0	0.00	0.00										
noc	Aliphatic C10-C12	μg/l		10	UK DWS	0	0.00	0.00										
ark	Aliphatic C12-C16	μg/l		10	UK DWS	0	0.00	0.00										İ
ľoc	Aliphatic C16-C21	μg/l		10	UK DWS	0	0.00	0.00										İ
Hydr	Aliphatic C21-C35	μg/l		10	UK DWS	0	0.00	0.00										İ
enm	Aromatic EC5-EC7	μg/l		10	EQS Freshwater	0	0.00	0.00										İ
Jec	Aromatic EC7-EC8	μg/l		74	EQS Freshwater	0	0.00	0.00										İ
Petrol	Aromatic EC8-EC10	μg/l		10	UK DWS	0	0.00	0.00										
I Pe	Aromatic EC10-EC12	μg/l		10	UK DWS	0	0.00	0.00										
Fotal	Aromatic EC12-EC16	μg/l		10	UK DWS	0	0.00	0.00										l
_	Aromatic EC16-EC21	μg/l		10	UK DWS	0	0.00	0.00										l
	Aromatic EC21-EC35	μg/l		10	UK DWS	0	0.00	0.00										l
	Total TPH (EC5-EC35)	μg/l	10.00	10	EQS Freshwater	10	0.00	0.00	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Acenaphthene	μg/l	0.01	None Available	-	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Acenaphthylene	μg/l	0.01	None Available	-	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
SI	Anthracene	µg/l	0.01	0.1	EQS Freshwater	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
bor	Benzo(a)anthracene	μg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
carb	Benzo(a)pyrene	μg/l	0.01	0.00017	EQS Freshwater	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Too	Benzo(b)fluoranthene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Hydro	Benzo(k)fluoranthene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Benzo(g,h,i)perylene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Aromatic	Chrysene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Aro	Dibenzo(a,h)anthracene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Fluoranthene	µg/l	0.01	0.0063	EQS Freshwater	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
olycyclic	Fluorene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ρ	Indeno(1,2,3-c,d)pyrene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
۵	Naphthalene	µg/l	0.01	2	EQS Freshwater	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Phenanthrene	µg/l	0.01	None Available		10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Pyrene	μg/l	0.01	None Available	•	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

APPENDIX 14 PRELIMINARY WASTE ASSESSMENT

Waste Classification Report

Job name

NTE2366 Bicester

Description/Comments

Project

NTE2366

Site

Bicester

Waste Stream Template

BWB Contaminated Land Suite WM3

Classified by

Name:

Richard Robinson

Date:

21/09/2017 10:03:31 UTC

Telephone: **0115 924 1100**

Company:

BWB Consulting Ltd

5th Floor

Waterfront House, Station Street

Nottingham NG2 3DQ

Report

Created by: Richard Robinson Created date: 21/09/2017 10:03 UTC

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	TP101	0.20-0.30	Non Hazardous		3
2	TP101[1]	0.40-0.50	Non Hazardous		6
3	TP102	0.10-0.20	Hazardous	HP 7, HP 11	8
4	TP102[1]	0.40-0.50	Non Hazardous		11
5	TP103	0.20-0.30	Non Hazardous		13
6	TP103[1]	0.90-1.00	Non Hazardous		15
7	TP105	0.50-0.60	Non Hazardous		17
8	TP106	0.10-0.20	Non Hazardous		19
9	TP107	0.50-0.60	Non Hazardous		21
10	TP114	0.10-0.20	Non Hazardous		23
11	TP114[1]	1.00-1.20	Non Hazardous		25
12	TP118	0.70-0.80	Non Hazardous		27
13	TP119	0.80-0.90	Non Hazardous		29
14	TP120	0.60-0.70	Non Hazardous		31
15	TP121	0.10-0.20	Non Hazardous		33
16	TP125	0.40-0.50	Non Hazardous		35

HazWasteOnline[™] Report created by Richard Robinson on 21/09/2017

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	37
Appendix B: Rationale for selection of metal species	39
Appendix C: Version	39

Page 2 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP101
Chapter:

Sample Depth:

0.20-0.30 m
Entry:

Moisture content:

16%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol	0	✓				2	
Ľ									
2	4	arsenic { arsenic trioxide }		28 mg/kg	1.32	36.969 mg/kg	0.0037 %		
		033-003-00-0 215-481-4 1327-53-3				3. 3			
3	æ.	beryllium { beryllium oxide }		1.1 mg/kg	2.775	3.053 mg/kg	0.000305 %		
		004-003-00-8 215-133-1 1304-56-9				3. 3			
	æ 🌡	boron { • boron tribromide/trichloride/trifluoride							
4		(combined) }		4.5 ma/ka	13.43	60.435 mg/kg	0.00604 %		
-		10294-33-4, 10294-34-5, 7637-07-2		4.5 Hg/kg	13.43	00.433 Hig/kg	0.00004 76		
5	2	cadmium { cadmium sulfide }	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
3	•	048-010-00-4 215-147-8 1306-23-6	1'	<0.2 Hg/kg	1.203	<0.237 Hig/kg	<0.00002 /8		\LOD
6	4	chromium { • chromium(III) oxide }		32 mg/kg	1.462	46.77 mg/kg	0.00468 %		
_								-	
7	1	copper {		41 mg/kg	1.126	46.161 mg/kg	0.00462 %		
	1	029-002-00-X 215-270-7 1317-39-1							
8	-	lead { lead chromate }	1	51 mg/kg	1.56	79.551 mg/kg	0.0051 %		
	1	082-004-00-2 231-846-0 7758-97-6						H	
9	-	mercury { mercury dichloride }		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
\vdash	+	080-010-00-X 231-299-8 7487-94-7	┢	<u>, </u>				-	
10	-	nickel { nickel dihydroxide } 028-008-00-X	-	28 ma/ka	1.579	44.226 mg/kg	0.00442 %		
		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]			1.070	T1.220 Hig/Ng	0.00112 /0		
11	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		034-002-00-8	L						
12	æ	zinc { zinc chromate }		95 ma/ka	2.774	263.544 mg/kg	0.0264 %		
	Ĺ	024-007-00-3		g/kg			0.0201 /0		
13	0	рН		7.8 pH		7.8 pH	7.8 pH		
		PH		•		<u>'</u>			

HazWasteOnline™ Report created by Richard Robinson on 21/09/2017

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	J.							MC /	-
14			ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
H	0	TPH (C6 to C40) p	etroleum aroup	1									
15		(00.000,7	J	TPH		48	mg/kg		48	mg/kg	0.0048 %		
16		benzene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			200-753-7	71-43-2								Н	
17	Θ	ethylbenzene 601-023-00-4	002 840 4	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %	Ш	<lod< td=""></lod<>
H	\dashv	toluene	202-849-4	100-41-4	H							Н	
18			203-625-9	108-88-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %	Ш	<lod< td=""></lod<>
		xylene		1,000									
19			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	acenaphthylene	201 100 0	po 02 0									
21		. ,	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	anthracene	,			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22			204-371-1	120-12-7		<0.03	ilig/kg		V0.00	ilig/kg	<0.000003 //	Ш	\LOD
23		benzo[a]anthracen	enzo[a]anthracene			0.12	mg/kg		0.12	mg/kg	0.000012 %		
			200-280-6	56-55-3								Н	
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	E0 22 0		0.17	mg/kg		0.17	mg/kg	0.000017 %		
H	-	benzo[b]fluoranthe		50-32-8	H							\vdash	
25			205-911-9	205-99-2		0.13	mg/kg		0.13	mg/kg	0.000013 %		
26	0	benzo[ghi]perylene)	1		-0.0E	ma/ka		-0.0E	ma/ka	-0.00000E 9/		<lod< td=""></lod<>
20			205-883-8	191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
27		benzo[k]fluoranthe	ne			0.13	mg/kg		0.13	mg/kg	0.000013 %		
		601-036-00-5	205-916-6	207-08-9		0.10			0.10	9/119	0.000010 70		
28		chrysene				0.15	mg/kg		0.15	mg/kg	0.000015 %		
			205-923-4	218-01-9								Н	
29		dibenz[a,h]anthrace	ene 200-181-8	E2 70 2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Ш	<lod< td=""></lod<>
\vdash		fluoranthene	200-101-0	53-70-3	\vdash							Н	
30	Θ		205-912-4	206-44-0	-	0.24	mg/kg		0.24	mg/kg	0.000024 %		
31	0	fluorene		1	f	-0.0E	ma/ka		-0.0F	ma/ka	<0.00000E 9/	П	<lod< td=""></lod<>
31			201-695-5	86-73-7	Ĺ	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
32	0	indeno[123-cd]pyre	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5		30.00				9/10	.5.000000 70	Ц	-200
33		naphthalene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	Ш	<lod< td=""></lod<>
\vdash	_		202-049-5	91-20-3								Н	
34	Θ	phenanthrene	DO1 591 F	95 O1 9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		pyrene	201-581-5	85-01-8	-							Н	
35	Θ		204-927-3	129-00-0	-	0.22	mg/kg		0.22	mg/kg	0.000022 %		
20		phenol	1	1			"			//	0.0004.07	П	165
36	_	· ·	203-632-7	108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0612 %	Γ	

Key	
	User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name:

TP101[1]
Chapter:

Sample Depth:

0.40-0.50 m
Entry:

Moisture content:

10%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 10% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has N	OT arisen from dies	sel or petrol	0	✓						2	
2	4	arsenic { arsenic tri	oxide }			19	mg/kg	1.32	25.086	mg/kg	0.00251 %		
L		033-003-00-0	215-481-4	1327-53-3								Ш	
3	4	beryllium { berylliun				0.7	mg/kg	2.775	1.943	mg/kg	0.000194 %		
		004-003-00-8	215-133-1	1304-56-9								Ш	
4	4	boron { boron tril (combined) }	bromide/trichloride/t	rifluoride 10294-33-4,		3	mg/kg	13.43	40.29	mg/kg	0.00403 %		
				10294-34-5, 7637-07-2									
5	4	cadmium { cadmiur	<mark>m sulfide</mark> }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
Ľ		048-010-00-4	215-147-8	1306-23-6	Ľ	10.2		200	10.201	9/9			1202
6	4	chromium { • chro	mium(III) oxide } 215-160-9	1308-38-9		19	mg/kg	1.462	27.77	mg/kg	0.00278 %		
7	4					31	ma/ka	1.126	34.903	mg/kg	0.00349 %		
'		029-002-00-X	215-270-7	1317-39-1			9,9	20	000	9/9	0.000.070		
8	æ	lead { lead chromat	ie }		1	23	mg/kg	1.56	35.876	mg/kg	0.0023 %		
Ľ		082-004-00-2	231-846-0	7758-97-6	Ľ	20		1.50	33.070	mg/kg	0.0025 70		
9	-	mercury { mercury	•			<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
	-			7487-94-7			J 3			3 3		Ш	
1,0	-	nickel { nickel dihyd	,			40	,,	4 570	00.04	,	0.000.0/		
10				12054-48-7 [1] 11113-74-9 [2]		19	mg/kg	1.579	30.01	mg/kg	0.003 %		
11	4	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
	Ш	034-002-00-8											
12	-	zinc { zinc chromate 024-007-00-3	e }			48	mg/kg	2.774	133.159	mg/kg	0.0133 %		
10		pH		I		0	n I I		0	n I I	0.011	\vdash	
13		-		PH		8	рН		8	pН	8pH		

HazWasteOnline[™]
Report created by Richard Robinson on 21/09/2017

$\overline{}$		KASTRUCTURE BUILDINGS									_	1
#		Determinand CLP index number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	S Applied	Conc. Not Used
		CLP Index number EC Number	CAS Number	CF							S	
14	4	cyanides { salts of hydrogen cyanide we exception of complex cyanides such as fe ferricyanides and mercuric oxycyanide ar specified elsewhere in this Annex }	errocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
	Ì	006-007-00-5										
15	0	TPH (C6 to C40) petroleum group			27	mg/kg		27	mg/kg	0.0027 %		
		TF	PH					21	mg/kg	0.0021 70		
16	0	acenaphthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		201-469-6 83	-32-9		40.00			10.00	mg/ng			1205
17	0	acenaphthylene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-917-1 20	8-96-8		40.00			10.00	mg/ng			1205
18	9	anthracene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		204-371-1 12	0-12-7		10.00			10.00	9,9			1-0-
19		benzo[a]anthracene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56	-55-3						3 3			
20		benzo[a]pyrene; benzo[def]chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50	-32-8						3 3			
21		benzo[b]fluoranthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	-		5-99-2						3 3			
22	0	benzo[ghi]perylene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_			11-24-2									
23		benzo[k]fluoranthene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-		7-08-9									
24	L	chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-		8-01-9									
25		dibenz[a,h]anthracene			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	-		-70-3									
26	Θ .	fluoranthene			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\dashv			6-44-0									
27	0	fluorene			< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
+			5-73-7									
28	0	indeno[123-cd]pyrene	0.00.5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
+	4		3-39-5									
29		naphthalene	00.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
+	\rightarrow		-20-3								H	
30	0	phenanthrene	04.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
+	-		-01-8									
31 6	0	pyrene Po4 027 2	00.00		< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
+	-		9-00-0									
32	L	phenol 604-001-00-2 203-632-7 10	8-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
J2							1					

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

www.hazwasteonline.com C4X7F-SLYYU-9M8XV Page 7 of 40

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP102

A Hazardous Waste

Classified as 17 05 03 * in the List of Waste

Sample details

Sample Name: LoW Code: TP102 Chapter: Sample Depth:

0.10-0.20 m 17 05 03 * (Soil and stones containing hazardous substances) Entry:

from contaminated sites)

Moisture content:

7.9%

(no correction)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.1%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.1%)

Determinands

Moisture content: 7.9% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol		☑					
2	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		12 mg/kg	1.32	15.844 mg/kg	0.00158 %		
3	~	beryllium { beryllium oxide } 004-003-00-8		0.43 mg/kg	2.775	1.193 mg/kg	0.000119 %		
4	₫,	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4,		3.3 mg/kg	13.43	44.319 mg/kg	0.00443 %		
5	-	cadmium { cadmium sulfide } 048-010-00-4	1	0.7 mg/kg	1.285	0.9 mg/kg	0.00007 %		
6	4	chromium { • chromium(III) oxide }		21 mg/kg	1.462	30.693 mg/kg	0.00307 %		

	INI	RASTRUCTURE BUILDINGS									
#		Determinand CLP index number	P Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	S Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP							MC MC	
7		copper { • dicopper oxide; copper (I) oxide }		72	mg/kg	1.126	81.064	mg/kg	0.00811 %		
8	_	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	67	mg/kg	1.56	104.508	mg/kg	0.0067 %		
9	-	mercury { mercury dichloride }		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7 nickel { nickel dihydroxide }									
10		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		14	mg/kg	1.579	22.113	mg/kg	0.00221 %	L	
11	**	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12		zinc { zinc chromate }		170	mg/kg	2.774	471.605	mg/kg	0.0472 %		
13	0	pH PH		9.7	рН		9.7	рН	9.7 pH		
14	₫.	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
15	0	TPH (C6 to C40) petroleum group	-	1000	mg/kg		1000	mg/kg	0.1 %		
16		benzene		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
17	0	601-020-00-8 200-753-7 71-43-2 ethylbenzene		-1			-4				1.00
		601-023-00-4 202-849-4 100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
18		toluene 601-021-00-3 203-625-9 108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 96-42-3 [2] 108-38-3 [3] 11330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
20	0	acenaphthene 201-469-6 83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	acenaphthylene 205-917-1 208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	anthracene 204-371-1 120-12-7		0.21	mg/kg		0.21	mg/kg	0.000021 %		
23		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		1.4	mg/kg		1.4	mg/kg	0.00014 %		
24		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		2.4	mg/kg		2.4	mg/kg	0.00024 %		
25		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		2	mg/kg		2	mg/kg	0.0002 %		
26		benzo[ghi]perylene 205-883-8 191-24-2		1.9	mg/kg		1.9	mg/kg	0.00019 %		
27		benzo[k]fluoranthene		1.4	mg/kg		1.4	mg/kg	0.00014 %		
28		chrysene		1.6	mg/kg		1.6	mg/kg	0.00016 %		
29		601-048-00-0 205-923-4 218-01-9 dibenz[a,h]anthracene	_	0.23	mg/kg		0.23	mg/kg	0.000023 %		
30	0	601-041-00-2 200-181-8 53-70-3 fluoranthene									
	0	205-912-4 206-44-0 fluorene		2.2	mg/kg		2.2	mg/kg			
31	9	201-695-5 86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
32	0	indeno[123-cd]pyrene		1.5	mg/kg		1.5	mg/kg	0.00015 %		

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
33		naphthalene					mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
34	0	phenanthrene				0.73	mg/kg		0.73	mg/kg	0.000073 %		
.			201-581-5	85-01-8	1	00	9/9		00	9,9	0.00001.0 70		
35	0	pyrene				2.1	mg/kg		2.1	mg/kg	0.00021 %		
"			204-927-3	129-00-0	1		9/9			9,9	0.0002.70		
36		phenol				<1	mg/kg		<1	ma/ka	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 203-632-7 108-95-2			1		9/119		- '	9/119	30.000.70		35
										Total:	0.176 %	Г	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 10 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP102[1]
Chapter:

Sample Depth:

0.40-0.50 m
Entry:

Moisture content:

12%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	а	Conv. Factor	Compound conc		Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NO	OT arisen from dies		O	 ✓						Σ	
Ľ						V							
2	4	arsenic { arsenic tric	•			20 mg	'kg	1.32	26.407 mg	/kg	0.00264 %		
	-			1327-53-3			_			_			
3	-	beryllium { beryllium	•			0.61 mg	′kg	2.775	1.693 mg	/kg	0.000169 %		
	1	004-003-00-8	215-133-1	1304-56-9									
	4	boron { • boron trib	oromide/trichloride/t	rifluoride									
4		(combined) }				2.3 mg	/ka	13.43	30.889 mg	/ka	0.00309 %		
'				10294-33-4, 10294-34-5,		2.09	9	.00	g	9	0.00000 70		
				7637-07-2									
5	æ.	cadmium { cadmium	n sulfide }		1	<0.2 mg	ka	1.285	<0.257 mg	/kg	<0.00002 %		<lod< th=""></lod<>
	Ĭ	048-010-00-4	215-147-8	1306-23-6	'	<0.2 mg	Νg	1.200	\0.207 Hig	ng.	<0.00002 70		
6	4	chromium { • chron	mium(III) oxide			21 mg.	/kg	1.462	30.693 mg	/kg	0.00307 %		
		2	215-160-9	1308-38-9			J			_			
7		copper { • dicopper		•		35 mg/	′kg	1.126	39.406 mg	/kg	0.00394 %		
	-			1317-39-1									
8	-	lead { lead chromate	•		1	40 mg	′kg	1.56	62.393 mg	/kg	0.004 %		
	-			7758-97-6			_			_			
9		mercury { mercury d				<0.3 mg	′kg	1.353	<0.406 mg	/kg	<0.0000406 %		<lod< td=""></lod<>
	-			7487-94-7			_						
10	_	nickel { nickel dihydr				18 mg	(ka	1.579	28.431 mg	/1.0	0.00284 %		
10				12054-48-7 [1] 11113-74-9 [2]		16 1119.	ĸy	1.579	28.431 mg	rkg	0.00204 %		
	4	selenium { selenium	compounds with the	ne exception of									
11		cadmium sulphosele in this Annex }	enide and those spo	ecified eisewhere		<1 mg/	'kg	2.554	<2.554 mg	/kg	<0.000255 %		<lod< td=""></lod<>
		034-002-00-8											
12	4	zinc { zinc chromate	}			78 mg	'kg	2.774	216.383 mg	/kg	0.0216 %		
		024-007-00-3										-	
13	0	pH		ĺDL I		8.1 pH			8.1 pH		8.1 pH		
				PH	Ш								

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	2 Applied	Conc. Not Used
14	₫,	cyanides { salts exception of compl	of hydrogen cyanid ex cyanides such a nercuric oxycyanide	e with the s ferrocyanides,	<u></u>	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %	MC	<lod< th=""></lod<>
15	0	TPH (C6 to C40) p	etroleum group	TPH		61	mg/kg		61	mg/kg	0.0061 %		
16	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	Θ	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	anthracene	204-371-1	120-12-7		0.19	mg/kg		0.19	mg/kg	0.000019 %		
19		benzo[a]anthracen 601-033-00-9		56-55-3		0.82	mg/kg		0.82	mg/kg	0.000082 %		
20		benzo[a]pyrene; be	enzo[def]chrysene 200-028-5	50-32-8		1.2	mg/kg		1.2	mg/kg	0.00012 %		
21		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		1.2	mg/kg		1.2	mg/kg	0.00012 %		
22	0	benzo[ghi]perylene	205-883-8	191-24-2		0.86	mg/kg		0.86	mg/kg	0.000086 %		
23		benzo[k]fluoranthe	ne 205-916-6	207-08-9		0.59	mg/kg		0.59	mg/kg	0.000059 %		
24		chrysene 601-048-00-0	205-923-4	218-01-9		0.96	mg/kg		0.96	mg/kg	0.000096 %		
25		dibenz[a,h]anthrac		53-70-3		0.14	mg/kg		0.14	mg/kg	0.000014 %		
26	0	fluoranthene	205-912-4	206-44-0		1.2	mg/kg		1.2	mg/kg	0.00012 %		
27	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyre		193-39-5		0.63	mg/kg		0.63	mg/kg	0.000063 %		
29		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	9	phenanthrene	201-581-5	85-01-8		0.39	mg/kg		0.39	mg/kg	0.000039 %		
31	0	pyrene	204-927-3	129-00-0		1.1	mg/kg		1.1	mg/kg	0.00011 %		
32		phenol 604-001-00-2				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		po 001-00-2	04-001-00-2 203-632-7 108-95-2							Total:	0.049 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration
<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 12 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP103
Chapter:

Sample Depth:

0.20-0.30 m
Entry:

Moisture content:

11%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 11% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	8	confirm TPH has NOT arisen from diesel or petrol		\square				_	
2	-	arsenic { arsenic trioxide }		22 mg/kg	1.32	29.047 mg/kg	0.0029 %		
	-	033-003-00-0 215-481-4 1327-53-3							
3	_	beryllium { beryllium oxide }		0.72 mg/kg	2.775	1.998 mg/kg	0.0002 %		
		004-003-00-8 215-133-1 1304-56-9	_						
	4	boron { boron tribromide/trichloride/trifluoride							
4		(combined) }		1.7 mg/kg	13.43	22.831 mg/kg	0.00228 %		
4		10294-33-4, 10294-34-5, 7637-07-2		1.7 Hig/kg	13.43	22.001 Hig/kg	0.00228 /6		
5	4	cadmium { cadmium sulfide }	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
3		048-010-00-4 215-147-8 1306-23-6	1'	<0.2 Hg/kg	1.203	<0.237 Hig/kg	<0.00002 /8		\LOD
6	4	chromium { • chromium(III) oxide }		22 mg/kg	1.462	32.154 mg/kg	0.00322 %		
_			-					\vdash	
7		copper { • dicopper oxide; copper (I) oxide }		36 mg/kg	1.126	40.532 mg/kg	0.00405 %		
		029-002-00-X 215-270-7 1317-39-1							
8	-	lead { lead chromate }	1	30 mg/kg	1.56	46.794 mg/kg	0.003 %		
	\vdash	082-004-00-2 231-846-0 7758-97-6							
9	-	mercury { mercury dichloride }		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	\vdash	080-010-00-X 231-299-8 7487-94-7						┡	
10	-	nickel { nickel dihydroxide }		23 ma/ka	1 570	36.328 ma/ka	0.00363 %		
10		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		23 Hig/kg	1.579	36.328 mg/kg	0.00363 %		
11	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		034-002-00-8							
12	-	zinc { zinc chromate }		79 mg/kg	2.774	219.158 mg/kg	0.0219 %		
_	-	024-007-00-3	<u> </u>					-	
13	0	pH PH		8.1 pH		8.1 pH	8.1 pH		
		ГП							

#			erminand Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
14	4	cyanides { salts of hydrexception of complex cyar ferricyanides and mercuric specified elsewhere in this 006-007-00-5	nides such as c oxycyanide a	with the ferrocyanides,	<u> </u>	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %	Σ	<lod< th=""></lod<>
15	0	TPH (C6 to C40) petroleur	• .	PH		46	mg/kg		46	mg/kg	0.0046 %		
16	0	acenaphthene 201-46	69-6 8	3-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene 205-91	7-1 2	08-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	anthracene 204-37	71-1 1	20-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracene 601-033-00-9 200-28	80-6 5	6-55-3		0.42	mg/kg		0.42	mg/kg	0.000042 %		
20		benzo[a]pyrene; benzo[de 601-032-00-3 200-02		0-32-8		0.55	mg/kg		0.55	mg/kg	0.000055 %		
21		benzo[b]fluoranthene 601-034-00-4 205-91	1-9 2	05-99-2		0.43	mg/kg		0.43	mg/kg	0.000043 %		
22	0	benzo[ghi]perylene 205-88	33-8 1	91-24-2		0.39	mg/kg		0.39	mg/kg	0.000039 %		
23		benzo[k]fluoranthene 601-036-00-5 205-91	6-6 2	07-08-9		0.41	mg/kg		0.41	mg/kg	0.000041 %		
24		chrysene 601-048-00-0 205-92	23-4 2	18-01-9		0.45	mg/kg		0.45	mg/kg	0.000045 %		
25		dibenz[a,h]anthracene 601-041-00-2 200-18	31-8 5	3-70-3		0.09	mg/kg		0.09	mg/kg	0.000009 %		
26	0	fluoranthene 205-91	2-4 2	06-44-0		0.67	mg/kg		0.67	mg/kg	0.000067 %		
27	0	fluorene 201-69	95-5 8	6-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyrene 205-89	93-2 1	93-39-5		0.3	mg/kg		0.3	mg/kg	0.00003 %		
29		naphthalene 601-052-00-2 202-04	19-5 9	1-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	phenanthrene 201-58	31-5 8	5-01-8		0.19	mg/kg		0.19	mg/kg	0.000019 %		
31	0	pyrene 204-92	27-3 1	29-00-0		0.6	mg/kg		0.6	mg/kg	0.00006 %		
32		phenol 203-632-7 108-95-2		08-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0469 %		

.,	
κ	ev

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 14 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP103[1]
Chapter:

Sample Depth:

0.90-1.00 m
Entry:

Moisture content:

18%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#		Determinand CLP index number	nber C	300	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol			☑					
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3			19 mg/kg	1.32	25.086 mg/kg	0.00251 %		
3	4	beryllium { beryllium oxide } 004-003-00-8			0.85 mg/kg	2.775	2.359 mg/kg	0.000236 %		
4	₹	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2			2.9 mg/kg	13.43	38.947 mg/kg	0.00389 %		
5	4	cadmium { cadmium sulfide } 048-010-00-4	1	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
6	4	chromium { • chromium(III) oxide }			23 mg/kg	1.462	33.616 mg/kg	0.00336 %		
7	*	copper { • dicopper oxide; copper (I) oxide }			25 mg/kg	1.126	28.147 mg/kg	0.00281 %		
8	*		1	1	16 mg/kg	1.56	24.957 mg/kg	0.0016 %		
9	*	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
10	₽	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 234-348-1 [2] 11113-74-9			16 mg/kg	1.579	25.272 mg/kg	0.00253 %		
11	*	cadmium sulphoselenide and those specified elsew in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
12	4	034-002-00-8 zinc { zinc chromate } 024-007-00-3			36 mg/kg	2.774	99.869 mg/kg	0.00999 %		
13	0	pH PH			7.9 pH		7.9 pH	7.9 pH		

HazWasteOnline[™] Report created by Richard Robinson on 21/09/2017

#		KASTRUCTURE B	Determinand	-	lote	User entere	ed data	Conv.	Compound	conc.	Classification	polled	Conc. Not
		CLP index number	EC Number	CAS Number	CLP Note			Factor	22		value	MC Applied	Used
14	**	cyanides { salts exception of complete ferricyanides and managements.	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
15	0	TPH (C6 to C40) p	etroleum group	TPH		19	mg/kg		19	mg/kg	0.0019 %		
	_	acenaphthene		1									
16	0	acenaphinene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		a a a n a n la thuil a n a	201-409-0	03-32-9	+								
17	0	acenaphthylene	005 047 4	000.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+								
18	0	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracen		1.20 .2 .	+				-				
19			200-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		po 55 5	+								
20			200-028-5	50-32-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				pu-32-0									
21		benzo[b]fluoranthe		005 00 0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2									
22	0	benzo[ghi]perylene		404.04.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2	-								
23		benzo[k]fluoranthe				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9	_								
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	1					3 3			
25		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.00				9,9	40.000000 70		1202
26	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20			205-912-4	206-44-0		<0.03	ilig/kg		<0.03	mg/kg	<0.000003 /8		\LOD
27	0	fluorene			Т	<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	8	indeno[123-cd]pyre	ene	•		40.0F	malle		-0.0E	ma/ka	-0.00000E 9/		4LOD
28			205-893-2	193-39-5	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
0.0		naphthalene		1					6.0-		0.000007.07		
29		•	202-049-5	91-20-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	phenanthrene		1	\top	0.0-	"						
30	_		201-581-5	85-01-8	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	pyrene	1	F									
31	9		204-927-3	129-00-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		phenol		1	+								
32		604-001-00-2	203-632-7	108-95-2	+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
ш				1				1		Total:	0.0295 %		1

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound æ\$

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 16 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP105
Chapter:

Sample Depth:

0.50-0.60 m
Entry:

Moisture content:

41%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 41% No Moisture Correction applied (MC)

#		CLP index number	Determinand CLP index number			User entere	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has N	OT arisen from die	sel or petrol	CLP	✓							
2	4	arsenic { <mark>arsenic tri</mark> 033-003-00-0	oxide } 215-481-4	1327-53-3		9.1	mg/kg	1.32	12.015	mg/kg	0.0012 %		
3	4	beryllium { <mark>berylliur</mark> 004-003-00-8	<mark>n oxide</mark> } 215-133-1	1304-56-9		1.3	mg/kg	2.775	3.608	mg/kg	0.000361 %		
4	4	boron {	bromide/trichloride	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		8.1	mg/kg	13.43	108.783	mg/kg	0.0109 %		
5	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	_ 1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
6	4	chromium { • chro	mium(III) oxide }	1308-38-9		26	mg/kg	1.462	38	mg/kg	0.0038 %		
7	4	copper { • dicoppe 029-002-00-X	er oxide; copper (I) 215-270-7	oxide }		59	mg/kg	1.126	66.427	mg/kg	0.00664 %		
8	4	lead { <mark>lead chroma</mark> 082-004-00-2	te } 231-846-0	7758-97-6	1	15	mg/kg	1.56	23.397	mg/kg	0.0015 %		
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
10	4	028-008-00-X	Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	31.59	mg/kg	0.00316 %		
11	4	selenium { seleniur cadmium sulphose in this Annex }				4.8	mg/kg	2.554	12.257	mg/kg	0.00123 %		
12		zinc { <mark>zinc chromat</mark> 024-007-00-3	<mark>e</mark> }			21	mg/kg	2.774	58.257	mg/kg	0.00583 %		
13	0	pH		PH		7.4	рН		7.4	pН	7.4 pH		

#			rminand Number CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	*	cyanides { salts of hydrogexception of complex cyanides and mercuric specified elsewhere in this and the salts of the salt	des such as ferrocyanides, oxycyanide and those		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
15	0	TPH (C6 to C40) petroleum	group TPH		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
16	0	acenaphthene			<0.05	mg/kg		<0.05 mg/kg	<0.00005 %		<lod< td=""></lod<>
17	0	acenaphthylene	1		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	anthracene 204-371	1	1	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracene 601-033-00-9 200-280			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[a]pyrene; benzo[def] 601-032-00-3 200-028	•		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranthene 601-034-00-4 205-911	-9 205-99-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	benzo[ghi]perylene 205-883	-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthene 601-036-00-5 205-916	-6 207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
24		chrysene 601-048-00-0 205-923	-4 218-01-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
25		dibenz[a,h]anthracene 601-041-00-2 200-181	-8 53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	fluoranthene 205-912	-4 206-44-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene 201-695	-5 86-73-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyrene 205-893	-2 193-39-5		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
29		naphthalene 601-052-00-2 202-049	-5 91-20-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	phenanthrene 201-581	-5 85-01-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
31	0	pyrene 204-927	-3 129-00-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
32		phenol 604-001-00-2 203-632	-7 108-95-2		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
								Total	0.036 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP106
Chapter:

Sample Depth:

0.10-0.20 m
Entry:

Moisture content:

28%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 28% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT	Γ arisen from die	sel or petrol		☑							
2	4	arsenic { arsenic trioxi	<mark>ide</mark> } 5-481-4	1327-53-3		16	mg/kg	1.32	21.125	mg/kg	0.00211 %		
3	4	beryllium { beryllium c	oxide } 5-133-1	1304-56-9		0.8	mg/kg	2.775	2.22	mg/kg	0.000222 %		
4	4	boron { boron tribro (combined) }	omide/trichloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		7.7	mg/kg	13.43	103.411	mg/kg	0.0103 %		
5	4		<mark>sulfide</mark> } 5-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
6	æ	chromium { • chromi		1308-38-9		21	mg/kg	1.462	30.693	mg/kg	0.00307 %		
7	4	copper { • dicopper c	oxide; copper (I)	oxide }		32	mg/kg	1.126	36.028	mg/kg	0.0036 %		
8	4	lead { lead chromate } 082-004-00-2 23	1-846-0	7758-97-6	1	41	mg/kg	1.56	63.952	mg/kg	0.0041 %		
9	1 -	mercury { mercury dic 080-010-00-X 23	<mark>chloride</mark> } 1-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
10	-		xide } 5-008-5 [1] 4-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		15	mg/kg	1.579	23.692	mg/kg	0.00237 %		
11		selenium { selenium c cadmium sulphoselen in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12		034-002-00-8 zinc { zinc chromate } 024-007-00-3				52	mg/kg	2.774	144.256	mg/kg	0.0144 %		
13	0	рН		PH		7.6	рН		7.6	рН	7.6 pH		

		KASTRUCTURE B	Determinand) te			Conv.			Classification	olied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP Note	User entere	ed data	Factor	Compound of	conc.	value	MC Applied	Used
14	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
15	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
	0	acenaphthene		1	+								
16	0	асспарпинсне	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	acenaphthylene	201-409-0	03-32-9	+								
17	0		205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		anthracene	205-917-1	200-90-0	+								
18	0		204-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
H		benzo[a]anthracen		120-12-7	+								
19			200-280-6	56-55-3	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		po-33-3									
20			200-028-5	50-32-8	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				pu-32-0									
21		benzo[b]fluoranthe		205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2	+								
22	0	benzo[ghi]perylene		404.04.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2									
23		benzo[k]fluoranthe		laa= aa a		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9	+								
24		chrysene				< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-923-4	218-01-9	-							-	
25		dibenz[a,h]anthrac				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-181-8	53-70-3	_								
26	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0	\perp					3 3			
27	0	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	_		J. 19			3 .9			- "
28	0	indeno[123-cd]pyre				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5			59			39			
29		naphthalene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
L_		601-052-00-2	202-049-5	91-20-3						9,9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
30	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ			201-581-5	85-01-8		30.00	mg/kg		40.00	9/119	10.000000 70		1200
31	0	pyrene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0		\0.03	mg/kg		V0.00	mg/kg	3.000000 /0		_U_
32		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2			g/kg			g/kg	.5.0001 /0		
										Total:	0.0419 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c**

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 20 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
TP107 Chapter:
Sample Depth:
0.50-0.60 m Entry:
Moisture content:
12%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	a	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	9	confirm TPH has NO	OT arisen from dies		O	✓					≥	
					Ш							
2	æ 🎉	arsenic { arsenic tric	•			10 mg	kg	1.32	13.203 mg/k	0.00132 %		
	-			1327-53-3	Ш		_			1	-	
3	-	beryllium { beryllium	•			0.42 mg	kg	2.775	1.166 mg/k	0.000117 %		
	-	004-003-00-8	215-133-1	1304-56-9	Ш						+	
	4	boron { • boron trib	oromide/trichloride/t	rifluoride								
4		(combined) }				0.6 mg	ka	13.43	8.058 mg/k	0.000806 %		
				10294-33-4, 10294-34-5,		9	9		g,	,		
				7637-07-2								
5	æ.	cadmium { cadmium	n sulfide }		1	<0.2 mg	ka	1.285	<0.257 mg/k	<0.00002 %		<lod< th=""></lod<>
J	Ĭ	048-010-00-4	215-147-8	1306-23-6		<0.2 mg	ĸy	1.200	<0.237 Hig/K	0.00002 /0		\LOD
6	4	chromium { • chron	mium(III) oxide }			11 mg.	kg	1.462	16.077 mg/k	0.00161 %		
		2	215-160-9	1308-38-9	Ш				<u>-</u>			
7	4	copper { • dicopper	r oxide; copper (I) c	oxide }		14 mg	kg	1.126	15.762 mg/k	0.00158 %		
			215-270-7	1317-39-1	Ш				<u> </u>			
8	-		•		1	5.6 ma	ka	1.56	8.735 mg/k	0.00056 %		
	-	1		7758-97-6	Щ		3			,		
9		mercury (mercury o				<0.3 mg	kg	1.353	<0.406 mg/k	<0.0000406 %		<lod< th=""></lod<>
	-	1		7487-94-7			_					
1	_	nickel { nickel dihydr				40		4 570	00.500//-	0.00005.0/		
10				12054-48-7 [1] 11113-74-9 [2]		13 mg.	кg	1.579	20.533 mg/k	0.00205 %		
11	4	selenium { selenium cadmium sulphosele in this Annex }				<1 mg.	kg	2.554	<2.554 mg/k	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8										
12	4	zinc { zinc chromate	}			25 mg	ka	2.774	69.354 mg/k	0.00694 %		
Ĺ	Ĺ	024-007-00-3			Ш		9					
13	0	pH				8.1 pH			8.1 pH	8.1 pH		
				PH		<u> </u>			<u>'</u>			

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	**	cyanides { salts exception of complete ferricyanides and management of specified elsewhere on the control of th	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		TPH (C6 to C40) pe	etroleum aroup										
15		(55.55.57)	 	TPH	\dashv	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
16	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene	201 100 0	po 02 0		<0.05	mg/kg		<0.05	mg/kg	<0.00005 %		<lod< td=""></lod<>
			205-917-1	208-96-8						- 0		_	
18	Θ	anthracene	204-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
40		benzo[a]anthracene		1		0.05			0.05		0.000005.0/		1.00
19		601-033-00-9	200-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[a]pyrene; be	enzo[def]chrysene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		601-032-00-3	200-028-5	50-32-8		\0.03	mg/kg		\(\tau_0.03\)	mg/kg	<0.000003 /6		\LOD
21		benzo[b]fluoranther	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2		10.00	9/.19		10.00	9/9			1202
22	•	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		benzo[k]fluoranther	ne			0.05			0.05		0.000005.0/		1.00
23		601-036-00-5	205-916-6	207-08-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		chrysene	·			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		601-048-00-0	205-923-4	218-01-9		\0.03	mg/kg		~0.03	mg/kg	<0.000003 78		\LOD
25		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	1					99			
26	Θ	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0	-							-	
27	0	fluorene	201-695-5	86-73-7	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		po 70 7	+								
28	9		205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29		naphthalene	l.	1 -		-O OF	m =/1		*O OF	m c /les	-0.00000E N		<lod< td=""></lod<>
29		601-052-00-2	202-049-5	91-20-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
30	0	phenanthrene			Ţ	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8	\perp								
31	0	pyrene	204-927-3	129-00-0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol	1	1 2 2 2 2			,						
32		<u>'</u>	203-632-7	108-95-2	\dashv	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0167 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 22 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP114
Chapter:
Sample Depth:
0.10-0.20 m
Entry:
Moisture content:
18%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	Θ	confirm TPH has N	OT arisen from dies			☑						
2	4	arsenic { arsenic tri	oxide } 215-481-4	1327-53-3		18	mg/kg	1.32	23.766 mg/k	0.00238 %		
	æ	beryllium { berylliur		1321-53-3								
3	•••			1304-56-9		0.86	mg/kg	2.775	2.387 mg/k	0.000239 %		
4	4	boron { boron tri (combined) }		10294-33-4, 10294-34-5,		4.3	mg/kg	13.43	57.749 mg/k	g 0.00577 %		
5	4	cadmium { cadmiur	<mark>n sulfide</mark> }	7637-07-2	1	<0.2	mg/kg	1.285	<0.257 mg/k	g <0.00002 %		<lod< th=""></lod<>
-	æ <u>&</u>	048-010-00-4 chromium {	215-147-8	1306-23-6								
6		,	, ,	1308-38-9		29	mg/kg	1.462	42.385 mg/k	0.00424 %		
7	æ\$	copper { • dicoppe				41	mg/kg	1.126	46.161 mg/k	0.00462 %		
	<u> </u>			1317-39-1								
8	æ	lead { <mark>lead chromat</mark> 082-004-00-2	•	7758-97-6	1	29	mg/kg	1.56	45.235 mg/k	0.0029 %		
	æ	mercury { mercury		1130-91-0							H	
9	_			7487-94-7	-	<0.3	mg/kg	1.353	<0.406 mg/k	<0.0000406 %		<lod< th=""></lod<>
	æ	nickel { nickel dihyd	Iroxide }								Т	
10				12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	31.59 mg/k	0.00316 %		
11	4	selenium { selenium cadmium sulphose in this Annex }				<1	mg/kg	2.554	<2.554 mg/k	g <0.000255 %		<lod< th=""></lod<>
	-	034-002-00-8			L							
12	4	zinc { zinc chromat	e }			100	mg/kg	2.774	277.415 mg/k	0.0277 %		
		024-007-00-3			-						+	
13	0	рН		PH	-	7.7	рН		7.7 pH	7.7 pH		
				<u></u>								

HazWasteOnline[™] Report created by Richard Robinson on 21/09/2017

#		KASTKUCTURE B	Determinand		ote	User entere	nd data	Conv.	Compound	conc	Classification	pelled	Conc. Not
n .		CLP index number	EC Number	CAS Number	CLP Note	OSCI CINCIO	o data	Factor	Compound	50110.	value	MC Applied	Used
14	4	cyanides { salts exception of completerricyanides and managements.	ex cyanides such a nercuric oxycyanid	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
15	0	TPH (C6 to C40) p	etroleum group	TPH		47	mg/kg		47	mg/kg	0.0047 %		
	0	acenaphthene		1	+				·				
16			201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		acenaphthylene	201-403-0	03-32-9	+								
17	Θ	. ,	205-917-1	208-96-8	-	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	200-90-0	+								
18	0	anthracene	204-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]anthracen		1.20 .2 .	+								
19			200-280-6	56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		po 00 0	+								
20			200-028-5	50-32-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				pu-32-0									
21		benzo[b]fluoranther		DOE 00 2	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2									
22	0	benzo[ghi]perylene		1.0.1.0.1.0		<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2	-								
23		benzo[k]fluoranther				< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-916-6	207-08-9	_								
24		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	1					J J			
25		dibenz[a,h]anthrace	ene			<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.00			10.00	9/.19	40.000000 70		1202
26	Θ	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20			205-912-4	206-44-0		<0.03	mg/kg		<0.03	ilig/kg	<0.000003 /8		\LUD
27	0	fluorene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
21			201-695-5	86-73-7	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	indeno[123-cd]pyre	ene	•		40.0F	malle		-0.0E	ma/ka	-0.00000E 9/		4LOD
28			205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00		naphthalene		1		0.05	0		0.05		0.000005.04		1.00
29		·	202-049-5	91-20-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	(0)	phenanthrene	L.	1						,,	0.000007.00		
30	-	•	201-581-5	85-01-8	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	0	pyrene		1-2	+								
31	9	1	204-927-3	129-00-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol		1	+								_
32		Ľ.	203-632-7	108-95-2	+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Н	_		1	1				1		Total:	0.0564 %		

Key

æ\$

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 24 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP114[1]
Chapter:

Sample Depth:

1.00-1.20 m
Entry:

Moisture content:

13%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		Determinand CLP index number	mber C	OLF NOIG	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol			✓					
2	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3			9.2 mg/kg	1.32	12.147 mg/kg	0.00121 %		
3	æ	beryllium { beryllium oxide } 004-003-00-8			0.2 mg/kg	2.775	0.555 mg/kg	0.0000555 %		
4	₫.	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4 10294-34-5 7637-07-2			0.2 mg/kg	13.43	2.686 mg/kg	0.000269 %		
5	~	cadmium { cadmium sulfide } 048-010-00-4	1	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
6	4	chromium (** chromium(III) oxide			8.2 mg/kg	1.462	11.985 mg/kg	0.0012 %		
7		copper {			19 mg/kg	1.126	21.392 mg/kg	0.00214 %		
8	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	1	4.7 mg/kg	1.56	7.331 mg/kg	0.00047 %		
9	-	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
10	-	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 234-348-1 [2] 11113-74-8			12 mg/kg	1.579	18.954 mg/kg	0.0019 %		
11	*	selenium { selenium compounds with the exceptio cadmium sulphoselenide and those specified else in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
12	æ e	034-002-00-8 zinc { zinc chromate } 024-007-00-3			23 mg/kg	2.774	63.805 mg/kg	0.00638 %		
13		pH PH			8.2 pH		8.2 pH	8.2 pH		

HazWasteOnline[™] Report created by Richard Robinson on 21/09/2017

#		Determinand CLP index number		CLP Note	User entered data		Conv. Factor			Classification value	MC Applied	Conc. Not Used	
14	**	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }			<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>	
		TPH (C6 to C40) petr	oleum aroup						<u> </u>				
15	9	1111 (60 to 6 to) pos	• .	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
16	0	acenaphthene	01-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene		208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	anthracene		120-12-7	T	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracene		56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[a]pyrene; benz	o[def]chrysene	50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranthene		205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	benzo[ghi]perylene		191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthene		207-08-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		chrysene 205-923-4 218-01-9			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
25		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	fluoranthene 205-912-4 206-44-0			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
27	0	fluorene		86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyrene)	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	phenanthrene		85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
31	0	pyrene		129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
32		phenol		108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		004-001-00-2 20	10-002-1	100-30-2						Total:	0.0153 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 26 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Classification of sample: TP118

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP118
Chapter:

Sample Depth:

0.70-0.80 m
Entry:

Moisture content:

16%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound cor	nc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has N	OT arisen from die	sel or petrol		☑						_	
2	4	arsenic { arsenic tri	oxide } 215-481-4	1327-53-3		8	mg/kg	1.32	10.563 n	ng/kg	0.00106 %		
3	4	beryllium { berylliur 004-003-00-8	<mark>n oxide</mark> } 215-133-1	1304-56-9		0.71	mg/kg	2.775	1.97 n	ng/kg	0.000197 %		
4	4	boron { boron tril (combined) }	bromide/trichloride/	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		2.1	mg/kg	13.43	28.203 n	ng/kg	0.00282 %		
5	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257 n	ng/kg	<0.00002 %		<lod< td=""></lod<>
6	4	chromium { • chro		1308-38-9		22	mg/kg	1.462	32.154 n	ng/kg	0.00322 %		
7		copper { • dicoppe	er oxide; copper (I) 215-270-7	oxide }		27	mg/kg	1.126	30.399 n	ng/kg	0.00304 %		
8	4	lead { <mark>lead chromat</mark> 082-004-00-2	t <mark>e</mark> } 231-846-0	7758-97-6	1	12	mg/kg	1.56	18.718 n	ng/kg	0.0012 %		
9	1 -	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406 n	ng/kg	<0.0000406 %		<lod< td=""></lod<>
10	-		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		9.3	mg/kg	1.579	14.689 n	ng/kg	0.00147 %		
11		selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	2.554	<2.554 n	ng/kg	<0.000255 %		<lod< td=""></lod<>
12	4		<mark>e</mark> }			32	mg/kg	2.774	88.773 n	ng/kg	0.00888 %		
13	0	рН		PH		7.3	рН		7.3 p	Н	7.3 pH		

#		Determinand CLP index number	CAS Number	1	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	*	cyanides { salts of hydrogen cyanide wexception of complex cyanides such as fe ferricyanides and mercuric oxycyanide an specified elsewhere in this Annex }	ith the rrocyanides,		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %	M	<lod< th=""></lod<>
15	0	TPH (C6 to C40) petroleum group	'H		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
16	0	acenaphthene 201-469-6 83-	-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene	8-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18	Θ	anthracene	0-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracene	-55-3		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[a]pyrene; benzo[def]chrysene	-32-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranthene 601-034-00-4 205-911-9 209	5-99-2		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	benzo[ghi]perylene 205-883-8 19	1-24-2		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[k]fluoranthene 601-036-00-5 205-916-6 20	7-08-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
24		chrysene 601-048-00-0 205-923-4 213	8-01-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
25		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-	-70-3		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	fluoranthene 205-912-4 200	6-44-0		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene 201-695-5 86-	-73-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyrene 205-893-2 193	3-39-5		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
29		naphthalene 202-049-5 91-	-20-3		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	phenanthrene 201-581-5 85-	-01-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
31	0	pyrene 204-927-3 129	9-00-0		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
32		phenol 604-001-00-2 203-632-7 108	8-95-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
							Total:	0.0236 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 28 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Classification of sample: TP119

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
TP119 Chapter:
Sample Depth:
0.80-0.90 m Entry:
Moisture content:
13%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol		✓				_	
2	4	arsenic { arsenic trioxide }		3.7 mg/kg	1.32	4.885 mg/kg	0.000489 %		
3	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9		0.68 mg/kg	2.775	1.887 mg/kg	0.000189 %		
4	*	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		1.8 mg/kg	13.43	24.174 mg/kg	0.00242 %		
5	*	cadmium { cadmium sulfide } 048-010-00-4	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
6	4	chromium (chromium(III) oxide) 215-160-9 1308-38-9		23 mg/kg	1.462	33.616 mg/kg	0.00336 %		
7	4	copper { • dicopper oxide; copper (I) oxide }		28 mg/kg	1.126	31.525 mg/kg	0.00315 %		
8	*	lead { lead chromate } 082-004-00-2	1	11 mg/kg	1.56	17.158 mg/kg	0.0011 %		
9	4	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
10	**	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		12 mg/kg	1.579	18.954 mg/kg	0.0019 %		
11	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
12	4	034-002-00-8 zinc { zinc chromate } 024-007-00-3		26 mg/kg	2.774	72.128 mg/kg	0.00721 %		
13	0	pH PH		7.9 pH		7.9 pH	7.9 pH		

#		Determinand CLP index number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	S Applied	Conc. Not Used
		CEF IIIdex Hullibei EC Nullibei CAS Nullibei							MC	
14	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
		TPH (C6 to C40) petroleum group								
15	9	TPH	\dashv	<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
	0	acenaphthene								
16	Ŭ	201-469-6 83-32-9	\dashv	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene		-0.05			-0.0E ma//sa	-0.000005.0/		-1.00
17		205-917-1 208-96-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18	0	anthracene		<0.05	ma/ka		-0.05 ma/ka	<0.000005 %		<lod< td=""></lod<>
10		204-371-1 120-12-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		601-033-00-9 200-280-6 56-55-3		<0.03	mg/kg		<0.05 Hig/kg	20.000003 /8		\LOD
20		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		601-032-00-3 200-028-5 50-32-8		<0.03	ilig/kg		<0.00 mg/kg	<0.000003 /8		\LOD
21		benzo[b]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-99-2		10.00	9/119			10.000000 /0		1202
22	0	benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-883-8 191-24-2								
23		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9								
24		chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0 205-923-4 218-01-9							-	
25		dibenz[a,h]anthracene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		601-041-00-2 200-181-8 53-70-3	_							
26	Θ	fluoranthene		< 0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-912-4 206-44-0	+							
27	0	fluorene	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	201-695-5 86-73-7	+							
28	0	indeno[123-cd]pyrene	4	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	naphthalene	+							
29		601-052-00-2 202-049-5 91-20-3	\dashv	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenanthrene	+							
30	9	201-581-5 85-01-8	\dashv	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
6.	0	pyrene	\top				0.05	0.000007.07		
31		204-927-3 129-00-0	\dashv	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
32		phenol	\top	.4	m ~ /l		-1	±0.0001.0/		<lod< td=""></lod<>
32		604-001-00-2 203-632-7 108-95-2	\dashv	<1	mg/kg		<1 mg/kg	<0.0001 %		<lud< td=""></lud<>
							Total	0.0215 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: TP120

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP120
Chapter:

Sample Depth:

0.60-0.70 m
Entry:

Moisture content:

5%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 5% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	confirm TPH has N	OT arisen from die	sel or petrol	_	✓						Ī	
2	4	arsenic { <mark>arsenic tri</mark> 033-003-00-0	oxide } 215-481-4	1327-53-3		14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
3	₽	beryllium { <mark>berylliur</mark> 004-003-00-8	<mark>n oxide</mark> } 215-133-1	1304-56-9		0.46	mg/kg	2.775	1.277	mg/kg	0.000128 %		
4	*	boron {	bromide/trichloride	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.9	mg/kg	13.43	12.087	mg/kg	0.00121 %		
5	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
6	4	chromium { • chro	mium(III) oxide } 215-160-9	1308-38-9		14	mg/kg	1.462	20.462	mg/kg	0.00205 %		
7	*	copper { • dicoppe 029-002-00-X	er oxide; copper (I) 215-270-7	oxide }		25	mg/kg	1.126	28.147	mg/kg	0.00281 %		
8	**	lead { <mark>lead chroma</mark> 082-004-00-2	te } 231-846-0	7758-97-6	1	7.1	mg/kg	1.56	11.075	mg/kg	0.00071 %		
9	₽	mercury { mercury 080-010-00-X	<mark>dichloride</mark> } 231-299-8	7487-94-7	-	<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
10	-	028-008-00-X	Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		18	mg/kg	1.579	28.431	mg/kg	0.00284 %		
11	₽	selenium { selenium cadmium sulphose in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12		zinc { <mark>zinc chromat</mark> 024-007-00-3	e }			29	mg/kg	2.774	80.45	mg/kg	0.00805 %		
13	0	pН		PH		8.2	рН		8.2	рН	8.2 pH		

		KASTRUCTURE B	Determinand		ţe.			Conv.			Classification	lied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP Note	User entere	ed data	Factor	Compound	conc.	value	MC Applied	Used
14	4	cyanides { salts exception of completerricyanides and managements	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
15	0	TPH (C6 to C40) pe	etroleum group	TPH		19	mg/kg		19	mg/kg	0.0019 %		
	0	acenaphthene	ļ	111111									
16	9		201-469-6	83-32-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	acenaphthylene	201 403 0	00 02 0									
17	Θ		205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
H		anthracene	203-317-1	200-90-0	+							-	
18	0		204-371-1	120-12-7	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				120-12-7	+								
19		benzo[a]anthracen		EC EE O	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_		200-280-6	56-55-3	+								
20		benzo[a]pyrene; be			4	< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-028-5	50-32-8	+								
21		benzo[b]fluoranthe				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									
22	0	benzo[ghi]perylene	•			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2		10.00				9,9	40.000000 /0		1202
23		benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23		601-036-00-5	205-916-6	207-08-9		<0.03	mg/kg		~0.03	mg/kg	<0.000003 70		LOD
24		chrysene	,			-0.05			-0.0F		-0.00000E 0/		.1.00
24		601-048-00-0	205-923-4	218-01-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace	ene	1									
25			200-181-8	53-70-3	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	6	fluoranthene		1-2-1-	+								_
26	9		205-912-4	206-44-0	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		fluorene	_ 00 0 12 T		+								
27	0		201-695-5	86-73-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash		indeno[123-cd]pyre		pu-13-1	+							1	
28	0		205-893-2	193-39-5	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			ZUJ-09J-Z	190-08-0	+								
29		naphthalene	000 040 5	64.00.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			202-049-5	91-20-3	+								
30	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
31	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
Щ			204-927-3	129-00-0	1		J. 9						
32		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2		,,	9/119		•	9/1.9	.5.0001 70		1.00
										Total:	0.0222 %		

Key

æ\$

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No significant sources of volatile contamination noted.

Page 32 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Classification of sample: TP121

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP121
Chapter:

Sample Depth:

0.10-0.20 m
Entry:

Moisture content:

15%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

rsenic { arsenic tric	OT arisen from dies		CLP						value	MC Applied	Used
•	ovido l			✓							
		1327-53-3		9.4 n	ng/kg	1.32	12.411 m	ng/kg	0.00124 %		
	oxide }			0.84 n	ng/kg	2.775	2.331 m	ng/kg	0.000233 %		
	promide/trichloride/t	rifluoride 10294-33-4, 10294-34-5,		5.6 n	ng/kg	13.43	75.208 n	ng/kg	0.00752 %		
,	•	1306-23-6	1	<0.2 n	ng/kg	1.285	<0.257 n	ng/kg	<0.00002 %		<lod< th=""></lod<>
hromium {	mium(III) oxide }			28 n	ng/kg	1.462	40.924 n	ng/kg	0.00409 %		
				42 n	ng/kg	1.126	47.287 n	ng/kg	0.00473 %		
ead { lead chromate	<mark>e</mark> }	7758-97-6	1	39 n	ng/kg	1.56	60.833 n	ng/kg	0.0039 %		
, ,		7487-94-7		<0.3 n	ng/kg	1.353	<0.406 n	ng/kg	<0.0000406 %		<lod< th=""></lod<>
28-008-00-X	235-008-5 [1]			19 n	ng/kg	1.579	30.01 m	ng/kg	0.003 %		
admium s <mark>ulphosele</mark> this Annex }				<1 n	ng/kg	2.554	<2.554 n	ng/kg	<0.000255 %		<lod< th=""></lod<>
34-002-00-8 Inc { zinc chromate	; }			70		0.77.	040.000	-	0.0040.0/		
24-007-00-3	*			78 n	ng/kg	2.774	216.383 m	ng/kg	0.0216 %		
H		PH		7 p	Н		7 p	Н	7pH		
a like the same and the same an	dmium { beryllium { beryllium { beryllium { boron tribombined) } } } } dmium { cadmium { cadmium { cadmium { cadmium { cadmium { chror dicoppe { condens of the cadmium { chror dicoppe { condens of the cadmium { chror dicoppe { condens of the cadmium { cadmium { chror dicoppe { condens of the cadmium { cadmium { cadmium { condens of the cadmium { cadmium { cadmium { condens of the cadmium { cad	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide } 4-003-00-8	1 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-4 10.294-33-6 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-34-7 10.294-34-3	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide }	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide } 4-003-00-8	ryllium { beryllium oxide }

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5 TPH (C6 to C40) p	etroleum group										
15		(3 4 4	TPH	\dashv	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
16	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		onth-rooms.	205-917-1	208-96-8	-								
18	Θ	anthracene	204-371-1	120-12-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	_								
20		benzo[a]pyrene; be			_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			200-028-5	50-32-8	+								
21		benzo[b]fluoranthe		005 00 0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2	+								
22	0	benzo[ghi]perylene	205-883-8	191-24-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthe		101212									
23		601-036-00-5	205-916-6	207-08-9	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		chrysene	.l	,		<0.05			-0.05		<0.000005 %		<lod< td=""></lod<>
24		601-048-00-0	205-923-4	218-01-9	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
25		dibenz[a,h]anthrac	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.00					40.000000 70		1202
26	0	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0						<u> </u>			
27	0	fluorene	201-695-5	86-73-7	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		pu-13-1	+								_
28		scrio[120 odjpyre	205-893-2	193-39-5	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		naphthalene		1	\top	-0.05	no a /!		-0.05	m m/l	-0.00000E 8/		100
29		601-052-00-2	202-049-5	91-20-3	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8	1		9,9			9			
31	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		phenol	204-321-3	123-00-0	+								
32		604-001-00-2	203-632-7	108-95-2	\dashv	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
				1						Total:	0.048 %		1

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 34 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Classification of sample: TP125

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP125
Chapter:
Sample Depth:
0.40-0.50 m
Entry:
Moisture content:
12%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	9	confirm TPH has N	OT arisen from die	sel or petrol		✓						
2	4	arsenic { arsenic tri	oxide } 215-481-4	1327-53-3		16	mg/kg	1.32	21.125 mg/k	0.00211 %		
3	4	beryllium { berylliur 004-003-00-8	<mark>n oxide</mark> } 215-133-1	1304-56-9		1.3	mg/kg	2.775	3.608 mg/k	0.000361 %		
4	4	boron { boron tril (combined) }	bromide/trichloride/	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		2.2	mg/kg	13.43	29.546 mg/k	g 0.00295 %		
5	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/k	<0.00002 %		<lod< td=""></lod<>
6	4	chromium { • chro		1308-38-9		26	mg/kg	1.462	38 mg/k	0.0038 %		
7		copper { • dicoppe	er oxide; copper (I)	oxide }		26	mg/kg	1.126	29.273 mg/k	0.00293 %		
8	4	lead { <mark>lead chromat</mark> 082-004-00-2	t <mark>e</mark> } 231-846-0	7758-97-6	1	14	mg/kg	1.56	21.837 mg/k	0.0014 %		
9	1 -	mercury { mercury	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/k	g <0.0000406 %		<lod< td=""></lod<>
10	-		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		50	mg/kg	1.579	78.975 mg/k	g 0.0079 %		
11		selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	2.554	<2.554 mg/k	g <0.000255 %		<lod< td=""></lod<>
12	4		<mark>e</mark> }			86	mg/kg	2.774	238.577 mg/k	g 0.0239 %		
13	0	рН		PH		7.9	рН		7.9 pH	7.9 pH		

#		KASTRUCTURE B	Determinand		lote	User entere	ed data	Conv.	Compound	conc.	Classification	polled	Conc. Not
		CLP index number	EC Number	CAS Number	CLP Note			Factor			value	MC Applied	Used
14	4	cyanides { salts exception of complete ferricyanides and managements.	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
15	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
	_	acenaphthene			+								
16	0		201-469-6	83-32-9	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-409-0	03-32-9	+								
17	Θ	acenaphthylene	205 047 4	b00 00 0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+							-	
18	Θ	anthracene	204-371-1	120-12-7	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10		benzo[a]anthracene	9			.0.05	ma =: /1:		-0.05	m c: //	-0.000005.00		1.00
19		601-033-00-9	200-280-6	56-55-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be	nzo[def]chrysene										
20		601-032-00-3	200-028-5	50-32-8	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranther		1	\top								
21			205-911-9	205-99-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene			+								
22			205-883-8	191-24-2	\dashv	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranther		101212	+								
23			205-916-6	207-08-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		chrysene	203-310-0	201-00-3	+							-	
24			205 022 4	h10 01 0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			205-923-4	218-01-9	+							-	
25		dibenz[a,h]anthrace		F0.70.0	4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash			200-181-8	53-70-3	+							+	
26	Θ	fluoranthene			4	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0	+								
27	0	fluorene			_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
28	0	indeno[123-cd]pyre				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5									
29		naphthalene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3						9			
30	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8		10.00	9.119			9,9	70		,
31	0	pyrene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0	L	νο.σο	mg/kg			g/kg			\
32		phenol				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2									
L							-			Total:	0.047 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e**c** concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 36 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating

Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11)

Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None

Risk Phrases: None. Hazard Statements: None.

boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43

Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron

trichloride and boron trifluoride

Data source: N/A

Data source date: 06/08/2015

Risk Phrases: R14, T+ R26/28, C R34, C R35

Hazard Statements: EUH014, Acute Tox. 2 H330, Acute Tox. 2 H300, Skin Corr. 1A H314, Skin Corr. 1B H314

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R20, R22, R36, R37, R38, R42, R43, R50/53, R60, R61

Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1

H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X

Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 , N R50/53 >= 0.25 % Additional Hazard Statement(s): None.

Reason for additional Hazards Statement(s)/Risk Phrase(s):

10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

" pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Risk Phrases: None.

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14/12/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

" TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25/05/2015

Risk Phrases: R10, R45, R46, R51/53, R63, R65

Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d,

Aquatic Chronic 2 H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Risk Phrases: None.

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R36 , R37 , R38 , N R50/53 , N R51/53

 $Hazard\ Statements:\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Chronic\ 1\ H410\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Acute\$

Chronic 2 H411

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R22, R26, R27, R36, R37, R38

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R36, R37, R38, R43, N R50/53

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic

Chronic 1 H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23/07/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21/08/2015 Risk Phrases: Xn R22, N R50/53

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06/08/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06/08/2015

Risk Phrases: R40

Hazard Statements: Carc. 2 H351

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06/08/2015

Risk Phrases: R22, R36, R37, R38, R40, R43, N R50/53

 $Hazard\ Statements:\ Acute\ Tox.\ 4\ H302\ ,\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Carc.\ 2\ H351\ ,\ Skin\ Sens.\ 1\ H317\ ,\ Aquatic\ Acute\ 1\ H400\ ,$

, Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

Page 38 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21/08/2015

Risk Phrases: Xi R36/37/38, N R50/53

Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Worst case species based on risk phrases

beryllium {beryllium oxide}

Worst case species based on risk phrases

boron {boron tribromide/trichloride/trifluoride (combined)}

Worst case species based on risk phrases

cadmium {cadmium sulfide}

Worst case species based on risk phrases

chromium {chromium(III) oxide}

No significant Chromium VI recorded.

copper {dicopper oxide; copper (I) oxide}

Most likely common species

lead {lead chromate}

Worst case species based on risk phrases

mercury {mercury dichloride}

Worst case species based on risk phrases

nickel {nickel dihydroxide}

Worst case species based on risk phrases

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on risk phrases

zinc {zinc chromate}

Worst case species based on risk phrases

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015

HazWasteOnline Classification Engine Version: 2017.248.3389.6849 (05 Sep 2017)

HazWasteOnline Database: 2017.261.3397.6865 (18 Sep 2017)

This classification utilises the following guidance and legislation:

WM3 - Waste Classification - May 2015
CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Page 40 of 40 C4X7F-SLYYU-9M8XV www.hazwasteonline.com

