

Date: 06/02/23

Description: RO318 showing the Forest Marble Formation.

Site Investigation Photograph 107

Date: 03/02/23

Description: RO319 showing the River Terrace Deposits.

Date: 03/02/23

Description: RO319 showing the Cornbrash Limestone Formation.

Site Investigation Photograph 109

Date: 03/02/23

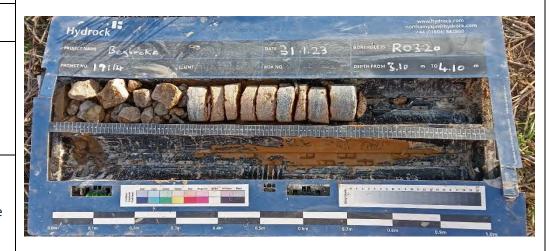
Description: RO319 showing the Cornbrash Limestone Formation over the Forest Marble Formation.

Date: 31/01/23

Description: RO320 showing the River Terrace Deposits.

Site Investigation Photograph 111

Date: 31/01/23


Description: RO320 showing the River Terrace Deposits over the Cornbrash Limestone Formation.

Date: 31/01/23

Description: RO320 showing the Cornbrash Limestone Formation.

Site Investigation Photograph 113

Date: 30/01/23

Description: RO321 showing the River Terrace Deposits.

Date: 30/01/23

Description: RO321 showing the River Terrace Deposits over the Cornbrash Limestone Formation.

Site Investigation Photograph 115

Date: 31/01/23

Description: RO321 showing the Forest Marble Formation.

Date: 31/01/23

Description: RO321 showing the Forest Marble Formation.

Date: 31/01/23

Description: Spoil heap from TP301

Site Investigation Photograph 118

Date: 31/01/23

Description: TP301 excavation at the surface. Terminated at 2.70m bgl.

Date: 31/01/23

Description: Spoil heap from TP302

Site Investigation Photograph 134

Date: 31/01/23

Description: TP302 excavation at the surface. Terminated at 1.70m bgl.

Date: 31/01/23

Description: TP306 excavation at the surface. Terminated at 1.60m bgl due to ingress of groundwater.

Site Investigation Photograph 120

Date: 02/02/23

Description: TP306 excavation at the surface. Terminated at 1.60m bgl due to ingress of groundwater.

Date: 06/02/23

Description: Spoil heap from TP308

Site Investigation Photograph 122

Date: 06/02/23

Description: TP308 excavation at the surface. Terminated at 2.50m bgl due to ingress of groundwater.

Date: 06/02/23

Description: Spoil heap from TP309

Site Investigation Photograph 124

Date: 06/02/23

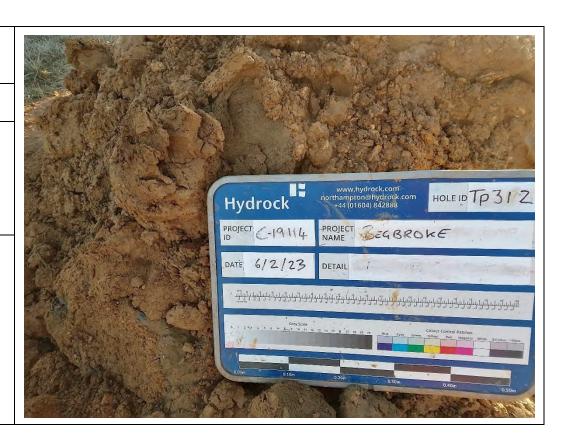
Description: TP309 excavation at the surface. Terminated at 2.20m bgl due to ingress of groundwater.

Date: 06/02/23

Description: Spoil heap from TP311

Site Investigation Photograph 126

Date: 06/02/23


Description: TP311 excavation at the surface. Terminated at 2.60m bgl due to ingress of groundwater.

Date: 06/02/23

Description: Spoil heap from TP312

Site Investigation Photograph 128

Date: 06/02/23

Description: TP312 excavation at the surface. Terminated at 2.70m bgl due to ingress of groundwater.

Date: 02/02/23

Description: Spoil heap from TP313

Site Investigation Photograph 130

Date: 02/02/23

Description: TP313 excavation at the surface. Terminated at 2.40m bgl due to ingress of groundwater.

Date: 06/02/23

Description: HP305 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 136

Date: 06/02/23

Description: HP305 dug to 0.30m bgl for environmental testing purposes.

Date: 06/02/23

Description: HP312 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 138

Date: 06/02/23

Description: HP312 dug to 0.30m bgl for environmental testing purposes.

Date: 07/02/23

Description: HP310 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 140

Date: 07/02/23

Description: HP310 dug to 0.30m bgl for environmental testing purposes.

Date: 07/02/23

Description: HP331 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 142

Date: 07/02/23

Description: HP331 dug to 0.30m bgl for environmental testing purposes.

Date: 08/02/23

Description: HP340 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 144

Date: 08/02/23

Description: HP340 dug to 0.30m bgl for environmental testing purposes.

Date: 08/02/23

Description: HP345 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 146

Date: 08/02/23

Description: HP345 dug to 0.30m bgl for environmental testing purposes.

Date: 08/02/23

Description: HP350 dug to 0.30m bgl for environmental testing purposes.

Site Investigation Photograph 148

Date: 08/02/23

Description: HP350 dug to 0.30m bgl for environmental testing purposes.

Appendix D Geotechnical Test Results and Geotechnical Plots

Geotechnical Laboratory Test Results

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-19674

Project / Site name: Begbroke Samples received on: 24/02/2023

Your job number: 19114 Samples instructed on/ 24/02/2023

Analysis started on:

Analysis completed by: 03/03/2023

Report Issue Number: 1 Report issued on: 03/03/2023

Samples Analysed: 5 water samples

PO24302

Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-19674 Project / Site name: Begbroke

Your Order No: PO24302

Lab Sample Number				2597758	2597759	2597760	2597761	2597762
Sample Reference				RO301	RO302	RO303	RO304	RO305
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH (L005B)	pH Units	N/A	ISO 17025	8	7.4	7.3	7.5	7.5
0.1.1.		0.045	TCO 1703F	4700	40 =			

pH (L005B)	pH Units	N/A	ISO 17025	8	7.4	7.3	7.5	7.5
Sulphate as SO4	mg/l	0.045	ISO 17025	1730	49.5	60.8	449	163
Chloride	mg/l	0.15	ISO 17025	490	31	24	110	81
Ammoniacal Nitrogen as NH4	mg/l	0.015	ISO 17025	0.34	< 0.015	< 0.015	0.14	1.3
Nitrate as N	mg/l	0.01	ISO 17025	0.43	8.17	5.26	0.68	0.4
Nitrate as NO3	mg/l	0.05	ISO 17025	1.89	36.2	23.3	3.02	1.79

Heavy Metals / Metalloids								
Magnesium (dissolved)	mg/l	0.005	ISO 17025	13	3.2	3.5	8.5	7.7
-								

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-19674 Project / Site name: Begbroke

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by addidfication followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in "Us or A analysis have been carried out in our laboratory in the United Kingdom (WAIFORD).

For method numbers ending in "Is analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

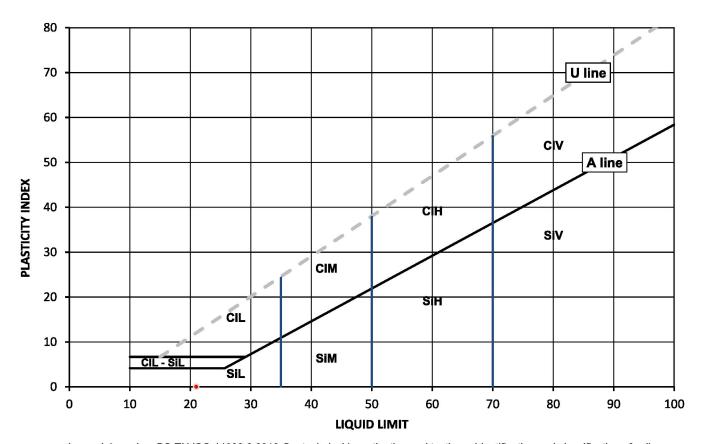
Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given

Depth Top [m]: 2.70

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2439956
Hole No.: WS217
Sample Reference: Not Given

Sample Description: Yellowish brown clayey gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
4.4	21	NP	NP	38

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

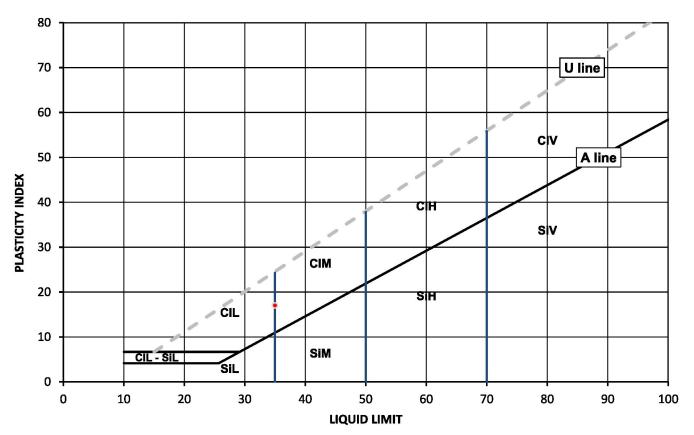
Contact: Nathan Thompson

Site Address: **Begbroke**

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 05/10/2022 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439917 Depth Top [m]: 0.70 **TP201** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
9.8	35	18	17	40

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 18/10/2022**

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

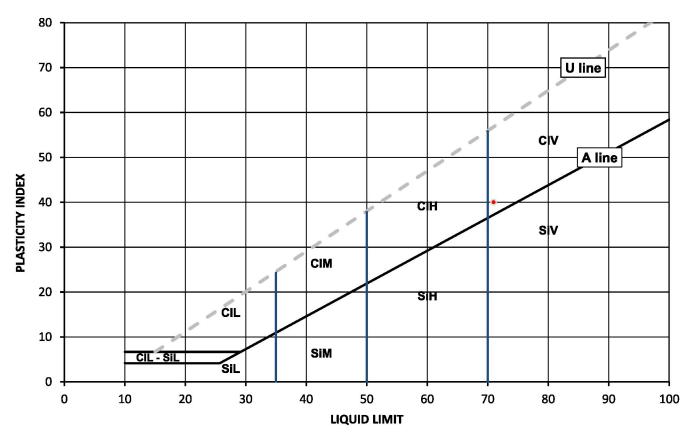
Site Address:

Begbroke

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 05/10/2022 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439918 Depth Top [m]: 1.30 **TP203** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brownish grey slightly sandy very silty CLAY

Tested in natural condition Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
27	71	31	40	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

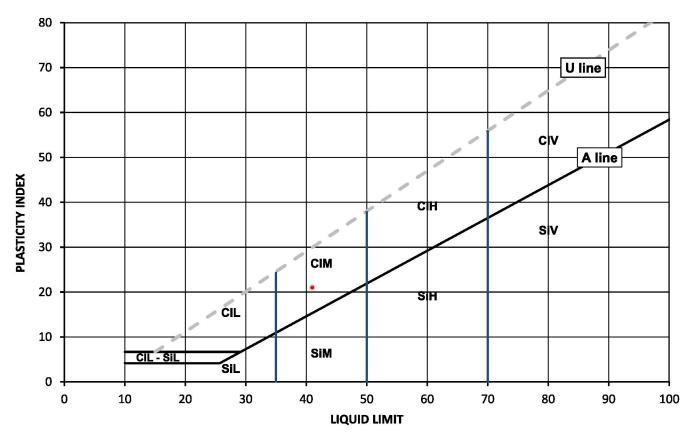
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 05/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439919 Depth Top [m]: 0.60 **TP208** Depth Base [m]: 0.70 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
6.7	41	20	21	38

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

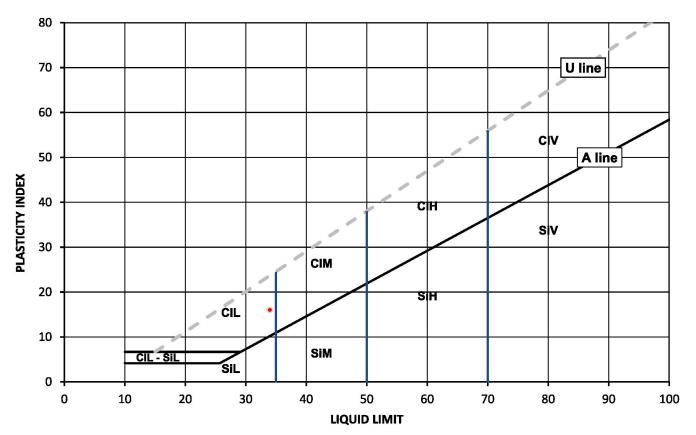
Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Test Results:

Laboratory Reference: 2439920 Depth Top [m]: 0.70 **TP218** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown sandy silty clayey GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	34	18	16	42

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

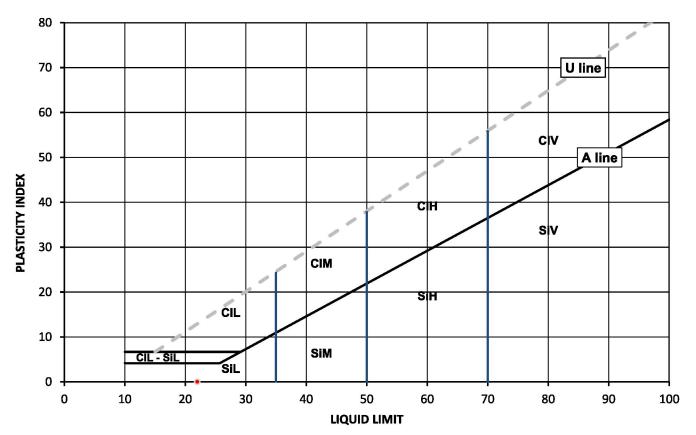
Contact: Nathan Thompson

Site Address: Begbroke

Park, Holdenby Road,
namptonshire,
Date Sampled: 09/09/2022
Date Received: 26/09/2022
pson
Date Tested: 05/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439921Depth Top [m]: 2.20Hole No.:TP221Depth Base [m]: 2.30Sample Reference:Not GivenSample Type: D

Sample Description: Orangish brown clayey very gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
8.3	22	NP	NP	46

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

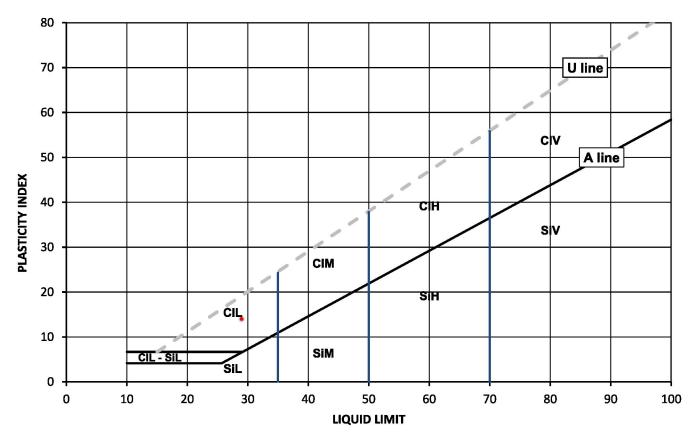
Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 05/10/2022

Sampled By: Not Given

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D


Test Results:

Laboratory Reference: 2439922 BH202 Hole No.: Not Given Sample Reference:

Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
15	29	15	14	85

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

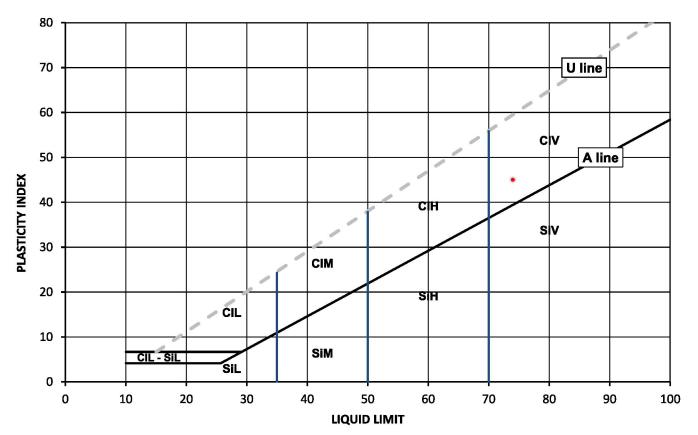
Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 04/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439925 Depth Top [m]: 2.60 **TP201** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Grey slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
29	74	29	45	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

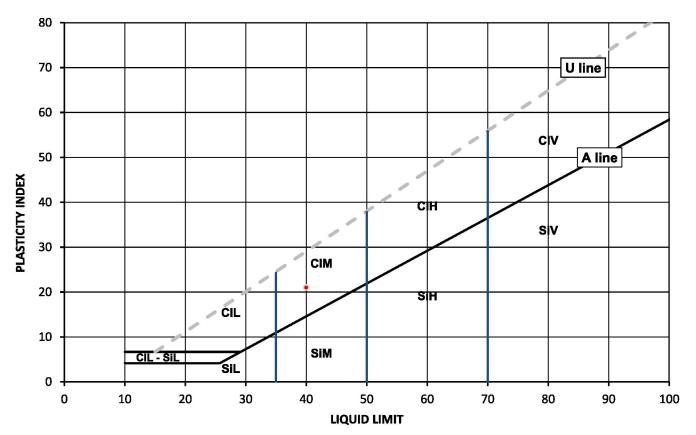
Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 04/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439927 Depth Top [m]: 0.40 **TP206** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
12	40	19	21	49

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 22-86688

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

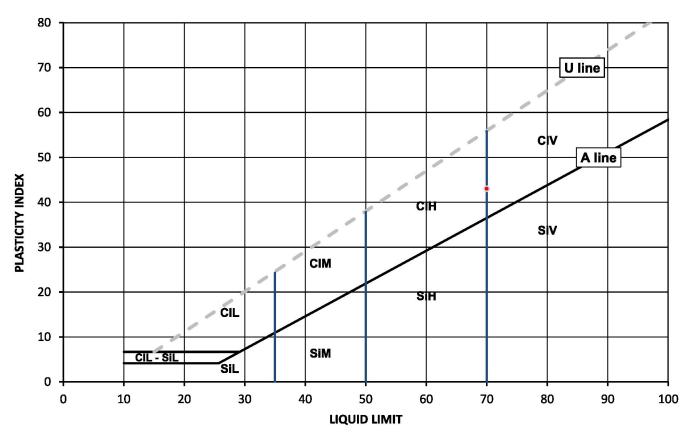
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Date Sampled: 09/09/2022 Spratton, Northamptonshire, Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439930 Depth Top [m]: 3.40 **TP209** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Brown slightly gravelly CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
27	70	27	43	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

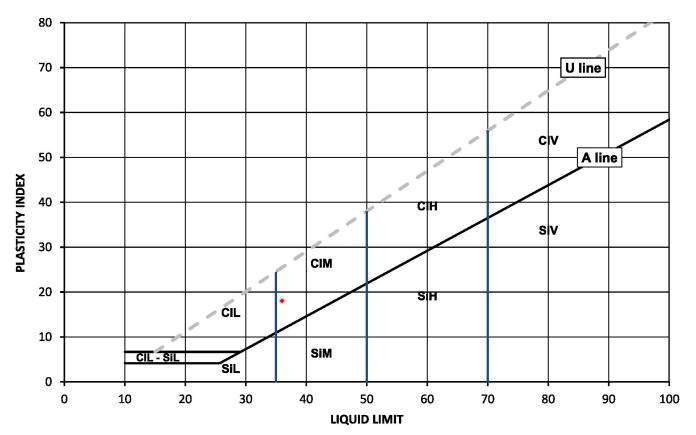
Date Tested: 04/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

 Laboratory Reference:
 2439931
 Depth Top [m]: 0.60


 Hole No.:
 TP211
 Depth Base [m]: Not Given

 Sample Reference:
 Not Given
 Sample Type: D

Sample Description: Brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
12	36	18	18	54

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Depth Top [m]: 0.80

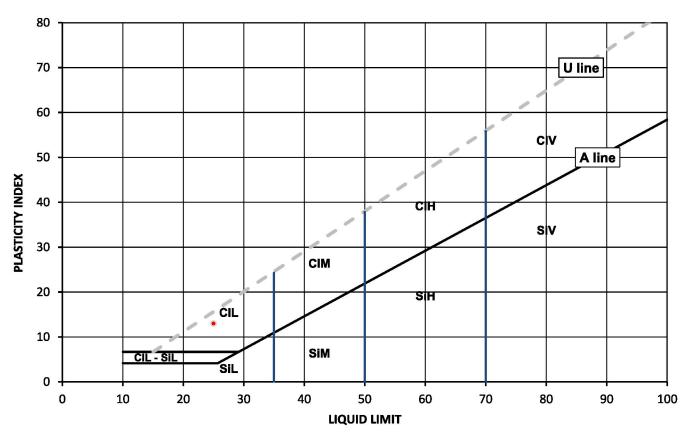
Sample Type: D

Depth Base [m]: Not Given

Job Number: 22-86688 D

Da

Test Results:


Laboratory Reference: 2439935 **TP215** Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly very sandy CLAY

Tested after >425um removed by hand Sample Preparation:

ate Sampled:	09/09/2022
ate Received:	26/09/2022
Date Tested:	04/10/2022
Sampled By:	Not Given

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
22	25	12	13	84

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

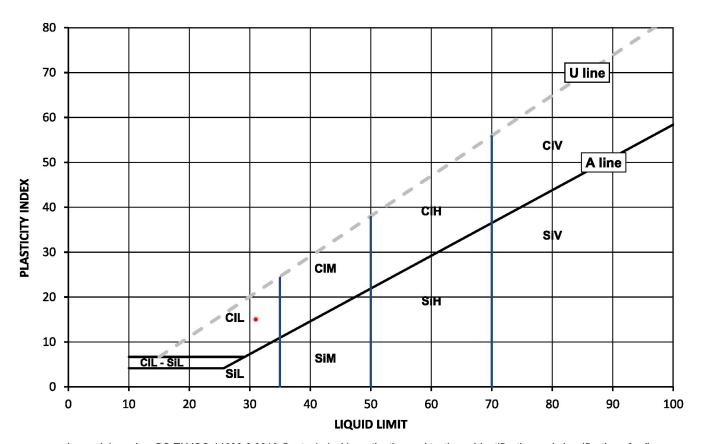
Site Address:

Begbroke

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 04/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439936 Depth Top [m]: 3.20 **TP218** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
23	31	16	15	89

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 22-86688 Date Sampled: 09/09/2022

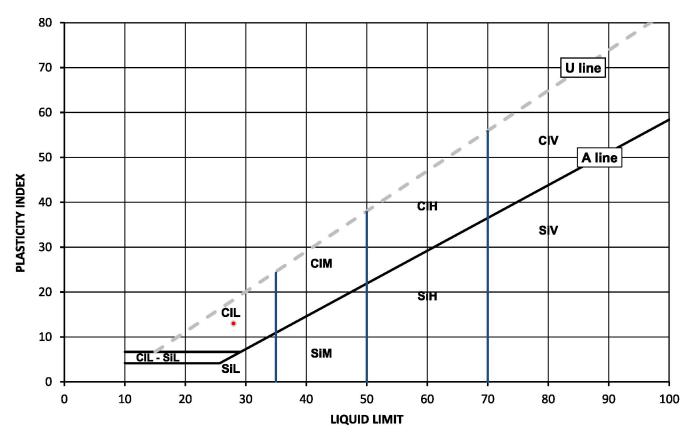
Date Received: 26/09/2022 Date Tested: 04/10/2022

Sampled By: Not Given

Depth Top [m]: 2.30

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2439937
Hole No.: TP219
Sample Reference: Not Given

Sample Description: Brownish grey slightly gravelly very sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
14	28	15	13	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

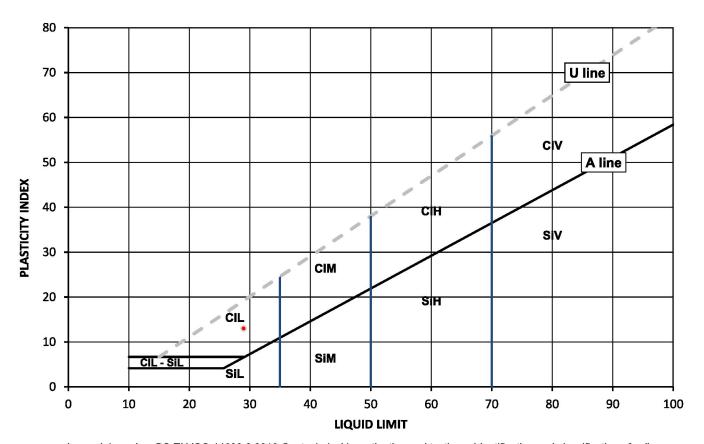
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Job Number: 22-86688 Date Sampled: 09/09/2022 Spratton, Northamptonshire, Date Received: 26/09/2022 Date Tested: 06/10/2022

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439938 Depth Top [m]: 2.50 **TP220** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Grey mottled brown gravelly silty clayey SAND

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	29	16	13	94

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 22-86688

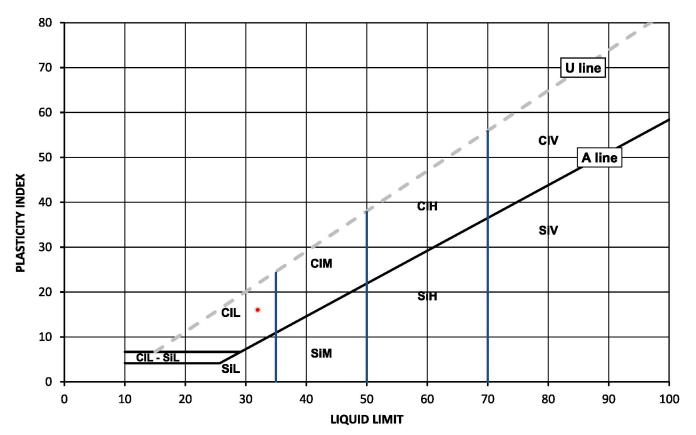
Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 04/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439942Depth Top [m]: 1.30Hole No.:TP225Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	32	16	16	63

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Depth Top [m]: 2.20

Sample Type: D

Depth Base [m]: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

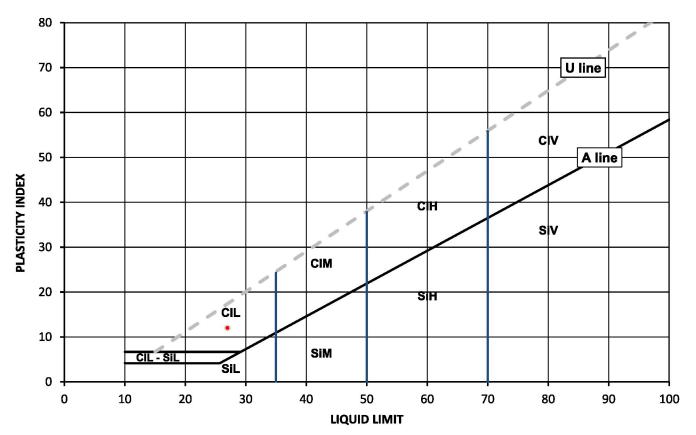
Contact: Nathan Thompson

Site Address:

Begbroke Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 06/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439945 **TP227** Hole No.: Sample Reference: Not Given

Sample Description: Yellowish brown clayey very gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
13	27	15	12	36

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Depth Top [m]: 1.20

Sample Type: D

Depth Base [m]: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

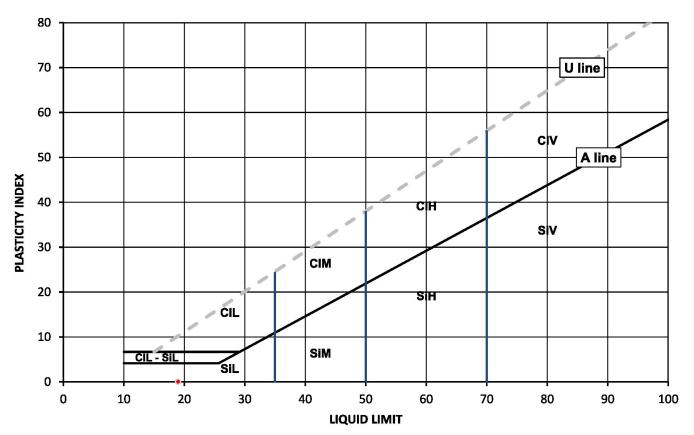
Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 06/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439946 **TP229** Hole No.: Sample Reference: Not Given

Sample Description: Yellowish brown slightly clayey gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
5.9	19	NP	NP	43

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 236.12

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

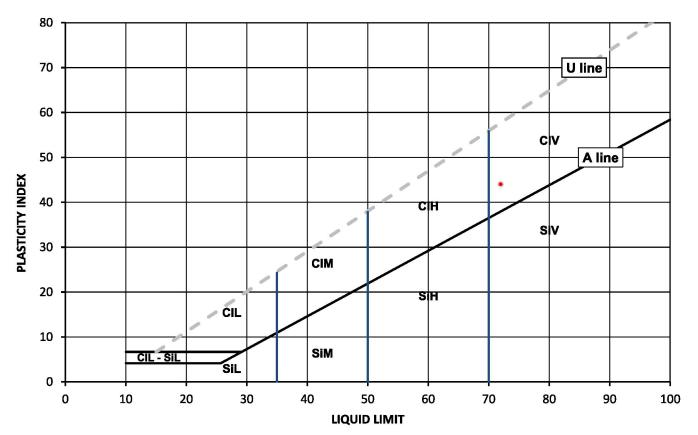
Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Test Results:

Laboratory Reference: 2439948 Depth Top [m]: 0.50 **TP232** Depth Base [m]: Not Given Hole No.: Not Given Sample Reference: Sample Type: D

Sample Description: **Brown CLAY**

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
29	72	28	44	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

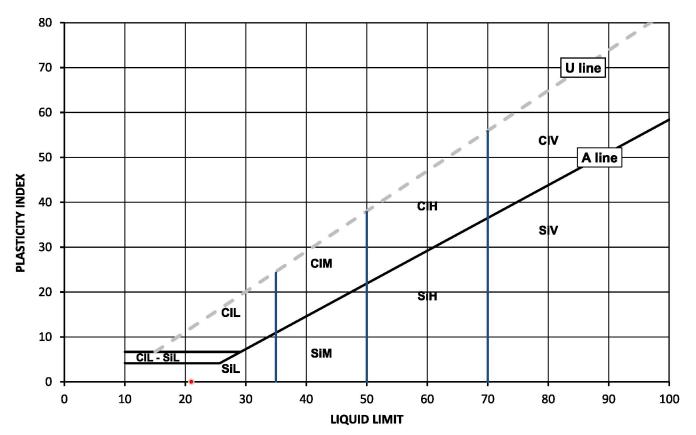
Site Address: **Begbroke**

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 06/10/2022

Client Reference: 19114

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2439949 Depth Top [m]: 0.70 **TP234** Depth Base [m]: 0.90 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown clayey very gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
10	21	NP	NP	40

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

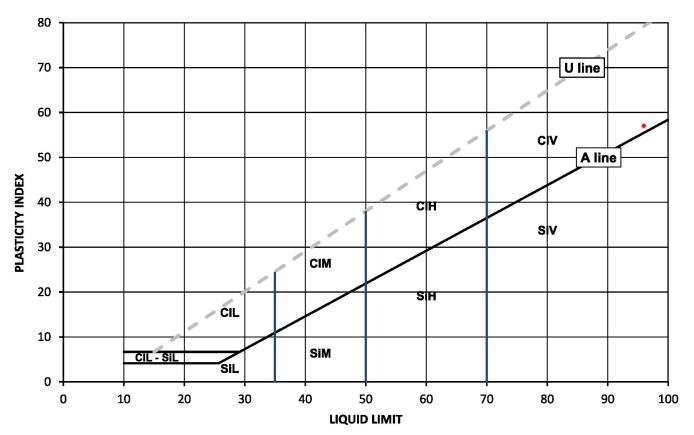
Site Address: Begbroke

Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439951Depth Top [m]: 1.00Hole No.:WS205Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brownish grey slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
38	96	39	57	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

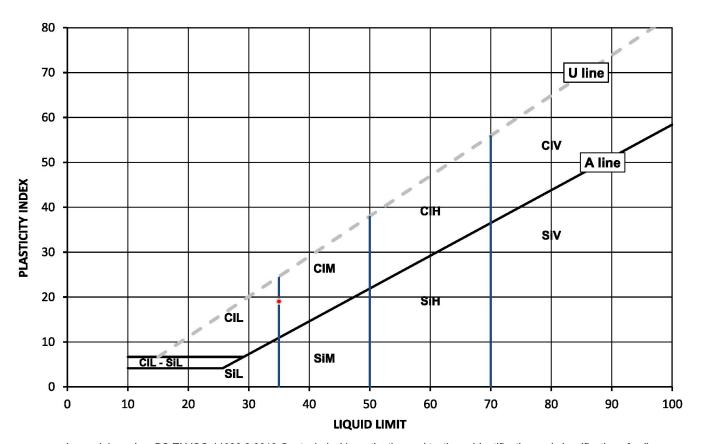
Client Reference: 19114

Depth Top [m]: 0.90

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2439952 WS207 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

Job Number:	22-86688
Date Sampled:	09/09/2022
Date Received:	26/09/2022
Date Tested:	04/10/2022
Sampled By:	Not Given

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
22	35	16	19	96

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

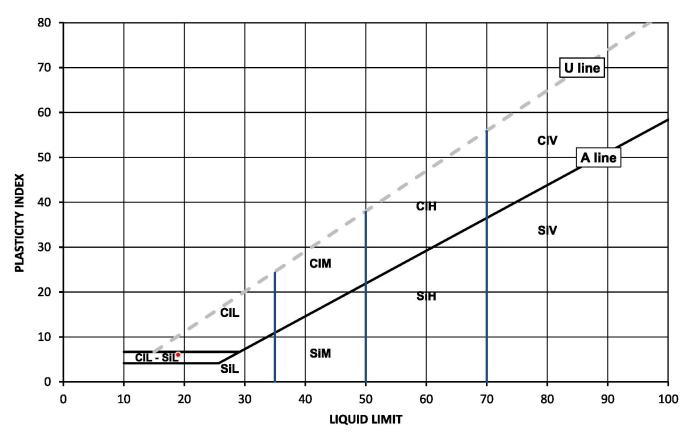
Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 04/10/2022 Sampled By: Not Given

Depth Top [m]: 1.80

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2439953 WS207 Hole No.: Sample Reference: Not Given

Sample Description: Brown gravelly slightly clayey SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
12	19	13	6	43

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address:

Begbroke Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

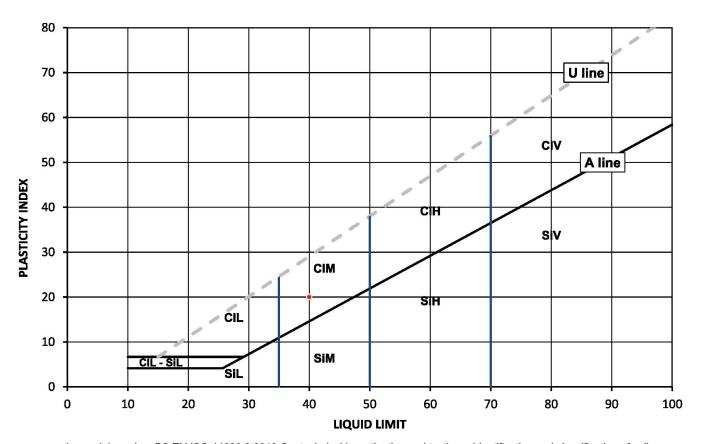
Da

Test Results:

Laboratory Reference: 2439954 WS214 Hole No.: Sample Reference: Not Given

Sample Description: Yellowish brown very gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um


ate Sampleu.	03/03/2022
ate Received:	26/09/2022
Date Tested:	04/10/2022
Sampled By:	Not Given

Depth Top [m]: 0.90

Sample Type: D

Depth Base [m]: Not Given

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
7.8	40	20	20	35

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

Plastic Limit

[Wp]%

25

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

49

Job Number: 22-86688 Date Sampled: 09/09/2022

Client Reference: 19114

Depth Top [m]: 1.60

Sample Type: D

24

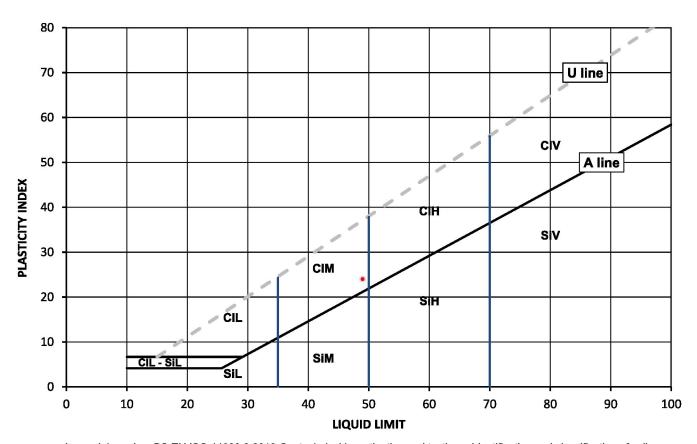
Depth Base [m]: Not Given

Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2439955
Hole No.: WS215
Sample Reference: Not Given

As Received Water


Content [W] %

15

Sample Description: Yellowish brown gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

58

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Liquid Limit

NN6 8LD

Contact: Nathan Thompson

Site Address:

Begbroke Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 04/10/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2439957 WS219 Hole No.: Sample Reference: Not Given

As Received Water

Yellowish brown very sandy CLAY Sample Description:

Sample Preparation: Tested in natural condition


Depth Top [m]:	1.10
Depth Base [m]:	Not Given

Sample Type: D

% Passing 425um

Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
11	31	14	17	100
90 -				

Plactic Limit

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 22-86688

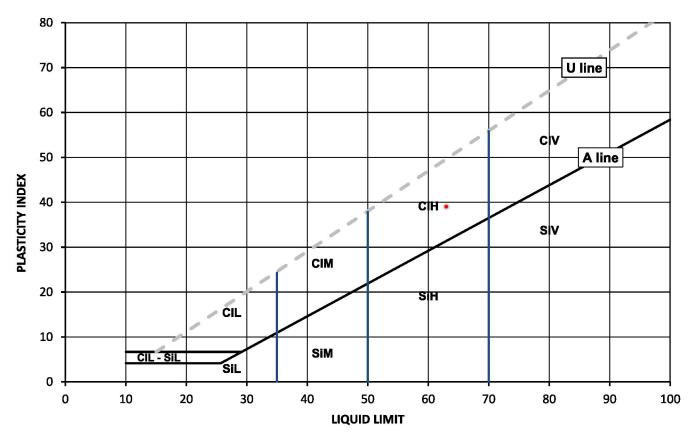
Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 04/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439958Depth Top [m]: 2.00Hole No.:WS219Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown to grey CLAY

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
26	63	24	39	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 06/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2439960 Depth Top [m]: 1.20 WS225 Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown gravelly clayey SAND

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
6.7	22	13	9	39

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Depth Top [m]: 1.60

Sample Type: D

Depth Base [m]: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

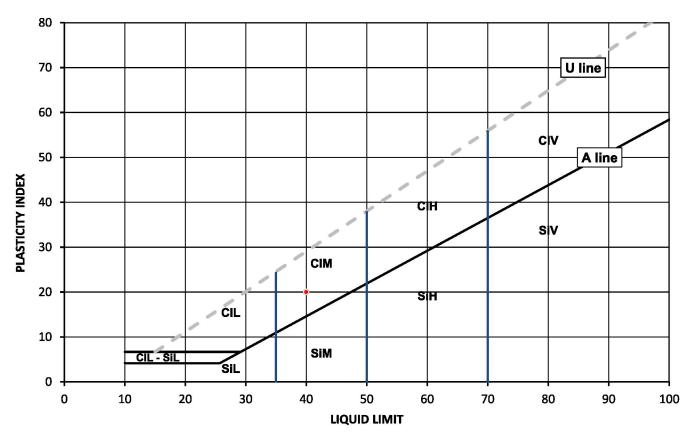
Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given


Test Results:

Laboratory Reference: 2439962
Hole No.: WS233
Sample Reference: Not Given

Sample Description: Yellowish brown to grey slightly gravelly sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
20	40	20	20	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 22-86688

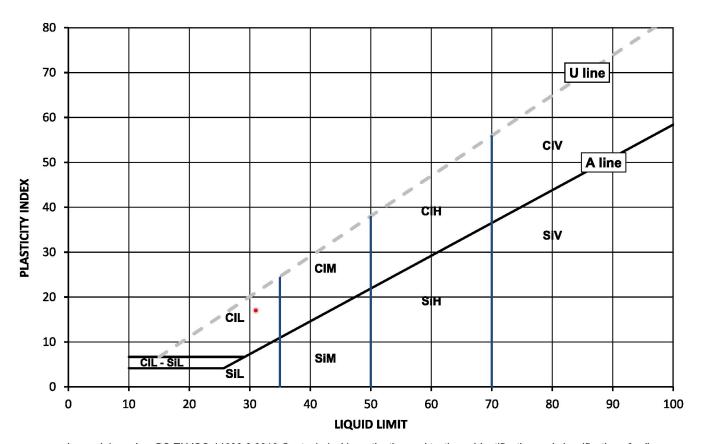
Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 04/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439963Depth Top [m]: 1.00Hole No.:WS235Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Grey very sandy CLAY

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
19	31	14	17	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 18/10/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 22-86688

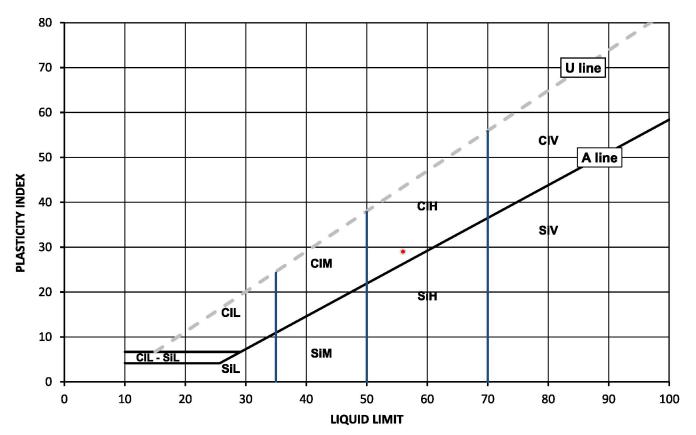
Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 05/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2439964Depth Top [m]: 2.80Hole No.:WS241Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
30	56	27	29	90

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

-

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

Plastic Limit

[Wp]%

18

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

42

Client Reference: 19114

Depth Top [m]: 1.60

Sample Type: D

24

Depth Base [m]: Not Given

Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 04/10/2022

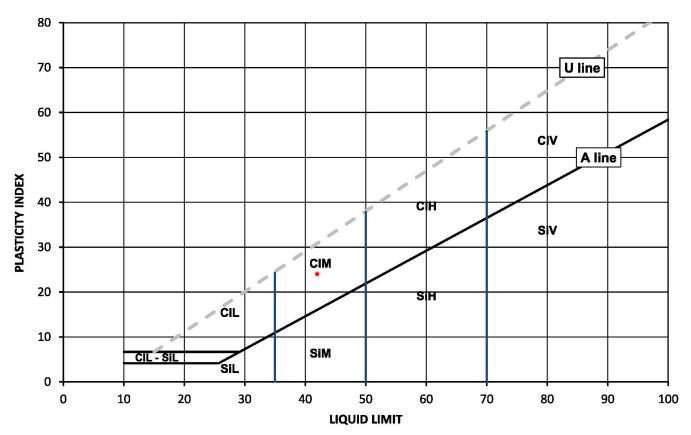
Sampled By: Not Given

Test Results:

Laboratory Reference: 2439965 WS242 Hole No.: Sample Reference: Not Given

As Received Water

Content [W] %


23

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

Plasticity Index	% Passing 425µm	
[lp] %	BS Test Sieve	

85

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

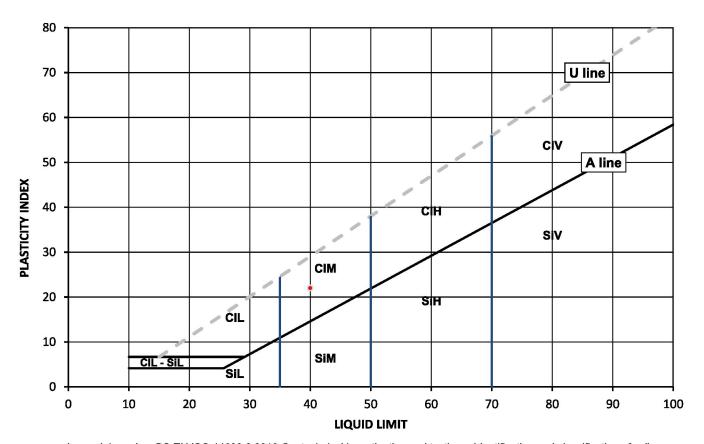
Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: Not Given

Sample Type: D

Date Received: 26/09/2022 Date Tested: 06/10/2022 Sampled By: Not Given


Test Results:

Laboratory Reference: 2441113 Depth Top [m]: 1.10 WS245 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given

Sample Description: Brownish grey slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
34	40	18	22	93

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client Address:

Client: Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Client Reference: 19114

Date Tested: 04/10 - 05/10/2022

Sampled By: Not Given

Test results

			Sample	•				tent W]	tent '892-2		Atte	rberg			Density		**		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water Content BS EN ISO 17892-	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#		
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	\longrightarrow	
2439922	BH202	Not Given	2.00	2.45	D	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	15		85	29	15	14						
2439923	BH202	Not Given	6.30	6.60	D	Greyish brown CLAY		20											
2439917	TP201	Not Given	0.70	Not Given	D	Orangish brown silty clayey very gravelly SAND	Atterberg 4 Point	9.8		40	35	18	17			2.92			
2439924	TP201	Not Given	1.80	Not Given	D	Brown CLAY		30											
2439925	TP201	Not Given	2.60	Not Given	D	Grey slightly gravelly CLAY	Atterberg 4 Point	29		99	74	29	45						
2439918	TP203	Not Given	1.30	Not Given	D	Brownish grey slightly sandy very silty CLAY	Atterberg 4 Point	27		100	71	31	40			2.72			
2439926	TP204	Not Given	0.60	0.70	D	Yellowish brown slightly clayey gravelly SAND		6.4											
2439927	TP206	Not Given	0.40	Not Given	D	Brown gravelly sandy CLAY	Atterberg 4 Point	12		49	40	19	21						
2439928	TP207	Not Given	0.70	Not Given	D	Yellowish brown slightly clayey slightly sandy COBBLES		2.7									·		
2439919	TP208	Not Given	0.60	0.70	D	Orangish brown silty clayey very gravelly SAND	Atterberg 4 Point	6.7		38	41	20	21			2.92			

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

GF 238.14

4041

Client Address:

Client: Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 04/10/2022 Sampled By: Not Given

Test results

			Sample	•				Content 7-2 [W]	ntent .7892-2 		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Conf BS 1377-2 [Water Content BS EN ISO 17892- [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2439929	TP209	Not Given	0.60	Not Given	D	Brown silty clayey very gravelly SAND		7.0										
2439930	TP209	Not Given	3.40	Not Given	D	Brown slightly gravelly CLAY	Atterberg 4 Point	27		99	70	27	43					
2439931	TP211	Not Given	0.60	Not Given	D	Brown gravelly sandy CLAY	Atterberg 4 Point	12		54	36	18	18					
2439932	TP211	Not Given	1.20	Not Given	D	Brown gravelly silty clayey SAND		13										
2439933	TP212	Not Given	0.70	Not Given	D	Brown slightly clayey very gravelly SAND		5.8										
2439934	TP213	Not Given	1.30	Not Given	D	Brown gravelly CLAY		11										
2439935	TP215	Not Given	0.80	Not Given	D	Brown slightly gravelly very sandy CLAY	Atterberg 4 Point	22		84	25	12	13					
2439920	TP218	Not Given	0.70	Not Given	D	Yellowish brown sandy silty clayey GRAVEL	Atterberg 4 Point	13		42	34	18	16			2.74		
2439936	TP218	Not Given	3.20	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	23		89	31	16	15					
2439937	TP219	Not Given	2.30	Not Given	D	Brownish grey slightly gravelly very sandy CLAY	Atterberg 4 Point	14		99	28	15	13					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client Address:

Client: Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Clause 6.2

Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

Job Number: 22-86688

Date Sampled: 09/09/2022

Test results

			Sample	e				ntent [w]	tent 892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	8 %	Water Content BS EN ISO 17892- [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2439938	TP220	Not Given	2.50	Not Given	D	Grey mottled brown gravelly silty clayey SAND	Atterberg 4 Point	18		94	29	16	13					
2439939	TP221	Not Given	0.70	Not Given	D	Brown clayey gravelly SAND		6.4										
2439921	TP221	Not Given	2.20	2.30	D	Orangish brown clayey very gravelly SAND	Atterberg 4 Point	8.3		46	22	NP	NP			2.83		
2439940	TP223	Not Given	1.20	Not Given	D	Yellowish brown slightly clayey silty SAND and GRAVEL		7.8										
2439941	TP224	Not Given	0.90	Not Given	D	Yellowish brown slightly gravelly sandy CLAY		9.8										
2439942	TP225	Not Given	1.30	Not Given	D	Yellowish brown gravelly very sandy CLAY	Atterberg 4 Point	20		63	32	16	16					
2441113	WS245	Not Given	1.10	Not Given	D	Brownish grey slightly gravelly sandy CLAY	Atterberg 4 Point	34		93	40	18	22					
2439944	TP226	Not Given	1.40	Not Given	D	Greyish brown CLAY		28										
2439945	TP227	Not Given	2.20	Not Given	D	Yellowish brown clayey very gravelly SAND	Atterberg 4 Point	13		36	27	15	12					
2439946	TP229	Not Given	1.20	Not Given	D	Yellowish brown slightly clayey gravelly SAND	Atterberg 4 Point	5.9		43	19	NP	NP					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior
Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022 GF 238.14

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client:

Hydrock Consultants Ltd

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 2-4 Hawthorne Park, Holdenby Road,

1990: Clause 8.2

Client Reference: 19114

Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

Client Address:

			Sample	•				Content 7-2 [W]	tent 892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Conl BS 1377-2 [Water Content BS EN ISO 17892- I W I	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2439947	TP230	Not Given	1.00	Not Given	D	Brownish grey gravelly SAND		7.7										
2439948	TP232	Not Given	0.50	Not Given	D	Brown CLAY	Atterberg 4 Point	29		100	72	28	44					
2439949	TP234	Not Given	0.70	0.90	D	Yellowish brown clayey very gravelly SAND	Atterberg 4 Point	10		40	21	NP	NP					
2439950	WS201	Not Given	1.70	Not Given	D	Brownish grey CLAY with fragments of chalk		28										
2439951	WS205	Not Given	1.00	Not Given	D	Brownish grey slightly gravelly CLAY	Atterberg 4 Point	38		99	96	39	57					
2439952	WS207	Not Given	0.90	Not Given	D	Greyish brown slightly gravelly sandy CLAY	Atterberg 4 Point	22		96	35	16	19					
2439953	WS207	Not Given	1.80	Not Given	D	Brown gravelly slightly clayey SAND	Atterberg 4 Point	12		43	19	13	6					
2439954	WS214	Not Given	0.90	Not Given	D	Yellowish brown very gravelly sandy CLAY	Atterberg 4 Point	7.8		35	40	20	20					
2439955	WS215	Not Given	1.60	Not Given	D	Yellowish brown gravelly slightly sandy CLAY	Atterberg 4 Point	15		58	49	25	24					
2439956	WS217	Not Given	2.70	Not Given	D	Yellowish brown clayey gravelly SAND	Atterberg 1 Point	4.4		38	21	NP	NP					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

GF 238.14

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Client Reference: 19114

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

Test results

Client Address:

			Sample	e				Content 7-2 [W]	tent 892-2		Atte	rberg			Density		**		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Coni BS 1377-2 [Water Content BS EN ISO 17892-	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#		
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	igsquare	
2439957	WS219	Not Given	1.10	Not Given	D	Yellowish brown very sandy CLAY	Atterberg 4 Point	11		100	31	14	17						
2439958	WS219	Not Given	2.00	Not Given	D	Yellowish brown to grey CLAY	Atterberg 4 Point	26		100	63	24	39						
2439959	WS219	Not Given	3.20	4.00	D	Grey CLAY		24											
2439960	WS225	Not Given	1.20	2.00	D	Yellowish brown gravelly clayey SAND	Atterberg 4 Point	6.7		39	22	13	9						
2439961	WS227	Not Given	2.00	Not Given	D	Yellowish brown very gravelly SAND		7.5											
2439962	WS233	Not Given	1.60	Not Given	D	Yellowish brown to grey slightly gravelly sandy CLAY	Atterberg 4 Point	20		99	40	20	20						
2439963	WS235	Not Given	1.00	Not Given	D	Grey very sandy CLAY	Atterberg 4 Point	19		100	31	14	17						
2439964	WS241	Not Given	2.80	Not Given	D	Yellowish brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	30		90	56	27	29						
2439965	WS242	Not Given	1.60	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	23		85	42	18	24						

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported**: 18/10/2022

GF 238.14

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	•							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2439922	BH202	Not Given	2.00	2.45	D	Yellowish brown slightly gravelly very sandy CLAY		15	Sample was quartered, oven dried at 106 °C		
2439923	BH202	Not Given	6.30	6.60	D	Greyish brown CLAY		20	Sample was quartered, oven dried at 109 °C		
2439917	TP201	Not Given	0.70	Not Given	D	Orangish brown silty clayey very gravelly SAND		9.8	Sample was quartered, oven dried at 106 °C		
2439924	TP201	Not Given	1.80	Not Given	D	Brown CLAY		30	Sample was quartered, oven dried at 107.5 °C		
2439925	TP201	Not Given	2.60	Not Given	D	Grey slightly gravelly CLAY		29	Sample was quartered, oven dried at 107.5 °C		
2439918	TP203	Not Given	1.30	Not Given	D	Brownish grey slightly sandy very silty CLAY		27	Sample was quartered, oven dried at 106.6 °C		
2439926	TP204	Not Given	0.60	0.70	D	Yellowish brown slightly clayey gravelly SAND		6.4	Sample was quartered, oven dried at 109 °C		
2439927	TP206	Not Given	0.40	Not Given	D	Brown gravelly sandy CLAY		12	Sample was quartered, oven dried at 107.5 °C		
2439928	TP207	Not Given	0.70	Not Given	D	Yellowish brown slightly clayey slightly sandy COBBLES		2.7	Sample was quartered, oven dried at 109 °C		
2439919	TP208	Not Given	0.60	0.70	D	Orangish brown silty clayey very gravelly SAND		6.7	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	•							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m Not				%			\vdash
2439929	TP209	Not Given	0.60	Given	D	Brown silty clayey very gravelly SAND		7.0	Sample was quartered, oven dried at 107.2 °C		
2439930	TP209	Not Given	3.40	Not Given	D	Brown slightly gravelly CLAY		27	Sample was quartered, oven dried at 107.5 °C		
2439931	TP211	Not Given	0.60	Not Given	D	Brown gravelly sandy CLAY		12	Sample was quartered, oven dried at 107.5 °C		
2439932	TP211	Not Given	1.20	Not Given	D	Brown gravelly silty clayey SAND		13	Sample was quartered, oven dried at 106 °C		
2439933	TP212	Not Given	0.70	Not Given	D	Brown slightly clayey very gravelly SAND		5.8	Sample was quartered, oven dried at 109 °C		
2439934	TP213	Not Given	1.30	Not Given	D	Brown gravelly CLAY		11	Sample was quartered, oven dried at 107.5 °C		
2439935	TP215	Not Given	0.80	Not Given	D	Brown slightly gravelly very sandy CLAY		22	Sample was quartered, oven dried at 107.5 °C		
2439920	TP218	Not Given	0.70	Not Given	D	Yellowish brown sandy silty clayey GRAVEL		13	Sample was quartered, oven dried at 106.1 °C		
2439936	TP218	Not Given	3.20	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY		23	Sample was quartered, oven dried at 107.5 °C		
2439937	TP219	Not Given	2.30	Not Given	D	Brownish grey slightly gravelly very sandy CLAY		14	Sample was quartered, oven dried at 107.5 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

Page 1 of 1

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
10 1000000			m	m Not				%			\vdash
2439938	TP220	Not Given	2.50	Given	D	Grey mottled brown gravelly silty clayey SAND		18	Sample was quartered, oven dried at 106 °C		
2439939	TP221	Not Given	0.70	Not Given	D	Brown clayey gravelly SAND		6.4	Sample was quartered, oven dried at 108 °C		
2439921	TP221	Not Given	2.20	2.30	D	Orangish brown clayey very gravelly SAND		8.3	Sample was quartered, oven dried at 109 °C		
2439940	TP223	Not Given	1.20	Not Given	D	Yellowish brown slightly clayey silty SAND and GRAVEL		7.8	Sample was quartered, oven dried at 109 °C		
2439941	TP224	Not Given	0.90	Not Given	D	Yellowish brown slightly gravelly sandy CLAY		9.8	Sample was quartered, oven dried at 109 °C		
2439942	TP225	Not Given	1.30	Not Given	D	Yellowish brown gravelly very sandy CLAY		20	Sample was quartered, oven dried at 107.5 °C		
2441113	WS245	Not Given	1.10	Not Given	D	Brownish grey slightly gravelly sandy CLAY		34	Sample was quartered, oven dried at 109 °C		
2439944	TP226	Not Given	1.40	Not Given	D	Greyish brown CLAY		28	Sample was quartered, oven dried at 106 °C		
2439945	TP227	Not Given	2.20	Not Given	D	Yellowish brown clayey very gravelly SAND		13	Sample was quartered, oven dried at 106 °C		
2439946	TP229	Not Given	1.20	Not Given	D	Yellowish brown slightly clayey gravelly SAND		5.9	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 22-86688 Date Sampled: 09/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

Date Received: 26/09/2022

4041 Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2439947	TP230	Not Given	1.00	Not Given	D	Brownish grey gravelly SAND		7.7	Sample was quartered, oven dried at 107.5 °C		
2439948	TP232	Not Given	0.50	Not Given	D	Brown CLAY		29	Sample was quartered, oven dried at 109 °C		
2439949	TP234	Not Given	0.70	0.90	D	Yellowish brown clayey very gravelly SAND		10	Sample was quartered, oven dried at 109 °C		
2439950	WS201	Not Given	1.70	Not Given	D	Brownish grey CLAY with fragments of chalk		28	Sample was quartered, oven dried at 107.6 °C		
2439951	WS205	Not Given	1.00	Not Given	D	Brownish grey slightly gravelly CLAY		38	Sample was quartered, oven dried at 107.6 °C		
2439952	W\$207	Not Given	0.90	Not Given	D	Greyish brown slightly gravelly sandy CLAY		22	Sample was quartered, oven dried at 107.6 °C		
2439953	WS207	Not Given	1.80	Not Given	D	Brown gravelly slightly clayey SAND		12	Sample was quartered, oven dried at 107.6 °C		
2439954	WS214	Not Given	0.90	Not Given	D	Yellowish brown very gravelly sandy CLAY		7.8	Sample was quartered, oven dried at 107.6 °C		
2439955	WS215	Not Given	1.60	Not Given	D	Yellowish brown gravelly slightly sandy CLAY		15	Sample was quartered, oven dried at 107.6 °C		
2439956	W\$217	Not Given	2.70	Not Given	D	Yellowish brown clayey gravelly SAND		4.4	Sample was quartered, oven dried at 107.6 °C		

Comments:

Signed:

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 04/10 - 06/10/2022

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

	Sample										
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2439957	WS219	Not Given	1.10	Not Given	D	Yellowish brown very sandy CLAY		11	Sample was quartered, oven dried at 107.5 °C		
2439958	WS219	Not Given	2.00	Not Given	D	Yellowish brown to grey CLAY		26	Sample was quartered, oven dried at 107.5 °C		
2439959	WS219	Not Given	3.20	4.00	D	Grey CLAY		24	Sample was quartered, oven dried at 109 °C		
2439960	W\$225	Not Given	1.20	2.00	D	Yellowish brown gravelly clayey SAND		6.7	Sample was quartered, oven dried at 107.8 °C		
2439961	WS227	Not Given	2.00	Not Given	D	Yellowish brown very gravelly SAND		7.5	Sample was quartered, oven dried at 109 °C		
2439962	WS233	Not Given	1.60	Not Given	D	Yellowish brown to grey slightly gravelly sandy CLAY		20	Sample was quartered, oven dried at 107.5 °C		
2439963	WS235	Not Given	1.00	Not Given	D	Grey very sandy CLAY		19	Sample was quartered, oven dried at 106 °C		
2439964	WS241	Not Given	2.80	Not Given	D	Yellowish brown slightly gravelly slightly sandy CLAY		30	Sample was quartered, oven dried at 106 °C		
2439965	WS242	Not Given	1.60	Not Given	D	Brown slightly gravelly sandy CLAY		23	Sample was quartered, oven dried at 107.5 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

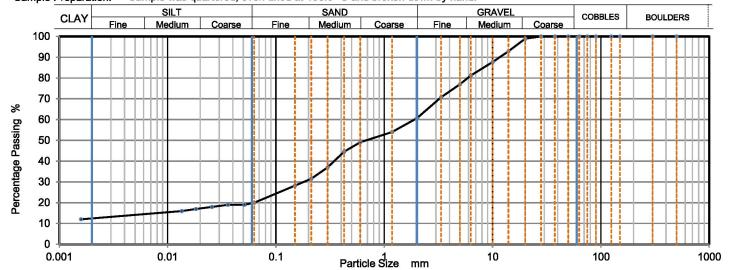
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 05/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439917Depth Top [m]: 0.70Hole No.:TP201Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100	0.0630	20	
300	100	0.0509	19	
150	100	0.0360	19	
125	100	0.0256	18	
90	100	0.0182	17	
75	100	0.0135	16	
63	100	0.0016	12	
50	100			
37.5	100			
28	100			
20	99			
14	93			
10	88			
6.3	81			
5	77			
3.35	71	Particle density	(measured)	
2	61	2.92	Mg/m3	
1.18	54			
0.6	49	1		
0.425	45	1		
0.3	37	1		
0.212	32			
0.15	28	1		
0.063	20			

Sample Proportions	% dry mass		
Very coarse	0		
Gravel	39		
Sand	40		
Silt	9		
Clay	12		

Grading Analysis)	
D100	mm	28
D60	mm	1.9
D30	mm	0.181
D10	mm	
Uniformity Coefficient	> 1200	
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022 GF 100.21

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

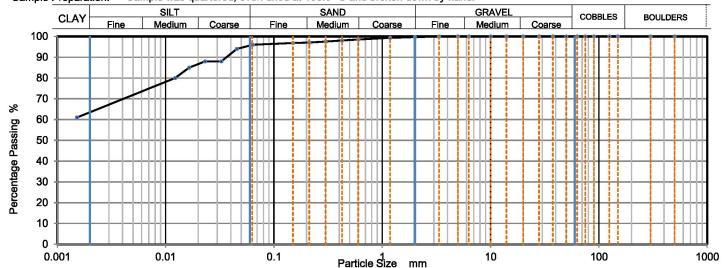
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 05/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439918Depth Top [m]: 1.30Hole No.:TP203Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brownish grey slightly sandy very silty CLAY

Sample Preparation: Sample was quartered, oven dried at 106.6 °C and broken down by hand.

Siev	ing	Sedime	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
500	100	0.0638	96		
300	100	0.0455	94		
150	100	0.0326	88		
125	100	0.0231	88		
90	100	0.0164	85		
75	100	0.0122	80		
63	100	0.0015	61		
50	100				
37.5	100				
28	100				
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	100	Particle density	(measured)		
2	100	2.72	Mg/m3		
1.18	99		_		
0.6	99	1			
0.425	98	1			
0.3	98	1			
0.212	97	Ì			
0.15	97	1			
0.063	96	1			

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	0	
Sand	3	
Silt	34	
Clay	63	

Grading Analysis		
D100	mm	5
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient	N/A	
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

f 1 Date Reported: 18/10/2022 GF 100.21

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

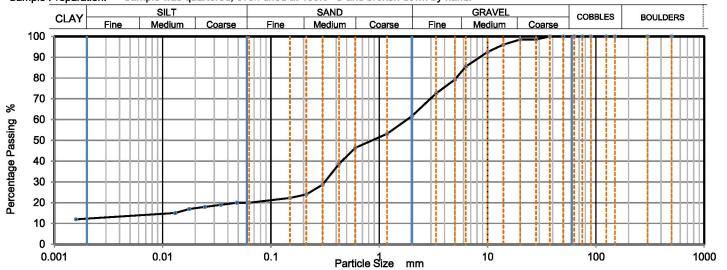
Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 05/10/2022 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


 Laboratory Reference:
 2439919
 Depth Top [m]: 0.60

 Hole No.:
 TP208
 Depth Base [m]: 0.70

 Sample Reference:
 Not Given
 Sample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

	•	Cadimandatian				
Siev	ring	Sedime	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing			
500	100	0.0630	20			
300	100	0.0483	20			
150	100	0.0344	19			
125	100	0.0245	18			
90	100	0.0176	17			
75	100	0.0131	15			
63	100	0.0016	12			
50	100					
37.5	100					
28	99					
20	99					
14	96					
10	93					
6.3	86					
5	79					
3.35	73	Particle density	(measured)			
2	62	2.92	Mg/m3			
1.18	53					
0.6	46	1				
0.425	39	1				
0.3	29	1				
0.212	24					
0.15	22					
0.063	20					

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	38	
Sand	41	
Silt	9	
Clay	12	

Grading Analysis	S	
D100	mm	37.5
D60	mm	1.81
D30	mm	0.314
D10	mm	
Uniformity Coefficient	> 1100	
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

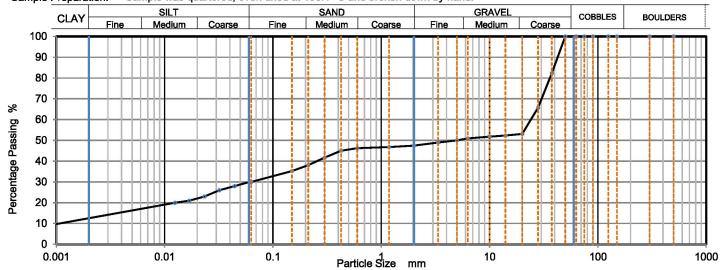
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114
Job Number: 22-86688
Date Sampled: 09/09/2022
Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439920Depth Top [m]: 0.70Hole No.:TP218Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown sandy silty clayey GRAVEL

Sample Preparation: Sample was quartered, oven dried at 106.1 °C and broken down by hand.

Sievi	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0608	30
300	100	0.0441	28
150	100	0.0320	26
125	100	0.0233	23
90	100	0.0168	21
75	100	0.0125	20
63	100	0.0008	9
50	100		
37.5	82		
28	66		
20	53		
14	52		
10	52		
6.3	51		
5	50		
3.35	49	Particle density	(measured)
2	48	2.74	Mg/m3
1.18	47		
0.6	46	1	
0.425	45	1	
0.3	42	1	
0.212	38	Ĭ	
0.15	35	7	
0.063	30	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	53
Sand	17
Silt	17
Clay	13

Grading Analysis	8	
D100	mm	50
D60	mm	24.1
D30	mm	0.0573
D10	mm	0.00103
Uniformity Coefficient		23000
Curvature Coefficient		0.13

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 100.21

Page 1 of 1

1 of 1 Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

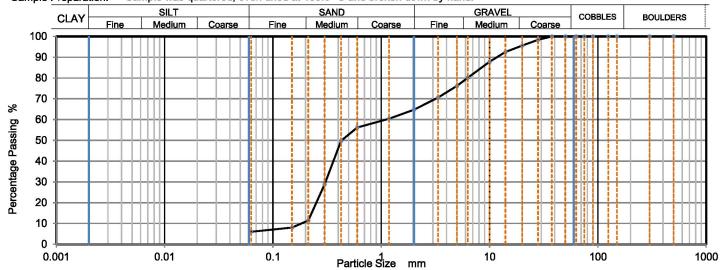
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 05/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439921Depth Top [m]: 2.20Hole No.:TP221Depth Base [m]: 2.30Sample Reference:Not GivenSample Type: D

Sample Description: Orangish brown clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	98		
20	96		
14	93		
10	88		
6.3	80		
5	76		
3.35	71		
2	65		
1.18	60		
0.6	56]	
0.425	50	1	
0.3	29		
0.212	11		
0.15	8		
0.063	6	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	35
Sand	59
Fines <0.063mm	6

Grading Analysis		
D100	mm	37.5
D60	mm	1.11
D30	mm	0.306
D10	mm	0.183
Uniformity Coefficient		6.1
Curvature Coefficient		0.46

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022 GF 100.21

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

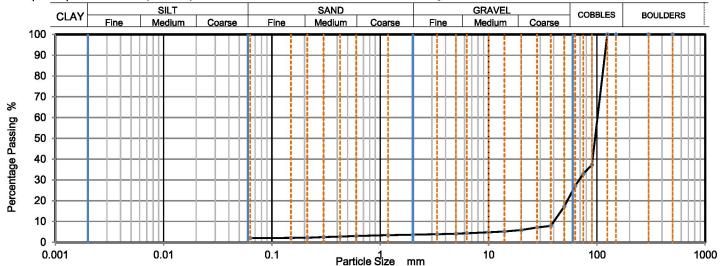
Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 05/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2439928 Depth Top [m]: 0.70 **TP207** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown slightly clayey slightly sandy COBBLES

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	37		
75	33		
63	27		
50	17		
37.5	8		
28	7		
20	6		
14	5		
10	5		
6.3	4		
5	4		
3.35	4		
2	4	1	
1.18	3		
0.6	3	1	
0.425	3	1	
0.3	3		
0.212	2		
0.15	2	1	
0.063	2	1	

Sample Proportions	% dry mass
Very coarse	73
Gravel	23
Sand	2
Fines <0.063mm	2

Grading Analysis	1	
D100	mm	125
D60	mm	101
D30	mm	68.7
D10	mm	40
Uniformity Coefficient		2.5
Curvature Coefficient		1.2

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported: 18/10/2022 GF 100.21**

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

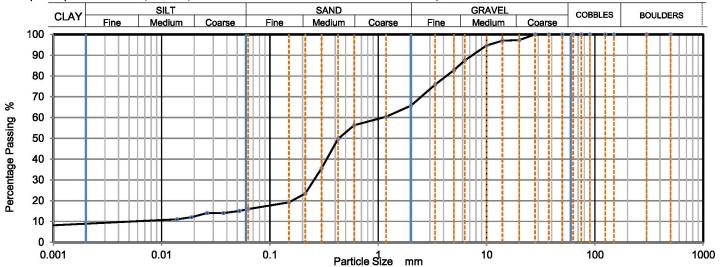
Site Address: Begbroke

 Park, Holdenby Road,
 Job Number: 22-86688

 amptonshire,
 Date Sampled: 09/09/2022

 Date Received: 26/09/2022

 Son
 Date Tested: 06/10/2022


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439929Depth Top [m]: 0.60Hole No.:TP209Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brown silty clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 107.2 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	16
300	100	0.0522	15
150	100	0.0371	14
125	100	0.0263	14
90	100	0.0188	12
75	100	0.0138	11
63	100	0.0009	8
50	100		
37.5	100		
28	100		
20	97		
14	97		
10	95		
6.3	88		
5	83		
3.35	76	Particle density	(assumed)
2	66	2.65	Mg/m3
1.18	60		
0.6	56	1	
0.425	50	1	
0.3	36	1	
0.212	23		
0.15	19	1	
0.063	16	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	34
Sand	49
Silt	8
Clay	9

Grading Analysis		
D100	mm	28
D60	mm	1.1
D30	mm	0.256
D10	mm	0.00626
Uniformity Coefficient		180
Curvature Coefficient		9.5

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

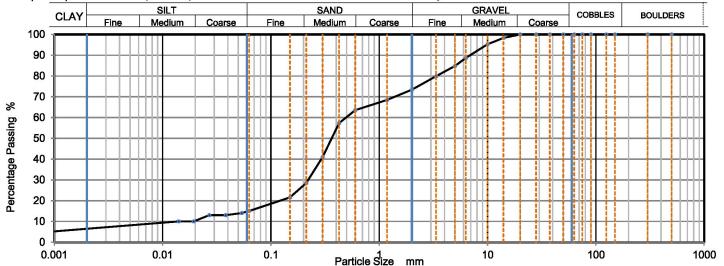
Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2439932 Depth Top [m]: 1.20 **TP211** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown gravelly silty clayey SAND

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	15
300	100	0.0537	14
150	100	0.0382	13
125	100	0.0270	13
90	100	0.0193	10
75	100	0.0141	10
63	100	0.0009	5
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	95		
6.3	89		
5	85		
3.35	80	Particle density	(assumed)
2	73	2.65	Mg/m3
1.18	69		
0.6	64	1	
0.425	57	1	
0.3	41	1	
0.212	29	Ï	
0.15	22	1	
0.063	15	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	27
Sand	58
Silt	9
Clay	6

Grading Analysis	S	
D100	mm	20
D60	mm	0.492
D30	mm	0.221
D10	mm	
Uniformity Coefficient		N/A
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

Page 1 of 1

GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

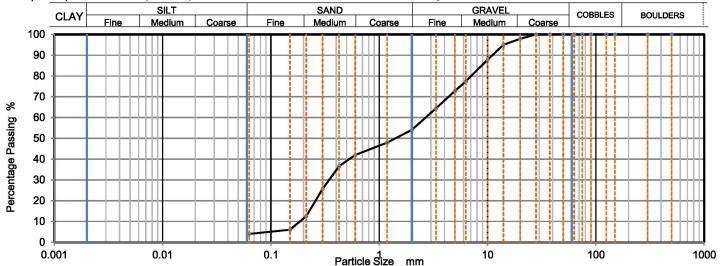
Client Reference: 19114

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439933Depth Top [m]: 0.70Hole No.:TP212Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brown slightly clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	95		
10	88		
6.3	77		
5	73		
3.35	65		
2	54		
1.18	48		
0.6	42]	
0.425	37	1	
0.3	26		
0.212	13		
0.15	6		
0.063	4	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	46
Sand	50
Fines <0.063mm	4

Grading Analysi	S	
D100	mm	28
D60	mm	2.68
D30	mm	0.344
D10	mm	0.185
Uniformity Coefficient		14
Curvature Coefficient		0.24

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 100.21

Page 1 of 1

1 of 1 Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

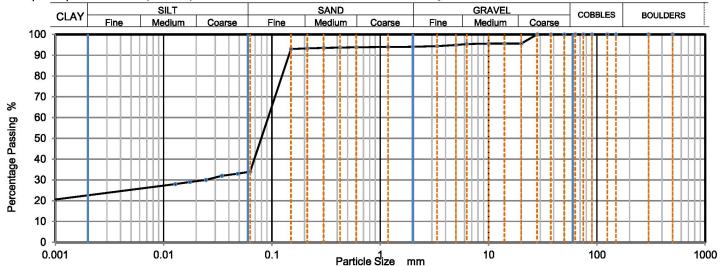
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114
Job Number: 22-86688
Date Sampled: 09/09/2022
Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439938Depth Top [m]: 2.50Hole No.:TP220Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Grey mottled brown gravelly silty clayey SAND

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	34
300	100	0.0483	33
150	100	0.0344	32
125	100	0.0245	30
90	100	0.0174	29
75	100	0.0128	28
63	100	0.0008	20
50	100		
37.5	100		
28	100		
20	96		
14	96		
10	96		
6.3	95		
5	95		
3.35	94	Particle density	(assumed)
2	94	2.65	Mg/m3
1.18	94		
0.6	94	1	
0.425	94	1	
0.3	94	1	
0.212	93	Ì	
0.15	93	1	
0.063	34	1	

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	6	
Sand	60	
Silt	11	
Clay	23	

Grading Analysi	S	
D100	mm	28
D60	mm	0.0924
D30	mm	0.0213
D10	mm	
Uniformity Coefficient		> 110
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 **Date Reported:** 18/10/2022

GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

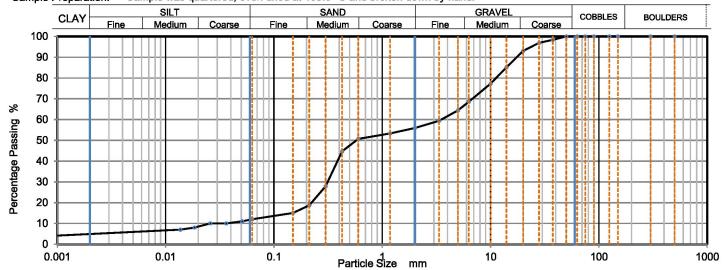
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

> Date Received: 26/09/2022 Date Tested: 05/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439940Depth Top [m]: 1.20Hole No.:TP223Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown slightly clayey silty SAND and GRAVEL

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Sion	/ing	Sodime	entation
Sieving		Sedime	intation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	12
300	100	0.0509	11
150	100	0.0363	10
125	100	0.0258	10
90	100	0.0185	8
75	100	0.0136	7
63	100	0.0009	4
50	100		
37.5	98		
28	97		
20	93		
14	85		
10	77		
6.3	69		
5	64		
3.35	59	Particle density	(assumed)
2	56	2.65	Mg/m3
1.18	53		
0.6	51		
0.425	45		
0.3	28		
0.212	19		
0.15	15		
0.063	12		

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	44	
Sand	44	
Silt	7	
Clay	5	

Grading Analysis		
D100	mm	50
D60	mm	3.5
D30	mm	0.313
D10	mm	0.0339
Uniformity Coefficient		100
Curvature Coefficient		0.82

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 100.21

Page

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

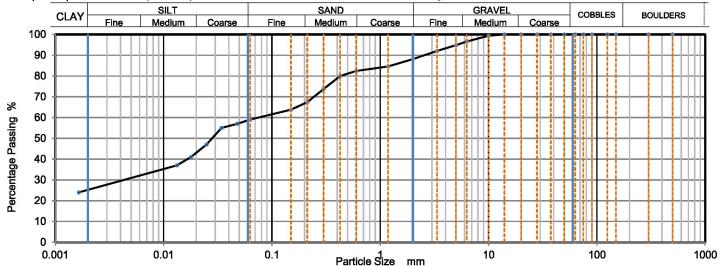
Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 04/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2439943 Depth Top [m]: 0.80 **TP226** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown gravelly very sandy very clayey SILT

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	59
300	100	0.0480	57
150	100	0.0342	55
125	100	0.0248	47
90	100	0.0179	41
75	100	0.0132	37
63	100	0.0016	24
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	97		
5	95		
3.35	92	Particle density	(assumed)
2	88	2.65	Mg/m3
1.18	85		
0.6	82]	
0.425	80]	
0.3	74	1	
0.212	67		
0.15	64		
0.063	59	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	12
Sand	29
Silt	34
Clay	25

Grading Analysi	S	
D100	mm	14
D60	mm	0.0727
D30	mm	0.00427
D10	mm	
Uniformity Coefficient		> 44
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 100.21 **Date Reported: 18/10/2022**

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

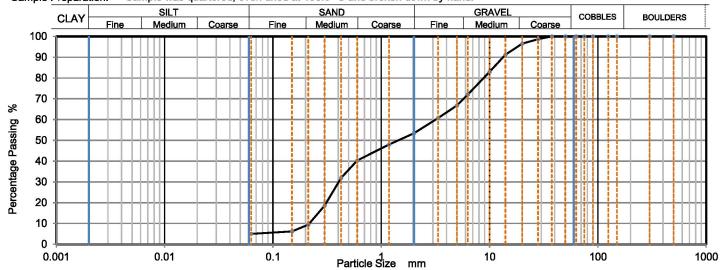
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439945Depth Top [m]: 2.20Hole No.:TP227Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	97		
14	91		
10	83		
6.3	72		
5	67		
3.35	61		
2	53	1	
1.18	48		
0.6	40	1	
0.425	32	1	
0.3	19	1	
0.212	9	Ĭ	
0.15	6	7	
0.063	5	7	

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	47	
Sand	48	
Fines <0.063mm	5	

Grading Analysi	S	
D100	mm	37.5
D60	mm	3.18
D30	mm	0.404
D10	mm	0.217
Uniformity Coefficient		15
Curvature Coefficient		0.24

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022 GF 100.21

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

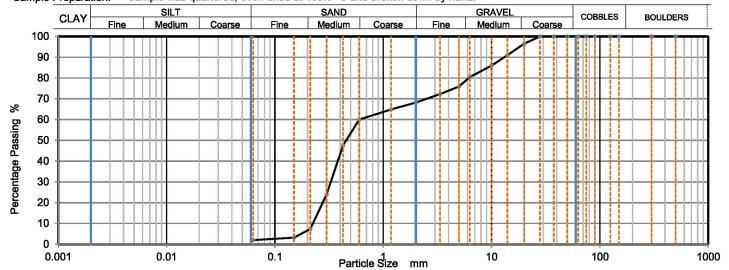
Client Reference: 19114

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439946Depth Top [m]: 1.20Hole No.:TP229Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown slightly clayey gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	91		
10	86		
6.3	80		
5	76		
3.35	72		
2	68		
1.18	65		
0.6	60]	
0.425	48	1	
0.3	24		
0.212	7		
0.15	3		
0.063	2		

Sample Proportions	% dry mass
Very coarse	0
Gravel	32
Sand	66
Fines <0.063mm	2

Grading Analysis	3	
D100	mm	28
D60	mm	0.6
D30	mm	0.328
D10	mm	0.224
Uniformity Coefficient		2.7
Curvature Coefficient		0.8

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 100.21

Page 1 of 1

of 1 Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

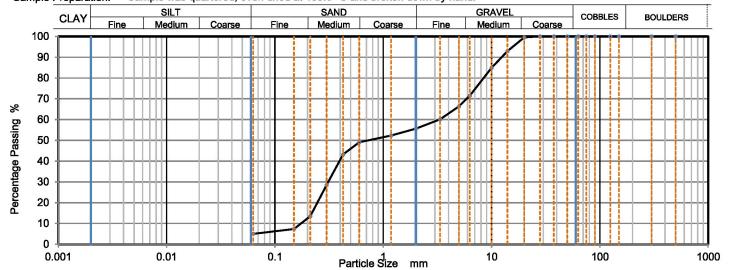
Site Address: Begbroke

Client Reference: 19114

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 06/10/2022 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2439949Depth Top [m]: 0.70Hole No.:TP234Depth Base [m]: 0.90Sample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown clayey very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	93		
10	85		
6.3	72		
5	66		
3.35	60		
2	56	1	
1.18	52		
0.6	49	1	
0.425	43	1	
0.3	29		
0.212	14		
0.15	7	7	
0.063	5	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	44
Sand	50
Fines <0.063mm	5

Grading Analysis	1	
D100	mm	28
D60	mm	3.31
D30	mm	0.311
D10	mm	0.174
Uniformity Coefficient		19
Curvature Coefficient		0.17

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022 GF 100.21

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 4.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

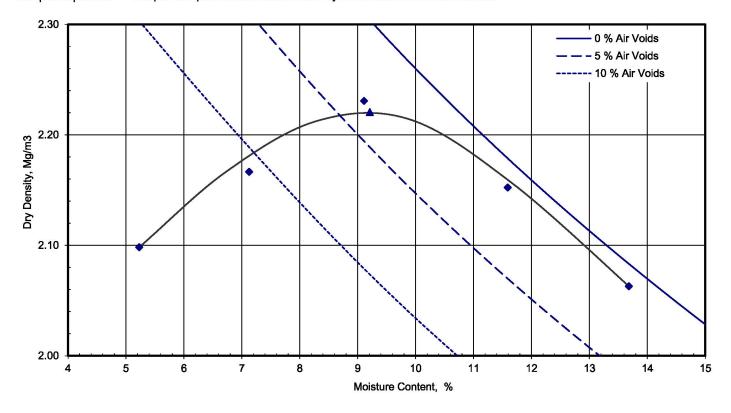
Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 07/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439917 Hole No.: TP201 Sample Reference: Not Given

Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Depth Top [m]: 0.70 Depth Base [m]: Not Given Sample Type: D

Compaction Point No.		1	2	3	4	5
Moisture Content	%	5.2	7.1	9.1	12	14
Dry Density Mg.	/m³	2.10	2.17	2.23	2.15	2.06

Mould Type	1 Litre
Samples Used	Single sample tested
Material Retained on 37.5 mm Sieve %	0
Material Retained on 20.0 mm Sieve %	1
Particle Density - Measured using gas jar Mg/m ³	2.92
As received Moisture Content %	9.8
Maximum Dry Density Mg/m ³	2.22

Optimum Moisture Content	%	9.2

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022 GF 110.22

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 4.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 22-86688

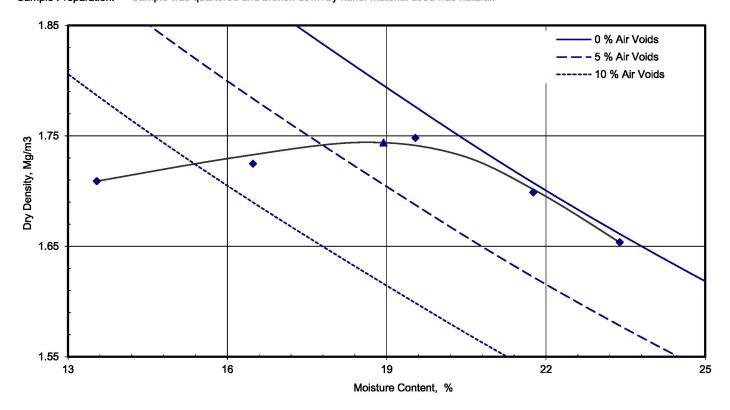
Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:


Laboratory Reference: 2439918 Hole No.: TP203 Sample Reference: Not Given

Sample Description: Brownish grey slightly sandy very silty CLAY

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Depth Top [m]: 1.30
Depth Base [m]: Not Given

Sample Type: D

Compaction Point No.	1	2	3	4	5
Moisture Content %	14	16	20	22	23
Dry Density Mg/m³	1.71	1.72	1.75	1.70	1.65

Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Measured using gas jar	Mg/m³	2.72
As received Moisture Content	%	27
Maximum Dry Density	Mg/m³	1.74
	-	· · · · · · · · · · · · · · · · · · ·

Optimum Moisture Content	%	19	

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2022

Page 1 of 1

-

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 4.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

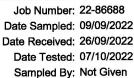
Not Given

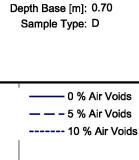
Contact: Nathan Thompson

Site Address: **Begbroke**

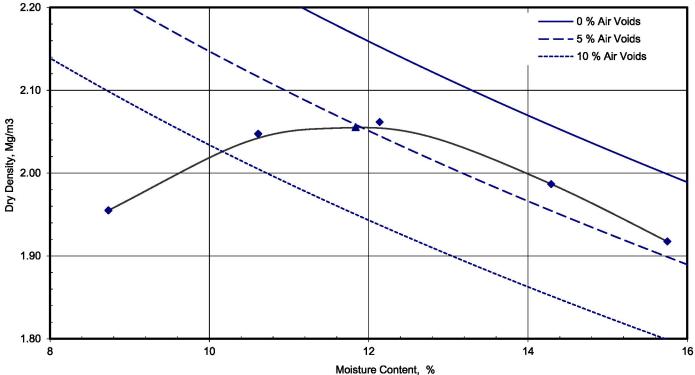
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688


Test Results:


Sample Reference:

Laboratory Reference: 2439919 **TP208** Hole No.:


Sample Description: Orangish brown silty clayey very gravelly SAND

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Depth Top [m]: 0.60

Compaction Point No.		1	2	3	4	5
Moisture Content	%	8.7	11	12	14	16
Dry Density Mg/	/m³	1.96	2.05	2.06	1.99	1.92

Mould Type		1 Litre
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	2
Particle Density - Measured using gas jar	Mg/m³	2.92
As received Moisture Content	%	6.7
Maximum Dry Density	Mg/m³	2.06

Optimum Moisture Content	%	12

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022 GF 110.22

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 4.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

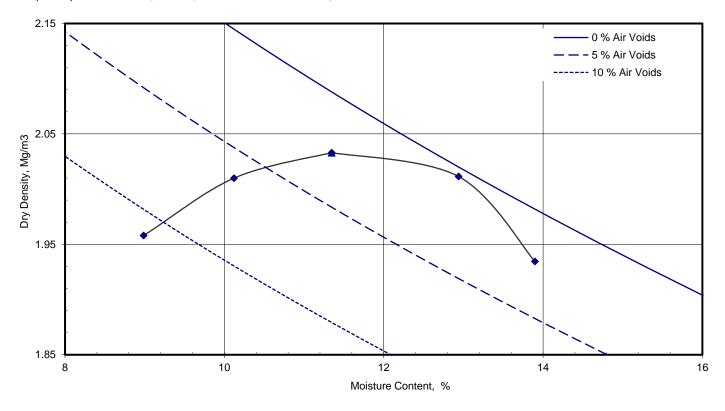
Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 07/10/2022 Sampled By: Not Given

Test Results:


Laboratory Reference: 2439920 **TP218** Hole No.: Not Given Sample Reference:

Sample Description: Yellowish brown sandy silty clayey GRAVEL

Sample Preparation: Sample was quartered and broken down by hand. Material used was natural. Depth Top [m]: 0.70

Depth Base [m]: Not Given

Sample Type: D

Compaction Point No.	1	2	3	4	5
Moisture Content %	9.0	10	11	13	14
Dry Density Mg/m³	1.96	2.01	2.03	2.01	1.93

Mould Type		CBR
Samples Used		Single sample tested
Material Retained on 37.5 mm Sieve	%	20
Material Retained on 20.0 mm Sieve	%	54
Particle Density - Measured using gas jar	Mg/m³	2.74
As received Moisture Content	%	13
Maximum Dry Density	Mg/m³	2.03

Optimum Moisture Content	%	11	

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.6 using 4.5kg [heavy] Rammer

Remarks: Zone X - test carried out as per client request

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Siewior Page 1 of 1

lonika

Date Reported: 18/10/2022

GF 110.22

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 4.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

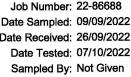
Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: **Begbroke**

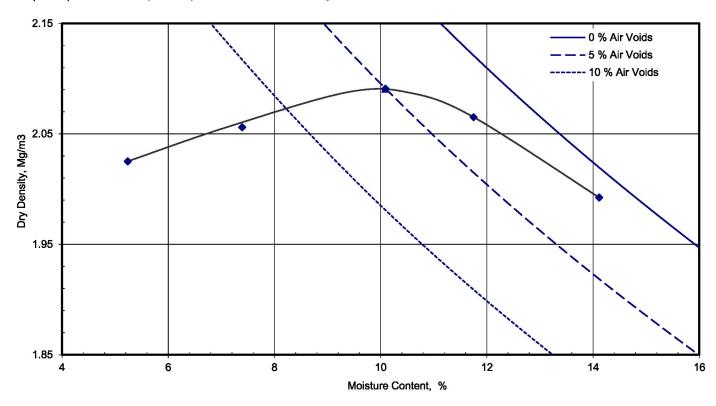
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Test Results:

Laboratory Reference: 2439921 **TP221** Hole No.: Not Given Sample Reference:

Sample Description: Orangish brown clayey very gravelly SAND


Sample Preparation: Sample was quartered and broken down by hand. Material used was natural.

Depth Top [m]: 2.20

Depth Base [m]: 2.30

Sample Type: D

Compaction Point No.	1	2	3	4	5
Moisture Content %	5.2	7.4	10	12	14
Dry Density Mg/m ⁻	2.03	2.06	2.09	2.07	1.99

Mould Type	1 Litre
Samples Used	Single sample tested
Material Retained on 37.5 mm Sieve	6 0
Material Retained on 20.0 mm Sieve	5
Particle Density - Measured using gas jar Mg/m	2.83
As received Moisture Content 9	8.3
Maximum Dry Density Mg/m	2.09

Optimum Moisture Content	%	10	

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 110.22

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439926
Hole No.: TP204
Sample Reference: Not Given

Sample Description: Yellowish brown slightly clayey gravelly SAND

Depth Top [m]: 0.60 Depth Base [m]: 0.70

Sample Type: D

Specimen Preparation:

Initial Specimen details

Condition Remoulded

Details Proceedings of the state of

Recompacted with specified standard effort using 2.5kg rammer

Soaking details Not soaked

Period of soaking days

Time to surface days

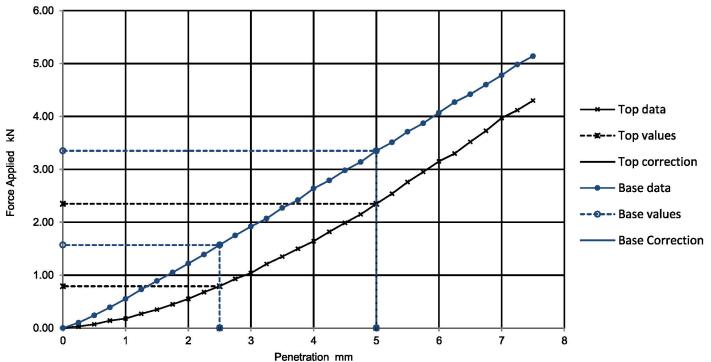
Amount of swell recorded mm

Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

red 9

Bulk density 2.01 Mg/m3 Dry density 1.89 Mg/m3


Moisture content 6.4 %

Surcharge applied

8 kg 4.8 kPa

Force v Penetration Plots

%

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	6.0	12.0	12.0	
No	12.0	17.0	17.0	

Moisture Content % 6.3 6.5

Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 18/10/2022 GF 108.16

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439929 **TP209** Hole No.: Sample Reference: Not Given

Brown silty clayey very gravelly SAND Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer Period of soaking Time to surface Amount of swell recorded Not soaked days

Material retained on 20mm sieve removed

3 % Dry density after soaking

days mm Mg/m3

Initial Specimen details

Bulk density

2.02

Mq/m3 Mg/m3 Surcharge applied

Soaking details

8 kg 4.9 kPa

Dry density

1.88

Moisture content 7.5

Force v Penetration Plots 8.00 7.00 6.00 - Top data 5.00 Force Applied kN -- Top values Top correction 4.00 Base data 3.00 ● - · Base values **Base Correction** 2.00 1.00 0.00

Results

TOP **BASE**

Curve				
correction applied	2.5mm	5mm	Highest	Average
No	24.0	27.0	27.0	29.0
Yes	28.0	30.0	30.0	29.0

Penetration mm

Moisture Content % 7.3 6.9

Remarks:

Test/ Specimen specific remarks:

6

Signed:

5

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

2

3

GF 108.16

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439933 **TP212** Hole No.: Sample Reference: Not Given

Brown slightly clayey very gravelly SAND Sample Description:

Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: D

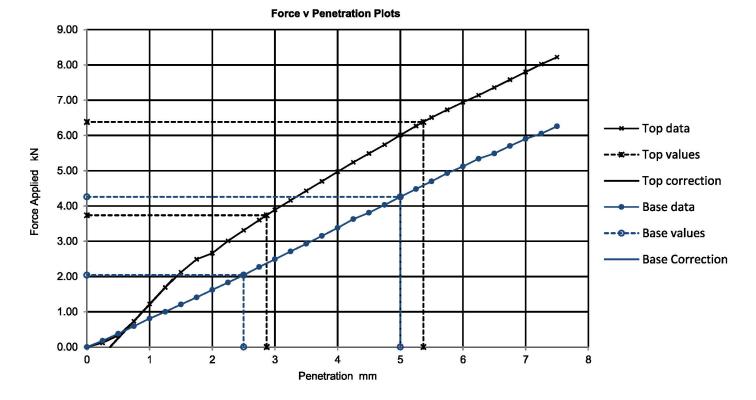
Specimen Preparation:

Condition Remoulded

Material retained on 20mm sieve removed

Details

Recompacted with specified standard effort using 2.5kg rammer


2 %

Initial Specimen details **Bulk density** 2.01 Mq/m3 Dry density 1.90 Mg/m3

Moisture content 5.8 Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm

Dry density after soaking Mg/m3 Surcharge applied 8

kg 4.8 kPa

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
Yes	28.0	32.0	32.0	
No	15.0	21.0	21.0	

Moisture Content % 5.9 6.3

Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist

Page 1 of 1

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 18/10/2022

GF 108.16

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Client Reference: 19114

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439941 **TP224** Hole No.:

Sample Reference: Not Given Sample Description:

Yellowish brown slightly gravelly sandy CLAY

Depth Top [m]: 0.90 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

Initial Specimen details

Condition Remoulded

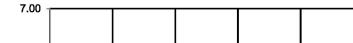
Details Recompacted with specified standard effort using 2.5kg rammer Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

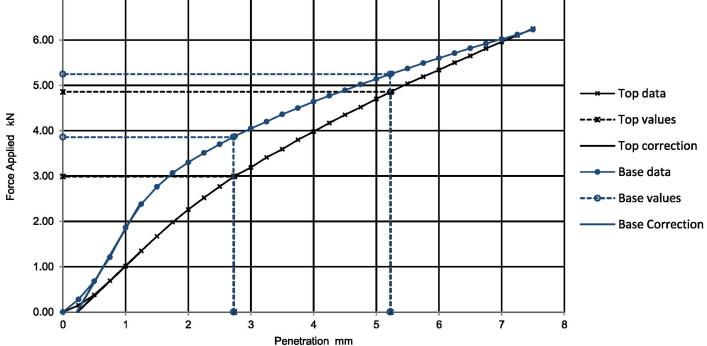
3

2.00 Mq/m3

Force v Penetration Plots


%

Dry density 1.82 Mg/m3 Moisture content 9.8


Surcharge applied

8 kg

4.8 kPa

Bulk density

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
Yes	23.0	24.0	24.0	27.0
Yes	29.0	26.0	29.0	27.0

Moisture Content % 9.8 9.3

Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 108.16

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439948

Hole No.: TP232

Sample Reference: Not Given

Sample Description: Brown CLAY

Material retained on 20mm sieve removed

Depth Top [m]: 0.50 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

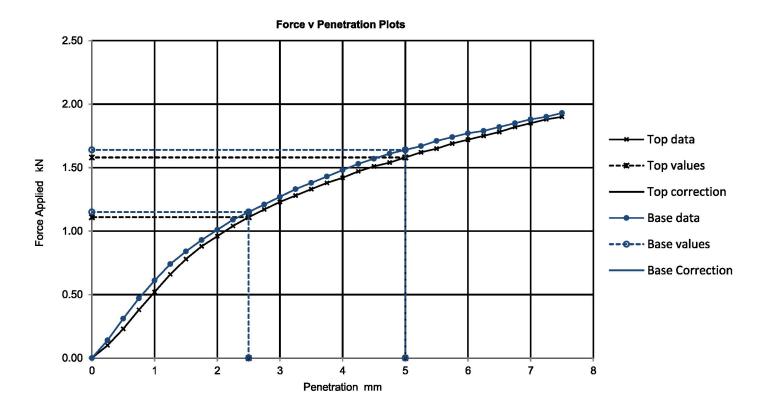
Condition Remoulded Soaking details Not soaked

Details Recompacted with specified standard effort using 2.5kg rammer Period of soaking Time to surface days

Amount of swell recorded mm

%

3


Amount of swell recorded mm

Dry density after soaking Mg/m3

Initial Specimen details Bulk density 1.99 Mg/m3
Dry density 1.67 Mg/m3

Moisture content 19 %

Surcharge applied 8 kg 4.8 kPa

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	8.4	7.9	8.4	8.6
No	8.7	8.2	8.7	0.0

Moisture Content % 19 21

Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Page 1 of 1

•

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 18/10/2022 GF 108.16

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 08/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439917
Hole No.: TP201
Sample Reference: Not Given

Sample Description: Orangish brown silty clayey very gravelly SAND

Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

Initial Specimen details

Condition Remoulded

Details Recompacted with specified standard effort using 4.5kg rammer

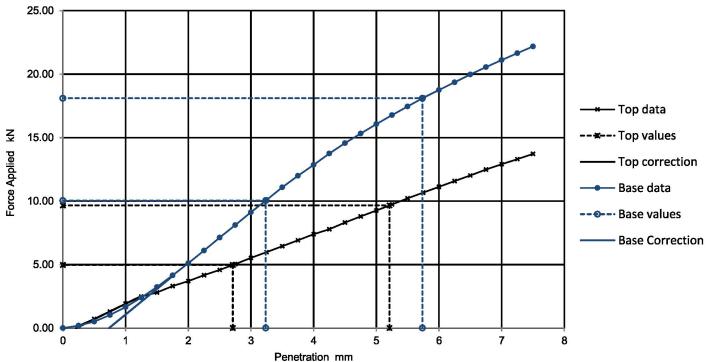
effort using 4.5kg rammer Period of soaking

Period of soaking 6 days
Time to surface 3 days
Amount of swell recorded 0.18 mm
Dry density after soaking 2.21 Mg/m3

Material retained on 20mm sieve removed 1

Bulk density 2.41 Mg/m3 Dry density 2.22 Mg/m3

Moisture content 8.8 %


Surcharge applied

Soaking details

8 kg 4.9 kPa

%

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
Yes	38.0	48.0	48.0	
Yes	76.0	91.0	91.0	

Moisture Content % 12 10

Remarks:

CBR tested at OMC = 9% of MC.

Test/ Specimen specific remarks:

Signed:

Monika Siewior
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Page 1 of 2

Date Reported: 18/10/2022

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

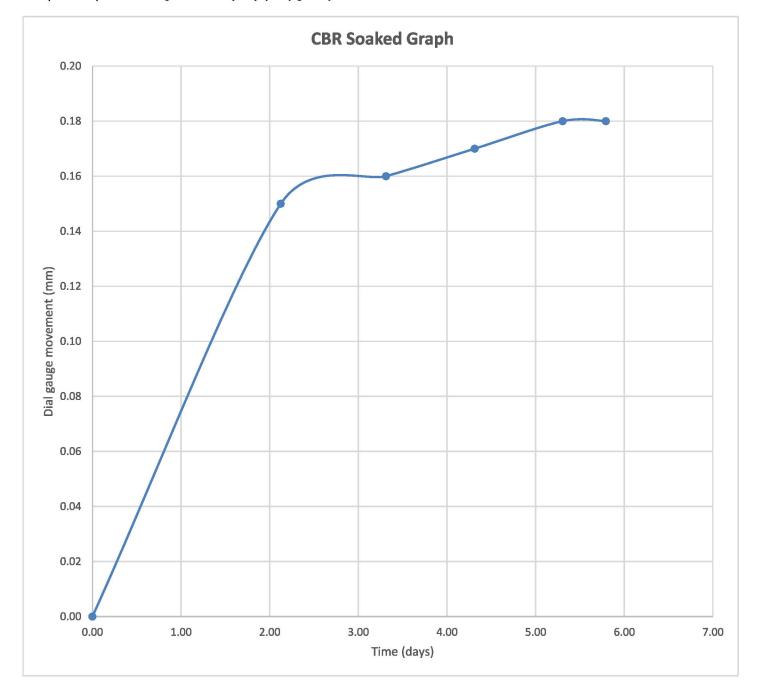
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Client Reference: 19114

Date Tested: 08/10/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2439917 **TP201** Hole No.: Not Given Sample Reference:

Sample Description: Orangish brown silty clayey very gravelly SAND

Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: D

CBR tested at OMC = 9% of MC. Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 2 of 2

Date Reported: 18/10/2022 GF 330.8

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 08/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439918 **TP203** Hole No.: Sample Reference: Not Given

Brownish grey slightly sandy very silty CLAY Sample Description:

Depth Top [m]: 1.30 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

Condition Remoulded

Details Recompacted with specified standard effort using 4.5kg rammer

9 Period of soaking days 3 Time to surface days 3.06 Amount of swell recorded mm 1.69 Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

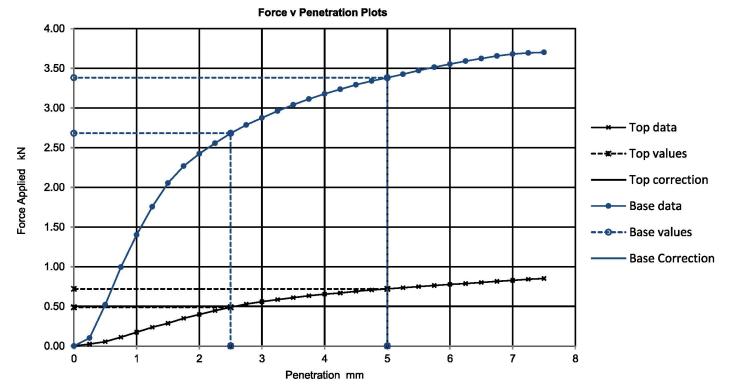
0 %

Soaking details

Surcharge applied

8 kg

kPa


4.8

Initial Specimen details

Bulk density Dry density

2.05 Mq/m3 1.73 Mg/m3

Moisture content 19

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	3.7	3.6	3.7	
No	20.0	17.0	20.0	

Moisture Content % 28 23

Remarks:

CBR tested at OMC = 19% of MC.

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 2

Date Reported: 18/10/2022

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

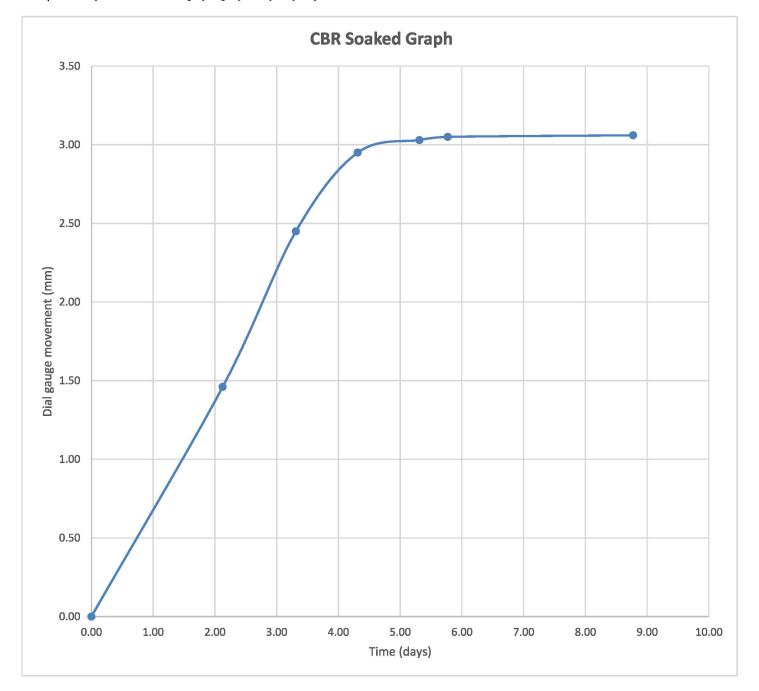
Nathan Thompson Contact:

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Date Tested: 08/10/2022 Sampled By: Not Given


Depth Top [m]: 1.30

Test Results:

Laboratory Reference: 2439918 **TP203** Hole No.: Not Given Sample Reference:

Sample Description: Brownish grey slightly sandy very silty CLAY Depth Base [m]: Not Given

Sample Type: D

CBR tested at OMC = 19% of MC. Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 2 of 2

Date Reported: 18/10/2022

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

> Date Tested: 06/10/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2439919 **TP208** Hole No.: Sample Reference: Not Given

Orangish brown silty clayey very gravelly SAND Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: 0.70

Sample Type: D

Specimen Preparation:

Initial Specimen details

Condition Remoulded

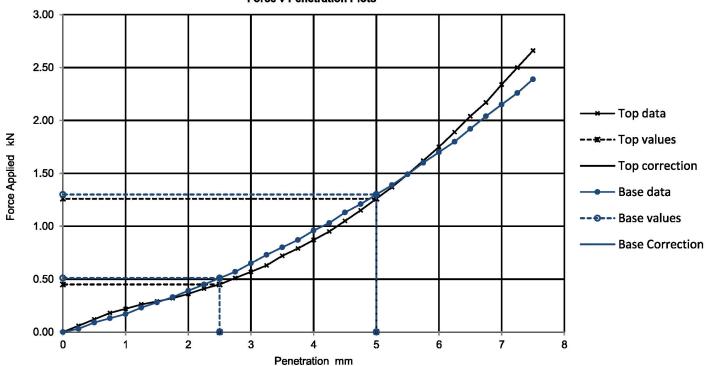
Details

Recompacted with specified standard effort using 4.5kg rammer

Period of soaking 6 days 3 Time to surface days -0.15 Amount of swell recorded mm 2.05 Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

2 %


Bulk density 2.30 Mq/m3 Dry density 2.05 Mg/m3 Moisture content 12

Surcharge applied

Soaking details

8 kg 4.8 kPa

Force v Penetration Plots

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	3.4	6.3	6.3	6.4
No	3.9	6.5	6.5	0.4

Moisture Content % 13 13

Remarks:

CBR tested at OMC = 12% of MC.

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 2

Date Reported: 18/10/2022

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

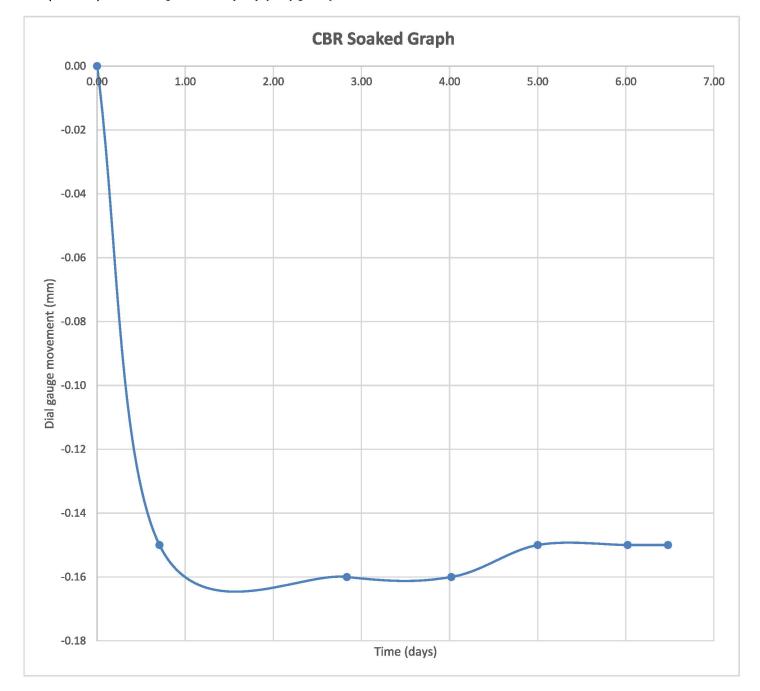
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 06/10/2022


Sampled By: Not Given

Test Results:

Laboratory Reference: 2439919 **TP208** Hole No.: Sample Reference: Not Given

Sample Description: Orangish brown silty clayey very gravelly SAND

Depth Top [m]: 0.60 Depth Base [m]: 0.70 Sample Type: D

CBR tested at OMC = 12% of MC. Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 2 of 2

Date Reported: 18/10/2022

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439920 **TP218** Hole No.: Sample Reference: Not Given

Yellowish brown sandy silty clayey GRAVEL Sample Description:

Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: D

Specimen Preparation:

Condition Remoulded

Details Recompacted with specified standard effort using 4.5kg rammer

Period of soaking

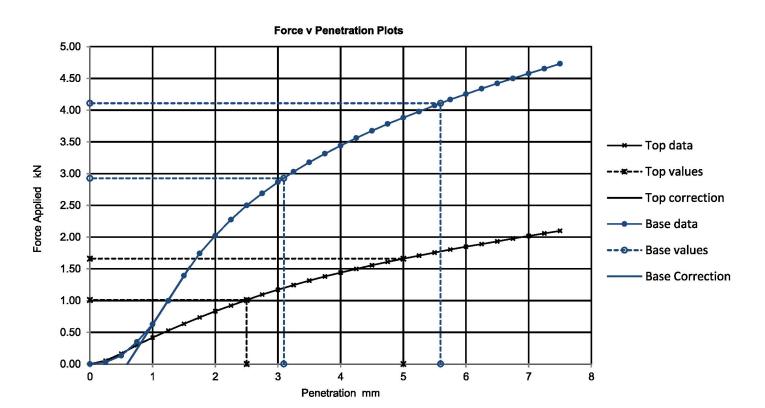
9 days 3 Time to surface days Amount of swell recorded 1 77 mm 1.99 Dry density after soaking Mg/m3

Soaking details

Material retained on 20mm sieve removed

54 %

Mq/m3


8 kg

Initial Specimen details

Bulk density Dry density

2.23 2.01 Mg/m3

Moisture content 11 Surcharge applied 4.9 kPa

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	7.7	8.3	8.3	
Yes	22.0	21.0	22.0	

Moisture Content % 15 12

CBR tested at OMC = 11% of MC. Remarks:

Test/ Specimen specific remarks:

Test carried out with > 25 % retained on 20mm as per clause 7.2.1.2

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 2

Date Reported: 18/10/2022

GF 330.8

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688

Date Sampled: 09/09/2022

Date Received: 26/09/2022

Date Tested: 07/10/2022

Client Reference: 19114

Sampled By: Not Given

Testing carried out at 12 Arialytical Enfitted, dr. 1 Johnstow 33, 41-711 Rada Glaska, 1 Glari

Test Results:

Laboratory Reference: 2439920 Hole No.: TP218 Sample Reference: Not Given

Sample Description: Yellowish brown sandy silty clayey GRAVEL

Depth Top [m]: 0.70
Depth Base [m]: Not Given
Sample Type: D

CBR Soaked Graph 2.00 1.80 1.60 1.40 Dial gauge movement (mm) 1.20 1.00 0.80 0.60 0.40 0.20 0.00 5.00 1.00 4.00 6.00 0.00 2.00 3.00 7.00 8.00 9.00 10.00 Time (days)

Remarks: CBR tested at OMC = 11% of MC.

Test/ Specimen specific remarks:

Test carried out with > 25 % retained on 20mm

as per clause 7.2.1.2

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 2 of 2

2 of 2 Date Reported: 18/10/2022

GF 330.8

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114
Job Number: 22-86688
Date Sampled: 09/09/2022
Date Received: 26/09/2022
Date Tested: 08/10/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2439921
Hole No.: TP221
Sample Reference: Not Given

Sample Description: Orangish brown clayey very gravelly SAND

Depth Top [m]: 2.20 Depth Base [m]: 2.30

Sample Type: D

Specimen Preparation:

Initial Specimen details

Condition Remoulded

Details Recompacted with specified standard effort using 4.5kg rammer

Soaking details

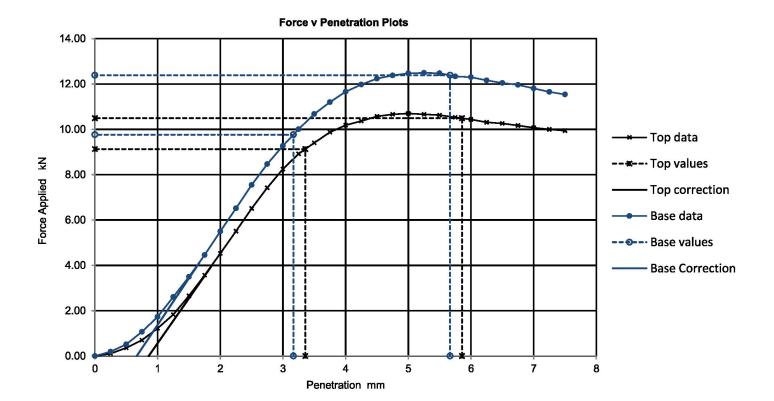
Period of soaking 6 days

Time to surface 3 days

Amount of swell recorded 0.03 mm

Dry density after soaking 2.06 Mg/m3

Material retained on 20mm sieve removed


removed 5 %

Bulk density 2.28 Mg/m3
Dry density 2.07 Mg/m3
Moisture content 10 %

Surcharge applied

8 kg

4.9 kPa

Results

TOP BASE

Curve	CBR Values, %				
correction applied	2.5mm	5mm	Highest	Average	
Yes	69.0	52.0	69.0	72.0	
Yes	74.0	62.0	74.0	72.0	

Moisture Content % 11

Remarks: CBR tested at OMC = 10% of MC.

Test/ Specimen specific remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

r testing.

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

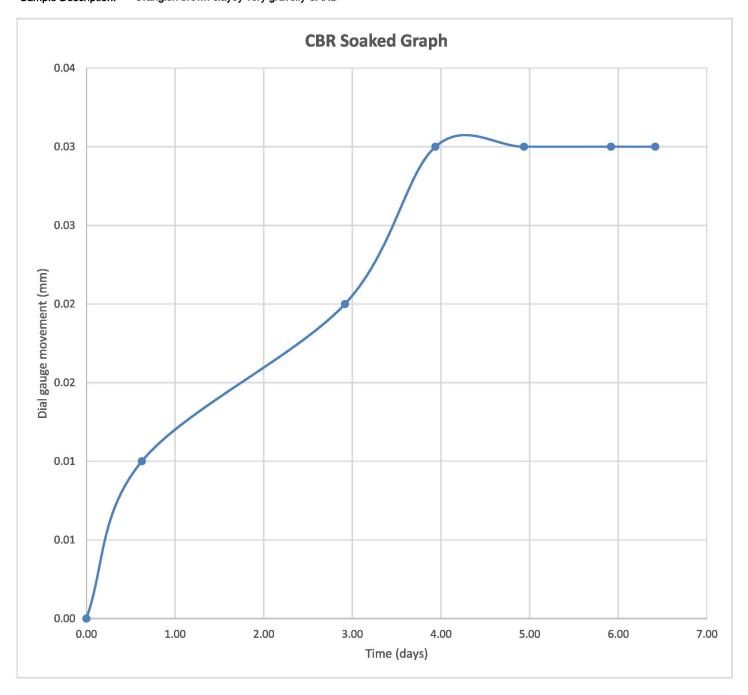
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022


Date Tested: 08/10/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2439921
Hole No.: TP221
Sample Reference: Not Given

Sample Description: Orangish brown clayey very gravelly SAND

Depth Top [m]: 2.20 Depth Base [m]: 2.30 Sample Type: D

Remarks: CBR tested at OMC = 10% of MC.

Test/ Specimen specific remarks:

Date Reported: 18/10/2022

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

kPa

UTP

UTP

UTP

UTP

66

52

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 07/10/2022

Sampled By: Not Given

Depth Top [m]: 0.70

Sample Type: D

Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 2439917 **TP201** Hole No.: Not Given Sample Reference:

Moisture Content

%

5.2

7.1

9.1

12

14

Soil Description: Orangish brown silty clayey very gravelly SAND

1

kPa

UTP

UTP

UTP

UTP

84

2

kPa

UTP

UTP

UTP

UTP

70

Shear Var 3 kPa	e Reading 4 kPa	Average kPa	Tv kPa			
JTP	UTP	UTP				
JTP	UTP	UTP				
JTP	UTP	UTP				
JTP	UTP	UTP				

68

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Heavy Compaction 4.5kg (BS1377:Part 4:1990). Remarks:

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Depth Top [m]: 1.30

Sample Type: D

Depth Base [m]: Not Given

Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

Test Results:

Laboratory Reference: 2439918 **TP203** Hole No.: Not Given Sample Reference:

Soil Description: Brownish grey slightly sandy very silty CLAY Date Tested: 07/10/2022 Sampled By: Not Given

Shear Vane Reading Moisture Content 1 Average Tv kPa kPa kPa kPa kPa kPa 14 **UTP** UTP **UTP** UTP **UTP UTP UTP UTP** 17 **UTP** UTP 20 **UTP** UTP **UTP UTP** UTP 22 UTP UTP UTP UTP UTP 23 **UTP UTP UTP UTP** UTP

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Heavy Compaction 4.5kg (BS1377:Part 4:1990). Remarks:

Date Reported: 18/10/2022

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT USING HAND VANE APPARATUS

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688

Date Sampled: 09/09/2022
Date Received: 26/09/2022

Date Tested: 07/10/2022 Sampled By: Not Given

Testing Carried Out at 12 Analytical Limited, dr. Floriterow 39, 41-711 Ruda Slaska, Folan

Test Results:

Laboratory Reference: 2439919
Hole No.: TP208
Sample Reference: Not Given

Soil Description: Orangish brown silty clayey very gravelly SAND

Depth Top [m]: 0.60 Depth Base [m]: 0.70

Sample Type: D

Moisture Content	Shear Vane Reading					
	1	2	3	4	Average	Tv
%	kPa	kPa	kPa	kPa	kPa	kPa
8.7	UTP	UTP	UTP	UTP	UTP	
11	UTP	UTP	UTP	UTP	UTP	
12	UTP	UTP	UTP	UTP	UTP	
14	66	64	60	60	63	
16	24	18	20	14	19	

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Remarks: Compacted by: Heavy Compaction 4.5kg (BS1377:Part 4:1990).

Date Reported: 18/10/2022

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022 Date Tested: 07/10/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2439920 **TP218** Hole No.: Not Given Sample Reference:

Soil Description: Yellowish brown sandy silty clayey GRAVEL

Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: D

Moisture Content	Shear Vane Reading						
%	1 kPa	2 kPa	3 kPa	4 kPa	Average kPa	Tv kPa	
9.0	UTP	UTP	UTP	UTP	UTP		
10	UTP	UTP	UTP	UTP	UTP		
11	UTP	UTP	UTP	UTP	UTP		
13	UTP	UTP	UTP	UTP	UTP		
14	104	90	110	90	99		

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Heavy Compaction 4.5kg (BS1377:Part 4:1990). Remarks:

Page 1 of 1

Date Reported: 18/10/2022

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 22-86688 Date Sampled: 09/09/2022

Date Received: 26/09/2022

Test Results:

Laboratory Reference: 2439921 **TP221** Hole No.: Not Given Sample Reference:

Orangish brown clayey very gravelly SAND Soil Description:

Date Tested: 07/10/2022 Sampled By: Not Given

Depth Base [m]: 2.30 Sample Type: D

Depth Top [m]: 2.20

Moisture Content			Shear Var	ne Reading		
	1	2	3	4	Average	Tv
%	kPa	kPa	kPa	kPa	kPa	kPa
5.2	UTP	UTP	UTP	UTP	UTP	
7.4	UTP	UTP	UTP	UTP	UTP	
10	UTP	UTP	UTP	UTP	UTP	
12	UTP	UTP	UTP	UTP	UTP	
14	34	16	22	28	25	

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Heavy Compaction 4.5kg (BS1377:Part 4:1990). Remarks:

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022

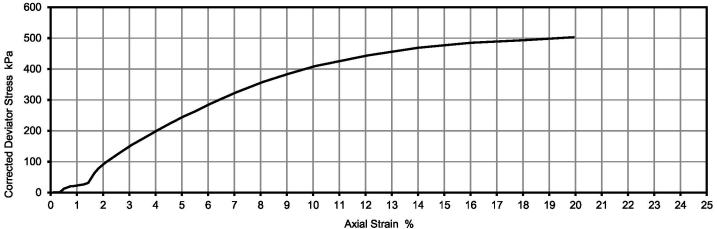
> Date Tested: 10/10/2022 Sampled By: Not Given

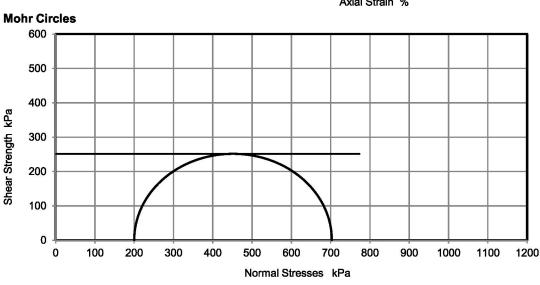
½(σ1 - σ3)f

Test Results:

Laboratory Reference: 2439917 Depth Top [m]: 0.70 **TP201** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND


Sample Preparation: Recompacted at OMC using 4.5kg rammer in accordance with Table 6 of BS1377-1:2016.


Test Number Length 199.33 mm Diameter 102.07 mm 2.38 **Bulk Density** Mg/m3 9.0 Moisture Content 2.19 **Dry Density** Ma/m3 Membrane Correction 1.01

Rate of Strain 1.00 %/min Cell Pressure 200 kPa Axial Strain at failure 19.9 % 503 kPa Deviator Stress, (σ1 - σ3)f 251 Undrained Shear Strength, cu kPa

Mode of Failure Compound Membrane thickness 0.27

Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 184.12

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 10/10/2022

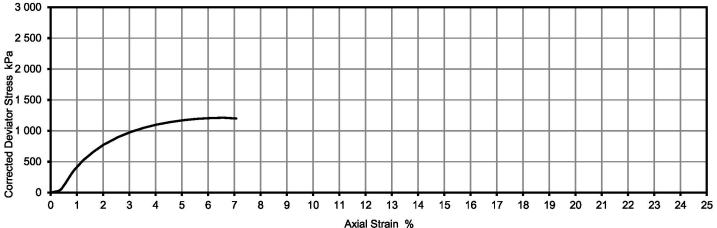
Sampled By: Not Given

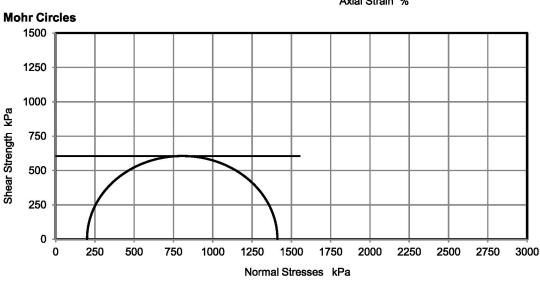
½(σ1 - σ3)f

Test Results:

Laboratory Reference: 2439918 Depth Top [m]: 1.30 **TP203** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brownish grey slightly sandy very silty CLAY


Sample Preparation: Recompacted at OMC using 4.5kg rammer in accordance with Table 6 of BS1377-1:2016.


Test Number Length 201.87 mm Diameter 100.70 mm 2.07 **Bulk Density** Mg/m3 19 Moisture Content 1.74 **Dry Density** Mg/m3 Membrane Correction 0.43

Rate of Strain 1.00 %/min Cell Pressure 200 kPa Axial Strain at failure 6.6 % 1211 kPa Deviator Stress, (σ1 - σ3)f 606 Undrained Shear Strength, cu kPa

Mode of Failure Compound Membrane thickness 0.26

Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114
Job Number: 22-86688
Date Sampled: 09/09/2022
Date Received: 26/09/2022
Date Tested: 10/10/2022

Sampled By: Not Given

½(σ1 - σ3)f

Test Results:

Laboratory Reference:2439919Depth Top [m]: 0.60Hole No.:TP208Depth Base [m]: 0.70Sample Reference:Not GivenSample Type: D

Sample Description: Orangish brown silty clayey very gravelly SAND

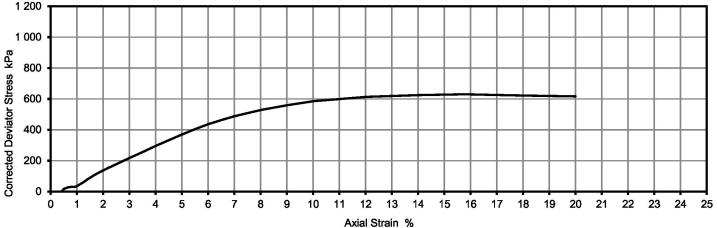
Sample Preparation: Recompacted at OMC using 4.5kg rammer in accordance with Table 6 of BS1377-1:2016.

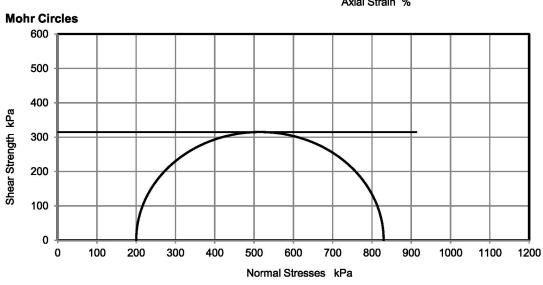
Test Number Length 199.20 mm Diameter 101.15 mm 2.35 **Bulk Density** Mg/m3 12 Moisture Content 2.10 **Dry Density** Mg/m3 Membrane Correction 0.88

 Rate of Strain
 1.00
 %/min

 Cell Pressure
 200
 kPa

 Axial Strain at failure
 15.8
 %


 Deviator Stress, (01 - 03)f
 630
 kPa


 Undrained Shear Strength, cu
 315
 kPa

Mode of Failure Compound

Membrane thickness 0.28 m

Deviator Stress v Axial Strain

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Siewior
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Page 1 of 1

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 10/10/2022

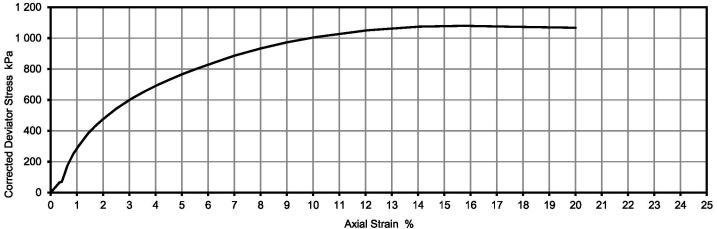
Sampled By: Not Given

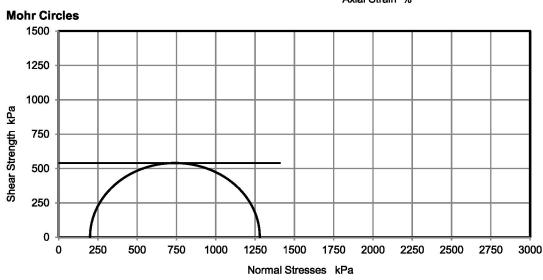
½(σ1 - σ3)f

Test Results:

Laboratory Reference: 2439920 Depth Top [m]: 0.70 **TP218** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown sandy silty clayey GRAVEL


Sample Preparation: Recompacted at OMC using 4.5kg rammer in accordance with Table 6 of BS1377-1:2016.


Test Number Length 200.91 mm Diameter 100.78 mm 2.29 **Bulk Density** Mg/m3 Moisture Content 11 2.07 **Dry Density** Mg/m3 Membrane Correction 0.85

Rate of Strain 1.00 %/min Cell Pressure 200 kPa Axial Strain at failure 15.9 % 1080 kPa Deviator Stress, (σ1 - σ3)f 540 Undrained Shear Strength, cu kPa

Mode of Failure Compound Membrane thickness 0.27

Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address:

Begbroke

Client Reference: 19114 Job Number: 22-86688 Date Sampled: 09/09/2022 Date Received: 26/09/2022 Date Tested: 10/10/2022

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

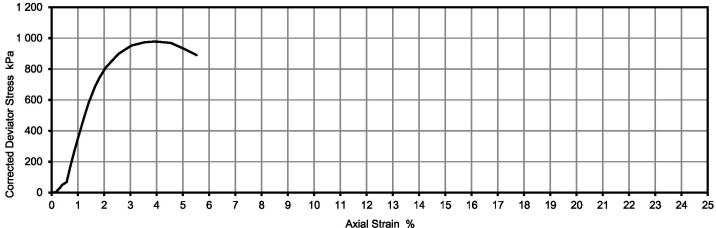
Test Results:

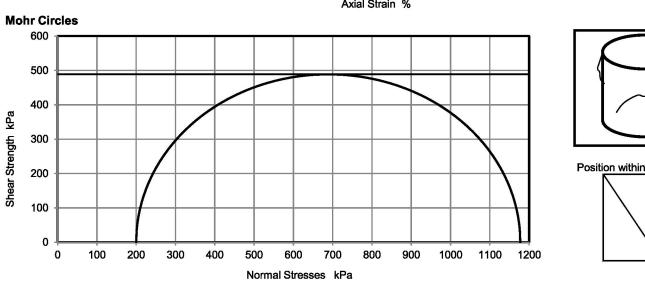
Laboratory Reference: 2439921 Depth Top [m]: 2.20 **TP221** Depth Base [m]: 2.30 Hole No.: Sample Reference: Not Given Sample Type: D

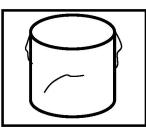
Sample Description: Orangish brown clayey very gravelly SAND

Sample Preparation: Recompacted at OMC using 4.5kg rammer in accordance with Table 6 of BS1377-1:2016.

Test Number Length 198.69 mm Diameter 100.57 mm 2.26 **Bulk Density** Mg/m3 10 Moisture Content 2.05 **Dry Density** Mg/m3 Membrane Correction 0.27


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu


Mode of Failure Compound Membrane thickness 0.26


1.00	%/min
200	kPa
3.9	%
978	kPa
489	kPa ½(σ1-σ3)f
<u> </u>	

mm

Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only

Remarks: Unable to take a photo.

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2022

GF 184.12

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-86699

Project / Site name: Begbroke Samples received on: 26/09/2022

Your job number: 19114 Samples instructed on/ 27/09/2022

Analysis started on:

Your order number: PO20272 Analysis completed by: 11/10/2022

Report Issue Number: 1 Report issued on: 11/10/2022

Samples Analysed: 31 soil samples

Anna Goc Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2439989	2439990	2439991	2439992	2439993
Sample Reference	TP201	TP203	TP208	TP218	TP221			
Sample Number				None Supplied				
Depth (m)	0.70	1.30	0.60-0.70	0.70	2.20-2.30			
Date Sampled				09/09/2022	06/09/2022	05/09/2022	09/09/2022	05/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	6.9	18	5.2	11	5.9
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4	0.3

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8	7.9	7.7	7.8	7.8
Total Sulphate as SO4	mg/kg	50	MCERTS	300	8100	240	100	300
Total Sulphate as SO4	%	0.005	MCERTS	0.03	0.807	0.024	0.01	0.03
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.009	0.013	0.0088	0.0069	0.012
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9	12.6	8.8	6.9	11.7
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	11	3.6	11	2.7	4.3
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	5.3	1.8	5.3	1.3	2.2
Total Sulphur	mg/kg	50	MCERTS	170	3500	180	75	190
Total Sulphur	%	0.005	MCERTS	0.017	0.354	0.018	0.007	0.019
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	0.4	0.6	0.6	0.4	0.2
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	5.2	12	17	6.2	7.9
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	6.2	8.5	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Lab Sample Number				2439994	2439995	2439996	2439997	2439998
Sample Reference		BH202	BH202	TP201	TP207	TP209		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		2.00-2.45	6.30-6.60	1.80	0.70	3.40		
Date Sampled				31/08/2022	31/08/2022	09/09/2022	06/09/2022	06/09/2022
Time Taken	,	•		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	27	< 0.1
Moisture Content	%	0.01	NONE	13	13	17	3.2	16
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.2	0.2	0.2

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	7.3	7.5	8.4	7.7
Total Sulphate as SO4	mg/kg	50	MCERTS	270	6900	2600	650	210
Total Sulphate as SO4	%	0.005	MCERTS	0.027	0.69	0.26	0.065	0.021
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.037	3.1	0.031	0.0079	0.015
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	36.9	3070	30.6	7.9	15.4
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	7.9	660	8.2	3.3	3.6
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	4	330	4.1	1.7	1.8
Total Sulphur	mg/kg	50	MCERTS	290	43000	1300	500	160
Total Sulphur	%	0.005	MCERTS	0.029	4.31	0.129	0.05	0.016
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	-	-	-	-	-
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	6.3	< 2.0	13	9.6	7.4
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	6.5	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	39	17	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	20	8.6	< 2.5	< 2.5

Lab Sample Number			·	2439999	2440000	2440001	2440002	2440003
Sample Reference				TP211	TP213	TP219	TP220	TP221
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.20	1.30	2.30	2.50	0.70			
Date Sampled				09/09/2022	08/09/2022	06/09/2022	05/09/2022	08/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.8	7.8	14	14	4.3
Total mass of sample received	kg	0.001	NONE	0.2	0.2	0.2	0.2	0.2

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	7.9	8.2	7.6	7.2
Total Sulphate as SO4	mg/kg	50	MCERTS	100	120	4000	500	240
Total Sulphate as SO4	%	0.005	MCERTS	0.01	0.012	0.399	0.05	0.024
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0074	0.0086	0.009	0.0088	0.011
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	7.4	8.6	9	8.8	10.6
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	2.4	2.4	25	7.1	1.3
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.2	1.2	12	3.5	0.7
Total Sulphur	mg/kg	50	MCERTS	57	120	1500	210	130
Total Sulphur	%	0.005	MCERTS	0.006	0.012	0.154	0.021	0.013
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	-	-	0.3	-	-
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	8.3	33	27	12	13
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	17	14	6.1	6.7

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Lab Sample Number				2440004	2440005	2440006	2440007	2440008
Sample Reference		TP223	TP226	TP229	TP230	TP232		
Sample Number				None Supplied				
Depth (m)				1.20	0.80	1.20	1.00	0.50
Date Sampled				08/09/2022	05/09/2022	05/09/2022	07/09/2022	07/09/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	17	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.5	8.2	3.3	5.4	16
Total mass of sample received	kg	0.001	NONE	0.2	0.2	0.2	0.2	0.2

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	7.7	7.3	7.6	-
Total Sulphate as SO4	mg/kg	50	MCERTS	390	150	170	490	-
Total Sulphate as SO4	%	0.005	MCERTS	0.039	0.015	0.017	0.049	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.04	0.026	0.0022	0.091	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	40	26.4	2.2	90.7	-
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	2.9	1.4	1.4	4.3	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.4	0.7	0.7	2.1	-
Total Sulphur	mg/kg	50	MCERTS	190	110	63	210	-
Total Sulphur	%	0.005	MCERTS	0.019	0.011	0.006	0.021	-
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	-
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Organic Matter (automated)	%	0.1	MCERTS	-	-	-	-	1.6
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	4	6.2	2.7	6.3	-
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	-

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	-

Lab Sample Number				2440009	2440010	2440011	2440012	2440013
Sample Reference				TP234	WS201	WS214	WS215	WS219
Sample Number	ample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70-0.90	1.70	0.90	1.60	2.00
Date Sampled			07/09/2022	30/08/2022	23/08/2022	25/08/2022	24/08/2022	
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	22	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.3	16	4.2	17	15
Total mass of sample received	kg	0.001	NONE	0.2	0.2	0.2	0.2	0.2

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	6.9	7.2	8.4	7.6
Total Sulphate as SO4	mg/kg	50	MCERTS	680	100000	990	270	890
Total Sulphate as SO4	%	0.005	MCERTS	0.068	10.1	0.099	0.027	0.089
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.2	3	0.31	0.021	0.22
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	201	2950	307	20.8	216
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	5.5	91	3.9	6.2	110
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	2.8	45	1.9	3.1	56
Total Sulphur	mg/kg	50	MCERTS	420	44000	500	240	1400
Total Sulphur	%	0.005	MCERTS	0.042	4.39	0.05	0.024	0.138
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	-	-	-	-	-
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	< 2.0	< 2.0	20	8.7	2
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	10	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	13	10	< 5.0	8.9
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	6.4	5	< 2.5	4.4

Lab Sample Number				2440014	2440015	2440016	2440017	2440018
Sample Reference				WS219	WS225	WS227	WS241	WS242
Sample Number				None Supplied				
Depth (m)				3.20-4.00	1.20-2.00	1.60	0.60	1.60
Date Sampled				24/08/2022	31/08/2022	23/08/2022	01/09/2022	05/09/2022
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	5.7	5.2	20	14
Total mass of sample received	kg	0.001	NONE	0.2	0.2	0.2	0.2	0.2

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.3	8.2	7.5	-	8
Total Sulphate as SO4	mg/kg	50	MCERTS	3000	360	470	-	160
Total Sulphate as SO4	%	0.005	MCERTS	0.303	0.036	0.047	-	0.016
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.6	0.017	0.0085	-	0.029
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	1610	16.7	8.5	-	29.4
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	32	2.1	1.6	-	15
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	16	1	0.8	-	7.3
Total Sulphur	mg/kg	50	MCERTS	32000	280	230	-	190
Total Sulphur	%	0.005	MCERTS	3.19	0.028	0.023	-	0.019
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	0.8	< 0.5	< 0.5	-	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.08	< 0.05	< 0.05	-	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	-	-	-	2.2	-
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	8	< 2.0	< 2.0	-	3.8
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	-	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	60	< 5.0	< 5.0	-	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	30	< 2.5	< 2.5	-	< 2.5

Lab Sample Number				2440019
Sample Reference				WS245
Sample Number				None Supplied
Depth (m)				1.10
Date Sampled				02/09/2022
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	21
Total mass of sample received	kg	0.001	NONE	0.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.6
Total Sulphate as SO4	mg/kg	50	MCERTS	690
Total Sulphate as SO4	%	0.005	MCERTS	0.069
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.32
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	322
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	15
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	7.4
Total Sulphur	mg/kg	50	MCERTS	840
Total Sulphur	%	0.005	MCERTS	0.084
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	1.2
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	< 2.0
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	7.8
Magnesium (leachate equivalent)	mg/l	2.5	NONE	3.9

Analytical Report Number : 22-86699 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2439989	TP201	None Supplied	0.7	Brown sandy clay with gravel.
2439990	TP203	None Supplied	1.3	Brown clay and sand.
2439991	TP208	None Supplied	0.60-0.70	Brown loam and clay with gravel and vegetation.
2439992	TP218	None Supplied	0.7	Brown clay and loam with vegetation.
2439993	TP221	None Supplied	2.20-2.30	Brown gravelly sand.
2439994	BH202	None Supplied	2.00-2.45	Brown clay and sand.
2439995	BH202	None Supplied	6.30-6.60	Brown clay and sand.
2439996	TP201	None Supplied	1.8	Brown clay and sand with gravel.
2439997	TP207	None Supplied	0.7	Brown sand with stones.
2439998	TP209	None Supplied	3.4	Brown clay and sand with gravel.
2439999	TP211	None Supplied	1.2	Brown sandy clay with gravel.
2440000	TP213	None Supplied	1.3	Brown clay and loam with gravel and vegetation.
2440001	TP219	None Supplied	2.3	Brown sandy clay.
2440002	TP220	None Supplied	2.5	Brown clay and sand.
2440003	TP221	None Supplied	0.7	Brown clay and loam with vegetation.
2440004	TP223	None Supplied	1.2	Brown clay and sand with gravel and stones.
2440005	TP226	None Supplied	0.8	Brown clay and sand.
2440006	TP229	None Supplied	1.2	Brown sand with gravel.
2440007	TP230	None Supplied	1	Brown sand with gravel.
2440008	TP232	None Supplied	0.5	Brown clay and loam with gravel and vegetation.
2440009	TP234	None Supplied	0.70-0.90	Brown sand with gravel and stones.
2440010	WS201	None Supplied	1.7	Brown clay and sand with gravel.
2440011	WS214	None Supplied	0.9	Brown sandy clay with gravel.
2440012	WS215	None Supplied	1.6	Brown sand with gravel.
2440013	WS219	None Supplied	2	Brown clay and sand.
2440014	WS219	None Supplied	3.20-4.00	Brown clay and sand.
2440015	WS225	None Supplied	1.20-2.00	Brown sand with gravel.
2440016	WS227	None Supplied	1.6	Brown sand with gravel.
2440017	WS241	None Supplied	0.6	Brown clay and sand with gravel.
2440018	WS242	None Supplied	1.6	Brown clay and sand with vegetation.
2440019	WS245	None Supplied	1.1	Brown clay and sand with vegetation.

Analytical Report Number: 22-86699 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

	I			ſ	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
			1		

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC

Analytical Report Number: 22-86699 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 22-86699 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS201	None Supplied	S	2440010	С	Ammoniacal Nitrogen as N in soil	L082-PL	С
WS201	None Supplied	S	2440010	С	Ammonium as NH4 in soil	L082-PL	С
WS201	None Supplied	S	2440010	С	Chloride, water soluble, in soil	L082-PL	С
WS201	None Supplied	S	2440010	С	Nitrate, water soluble, in soil	L078-PL	С
WS201	None Supplied	S	2440010	С	Water Soluble Nitrate (2:1) as N in soil	L078-PL	С
WS201	None Supplied	S	2440010	С	Water Soluble Nitrate (leachate equivalent)	L078-PL	С
WS201	None Supplied	S	2440010	С	pH in soil (automated)	L099-PL	С
WS214	None Supplied	S	2440011	С	Ammoniacal Nitrogen as N in soil	L082-PL	С
WS214	None Supplied	S	2440011	С	Ammonium as NH4 in soil	L082-PL	С
WS214	None Supplied	S	2440011	С	Chloride, water soluble, in soil	L082-PL	С
WS214	None Supplied	S	2440011	С	Nitrate, water soluble, in soil	L078-PL	С
WS214	None Supplied	S	2440011	С	Water Soluble Nitrate (2:1) as N in soil	L078-PL	С
WS214	None Supplied	S	2440011	С	Water Soluble Nitrate (leachate equivalent)	L078-PL	С
WS214	None Supplied	S	2440011	С	pH in soil (automated)	L099-PL	С
WS215	None Supplied	S	2440012	С	Ammoniacal Nitrogen as N in soil	L082-PL	С
WS215	None Supplied	S	2440012	С	Ammonium as NH4 in soil	L082-PL	С
WS215	None Supplied	S	2440012	С	Chloride, water soluble, in soil	L082-PL	С
WS215	None Supplied	S S	2440012	c	Nitrate, water soluble, in soil	L078-PL	c
WS215 WS215	None Supplied	S	2440012 2440012	c	Water Soluble Nitrate (2:1) as N in soil	L078-PL L078-PL	С
WS215 WS215	None Supplied None Supplied	S	2440012	c c	Water Soluble Nitrate (leachate equivalent) pH in soil (automated)	L078-PL L099-PL	c c
WS219	None Supplied	S	2440012	С	Ammoniacal Nitrogen as N in soil	L099-PL	С
WS219	None Supplied	S	2440013	c	Ammonium as NH4 in soil	L082-PL	c
WS219	None Supplied	S	2440013	c	Chloride, water soluble, in soil	L082-PL	c
WS219	None Supplied	S	2440013	С	Nitrate, water soluble, in soil	L078-PL	c
WS219	None Supplied	S	2440013	c	Water Soluble Nitrate (2:1) as N in soil	L078-PL	c
WS219	None Supplied	S	2440013	c	Water Soluble Nitrate (leachate equivalent)	L078-PL	c
WS219	None Supplied	S	2440013	С	pH in soil (automated)	L099-PL	С
WS219	None Supplied	S	2440014	С	Ammoniacal Nitrogen as N in soil	L082-PL	С
WS219	None Supplied	S	2440014	С	Ammonium as NH4 in soil	L082-PL	С
WS219	None Supplied	S	2440014	С	Chloride, water soluble, in soil	L082-PL	С
WS219	None Supplied	S	2440014	С	Nitrate, water soluble, in soil	L078-PL	с
WS219	None Supplied	S	2440014	С	Water Soluble Nitrate (2:1) as N in soil	L078-PL	С
WS219	None Supplied	S	2440014	С	Water Soluble Nitrate (leachate equivalent)	L078-PL	С
WS219	None Supplied	S	2440014	С	pH in soil (automated)	L099-PL	С
WS227	None Supplied	S	2440016	С	Ammoniacal Nitrogen as N in soil	L082-PL	С
WS227	None Supplied	S	2440016	с	Ammonium as NH4 in soil	L082-PL	С
WS227	None Supplied	S	2440016	С	Chloride, water soluble, in soil	L082-PL	С
WS227	None Supplied	S	2440016	С	Nitrate, water soluble, in soil	L078-PL	С
WS227	None Supplied	S	2440016	С	Water Soluble Nitrate (2:1) as N in soil	L078-PL	С
WS227	None Supplied	S	2440016	С	Water Soluble Nitrate (leachate equivalent)	L078-PL	С
WS227	None Supplied	S	2440016	С	pH in soil (automated)	L099-PL	С

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-17615

Project / Site name: Begbroke Samples received on: 10/02/2023

Your job number: 19114 Samples instructed on/ 10/02/2023

Analysis started on:

Your order number: PO23999 Analysis completed by: 23/02/2023

Report Issue Number: 1 Report issued on: 24/02/2023

Samples Analysed: 150 soil samples

i:

Signed:

Joanna Wawrzeczko Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2585501	2585502	2585503	2585504	2585505
Sample Reference				HP301	HP301	HP301	HP302	HP302
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	21	18	21	21
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	5.2	4.7	3.1	4.8	5

Lab Sample Number				2585506	2585507	2585508	2585509	2585510
Sample Reference				HP302	HP303	HP303	HP303	HP304
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	21	21	19	22
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.5	5	4.7	3.9	5.5

Lab Sample Number				2585511	2585512	2585513	2585514	2585515
Sample Reference		HP304	HP304	HP305	HP305	HP305		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30		
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	20	18	24	22	15
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	4.8	3.8	5.8	5.1	1.8

Lab Sample Number				2585516	2585517	2585518	2585519	2585520
Sample Reference				HP306	HP306	HP306	HP307	HP307
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20		
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	30	26	24	30	30
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	6.8	4.6	4.4	8.4	6.8

Lab Sample Number				2585521	2585522	2585523	2585524	2585525
Sample Reference				HP307	HP308	HP308	HP308	HP309
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	23	13	14	11	15
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.8	3.6	4.3	3.4	3.5

Lab Sample Number				2585526	2585527	2585528	2585529	2585530
Sample Reference				HP309	HP309	HP310	HP310	HP310
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	13	11	12	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.4	2.7	3	2.4	2.3

Lab Sample Number				2585531	2585532	2585533	2585534	2585535
Sample Reference				HP311	HP311	HP311	HP312	HP312
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	14	10	11	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.3	2.6	2.2	2.8	2.4

Lab Sample Number	•			2585536	2585537	2585538	2585539	2585540
Sample Reference				HP312	HP313	HP313	HP313	HP314
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	10	11	12	12	29
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	1.7	2.2	2.8	1.3	5.4

Lab Sample Number				2585541	2585542	2585543	2585544	2585545
Sample Reference				HP314	HP314	HP315	HP315	HP315
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	31	29	29	30	34
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	4.2	4.3	5.6	5.6	2.6

Lab Sample Number				2585546	2585547	2585548	2585549	2585550
Sample Reference				HP316	HP316	HP316	HP317	HP317
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	27	28	28	14	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	5.7	5.5	3.9	4.1	2.9

Lab Sample Number				2585551	2585552	2585553	2585554	2585555
Sample Reference				HP317	HP318	HP318	HP318	HP319
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	12	12	11	10
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.7	2.8	3	2.4	3

Lab Sample Number				2585556	2585557	2585558	2585559	2585560
Sample Reference				HP319	HP319	HP320	HP320	HP320
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.8	10	12	12	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3	1.6	2.8	3.1	1.6

Lab Sample Number				2585561	2585562	2585563	2585564	2585565
Sample Reference				HP321	HP321	HP321	HP322	HP322
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	11	11	13	13
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.2	2.6	2.5	2.6	2.9

Lab Sample Number				2585566	2585567	2585568	2585569	2585570
Sample Reference				HP322	HP323	HP323	HP323	HP324
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	15	3.3	12	13
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.6	4.4	5	3.1	4.3

Lab Sample Number				2585571	2585572	2585573	2585574	2585575
Sample Reference				HP324	HP324	HP325	HP325	HP325
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	13	14	15	13
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.5	3.5	4.8	5	2.7

Lab Sample Number				2585576	2585577	2585578	2585579	2585580
Sample Reference				HP326	HP326	HP326	HP327	HP327
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	13	11	14	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.1	2.9	1.8	3.2	3.1

Lab Sample Number				2585581	2585582	2585583	2585584	2585585
Sample Reference				HP327	HP328	HP328	HP328	HP329
Sample Number	r				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	14	14	10	12
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	1.9	4	4.2	1.9	3.2

Lab Sample Number				2585586	2585587	2585588	2585589	2585590
Sample Reference				HP329	HP329	HP330	HP330	HP330
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	42	< 0.1
Moisture Content	%	0.01	NONE	12	11	14	9.6	9
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.2	2.5	4.3	2.7	0.9

Lab Sample Number				2585591	2585592	2585593	2585594	2585595
Sample Reference				HP331	HP331	HP331	HP332	HP332
Sample Number					None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	25	< 0.1
Moisture Content	%	0.01	NONE	13	12	11	10	13
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.3	2.3	1.9	2.2	2.6

Lab Sample Number	·	·		2585596	2585597	2585598	2585599	2585600
Sample Reference				HP332	HP333	HP333	HP333	HP334
Sample Number	•				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Pate Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	13	11	9.6	9.9
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	1.6	3.7	3	2.1	3.2

Lab Sample Number				2585601	2585602	2585603	2585604	2585605
Sample Reference				HP334	HP334	HP335	HP335	HP335
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	8.3	11	12	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.7	2.1	3	3.1	2.3

Lab Sample Number				2585606	2585607	2585608	2585609	2585610
Sample Reference				HP336	HP336	HP336	HP337	HP337
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	11	12	13	12
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.1	2.8	1.2	3.7	2.8

Lab Sample Number				2585611	2585612	2585613	2585614	2585615
Sample Reference				HP337	HP338	HP338	HP338	HP339
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	33	29	24	21
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.4	7.2	5.8	4	4.8

Lab Sample Number				2585616	2585617	2585618	2585619	2585620
Sample Reference				HP339	HP339	HP340	HP340	HP340
Sample Number	•				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Pate Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	16	14	14	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3.1	2.7	3.1	2.9	1.9

Lab Sample Number				2585621	2585622	2585623	2585624	2585625
Sample Reference				HP341	HP341	HP341	HP342	HP342
Sample Number				None Supplied				
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled		06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	13	11	17	17
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.6	2.4	1.2	3.2	3.4

Lab Sample Number				2585626	2585627	2585628	2585629	2585630
Sample Reference				HP342	HP343	HP343	HP343	HP344
Sample Number				None Supplied				
Depth (m)				0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled	06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	15	15	14	12
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	1.9	2.8	2.6	1.7	4.2

Lab Sample Number				2585631	2585632	2585633	2585634	2585635
Sample Reference				HP344	HP344	HP345	HP345	HP345
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled		06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	11	10	9	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	4.5	3	2.9	1.3	3.1

Lab Sample Number				2585636	2585637	2585638	2585639	2585640
Sample Reference				HP346	HP346	HP346	HP347	HP347
Sample Number	•				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	29	11	16	12
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	3	3	2.5	5.3	3.4

Lab Sample Number				2585641	2585642	2585643	2585644	2585645
Sample Reference				HP347	HP348	HP348	HP348	HP349
Sample Number				None Supplied				
Depth (m)					0.00-0.10	0.10-0.20	0.20-0.30	0.00-0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	9.9	13	9.4	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2.6	2.7	3.2	2.1	2.6

Lab Sample Number				2585646	2585647	2585648	2585649	2585650
Sample Reference				HP349	HP349	HP350	HP350	HP350
Sample Number				None Supplied				
Depth (m)				0.10-0.20	0.20-0.30	0.00-0.10	0.10-0.20	0.20-0.30
Date Sampled				06/02/2023	06/02/2023	06/02/2023	06/02/2023	06/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.6	11	9.9	10	9.1
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

Organic Matter (automated)	%	0.1	MCERTS	2	2.1	2	2	1.7

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2585501	HP301	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585502	HP301	None Supplied	0.10-0.20	Brown clay and loam with gravel and vegetation.
2585503	HP301	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585504	HP302	None Supplied	0.00-0.10	Brown clay and loam with gravel and vegetation.
2585505	HP302	None Supplied	0.10-0.20	Brown clay and loam with gravel and vegetation.
2585506	HP302	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585507	HP303	None Supplied	0.00-0.10	Brown clay and loam with vegetation.
2585508	HP303	None Supplied	0.10-0.20	Brown clay and sand with vegetation and gravel
2585509	HP303	None Supplied	0.20-0.30	Brown clay and sand with vegetation and gravel
2585510	HP304	None Supplied	0.00-0.10	Brown clay and sand with vegetation and gravel
2585511	HP304	None Supplied	0.10-0.20	Brown clay and sand with vegetation and gravel
2585512	HP304	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585513	HP305	None Supplied	0.00-0.10	Brown clay and sand with vegetation and gravel
2585514	HP305	None Supplied	0.10-0.20	Brown clay and loam with vegetation and gravel
2585515	HP305	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585516	HP306	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585517	HP306	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585518	HP306	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585519	HP307	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585520	HP307	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585521	HP307	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585522	HP308	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585523	HP308	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585524	HP308	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585525	HP309	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585526	HP309	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585527	HP309	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585528	HP310	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585529	HP310	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585530	HP310	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585531	HP311	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585532	HP311	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585533	HP311	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585534	HP312	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585535	HP312	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585536	HP312	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585537	HP313	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585538	HP313	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585539	HP313	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585540	HP314	None Supplied	0.00-0.10	Brown clay and sand with vegetation.
2585541	HP314	None Supplied	0.10-0.20	Brown clay and sand with vegetation.
2585542	HP314	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585543	HP315	None Supplied	0.00-0.10	Brown clay and sand with vegetation.
2585544	HP315	None Supplied	0.10-0.20	Brown clay and sand with vegetation.
2585545	HP315	None Supplied	0.20-0.30	Brown clay and sand.
2585546	HP316	None Supplied	0.00-0.10	Brown clay and sand with gravel and vegetation.
2585547	HP316	None Supplied	0.10-0.20	Brown clay and sand with vegetation.
2585548	HP316	None Supplied	0.20-0.30	Brown clay and sand.
2585549	HP317	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585550	HP317	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585551	HP317	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585552	HP318	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585553	HP318	None Supplied	0.10-0.20	Brown sandy clay with vegetation.
2585554	HP318	None Supplied	0.20-0.30	Brown sandy clay with vegetation.
2585555	HP319	None Supplied	0.00-0.10	Brown loam and sand with vegetation and gravel.
2585556	HP319	None Supplied	0.10-0.20	Brown loam and sand with vegetation and gravel.
2585557	HP319	None Supplied	0.20-0.30	Brown loam and sand with vegetation and gravel.
2585558	HP320	None Supplied	0.00-0.10	Brown loam and sand with vegetation.
2585559	HP320	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	. sample to dut			ones not passing a 10 mm sieve. Results are not corrected for stone content.
Lab Sample	Sample	Sample		
Number	Reference	Number	Depth (m)	Sample Description *
2585560	HP320	None Supplied	0.20-0.30	Brown sandy clay with gravel and vegetation.
2585561	HP321	None Supplied	0.00-0.10	Brown sandy clay with gravel and vegetation.
2585562	HP321	None Supplied	0.10-0.20	Brown sandy clay with gravel and vegetation.
2585563	HP321	None Supplied	0.20-0.30	Brown sandy clay with gravel and vegetation.
2585564	HP322	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585565	HP322	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585566 2585567	HP322 HP323	None Supplied None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation. Brown loam and sand with gravel and vegetation.
2585568	HP323	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585569	HP323	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585570	HP324	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585571	HP324	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585572	HP324	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585573	HP325	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585574	HP325	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585575	HP325	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585576	HP326	None Supplied	0.00-0.10	Brown clay and sand with gravel and vegetation.
2585577	HP326	None Supplied	0.10-0.20	Brown clay and sand with gravel and vegetation.
2585578	HP326	None Supplied	0.20-0.30	Light brown clay and sand with gravel.
2585579	HP327	None Supplied	0.00-0.10	Brown clay and sand with gravel and vegetation.
2585580	HP327	None Supplied	0.10-0.20	Brown clay and sand with gravel and vegetation.
2585581	HP327	None Supplied	0.20-0.30	Brown clay and sand with gravel and vegetation.
2585582	HP328	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585583	HP328	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585584	HP328	None Supplied	0.20-0.30	Brown loam and sand with gravel.
2585585 2585586	HP329	None Supplied	0.00-0.10	Brown sandy loam with gravel and vegetation.
2585587	HP329 HP329	None Supplied None Supplied	0.10-0.20 0.20-0.30	Brown sandy loam with gravel and vegetation. Brown sandy loam with gravel and vegetation.
2585588	HP330	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585589	HP330	None Supplied	0.10-0.20	Brown loam and sand with vegetation and stones.
2585590	HP330	None Supplied	0.20-0.30	Brown sandy clay with gravel and vegetation.
2585591	HP331	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585592	HP331	None Supplied	0.10-0.20	Brown loam and sand with gravel.
2585593	HP331	None Supplied	0.20-0.30	Brown loam and sand with gravel.
2585594	HP332	None Supplied	0.00-0.10	Brown sandy clay with gravel and stones.
2585595	HP332	None Supplied	0.10-0.20	Brown sandy clay with gravel and vegetation.
2585596	HP332	None Supplied	0.20-0.30	Brown sandy clay with gravel and vegetation.
2585597	HP333	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585598	HP333	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585599	HP333	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585600	HP334	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585601	HP334	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585602	HP334	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585603	HP335	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585604	HP335	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585605	HP335	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585606	HP336	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585607	HP336	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation. Brown clay and sand with gravel and vegetation.
2585608 2585609	HP336 HP337	None Supplied None Supplied	0.20-0.30 0.00-0.10	
2585610	HP337	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation. Brown loam and sand with gravel and vegetation.
2585611	HP337	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation. Brown loam and sand with gravel and vegetation.
2585612	HP338	None Supplied	0.20-0.30	Brown loam with gravel and vegetation.
2585613	HP338	None Supplied	0.10-0.20	Brown loam with gravel and vegetation.
2585614	HP338	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585615	HP339	None Supplied	0.00-0.10	Brown clay and loam with vegetation.
2585616	HP339	None Supplied	0.10-0.20	Brown clay and loam with vegetation.
2585617	HP339	None Supplied	0.20-0.30	Brown clay and loam with vegetation.
2585618	HP340	None Supplied	0.00-0.10	Brown clay and sand with vegetation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2585619	HP340	None Supplied	0.10-0.20	Brown clay and sand with vegetation.
2585620	HP340	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585621	HP341	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585622	HP341	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585623	HP341	None Supplied	0.20-0.30	Brown clay and sand with vegetation.
2585624	HP342	None Supplied	0.00-0.10	Brown loam and sand with vegetation.
2585625	HP342	None Supplied	0.10-0.20	Brown clay and sand with vegetation.
2585626	HP342	None Supplied	0.20-0.30	Light brown clay and sand.
2585627	HP343	None Supplied	0.00-0.10	Brown sandy clay with vegetation.
2585628	HP343	None Supplied	0.10-0.20	Brown sandy clay with vegetation.
2585629	HP343	None Supplied	0.20-0.30	Light brown clay and sand.
2585630	HP344	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585631	HP344	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585632	HP344	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585633	HP345	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585634	HP345	None Supplied	0.10-0.20	Brown sandy clay with gravel and vegetation.
2585635	HP345	None Supplied	0.20-0.30	Brown sandy clay with gravel and vegetation.
2585636	HP346	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585637	HP346	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585638	HP346	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585639	HP347	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585640	HP347	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585641	HP347	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585642	HP348	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585643	HP348	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585644	HP348	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585645	HP349	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585646	HP349	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585647	HP349	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.
2585648	HP350	None Supplied	0.00-0.10	Brown loam and sand with gravel and vegetation.
2585649	HP350	None Supplied	0.10-0.20	Brown loam and sand with gravel and vegetation.
2585650	HP350	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

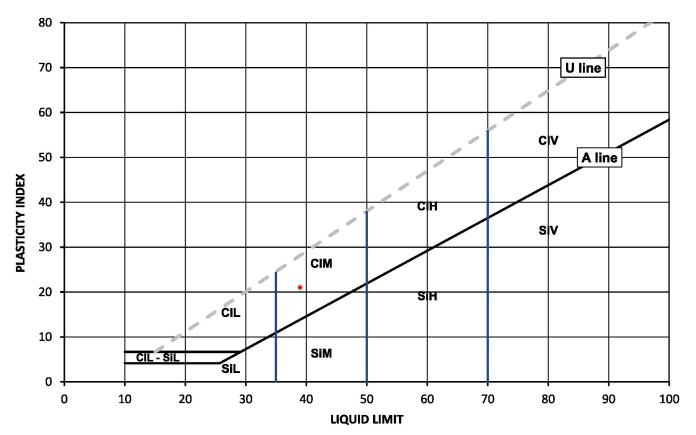
Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 02/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given

Testing carried out at 12 Arialytical Elithead, dl. Pionierow 39, 41-171 Nuda Glaska, Folank


Test Results:

Laboratory Reference:2592788Depth Top [m]: 0.40Hole No.:TP315Depth Base [m]: 0.70Sample Reference:Not GivenSample Type: B

Sample Description: Yellowish brown sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
21	39	18	21	76

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

of 1 Date Reported: 15/03/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 02/02/2023

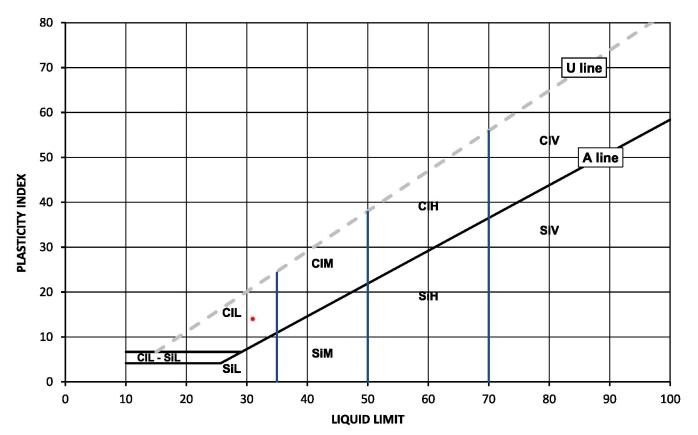
Date Received: 17/02/2023 Date Tested: 27/02/2023

Sampled By: Not Given

Depth Top [m]: 0.30

Depth Base [m]: 0.50

Sample Type: B


Test Results:

Laboratory Reference: 2592790
Hole No.: TP316
Sample Reference: Not Given

Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
21	31	17	14	74

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/03/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

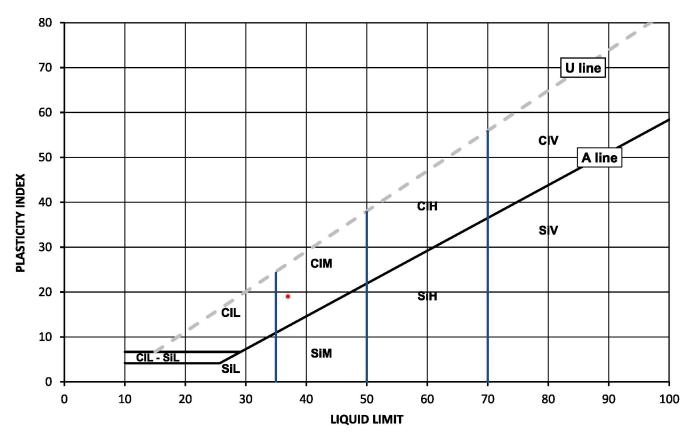
Site Address: **Begbroke**

Client Reference: 19114 Job Number: 23-18737-1

Date Sampled: 02/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592792 Depth Top [m]: 0.30 **TP317** Depth Base [m]: 0.50 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Greyish brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
20	37	18	19	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 15/03/2023

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address:

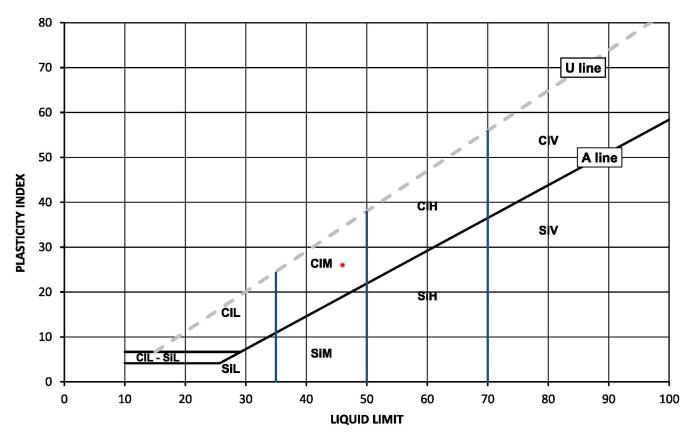
Contact: Nathan Thompson

Site Address: **Begbroke**

Job Number: 23-18737-1 2-4 Hawthorne Park, Holdenby Road, Date Sampled: 31/01/2023 Spratton, Northamptonshire, NN6 8LD

Date Received: 17/02/2023 Date Tested: 28/02/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592794 Depth Top [m]: 4.00 RO305 Depth Base [m]: 4.50 Hole No.: Sample Reference: Not Given Sample Type: U

Sample Description: Brown very gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
15	46	20	26	31

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 31/01/2023

Date Received: 17/02/2023

Date Tested: 24/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

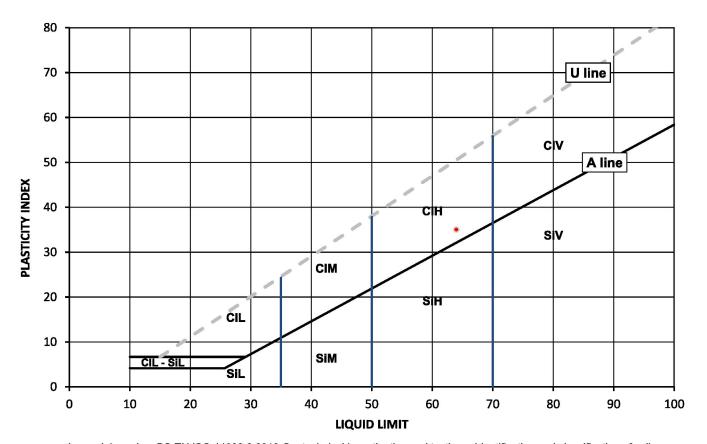
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Nathan Thompson Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592796Depth Top [m]: 6.20Hole No.:RO305Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brownish grey CLAY

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
27	64	29	35	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 31/01/2023

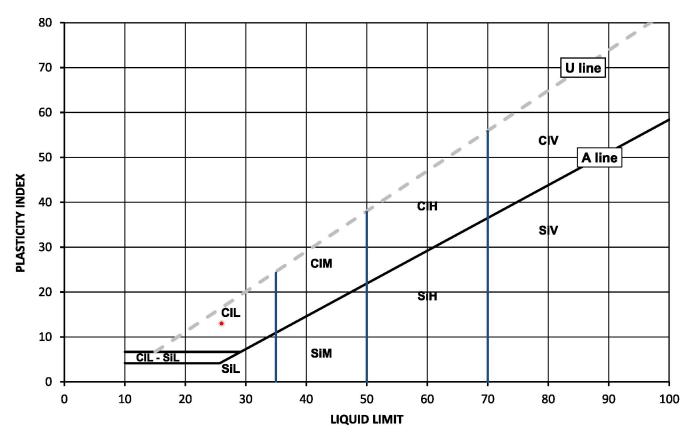
Date Received: 17/02/2023 Date Tested: 24/02/2023

Sampled By: Not Given

Depth Top [m]: 11.60

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2592798 RO305 Hole No.: Sample Reference: Not Given

Sample Description: Grey slightly gravelly very sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
24	26	13	13	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Tested: 24/02/2023

Sampled By: Not Given

Date Sampled: 31/01/2023

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

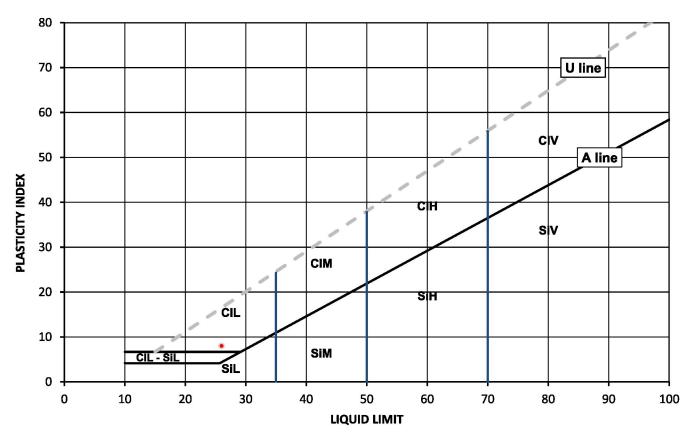
NN6 8LD

Contact:

Site Address: **Begbroke**

Date Received: 17/02/2023 Nathan Thompson

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592799 Depth Top [m]: 12.70 RO305 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Grey very sandy CLAY

Tested in natural condition Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	26	18	8	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Depth Top [m]: 16.50

Sample Type: D

Depth Base [m]: Not Given

Job Number: 23-18737-1

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

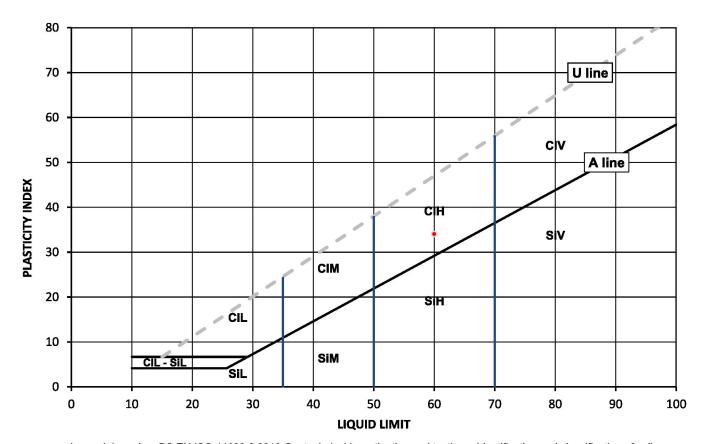
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Date Sampled: 31/01/2023 Spratton, Northamptonshire, Date Received: 17/02/2023 Date Tested: 24/02/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592800 RO305 Hole No.: Not Given Sample Reference:

Sample Description: **Grey CLAY**

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
25	60	26	34	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

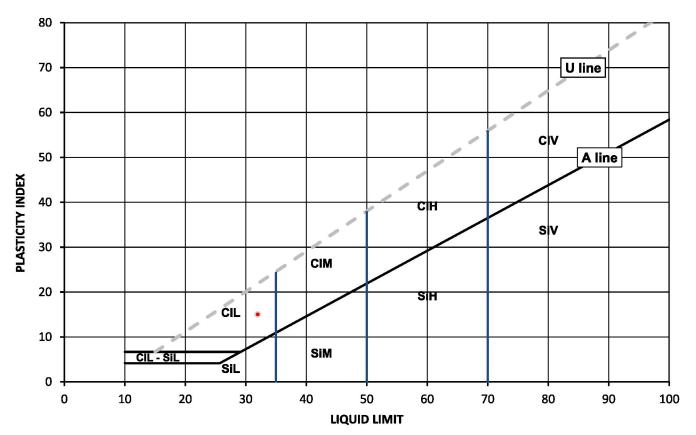
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Date Sampled: 31/01/2023 Spratton, Northamptonshire, Date Received: 17/02/2023 Date Tested: 27/02/2023

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592801 Depth Top [m]: 0.80 **TP302** Depth Base [m]: 1.00 Hole No.: Not Given Sample Reference: Sample Type: B

Sample Description: **Brown clayey SAND**

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
18	32	17	15	69

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address:

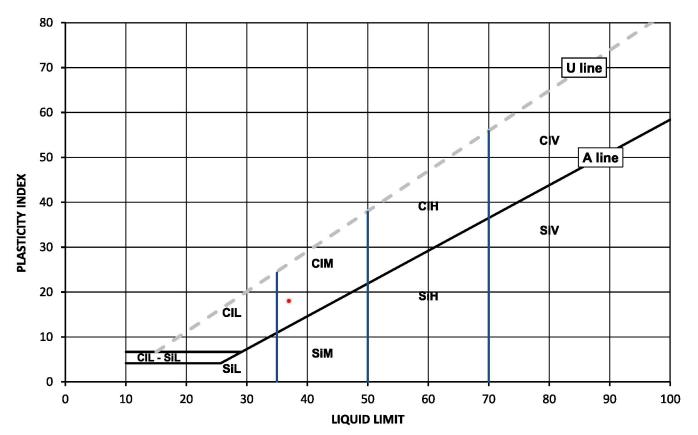
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Job Number: 23-18737-1 2-4 Hawthorne Park, Holdenby Road, Date Sampled: 02/02/2023 Spratton, Northamptonshire, Date Received: 17/02/2023 Date Tested: 27/02/2023

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592802 Depth Top [m]: 0.30 **TP303** Depth Base [m]: 0.60 Hole No.: Not Given Sample Reference: Sample Type: B

Sample Description: **Brown sandy CLAY**

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
22	37	19	18	84

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

GF 236.12

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 31/01/2023

Date Received: 17/02/2023

Date Tested: 27/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

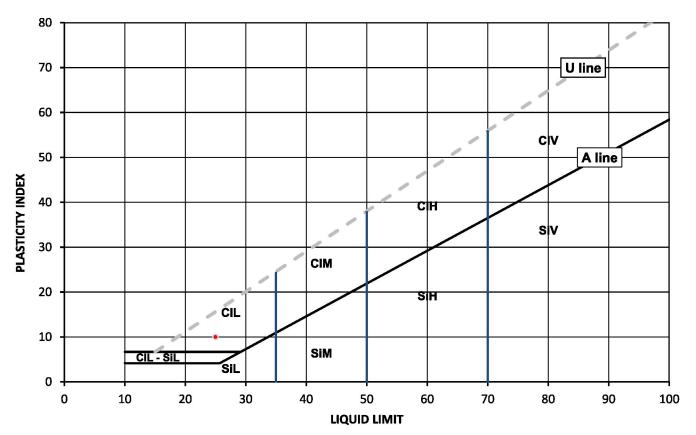
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Natnan I nompson Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592804Depth Top [m]: 0.60Hole No.:TP304Depth Base [m]: 0.80Sample Reference:Not GivenSample Type: B

Sample Description: Brown slightly gravelly clayey SAND

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	25	15	10	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 02/02/2023

Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given

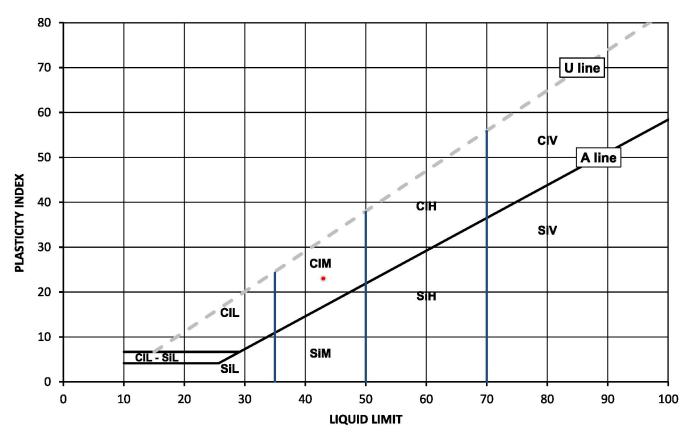
Depth Top [m]: 0.60

Depth Base [m]: 0.80

Sample Type: B

Test Results:

Sample Description:


Laboratory Reference: 2592807
Hole No.: TP306
Sample Reference: Not Given

Yellowish brown slightly gravelly sandy CLAY

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
20	43	20	23	79

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

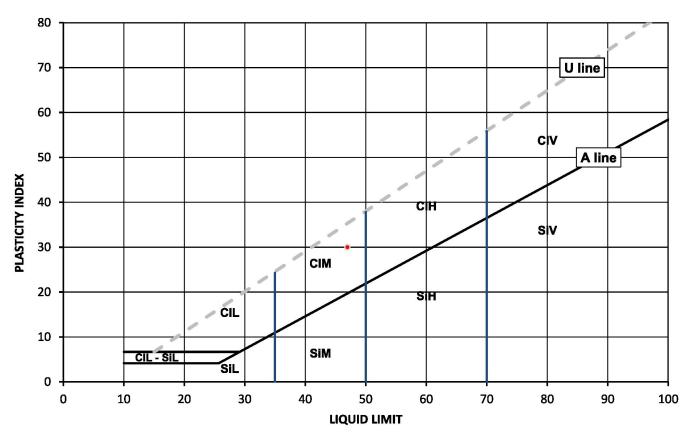
Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 23-18737-1 Date Sampled: 06/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023 Sampled By: Not Given


Test Results:

Laboratory Reference: 2592808 Depth Top [m]: 0.30 **TP307** Depth Base [m]: 0.50 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Greyish brown sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
28	47	17	30	94

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

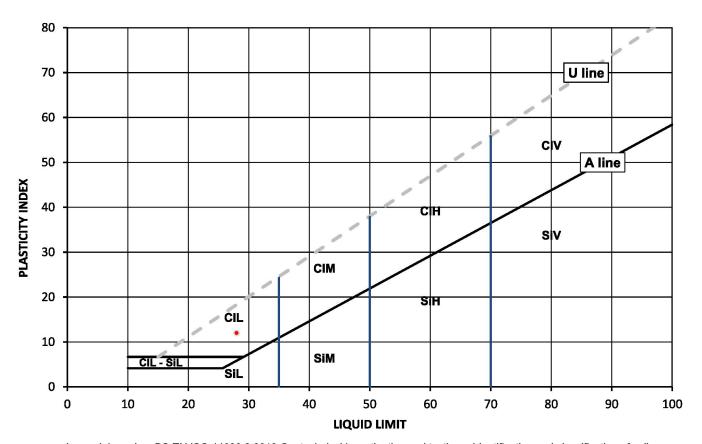
Site Address: Begbroke

Begbroke

Job Number: 23-18737-1 Date Sampled: 06/02/2023 Date Received: 17/02/2023 Date Tested: 27/02/2023

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592810Depth Top [m]: 2.20Hole No.:TP307Depth Base [m]: 2.40Sample Reference:Not GivenSample Type: B

Sample Description: Greyish gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
14	28	16	12	62

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

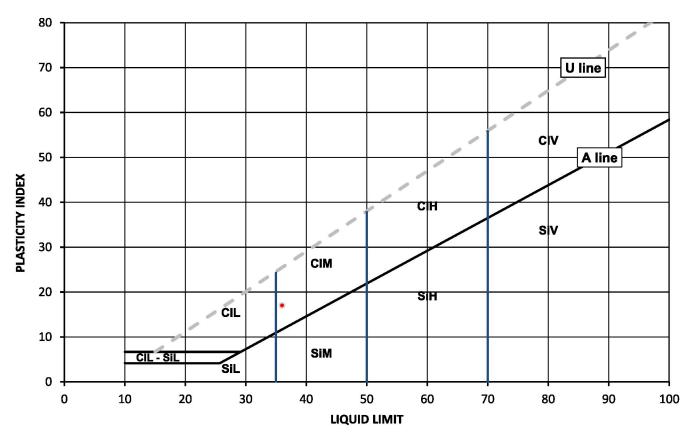
Site Address: Begbroke

Job Number: 23-18737-1 Date Sampled: 06/02/2023 Date Received: 17/02/2023 Date Tested: 27/02/2023

Client Reference: 19114

Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592811Depth Top [m]: 1.30Hole No.:TP308Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: B

Sample Description: Greyish brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	36	19	17	83

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

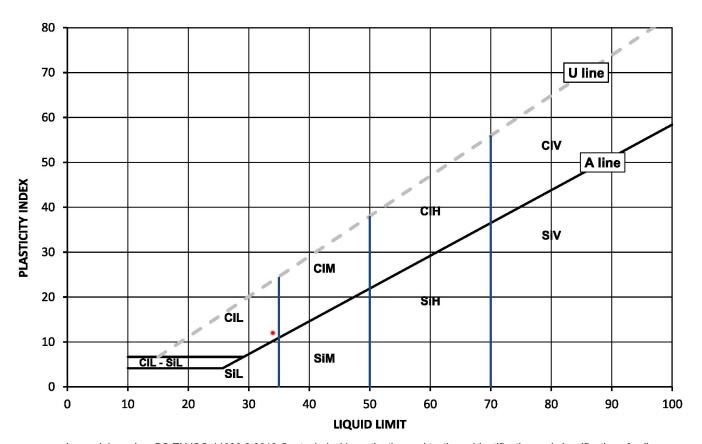
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Date Sampled: 06/02/2023 Spratton, Northamptonshire, Date Received: 17/02/2023 Date Tested: 27/02/2023

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592813 Depth Top [m]: 1.90 **TP309** Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Greyish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
17	34	22	12	86

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Date Reported: 15/03/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

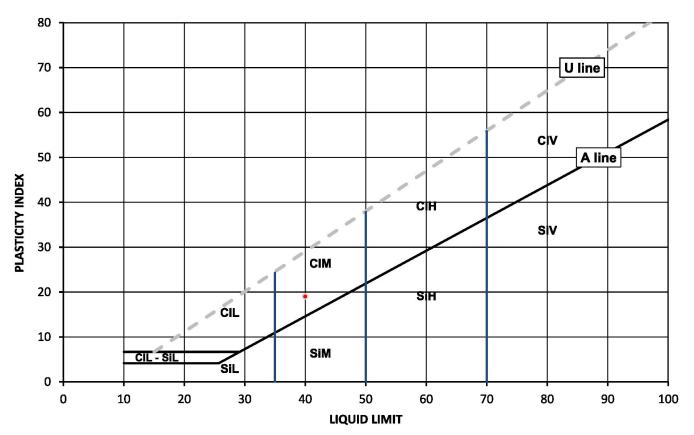
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Date Sampled: 06/02/2023 Date Received: 17/02/2023 Date Tested: 27/02/2023

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592814 Depth Top [m]: 0.30 **TP312** Depth Base [m]: 0.60 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
24	40	21	19	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Date Reported: 15/03/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 06/02/2023

Date Received: 17/02/2023

Date Tested: 27/02/2023

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

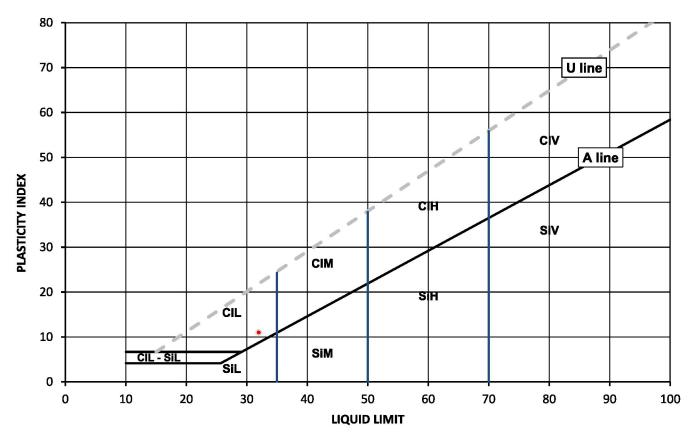
Laboratory Reference: 2592816

Test Results:

Hole No.:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Depth Top [m]: 2.00


Depth Base [m]: 2.50 Sample Reference: Not Given Sample Type: B

Sample Description: Greyish brown very sandy CLAY

TP312

Tested in natural condition Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
24	32	21	11	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 15/03/2023**

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 07/02/2023

Date Received: 17/02/2023

Date Tested: 24/02/2023

Sampled By: Not Given

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

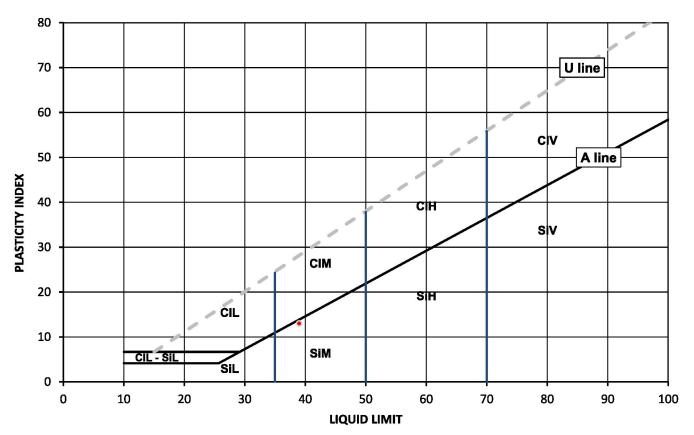
NN6 8LD

Contact:

Site Address:

Nathan Thompson

Begbroke Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference: 2592818 Depth Top [m]: 8.00 RO301 Depth Base [m]: 8.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Grey slightly gravelly sandy silty CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
23	39	26	13	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

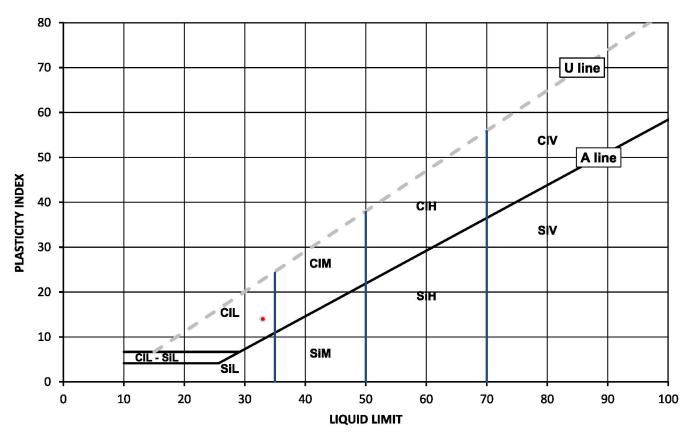
Begbroke

Client Reference: 19114 Job Number: 23-18737-1

Date Sampled: 03/02/2023 Date Received: 17/02/2023

Date Tested: 24/02/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592821Depth Top [m]: 10.00Hole No.:RO302Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Grey very sandy CLAY

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
14	33	19	14	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Begbroke

Job Number: 23-18737-1 Date Sampled: 26/01/2023

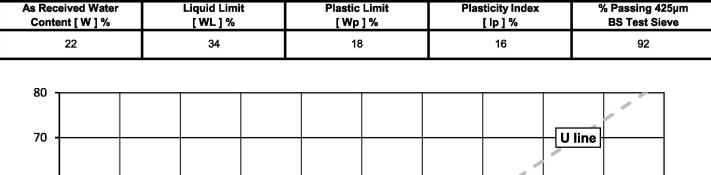
Client Reference: 19114

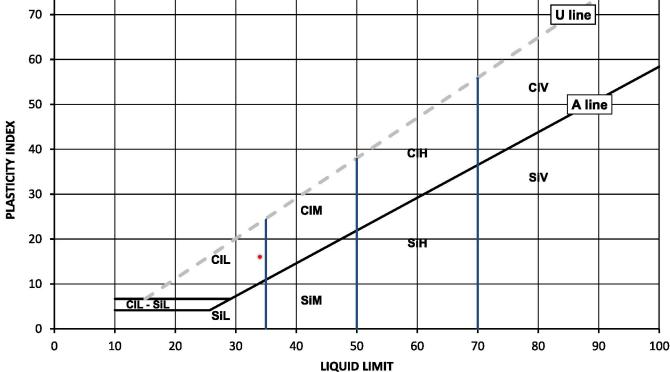
Depth Top [m]: 1.50

Date Received: 17/02/2023

Date Tested: 24/02/2023

Sampled By: Not Given


Test Results:


Laboratory Reference: 2592822
Hole No.: RO304
Sample Reference: Not Given

Sample Description: Brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after >425um removed by hand

Depth Base [m]:	Not Given
Sample Type:	D

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

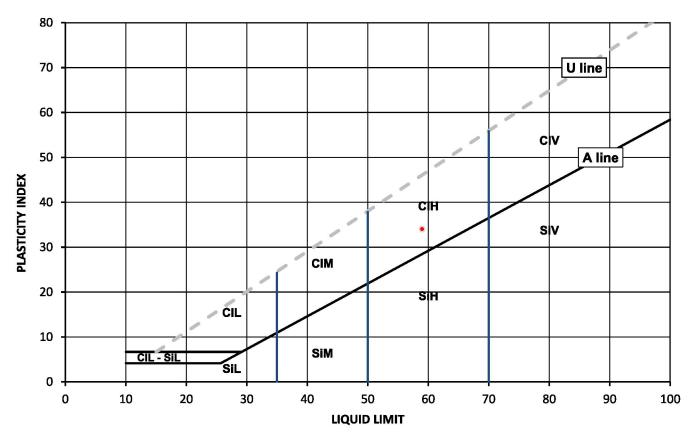
Begbroke

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 26/01/2023

Date Received: 17/02/2023 Date Tested: 24/02/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:2592824Depth Top [m]: 5.00Hole No.:RO304Depth Base [m]: 5.45Sample Reference:Not GivenSample Type: D

Sample Description: Brownish grey slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
28	59	25	34	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Received: 17/02/2023

Sampled By: Not Given

Date Sampled: 31/01 - 07/02/2023

Date Tested: 24/02 - 28/02/2023

4041

Client: Hydrock Consultants Ltd Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

Client Address: 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address:

Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

- Test results																		
			Sample	9				ntent [w]	ontent 17892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	82	$0 \circ 3$	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2592788	TP315	Not Given	0.40	0.70	В	Yellowish brown sandy CLAY	Atterberg 4 Point	21		76	39	18	21					
2592789	TP315	Not Given	1.00	1.40	В	Greyish brown gravelly SAND		13										
2592790	TP316	Not Given	0.30	0.50	В	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	21		74	31	17	14					
2592791	TP316	Not Given	1.00	1.40	В	Greyish brown sandy GRAVEL		13										
2592792	TP317	Not Given	0.30	0.50	В	Greyish brown slightly gravelly sandy CLAY	Atterberg 4 Point	20		97	37	18	19					
2592793	RO301	Not Given	1.00	1.50	U	Yellowish brown very gravelly SAND		12										
2592794	RO305	Not Given	4.00	4.50	U	Brown very gravelly slightly sandy CLAY	Atterberg 4 Point	15		31	46	20	26					
2592795	RO305	Not Given	5.00	Not Given	D	Grey CLAY		26			·	·					·	
2592796	RO305	Not Given	6.20	Not Given	D	Brownish grey CLAY	Atterberg 4 Point	27		100	64	29	35				·	
2592797	RO305	Not Given	8.70	Not Given	D	Grey CLAY		24										

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

GF 238.15

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

4041

Client Address:

Client: Hydrock Consultants Ltd Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990:

Date Sampled: 31/01 - 02/02/2023 Date Received: 17/02/2023

Date Tested: 24/02 - 27/02/2023

Sampled By: Not Given

Job Number: 23-18737-1

Test results

			Sample	•				ntent [w]	tent 892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	82	Water Content BS EN ISO 17892- [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2592798	RO305	Not Given	11.60	Not Given	D	Grey slightly gravelly very sandy CLAY	Atterberg 4 Point	24		97	26	13	13					
2592799	RO305	Not Given	12.70	Not Given	D	Grey very sandy CLAY	Atterberg 4 Point	20		100	26	18	8					
2592800	RO305	Not Given	16.50	Not Given	D	Grey CLAY	Atterberg 4 Point	25		100	60	26	34					
2592801	TP302	Not Given	0.80	1.00	В	Brown clayey SAND	Atterberg 4 Point	18		69	32	17	15					
2592802	TP303	Not Given	0.30	0.60	В	Brown sandy CLAY	Atterberg 4 Point	22		84	37	19	18					
2592803	TP303	Not Given	0.80	1.20	В	Brown gravelly SAND		7.6										
2592804	TP304	Not Given	0.60	0.80	В	Brown slightly gravelly clayey SAND	Atterberg 4 Point	18		97	25	15	10					
2592805	TP305	Not Given	0.40	0.60	В	Brown gravelly sandy CLAY		18									·	
2592806	TP305	Not Given	1.00	1.40	В	Yellowish brown gravelly SAND		13										
2592807	TP306	Not Given	0.60	0.80	В	Yellowish brown slightly gravelly sandy CLAY	Atterberg 4 Point	20		79	43	20	23					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

> Page 1 of 1 **Date Reported: 15/03/2023**

GF 238.15

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

.

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 06/02 - 07/02/2023

Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given

Test results

			Sample					tent W]	tent '892-2		Atte	rberg			Density		**	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water Content BS EN ISO 17892- [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2592808	TP307	Not Given	0.30	0.50	В	Greyish brown sandy CLAY	Atterberg 4 Point	28		94	47	17	30					
2592809	TP307	Not Given	1.20	1.50	В	Yellowish brown very gravelly SAND		13										
2592810	TP307	Not Given	2.20	2.40	В	Greyish gravelly sandy CLAY	Atterberg 4 Point	14		62	28	16	12					
2592811	TP308	Not Given	1.30	1.70	В	Greyish brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		83	36	19	17					
2592812	TP309	Not Given	0.60	0.70	В	Yellowish brown gravelly SAND		12										
2592813	TP309	Not Given	1.90	2.00	В	Greyish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	17		86	34	22	12					
2592814	TP312	Not Given	0.30	0.60	В	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	24		97	40	21	19					
2592815	TP312	Not Given	1.00	1.40	В	Brown very sandy GRAVEL		11										
2592816	TP312	Not Given	2.00	2.50	В	Greyish brown very sandy CLAY	Atterberg 4 Point	24		100	32	21	11					
2592817	RO301	Not Given	4.00	4.50	U	Greyish brown slightly gravelly slightly silty CLAY		25				·						

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

GF 238.15

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

Job Number: 23-18737-1 Date Sampled: 26/01 - 16/02/2023

Client Reference: 19114

Date Received: 17/02/2023 Date Tested: 24/02/2023

Sampled By: Not Given

Test results

			Sample	•				tent W]	tent 892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water BS EN IS	Passing 425um	WL	Wp	lp n/	bulk	dry	PD	Total Porosity#	
2592818	RO301	Not Given	8.00	m 8.00	D	Grey slightly gravelly sandy silty CLAY	Atterberg 4 Point	% 23	%	% 99	39	% 26	% 13	Mg/m3	Mg/m3	Mg/m3	%	
2002010	110001	140t Given	0.00	0.00		Oldy Slightly gravelly sairty Sity OEAT	Atterberg 41 oint	25		33	39	20	13					
2592819	RO301	Not Given	11.90	Not Given	D	Grey CLAY		19										
2592820	RO302	Not Given	3.90	Not Given	D	Dark brown very gravelly CLAY		18										
2592821	RO302	Not Given	10.00	Not Given	D	Grey very sandy CLAY	Atterberg 4 Point	14		100	33	19	14					
2592822	RO304	Not Given	1.50	Not Given	D	Brown slightly gravelly very sandy CLAY	Atterberg 4 Point	22		92	34	18	16					
2592823	RO304	Not Given	4.00	4.45	D	Grey CLAY		27										
2592824	RO304	Not Given	5.00	5.45	D	Brownish grey slightly gravelly slightly sandy CLAY	Atterberg 4 Point	28		99	59	25	34					
2592825	RO301	Not Given	5.00	5.13	С	Grey LIMESTONE		2.7										

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 31/01 - 07/02/2023

Date Received: 17/02/2023

Date Tested: 24/02 - 28/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	•							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Type	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2592788	TP315	Not Given	0.40	0.70	В	Yellowish brown sandy CLAY		21	Sample was quartered, oven dried at 106.1 °C		
2592789	TP315	Not Given	1.00	1.40	В	Greyish brown gravelly SAND		13	Sample was quartered, oven dried at 109 °C		
2592790	TP316	Not Given	0.30	0.50	В	Yellowish brown slightly gravelly very sandy CLAY		21	Sample was quartered, oven dried at 106 °C		
2592791	TP316	Not Given	1.00	1.40	В	Greyish brown sandy GRAVEL		13	Sample was quartered, oven dried at 109 °C		
2592792	TP317	Not Given	0.30	0.50	В	Greyish brown slightly gravelly sandy CLAY		20	Sample was quartered, oven dried at 106.1 °C		
2592793	RO301	Not Given	1.00	1.50	U	Yellowish brown very gravelly SAND		12	Sample was quartered, oven dried at 106.1 °C		
2592794	RO305	Not Given	4.00	4.50	U	Brown very gravelly slightly sandy CLAY		15	Sample was quartered, oven dried at 106.1 °C		
2592795	RO305	Not Given	5.00	Not Given	D	Grey CLAY		26	Sample was quartered, oven dried at 108.6 °C		
2592796	RO305	Not Given	6.20	Not Given	D	Brownish grey CLAY		27	Sample was quartered, oven dried at 108.6 °C		
2592797	RO305	Not Given	8.70	Not Given	D	Grey CLAY		24	Sample was quartered, oven dried at 108.6 °C		

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 31/01 - 02/02/2023

Date Received: 17/02/2023

Date Tested: 24/02 - 27/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2592798	RO305	Not Given	11.60	Not Given	D	Grey slightly gravelly very sandy CLAY		24	Sample was quartered, oven dried at 108.6 °C		
2592799	RO305	Not Given	12.70	Not Given	D	Grey very sandy CLAY		20	Sample was quartered, oven dried at 108.6 °C		
2592800	RO305	Not Given	16.50	Not Given	D	Grey CLAY		25	Sample was quartered, oven dried at 108.6 °C		
2592801	TP302	Not Given	0.80	1.00	В	Brown clayey SAND		18	Sample was quartered, oven dried at 106 °C		
2592802	TP303	Not Given	0.30	0.60	В	Brown sandy CLAY		22	Sample was quartered, oven dried at 106 °C		
2592803	TP303	Not Given	0.80	1.20	В	Brown gravelly SAND		7.6	Sample was quartered, oven dried at 109 °C		
2592804	TP304	Not Given	0.60	0.80	В	Brown slightly gravelly clayey SAND		18	Sample was quartered, oven dried at 106 °C		
2592805	TP305	Not Given	0.40	0.60	В	Brown gravelly sandy CLAY		18	Sample was quartered, oven dried at 106.1 °C		
2592806	TP305	Not Given	1.00	1.40	В	Yellowish brown gravelly SAND		13	Sample was quartered, oven dried at 106.8 °C		
2592807	TP306	Not Given	0.60	0.80	В	Yellowish brown slightly gravelly sandy CLAY		20	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Reporting Specialist for and on behalf of i2 Analytical Ltd

Katarzyna Koziel

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported**: 15/03/2023

GF 099.16

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 06/02 - 07/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	1							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2592808	TP307	Not Given	0.30	0.50	В	Greyish brown sandy CLAY		28	Sample was quartered, oven dried at 106 °C		
2592809	TP307	Not Given	1.20	1.50	В	Yellowish brown very gravelly SAND		13	Sample was quartered, oven dried at 109 °C		
2592810	TP307	Not Given	2.20	2.40	В	Greyish gravelly sandy CLAY		14	Sample was quartered, oven dried at 106 °C		
2592811	TP308	Not Given	1.30	1.70	В	Greyish brown slightly gravelly sandy CLAY		18	Sample was quartered, oven dried at 106 °C		
2592812	TP309	Not Given	0.60	0.70	В	Yellowish brown gravelly SAND		12	Sample was quartered, oven dried at 109 °C		
2592813	TP309	Not Given	1.90	2.00	В	Greyish brown slightly gravelly very sandy CLAY		17	Sample was quartered, oven dried at 109 °C		
2592814	TP312	Not Given	0.30	0.60	В	Brown slightly gravelly sandy CLAY		24	Sample was quartered, oven dried at 106 °C		
2592815	TP312	Not Given	1.00	1.40	В	Brown very sandy GRAVEL		11	Sample was quartered, oven dried at 108.7 °C		
2592816	TP312	Not Given	2.00	2.50	В	Greyish brown very sandy CLAY		24	Sample was quartered, oven dried at 109 °C		
2592817	RO301	Not Given	4.00	4.50	U	Greyish brown slightly gravelly slightly silty CLAY		25	Sample was quartered, oven dried at 106.1 °C		

Comments:

Signed:

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 26/01 - 16/02/2023

Date Received: 17/02/2023 Date Tested: 24/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2592818	RO301	Not Given	8.00	8.00	D	Grey slightly gravelly sandy silty CLAY		23	Sample was quartered, oven dried at 108.6 °C		
2592819	RO301	Not Given	11.90	Not Given	D	Grey CLAY		19	Sample was quartered, oven dried at 108.6 °C		
2592820	RO302	Not Given	3.90	Not Given	D	Dark brown very gravelly CLAY		18	Sample was quartered, oven dried at 108.6 °C		
2592821	RO302	Not Given	10.00	Not Given	D	Grey very sandy CLAY		14	Sample was quartered, oven dried at 108.6 °C		
2592822	RO304	Not Given	1.50	Not Given	D	Brown slightly gravelly very sandy CLAY		22	Sample was quartered, oven dried at 108.6 °C		
2592823	RO304	Not Given	4.00	4.45	D	Grey CLAY		27	Sample was quartered, oven dried at 108.6 °C		
2592824	RO304	Not Given	5.00	5.45	D	Brownish grey slightly gravelly slightly sandy CLAY		28	Sample was quartered, oven dried at 108.6 °C		
2592825	RO301	Not Given	5.00	5.13	С	Grey LIMESTONE		2.7	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

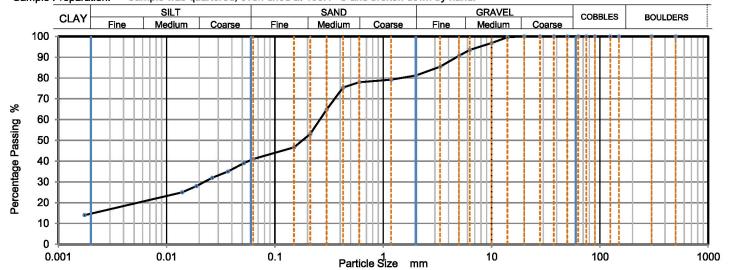
NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 23-18737-1 Date Sampled: 02/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592788Depth Top [m]: 0.40Hole No.:TP315Depth Base [m]: 0.70Sample Reference:Not GivenSample Type: B

Sample Description: Yellowish brown sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 106.1 °C and broken down by hand.

Sievi	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	41
300	100	0.0514	39
150	100	0.0368	35
125	100	0.0263	32
90	100	0.0188	28
75	100	0.0139	25
63	100	0.0017	14
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	97		
6.3	94		
5	91		
3.35	85	Particle density	(assumed)
2	81	2.65	Mg/m3
1.18	79		
0.6	78	1	
0.425	75	1	
0.3	65	1	
0.212	53	Ï	
0.15	47	7	
0.063	41	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	19
Sand	41
Silt	25
Clay	15

Grading Analysis	S	
D100	mm	20
D60	mm	0.26
D30	mm	0.0224
D10	mm	
Uniformity Coefficient		> 150
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 15/03/2023 G

GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

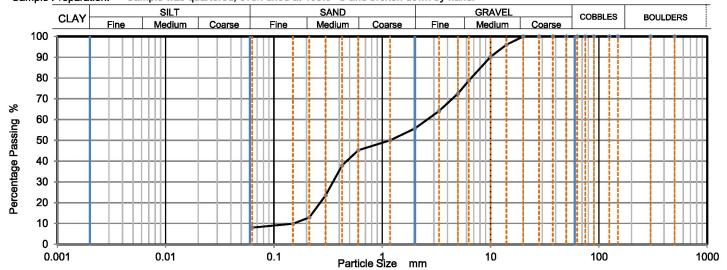
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 02/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592789Depth Top [m]: 1.00Hole No.:TP315Depth Base [m]: 1.40Sample Reference:Not GivenSample Type: B

Sample Description: Greyish brown gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	eving Sedimentati		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	96		
10	90		
6.3	79		
5	73		
3.35	64		
2	56		
1.18	50		
0.6	45]	
0.425	38	1	
0.3	24		
0.212	13		
0.15	10		
0.063	9	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	44
Sand	47
Fines <0.063mm	8

Grading Analysis	8	
D100	mm	20
D60	mm	2.61
D30	mm	0.351
D10	mm	0.152
Uniformity Coefficient		17
Curvature Coefficient		0.31

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

Date Reported: 15/03/2023

Page 1 of 1

for and on behalf of i2 Analytical Ltd

GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

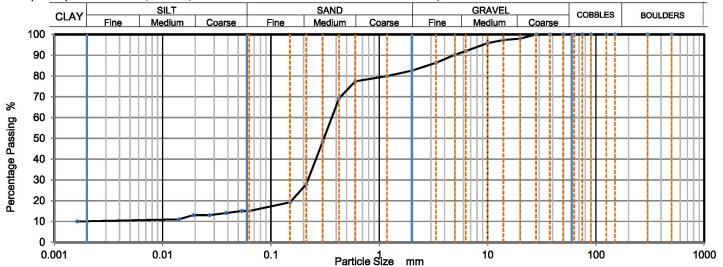
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 31/01/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592801Depth Top [m]: 0.80Hole No.:TP302Depth Base [m]: 1.00Sample Reference:Not GivenSample Type: B

Sample Description: Brown clayey SAND

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	15
300	100	0.0538	15
150	100	0.0382	14
125	100	0.0272	13
90	100	0.0192	13
75	100	0.0141	11
63	100	0.0016	10
50	100		
37.5	100		
28	100		
20	98		
14	97		
10	96		
6.3	92		
5	90		
3.35	86	Particle density	(assumed)
2	83	2.65	Mg/m3
1.18	80		
0.6	77	1	
0.425	69]	
0.3	48	1	
0.212	28		
0.15	19		
0.063	15	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	17
Sand	67
Silt	6
Clay	10

Grading Analysi	S	
D100	mm	28
D60	mm	0.364
D30	mm	0.22
D10	mm	0.00246
Uniformity Coefficient		150
Curvature Coefficient		54

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

testing.

ported: 15/03/2023 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

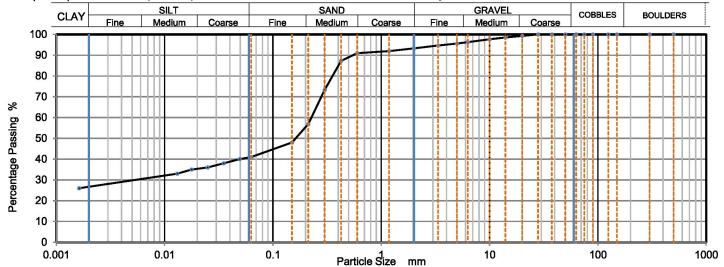
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 23-18737-1

Date Sampled: 02/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592802Depth Top [m]: 0.30Hole No.:TP303Depth Base [m]: 0.60Sample Reference:Not GivenSample Type: B

Sample Description: Brown sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	Sieving Sedimentation		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	41
300	100	0.0493	40
150	100	0.0351	38
125	100	0.0250	36
90	100	0.0178	35
75	100	0.0131	33
63	100	0.0016	26
50	100		
37.5	100		
28	100		
20	99		
14	99		
10	98		
6.3	96		
5	96		
3.35	95	Particle density	(assumed)
2	93	2.65	Mg/m3
1.18	92		
0.6	91	1	
0.425	87	1	
0.3	73	1	
0.212	57	Ĭ	
0.15	48	7	
0.063	41	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	7
Sand	52
Silt	14
Clay	27

Grading Analysis	i	
D100	mm	28
D60	mm	0.226
D30	mm	0.005
D10	mm	
Uniformity Coefficient		> 140
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Page 1 of 1

and on behan of 12 Analytical Ltu

GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

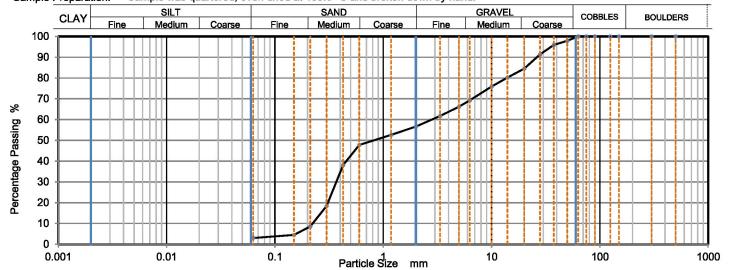
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 02/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592803Depth Top [m]: 0.80Hole No.:TP303Depth Base [m]: 1.20Sample Reference:Not GivenSample Type: B

Sample Description: Brown gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	/ing	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	98		
37.5	96		
28	91		
20	85		
14	80		
10	76		
6.3	69		
5	66		
3.35	62		
2	57	1	
1.18	53		
0.6	48	1	
0.425	38	1	
0.3	18	7	
0.212	9		
0.15	5	7	
0.063	4	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	43
Sand	53
Fines <0.063mm	4

Grading Analysis		
D100	mm	63
D60	mm	2.83
D30	mm	0.368
D10	mm	0.222
Uniformity Coefficient		13
Curvature Coefficient		0.22

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

for testing.

Page 1 of 1 Date Reported: 15/03/2023 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

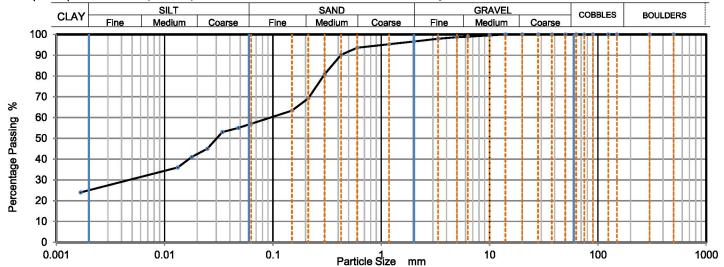
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 06/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592808Depth Top [m]: 0.30Hole No.:TP307Depth Base [m]: 0.50Sample Reference:Not GivenSample Type: B

Sample Description: Greyish brown sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100	0.0630	57	
300	100	0.0480	55	
150	100	0.0342	53	
125	100	0.0248	45	
90	100	0.0178	41	
75	100	0.0132	36	
63	100	0.0017	24	
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	99			
5	99			
3.35	98	Particle density	(assumed)	
2	97	2.65	Mg/m3	
1.18	95			
0.6	94	1		
0.425	90	1		
0.3	81	1		
0.212	69			
0.15	63	1		
0.063	57	1		

Sample Proportions	% dry mass
Very coarse	0
Gravel	3
Sand	39
Silt	33
Clay	25

Grading Analysi	S	
D100	mm	14
D60	mm	0.0931
D30	mm	0.00501
D10	mm	
Uniformity Coefficient		> 56
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/03/2023

GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

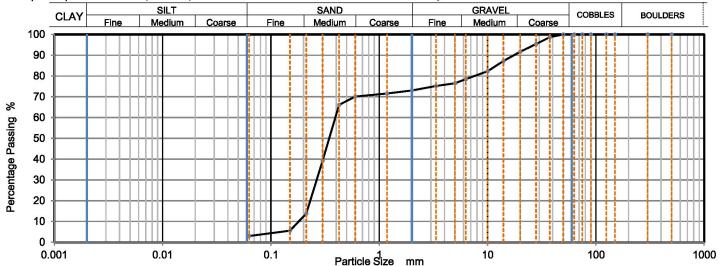
Contact: Nathan Thompson

Site Address: **Begbroke** Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 06/02/2023

Date Received: 17/02/2023 Date Tested: 27/02/2023

Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2592809 Depth Top [m]: 1.20 **TP307** Depth Base [m]: 1.50 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Yellowish brown very gravelly SAND

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100			
300	100			
150	100			
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	99			
28	95			
20	92			
14	87			
10	82			
6.3	79			
5	77			
3.35	75	1		
2	73	1		
1.18	72			
0.6	70	1		
0.425	66	1		
0.3	39	1		
0.212	14	İ		
0.15	6	7		
0.063	4			

Sample Proportions	% dry mass
Very coarse	0
Gravel	27
Sand	69
Fines <0.063mm	4

Grading Analysis	3	
D100	mm	50
D60	mm	0.393
D30	mm	0.264
D10	mm	0.18
Uniformity Coefficient		2.2
Curvature Coefficient		0.99

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/03/2023

GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

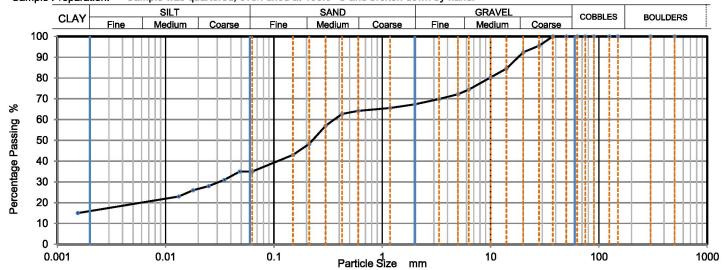
Contact: Nathan Thompson

Site Address: Begbroke

Client Reference: 19114 Job Number: 23-18737-1

> Date Sampled: 06/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2592810Depth Top [m]: 2.20Hole No.:TP307Depth Base [m]: 2.40Sample Reference:Not GivenSample Type: B

Sample Description: Greyish gravelly sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Sieving		Sedimentation		
J. Stating		- County		
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100	0.0630	35	
300	100	0.0483	35	
150	100	0.0348	31	
125	100	0.0250	28	
90	100	0.0179	26	
75	100	0.0132	23	
63	100	0.0015	15	
50	100			
37.5	100			
28	96			
20	92			
14	85			
10	80			
6.3	74			
5	72			
3.35	70	Particle density	(assumed)	
2	67	2.65	Mg/m3	
1.18	66			
0.6	64	1		
0.425	63	1		
0.3	57	1		
0.212	48	Ĭ		
0.15	43	1		
0.063	35	7		

Sample Proportions	% dry mass
Very coarse	0
Gravel	33
Sand	33
Silt	18
Clay	16

Grading Analysis)	
D100	mm	37.5
D60	mm	0.361
D30	mm	0.0309
D10	mm	
Uniformity Coefficient		> 230
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

GF 100.21

for and on behalf of i2 Analytical Ltd
Page 1 of 1

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 31/01/2023

Date Received: 17/02/2023 Date Tested: 28/02/2023 Sampled By: Not Given

Test Results:

Laboratory Reference: 2592801 **TP302** Hole No.: Sample Reference: Not Given

Brown clayey SAND Sample Description:

Depth Top [m]: 0.80 Depth Base [m]: 1.00

Sample Type: B

Specimen Preparation:

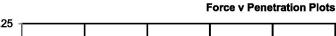
Initial Specimen details

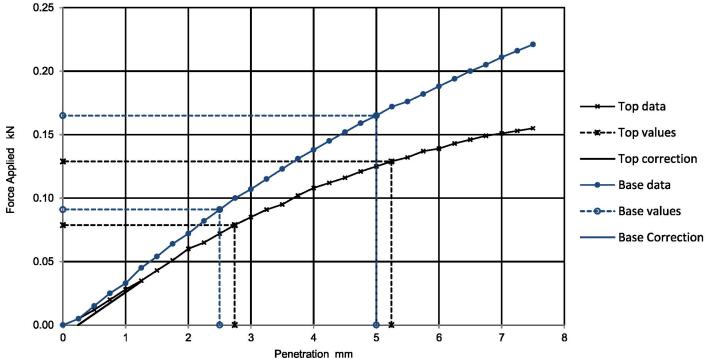
Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer Soaking details Period of soaking 8 days 3 Time to surface days -0.08 Amount of swell recorded mm 1.76 Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

3 %


Bulk density 2.08 Mq/m3


Dry density 1.76 Mg/m3 Moisture content 18

Surcharge applied 8

4.8 kPa

kg

Results

TOP **BASE**

Curve		CBR Va	alues, %	
correction applied	2.5mm	5mm	Highest	Average
Yes	0.6	0.6	0.6	
No	0.7	0.8	0.8	

Moisture Content % 19 19

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 2

Date Reported: 15/03/2023

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

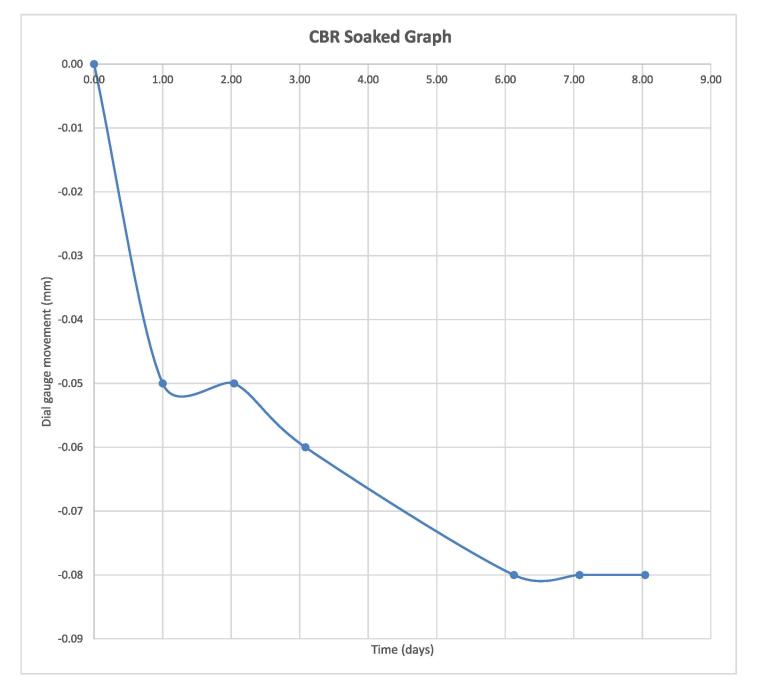
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 23-18737-1 Date Sampled: 31/01/2023 Date Received: 17/02/2023 Date Tested: 28/02/2023


Sampled By: Not Given

Test Results:

Laboratory Reference: 2592801 **TP302** Hole No.: Not Given Sample Reference:

Sample Description: Brown clayey SAND

Depth Top [m]: 0.80 Depth Base [m]: 1.00 Sample Type: B

Test/ Specimen Remarks: specific remarks:

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 02/02/2023

Date Received: 17/02/2023 Date Tested: 28/02/2023

Sampled By: Not Given

Test Results:

Laboratory Reference: 2592803 Hole No.: TP303 Sample Reference: Not Given

Sample Description: Brown gravelly SAND

Depth Top [m]: 0.80 Depth Base [m]: 1.20

Sample Type: B

Gampio Bookipiioiii Erram granan, arana

Bulk density

Specimen Preparation:

Initial Specimen details

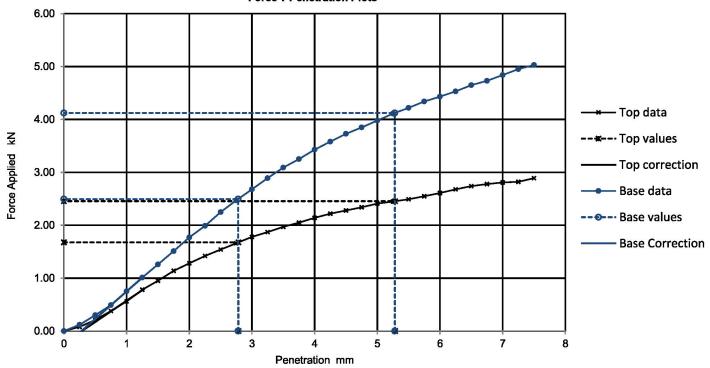
Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer

Soaking details
Period of soaking 6 days
Time to surface 3 days
Amount of swell recorded -0.03 mm
Dry density after soaking 1.90 Mg/m3

Material retained on 20mm sieve removed

14 %


2.06 Mg/m3

Dry density 1.90 Mg/m3 Moisture content 8.6 %

Surcharge applied

8 kg 4.8 kPa

Force v Penetration Plots

Results

TOP BASE

Curve		CBR Va	alues, %	
correction applied	2.5mm	5mm	Highest	Average
Yes	13.0	12.0	13.0	
Yes	19.0	21.0	21.0	

Moisture Content % 14 13

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2

-

Date Reported: 15/03/2023

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

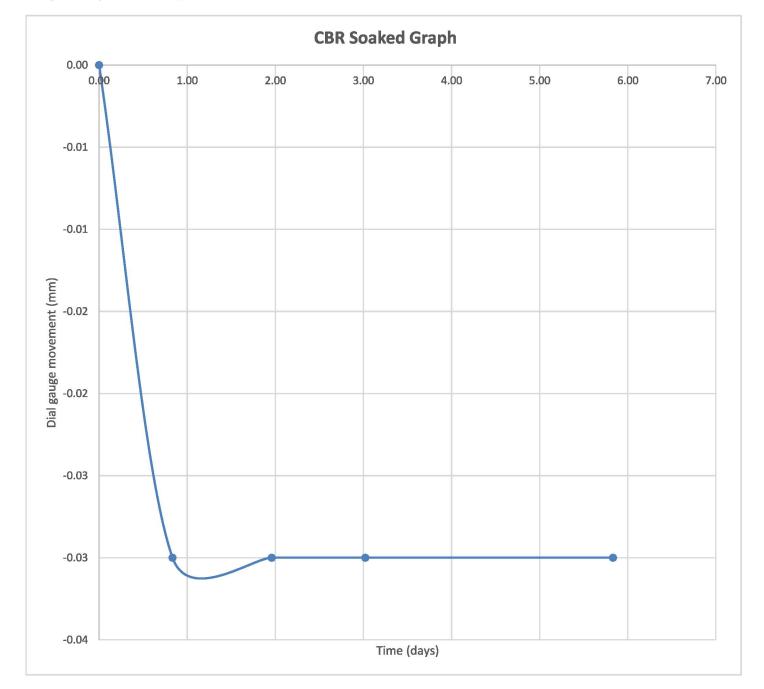
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 23-18737-1

Date Sampled: 02/02/2023

Date Received: 17/02/2023 Date Tested: 28/02/2023

Sampled By: Not Given


Today during out at 12 Finalytical Elimica, dr. 1 Tolliolow 60, 41 TT Nada Olaska, 1 Olaska

Test Results:

Laboratory Reference: 2592803 Hole No.: TP303 Sample Reference: Not Given

Sample Description: Brown gravelly SAND

Depth Top [m]: 0.80 Depth Base [m]: 1.20 Sample Type: B

Remarks: Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

r testing.
Page 2 of 2

•

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 31/01/2023

Date Received: 17/02/2023 Date Tested: 28/02/2023

Sampled By: Not Given

Test Results:

Laboratory Reference: 2592804 **TP304** Hole No.: Sample Reference: Not Given

Brown slightly gravelly clayey SAND Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: 0.80

Sample Type: B

Specimen Preparation:

Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer Soaking details 9 Period of soaking 3 Time to surface -0.65 Amount of swell recorded

Material retained on 20mm sieve removed

0 % Dry density after soaking

Mg/m3

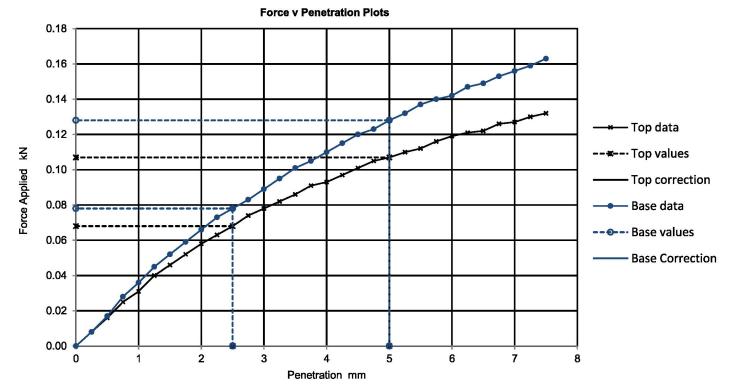
days

days

mm

Initial Specimen details

Bulk density Dry density


2.07 Mq/m3 Mg/m3 Surcharge applied

8 kg 4.8 kPa

1.74

Moisture content

1.73 20

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	0.5	0.5	0.5	0.6
No	0.6	0.6	0.6	0.6

Moisture Content % 19 18

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 2 **Date Reported: 15/03/2023**

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

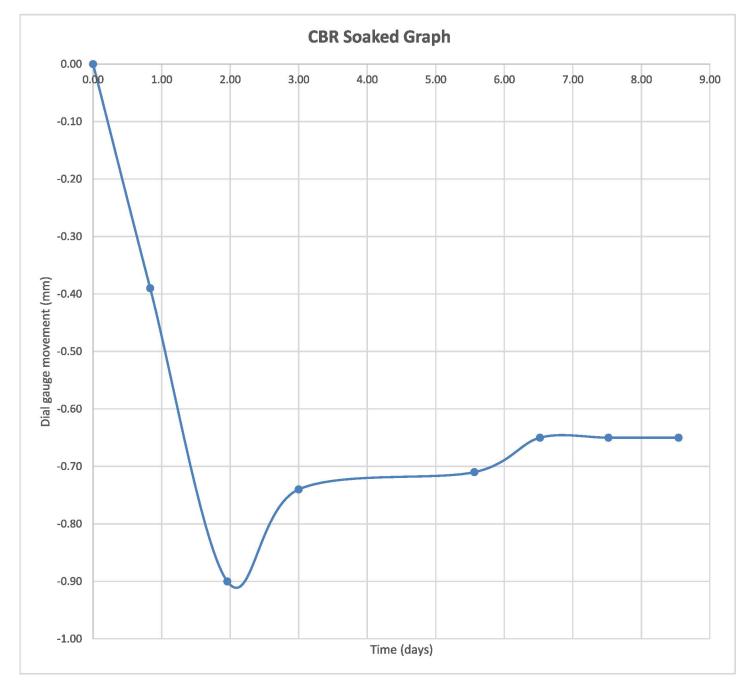
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 23-18737-1 Date Sampled: 31/01/2023 Date Received: 17/02/2023 Date Tested: 28/02/2023


Sampled By: Not Given

Test Results:

Laboratory Reference: 2592804 **TP304** Hole No.: Not Given Sample Reference:

Sample Description: Brown slightly gravelly clayey SAND

Depth Top [m]: 0.60 Depth Base [m]: 0.80 Sample Type: B

Test/ Specimen Remarks: specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 2 of 2

Date Reported: 15/03/2023

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 23-18737-1 Date Sampled: 31/01/2023

Client Reference: 19114

Date Received: 17/02/2023 Date Tested: 28/02/2023

Sampled By: Not Given

Test Results:

Laboratory Reference: 2592806
Hole No.: TP305
Sample Reference: Not Given

Sample Description: Yellowish brown gravelly SAND

Depth Top [m]: 1.00 Depth Base [m]: 1.40

Sample Type: B

Specimen Preparation:

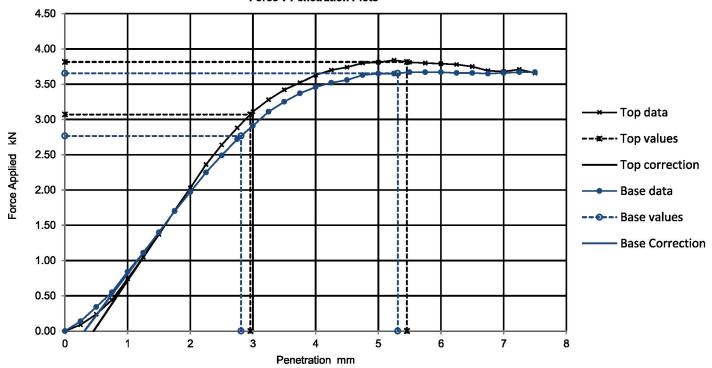
Initial Specimen details

Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer

Soaking details
Period of soaking 8 days
Time to surface 3 days
Amount of swell recorded
Dry density after soaking 1.87 Mg/m3

Material retained on 20mm sieve removed


12 %

Bulk density 2.11 Mg/m3

Dry density 1.87 Mg/m3 Moisture content 13 % Surcharge applied

8 kg 4.8 kPa

Force v Penetration Plots

Results

TOP BASE

Curve	CBR Values, %								
correction applied	2.5mm	5mm	Highest	Average					
Yes	23.0	19.0	23.0	22.0					
Yes	21.0	18.0	21.0	22.0					

Moisture Content % 15 14

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel
Reporting Specialist

Date Reported: 15/03/2023

Page 1 of 2

for and on behalf of i2 Analytical Ltd

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

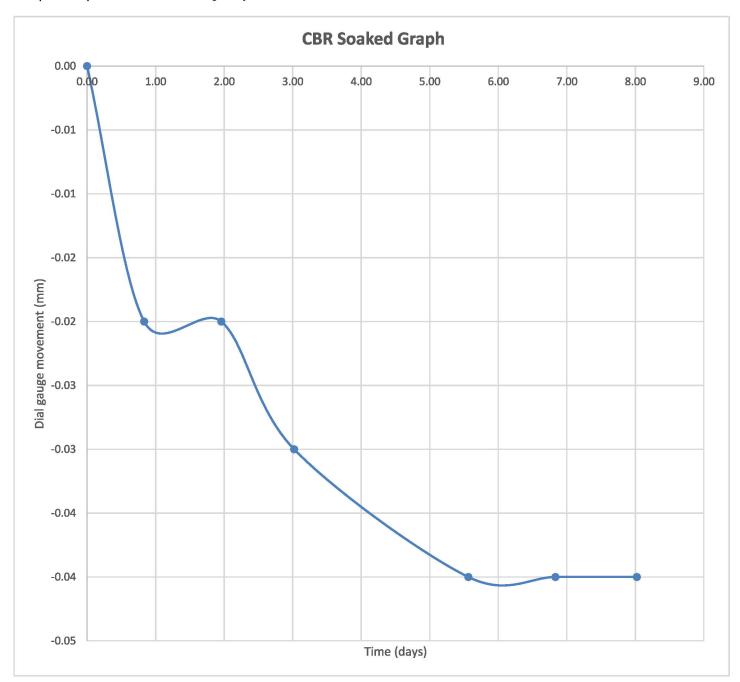
NN6 8LD

Contact: Nathan Thompson

Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 23-18737-1 Date Sampled: 31/01/2023 Date Received: 17/02/2023 Date Tested: 28/02/2023


Sampled By: Not Given

Test Results:

Laboratory Reference: 2592806 **TP305** Hole No.: Not Given Sample Reference:

Sample Description: Yellowish brown gravelly SAND

Depth Top [m]: 1.00 Depth Base [m]: 1.40 Sample Type: B

Test/ Specimen Remarks: specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 2 of 2

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 06/02/2023

Date Received: 17/02/2023 Date Tested: 28/02/2023 Sampled By: Not Given

resung camed out at 12 Analytical Enhited, dr. Florifetow 39, 41-777 Nuda Siaska, Folar

Test Results:

Laboratory Reference: 2592812 Hole No.: TP309 Sample Reference: Not Given

Sample Description: Yellowish brown gravelly SAND

Depth Top [m]: 0.60 Depth Base [m]: 0.70

Sample Type: B

Specimen Preparation:

Condition Remoulded

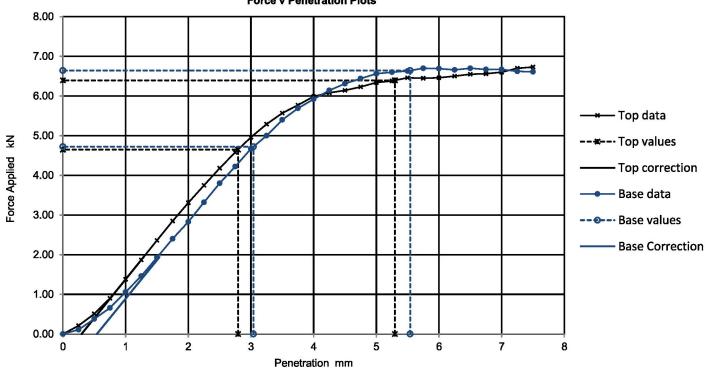
Details Recompacted with specified standard effort using 2.5kg rammer

Soaking details Period of soaking Time to surface

11 days 3 days

Material retained on 20mm sieve removed 7 %

Amount of swell recorded Dry density after soaking -0.12 mm 1.94 Mg/m3


Initial Specimen details Bulk density 2.18

Dry density 1.94 Mg/m3 Moisture content 12 % Surcharge applied

8 kg 4.8 kPa

Force v Penetration Plots

Mq/m3

Results

TOP BASE

Curve	CBR Values, %								
correction applied	2.5mm	5mm	Highest	Average					
Yes	35.0	32.0	35.0	36.0					
Yes	36.0	33.0	36.0	36.0					

Moisture Content % 12 13

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2

Date Reported: 15/03/2023

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR) SOAKED

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

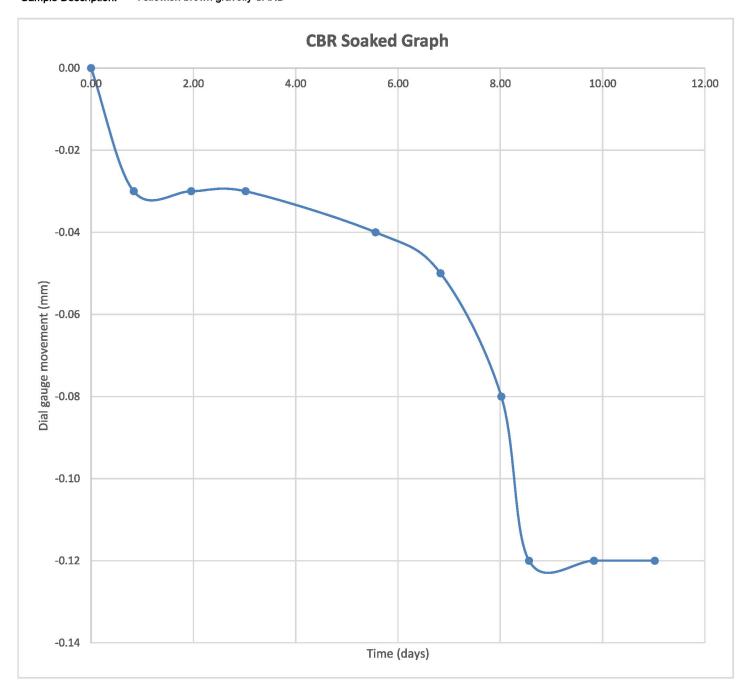
Site Address: **Begbroke**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 23-18737-1 Date Sampled: 06/02/2023

Client Reference: 19114

Depth Top [m]: 0.60


Depth Base [m]: 0.70

Sample Type: B

Test Results:

Laboratory Reference: 2592812 **TP309** Hole No.: Not Given Sample Reference:

Sample Description: Yellowish brown gravelly SAND Date Received: 17/02/2023 Date Tested: 28/02/2023 Sampled By: Not Given

Test/ Specimen Remarks: specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 2 of 2

for and on behalf of i2 Analytical Ltd

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 16/02/2023

Date Received: 17/02/2023 Date Tested: 03/03/2023

Sampled By: Not Given

Spratton, Northamptonshire, NN6 8LD

Hydrock Consultants Ltd

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

2-4 Hawthorne Park, Holdenby Road,

Test results

4041 Client:

Client Address:

			Sample)				euce		Type ISRM			Dime	nsions			를 를 다		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Refer			Failure Valid (Y/N)	Lne	W	Dps mm	Dps'	Force P kN	Equivalent 3 diameter, De	ls MPa	Is(50) MPa
2592825	RO301	Not Given	5.00	5.13	С	Grey LIMESTONE	WC = 2.7%	1	D	U	YES	66.5	89.7	89.0	78.0	14.9	83.6	2.12	2.68
2592829	RO302	Not Given	5.35	5.50	С	Grey LIMESTONE	WC = 2.0%	1	D	U	YES	74.0	89.9	89.0	75.0	15.7	82.1	2.32	2.90
2592830	RO302	Not Given	13.00	13.15	С	Grey LIMESTONE	WC = 2.7%	1	D	U	YES	61.5	89.5	89.0	86.0	12.5	87.7	1.62	2.08
2592831	RO302	Not Given	14.40	14.55	С	Grey LIMESTONE	WC = 6.4%	1	D	U	YES	78.0	89.3	89.0	85.0	4.1	87.1	0.54	0.69
2592832	RO302	Not Given	19.38	19.48	С	Grey LIMESTONE	WC = 4.6%	1	Α	U	YES	J	88.9	65.0	59.0	7.8	81.7	1.16	1.45
2592833	RO303	Not Given	5.60	5.75	С	Grey LIMESTONE	WC = 2.5%	1	D	U	YES	106.3	89.6	90.0	82.0	15.2	85.7	2.07	2.64
2592835	RO303	Not Given	14.75	14.90	С	Brownish grey LIMESTONE	WC = 2.8%	1	D	U	YES	71.1	89.3	89.0	85.0	12.4	87.1	1.63	2.10
2592836	RO303	Not Given	20.20	20.35	С	Light grey LIMESTONE	WC = 5.2%	1	D	U	YES	75.2	88.9	88.0	80.0	10.2	84.3	1.43	1.81
2592837	RO304	Not Given	7.75	7.85	С	Grey LIMESTONE	WC = 1.3%	1	Α	L	YES	-	89.6	57.0	48.0	3.8	74.0	0.68	0.82
2592838	RO304	Not Given	12.50	12.65	С	Grey to light grey LIMESTONE	WC = 6.0%	1	Α	Р	YES	-	87.2	63.0	40.0	3.6	66.6	0.80	0.91

Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Dimensions: Dips - Distance between platens (platen separation), Dips - at failure (see SRM note 6), Line - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions; based on ISRM, is shown stown; Size factor, F = (0x500,45 for all tests

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

 GF 134.13

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1

Date Sampled: 16/02/2023 Date Received: 17/02/2023

Date Tested: 03/03/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	·				euce	Test see	Type ISRM			Dime	nsions			De 3t		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Type	Description	Remarks # Description (including water content if measured)		Type (D, A, I, B)	Type (D, A, I, B) Direction (L, P or U) Alignment (A/A)		Lne mm	W	Dps	Dps'	Force P kN	3 Equivalent 3 diameter, De	ls MPa	Is(50) MPa
2592839	RO304	Not Given	16.30	16.50	С	Grey LIMESTONE	WC = 4.9%	1	ı	U	YES	83.4	81.5	80.0	68.0	4.1	84.0	0.58	0.73
2592840	RO304	Not Given	19.70	19.80	С	Grey LIMESTONE	WC = 2.1%	1	Α	U	YES	-	89.9	54.0	52.0	3.9	77.1	0.66	0.80
2592841	RO305	Not Given	19.10	19.20	С	Grey LIMESTONE	WC = 1.8%	1	1	U	YES	60.1	85.0	60.0	53.0	19.9	75.7	3.46	4.17

Note: # non accredited; Teet Type: D - Diametral, A - Asial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Dimensions: Dipe - Distance between platens (platen separation), Dpb* - at failure (see SIRM have 69, Line - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions; based on ISRM, is shown above, Elso factor, F = (0x50)0.45 (or at less)

Comments:

Signed:

12.1

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported**: 15/03/2023 **GF 134.13**

UKAS TESTING

4041 Client:

Client Address:

DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH OF ROCK MATERIALS

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Job Number: 23-18737-1 Date Sampled: 16/02/2023 Date Received: 17/02/2023

Date Tested: 06/03/2023 Sampled By: Not Given

Spratton, Northamptonshire, NN6 8LD

Hydrock Consultants Ltd

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

2-4 Hawthorne Park, Holdenby Road,

Test results

			Sample						Specimo	en Dimen	sions (2)			Uniaxia	I Compre	ssion (3)	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	Bulk density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	ucs
			m	m				mm	mm			Mg/m3	%		Mpa/s		Mpa
2592826	RO301	Not Given	7.15	7.35	С	Grey LIMESTONE	Sample is below recommended length to diameter ratio.	88.7	109.7	1.2	Vertical	2.67	1.8	as received	0.0809	AC	42.4
2592827	RO301	Not Given	12.75	13.00	С	Light grey LIMESTONE	Sample is below recommended length to diameter ratio.	89.1	209.3	2.3	Vertical	2.62	1.5	as received	0.0802	AC	24.4
2592828	RO301	Not Given	18.60	18.73	С	Light grey LIMESTONE	Sample is below recommended length to diameter ratio.	89.4	95.2	1.1	Vertical	2.49	3.5	as received	0.0796	MS + AC	27.2
2592834	RO303	Not Given	8.00	8.21	С	Grey LIMESTONE	Sample is below recommended length to diameter ratio.	88.7	206.5	2.3	Vertical	2.68	2.8	as received	0.0809	MS + AC	35.2

Note: 1 - ISRM p87 test 1, water content at 105 ± 3 °C - not accredited, specimen as tested for UCS, 2 - ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density, 3 - ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials, above notes apply unless annotated otherwise in the remarks. Compaction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legend: S - Single shear, MS - multiple shear, AC - Axial cleavage, F - Fragmented

Comments:

Signed:

1/ 1

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 223.15

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Nathan Thompson

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 19114 Job Number: 23-18737-1

Date Sampled: 07/02/2023 Date Received: 17/02/2023

Date Tested: 27/02/2023 Sampled By: Not Given

Test Results:

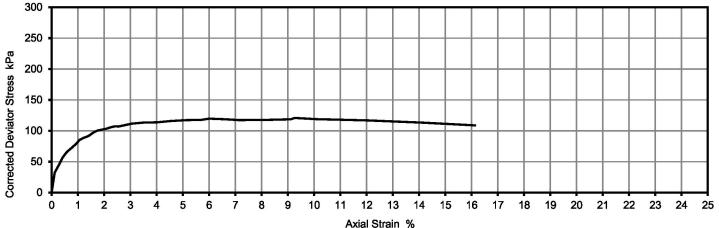
Laboratory Reference: 2592817 Depth Top [m]: 4.00 RO301 Depth Base [m]: 4.50 Hole No.: Sample Reference: Not Given Sample Type: U

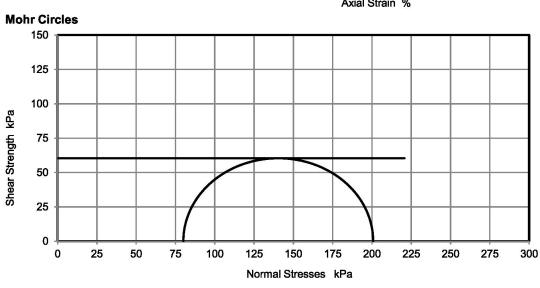
Sample Description: Greyish brown slightly gravelly slightly silty CLAY

Sample Preparation: Sample prepared in accordance with BS 1377-1:2016 Clause 9.1.1.

Test Number Length 76.10 mm Diameter 37.71 mm 1.90 **Bulk Density** Mg/m3 25 Moisture Content 1.51 **Dry Density** Mg/m3 Membrane Correction 1.12

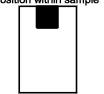
Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu


Mode of Failure


Latex membrane thickness

2.00	%/min
80	kPa
9.3	 %
121	kPa
60	kPa ½(σ1-σ3)f
Brittle	1

0.20


Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/03/2023

GF 184.13

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Depth Top [m]: 1.00

Depth Base [m]: 1.50

Sample Type: U

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

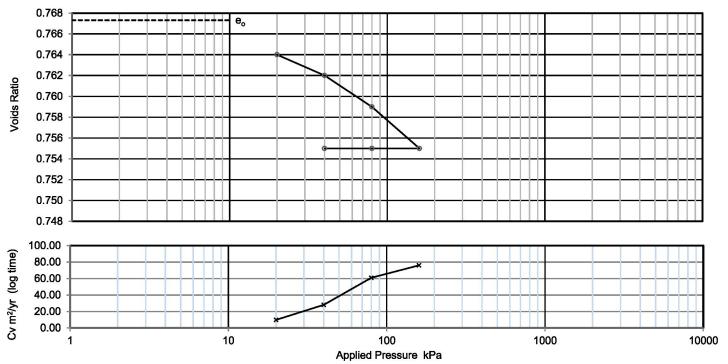
Spratton, Northamptonshire,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Job Number: 23-18737-1 Date Sampled: 07/02/2023 Date Received: 17/02/2023

Test Results:

Laboratory Reference: 2592793 RO301 Hole No.: Not Given Sample Reference:

Yellowish brown very gravelly SAND Sample Description:

Date Tested: 24/02/2023 Sampled By: Not Given

Applied	Voids	M∨	Cv	Cv	Csec
Pressure kPa	ratio	m2/MN	(t50, log) m2/yr	(t90, root m2/yr	
0	0.767	-	-	-	-
20	0.764	0.08	9.8	11	0.00016
40	0.762	0.097	28	20	0.00012
80	0.759	0.035	61	32	0.00017
160	0.755	0.024	76	45	0.00019
40	0.755	0.00042			
80	0.755	0.0013	N/A	N/A	N/A

Note: Cv corrected to 20°C

-	
Pre	paration

Carried out on top of U100

N/A

Index tests

Orientation of the sample

Particle density Liquid limit

Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density

Dry density Voids Ratio

Saturation

Avg. temperature for test Swelling Pressure

Settlement on saturation Total test time

assumed	2.65	Mg/m
N/A		- %
N/A		%
		_
Initial	Final	
		_

Initial	Final	
50.10		mm
20.10	19.96	mm
23	25	%
1.85	1.89	Mg/m3
1.50	1.51	Mg/m3
0.767	0.755	1
80	88	%
22	°C	
Not measured		kPa
	%	
6		days

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19114

Sampled By: Not Given

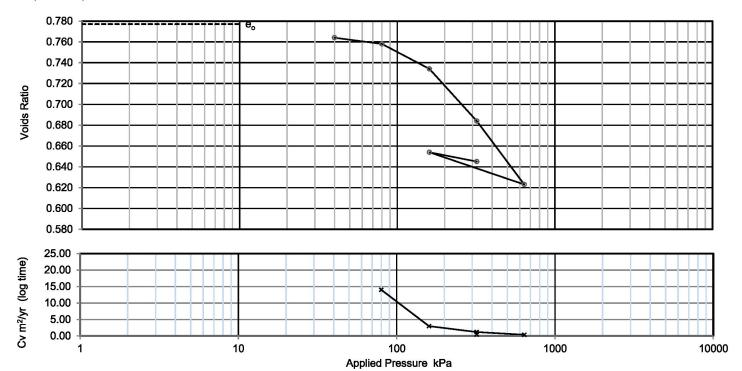
Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

NN6 8LD

Nathan Thompson Contact:

Site Address: Begbroke


Job Number: 23-18737-1 Spratton, Northamptonshire, Date Sampled: 07/02/2023 Date Received: 17/02/2023 Date Tested: 24/02/2023

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 2592817 Depth Top [m]: 4.00 RO301 Hole No .: Depth Base [m]: 4.50 Not Given Sample Reference: Sample Type: U

Greyish brown slightly gravelly slightly silty CLAY Sample Description:

Applied Pressure	Voids ratio	Mv	Cv	Cv (t90, root	Csec
kPa	ratio	m2/MN	(t50, log) m2/yr	m2/yr	
0	0.777	-	-	-	-
40	0.764	0.18	N/A	N/A	N/A
80	0.758	0.089	14	10	0.000036
160	0.734	0.17	3	3.5	0.0013
320	0.684	0.18	1.2	2.4	0.0019
640	0.623	0.11	0.37	0.9	0.00064
160	0.654	0.041			
320	0.645	0.037	0.44	0.57	0.00069

Preparation

Carried out on bottom of U100

Index tests

Orientation of the sample Particle density

Liquid limit Plastic limit

Specimen details Diameter Height Moisture Content **Bulk density** Dry density Voids Ratio

Avg. temperature for test Swelling Pressure Settlement on saturation

Total test time

Saturation

Vertical		
assumed	2.65	Mg/m3
N/A		_ %
N/A		%

Initial	Final]
50.09	-	mm
20.03	18.54	mm
28	27	%
1.91	2.04	Mg/m3
1.49	1.61	Mg/m3
0.777	0.645]
97	110	%
22	°C	
Not measured		kPa
	%	
6		days

Note: Cv corrected to 20°C

Remarks: Stage 1 - swelling

Signed:

Katarzyna Koziel Reporting Specialist

Date Reported: 15/03/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

GF 172.16

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-18753

Project / Site name: Begbroke Samples received on: 17/02/2023

Your job number: 19114 Samples instructed on/ 17/02/2023

Analysis started on:

Your order number: PO24161 Analysis completed by: 06/03/2023

Report Issue Number: 1 Report issued on: 06/03/2023

Samples Analysed: 20 soil samples

Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

, the cated the defined within the report opinions and interpretations expressed internal are studied in scope of decidation

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2592896	2592897	2592898	2592899	2592900
Sample Reference				TP315	TP315	TP316	TP317	RO301
Sample Number				None Supplied				
Depth (m)				0.40-0.70	1.00-1.40	1.00-1.40	0.30-0.50	1.00-1.50
Date Sampled				02/02/2023	02/02/2023	02/02/2023	02/02/2023	07/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	50
Moisture Content	%	0.01	NONE	17	7.5	7.5	13	8.6
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.4	0.4	0.3

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	8.2	8.1	8	7.9
Total Sulphate as SO4	mg/kg	50	MCERTS	220	310	370	210	570
Total Sulphate as SO4	%	0.005	MCERTS	0.022	0.031	0.037	0.021	0.057
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.023	0.0087	0.013	0.024	0.011
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	23.3	8.7	13.3	24.2	11
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	2.7	6.8	7	5.9	3.2
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.3	3.4	3.5	3	1.6
Total Sulphur	mg/kg	50	MCERTS	140	210	320	270	320
Total Sulphur	%	0.005	MCERTS	0.014	0.021	0.032	0.027	0.032
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	8.5	2.9	2	3.5	3.8
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

		-	NONE					
Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Lab Sample Number				2592901	2592902	2592903	2592904	2592905
Sample Reference				RO305	RO305	RO305	RO305	RO305
Sample Number	Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.00-4.50	8.70	11.60	12.70	16.50
Date Sampled				31/01/2023	31/01/2023	31/01/2023	31/01/2023	31/01/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.9	17	14	16	17
Total mass of sample received	kg	0.001	NONE	0.3	0.4	0.4	0.4	0.4

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	9	8.2	8.8	9.2
Total Sulphate as SO4	mg/kg	50	MCERTS	640	1100##	1800	1200	1600
Total Sulphate as SO4	%	0.005	MCERTS	0.064	0.108##	0.181	0.116	0.162
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.062	0.99##	0.8	0.68	0.7
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	61.9	988##	802	684	698
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	12	130	130	92	190
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	6.2	63	65	46	97
Total Sulphur	mg/kg	50	MCERTS	7600	23000	17000	9900	55000
Total Sulphur	%	0.005	MCERTS	0.763	2.35	1.66	0.993	5.47
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	5.7	8.6	5.9	5.1	8.8
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.57	0.86	0.59	0.51	0.88
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	2.2	< 2.0	< 2.0	< 2.0	14
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	7.1

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	7	30	30	23	11
Magnesium (leachate equivalent)	mg/l	2.5	NONE	3.5	15	15	11	5.3

Lab Sample Number				2592906	2592907	2592908	2592909	2592910
Sample Reference				TP302	TP307	TP307	TP308	RO301
Sample Number				None Supplied				
Depth (m)				0.80-1.00	1.20-1.50	2.20-2.40	1.30-1.70	8.00-8.00
Date Sampled				31/01/2023	06/02/2023	06/02/2023	06/02/2023	07/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	11	12	14	17
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4	0.4

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	8.4	8.2	8.1	9.1
Total Sulphate as SO4	mg/kg	50	MCERTS	80	120	310	320	1200
Total Sulphate as SO4	%	0.005	MCERTS	0.008	0.012	0.031	0.032	0.122
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0081	0.0026	0.01	0.016	0.73
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	8.1	2.6	10.4	15.6	727
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	1.8	1.6	1.5	3.1	120
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	0.9	0.8	0.8	1.5	59
Total Sulphur	mg/kg	50	MCERTS	480	92	200	240	5800
Total Sulphur	%	0.005	MCERTS	0.048	0.009	0.02	0.024	0.58
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	11
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.06
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	2.5	< 2.0	< 2.0	2.3	< 2.0
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	10
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	5.1

Lab Sample Number				2592911	2592912	2592913	2592914	2592915
Sample Reference				RO301	RO301	RO303	RO304	RO304
Sample Number				None Supplied				
Depth (m)				11.90	5.00-5.13	8.00-8.21	16.30-16.50	19.70-19.80
Date Sampled				07/02/2023	16/02/2023	16/02/2023	16/02/2023	16/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	2.2	3.4	3.3	1.8
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.2	0.4	0.4

General Inorganics

General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.6	7.8	7.8	8.1	8
Total Sulphate as SO4	mg/kg	50	MCERTS	2100	1700	3200	2800	3000
Total Sulphate as SO4	%	0.005	MCERTS	0.21	0.174	0.323	0.284	0.301
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.97	0.61	1.2	0.85	0.91
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	967	610	1180	851	906
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	130	110	210	190	220
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	64	55	100	93	110
Total Sulphur	mg/kg	50	MCERTS	12000	11000	13000	4100	4600
Total Sulphur	%	0.005	MCERTS	1.18	1.06	1.25	0.407	0.456
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	7.1	< 0.5	1.7	3.7	1.2
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.71	< 0.05	0.17	0.37	0.12
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	< 2.0	< 2.0	< 2.0	4.7	< 2.0
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	39	21	49	33	31
Magnesium (leachate equivalent)	mg/l	2.5	NONE	20	11	25	17	15

Analytical Report Number : 23-18753 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2592896	TP315	None Supplied	0.40-0.70	Brown clay and sand with gravel.
2592897	TP315	None Supplied	1.00-1.40	Brown sand with gravel.
2592898	TP316	None Supplied	1.00-1.40	Brown sand with gravel.
2592899	TP317	None Supplied	0.30-0.50	Brown clay and sand.
2592900	RO301	None Supplied	1.00-1.50	Brown gravelly sand with stones.
2592901	RO305	None Supplied	4.00-4.50	Brown clay and sand with gravel.
2592902	RO305	None Supplied	8.7	Brown clay.
2592903	RO305	None Supplied	11.6	Brown clay and sand.
2592904	RO305	None Supplied	12.7	Brown clay and sand.
2592905	RO305	None Supplied	16.5	Brown clay and sand with vegetation.
2592906	TP302	None Supplied	0.80-1.00	Brown sandy clay with gravel.
2592907	TP307	None Supplied	1.20-1.50	Brown sandy clay with gravel.
2592908	TP307	None Supplied	2.20-2.40	Brown clay and sand with gravel.
2592909	TP308	None Supplied	1.30-1.70	Brown clay and sand with gravel.
2592910	RO301	None Supplied	8.00-8.00	Brown clay.
2592911	RO301	None Supplied	11.9	Brown clay and sand.
2592912	RO301	None Supplied	5.00-5.13	Non Soil#
2592913	RO303	None Supplied	8.00-8.21	Non Soil#
2592914	RO304	None Supplied	16.30-16.50	Non Soil#
2592915	RO304	None Supplied	19.70-19.80	Non Soil#

Analytical Report Number: 23-18753 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC
Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Report Number: 23-18753 Project / Site name: Begbroke

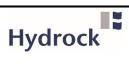
Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
--	-----------------------------	------------------	-----------------------	-------------------------

#Unaccredited sample matrix.

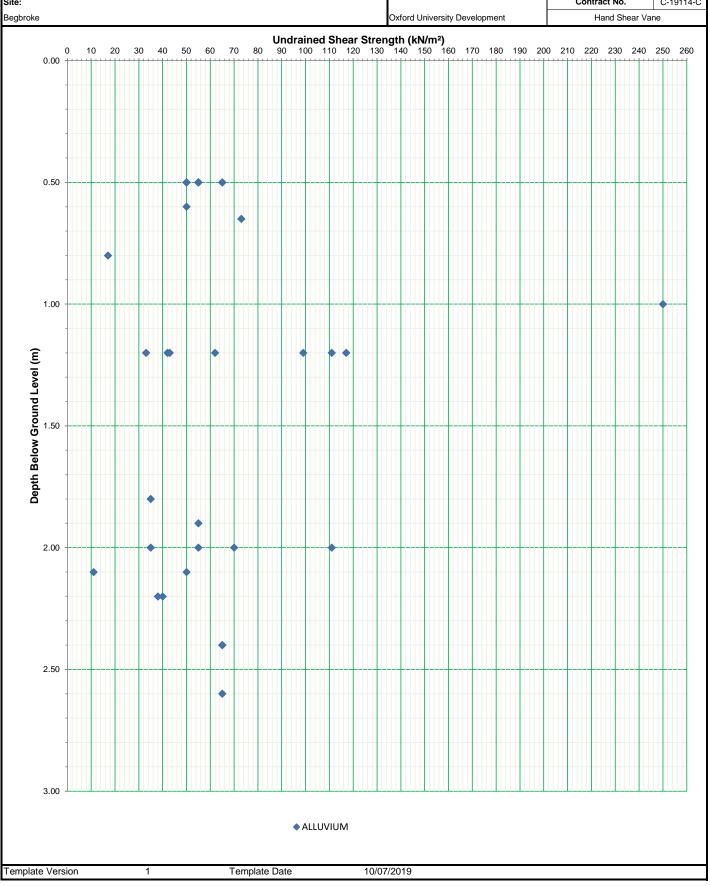
 $\hbox{\it \#\#Despite repeating Total Sulphate and Water Soluble Sulphate analysis, the results remain contradictory.}$

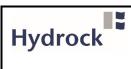
Geotechnical Plots

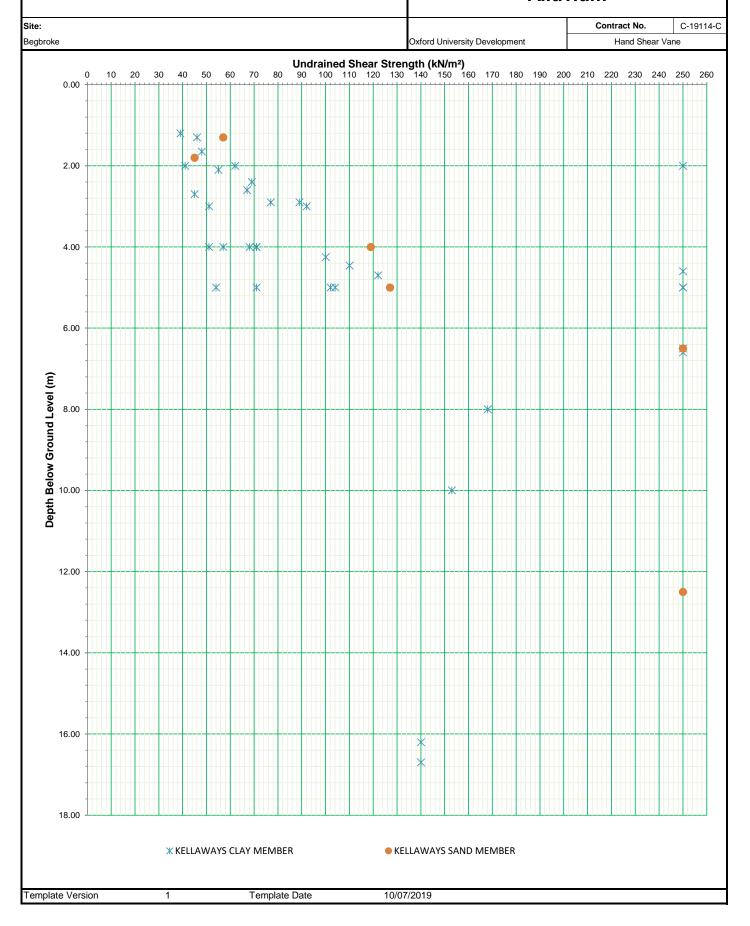

dro																		-	Client		VS					_			Cont		No.			C-19	9114
9																		C	Oxford	l Unive	ersity	Deve	elopr	nent					ļ	Hand	d Sh	ear '	Vane		
0 0.00 +	10	2	0	30	4()	50	60) .	70	80	Uı	ndra 90	aine 10	ed S	hear	Stre	2 nc 13	jth (l 0 14	kN/m 40 1	1 2) 150	160	17	70	180	19	0 2	00	210	2:	20	230) 24	10	250
0.00																																			
																																			Ш
2.00			Ш		Щ	+		+			Ш	Щ						Ц				4							Ш					4	
_								Ш																											
-																																			
-					+	+									+	+																			Н
-										+																									
4.00				-	Н		+-		+				+					4			-	+			+-				-					+	
-								+											+									Н							
-																																			
-														+	+		+				+														
								+									+			+															
6.00				+	+		+	-			+		+-		+		+-	+			+	+			+-	+			+			+		+	+
-								+								+																			-
-								+																											
-														+		+																			
-														+			+																		H
8.00				+-	+			+			+	₩					+	+				+				₩			-			-		+	+
+														\parallel				\mathbb{H}										\mathbb{H}							
-					\square			\square		Ш	Ш		Ш	\Box			+	Ш			Ш	Ш	Ш		Ш			Ш	Ш			Ш			

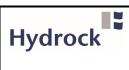
+OXFORD CLAY FORMATION

Template Version 1 Template Date 10/07/2019

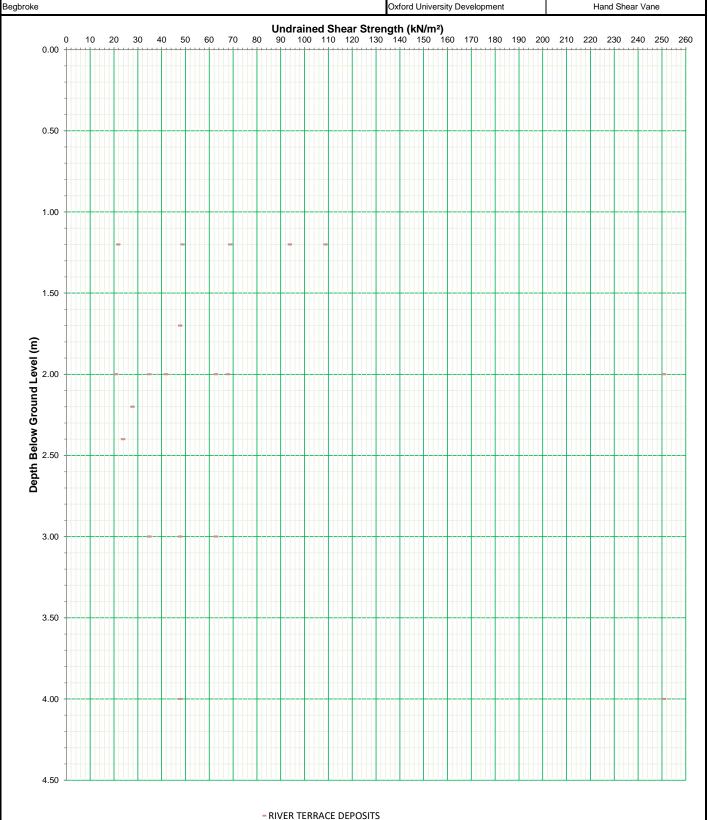

10.00


12.00


UNDRAINED SHEAR STRENGTH vs DEPTH. HSV & Correlated N60 **Alluvium**



UNDRAINED SHEAR STRENGTH vs DEPTH. HSV & Correlated N60 Alluvium



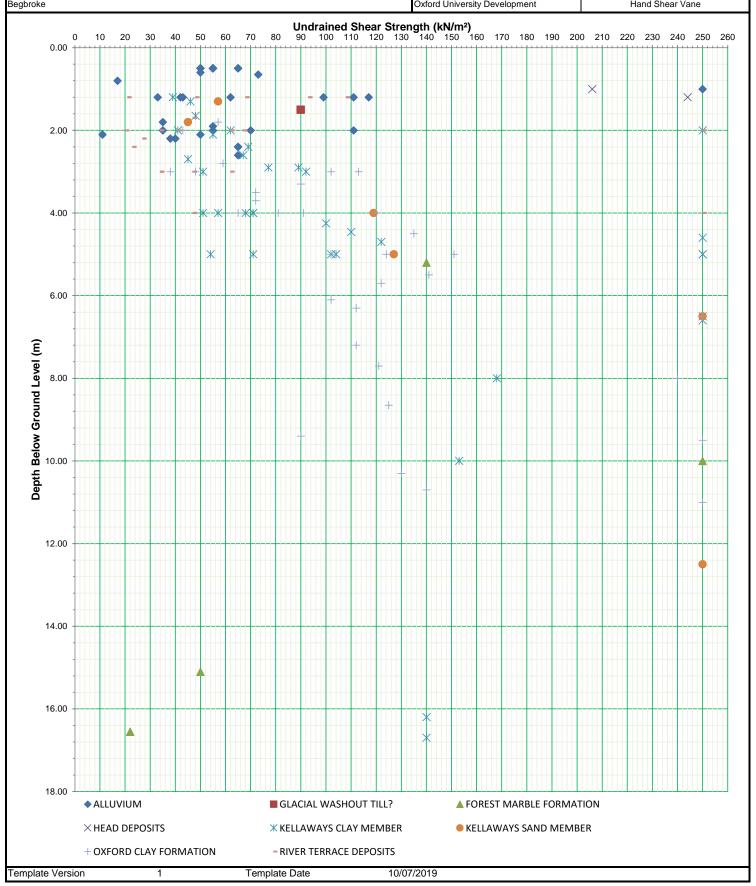
Template Version

UNDRAINED SHEAR STRENGTH vs DEPTH. HSV & Correlated N60 Alluvium

 Site:
 Contract No.
 C-19114-C

 Begbroke
 Oxford University Development
 Hand Shear Vane

10/07/2019


Template Date

Hydrock ⁻	
i i y ai o cik	

UNDRAINED SHEAR STRENGTH vs DEPTH. HSV & Correlated N60

 Site:
 Client:
 Contract No.
 C-19114-C

 Begbroke
 Oxford University Development
 Hand Shear Vane

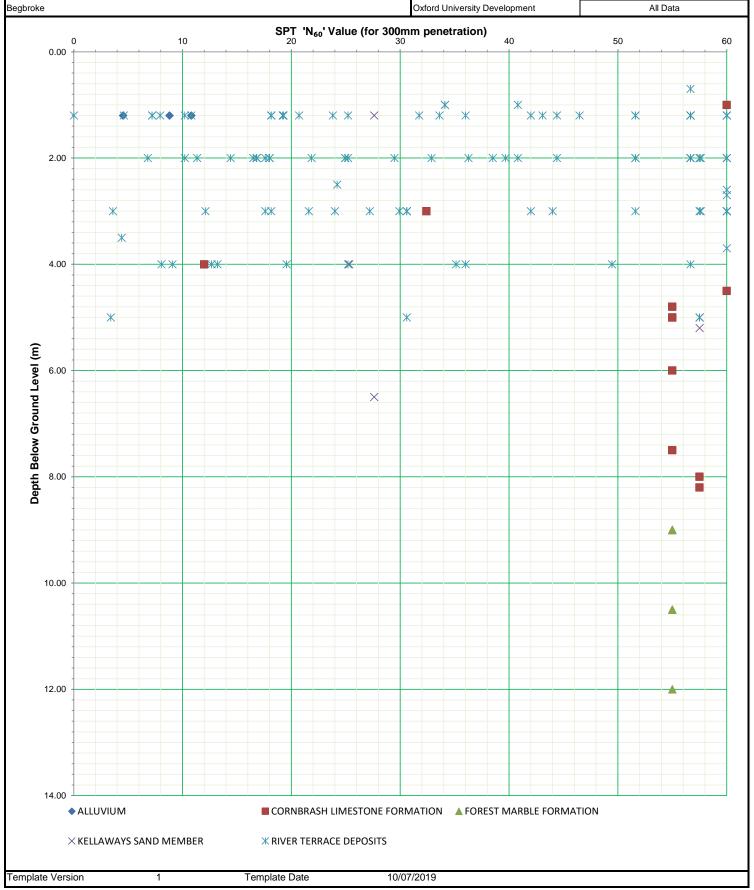
Hydr	ock						PLAS	STICIT	Y CLA CHAI	ASSIFIC RT	ATION
Site: Begbroke						Client: Oxford		Development		Contract No.	. C-19114-C
80		ow	Medi		High Plastic		ĺ	ery High Plasticity	1 1	Extremely Plastic	y High iity
70			1				1		1		
60										*/	
50			1								
Plasticity Index (%)				1		-	*				
30				*	*/						
20			** *								
10		*	**/								
0	0	20	40		6 Liquid Li			80		100	120
	* ALLUVIUM * GLACIAL WASHOU - KELLAWAYS CLAY		•	HEAD DEP	SH LIMESTO POSITS CLAY FORMA		MATION	- KELI		E FORMATION ND MEMBER DEPOSITS	
Template Vers	sion 1		Template Da	te	10/	07/2019					

_	_	F
Hyd	rock	

Template Version

SPT 'N' VALUES vs DEPTH

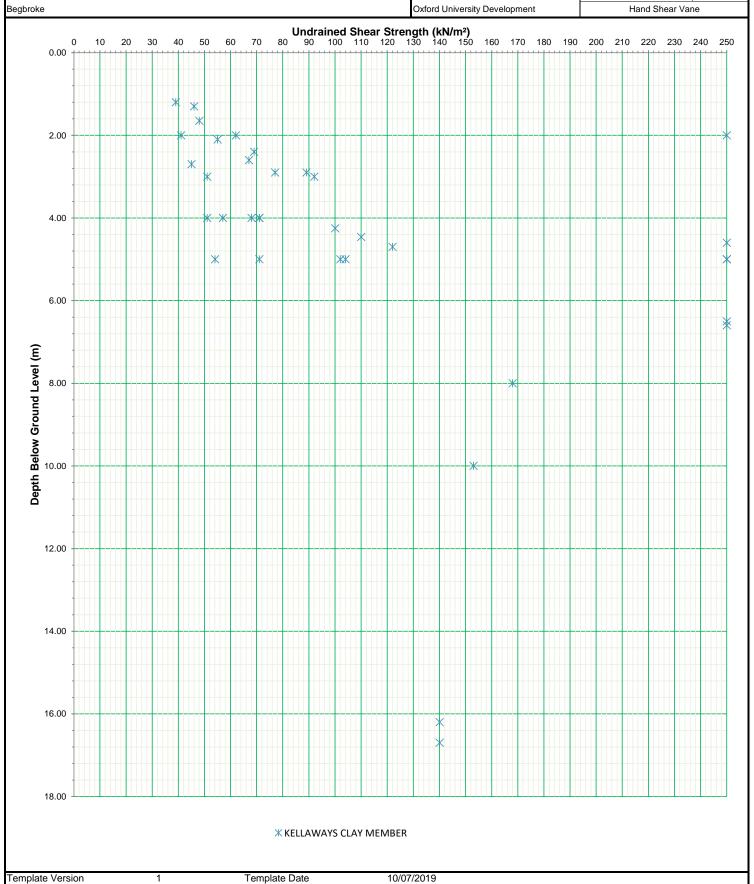
COHESIVE NATURAL STRATA Client: Contract No. C-19114-C Site: Begbroke Oxford University Development All Data SPT 'N' Value (for 300mm penetration) 10 40 50 60 0.00 2.00 4.00 \times \times Depth Below Ground Level (m) 6.00 8.00 10.00 12.00 14.00 ALLUVIUM **■** FOREST MARBLE FORMATION ▲ HEAD DEPOSITS imes KELLAWAYS CLAY MEMBER ***** KELLAWAYS SAND MEMBER OXFORD CLAY FORMATION + RIVER TERRACE DEPOSITS


10/07/2019

Template Date

		E
Llard	wo ale	_
пуа	rock	

SPT 'N₆₀' VALUES GRANULAR NATURAL STRATA vs DEPTH


Site: Client: Contract No. C-19114-C
Rephroke Oxford University Development All Data

Hydrock ⁻	
i i y ai o cik	

UNDRAINED SHEAR STRENGTH vs DEPTH (Kellaways Clay)

Site: Client: Contract No. C-19114-C

ient O	oxford University Deve	siopinents Ltd	Location or materia	I to which this assessment applies
oject B	egbroke		White Limestone For	
b numb	19114			
C	Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
<u>-</u>	Soil data			
<u></u>	Jon data			
	Number of tests	(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%) 1	Water soluble magnesium (mg/l) 0
No. to	tests in 20% data set	0	0	U
No. tests v	with suspected pyrite		1	
	Maximum value	906	1.4	
	of highest two values	906	1	
	Mean of highest 20% Characteristic Value	906	1.4	
		[no pyrite]	[pyrite suspected]	
	DS Class	DS-2	DS-4	
				_
14	nurita cuencatad D	C Clace limited to		
If	pyrite suspected, D	S Class limited to	DS-4	_
	pyrite suspected, D s pyrite assumed to I		Adopted DS Class	= DS-4
ls	s pyrite assumed to I			= DS-4
ls				= DS-4
ls	s pyrite assumed to I	oe present? Yes	Adopted DS Class	= DS-4
ls	s pyrite assumed to I	be present? Yes (Adjusted) soluble	Adopted DS Class Soluble	= DS-4
ls	s pyrite assumed to I	oe present? Yes	Adopted DS Class	= DS-4
ls <u>V</u>	s pyrite assumed to I	pe present? Yes (Adjusted) soluble sulfate	Soluble magnesium	= DS-4
ls <u>V</u>	Vater data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
ls <u>V</u>	Vater data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
S	Vater data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
S	Vater data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
c 	Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 1	Soluble magnesium (mg/l)	= DS-4
c 	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 1 0	Soluble magnesium (mg/l) 0	= DS-4
Ls V	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 1	Soluble magnesium (mg/l) 0	= DS-4
Ls V	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 1 0	Soluble magnesium (mg/l) 0	= DS-4
Ls V	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 1 0 8.0	Soluble magnesium (mg/l) 0	= DS-4
S V	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	(Adjusted) soluble sulfate (mg/l) O Soil 1 0 8.0 8.0	Soluble magnesium (mg/l) 0	= DS-4
No. to	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 1 0 8.0 8.0	Soluble magnesium (mg/l) 0	ACEC Class design value
No. to	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 1 0 8.0 8.0 8.0 0 n value	Soluble magnesium (mg/l) 0	

ent Oxford University Deve	ыориненка ши		al to which this assessment applies
oject Begbroke		Alluvium	
b numb⊢ 19114			
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
Jon data			
	(Adjusted) water	Total potential	Water soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	(Hig/I) 8	(%)	0
No. tests in 20% data set		2	V
No. tests with suspected pyrite	-	0	
Maximum value	322	0.3	
Mean of highest two values		0.5	
Mean of highest 20%	202	J	
Characteristic Value	262	0	
	[no pyrite]	[pyrite suspected]	<u></u>
DS Class	DS-1	DS-1	
K	Class limited to	DS-1	<u>—</u>
If pyrite suspected, D	S Class limited to		
			_
Is pyrite assumed to		Adopted DS Class	s = DS-1
			s = DS-1
Is pyrite assumed to	be present? No		s = DS-1
Is pyrite assumed to		Adopted DS Class Soluble	s = DS-1
Is pyrite assumed to	be present? No	Adopted DS Class	== DS-1
Is pyrite assumed to	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	s = DS-1
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Value (Maximum Level)	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 8	Soluble magnesium (mg/l)	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 8 2	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 8 2 7.6	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 8 2	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 8 2 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 8 2 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 8 2 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	ACEC Class design value
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 8 2 7.6 7.6 7.6 7.6 0 pn value	Soluble magnesium (mg/l) 0	

lient O	Oxford University Deve	eiopments Lta	Location or materia	I to which this assessment applies
oject B	Begbroke		Cornbrash Limestone	
b numb	19114			
(Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
S	Soil data			
	Number of toots	(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	Water soluble magnesium (mg/l)
No. t	Number of tests tests in 20% data set	2 0	2 0	0
No. tests v	with suspected pyrite		1	
	Maximum value	610	3.2	
	of highest two values	309	2	
	Mean of highest 20% Characteristic Value	610	3.2	
		[no pyrite]	[pyrite suspected]	
_	DS Class	DS-2	DS-5	
		S Class limited to	DS-4	_
16				
If	pyrite suspected, D	S Class Illilled to	D3-4	=
	s pyrite suspected, D		Adopted DS Class	= DS-2
Is				= DS-2
Is	s pyrite assumed to I	oe present? No	Adopted DS Class	= DS-2
Is	s pyrite assumed to I		Adopted DS Class Soluble	= DS-2
Is	s pyrite assumed to I	oe present? No	Adopted DS Class	= DS-2
ls <u>V</u>	s pyrite assumed to I	(Adjusted) soluble sulfate	Adopted DS Class Soluble magnesium	= DS-2
ls <u>V</u>	Nater data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
ls <u>V</u>	S pyrite assumed to I Vater data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\f{\fra	Nater data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\f{\fra	Nater data Characteristic Value (Maximum Level) DS Class OH data	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l) 0	= DS-2
S V C 	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 2	Soluble magnesium (mg/l)	= DS-2
S V C 	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 2 0	Soluble magnesium (mg/l) 0	= DS-2
V C	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 2	Soluble magnesium (mg/l) 0	= DS-2
V C	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 2 0	Soluble magnesium (mg/l) 0	= DS-2
V C	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.8	Soluble magnesium (mg/l) 0	= DS-2
	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.8 7.8	Soluble magnesium (mg/l) 0	= DS-2
No. to	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.8 7.8	Soluble magnesium (mg/l) 0	ACEC Class design value
No. to the second secon	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.8 7.8 7.8 0 n value	Soluble magnesium (mg/l) 0	

ient O	Oxford University Deve	siopinents Ltd	Location or materia	I to which this assessment applies
oject B	Begbroke		Forest Marble Forma	
b numb	19114		1	
(Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
5	Soil data		-	
_	<u> </u>			
	N. J. G.	(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	Water soluble magnesium (mg/l)
No 1	Number of tests tests in 20% data set	4 1	4 1	0
	with suspected pyrite	·	4	
	Maximum value	1180	3.8	
	of highest two values	1074	4	
	Mean of highest 20% Characteristic Value	1180	3.8	
		[no pyrite]	[pyrite suspected]	
_	DS Class	DS-2	DS-5	
				
If	f pyrite suspected, D	S Class limited to	DS-4	_
	f pyrite suspected, D s pyrite assumed to I		DS-4 Adopted DS Class	= DS-4
ls				= DS-4
ls	s pyrite assumed to I			= DS-4
ls <u>V</u>	s pyrite assumed to I	pe present? Yes (Adjusted) soluble sulfate	Soluble magnesium	= DS-4
ls <u>V</u>	s pyrite assumed to I Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac}\f{\frac{\fir\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	Nater data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac}\f{\frac{\fir\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	s pyrite assumed to I Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac}\f{\frac{\fir\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	Nater data Characteristic Value (Maximum Level) DS Class OH data	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l) 0	= DS-4
\ \frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}{\frac{\f	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 4	Soluble magnesium (mg/l)	= DS-4
\ \frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\fra	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 4 1	Soluble magnesium (mg/l) 0	= DS-4
	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 4 1 7.8	Soluble magnesium (mg/l) 0	= DS-4
\frac{\fir}\firrec{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 4 1	Soluble magnesium (mg/l) 0	= DS-4
\frac{\fir}{\frac{\fir}\f{\fir}}}}}{\firac{\fir}{\fir}{\fir}}}}}}{\frac{\frac{	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 4 1 7.8 7.8	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 4 1 7.8 7.8 7.8	Soluble magnesium (mg/l) 0	= DS-4
No. 1	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 4 1 7.8 7.8 7.8	Soluble magnesium (mg/l) 0	ACEC Class design value
No. 1	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 4 1 7.8 7.8 7.8 7.8 0 n value	Soluble magnesium (mg/l) 0	

lient	Oxford University Deve	elopments Ltd		al to which this assessment applies
roject	Begbroke		Galcial Washout Till	
ob numb	19114			
	Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
	Soil data			
•				Water
	Number of toots	(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	soluble magnesium (mg/l)
No	Number of tests b. tests in 20% data set	1 0	1 0	0
No. tests	s with suspected pyrite		0	
	Maximum value	15.6	0.1	
Mear	n of highest two values	16	0	
	Mean of highest 20% Characteristic Value	15.6	0.1	
		[no pyrite]	[pyrite suspected]	<u></u>
	DS Class	DS-1	DS-1	
:				
,	If pyrite suspected, D	S Class limited to	DS-1	_
;				
,	If pyrite suspected, D		DS-1 Adopted DS Class	s = DS-1
				s = DS-1
,	Is pyrite assumed to I	be present? Yes		S = DS-1
	Is pyrite assumed to I		Adopted DS Class	S = DS-1
	Is pyrite assumed to I	be present? Yes (Adjusted) soluble	Adopted DS Class Soluble	S = DS-1
	Is pyrite assumed to I	be present? Yes (Adjusted) soluble sulfate	Soluble magnesium	S = DS-1
	Is pyrite assumed to I Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	S = DS-1
	Is pyrite assumed to I Water data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	S = DS-1
	S pyrite assumed to I Water data Characteristic Value (Maximum Level) DS Class PH data	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	S = DS-1
•	Spyrite assumed to In the Water data Characteristic Value (Maximum Level) DS Class PH data Number of tests	(Adjusted) soluble sulfate (mg/l) O Soil 1	Soluble magnesium (mg/l)	S = DS-1
•	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 1 0	Soluble magnesium (mg/l)	S = DS-1
•	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) O Soil 1	Soluble magnesium (mg/l)	S = DS-1
•	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 1 0	Soluble magnesium (mg/l)	S = DS-1
•	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 1 0 8.1	Soluble magnesium (mg/l)	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests b. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 1 0 8.1	Soluble magnesium (mg/l)	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests b. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 1 0 8.1 8.1	Soluble magnesium (mg/l)	ACEC Class design value Natural ground

		elopments Ltd		al to which this assessment applies
oject	Begbroke		Head Deposits	
b numb	19114			
	Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
	Soil data			
				Water
		(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	soluble magnesium (mg/l)
Nr	Number of tests b. tests in 20% data set	2 0	2 0	0
	ts with suspected pyrite	· ·	Ö	
	Maximum value	10.6	0.1	
Mea	n of highest two values	10	0	
	Mean of highest 20% Characteristic Value	10.6	0.1	
		[no pyrite]	[pyrite suspected]	
	DS Class	DS-1	DS-1	
	If pyrite suspected, D	S Class limited to	DS-1	
	Is pyrite assumed to I	be present? No	Adopted DS Class	s = DS-1
	Is pyrite assumed to I Water data	be present? No	Adopted DS Class	s = DS-1
				s = DS-1
		(Adjusted) soluble	Soluble	s = DS-1
		(Adjusted) soluble sulfate	Soluble magnesium	S = DS-1
	Water data	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
		(Adjusted) soluble sulfate	Soluble magnesium	S = DS-1
	Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	S = DS-1
	Water data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	S = DS-1
	Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	S = DS-1
	Characteristic Value (Maximum Level) DS Class PH data Number of tests	(Adjusted) soluble sulfate (mg/l) 0 Soil 2	Soluble magnesium (mg/l)	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set	(Adjusted) soluble sulfate (mg/l) 0 Soil 2 0	Soluble magnesium (mg/l) 0	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) 0 Soil 2	Soluble magnesium (mg/l) 0	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set	(Adjusted) soluble sulfate (mg/l) 0 Soil 2 0	Soluble magnesium (mg/l) 0	S = DS-1
No	Characteristic Value (Maximum Level) DS Class PH data Number of tests b. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) 0 Soil 2 0 7.2	Soluble magnesium (mg/l) 0	S = DS-1
	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	(Adjusted) soluble sulfate (mg/l) 0 Soil 2 0 7.2 7.2	Soluble magnesium (mg/l) 0	S = DS-1
	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) O Soil 2 0 7.2 7.2 7.2	Soluble magnesium (mg/l) 0	ACEC Class design value
	Characteristic Value (Maximum Level) DS Class PH data Number of tests of tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) 0 Soil 2 0 7.2 7.2 7.2 0 In value	Soluble magnesium (mg/l) 0	

lient C	Oxford University Deve	elopinents Ltd	Location or materia	I to which this assessment applies
oject B	Begbroke		Kellaways Clay	i to which this assessment applies
b numb	19114		1	
(Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
<u>-</u>	Soil data			
_	Jon data			
		(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	Water soluble magnesium (mg/l)
No	Number of tests	5	5	0
	tests in 20% data set with suspected pyrite	1	1 3	
110. 16313	Maximum value	3070	16.4	
	of highest two values	1884	15	
	Mean of highest 20% Characteristic Value	1884	15	
		[no nurito]		
_	DS Class	[no pyrite] DS-3	[pyrite suspected] DS-5	<u> </u>
_				-
If	f pyrite suspected, D	S Class limited to	DS-4	=
	f pyrite suspected, D s pyrite assumed to I		DS-4 Adopted DS Class	= DS-4
ls				= DS-4
ls	s pyrite assumed to I	be present? Yes	Adopted DS Class	= DS-4
ls	s pyrite assumed to I		Adopted DS Class Soluble	= DS-4
ls	s pyrite assumed to I	be present? Yes (Adjusted) soluble	Adopted DS Class	= DS-4
ls <u>V</u>	s pyrite assumed to I	be present? Yes (Adjusted) soluble sulfate	Soluble magnesium	= DS-4
ls <u>V</u>	s pyrite assumed to I Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
ls <u>V</u>	s pyrite assumed to I Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	s pyrite assumed to I Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Nater data Characteristic Value (Maximum Level) DS Class OH data	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l) 0	= DS-4
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 5	Soluble magnesium (mg/l)	= DS-4
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) O Soil 5 1	Soluble magnesium (mg/l) 0	= DS-4
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 5 1 7.3	Soluble magnesium (mg/l) 0	= DS-4
S	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) O Soil 5 1	Soluble magnesium (mg/l) 0	= DS-4
S	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	Soil 5 1 7.3 7.3	Soluble magnesium (mg/l) 0	= DS-4
Is	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 5 1 7.3 7.3 7.3	Soluble magnesium (mg/l) 0	= DS-4
No.	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 5 1 7.3 7.3 0	Soluble magnesium (mg/l) 0	= DS-4 ACEC Class design value
No.	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 5 1 7.3 7.3 7.3 0 n value	Soluble magnesium (mg/l) 0	

lient O	Oxford University Deve	elopments Lta	Location or materia	I to which this assessment applies
oject B	Begbroke		Kellaways Sand	ii to which this assessment applies
b numb	19114		1	
(Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
5	Soil data			
_	<u> </u>			
		(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	Water soluble magnesium (mg/l)
No. 1	Number of tests tests in 20% data set	5 1	5 1	0
	with suspected pyrite	•	3	
	Maximum value	802	5	
	of highest two values	743	4	
	Mean of highest 20% Characteristic Value	743	4	
		[no pyrite]	[pyrite suspected]	
_	DS Class	DS-2	DS-5	-
				<u> </u>
If	nyrita suspected D	S Class limited to	118-4	
If	pyrite suspected, D	S Class limited to	DS-4	_
	pyrite suspected, D s pyrite assumed to I		Adopted DS Class	= DS-4
ls	s pyrite assumed to I			= DS-4
ls				= DS-4
ls	s pyrite assumed to I	be present? Yes		= DS-4
ls	s pyrite assumed to I		Adopted DS Class Soluble	= DS-4
ls	s pyrite assumed to I	be present? Yes (Adjusted) soluble	Adopted DS Class	= DS-4
ls <u>V</u>	s pyrite assumed to I	be present? Yes (Adjusted) soluble sulfate	Soluble magnesium	= DS-4
ls <u>V</u>	Nater data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
ls <u>V</u>	S pyrite assumed to I Nater data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac}\f{\frac{\fir\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	Nater data Characteristic Value (Maximum Level)	the present? Yes (Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
\ \frac{\fir}{\frac{\frac{\frac{\frac{\frac}\f{\frac{\fir\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{	Nater data Characteristic Value (Maximum Level) DS Class OH data	be present? Yes (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= DS-4
\ \frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\fra	Nater data Characteristic Value (Maximum Level) DS Class OH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 5	Soluble magnesium (mg/l)	= DS-4
\ \frac{\frac}\f{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\fra	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) O Soil 5 1	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH	Soil 5 1 7.5	Soluble magnesium (mg/l) 0	= DS-4
\frac{\fir}\firrec{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) O Soil 5 1	Soluble magnesium (mg/l) 0	= DS-4
\frac{\fir}{\frac{\fir}\f{\fir}}}}}{\firac{\fir}{\fir}{\fir}}}}}}{\frac{\frac{	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	Soil 5 1 7.5 7.5	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 5 1 7.5 7.5	Soluble magnesium (mg/l) 0	= DS-4
No. 1	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 5 1 7.5 7.5 0	Soluble magnesium (mg/l) 0	ACEC Class design value
No. 1	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 5 1 7.5 7.5 7.5 0 n value	Soluble magnesium (mg/l) 0	

lient C	Oxford University Deve	elopments Lta	Location or materia	I to which this assessment applies
roject E	Begbroke		Oxford Clay	ii to willen tills assessment applies
b numb	19114			
	Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
-	Soil data			
_				Water
	Number of toots	(Adjusted) water soluble sulfate (mg/l)	Total potential sulfate (%)	Water soluble magnesium (mg/l)
No.	Number of tests tests in 20% data set	2 0	2 0	0
No. tests	with suspected pyrite		2	
	Maximum value	3070	12.9	
	of highest two values	1550	7	
	Mean of highest 20% Characteristic Value	3070	12.9	
		[no pyrite]	[pyrite suspected]	
<u> </u>	DS Class	DS-3	DS-5	_
				<u> </u>
	f nurita auanaatad D	C Class limited to	DC 4	
If	f pyrite suspected, D	S Class limited to	DS-4	_
	f pyrite suspected, D s pyrite assumed to I		DS-4 Adopted DS Class	= DS-4
ls	s pyrite assumed to I			= DS-4
ls				= DS-4
ls	s pyrite assumed to I	be present? Yes	Adopted DS Class	= DS-4
ls	s pyrite assumed to I		Adopted DS Class Soluble	= DS-4
ls	s pyrite assumed to I	be present? Yes (Adjusted) soluble	Adopted DS Class	= DS-4
1s <u>N</u>	s pyrite assumed to I	be present? Yes (Adjusted) soluble sulfate	Soluble magnesium	= DS-4
1s <u>N</u>	s pyrite assumed to I Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
1s <u>N</u>	s pyrite assumed to I Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
!s	s pyrite assumed to I Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-4
!s	S pyrite assumed to I Water data Characteristic Value (Maximum Level) DS Class OH data	he present? Yes (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= DS-4
! 	S pyrite assumed to I Water data Characteristic Value (Maximum Level) DS Class DH data Number of tests	(Adjusted) soluble sulfate (mg/l) Soil 2	Soluble magnesium (mg/l)	= DS-4
!! <u>\</u> 	S pyrite assumed to I Water data Characteristic Value (Maximum Level) DS Class DH data Number of tests tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 2 0	Soluble magnesium (mg/l) 0	= DS-4
! 	Characteristic Value (Maximum Level) DS Class PH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 2	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class PH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.3	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class PH data Number of tests tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 2 0	Soluble magnesium (mg/l) 0	= DS-4
	Characteristic Value (Maximum Level) DS Class PH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.3	Soluble magnesium (mg/l) 0	= DS-4
Is	Characteristic Value (Maximum Level) DS Class OH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 2 0 7.3	Soluble magnesium (mg/l) 0	= DS-4
No.	Characteristic Value (Maximum Level) DS Class DH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 2 0 7.3 7.3	Soluble magnesium (mg/l) 0	ACEC Class design value
No.	Characteristic Value (Maximum Level) DS Class DH data Number of tests tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value oil pH results less than 5.5	(Adjusted) soluble sulfate (mg/l) Soil 2 0 7.3 7.3 7.3 0 n value	Soluble magnesium (mg/l) 0	

ent Oxford University Deve	ыориненка ши		al to which this assessment applies
oject Begbroke		River Terrace Depos	sits
ob numb 19114			
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
Joil data			
	(A divisted) water	Total notantial	Water soluble
	(Adjusted) water soluble sulfate	Total potential sulfate	
	(mg/l)	(%)	magnesium (mg/l)
Number of tests	15	15	0
No. tests in 20% data set		3	U
No. tests with suspected pyrite	5	0	
Maximum value	307	0.2	
Mean of highest two values		0.2	
Mean of highest 20%	100	0	
Characteristic Value		0.1	
		[pyrite suspected]	
DS Class	[no pyrite] DS-1	DS-1	_
			<u> </u>
If we will a second and a D	S Class limited to	DS-1	
If pyrite suspected, D	o olass lillitea to		_
			== DS-1
Is pyrite assumed to		Adopted DS Class	s = DS-1
			s = DS-1
Is pyrite assumed to	be present? No	Adopted DS Class	s = DS-1
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	s = DS-1
Is pyrite assumed to	be present? No	Adopted DS Class	s = DS-1
Is pyrite assumed to	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	s = DS-1
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Value (Maximum Level)	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 15	Soluble magnesium (mg/l)	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) Soil 15 3	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 15 3 7.2	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 15 3 7.2 7.3	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 15 3 7.2	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 15 3 7.2 7.3 7.3	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 15 3 7.2 7.3 7.3	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 15 3 7.2 7.3 7.3	Soluble magnesium (mg/l) 0	ACEC Class design value
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 15 3 7.2 7.3 7.3 7.3 0 pn value	Soluble magnesium (mg/l) 0	

Site: Begbroke

Client: Oxford University Developments

Test Location SA302 Date of start 08/02/2023 Date at end 08/02/2023 Test Run 1 Test Run 2 Test Run 3 Pit Dimensions (m) Pit Dimensions (m) Pit Dimensions (m) Trial Pit Length (L) 1.700m Trial Pit Length (L) 1.700m Trial Pit Length (L) 1.700m Trial Pit Breadth / Width (B) Trial Pit Breadth / Width (B) Trial Pit Breadth / Width (B) 1.600m 1.600m 1.600m Effective Depth (D) 2.500m Effective Depth (D) 2.500m Effective Depth (D) 2.500m Time at Start of Filling Time at Start of Filling Time at Start of Filling 13.36 13.59 14.14 Time at End of Filling 13.38 Time at End of Filling 14.01 Time at End of Filling 14.16 Depth from Surface to Water (D_{TW}) Depth below Surface to Water (D_{TW}) Depth below Surface to Water (D_{TW}) 1.100m 1.100m 1.100m Water Depth (W_D) Water Depth (W_D) Water Depth (W_D) 1.400m 1.400m 1.400m Maximum Fill Volume (V_W) 3.808m³ Maximum Fill Volume (V_W) 3.808m³ Maximum Fill Volume (V_W) 3.808m³ Gravel used to backfill Test Pit Gravel used to backfill Test Pit Gravel used to backfill Test Pit Yes Yes Yes Porosity of Gravel Backfill (P₁) 0.300 Porosity of Gravel Backfill (P₁) 0.300 Porosity of Gravel Backfill (P_t) 0.300 Corrected Water Volume (V_{WC}) Corrected Water Volume (V_{WC}) Corrected Water Volume (V_{WC}) 1.142m³ 1.142m³ 1.142m³ Time to soakaway Time to soakaway Time to soakaway Depth to Duration Depth to Duration Depth to Duration Time Time Time water water water Day Time Seconds Day Time (m bgl) Seconds Day Time (m bgl) Seconds (m bgl) 14.010 0 0 13.380 1.100 0 14.160 1.100 1 13.390 1.630 60 1 14.020 1.430 60 1 14.170 1.410 60 13.400 1.730 1 120 14.180 120 1 120 14.030 1.620 1 1.600 13.410 1.900 180 14.190 180 1 14.040 1.740 180 1 1.700 1 1 13.420 2.000 240 1 14.050 1.860 240 1 14.200 1.810 240 1 13.430 2.050 300 14.060 1.910 300 1 14.210 1.810 300 13.450 2.190 420 1 14.070 1.970 360 1 14.220 1.940 360 13.460 2.200 480 2.030 420 14.230 2.010 420 1 1 14.080 1 480 1 14.090 2.080 480 14.240 2.040 480 1 480 2.110 540 2.100 1 14.100 1 14.250 540 480 1 14.110 2.150 600 1 14.260 2.140 600 480 14.120 2.180 660 14.270 2.160 660 1 1 480 14.130 2.210 720 14.280 2.190 720 2.220 720 14.290 780 480 1 480 720 780 480 780 720 480 720 780 480 720 780 480 720 780 480 780 720 480 720 780 480 720 780 480 720 780 25% water loss (75% full) 1.450m 25% water loss (75% full) 25% water loss (75% full) 1.450m 1.450m 50% water loss (50% full) 50% water loss (50% full) 50% water loss (50% full) 1.800m 1.800m 1.800m 75% water loss (25% full) 75% water loss (25% full) 2.150m 2.150m 75% water loss (25% full) 2.150m 25% time (seconds) 25% time (seconds) 25% time (seconds) 40 sec 66 sec 73 sec 75% time (seconds) 75% time (seconds) 75% time (seconds) 386 sec 609 sec 630 sec Vp 75-25 0.571m3 Vp 75-25 0.571m³ Vp 75-25 0.571m³ ap 50 (Actual area from test) ap 50 (Actual area from test) ap 50 (Actual area from test) 7.340m³ 7.340m³ 7.340m³ tp 75 - 25 tp 75 - 25 346 sec 542 sec tp 75 - 25 557 sec 1.44E-04m/s Soil Infiltration Rate Soil Infiltration Rate 2.25E-04m/s Soil Infiltration Rate 1.40E-04m/s Form completed by **Duration (Seconds)** PRINT CR 0 3600 7200 10800 14400 18000 21600 0 **†** 0 SIGN CR Tested By Degree of Infiltration (%) 25 25 DATE 08/02/2023 50 50 PRINT CR 75 75 Calculated SIGN CR By 100 100 DATE 09/02/2023 180 300 360 **Duration (Minutes)** PRINT NT Checked by SIGN NT Test Run 1 Test Run 2 Test Run 3 DATE 08/03/2023

Site: BEGBROKE

Chem. Test Location	on		.09	Date of star	t	30/09	/2021	Date at end	01/10	/2021	
	Test I	Run 1			Test	Run 2			Test	Run 3	
	Pit Dimen	sions (m)			Pit Dime	nsions (m)			Pit Dimer	nsions (m)	
Trial Pit Len	gth (L)		2.000m	Trial Pit Len	gth (L)			Trial Pit Len	gth (L)		
Trial Pit Brea	adth / Width (B)	0.650m	Trial Pit Brea	adth / Width	(B)		Trial Pit Bre	adth / Width	(B)	
Effective De	,		1.100m	Effective De	pth (D)			Effective De	epth (D)		
Time at Star	t of Filling			Time at Star	t of Filling			Time at Star	rt of Filling		
Time at End			9.29	Time at End	of Filling			Time at End			
Depth from S	Surface to Wa	ater (D _{TW})	0.500m	Depth below	Surface to \	Water (D _{TW})		•	v Surface to V	Vater (D _{TW})	
Water Depth	n (W _D)		0.600m	Water Depth	า (W _D)		-	Water Depth	h (W _D)		-
Maximum Fi	II Volume (V _V	v)	0.780m ³	Maximum Fi	ill Volume (V	_W)	-	Maximum F	ill Volume (V ₁	_N)	•
	to backfill Te		Yes		to backfill To				I to backfill Te		
,	Gravel Backfil	· · · · · ·	0.300		Gravel Backfi	, ,			Gravel Backfi		
Corrected W	ater Volume	(V _{WC})	0.234m³	Corrected W	/ater Volume	(V _{WC})	-	Corrected V	Vater Volume	-	
	Time to s	oakaway			Time to	soakaway			Time to		
Ti	me	Depth to water	Duration	Ti	me	Depth to water	Duration	Ti	me	Depth to water	Duration
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	9.290	0.500	0								
1	9.300	0.580	60								
1	9.310	0.620	120								
1	9.330	0.650	240								
1	9.350	0.670	360								
1	9.390	0.700	600								
1	9.440	0.710	900								
1	9.590	0.730	1800								
1	10.290	0.740	3600								
1	11.290	0.750	7200								
1	13.290	0.750	14400								
2	9.000	0.760	84660								
2	12.000	0.760	95460								
			95460								
			95460								
			95460								
			95460								
			95460								
			95460								
			95460								
			95460								
			95460								
250/ water l	oss (75% ful	1\	95460	25% water	occ /759/ fu			2E9/ water	loss (75% fu	III\	
	oss (75% ful	-	0.650m 0.800m	50% water		-	-		loss (75% lu loss (50% fu		-
	oss (35% ful	•	0.800m	75% water	<u> </u>				loss (30 % lu loss (25% fu		
25% time (s		.,	264 sec	25% time (s		,	-	25% time (s		,	-
75% time (s			-	75% time (s			-	75% time (s			-
Vp 75-25			0.117m³	Vp 75-25			_	Vp 75-25	2001140)		-
	ual area fron	n test)	2.890m³		ual area fro	m test)	-		ual area fror	n test)	-
tp 75 - 25			2.000	tp 75 - 25		1551,		tp 75 - 25			
	ation Rate			Soil Infiltrat	tion Rate		-	Soil Infiltra	tion Rate		
		<u> </u>								npleted by	
() 36	300 7		on (Seconds) 10800	14400	18000	21600		PRINT	1	IH
0 -	, o							Tested By	SIGN	N.	IH
% ₂₅							25	rested by	SIGN	iv	
) 25 0							25		DATE	08/10	/2021
trafi 05							50		PRINT	N	IH
<u>≡</u> 75 <u>=</u>							75	Calculated			
ο 100							100	Ву	SIGN	N	IH
<i>x</i>) (60	120	180	240	300			DATE	08/10	/2021
Ŏ			Duration	on (Minutes)					PRINT		IT
	_	—Test Run	1 — Te	est Run 2	——Test R	tun 3		Checked by	SIGN	N	IT
								<u> </u>	DATE	08/10	/2021
_	_							-		. —	

Site: BEGBROKE SCIENCE PARK

Test L			SA	<u>.01</u>	Date of star	rt	29.0	9.21	Date at end	29.0	9.21		
			Run 1				Run 2				Run 3		
			sions (m)				nsions (m)				nsions (m)		
		gth (L)		2.300m	Trial Pit Len	0 ()		2.300m	Trial Pit Len	· ,		2.300m	
		adth / Width (B)	0.500m		adth / Width	(B)	0.500m		adth / Width ((B)	0.500m	
		pth (D)		2.000m	Effective De	. ,		2.000m	Effective De			2.000m	
_		t of Filling			Time at Star				Time at Star				
		of Filling	-t (D)	10.57	Time at End		M-t (D)	11.34	Time at End		M=4== (D)	11.48	
		Surface to Wa	ater (D _{TW})	1.230m		Surface to V	vater (D _{TW})	1.000m	Depth below Surface to Water (D _{TW})			1.000m	
Water		, -,	\	0.770m	Water Depth (W _D) Maximum Fill Volume (V)			1.000m	Water Depth	, -,	\	1.000m	
		II Volume (V _v to backfill Te	• /	0.886m³	Maximum Fill Volume (V _W) Gravel used to backfill Test Pit			1.150m³		Il Volume (V _v	• ,	1.150m³	
		Gravel Backfil		Yes 0.300		Gravel Backfil		Yes 0.300		Gravel Backfil		Yes	
	,	ater Volume	` ''	0.266m ³	,	ater Volume	` '/	0.345m ³	•	ater Volume	,	0.300 0.345m ³	
-	7.00 11		soakaway	0.200111	Corrected V		soakaway	0.545111	Concolod 11			0.545111	
			Depth to	Duration			Depth to	Duration		Time to soakaway Time Depth to water			
	Tir	me	water	Daration	Ti	me	water	24.4	Ti	me	Duration		
Da	ay	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	
1		10.570	1.230	0	1	11.340	1.000	0	1	11.480	1.000	0	
1		10.580	1.390	60	1	11.350	1.310	60	1	11.490	1.370	60	
1		10.590	1.520	120	1	11.360	1.510	120	1	11.500	1.480	120	
1		11.000	1.630	180	1	11.370	1.620	180	1	11.510	1.550	180	
1		11.020	1.790	300	1	11.390	1.780	300	1	11.530	1.660	300	
1		11.040	1.920	420	1	11.410	1.890	420	1	11.550	1.870	420	
				420	1	11.430	1.940	540	1	11.580	1.940	600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
				420				540				600	
050/		/7F0/ f 1	n\	420	050/ / 1	(7F0/ f		540	050/ / 1	(TEO())	111	600	
		oss (75% ful	•	1.423m		oss (75% fu	•	1.250m		oss (75% ful		1.250m	
		oss (50% ful oss (25% ful		1.615m	75% water l	oss (50% fu		1.500m		oss (50% ful	-	1.500m	
			1)				11)		75% water I		11)	1.750m	
	•	econds)		75 sec	25% time (s 75% time (s			48 sec	25% time (s 75% time (s			41 sec	
Vp 75-		econus)		316 sec 0.133m ³	Vp 75-25	econus		278 sec	Vp 75-25	econus)		351 sec 0.173m ³	
-		ual area fron	n tost)	3.306m ³	-	ual area fror	n toet)	0.173m ³ 3.950m ³	-	ual area fron	n toet)	3.950m ³	
ар 30 tp 75 -	•	uai ai ea ii Oii	ii lesij	241 sec	tp 75 - 25	uai ai ea ii oi	ii iesi)	229 sec	tp 75 - 25	uai ai ea ii Oi	ii iesi)	311 sec	
		ation Rate	1 67F-	04m/s	Soil Infiltrat	tion Rate	1 91F	·04m/s	Soil Infiltrat	ion Rate	1 40F	04m/s	
00		ation italo	1.07 2	0411110	Oon minuta	ion rate	1.012	0-1111/0	OON MINICIAL		npleted by	0411110	
				Duratio	on (Seconds)					Form con	ipieted by		
	C) 36	500 7		10800	14400	18000	21600		PRINT	N	Н	
_	0 =		,	 	· · · · · · · · · · · · · · · · · · ·		•••	 † 0	Tested By	SIGN	N/	Н	
%)	25							25					
io								Ę.	DATE 08/10		08/10	/2021	
Itrat	50							50		PRINT	N	Н	
IJ IJ	75	1						75	Calculated			ш	
o of	100	\	<u> </u>					100	Ву	SIGN	IV	Н	
Degree of Infiltration (%)	C) (60	120	180	240	300	360		DATE	08/10	/2021	
Deć				Duration	on (Minutes)					PRINT	N	T	
		_	—Test Run	1 — T	est Run 2	Test R	un 3		Checked by	SIGN	N	Т	
										DATE	08/10	/2021	

Site: BEGBROKEE SCIENCE PARK
Client: OXFORD UNIVERSITY DEVELOPMENT

Test Locati			<u> 102</u>	Date of star			/2021	Date at end 30/10/2021 Test Run 3			
	Test					Run 2					
Tail Diction		sions (m)	0.500	Taial Diction		nsions (m)	0.500	Taial Diction		sions (m)	0.500
Trial Pit Len	<u> </u>	D)	2.500m	Trial Pit Len	<u> </u>	(D)	2.500m	Trial Pit Len	· ,	'D)	2.500m
	adth / Width (В)	0.650m		adth / Width	(B)	0.650m		adth / Width (В)	0.650m
Effective De Fime at Star	. , ,		2.000m	Effective De	. ,		2.000m	Effective De	. , ,		2.000m
Time at Star			0.14	Time at Star Time at End			12.20	Time at Start of Filling Time at End of Filling			12.26
	Surface to W	ator (D.)	9.14 1.000m		Surface to V	Mator (D.)	12.29 1.000m		Surface to V	Vator (D.)	13.36
Nater Depth		ater (D _{TW})	1.000m	Water Depth		valei (D _{TW})	1.000m	Water Depth		valei (D _{TW})	1.000m 1.000m
•	ill Volume (V _V)	1.625m ³		II Volume (V ₁)	1.625m ³		ill Volume (V _v)	1.625m ³
	to backfill Te	• • • • • • • • • • • • • • • • • • • •	Yes		to backfill Te	• • •	Yes		to backfill Te	*/	Yes
	Gravel Backfil		0.300		Gravel Backfi		0.300		Gravel Backfil		0.300
•	/ater Volume	,	0.488m ³	,	ater Volume	,	0.488m ³	•	/ater Volume	, 0	0.488m ³
		soakaway	0.400111	0000		soakaway	0.400111	00.100.00		soakaway	0.400111
_		Depth to	Duration	_		Depth to	Duration	_	Duration		
l I	me	water		l I	me	water		Ti			
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	9.140	1.000	0	1	12.290	1.000	0	1	13.360	1.000	0
1	9.150	1.270	60	1	12.300	1.200	60	1	13.370	1.250	60
1	9.160	1.360	120	1	12.400	1.300	660	1	13.380	1.340	120
1	9.170	1.420	180	1	12.410	1.390	720	1	13.390	1.390	180
1	9.190	1.510	300	1	12.430	1.480	840	1	13.410	1.450	300
1	9.210	1.570	420	1	12.450	1.530	960	1	13.430	1.510	420
1	9.240	1.650	600	1	12.480	1.600	1140	1	13.460	1.560	600
1	9.270	1.720	780	1	12.510	1.650	1320	1	13.490	1.610	780
1	9.310	1.780	1020	1	12.540	1.700	1500	1	13.510	1.640	900
			1020	1	12.580	1.740	1740	1	13.560	1.720	1200
			1020	1	13.010	1.760	1920	1	13.610	1.780	1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
			1020				1920				1500
25% water l	loss (75% ful	II)	1.250m	25% water l	oss (75% fu	II)	1.250m	25% water l	loss (75% ful	II)	1.250m
50% water I	loss (50% fu	II)	1.500m	50% water l	oss (50% fu	II)	1.500m	50% water	loss (50% fu	II)	1.500m
75% water I	loss (25% fu	II)	1.750m	75% water l	oss (25% fu	II)	1.750m	75% water l	oss (25% fu	II)	1.750m
25% time (s	econds)		56 sec	25% time (s	econds)		360 sec	25% time (s	econds)		88 sec
75% time (s	econds)		900 sec	75% time (s	econds)		1830 sec	75% time (s	econds)		1350 sec
/p 75-25			0.244m³	Vp 75-25			0.244m³	Vp 75-25			0.244m³
ap 50 (Act	ual area fron	n test)	4.775m³	ap 50 (Act	ual area fror	n test)	4.775m³	ap 50 (Act	ual area fron	n test)	4.775m³
p 75 - 25			844 sec	tp 75 - 25			1470 sec	tp 75 - 25			1262 sec
Soil Infiltr	ration Rate	6.05E	-05m/s	Soil Infiltrat	ion Rate	3.47E	·05m/s	Soil Infiltrat	tion Rate	4.05E-	05m/s
									Form con	npleted by	
				on (Seconds)				Form completed by		Н	
0 -	0 30	600 7	7200	10800 14400 18000			21600	PRINT MH			
							···· 0	Tested By SIGN MH		Н	
25							25	'		/2021	
50 atio	/							 			
Degree of Infiltration (%) 25 20 100 - 65 100 100 100 100 100 100 100 100 100 10							50	Calacitata	PRINT	M	Н
± ′o :							75	Calculated By	SIGN	M	Н
g 100 =	1	 	400	400			100	Ву	DATE	08/10	/2021
egr	0 (60	120	180	240	300	360		DATE	06/10	12021
Õ			Durati	on (Minutes)					PRINT	N	Т
		_			_	_		Checked by	SIGN	N	Т
		— Test Run	1 — T	est Run 2	—— Test R	un 3					
								<u> </u>	DATE	08/10	/2021
							_				

Site: BEGBROKE SCIENCE PARK

Client:		UNIVERSITY -									
Test Loc			A03	Date of star			/2021	Date at end		01/10	/2021
		st Run 1				Run 2				Run 3	
		nensions (m)				nsions (m)	1			sions (m)	
	Length (L)		2.200m	Trial Pit Len	<u> </u>			Trial Pit Len	· ,		
	Breadth / Wid	th (B)	0.500m	Trial Pit Brea	adth / Width	(B)		Trial Pit Bre	adth / Width ((B)	
	Depth (D)		1.000m	Effective De				Effective De	. ,		
Time at S	Start of Filling			Time at Star	t of Filling			Time at Star	t of Filling		
	End of Filling		9.45	Time at End of Filling				Time at End			
	om Surface to	Water (D _{TW})	0.460m	Depth below Surface to Water (D _{TW})				Depth below	Surface to V	Vater (D _{TW})	
	epth (W _D)		0.540m	Water Depth	, 5,		-	Water Depth	τ υ,		-
	n Fill Volume	(117	0.594m ³	Maximum Fi	II Volume (V	w)	-	Maximum Fi	ill Volume (V _v	_v)	-
	sed to backfil		Yes	Gravel used	to backfill To	est Pit			to backfill Te		
,	of Gravel Bad	\ <i>U</i>	0.300	Porosity of C	Gravel Backfi	ill (P _t)		,	Gravel Backfil	, 0	
Correcte	d Water Volu	me (V _{WC})	0.178m³	Corrected W	ater Volume	(V _{WC})	-	Corrected W	-		
	Time	to soakaway			Time to	soakaway			Time to s	soakaway	
	Time	Depth to water	Duration	Ti	me	Depth to water	Duration	Ti	Duration		
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	9.450	0.460	0								
1	9.460	0.460	60								
1	9.470	0.460	120								
1	9.480	0.460	180								
1	9.500	0.470	300								
1	9.520	0.470	420								
1	9.550	0.470	600								
1	10.050	0.470	1200								
1	10.150	0.480	1800								
1	10.450	0.490	3600								
1	11.150	0.510	5400								
1	11.450	0.530	7200								
1	12.150	0.540	9000								
1	13.150	0.560	12600								
1	14.150	0.570	16200								
1	15.150	0.580	19800								
1	15.450		21600								
2	8.450	0.760	82800								
2	11.150	0.780	91800								
2	15.150	0.800	106200								
3	8.450	0.830	169200								
3	12.450	0.840	183600								
			183600								
25% wat	ter loss (75%	full)	0.595m	25% water I	oss (75% fu	II)	-	25% water	oss (75% fu	II)	-
50% wat	ter loss (50%	full)	0.730m	50% water I	oss (50% fu	·II)	-	50% water	oss (50% fu	II)	-
75% wat	ter loss (25%	full)	0.865m	75% water I	oss (25% fu	·II)	-	75% water	oss (25% fu	II)	-
25% tim	e (seconds)		21150 sec	25% time (s	econds)		-	25% time (s	econds)	-	-
	e (seconds)		-	75% time (s	econds)		-	75% time (s			-
Vp 75-25	5		0.089m³	Vp 75-25			-	Vp 75-25			-
ар 50 (Actual area f	rom test)	2.558m³	ap 50 (Act	ual area fro	m test)	-	ap 50 (Act	ual area fron	n test)	-
tp 75 - 2	5			tp 75 - 25				tp 75 - 25			
Soil In	filtration Rat	е	-	Soil Infiltrat	ion Rate		-	Soil Infiltrat	tion Rate		
		•				•			Form con	npleted by	
			Duratio	on (Seconds)					ı		
	0	3600	7200	10800	14400	18000	21600		PRINT	M	Н
	0 1						‡ 0	Tested By	SIGN	M	Н
8 2	25						25		DATE	09/10	/2021
ō	50						E		DATE	08/10	12021
iltra							50		PRINT	M	н
_ <u>=</u> 7	75 =						75	Calculated	SIGN	M	Н
δ ₀ 10	00 1				 		100	Ву	SIGIN		
gree	0	60	120	180	240	300	360		DATE	08/10	/2021
De			Durati	on (Minutes)					PRINT	N	Т
								01			
		——Test Rui	1 — T	est Run 2	Test R	un 3		Checked by	SIGN	N	Т
									DATE	08/10	/2021
								<u> </u>	<u> </u>		

Site: BEGBROKE SCIENCE PARK

Client:	OXFORD UI					29/09/2021 Date at end 01/10/2					
Test Location			<u> 104</u>	Date of star			/2021	Date at end			/2021
	Test					Run 2				Run 3	
		sions (m)				nsions (m)				sions (m)	
Trial Pit Len	<u> </u>		2.200m	Trial Pit Len	. ,			Trial Pit Len	· ,		
	adth / Width (В)	0.500m	Trial Pit Brea		(B)			adth / Width (B)	
Effective De	. ,		1.400m	Effective De	` ,			Effective De	. ,		
Time at Star				Time at Star				Time at Star			
Time at End			10.30	Time at End of Filling				Time at End			
Depth from S		ater (D _{TW})	0.700m	Depth below		Vater (D _™)			/ Surface to V	Vater (D _{TW})	
Water Depth	(),		0.700m	Water Depth (W _D) Maximum Fill Volume (V _W)			-	Water Depth			-
Maximum Fi		**	0.770m ³		•	•••	-		ill Volume (V _V	• • •	-
	to backfill Te		Yes	Gravel used					to backfill Te		
	Gravel Backfil	` '	0.300	Porosity of G					Gravel Backfil	, ,	
Corrected W	ater Volume		0.231m ³	Corrected W			-	Corrected W	/ater Volume		-
	Time to s	oakaway	B (Time to	soakaway	D (Time to s	Depth to	D (
	me	Depth to water	Duration		me	Depth to water	Duration	Ti	Duration		
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	10.300	0.700	0								
1	10.310	0.700	60	-		<u> </u>					
1	15.300	0.730	18000								
2	10.300	0.750	86400								
2	15.300	0.760	104400								
3	8.300	0.750	165600								
			165600								
			165600								
			165600								
			165600								
			165600								
			165600								
			165600 165600								
			165600								
			165600 165600								
			165600								
			165600								
			165600								
			165600								
			165600								
			165600								
25% water I	oss (75% ful	1)	0.875m	25% water I	oss (75% fu	II)	_	25% water	loss (75% fu	1)	_
	oss (50% ful	•	1.050m	50% water I			_		loss (50% fu	•	_
	oss (25% ful	•	1.225m	75% water I			_		loss (25% fu	•	_
25% time (s		,	-	25% time (s		·· <i>,</i>	_	25% time (s	•	,	-
75% time (s			_	75% time (s	-		_	75% time (s			_
Vp 75-25			0.116m ³	Vp 75-25	,		-	Vp 75-25			-
-	ual area fron	n test)	2.990m³	ap 50 (Act	ual area froi	n test)	-	•	ual area fron	n test)	-
tp 75 - 25		,		tp 75 - 25				tp 75 - 25		,	
Soil Infiltr	ation Rate			Soil Infiltrat	ion Rate			tp 75 - 25 Soil Infiltration Rate			
								Form completed by			
			Duratio	on (Seconds)					r		
(36	500 7	200	10800	14400	18000	21600	PRINT I		IV	IH
© 0							 0	Tested By	SIGN	M	IH
<u></u> 25							25		DATE	08/10	/2021
og atio							50				
filtra							F	.	PRINT	M	IH
<u>1</u> 75 ±							75	Calculated	SIGN	M	IH
Degree of Infiltration (%) 001 52 64 65 65 65 65 65 65 65 65 65 65 65 65 65		 					100	Ву		00/40	1/2024
egre) (60	120	180	240	300	360		DATE	08/10	/2021
۵			Duratio	on (Minutes)					PRINT	N	IT
		+		D ==	- :=	0		Checked by	SIGN	N	IT
		— Test Run	1 — 10	est Run 2	——Test R	ui) 3		ĺ			
									DATE	08/10	/2021

Site: BEGBROKE SCIENCE PARK

Client:	OXFORD UI										
Test Locati			<u> 105</u>	Date of star			/2021	Date at end			/2021
	Test					Run 2		Test Run 3			
		sions (m)				nsions (m)		Pit Dimensions (m)			
Trial Pit Length (L) 2.000m				Trial Pit Length (L)				Trial Pit Len			
Trial Pit Breadth / Width (B) 0.650m				Trial Pit Breadth / Width (B)				Trial Pit Brea			
			1.400m	Effective De	` ,			Effective De			
Time at Start of Filling			Time at Star				Time at Star				
Time at End of Filling 11.00				Time at End				Time at End			
			0.500m	Depth below		Vater (D _™)		Depth below			
Water Depth (W _D) 0.900m				Water Depth	()		-	Water Depth (W _D) Maximum Fill Volume (V _W)			-
Maximum Fill Volume (V _W) 1.170m ³				Maximum Fi	,	117	-		` '	• • •	-
Gravel used to backfill Test Pit Yes				Gravel used					to backfill Te		
Porosity of Gravel Backfill (Pt)			0.300	Porosity of G					Gravel Backfil	, ,	
Corrected Water Volume (V _{WC})			0.351m ³	Corrected W			-	Corrected W	/ater Volume	(V _{WC}) soakaway	-
Time to soakaway			B (Time to	soakaway	D (D (
Time Depth to water		Duration	Time Depth to water		Duration	Time Depth to water			Duration		
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	11.000	0.500	0								
1	16.000	0.530	18000								
2	11.000	0.600	86400								
2	15.000	0.620	100800								
3	8.300	0.610	163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800								
			163800 163800								
			163800								
			163800								
			163800								
25% water	loss (75% ful	1\		25% water I	oss (75% fu	IIV	_	25% water	loss (75% fu	IN.	
	loss (75% ful loss (50% ful	-	0.725m 0.950m	50% water loss (50% full)				50% water loss (50% full)			
	loss (25% ful	•	1.175m	75% water I			_	75% water I	-		
25% time (s		,	-			,			_		
75% time (s				25% time (seconds) 75% time (seconds)				25% time (seconds) 75% time (seconds)			_
Vp 75-25	,		0.176m³	Vp 75-25	,		-	Vp 75-25	_		
_	ual area fron	n test)	3.685m³	ap 50 (Actual area from test)				•	ual area fron	n test)	-
tp 75 - 25		,		tp 75 - 25				tp 75 - 25			
•	ration Rate		-	Soil Infiltrat	ion Rate		-	Soil Infiltration Rate -			
				Son minuation Rate					Form completed by		
			Duratio	on (Seconds)					. ,		
	0 36	500 7	200	10800	18000	21600		PRINT	M	IH	
© 0 			+				 0	Tested By	SIGN	M	IH
§ 25	% 25 -						25		DATE	09/10	/2021
ation 50	1	<u></u>	<u></u>				50		DATE	08/10	/2021
itra	1						F		PRINT	M	IH
% 25						75	Calculated	SIGN	I./	IH	
δ _Φ 100	1	 					100	Ву			
gre	0 (60	120	180	240	300	360		DATE	08/10	/2021
De			Duration	on (Minutes)					PRINT	N	IT
								Chooked by	CICNI	N.	IT
		—Test Run	1 — Te	est Run 2	——Test R	un 3		Checked by	SIGN		
									DATE	08/10	/2021
	DATE 08/10/2021										

Site: BEGBROKE SCIENCE PARK

Client Test L			NIVERSITY I <u>SA</u>	. <u>07</u>	Date of sta	rt	30/09	/2021	Date at end		01/10	/2021	
Test Run 1					Test Run 2				Test Run 3				
Pit Dimensions (m)					Pit Dimensions (m)				Pit Dimensions (m)				
Trial Pit Length (L) 2.000m					Trial Pit Length (L)			2.000m	Trial Pit Length (L)			2.000m	
Trial Pit Breadth / Width (B) 0.650m					Trial Pit Bre	adth / Width	(B)	0.650m	Trial Pit Breadth / Width (B)			0.650m	
Effective Depth (D) 2.100m					Effective De	. ,		2.100m	Effective De	2.100m			
Time at Start of Filling					Time at Sta	rt of Filling			Time at Start of Filling				
Time at End of Filling 14.21					Time at End			14.37	Time at End	15.25			
Depth from Surface to Water (D _{TW}) 1.420m					<u> </u>	w Surface to V	Vater (D _™)	1.300m	Depth below	1.350m			
Water Depth (W _D) 0.680m					Water Dept	τ υ,		0.800m	Water Depth	0.750m			
(11)						ill Volume (V	117	1.040m³	Maximum F	0.975m ³			
Gravel used to backfill Test Pit Yes					to backfill Te		Yes	Gravel used to backfill Test Pit			Yes		
Porosity of Gravel Backfill (P_t) 0.300 Corrected Water Volume (V_{WC}) 0.265m ³				,	Gravel Backfi	(0	0.300	Porosity of Gravel Backfill (P _t) Corrected Water Volume (V _{WC})			0.300		
Correc	cted VV			0.265m ³	Corrected v	Vater Volume		0.312m ³	1 110/				
		Time to s		B //		Time to	soakaway	I 5	Time to soakaway				
Time Depth to water			Duration	Time Depth to water		Duration	Time Depth to water			Duration			
Da	ay	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	
1		14.210	1.420	0	1	14.370	1.300	0	1	15.250	1.350	0	
1		14.220	1.610	60	1	14.380	1.480	60	1	15.260	1.580	60	
1		14.230	1.700	120	1	14.390	1.600	120	1	15.270	1.690	120	
1		14.250	1.900	240	1	14.400	1.710	180	1	15.280	1.730	180	
1		14.270	2.000	360	1	14.410	1.780	240	1	15.290	1.780	240	
				360	1	14.420	1.870	300	1	15.300	1.840	300	
				360	1	14.430	1.950	360	1	15.310	1.900	360	
				360	1	14.440	2.030	420	1	15.320	1.940	420	
				360				420	1	15.330	1.960	480	
				360				420	1	15.340	1.970	540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
				360				420				540	
		<i>(</i> ===, <i>(</i> , <i>(</i>))		360		. /===/.4		420		/===/		540	
		oss (75% ful	•	1.590m		loss (75% fu		1.500m	25% water	1.538m			
		oss (50% ful	_	1.760m		loss (50% fu		1.700m	50% water	1.725m			
		oss (25% ful	1)	1.930m	 	loss (25% fu	11)	1.900m				1.913m	
		econds)		54 sec	25% time (70 sec	· · ·			49 sec	
Vp 75		econds)		276 sec 0.133m ³	75% time (:	seconus)		323 sec 0.156m ³	75% time (seconds)			379 sec	
		ual area fron	a toot)	3.102m ³		Vp 75-25 ap 50 (Actual area from test)			Vp 75-25			0.146m ³ 3.288m ³	
tp 75	•	uai ai ca ii Oii	i iesi)	222 sec	tp 75 - 25	luai aita iioi	ii iesij	3.420m³ 252 sec	ap 50 (Actual area from test) tp 75 - 25			330 sec	
		ation Rate	1 92F-	04m/s	Soil Infiltra	tion Rate	1 81F	-04m/s	Soil Infiltrat	tion Rate	1.35F-	·04m/s	
0011		ation rate	1.022	04111/3	John minura	ition rate	1.012	0411/3	Jon Illinia			0411/3	
				Duratio	on (Seconds))			Form completed by				
	C	36	500 7	200	10800 14400 18000			21600		PRINT	N	IH	
© 0 							••••	‡ 0	Tested By	SIGN	N	IH	
%) (25	0						25		DATE	00/40	/2024	
Degree of Infiltration (%)	50						F		DATE	06/10	/2021		
iltra	= =							50		PRINT	N	IH	
fInf	75	75						75	Calculated	SIGN	M	IH	
e of	100		 					100	Ву				
gre	C) (60	120	20 180 240 300					DATE	08/10	/2021	
De				Durati	on (Minutes)					PRINT N		ΙΤ	
									Chackad by	SICN	NT		
			-Test Run	1 — T	est Run 2	——Test R	un 3		Checked by	NON			
									DATE	08/10/2021			
													

Site: BEGBROKE SCIENCE PARK

Client:		NIVERSITY I									
Test Loca		_	<u>804</u>	Date of star			/2021	Date at end			/2021
		Run 1				Run 2				Run 3	
		nsions (m)	1			nsions (m)		Pit Dimensions (m)			
			2.000m	Trial Pit Length (L)				Trial Pit Len			
			0.650m	Trial Pit Breadth / Width (B)				Trial Pit Brea			
. , ,			2.000m	Effective Depth (D)				Effective De			
Time at Start of Filling			Time at Start of Filling				Time at Start of Filling				
Time at End of Filling 9.05			Time at End of Filling				Time at End				
Depth from Surface to Water (D _{TW}) 1.000m				Depth below		Nater (D _™)		Depth below			
Water Depth (W _D) 1.000m				Water Depth (W _D) Maximum Fill Volume (V _W)				Water Depth			-
Maximum Fill Volume (V _W) 1.300m ³					,	***	-		ill Volume (V _V	• /	-
Gravel used to backfill Test Pit Yes					to backfill Te				to backfill Te		
			0.300	Porosity of Gravel Backfill (P _t)				,	Gravel Backfil	· · · · ·	
Corrected Water Volume (V _{WC})			0.390m ³	Corrected Water Volume (V _{WC})			-	Corrected W	/ater Volume		-
Time to soakaway					Time to	soakaway	D (Time to s	oakaway	D (
	Time	Depth to water	Duration	Time Depth to water		Duration	Time Depth to water			Duration	
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds
1	9.050	1.000	0								
1	9.060	1.040	60								
1	9.070	1.060	120								
1	9.090	1.070	240								
1	9.110	1.080	360								
1	9.150	1.090	600								
1	9.200	1.100	900								
1	9.300	1.110	1500								
1	9.400	1.130	2100								
1	10.100	1.150	3900								
1	11.100	1.180	7500								
1	12.100	1.190	11100								
1	14.100	1.230	18300								
2	9.050	1.360	86400								
2	11.050	1.370	93600								
2	14.050	1.380	104400								
			104400								
			104400								
			104400								
			104400								
			104400								
			104400								
/		<u> </u>	104400		/===-/				/===/		
	r loss (75% fu		1.250m	25% water I			-		oss (75% fu	-	-
	r loss (50% fu		1.500m	50% water loss (50% full) - 75% water loss (25% full) -				50% water I	-		
	r loss (25% fu	11)	1.750m	75% water loss (25% full) 25% time (seconds)				75% water loss (25% full)			-
	(seconds)		28777 sec				-	25% time (seconds) 75% time (seconds)			-
	(seconds)		0.4053	75% time (s	econas)		-	-	-		
Vp 75-25	ctual area fror	n toet)	0.195m ³ 3.950m ³	Vp 75-25 -				Vp 75-25	ual area from	n toet\	-
tp 75 - 25	ctual area iroi	ii test)	3.93011	ap 50 (Actual area from test) -				ap 50 (Actual area from test) tp 75 - 25			-
•	Itration Rate		•	tp 75 - 25 Soil Infiltration Rate -				Soil Infiltrat			
3011 11111	ilialion Nate			John Hilling	ion Nate			Jon minua			
			Duratio	n (Seconds)					Form con	pleted by	
	0 3	600		10800	14400	18000	21600	,	PRINT	N	IH
_ 0 1						+ 0	Tested By	SIGN	N/	IH	
% 25							25	1 colou by			
ioi	1						F .		DATE	08/10	/2021
Ita 50) <u>†</u>						50		PRINT	IV	IH
<u>≡</u> 75	; ‡						75	75 Calculated			
້ວ ຫຼ 100							100	Ву	SIGN	IV	IH
Jree 3ree	25 50 50 50 75 100 0 60 120 180 240 300 360 Duration (Minutes)							~	DATE	08/10	/2021
Deć				on (Minutes)					PRINT	N	IT
				. ,				<u></u>			
	_	—Test Run	1 — Te	est Run 2	Test R	un 3		Checked by	SIGN	N	IT
									DATE	08/10	/2021
<u> </u>	DATE 08/10/2021										

1 DAY INFILTRATION ASSESSMENT - WORKSHEET

Site: Begbroke

Client: Oxford University Developments

Test Location SA301 Date of start 08/02/2023 Date at end 08/02/2023 Test Run 1 Test Run 2 Test Run 3 Pit Dimensions (m) Pit Dimensions (m) Pit Dimensions (m) Trial Pit Length (L) 1.600m Trial Pit Length (L) 1.600m Trial Pit Length (L) 1.600m Trial Pit Breadth / Width (B) Trial Pit Breadth / Width (B) Trial Pit Breadth / Width (B) 0.600m 0.600m 0.600m Effective Depth (D) 2.000m Effective Depth (D) 2.000m Effective Depth (D) 2.000m Time at Start of Filling Time at Start of Filling Time at Start of Filling 11.34 11.51 12.39 Time at End of Filling 11.36 Time at End of Filling 11.53 Time at End of Filling 12.41 Depth from Surface to Water (D_{TW}) Depth below Surface to Water (D_{TW}) Depth below Surface to Water (D_{TW}) 1.000m 1.000m 1.000m Water Depth (W_D) Water Depth (W_D) Water Depth (W_D) 1.000m 1.000m 1.000m Maximum Fill Volume (V_W) 0.960m³ Maximum Fill Volume (V_W) 0.960m³ Maximum Fill Volume (V_W) 0.960m³ Gravel used to backfill Test Pit Gravel used to backfill Test Pit Gravel used to backfill Test Pit Yes Yes Yes Porosity of Gravel Backfill (P₁) 0.300 Porosity of Gravel Backfill (P₁) 0.300 Porosity of Gravel Backfill (P_t) 0.300 Corrected Water Volume (V_{WC}) Corrected Water Volume (V_{WC}) Corrected Water Volume (V_{WC}) 0.288m³ 0.288m³ 0.288m³ Time to soakaway Time to soakaway Time to soakaway Depth to Duration Depth to Duration Depth to Duration Time Time Time water water water Day Time Seconds Day Time (m bgl) Seconds Day Time (m bgl) Seconds (m bgl) 1.000 11.530 0 12.410 0 11.360 1.000 0 1 11.380 1.430 120 1 11.550 1.430 120 1 12.420 1.320 60 1 11.400 1.510 240 11.570 240 12.430 1.440 120 1 1.530 1 1.630 360 1.630 12.440 1.510 180 11.420 1 11.590 360 1 1 11.440 1.690 480 1 12.010 1.690 480 1 12.450 1.540 240 11.460 1 12.460 1.600 1.740 600 12.030 1.730 600 1 300 11.480 1.751 720 1 12.040 1.770 660 1 12.470 1.620 360 1 720 660 12.490 1.670 480 1 720 660 12.500 1.720 540 1 1.740 720 660 12.510 600 1 720 660 12.520 1.800 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 720 660 660 25% water loss (75% full) 1.250m 25% water loss (75% full) 1.250m 25% water loss (75% full) 1.250m 50% water loss (50% full) 50% water loss (50% full) 1.500m 50% water loss (50% full) 1.500m 75% water loss (25% full) 75% water loss (25% full) 1.750m 1.750m 75% water loss (25% full) 1.750m 25% time (seconds) 25% time (seconds) 25% time (seconds) 70 sec 70 sec 47 sec 75% time (seconds) 75% time (seconds) 75% time (seconds) 709 sec 630 sec 610 sec Vp 75-25 0.144m³ Vp 75-25 0.144m³ Vp 75-25 0.144m³ ap 50 (Actual area from test) ap 50 (Actual area from test) ap 50 (Actual area from test) 3.160m³ 3.160m³ 3.160m3 tp 75 - 25 tp 75 - 25 639 sec 560 sec tp 75 - 25 563 sec Soil Infiltration Rate Soil Infiltration Rate 7.13E-05m/s Soil Infiltration Rate 8.13E-05m/s 8.09E-05m/s Form completed by **Duration (Seconds)** PRINT CR 0 3600 7200 10800 14400 18000 21600 0 **†** 0 SIGN CR Tested By Degree of Infiltration (%) 25 25 DATE 08/02/2023 50 50 PRINT CR 75 75 Calculated SIGN CR By 100 100 DATE 09/02/2023 180 300 360 **Duration (Minutes)** PRINT NT Checked by SIGN NT Test Run 1 Test Run 2 Test Run 3 DATE 08/03/2023

Appendix E Site Monitoring Data and Ground Gas Risk Assessment

Site Monitoring Data

		Site:	Begbroke	. Oxfordsh	nire						Notes:														
	Job	number:	_	,								ne flow or conce	entration is	less than	the limit of	detection	n of the ins	strument, 1	the detec	tion limit	is reported	<u>.</u>			
		Client:	Oxford Ur	iversity D	evelopn	nent Ltd					Blue text	indicates wate	r level abo	ve top of s	screen		D* indica	ites minim	nal water i	n well, lik	ely to be a	associat	ted with	water trapp	ped in the end cap
Mon	itoring round	i	V	/ell Details		Water	/NAPL Mo	nitoring	(m belov	/ datum)		Pressure and flo	ow (use < fo	r below Lo	D)			Gas C	Concentrat	ions (use <	for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas		Depth			Depth	Depth to	Atm.	falling (F) /	ВН	Initial Gas		CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H ₂ S	VOC (as	
Reference	Date	Time	Well ID		(Casing	to	denotes dry hole			DNAPL	pressure	rising (R)/	pressure	Flow	Gas Flow (l/hr)	(%v/v) -	(%v/v) - (Steady)	(%v/v) -	(%v/v) - (Steady)		(%v/v) - (Steady)	(ppm)	(ppm)		Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ary note	or note	LNAPL		(hPa)	steady (S)	(hPa)	(L/hr)	(L/ Nr)	(Initial)	(Steady)	(Initial)	(Steady)	(initiat)	(Steady)			PID)	
Landfill R1	24/08/21	11:23	BH01	S	GL	3.37		9.98	-	-	1023	R	0.14	-	0.2	0.1	0.1	13.0	13.0	8.4	8.4	6	0	-	ок
Landfill R1	24/08/21	14:18	BH02	S	GL	3.02		8.75	-	-	1023	R	0.00	-	0.2	0.1	0.1	8.8	8.7	12.2	12.3	2	0	-	ок
Landfill R1	24/08/21	11:51	BH03	S	GL	3.35		8.11	-	-	1025	R	0.02	-	0.2	0.1	0.1	14.8	14.7	5.9	5.9	10	0	-	OK
Landfill R1 Landfill R1	24/08/21	11:16 12:54	WS01 WS02	S	GL GL	Dry Dry	D*	3.24	-	-	1023 1025	R R	0.05	-	0.2	0.1	0.1	12.8 3.2	12.8 3.2	9.6 17.4	9.6 17.5	1	0	-	OK DRY
Landfill R1	24/08/21	13:01	WS03	S	GL	Dry	D	2.69	-	-	1024	R	0.02	-	0.3	0.1	0.1	8.9	8.9	12.5	12.5	3	0	-	DRY
Landfill R1	24/08/21	12:33	WS04	S	GL	Dry	D	3.07	-	-	1024	R	0.00	-	0.2	0.3	0.3	15.5	15.5	1.8	1.8	4	0	-	DRY
Landfill R1	24/08/21	11:31	WS05	S	GL	2.59		3.17	-	-	1023	R	0.04	-	0.3	0.1	0.1	8.2	8.2	12.8	12.8	1	0	-	ОК
Landfill R1	24/08/21	11:39	WS06	S	GL	1.88		2.10	-	-	1024	R	0.07	-	0.1	0.1	0.1	8.5	8.4	12.0	12.0	2	0	-	ОК
Landfill R1 Landfill R1	24/08/21	11:58 12:23	WS07 WS08	S	GL GL	Dry Dry	D*	2.54 3.91	-	-	1025 1025	R R	0.12	-	0.2	0.1	0.1	7.5	7.5	16.5 14.8	17.5 14.8	0	0	-	OK DRY
Landfill R1	24/08/21	12:08	WS09	S	GL	Dry	D	3.05	-	-	1025	R	0.02	-	0.2	0.1	0.1	3.1	3.1	18.3	18.4	1	0	-	DRY
Landfill R1	24/08/21	12:43	WS10	S	GL	Dry	D	3.11	-	-	1024	R	0.04	-	0.2	0.1	0.1	6.1	6.1	12.4	12.4	0	0	-	DRY
Landfill R2	07/09/21	10:43	BH01	S	GL	3.91		9.98	-	-	1014	F	0.07	-	0.2	0.1	0.1	11.6	11.6	9.0	9.0	1	0	-	CO MAXED OUT AT 248ppm BEFORE SETTLING BACK [
Landfill R2	07/09/21	11:27	BH02	S	GL	3.02		8.75	-	-	1015	F F	0.02	-	0.1	0.1	0.1	9.7	9.7	11.8	11.9	5	0	-	OK
Landfill R2 Landfill R2	07/09/21	11:03 10:39	BH03 WS01	S	GL GL	3.38 Dry	D	3.15	-	-	1014 1014	F	0.05	-	-0.5 0.2	0.1	0.1	8.0 13.3	8.0 13.3	12.7	12.7 10.7	1	0	-	OK DRY
Landfill R2	07/09/21	11:42	WS02	S	GL	Dry	D	3.60	-	-	1014	F	0.02	-	0.2	0.1	0.1	3.8	3.8	16.9	16.9	1	0	-	DRY
Landfill R2	07/09/21	11:48	WS03	S	GL	Dry	D	2.62	-	-	1015	F	0.05	-	0.2	0.1	0.1	9.0	9.0	11.6	11.6	3	0	-	DRY
Landfill R2	07/09/21	11:31	WS04	S	GL	Dry	D	3.01	-	-	1015	F	0.02	-	0.2	0.2	0.2	16.3	16.3	1.1	1.1	4	0	-	DRY
Landfill R2	07/09/21	10:51	WS05	S	GL	2.61		3.17	-	-	1014	F	0.02	-	0.1	0.1	0.1	4.2	4.2	16.3	16.4	0	0	-	ОК
Landfill R2 Landfill R2	07/09/21	10:57 11:09	WS06 WS07	S	GL GL	Dry Dry	D*	2.10	-	-	1014 1015	F F	-0.04	-	0.1	0.1	0.1	7.1	7.1	12.8 16.4	12.8 16.4	0	0	-	ОК
Landfill R2	07/09/21	11:22	WS08	S	GL	Dry	D	3.88	-	-	1015	F	-0.05	-	0.1	0.1	0.1	7.2	7.2	14.4	14.5	1	0	-	DRY
Landfill R2	07/09/21	11:15	WS09	S	GL	Dry	D	2.96	-	-	1015	F	0.07	-	0.2	0.1	0.1	3.2	3.2	17.5	17.5	1	0	-	DRY
Landfill R2	07/09/21	11:37	WS10	S	GL	Dry	D	3.05	-	-	1015	F	0.02	-	0.2	0.1	0.1	3.7	3.6	14.4	15.7	0	0	-	DRY
Landfill R3	14/09/21	12:17	BH01	S	GL GL	3.96		9.98	-	-	1004 1005	F	-0.12	-	0.1	0.1	0.1	11.5 10.6	11.5 10.6	9.7	9.7	0	0	-	SAMPLE
Landfill R3 Landfill R3	14/09/21	13:03 12:34	BH02 BH03	S	GL	3.39		8.11	-		1003	F	0.00	-	-1.3	0.1	0.1	8.1	8.1	11.8 13.3	11.8	3	0	-	SAMPLE SAMPLE
Landfill R3	14/09/21	12:04	WS01	S	GL	Dry	D	3.15	-	-	1004	F	-0.09	-	0.1	0.1	0.1	11.3	11.3	12.8	12.8	0	0	-	DRY
Landfill R3	14/09/21	13:21	WS02	S	GL	Dry	D*	3.69	-	-	1005	F	-0.07	-	0.2	0.1	0.1	3.7	3.7	17.6	17.7	0	0	-	ОК
Landfill R3	14/09/21	13:26	WS03	S	GL	Dry	D*	2.69	-	-	1005	F	0.14	-	0.1	0.1	0.1	7.3	7.3	14.6	14.6	0	0	-	ОК
Landfill R3 Landfill R3	14/09/21	13:13 12:23	WS04 WS05	S	GL GL	Dry 2.63	D*	3.07	-	-	1005 1004	F	-0.25 -0.04	-	0.1	0.3	0.3	14.1 4.8	14.1 4.8	4.1 16.5	4.1 16.5	0	0	-	OK OK
Landfill R3	14/09/21	12:28	WS06	S	GL	1.89		2.10	-	-	1004	F	0.12	-	0.1	0.1	0.1	6.0	6.0	14.9	14.9	0	0	-	ОК
Landfill R3	14/09/21	12:49	WS07	S	GL	Dry	D*	2.54	-	-	1004	F	0.02	-	0.1	0.1	0.1	3.4	3.4	17.5	17.5	0	0	-	ОК
Landfill R3	14/09/21	12:59	WS08	S	GL	Dry	D*	3.91	-	-	1005	F	0.02	-	0.1	0.1	0.1	7.2	7.2	15.1	15.1	0	0	-	ОК
Landfill R3	14/09/21	12:54	WS09	S	GL	Dry	D* D*	3.05	-	-	1004	F F	-0.11	-	0.1	0.1	0.1	3.4	3.4	18.5	18.5	0	0	-	OK OK
Landfill R3 Landfill R4	14/09/21 21/09/21	13:17 11:38	WS10 BH01	S	GL GL	Dry 3.97	D.	3.11 9.98	-	-	1005 1023	R	-0.05 0.05	-	0.1	0.1	0.1	9.1	4.0 9.9	13.6 12.3	15.9 12.3	3	1	-	OK OK
Landfill R4	21/09/21	12:23	BH02	S	GL	3.05		8.75	-	-	1024	R	-0.04	-	0.1	0.1	0.1	6.1	6.1	15.6	15.6	3	0	-	ОК
Landfill R4	21/09/21	12:00	BH03	S	GL	3.42		8.11	-	-	1024	R	0.05	-	-1.0	0.1	0.1	5.5	5.5	15.7	15.8	3	0	-	ок
Landfill R4	21/09/21	11:33	WS01	S	GL	Dry	D*	3.15	-	-	1023	R	-0.35	-	0.1	0.1	0.1	6.6	6.6	15.3	15.3	0	1	-	DRY
Landfill R4 Landfill R4	21/09/21	12:39 12:45	WS02 WS03	S	GL GL	Dry	D*	3.69 2.65	-	-	1025 1024	R R	0.00	-	0.2	0.1	0.1	8.5	4.4 8.5	16.6 12.5	16.6 12.5	2	0	-	ОК
Landfill R4	21/09/21	12:43	WS04	S	GL	Dry	D	3.00	-	-	1025	R	0.12	-	0.2	0.1	0.1	5.3	5.3	13.1	13.2	2	0	-	DRY
Landfill R4	21/09/21	11:44	WS05	S	GL	2.71		3.10	-	-	1023	R	-0.07	-	0.1	0.1	0.1	4.3	4.3	16.7	16.7	0	1	-	ОК
Landfill R4	21/09/21	11:54	WS06	S	GL	Dry	D*	2.10	-	-	1024	R	-0.07	-	0.1	0.1	0.1	7.1	7.0	13.5	13.6	0	0	-	ок
Landfill R4	21/09/21	12:06	WS07	S	GL	Dry	D*	2.54	-	-	1024	R	0.02	-	0.2	0.1	0.1	3.1	3.1	17.6	17.6	0	0	-	ОК
Landfill R4 Landfill R4	21/09/21	12:18	WS08 WS09	S	GL GL	Dry Dry	D D	4.83 2.97	-	-	1024 1024	R R	-0.05 -0.12	-	0.2	0.1	0.1	7.0	7.0	14.5 17.9	14.5 17.9	1	0	-	DRY DRY
Landfill R4	21/09/21	12:34	WS10	S	GL	Dry	D	3.05	-	-	1024	R	0.07	-	0.2	0.1	0.1	3.5	3.5	16.3	16.3	1	0	-	DRY
Landfill R5	28/09/21	12:07	BH01	S	GL	3.98		9.98	-	-	1006	R	0.04	-	0.1	0.1	0.1	13.6	12.0	11.5	11.5	2	1	-	OK
Landfill R5	28/09/21	12:45	BH02	S	GL	3.07		8.75	-	-	1007	R	0.09	-	0.1	0.1	0.1	5.6	5.6	16.4	16.5	3	0	-	ОК
Landfill R5	28/09/21	12:23	BH03	S	GL	3.45	-	8.11	-	-	1007	R	0.04	-	-0.2	0.1	0.1	5.7	5.7	15.6	15.7	3	1	-	OK DRY
Landfill R5 Landfill R5	28/09/21	12:02 13:01	WS01 WS02	S	GL GL	Dry Dry	D*	3.15	-	-	1006 1007	R R	-0.16 0.04	-	0.1	0.1	0.1	2.5 4.8	2.5 4.8	19.4 17.0	19.4 17.1	0	0	-	DRY OK
Landfill R5	28/09/21	13:08	WS03	S	GL	Dry	D	2.65	-	-	1007	R	0.21	-	0.2	0.1	0.1	9.5	9.5	12.9	13.0	1	0	-	DRY
Landfill R5	28/09/21	12:50	WS04	S	GL	Dry	D	3.00	-	-	1007	R	0.07	-	0.1	0.1	0.1	6.4	6.4	12.5	12.5	1	0	-	DRY
Landfill R5	28/09/21	12:14	WS05	S	GL	2.88		3.10	-	-	1007	R	0.02	-	0.1	0.1	0.1	1.1	0.4	17.8	20.3	0	0	-	ОК
Landfill R5	28/09/21	12:18	WS06	S	GL	1.89		2.10	-	-	1007	R	0.04	-	0.2	0.1	0.1	5.2	5.2	15.6	15.6	0	1	-	OK

Monito	oring round		W	ell Details		Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and fl	ow (use < fo	r below L	oD)			Gas C	oncentrat	ions (use <	for below	LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure	Relative	Initial Co	s Steady	CH₄	CH₄	CO ₂	CO₂	O ₂	O ₂			VOC (as	
Round	Date	Time \	Well ID	dual gas	Type	1		to Base	to	Depth to		falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v∕v) -	(%v/v)-	(%v/v) -	(%v∕v) -		СО	H₂S		g Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	1		of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)		(Steady)	(ppm)	(ppm)	PID)	
Landfill R5	28/09/21	12:34	WS07	S	GL	Dry	D*	2.54	-	_	1007	R	0.04		0.2	0.1	0.1	2.4	2.4	18.8	18.8	0	0	-	OK
	28/09/21	12:40	WS08	S	GL	Dry	D	4.83	-	-	1007	R	-0.07	-	0.1	0.1	0.1	5.8	5.8	16.6	16.7	0	0	-	DRY
	28/09/21	12:29	WS09	S	GL	Dry	D	2.97	-	-	1007	R	-0.05	-	0.2	0.1	0.1	3.5	3.5	18.2	18.3	0	0	-	DRY
	28/09/21 05/10/21	12:54 11:49	WS10 BH01	S	GL GL	Dry 3.96	D	3.05 9.98	-	-	1007 993	R	0.05	-	0.2	0.1	0.1	5.4 15.1	5.4 15.1	9.7	9.7	0	0	-	DRY
	05/10/21	12:24	BH02	S	GL	3.08		8.75	-	-	994	R	-0.07	-	0.2	0.1	0.1	3.9	3.9	18.3	18.4	1	0	-	OK OK
Landfill R6	05/10/21	12:05	BH03	S	GL	3.42		8.11	-	-	993	R	0.09	-	0.2	0.1	0.1	5.1	5.1	16.2	16.2	2	0	-	ОК
	05/10/21	11:45	WS01	S	GL	Dry 3.47	D	3.15	-	-	992 994	R	0.09	-	0.2	0.1	0.1	3.2	3.2 5.9	18.5 15.4	18.6	0	0	-	DRY OK
	05/10/21 05/10/21	12:37 12:42	WS02 WS03	S	GL GL	Dry	D	2.65	-	-	994	R	0.09	-	0.1	0.1	0.1	6.1 10.4	10.4	10.5	15.4 10.6	0	0	-	DRY
	05/10/21	12:28	WS04	S	GL	Dry	D	3.00	-	-	994	R	0.05	-	0.2	0.1	0.1	4.3	4.3	15.9	15.9	0	0	-	DRY
	05/10/21	11:55	WS05	S	GL	Dry	D*	3.10	-	-	993	R	0.07	-	0.2	0.1	0.1	4.6	1.7	17.5	19.1	0	0	-	OK
	05/10/21 05/10/21	12:00 12:09	WS06 WS07	S	GL GL	1.89 Dry	D*	2.10	-	-	993	R	-0.05 0.07	-	0.1	0.1	0.1	7.5 1.8	7.4	13.8 19.2	13.8 19.4	0	0	-	OK OK
	05/10/21	12:19	WS08	S	GL	Dry	D	4.83	-	-	994	R	0.05	-	0.2	0.1	0.1	5.7	5.7	15.8	15.8	0	0	-	DRY
Landfill R6	05/10/21	12:14	WS09	S	GL	Dry	D	2.97	-	-	994	R	0.14	-	0.2	0.1	0.1	3.9	3.9	18.0	18.0	0	0	-	DRY
	05/10/21 12/09/22	12:32 13:52	WS10 BH201	S S	GL GL	Dry 4.18	D	3.05 5.00	-	-	994 1003	R	-0.02	-	0.2	0.1	0.1	1.0 0.8	0.8	19.4 20.1	20.3	0	0	-	DRY
Wider Site R1 Wider Site R1	12/09/22	14:12	BH202	S	GL	3.21		5.24	-	-	1003	F	-0.07	-	0.2	0.1	0.1	0.8	0.8	20.1	20.1	2	0	-	
	12/09/22	15:50	BH203	S	GL	3.53		6.00	-	-	1004	F	0.05	-	0.1	0.1	0.1	0.9	0.9	20.1	20.1	2	0	-	
Wider Site R1	12/09/22	16:20	BH204	S	GL	2.63		5.13	-	-	1003	F	0.11	-	0.1	0.1	0.1	0.8	0.8	20.4	20.6	1	0	-	
Wider Site R1 Wider Site R1	12/09/22 13/09/22	15:58 13:07	BH205 WS201	S	GL GL	1.15 Dry	D	1.80	-	-	1004	F F	-0.07 5.79	-	0.1	0.1	0.1	0.6 2.1	0.6	20.6 19.7	20.6 19.9	0	1	-	
Wider Site R1	13/09/22	13:22	WS202	S	GL	1.57		2.98	-	-	1005	F	0.09	-	0.1	0.1	0.1	1.1	1.1	19.8	19.8	1	0	-	
Wider Site R1	13/09/22	14:30	WS203	S	GL	Dry	D	1.97	-	-	1004	F	8.93	-	0.3	0.1	0.1	0.7	0.7	19.7	20.4	1	0	-	
Wider Site R1	13/09/22	14:15	WS205	S	GL	1.42		2.95	-	-	1005	F	0.00	-	0.1	0.1	0.1	3.6	3.1	18.1	18.1	1	0	-	
Wider Site R1 Wider Site R1	13/09/22 15/09/22	15:00 10:11	WS206 WS207	S	GL GL	2.14 1.84		4.20 2.12	-	-	1005	R	0.00	-	-0.1	0.1	0.1	0.4	0.4	19.5	19.5 20.8	0	0	-	
Wider Site R1	15/09/22	10:28	WS208	S	GL	0.56		2.20	-	-	1007	R	0.16	-	3.2	0.1	0.1	0.7	0.7	20.6	20.6	13	0	-	
Wider Site R1	13/09/22	15:36	WS209	S	GL	1.62		3.29	-	-	1005	F	0.05	-	0.3	0.1	0.1	2.0	2.0	19.7	19.7	1	0	-	
Wider Site R1 Wider Site R1	13/09/22 13/09/22	15:55 12:47	WS210 WS211	S	GL GL	0.75 1.01		4.58 5.01	-	-	1005 1005	F F	-1.04	-	-4.4	0.1	0.1	0.4 2.5	0.3 2.5	20.8	21.0 19.0	7	0	-	
Wider Site R1	13/09/22	13:53	WS213	S	GL	Dry	D	3.60	-	-	1005	F	0.04	-	0.2	0.1	0.1	0.9	0.7	20.5	20.5	1	0	-	
Wider Site R1	13/09/22	15:18	WS214	S	GL	Dry	D	0.97	-	-	1004	F	0.07	-	0.3	0.1	0.1	1.1	1.1	20.4	20.4	1	0	-	
Wider Site R1	15/09/22	10:40	WS215 WS216	S	GL GL	0.90 Dry	D*	2.53 4.05	-	-	1007 1004	R	-0.07	-	0.2	0.1	0.1	0.2 1.9	1.9	20.8 19.7	20.8 19.7	0	0	-	
Wider Site R1 Wider Site R1	12/09/22 12/09/22	12:51 13:25	WS216 WS217	S	GL	Dry	D	2.02	-	-	1004	F	0.09	-	0.1	0.1	0.1	1.3	1.3	19.7	19.7	1	1	-	
	15/09/22	11:40	WS218	S	GL	Dry	D	2.07	-	-	1007	R	-0.05	-	0.2	0.1	0.1	0.8	0.8	20.7	20.7	0	0	-	
	15/09/22	11:25	WS219	S	GL	Dry	D	4.93	-	-	1007	R	0.04	-	0.2	0.1	0.1	1.5	1.5	20.1	20.1	0	0	-	
	15/09/22 12/09/22	10:57 13:08	WS220 WS221	S	GL GL	2.77 Dry	D	3.00 1.99	-	-	1007	R	0.04	-	0.2	0.1	0.1	0.6 1.0	0.6	20.7 19.9	20.7 19.9	0	1	-	
	12/09/22	13:34	WS222	S	GL	Dry	D	2.43	-	-	1003	F	-0.05	-	0.2	0.1	0.1	0.9	0.9	19.9	19.9	1	1	-	
Wider Site R1	15/09/22	11:33	WS223	S	GL	Dry	D	2.97	-	-	1007	R	0.02	-	0.2	0.1	0.1	0.5	0.5	20.9	20.9	0	0	-	
	15/09/22	12:36	WS224	S	GL	Dry	D	1.33	-	-	1007	R	0.04	-	0.2	0.1	0.1	1.0	1.0	20.3	20.3	0	0	-	
	12/09/22 12/09/22	13:15 13:45	WS225 WS226	S	GL GL	Dry Dry	D D	1.98	-	-	1003	F	-0.14	-	0.4	0.1	0.1	0.9	0.9	19.4	19.6 20.3	1	1	-	
	12/09/22	13:40	WS227	S	GL	Dry	D	2.73	-	-	1003	F	-0.02	-	0.2	0.1	0.1	1.0	1.0	20.0	20.0	1	1	-	
	12/09/22	15:40	WS228	S	GL	Dry	D	0.97	-	-	1003	F	0.07	-	0.2	0.1	0.1	0.4	0.4	20.8	20.8	1	0	-	
	12/09/22 12/09/22	15:35 14:06	WS229 WS230	S	GL GL	Dry Dry	D D	1.95	-	-	1003	F F	0.05	-	0.1	0.1	0.1	0.5	0.5	20.8	20.9	1	0	-	
	12/09/22	14:06	WS231	S	GL	4.49		5.07	-	-	1003	F	0.07	-	0.2	0.1	0.1	0.8	0.8	20.3	20.3	2	0	-	
Wider Site R1	15/09/22	11:09	WS232	S	GL	1.46		3.42	-	-	1007	R	0.02	-	0.2	0.1	0.1	0.4	0.4	20.8	20.8	0	0	-	
	15/09/22	12:46	WS234	S	GL	1.25		1.62	-	-	1007	R	0.05	-	0.2	0.1	0.1	0.3	0.1	21.0	21.3	0	0	-	
	22/09/22 22/09/22	10:53 10:35	WS235 WS236	S	GL GL	1.36 Dry	D	4.91 1.95	-	-	1014	F	0.02	-	0.3	0.1	0.1	1.9 2.2	2.2	19.1 19.6	19.2 19.6	0	0	-	
	12/09/22	15:26	WS237	S	GL	Dry	D	1.01	-	-	1003	F	0.05	-	0.3	0.1	0.1	0.2	0.2	21.0	21.0	1	0	-	
	12/09/22	14:33	WS238	S	GL	3.84		5.06	-	-	1003	F	0.02	-	0.2	0.1	0.1	1.3	0.9	19.8	20.1	2	0	-	
	15/09/22	11:57	WS239	S	GL	1.38		2.23	-	-	1007	R R	0.05	-	0.2	0.1	0.1	0.8	0.8	20.7	20.7	0	0	-	
	15/09/22 15/09/22	12:10	WS240 WS240	S	GL GL	1.36	D	2.20	-	-	1007	R	-0.02 0.07	-	0.2	0.1	0.1	1.2	1.2	20.6 19.6	20.6 19.6	0	0	-	
	15/09/22	13:19	WS241	S	GL	1.59		1.94	-	-	1007	R	0.05	-	0.2	0.1	0.1	0.4	0.4	20.9	20.9	0	0	-	
	22/09/22	11:34	WS242	S	GL	0.70		3.57	-	-	1014	F	0.02	-	0.3	0.1	0.1	1.1	1.1	19.8	19.8	0	0	-	
	12/09/22	14:46	WS243	S	GL	Dry	D	1.00	-	-	1003	F	0.14	-	0.3	0.1	0.1	0.6	0.6	20.5	20.6	1	0	-	
	12/09/22 12/09/22	16:33 16:03	WS244 WS245	S	GL GL	1.10	D	0.88 2.56	-	-	1003	F F	0.07	-	-0.1	0.1	0.1	0.1	0.1	20.7	20.8	2	0	-	

Monito	oring round		W	ell Details		Water	/NAPL M	onitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrat	ions (use «	c for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas		Depth	"D"	Depth	Depth	Depth to	Atm.	falling (F) /	BH	Initial Gas	Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	_	(Casing	1 1		to Base of Hole		DNAPL	pressure	rising (R)/	pressure	Flow	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) -	(%v/v) - (Steady)	(ppm)		ppm using PID)	Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ary note	or note	LNAPL		(hPa)	steady (S)	(hPa)	(L/hr)	(L/ Nr)	(initiat)	(Steady)	(initiat)	(Steady)	(initiat)	(Steady)			PIDI	
Wider Site R1	12/09/22	16:12	WS246	S	GL	1.44		4.55	-	-	1004	F	0.12	-	0.2	0.1	0.1	0.7	0.7	20.5	20.5	2	0	-	
Wider Site R1	12/09/22	16:26	WS247	S	GL	Dry	D*	0.89	-	-	1003	F	0.16	-	0.2	0.1	0.1	0.5	0.5	20.2	20.2	1	0	-	
Wider Site R1	15/09/22	15:40	WS248	S	GL	Dry	D	2.02	-	-	1007	R	0.12	-	0.2	0.1	0.1	0.7	0.7	20.8	20.8	0	0	-	
Wider Site R1 Wider Site R1	15/09/22 15/09/22	13:51 14:20	WS249 WS250	S	GL GL	Dry Dry	D D	0.97	-	-	1007	R	0.14	-	0.2	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R1	15/09/22	13:36	WS251	S	GL	0.90		2.95	-	-	1007	R	0.11	-	0.2	0.1	0.1	0.2	0.2	21.2	21.2	0	0	-	
Wider Site R1	15/09/22	14:07	WS252	S	GL	Dry	D	5.05	-	-	1007	R	0.05	-	-4.5	0.1	0.1	0.1	0.1	21.2	21.2	1	0	-	
Wider Site R2	26/09/22	14:37	BH201	S	GL	3.69		5.90	-	-	996	F	0.00	-	0.3	0.1	0.1	1.1	1.1	20.9	20.9	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 27/09/22	13:50 13:01	BH202 BH203	S	GL GL	3.95 Dry	D*	5.74 5.94	-	-	996 995	F	-0.07 0.07	-	0.3	0.1	0.1	0.7	0.7	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	12:36	BH204	S	GL	3.43		5.99	-	-	996	F	0.04	-	0.3	0.1	0.1	1.0	1.0	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	12:48	BH205	S	GL	-		6.03	-	-	996	F	0.02	-	0.2	0.1	0.1	0.2	0.2	21.2	21.4	0	0	-	
Wider Site R2	26/09/22	11:07	WS201	S	GL	Dry	D	1.86	-	-	995	F	-0.07	-	0.3	0.1	0.1	1.5	1.4	19.7	19.7	0	0	-	
Wider Site R2	26/09/22	11:18	WS202	S	GL GL	Dry Dry	D D	1.98	-	-	996 995	F	-0.05	-	0.3	0.1	0.1	0.8	0.8	20.4	20.4	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 26/09/22	11:42 12:09	WS203 WS205	S	GL	Dry	D	2.92	-	-	996	F	0.00	-	0.3	0.1	0.1	3.4	3.3	18.7	18.7	0	0	-	
Wider Site R2	26/09/22	11:34	WS213	S	GL	Dry	D	3.60	-	-	996	F	0.02	-	0.3	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R2	26/09/22	13:24	WS214	S	GL	Dry	D	0.98	-	-	996	F	0.05	-	0.3	0.1	0.1	0.4	0.4	21.7	21.7	0	0	-	
Wider Site R2	26/09/22	13:07	WS219	S	GL	4.34		4.96	-	-	996	F	0.00	-	0.3	0.1	0.1	1.5	1.5	20.6	20.6	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 26/09/22	15:19 14:12	WS221 WS222	S	GL GL	Dry Dry	D D	1.98	-	-	997 996	F	0.00	-	0.3	0.1	0.1	1.2	2.1	20.9	20.9	0	0	-	
Wider Site R2	27/09/22	11:42	WS224	S	GL	Dry	D*	1.36	-	-	996	F	-0.02	-	0.3	0.1	0.1	0.8	0.2	20.9	21.4	0	0	-	
Wider Site R2	26/09/22	15:14	WS225	S	GL	Dry	D	1.98	-	-	997	F	0.04	-	0.3	0.1	0.1	0.9	0.9	21.0	21.3	0	0	-	
Wider Site R2	26/09/22	14:55	WS226	S	GL	Dry	D	1.11	-	-	997	F	0.12	-	0.3	0.1	0.1	0.6	0.6	21.3	21.3	0	0	-	
Wider Site R2	27/09/22	13:08	WS228	S	GL	Dry	D	0.97	-	-	995	F	0.05	-	0.3	0.1	0.1	0.8	0.8	21.5	21.5	0	0	-	
Wider Site R2 Wider Site R2	27/09/22	13:14 14:27	WS229 WS231	S	GL GL	Dry Dry	D D	1.93 4.50	-	-	995 994	F	0.12	-	0.3	0.1	0.1	0.9 2.5	0.9	21.3	21.4	0	0	-	
Wider Site R2	26/09/22	13:42	WS232	S	GL	1.47		3.95	-	-	996	F	-0.07	-	0.3	0.1	0.1	0.8	0.8	21.2	21.2	0	0	-	
Wider Site R2	27/09/22	11:50	WS234	S	GL	1.22		1.60	-	-	996	F	0.07	-	0.3	0.1	0.1	0.1	0.1	21.6	21.6	0	0	-	
Wider Site R2	26/09/22	15:46	WS235	S	GL	1.36		4.93	-	-	997	F	0.04	-	0.3	0.1	0.1	1.7	1.7	19.9	19.9	0	0	-	
Wider Site R2	26/09/22	15:39	WS236 WS237	S	GL GL	Dry	D D	0.93	-	-	997 995	F F	0.07	-	0.3	0.1	0.1	0.5	0.5	21.0	21.0	0	0	-	
Wider Site R2 Wider Site R2	27/09/22	13:29 14:15	WS237 WS238	S	GL	3.95	U	5.93	-	-	995	F	0.04	-	0.3	0.1	0.1	2.0	2.0	20.2	20.2	0	0	-	
Wider Site R2	27/09/22	12:04	WS239	S	GL	1.39		2.21	-	-	996	F	0.00	-	0.3	0.1	0.1	0.8	0.8	21.2	21.2	0	0	-	
Wider Site R2	27/09/22	11:57	WS240	S	GL	Dry	D	1.07	-	-	996	F	0.11	-	0.3	0.1	0.1	1.3	1.3	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	11:04	WS241	S	GL	1.56		1.93	-	-	996	F	-0.04	-	0.3	0.1	0.1	1.3	1.3	20.3	20.3	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 27/09/22	15:53 13:55	WS242 WS243	S	GL GL	0.79 Dry	D	3.56 0.97	-	-	997 995	F	0.04	-	0.3	0.1	0.1	1.2	0.9	20.7	20.7	0	0	-	
	27/09/22	12:19	WS244	S	GL	Dry	D	0.84	-	-	996	F	0.05	-	0.3	0.1	0.1	0.6	0.6	21.3	21.3	0	0	-	
Wider Site R2	27/09/22	12:56	WS245	S	GL	1.15		2.47	-	-	996	F	-0.02	-	-0.2	0.1	0.1	0.1	0.1	21.5	21.5	0	0	-	
Wider Site R2	27/09/22	14:07	WS246	S	GL	1.48		4.43	-	-	995	F	0.09	-	0.3	0.1	0.1	1.1	0.7	20.5	21.3	0	0	-	
	27/09/22	12:24	WS247	S	GL	Dry	D*	0.87	-	-	996	F F	0.05	-	0.3	0.1	0.1	1.2	1.2	20.6	20.6	0	0	-	
	27/09/22	11:21 10:41	WS248 WS249	S	GL GL	Dry Dry	D .	0.97	-	-	996 996	F	0.05	-	0.3	0.1	0.1	0.6	0.6	21.0	21.1	0	0	-	
	27/09/22	10:48	WS250	S	GL	Dry	D	0.84	-	-	996	F	0.04	-	0.3	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R3	10/10/22	16:35	BH201	S	GL	4.29		5.00	-	-	1014	R	0.02	-	0.2	0.1	0.1	0.8	0.8	20.1	20.1	0	0	-	
Wider Site R3	10/10/22	12:12	BH202	S	GL	3.28		5.23	-	-	1014	R	0.05	-	0.3	0.1	0.1	0.6	0.6	21.5	21.7	0	0	-	
Wider Site R3	10/10/22	15:19	BH203	S	GL	3.54		6.00	-	-	1014	R R	-0.09	-	0.2	0.1	0.1	0.4	0.4	20.5	20.5	1	0	-	
Wider Site R3 Wider Site R3	10/10/22	14:49 15:26	BH204 BH205	S	GL GL	2.63 1.15		5.10 4.12	-	-	1016 1014	R	0.00	-	0.2	0.1	0.1	0.8	0.8	21.4	21.6	0	0	-	
Wider Site R3	10/10/22	09:37	WS201	S	GL	Dry	D	1.86	-	-	1012	R	0.14	-	0.2	0.1	0.1	0.9	0.8	20.0	20.5	0	0	-	
Wider Site R3	10/10/22	09:44	WS202	S	GL	Dry	D	1.97	-	-	1012	R	0.04	-	0.0	0.1	0.1	0.7	0.7	20.4	20.4	0	1	-	
Wider Site R3	10/10/22	10:46	WS203	S	GL	Dry	D	1.98	-	-	1013	R	-0.04	-	0.3	0.1	0.1	0.7	0.7	20.8	21.1	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	10:58 10:38	WS204 WS205	S	GL GL	Dry 1.46	D	1.00 2.96	-	-	1013	R R	-0.02 0.05	-	0.1	0.1	0.1	2.3	0.3 2.3	20.9 19.8	21.2 19.9	0	0	-	
Wider Site R3	10/10/22	10:38	WS206	S	GL	2.18		4.30	-	-	1013	R	-0.02	-	0.2	0.1	0.1	1.5	1.5	20.1	20.2	0	0	-	
Wider Site R3	10/10/22	11:08	WS207	S	GL	0.84		2.15	-	-	1013	R	-0.05	-	-0.1	0.1	0.1	0.8	0.8	20.9	21.0	0	0	-	
Wider Site R3	10/10/22	11:15	WS208	S	GL	0.59		2.22	-	-	1014	R	2.91	-	-4.7	0.1	0.1	1.1	1.1	20.6	20.6	4	0	-	
Wider Site R3	10/10/22	10:22	WS209	S	GL	1.66		2.99	-	-	1013	R	0.02	-	0.3	0.1	0.1	2.1	2.0	20.0	20.0	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	11:28 09:30	WS210 WS211	S	GL GL	0.77 3.15		3.52	-	-	1014 1012	R R	0.12	-	-3.0 0.3	0.1	0.1	3.3	3.3	20.6 17.9	20.7 18.0	0	1	-	
Wider Site R3	10/10/22	09:30	WS211	S	GL	Dry	D	3.63	-	-	1012	R	-0.11	-	0.3	0.1	0.1	0.6	0.6	20.6	20.6	0	1	-	
Wider Site R3	10/10/22	10:05	WS214	S	GL	Dry	D	0.96	-	-	1012	R	0.18	-	0.2	0.1	0.1	0.7	0.7	20.7	20.8	0	1	-	
Wider Site R3	10/10/22	11:37	WS215	S	GL	0.96		2.53	-	-	1014	R	0.07	-	0.0	0.1	0.1	0.2	0.2	21.2	21.3	0	0	-	
Wider Site R3	10/10/22	17:20	WS216	S	GL	Dry	D*	4.05	-	-	1014	R	0.02	-	0.1	0.1	0.1	1.0	1.0	20.2	21.0	0	0	-	

Monit	oring round	i	W	ell Details	· · · · · · · · · · · · · · · · · · ·	Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrati	ons (use <	for below	LoD)		<u> </u>	Local conditions
				Single or		Depth	"D"	Depth	Depth		Atm.	Atm. pressure		Initial Gas	s Steady	CH₄	CH₄	CO ₂	CO₂	O ₂	O ₂			VOC (as	
Round Reference	Date	Time	Well ID	dual gas	Type (Casing		denotes	to Base		Depth to DNAPL	pressure	falling (F) / rising (R)/	BH pressure	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v) -	(%v/v)-	(%v/v) -	(npm)	H ₂ S (ppm)	ppm using	Notes on condition of borehole (including any
Reference				tap (S/D)	/ GL)	water	dry hole	of Hole	LNAPL	DIVAFE	(hPa)	steady (S)	(hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppiii)	PID)	
Wider Site R3	10/10/22	17:07	WS217	S	GL	Dry	D	2.02	-	-	1014	R	0.00	-	0.2	0.1	0.1	1.3	1.2	20.1	19.8	0	0	-	
Wider Site R3	10/10/22	10:14	WS218	S	GL	Dry	D	1.77	-	-	1013	R	0.04	-	0.1	0.1	0.1	1.0	1.0	20.7	20.9	0	0	-	
Wider Site R3	10/10/22	11:50	WS219	S	GL	4.07		4.95	-	-	1014	R	0.00	-	0.3	0.1	0.1	1.3	1.3	20.6	20.6	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	11:44 17:26	WS220 WS221	S	GL GL	1.74 Dry	D	2.98 1.99	-	-	1014 1014	R	0.05	-	0.1	0.1	0.1	0.6 1.0	0.6	20.9 19.9	21.1 19.9	0	0	-	
Wider Site R3	10/10/22	16:51	WS222	S	GL	Dry	D	2.44	-	-	1014	R	0.04	-	0.2	0.1	0.1	1.0	1.0	20.5	20.5	0	0	-	
Wider Site R3	10/10/22	11:56	WS223	S	GL	Dry	D	1.97	-	-	1014	R R	-0.05	-	0.3	0.1	0.1	0.6	0.5	21.3	21.5	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	12:53 17:24	WS224 WS225	S	GL GL	Dry Dry	D D	1.36	-	-	1015 1014	R	-0.05 -0.02	-	0.1	0.1	0.1	0.6 1.0	0.5 1.0	21.6	21.8	0	0	-	
Wider Site R3	10/10/22	17:00	WS226	S	GL	Dry	D	1.12	-	-	1014	R	0.04	-	0.2	0.1	0.1	0.4	0.4	20.5	20.5	0	0	-	
Wider Site R3	10/10/22	16:42	WS227	S	GL	Dry	D	2.72	-	-	1014	R	0.02	-	0.2	0.1	0.1	1.0	0.9	20.3	20.3	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	15:12 15:08	WS228 WS229	S	GL GL	Dry Dry	D D	0.99 1.95	-	-	1014 1014	R	-0.07 0.05	-	0.2	0.1	0.1	0.4	0.4	21.0	21.1	0	0	-	
Wider Site R3	10/10/22	12:20	WS230	S	GL	Dry	D	1.10	-	-	1014	R	0.07	-	0.1	0.1	0.1	0.6	0.6	21.5	21.6	0	0	-	
Wider Site R3	10/10/22	16:27	WS231	S	GL	4.50		5.07	-	-	1014	R	0.02	-	0.3	0.1	0.1	1.9	2.0	20.1	20.1	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	12:05 13:00	WS232 WS233	S	GL GL	1.96		2.97	-	-	1014 1015	R R	0.18	-	0.2	0.1	0.1	0.6	0.6 1.7	21.4	21.6	0	0	-	
Wider Site R3	10/10/22	13:08	WS234	S	GL	1.25		1.64	-	-	1015	R	0.02	-	0.2	0.1	0.1	0.3	0.3	21.2	21.5	0	0	-	
Wider Site R3	10/10/22	15:46	WS235	S	GL	1.96		4.91	-	-	1014	R	0.16	-	0.2	0.1	0.1	1.2	1.2	20.7	20.6	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	15:40 15:02	WS236 WS237	S	GL GL	1.41 Dry	D	1.96	-	-	1014 1014	R R	0.19	-	0.3	0.1	0.1	0.2	0.4	20.3	20.2	0	0	-	
Wider Site R3	10/10/22	16:20	WS238	S	GL	3.90		5.06	-	-	1014	R	0.02	-	0.3	0.1	0.1	1.3	0.9	21.0	21.0	0	0	-	
Wider Site R3	10/10/22	13:23	WS239	S	GL	1.39		2.22	-	-	1015	R	-0.04	-	0.2	0.1	0.1	0.6	0.6	21.2	21.2	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	13:17 14:33	WS240 WS241	S	GL GL	Dry 1.57	D	1.10	-	-	1015 1016	R R	-0.04	-	0.1	0.1	0.1	1.1	1.0	21.0	21.2	0	0	-	
Wider Site R3	10/10/22	15:50	WS242	S	GL	0.72		3.61	-	-	1014	R	0.04	-	0.2	0.1	0.1	1.2	1.2	19.0	18.8	1	0	-	
Wider Site R3	10/10/22	14:56	WS243	S	GL	Dry	D	1.00	-	-	1014	R	0.07	-	0.3	0.1	0.1	0.4	0.4	20.0	20.5	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	14:37 16:04	WS244 WS245	S	GL GL	1.10	D	0.88 2.56	-	-	1016 1014	R	-0.07 0.02	-	-0.2	0.1	0.1	0.5	0.5	21.8	21.8	0	0	-	
Wider Site R3	10/10/22	16:14	WS246	S	GL	Dry	D	4.55	-	-	1014	R	0.05	-	0.2	0.1	0.1	0.4	0.8	20.5	21.0	0	0	-	
Wider Site R3	10/10/22	14:43	WS247	S	GL	Dry	D	0.92	-	-	1016	R	0.00	-	0.3	0.1	0.1	1.1	1.1	21.2	21.2	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	13:32 13:50	WS248 WS249	S	GL GL	0.07	D*	0.97	-	-	1015 1016	R	-0.07 0.04	-	0.1	0.1	0.1	0.5	0.5	21.2	21.4	0	0	-	
Wider Site R3	10/10/22	13:41	WS250	S	GL	Dry	D	0.85	-	-	1016	R	0.02	-	0.3	0.1	0.1	0.5	0.5	21.3	21.3	0	0	-	
Wider Site R3	10/10/22	14:09	WS251	S	GL	0.93		1.96	-	-	1016	R	-0.28	-	-0.5	0.1	0.1	1.0	0.9	20.3	20.7	1	0	-	
Wider Site R3 Wider Site R4	10/10/22 19/10/22	13:58 16:13	WS252 BH201	S S	GL GL	1.00 4.29		5.05	-	-	1014 1006	R	0.12	-	0.2	0.1	0.1	1.0	0.9	20.5	20.6	0	0	-	ОК
Wider Site R4	19/10/22	14:02	BH202	S	GL	3.38		5.24	-	-	1000	F	0.03	-	0.3	0.1	0.1	0.7	0.7	21.1	21.1	0	0	-	ОК
Wider Site R4	19/10/22	12:39	BH203	S	GL	3.54		6.00	-	-	1010	F	0.12	-	0.2	0.1	0.1	0.4	0.4	21.1	21.1	0	0	-	ОК
Wider Site R4	19/10/22	13:42	BH204 BH205	S	GL	2.60 1.16		5.10 4.12	-	-	1009 1010	F	0.14	-	0.1	0.1	0.1	0.8	0.8	21.1	21.1	0	0	-	OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	12:46 16:51	WS201	S	GL GL	Dry	D	1.86	-	-	1010	F	0.00	-	0.2	0.1	0.1	0.6	0.3	21.3	21.4	0	0	-	OK DRY
Wider Site R4	19/10/22	17:02	WS202	S	GL	1.72		1.97	-	-	1007	F	-0.02	-	0.1	0.1	0.1	0.2	0.2	21.9	21.9	0	0	-	ОК
Wider Site R4 Wider Site R4	19/10/22 19/10/22	15:25 15:18	WS203 WS204	S S	GL GL	Dry Dry	D D	1.99	-	-	1007 1008	F	0.00	-	0.2	0.1	0.1	0.7	0.7	21.4	21.5	0	0	-	DRY DRY
Wider Site R4 Wider Site R4	19/10/22	15:18	WS204 WS205	S	GL	1.47	U	2.96	-	-	1008	F	-0.21	-	0.2	0.1	0.1	2.3	2.2	20.8	20.9	0	0	-	OK OK
Wider Site R4	19/10/22	15:11	WS206	S	GL	2.21		4.30	-	-	1008	F	-0.11	-	0.3	0.1	0.1	1.5	1.5	20.4	20.5	0	0	-	ОК
Wider Site R4	19/10/22	15:02	WS207	S	GL	0.81		2.15	-	-	1008	F	0.05	-	-1.7	0.1	0.1	1.9	1.9	20.6	20.7	1	0	-	OK OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	14:52 15:05	WS208 WS209	S	GL GL	0.57 1.67		2.22	-	-	1008	F	2.98 0.04	-	-5.8 0.2	0.1	0.1	2.3 1.8	1.8	20.0	20.2	0	0	-	ОК
Wider Site R4	19/10/22	14:24	WS210	S	GL	0.76		2.60	-	-	1009	F	-0.07	-	-2.6	0.1	0.1	1.3	1.3	20.5	20.6	2	0	-	ок
Wider Site R4	19/10/22	16:42	WS211	S	GL	3.15		3.52	-	-	1006	F	0.16	-	0.1	0.1	0.1	3.5	3.2	18.8	18.9	0	0	-	OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	14:36 15:41	WS213 WS214	S	GL GL	Dry Dry	D D	3.63 0.97	-	-	1006 1007	F	0.09	-	0.3	0.1	0.1	0.9	0.9	21.0	21.0	0	0	-	DRY DRY
Wider Site R4	19/10/22	14:43	WS215	S	GL	0.92		2.53	-	-	1009	F	-0.14	-	0.2	0.1	0.1	0.2	0.2	21.4	21.5	0	0	-	ОК
Wider Site R4	19/10/22	17:12	WS216	S	GL	Dry	D*	4.05	-	-	1006	F	0.04	-	0.2	0.1	0.1	1.0	1.0	19.0	18.2	0	0	-	ОК
Wider Site R4 Wider Site R4	19/10/22 19/10/22	16:34 15:47	WS217 WS218	S	GL GL	Dry Dry	D D	2.02 1.76	-	-	1006 1007	F	-0.02	-	0.2	0.1	0.1	0.6	0.6	21.8	21.8	0	0	-	DRY DRY
Wider Site R4	19/10/22	14:32	WS219	S	GL	3.92		4.95	-	-	1008	F	0.05	-	0.2	0.1	0.1	1.3	1.3	20.6	20.6	0	0	-	ОК
Wider Site R4	19/10/22	14:37	WS220	S	GL	1.73		2.98	-	-	1009	F	0.00	-	0.2	0.1	0.1	0.6	0.6	21.0	21.2	0	0	-	ОК
Wider Site R4 Wider Site R4	19/10/22 19/10/22	17:29 15:55	WS221 WS222	S	GL GL	Dry Dry	D D	1.99 2.44	-	-	1006 1007	F F	0.00	-	0.2	0.1	0.1	0.8	0.7	19.7 21.5	19.9 21.5	0	0	-	DRY DRY
Wider Site R4	19/10/22	14:18	WS223	S	GL	Dry	D	1.98	-	-	1007	F	-0.04	-	0.1	0.1	0.1	0.5	0.5	21.3	21.4	0	0	-	DRY
Wider Site R4	19/10/22	11:53	WS224	S	GL	Dry	D*	1.36	-	-	1011	F	0.02	-	0.2	0.1	0.1	0.5	0.5	20.9	21.0	0	0	-	ОК
Wider Site R4	19/10/22	17:36	WS225	S	GL	Dry	D	1.98	-	-	1006	F	0.02	-	0.2	0.1	0.1	0.8	0.8	20.2	20.2	0	0	-	DRY

Monit	oring round	<u> </u>	W	ell Details	· · · · · · · · · · · · · · · · · · ·	Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrati	ons (use <	for below	LoD)		<u> </u>	Local conditions
				Single or		Depth	"D"	Depth	Depth		Atm.	Atm. pressure		Initial Gas	s Steady	CH₄	CH₄	CO ₂	CO₂	O ₂	O ₂			VOC (as	
Round Reference	Date	Time	Well ID	dual gas tap	Type (Casing	1 1	denotes	to Base		Depth to DNAPL	pressure	falling (F) / rising (R)/	BH pressure	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v) -	(%v/v)-	(%v/v) -	(ppm)	H ₂ S (ppm)	ppm using	Notes on condition of borehole (including any
Reference				(S/D)	/ GL)	water	dry hole	of Hole	LNAPL	DIVAFE	(hPa)	steady (S)	(hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppiii)	PID)	
Wider Site R4	19/10/22	16:08	WS226	S	GL	Dry	D	1.14	-	-	998	F	0.09	-	0.2	0.1	0.1	0.4	0.3	21.8	21.8	0	0	-	DRY
Wider Site R4	19/10/22	16:00	WS227	S	GL	Dry	D	2.72	-	-	1006	F	0.00	-	0.2	0.1	0.1	0.9	0.9	21.6	21.6	0	0	-	DRY
Wider Site R4	19/10/22	12:32	WS228	S	GL	Dry	D	0.99	-	-	1010	F	-0.07	-	0.1	0.1	0.1	0.5	0.5	21.2	21.3	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	12:28 16:21	WS229 WS230	S	GL GL	Dry Dry	D D	1.95	-	-	1010 1007	F	-0.12 0.04	-	0.2	0.1	0.1	0.6	0.6	21.2	21.4	0	0	-	DRY DRY
Wider Site R4	19/10/22	12:05	WS231	S	GL	4.55		5.07	-	-	1011	F	0.14	-	0.2	0.1	0.1	2.2	2.2	20.1	20.1	0	0	-	ОК
Wider Site R4	19/10/22	14:08	WS232	S	GL	1.45		2.97	-	-	1009	F	0.12	-	0.2	0.1	0.1	0.6	0.6	21.1	21.3	0	0	-	OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	11:37 11:45	WS233 WS234	S	GL GL	1.35		2.25 1.64	-	-	1011	F	-0.05	-	0.2	0.1	0.1	0.4	0.4	20.3	20.3	0	0	-	ОК
Wider Site R4	19/10/22	12:54	WS235	S	GL	1.41		4.91	-	-	1010	F	0.16	-	0.2	0.1	0.1	1.3	1.3	20.7	20.7	0	0	-	ОК
Wider Site R4	19/10/22	13:00	WS236	S	GL	Dry	D	1.96	-	-	1010	F	0.19	-	0.2	0.1	0.1	1.8	1.8	20.2	20.2	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	12:22 12:10	WS237 WS238	S	GL GL	3.97	D	1.01 5.06	-	-	1010 1010	F	0.02	-	0.2	0.1	0.1	2.0	2.0	21.3	21.4	0	0	-	DRY OK
Wider Site R4	19/10/22	11:27	WS239	S	GL	1.37		2.22	-	-	1012	F	0.05	-	0.3	0.1	0.1	0.6	0.6	21.2	21.3	0	0	-	ОК
Wider Site R4	19/10/22	11:32	WS240	S	GL	Dry	D	1.10	-	-	1012	F	0.09	-	0.3	0.1	0.1	1.0	1.0	20.9	21.0	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	10:28 13:09	WS241 WS242	S	GL GL	0.72		1.94 3.61	-	-	1013 1010	F	0.18	-	-3.8	0.1	0.1	2.3	2.3	19.6 18.8	19.7 18.8	0	0	-	ОК
Wider Site R4	19/10/22	12:16	WS243	S	GL	Dry	D	1.00	-	-	1010	F	0.16	-	0.2	0.1	0.1	0.7	0.6	20.9	21.1	0	0	-	DRY
Wider Site R4	19/10/22	13:58	WS244	S	GL	Dry	D	0.88	-	-	1010	F	0.00	-	0.1	0.1	0.1	0.3	0.3	21.1	21.5	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22	13:25 13:38	WS245 WS246	S	GL GL	1.10		2.56 4.55	-	-	1010 1010	F F	0.16	-	-0.2	0.1	0.1	0.3	0.3	21.3	21.5	0	0	-	ОК
Wider Site R4	19/10/22	13:47	WS247	S	GL	Dry	D*	0.92	-	-	1010	F	0.07	-	0.1	0.1	0.1	1.2	1.2	20.5	20.7	0	0	-	OK OK
Wider Site R4	19/10/22	11:16	WS248	S	GL	Dry	D*	1.60	-	-	1012	F	-0.05	-	0.3	0.1	0.1	0.5	0.5	21.2	21.3	0	0	-	OK
Wider Site R4	19/10/22	11:03	WS249 WS250	S	GL GL	Dry Dry	D D	0.95	-	-	1012 1012	F	0.04	-	0.1	0.1	0.1	0.4	0.4	21.2	21.2	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22	11:09 10:38	WS251	S	GL	0.84		1.96	-	-	1012	F	-0.16	-	-0.5	0.1	0.1	1.4	1.4	19.2	19.2	1	0	-	OK OK
Wider Site R4	19/10/22	10:51	WS252	S	GL	0.90		5.05	-	-	1012	F	-0.02	-	-5.2	0.1	0.1	1.0	0.9	20.3	20.6	1	0	-	ОК
Wider Site R5	26/10/22	15:43	BH201	S	GL	4.27		5.00	-	-	1004	R	0.11	-	0.3	0.1	0.1	0.8	0.7	20.8	20.8	0	0	-	OK
Wider Site R5 Wider Site R5	26/10/22 25/10/22	13:35 13:14	BH202 BH203	S	GL GL	3.33		6.00	-	-	1003 1005	R	-0.05 -0.02	-	0.2	0.1	0.1	0.8	0.8	19.9 19.7	20.1 19.8	0	0	-	ОК
Wider Site R5	25/10/22	13:45	BH204	S	GL	2.48		5.10	-	-	997	R	-0.07	-	0.1	0.1	0.1	0.8	0.8	20.3	20.4	0	0	-	ОК
Wider Site R5	25/10/22	13:21	BH205	S	GL	0.73		4.12	-	-	1005	R R	0.02	-	-3.6	0.1	0.1	0.7	0.6	20.6	20.9	1	0	-	OK
Wider Site R5 Wider Site R5	25/10/22 25/10/22	11:36 11:42	WS201 WS202	S	GL GL	Dry 1.14	D	1.86	-	-	1004 1005	R	0.11	-	0.1	0.1	0.1	0.6	0.7	19.9	20.3	0	0	-	DRY OK
Wider Site R5	26/10/22	14:42	WS203	S	GL	Dry	D	1.99	-	-	1004	R	0.18	-	0.3	0.1	0.1	0.6	0.6	20.7	20.7	0	0	-	DRY
Wider Site R5	26/10/22	14:34	WS204	S	GL	Dry	D	1.00	-	-	1004	R	-0.02	-	0.2	0.1	0.1	0.2	0.2	21.3	21.4	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 26/10/22	14:48 15:07	WS205 WS206	S	GL GL	1.03		2.96 4.30	-	-	1004 1004	R R	0.07	-	0.2	0.1	0.1	1.7	1.6	20.1 19.0	20.3 19.0	0	0	-	ОК
Wider Site R5	26/10/22	14:28	WS207	S	GL	0.59		2.15	-	-	1004	R	-0.58	-	-2.3	0.1	0.1	1.5	1.5	20.5	20.5	2	0	-	ОК
Wider Site R5	26/10/22	14:23	WS208	S	GL	0.43		2.22	-	-	1004	R	15.96	-	0.6	0.1	0.1	1.7	1.7	20.2	20.3	3	0	-	OK
Wider Site R5 Wider Site R5	26/10/22 26/10/22	15:02 14:15	WS209 WS210	S	GL GL	1.52 0.53		2.99	-	-	1004 1004	R R	0.05	-	0.2	0.1	0.1	1.6	1.6	19.9	19.9	2	0	-	OK OK
Wider Site R5	25/10/22	11:27	WS211	S	GL	3.10		3.52	-	-	1004	R	0.23	-	0.2	0.1	0.1	3.3	3.3	18.1	18.1	0	0	-	ОК
Wider Site R5	26/10/22	14:54	WS213	S	GL	Dry	D	3.63	-	-	1004	R	0.00	-	0.3	0.1	0.1	0.5	0.5	20.6	20.7	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 26/10/22	15:14 14:09	WS214 WS215	S	GL GL	0.57	D	0.97 2.53	-	-	1004 1004	R R	9.63	-	-1.7	0.1	0.1	0.9	0.9	20.2	20.4	0	0	-	DRY OK
Wider Site R5	25/10/22	10:56	WS216	S	GL	Dry	D*	4.05	-	-	1005	R	-0.14	-	0.2	0.1	0.1	1.5	1.5	19.7	19.8	0	0	-	ОК
Wider Site R5	25/10/22	11:53	WS217	S	GL	Dry	D	2.02	-	-	1004	R	-0.11	-	0.3	0.1	0.1	1.5	1.4	19.8	19.9	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 26/10/22	15:19 13:55	WS218 WS219	S	GL GL	Dry 3.82	D	1.76 4.95	-	-	1004 1003	R R	-0.07 -0.05	-	0.2	0.1	0.1	1.0	1.0	20.4 19.8	20.6 19.9	0	0	-	DRY OK
Wider Site R5	26/10/22	13:50	WS220	S	GL	1.42		2.98	-	-	1003	R	0.07	-	0.3	0.1	0.1	0.6	0.6	19.7	19.8	0	0	-	OK
Wider Site R5	25/10/22	11:03	WS221	S	GL	Dry	D	1.99	-	-	1004	R	0.07	-	0.2	0.1	0.1	1.4	1.4	19.8	19.9	0	0	-	DRY
Wider Site R5	26/10/22 26/10/22	15:25	WS222 WS223	S	GL GL	Dry Dry	D D	2.44 1.98	-	-	1004 1003	R R	-0.09 0.09	-	0.2	0.1	0.1	0.7	0.7	20.7	20.8	0	0	-	DRY DRY
Wider Site R5 Wider Site R5	26/10/22	14:01	WS224	S	GL	0.95	U	1.36	-	-	1003	R	0.09	-	0.1	0.1	0.1	0.3	0.5	19.9	21.0	0	0	-	OK
Wider Site R5	25/10/22	11:09	WS225	S	GL	Dry	D	1.98	-	-	1005	R	0.02	-	0.1	0.1	0.1	1.0	1.0	19.9	20.0	0	0	-	DRY
Wider Site R5	26/10/22	15:38	WS226	S	GL	Dry	D	1.14	-	-	1004	R	0.04	-	0.2	0.1	0.1	0.5	0.5	20.5	20.5	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 25/10/22	15:30 13:06	WS227 WS228	S	GL GL	Dry Dry	D D	0.99	-	-	1004 1004	R R	0.19	-	0.2	0.1	0.1	0.8	0.8	20.8	20.8	0	0	-	DRY DRY
Wider Site R5	25/10/22	12:57	WS229	S	GL	Dry	D	1.95	-	-	1004	R	0.09	-	0.3	0.1	0.1	0.6	0.6	20.5	20.5	0	0	-	DRY
Wider Site R5	26/10/22	15:51	WS230	S	GL	Dry	D	1.10	-	-	1005	R	0.04	-	0.3	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY
Wider Site R5 Wider Site R5	25/10/22 26/10/22	12:35 13:42	WS231 WS232	S	GL GL	4.49 1.31		5.07 2.97	-	-	1005 1004	R R	-0.09 -0.05	-	0.3	0.1	0.1	0.6	0.6	19.2	19.2 20.2	0	0	-	ОК
Wider Site R5	26/10/22	13:06	WS233	S	GL	1.20		2.23	-	-	1004	R	-0.11	-	0.2	0.1	0.1	1.8	1.8	19.1	19.2	0	0	-	OK OK
Wider Site R5	26/10/22	13:14	WS234	S	GL	1.06		1.64	-	-	1003	R	0.05	-	0.3	0.1	0.1	0.6	0.3	20.2	20.5	0	0	-	ОК

Moni	toring round		W	Vell Details	S	Water	/NAPL M	onitoring (m belov	v datum)		Pressure and flo	ow (use < fo	or below Lo	D)			Gas C	oncentrati	ions (use <	for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas		Depth	"D"	Depth	Depth	Depth to	Atm.	falling (F) /	BH	Initial Gas	Steady	CH₄	CH₄	CO ₂	CO₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	tap	(Casing	to		to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) -	(%v/v) - (Initial)	(%v/v) - (Steady)		(%v/v) - (Steady)	(ppm)		ppm using PID)	Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ary note	or note	LNAPL		(пРа)	steady (S)	(hPa)	(LZ HF)	(LZ NF)	(initiat)	(Steady)	(initiat)	(Steady)	(initiat)	(Steady)			PID)	
Wider Site R5	25/10/22	12:12	WS235	S	GL	1.23		4.91	-	-	1005	R	0.16	-	0.3	0.1	0.1	1.7	1.7	19.0	19.0	0	0	-	ок
Wider Site R5	25/10/22	12:06	WS236	S	GL	Dry	D	1.96	-	-	1005	R	0.02	-	0.3	0.1	0.1	1.9	1.9	19.2	19.2	0	0	-	DRY
Wider Site R5	25/10/22	12:52	WS237	S	GL	Dry	D	1.01	-	-	1004	R	0.12	-	0.4	0.1	0.1	0.4	0.4	20.4	20.5	0	0	-	DRY
Wider Site R5 Wider Site R5	25/10/22 26/10/22	12:40 12:55	WS238 WS239	S	GL GL	3.90 1.27		5.06	-	-	1005 1003	R	-0.14	-	0.2	0.1	0.1	0.7	0.7	19.6 19.8	19.7 19.9	0	0	-	ОК
Wider Site R5	26/10/22	13:00	WS240	S	GL	Dry	D	1.10	-	-	1003	R	0.09	-	0.3	0.1	0.1	1.1	1.1	19.7	19.8	0	0	-	DRY
Wider Site R5	26/10/22	11:59	WS241	S	GL	1.36		1.94	-	-	1002	R	0.16	-	0.2	0.1	0.1	1.2	1.2	19.9	19.9	0	0	-	ОК
Wider Site R5	25/10/22	12:17	WS242	S	GL	0.52		3.61	-	-	1005	R	19.09	-	1.0	0.1	0.1	2.4	2.4	18.6	18.8	1	0	-	ОК
Wider Site R5	25/10/22	12:46	WS243	S	GL	Dry	D D	1.00	-	-	1004	R R	-0.02	-	0.3	0.1	0.1	0.6	0.6	20.3	20.3	0	0	-	DRY
Wider Site R5 Wider Site R5	25/10/22 25/10/22	14:00 13:26	WS244 WS245	S	GL GL	0.63	D	0.88 2.56	-	-	1005 1005	R	-0.18	-	0.3 -4.5	0.1	0.1	0.5	0.5	19.7 20.9	19.8 20.9	0	0	-	DRY OK
Wider Site R5	25/10/22	13:35	WS246	S	GL	1.14		4.55	-	-	1005	R	0.14	-	-2.2	0.1	0.1	1.0	1.0	20.2	20.3	0	0	-	ОК
Wider Site R5	25/10/22	13:53	WS247	S	GL	0.71		0.92	-	-	1005	R	0.05	-	0.1	0.1	0.1	1.2	1.2	18.5	18.8	0	0	-	ОК
Wider Site R5	26/10/22	12:44	WS248	S	GL	1.37		1.60	-	-	1003	R	0.07	-	0.3	0.1	0.1	0.7	0.7	20.0	20.1	0	0	-	ОК
Wider Site R5	26/10/22	12:30	WS249	S	GL	Dry	D	0.95	-	-	1003	R	0.11	-	0.2	0.1	0.1	1.1	1.1	19.3	19.3	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 26/10/22	12:37 12:08	WS250 WS251	S	GL GL	0.54	D	0.86 1.96	-	-	1003 1003	R	-0.04 -3.08	-	0.3	0.1	0.1	0.6	0.6	19.8 19.2	19.8 19.4	1	0	-	DRY
Wider Site R5	26/10/22	12:08	WS252	S	GL	0.48		5.05	-	-	1003	R	-2.38	-	-4.9	0.1	0.1	1.2	1.2	19.5	19.4	1	0	-	ОК
Wider Site R6	02/11/22	14:15	BH201	S	GL	4.20		5.80	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.9	0.9	20.3	20.3	0	0	-	
Wider Site R6	02/11/22	11:48	BH202	S	GL	3.27		5.15	-	-	1006	R	0.09	-	0.1	0.1	0.1	1.1	1.1	19.2	19.5	0	0	-	
Wider Site R6	01/11/22	14:43	BH203	S	GL	3.16		5.00	-	-	998	F	0.12	-	0.2	0.1	0.1	0.8	0.8	20.1	20.1	0	0	-	
Wider Site R6	01/11/22	15:09	BH204	S	GL	2.43		5.18	-	-	998	F	-0.02	-	0.2	0.1	0.1	0.9	0.9	19.7	19.9	0	0	-	
Wider Site R6 Wider Site R6	01/11/22	14:51 11:16	BH205 WS201	S	GL GL	0.69 Dry	D	4.16 1.90	-	-	999 1006	F R	0.12	-	-2.9 0.1	0.1	0.1	0.3 2.9	0.3	20.9 19.4	21.1 19.8	0	0	-	Dry
Wider Site R6	02/11/22	11:21	WS202	S	GL	1.05		2.00	-	-	1006	R	0.00	-	-4.5	0.1	0.1	1.2	1.2	19.7	19.7	0	0	-	Diy
Wider Site R6	02/11/22	13:04	WS203	S	GL	Dry	D	2.00	-	-	1005	R	0.00	-	0.1	0.1	0.1	0.7	0.7	20.0	20.2	0	0	-	Dry
Wider Site R6	02/11/22	12:54	WS204	S	GL	Dry	D	1.00	-	-	1005	R	-0.12	-	0.1	0.1	0.1	0.2	0.2	20.9	20.9	0	0	-	Dry
Wider Site R6	02/11/22	13:10	WS205	S	GL	0.95		3.11	-	-	1004	R	0.00	-	0.1	0.1	0.1	0.9	0.8	20.2	20.5	1	0	-	
Wider Site R6	02/11/22	13:30 12:47	WS206 WS207	S	GL GL	0.57		4.20 2.20	-	-	1004 1006	R	-0.21 0.07	-	-4.0	0.1	0.1	2.0	2.0	18.2 20.1	18.2 20.2	0	0	-	
Wider Site R6 Wider Site R6	02/11/22	12:41	WS207	S	GL	0.37		2.20	-	-	1006	R	2.45	-	-6.1	0.1	0.1	1.7	1.7	19.8	19.8	0	0	_	
Wider Site R6	02/11/22	13:27	WS209	S	GL	1.47		3.00	-	-	1004	R	0.09	-	0.1	0.1	0.1	2.0	2.0	18.6	18.8	0	0	-	
Wider Site R6	02/11/22	12:33	WS210	S	GL	0.50		2.60	-	-	1006	R	1.44	-	-6.1	0.1	0.1	1.3	1.3	19.7	20.0	0	0	-	
Wider Site R6	02/11/22	11:09	WS211	S	GL	3.05		3.40	-	-	1007	R	0.04	-	0.1	0.1	0.1	3.5	3.3	17.3	17.4	0	0	-	
Wider Site R6	02/11/22	13:18	WS213 WS214	S	GL GL	Dry	D D	3.65	-	-	1004	R R	0.00	-	0.1	0.1	0.1	0.6	0.6	19.8 19.4	20.1	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	13:45 12:25	WS215	S	GL	0.54		2.50	-	-	1004	R	2.40	-	0.1	0.1	0.1	1.0	1.0	20.2	19.4	0	0	_	Dry
Wider Site R6	02/11/22	10:36	WS216	S	GL	3.90		4.20	-	-	1006	R	-0.07	-	0.1	0.1	0.1	0.9	0.9	19.9	19.9	0	0	-	
Wider Site R6	02/11/22	11:36	WS217	S	GL	Dry	D	2.05	-	-	1006	R	0.00	-	0.1	0.1	0.1	1.8	1.8	19.1	19.4	0	0	-	Dry
Wider Site R6	02/11/22	13:51	WS218	S	GL	Dry	D	1.80	-	-	1003	R	0.00	-	0.1	0.1	0.1	1.1	1.1	19.6	19.7	0	0	-	Dry
Wider Site R6	02/11/22	12:10	WS219	S	GL	3.72		5.00	-	-	1006	R R	0.04	-	0.1	0.1	0.1	1.4	1.4	19.2	19.2	0	0	-	
Wider Site R6 Wider Site R6	02/11/22	12:04 10:49	WS220 WS221	S	GL GL	1.38 Dry	D	3.00 2.05	-	-	1006 1007	R	0.00	-	0.1	0.1	0.1	0.8	0.8 1.6	19.2 19.2	19.2 19.2	0	0	-	Dry
Wider Site R6	02/11/22	13:58	WS222	S	GL	Dry	D	2.53	-	-	1003	R	0.14	-	0.1	0.1	0.1	0.8	0.8	19.8	20.1	0	0	-	Dry
Wider Site R6	02/11/22	12:16	WS223	S	GL	Dry	D	2.00	-	-	1006	R	0.07	-	0.1	0.1	0.1	0.6	0.6	19.6	19.6	0	0	-	Dry
Wider Site R6	01/11/22	13:48	WS224	S	GL	1.04		1.40	-	-	998	F	0.11	-	0.3	0.1	0.1	0.4	0.1	20.3	21.0	0	0	-	ОК
Wider Site R6	02/11/22	10:56	WS225	S	GL	Dry	D	2.00	-	-	1007	R	0.00	-	0.1	0.1	0.1	1.2	1.2	19.3	19.3	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	14:10 14:04	WS226 WS227	S	GL GL	Dry Dry	D D	2.80	-	-	1003	R R	0.00	-	0.1	0.1	0.1	0.7	0.7	19.9	19.9	0	0	-	Dry Dry
Wider Site R6	01/11/22	14:36	WS228	S	GL	Dry	D	1.01	-	-	998	F	0.00	-	0.2	0.1	0.1	0.9	0.9	19.6	19.7	0	0	-	DRY
Wider Site R6	01/11/22	14:32	WS229	S	GL	Dry	D	1.00	-	-	998	F	0.05	-	0.2	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY
Wider Site R6	02/11/22	14:22	WS230	S	GL	Dry	D	1.10	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.8	0.8	19.7	19.7	0	0	-	Dry
Wider Site R6	01/11/22	14:12	WS231	S	GL	4.47		5.18	-	-	998	F	0.07	-	0.2	0.1	0.1	2.7	2.7	17.9	17.9	0	0	-	ОК
Wider Site R6	02/11/22	11:56	WS232 WS233	S	GL GL	1.27		3.00 2.35	-	-	1006 999	R F	0.00	-	0.1	0.1	0.1	2.0	2.0	19.5 18.9	19.7 19.2	0	0	-	OK
Wider Site R6 Wider Site R6	01/11/22	13:40 13:55	WS233 WS234	S	GL	1.19		1.68	-	-	999	F	0.00	-	0.1	0.1	0.1	0.3	0.3	20.6	20.6	0	0	-	ОК
Wider Site R6	01/11/22	11:53	WS235	S	GL	1.20		5.06	-	-	999	F	0.02	-	0.2	0.1	0.1	1.7	1.6	17.5	17.5	0	0	-	ОК
Wider Site R6	01/11/22	11:47	WS236	S	GL	Dry	D	2.00	-	-	998	F	-0.02	-	0.2	0.1	0.1	0.6	0.6	19.9	19.9	0	0	-	DRY
Wider Site R6	01/11/22	14:28	WS237	S	GL	Dry	D	1.05	-	-	998	F	-0.04	-	0.3	0.1	0.1	0.5	0.5	20.3	20.3	0	0	-	DRY
Wider Site R6	01/11/22	14:16	WS238	S	GL	3.88		4.97	-	-	998	F	0.00	-	0.2	0.1	0.1	2.2	2.1	18.9	19.0	0	0	-	ОК
Wider Site R6 Wider Site R6	01/11/22	13:21 13:26	WS239 WS240	S	GL GL	1.25 Dry	D	2.28	-	-	999	F F	-0.02 0.12	-	0.3	0.1	0.1	0.8	0.8	19.5 19.4	19.6 19.4	0	0	-	DRY
Wider Site R6	01/11/22	12:18	WS241	S	GL	1.33		1.14	-	-	999	F	1.02	-	0.3	0.1	0.1	1.5	1.5	19.4	19.3	0	0	-	OK OK
Wider Site R6	01/11/22	12:11	WS242	S	GL	0.45		3.65	-	-	999	F	7.94	-	-4.9	0.1	0.1	2.7	2.6	17.9	18.0	1	0	-	ОК
Wider Site R6	01/11/22	14:22	WS243	S	GL	Dry	D	1.03	-	-	998	F	0.09	-	0.3	0.1	0.1	0.6	0.6	20.1	20.5	0	0	-	DRY

Monito	oring round		W	ell Details		Water	NAPL M	lonitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	Concentrat	ions (use <	for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round	<u>.</u>			dual gas			"D"		Depth	Depth to		falling (F) /	вн		s Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID		(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) -	(%v/v) - (Steady)	(ppm)		ppm usin PID)	g Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ary note	Grinote			(III d)	steady (S)	(hPa)	,	(6 1117	(iiiiiciae)	(Steady)	(milial)	(Steady)	(micial)	(Steady)			1157	
Wider Site R6	01/11/22	15:19	WS244	S	GL	Dry	D	0.93	-	-	999	F	0.00	-	0.3	0.1	0.1	0.7	0.7	19.3	19.5	0	0	-	DRY
Wider Site R6	01/11/22	14:57	WS245	S	GL	0.61		2.58	-	-	999	F	-0.02	-	-6.5	0.1	0.1	0.6	0.6	20.9	21.0	1	0	-	OK
Wider Site R6 Wider Site R6	01/11/22	15:03 15:14	WS246 WS247	S	GL GL	0.67		0.93	-	-	999	F F	2.78 0.28	-	-3.3	0.1	0.1	0.9 1.6	0.9 1.6	18.9 16.9	18.9 16.9	0	0	-	OK OK
Wider Site R6	01/11/22	13:08	WS248	S	GL	1.34		1.65	-	-	999	F	0.14	-	0.3	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	ОК
Wider Site R6	01/11/22	12:54	WS249	S	GL	Dry	D	1.00	-	-	999	F	0.04	-	0.2	0.1	0.1	1.3	1.3	19.3	19.3	0	0	-	DRY
Wider Site R6	01/11/22	13:00	WS250	S	GL	Dry	D	0.89	-	-	999	F	1.39	-	0.3	0.1	0.1	0.8	0.8	19.8	19.8	0	0	-	DRY
Wider Site R6 Wider Site R6	01/11/22	12:28 12:40	WS251 WS252	S	GL GL	0.50		2.00 5.18	-	-	999	F F	1.44 6.53	-	-1.0	0.1	0.1	1.0	1.0	19.4 19.5	19.4 19.5	1	0	-	OK OK
Wider Site R7	17/11/22	13:55	BH201	S	GL	4.19		5.86	-	-	1004	F	0.11	-	0.3	0.1	0.1	0.8	0.7	20.8	20.8	0	0	-	ОК
Wider Site R7	17/11/22	11:47	BH202	S	GL	3.26		5.15	-	-	1004	F	0.09	-	0.1	0.1	0.1	1.1	1.1	19.2	19.5	0	0	-	ОК
Wider Site R7	16/11/22	15:27	BH203	S	GL	3.15		5.00	-	-	981	F	-0.02	-	0.3	0.1	0.1	0.8	0.8	19.7	19.8	0	0	-	OK
Wider Site R7 Wider Site R7	16/11/22 16/11/22	15:58 15:34	BH204 BH205	S	GL GL	0.68		5.18 4.16	-	-	981 981	F F	-0.07 0.02	-	-3.6	0.1	0.1	0.8	0.8	20.3	20.4	0	0	-	OK OK
Wider Site R7	17/11/22	14:47	WS201	S	GL	Dry	D	1.90	-	-	1004	F	-0.07	-	0.1	0.1	0.1	2.9	0.8	19.4	19.8	0	0	-	DRY
Wider Site R7	17/11/22	14:53	WS202	S	GL	1.04		2.00	-	-	1004	F	0.12	-	0.2	0.1	0.1	0.6	0.6	20.4	20.5	0	0	-	ОК
Wider Site R7	17/11/22	12:54	WS203	S	GL	Dry	D	2.00	-	-	1004	F	-0.04	-	0.1	0.1	0.1	0.7	0.7	20.0	20.2	0	0	-	DRY
Wider Site R7	17/11/22 17/11/22	12:46	WS204 WS205	S	GL GL	Dry 0.94	D	3.00	-	-	1004	F	-0.02 0.02	-	0.2	0.1	0.1	0.2	0.2	21.3	21.4	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22	13:00 13:19	WS205 WS206	S	GL	1.63		4.20	-	-	1004	F	0.02	-	0.1	0.1	0.1	1.6	1.6	19.0	19.0	0	0	-	OK OK
Wider Site R7	17/11/22	12:40	WS207	S	GL	0.55		2.20	-	-	1004	F	0.07	-	-4.0	0.1	0.1	1.3	1.3	20.1	20.2	1	0	-	ок
Wider Site R7	17/11/22	12:35	WS208	S	GL	0.29		2.15	-	-	1004	F	2.45	-	-6.1	0.1	0.1	1.7	1.7	19.8	19.8	3	0	-	ОК
Wider Site R7	17/11/22	13:14	WS209	S	GL	1.20		3.00	-	-	1004	F	0.05	-	0.2	0.1	0.1	1.6	1.6	19.9	19.9	0	0	-	OK
Wider Site R7 Wider Site R7	17/11/22 17/11/22	12:27 14:38	WS210 WS211	S	GL GL	0.36 2.20		2.60 3.40	-	-	1004	F F	0.23	-	-6.1	0.1	0.1	3.3	3.3	19.7 18.1	20.0	0	0	-	OK OK
Wider Site R7	17/11/22	13:06	WS211	S	GL	Dry	D	3.65	-	-	1004	F	0.00	-	0.3	0.1	0.1	0.5	0.5	20.6	20.7	0	0	-	DRY
Wider Site R7	17/11/22	13:26	WS214	S	GL	Dry	D	1.00	-	-	1004	F	0.02	-	0.1	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	DRY
Wider Site R7	17/11/22	12:21	WS215	S	GL	0.40		2.50	-	-	1004	F	2.40	-	0.1	0.1	0.1	1.0	1.0	20.2	20.2	2	0	-	ОК
Wider Site R7	17/11/22	14:15	WS216	S	GL	3.85		4.20	-	-	1004	F	-0.07	-	0.1	0.1	0.1	0.9	0.9	19.9	19.9	0	0	-	OK DDV
Wider Site R7 Wider Site R7	17/11/22 17/11/22	15:02 13:31	WS217 WS218	S	GL GL	Dry Dry	D D	2.05 1.80	-	-	1004	F	-0.05 -0.07	-	0.1	0.1	0.1	1.8	1.8	19.1	19.4 20.6	0	0	-	DRY DRY
Wider Site R7	17/11/22	12:07	WS219	S	GL	3.34		5.00	-	-	1004	F	0.04	-	0.1	0.1	0.1	1.4	1.4	19.2	19.2	0	0	-	ОК
Wider Site R7	17/11/22	12:02	WS220	S	GL	1.20		3.00	-	-	1004	F	0.07	-	0.3	0.1	0.1	0.6	0.6	19.7	19.8	0	0	-	ОК
Wider Site R7	17/11/22	14:22	WS221	S	GL	Dry	D	2.05	-	-	1004	F	0.00	-	0.1	0.1	0.1	1.6	1.6	19.2	19.2	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 17/11/22	13:37 12:13	WS222 WS223	S	GL GL	Dry Dry	D D	2.50	-	-	1004	F F	-0.09	-	0.2	0.1	0.1	0.7	0.7	20.7 19.6	20.8 19.6	0	0	-	DRY DRY
Wider Site R7	17/11/22	11:34	WS224	S	GL	0.84		1.40	-	-	1004	F	0.07	-	0.1	0.1	0.1	0.3	0.2	19.9	21.0	0	0	-	ОК
Wider Site R7	17/11/22	14:28	WS225	S	GL	Dry	D	2.00	-	-	1004	F	0.02	-	0.1	0.1	0.1	1.0	1.0	19.9	20.0	0	0	-	DRY
Wider Site R7	17/11/22	13:50	WS226	S	GL	Dry	D	1.10	-	-	1004	F	0.00	-	0.1	0.1	0.1	0.7	0.7	19.9	19.9	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 16/11/22	13:42 15:19	WS227 WS228	S	GL GL	Dry Dry	D D	2.80	-	-	981	F F	0.19	-	0.2	0.1	0.1	0.8	0.8	20.8 19.6	20.8	0	0	-	DRY DRY
Wider Site R7	16/11/22	15:10	WS229	S	GL	Dry	D	1.00	-	-	981	F	0.05	-	0.2	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY
Wider Site R7	17/11/22	14:03	WS230	S	GL	Dry	D	1.10	-	-	1004	F	0.02	-	0.1	0.1	0.1	0.8	0.8	19.7	19.7	0	0	-	DRY
Wider Site R7	16/11/22	14:02	WS231	S	GL	4.29		5.18	-	-	982	F	0.02	-	0.3	0.1	0.1	3.7	3.5	17.8	17.8	0	0	-	OK
	17/11/22	11:54	WS232 WS233	S	GL GL	0.99		3.00 2.35	-	-	1004	F F	-0.05	-	0.2	0.1	0.1	2.0	2.0	20.2 18.9	20.2 19.2	0	0	-	OK OK
Wider Site R7 Wider Site R7	17/11/22 17/11/22	11:18 11:26	WS233 WS234	S	GL	1.01		1.68	-	-	1004	F	0.00	-	0.1	0.1	0.1	0.3	0.3	20.6	20.6	0	0	-	OK OK
Wider Site R7	16/11/22	11:53	WS235	S	GL	0.98		5.06	-	-	984	F	-0.02	-	0.1	0.1	0.1	1.7	1.2	18.5	18.5	1	0	-	ОК
Wider Site R7	16/11/22	11:46	WS236	S	GL	Dry	D	1.98	-	-	984	F	-0.02	-	0.2	0.1	0.1	1.9	1.9	18.1	18.1	0	0	-	DRY
Wider Site R7	16/11/22	15:05	WS237	S	GL	Dry 3.74	D	1.05 4.97	-	-	981	F F	-0.04 0.07	-	0.3	0.1	0.1	0.5 2.6	0.5	20.3	20.3	0	0	-	DRY
Wider Site R7 Wider Site R7	16/11/22 17/11/22	14:12 11:07	WS238 WS239	S	GL GL	1.25		2.28	-	-	982 1004	F	0.07	-	0.1	0.1	0.1	0.7	0.7	19.8 19.8	19.8 19.9	0	0	-	OK OK
Wider Site R7	17/11/22	11:12	WS240	S	GL	Dry	D	1.10	-	-	1004	F	0.09	-	0.3	0.1	0.1	1.1	1.1	19.7	19.8	0	0	-	DRY
Wider Site R7	17/11/22	10:05	WS241	S	GL	1.24		1.98	-	-	1004	F	0.16	-	0.2	0.1	0.1	1.2	1.2	19.9	19.9	0	0	-	ОК
Wider Site R7	16/11/22	12:01	WS242	S	GL	0.31		3.65	-	-	984	F	17.55	-	0.1	0.1	0.1	2.6	2.6	16.9	17.0	2	0	-	OK
Wider Site R7 Wider Site R7	16/11/22	14:35 16:15	WS243 WS244	S	GL GL	Dry Dry	D	0.93	-	-	981 981	F F	0.02	-	0.3	0.1	0.1	0.7	0.7	21.4 19.3	21.4 19.5	0	0	-	DRY DRY
Wider Site R7	16/11/22	15:39	WS245	S	GL	0.56		2.58	-	-	981	F	0.00	-	-4.5	0.1	0.1	0.7	0.7	20.9	20.9	1	0	-	OK
Wider Site R7	16/11/22	15:48	WS246	S	GL	0.98		4.49	-	-	981	F	0.14	-	-2.2	0.1	0.1	1.0	1.0	20.2	20.3	0	0	-	ОК
Wider Site R7	16/11/22	16:06	WS247	S	GL	0.56		0.93	-	-	981	F	0.05	-	0.1	0.1	0.1	1.2	1.2	18.5	18.8	0	0	-	ОК
Wider Site R7	17/11/22	10:56	WS248	S	GL	1.30		1.65	-	-	1004	F	0.07	-	0.3	0.1	0.1	0.7	0.7	20.0	20.1	0	0	-	OK
Wider Site R7	17/11/22	10:41 10:48	WS249 WS250	S	GL GL	0.70	D	0.89	-	-	1004	F	0.04	-	0.2	0.1	0.1	0.8	0.8	19.3 19.8	19.3 19.8	0	0	-	DRY OK
Wider Site R7 Wider Site R7	17/11/22 17/11/22	10:48	WS250 WS251	S	GL	0.70		2.00	-	-	1004	F	1.39	-	-1.0	0.1	0.1	1.0	1.0	19.8	19.8	2	0	-	OK OK
	17/11/22	10:31	WS252	S	GL	0.32		5.18	-	-	1004	F	6.53	-	-2.5	0.2	0.2	1.2	1.2	19.5	19.5	1	0	-	ОК

Monito	oring round		W	ell Details		Water	NAPL M	onitoring	(m belov	/ datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrat	ions (use •	< for below	/ LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round	Data	Times	Wall ID	dual gas		1 ' 1	"D"		Depth	Depth to		falling (F) /	вн		s Steady	CH ₄	CH ₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	Nakaa ay aay dikiay af bayabala (iyaliydiga ay
Reference	Date	Time	Well ID	1	(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) -	(%v/v) - (Steady)	(%v/v) - (Initial)		(ppm)	(ppm)	ppm using	Notes on condition of borehole (including any
				(S/D)	/ GL)							steady (S)	(hPa)				,		,						
	21/12/22	10:26	BH201	S	GL	4.20		5.86	-	-	1003	F	0.12	-	0.1	0.1	0.1	0.9	0.9	20.3	20.3	0	0	-	OK
Wider Site R8 Wider Site R8	21/12/22 19/12/22	10:45 12:23	BH202 BH203	S	GL GL	3.30 2.82		5.15	-	-	1003 997	F F	-0.05 -0.04	-	0.2	0.1	0.1	0.8	0.8	19.9	20.1	0	0	-	OK OK
Wider Site R8	19/12/22	13:00	BH204	S	GL	1.83		5.18	-	-	996	F	0.07	-	0.2	0.1	0.1	0.8	0.8	20.1	20.4	0	0	-	ОК
Wider Site R8	19/12/22	12:32	BH205	S	GL	0.42		4.16	-	-	997	F	8.77	-	-2.0	0.1	0.1	2.3	2.3	17.1	17.4	18	0	-	ОК
Wider Site R8	21/12/22	09:49	WS201	S	GL	Dry	D	1.90	-	-	1003	F	0.11	-	0.1	0.1	0.1	1.3	0.7	19.9	20.3	0	0	-	DRY
	21/12/22	09:57 12:06	WS202 WS203	S	GL GL	1.10 Dry	D	2.00	-	-	1003	F F	1.07 -0.04	-	-4.5 0.1	0.1	0.1	0.7	0.7	19.7 20.0	19.7	0	0	-	OK DRY
	21/12/22	11:58	WS204	S	GL	Dry	D	1.00	-	-	1003	F	-0.02	-	0.2	0.1	0.1	0.2	0.2	21.3	21.4	0	0	-	DRY
Wider Site R8	21/12/22	12:13	WS205	S	GL	0.55		3.00	-	-	1003	F	0.07	-	0.2	0.1	0.1	1.7	1.6	20.1	20.3	0	0	-	ОК
	21/12/22	11:51	WS206	S	GL	1.44		4.20	-	-	1003	F	-0.21	-	0.1	0.1	0.1	2.0	2.0	18.2	18.2	0	0	-	ОК
Wider Site R8 Wider Site R8	21/12/22	11:42 11:37	WS207 WS208	S	GL GL	0.42		2.20	-	-	1003 1003	F	-0.58 10.96	-	-2.3	0.1	0.1	1.5	1.5	20.5	20.5	3	0	-	OK OK
	21/12/22	12:19	WS209	S	GL	0.98		3.00	-	_	1003	F	0.09	-	0.0	0.1	0.1	2.0	2.0	18.6	18.8	0	0	-	OK OK
Wider Site R8	21/12/22	11:20	WS210	S	GL	0.33		2.60	-	-	1003	F	2.25	-	0.9	0.1	0.1	1.3	1.3	20.3	20.4	2	0	-	ОК
Wider Site R8	21/12/22	09:38	WS211	S	GL	1.98		3.40	-	-	1003	F	0.04	-	0.1	0.1	0.1	3.5	3.3	17.3	17.4	0	0	-	ОК
	21/12/22	10:03	WS213	S	GL GL	Dry Dry	D D	3.66 1.00	-	-	1003 1003	F	0.00	-	0.2	0.1	0.1	0.6	0.5 1.0	19.7	19.8	0	0	-	DRY
Wider Site R8 Wider Site R8	21/12/22	12:25 11:29	WS214 WS215	S	GL	0.33	D	2.50	-	-	1003	F	3.50	-	-1.4	0.1	0.1	0.6	0.6	20.2	20.2	1	0	-	DRY OK
	21/12/22	09:25	WS216	S	GL	3.80		4.20	-	-	1003	F	-0.10	-	0.2	0.1	0.1	1.5	1.5	19.7	19.8	0	0	-	ОК
	21/12/22	10:11	WS217	S	GL	Dry	D	2.05	-	-	1003	F	-0.11	-	0.3	0.1	0.1	1.5	1.4	19.8	19.9	0	0	-	DRY
	21/12/22	12:31	WS218	S	GL	Dry	D	1.80	-	-	1003	F	-0.09	-	0.1	0.1	0.1	1.1	1.1	19.6	19.7	0	0	-	DRY
Wider Site R8 Wider Site R8	21/12/22	11:05 11:11	WS219 WS220	S	GL GL	3.31 0.99		5.00 3.00	-	-	1003	F F	0.02	-	0.3	0.1	0.1	0.8	0.8	19.8 19.2	19.9	0	0	-	OK OK
Wider Site R8	21/12/22	09:30	WS220 WS221	S	GL	Dry	D	2.05	-	-	1003	F	0.02	-	0.2	0.1	0.1	1.7	1.7	18.8	18.9	0	0	-	DRY
Wider Site R8	21/12/22	12:44	WS222	S	GL	Dry	D	2.50	-	-	1003	F	0.10	-	0.3	0.1	0.1	0.8	0.8	19.8	20.1	0	0	-	DRY
Wider Site R8	21/12/22	10:58	WS223	S	GL	Dry	D	2.00	-	-	1003	F	0.02	-	0.2	0.1	0.1	0.5	0.5	20.4	20.5	0	0	-	DRY
Wider Site R8	19/12/22	11:13	WS224	S	GL	0.64		1.40	-	-	1003	F	0.11	-	0.3	0.1	0.1	0.4	0.1	20.3	21.0	0	0	-	OK Day
Wider Site R8 Wider Site R8	21/12/22	09:35 10:21	WS225 WS226	S	GL GL	Dry Dry	D D	2.00	-	-	1003	F	0.07	-	0.1	0.1	0.1	0.5	0.5	19.3	19.3	0	0	-	DRY DRY
	21/12/22	12:49	WS227	S	GL	Dry	D	2.80	-	-	1003	F	0.20	-	0.2	0.1	0.1	0.8	0.8	20.2	20.2	0	0	-	DRY
Wider Site R8	19/12/22	12:17	WS228	S	GL	Dry	D	1.01	-	-	996	F	-0.16	-	0.2	0.1	0.1	0.8	0.8	20.1	20.2	0	0	-	DRY
Wider Site R8	19/12/22	12:12	WS229	S	GL	Dry	D	1.00	-	-	996	F	0.21	-	0.3	0.1	0.1	0.6	0.6	20.6	20.6	0	0	-	DRY
Wider Site R8 Wider Site R8	21/12/22 19/12/22	10:40 11:20	WS230 WS231	S	GL GL	Dry 3.49	D	1.10 5.18	-	-	1003 997	F	-0.05	-	0.2	0.1	0.1	0.7 3.6	3.6	20.4 17.1	20.6 17.1	0	0	-	DRY OK
Wider Site R8	21/12/22	10:51	WS232	S	GL	0.87		3.00	-	-	1003	F	-0.20	-	-2.9	0.1	0.1	0.7	0.7	19.5	19.7	0	0	-	OK OK
Wider Site R8	19/12/22	11:02	WS233	S	GL	0.33		2.35	-	-	1003	F	-0.10	-	0.2	0.1	0.1	1.8	1.8	19.1	19.2	0	0	-	ОК
Wider Site R8	19/12/22	11:13	WS234	S	GL	0.59		1.68	-	-	1003	F	0.04	-	0.2	0.1	0.1	0.2	0.3	20.5	20.6	0	0	-	ОК
Wider Site R8	19/12/22 19/12/22	14:37 14:29	WS235 WS236	S	GL GL	0.94 Dry		5.06 1.98	-	-	1003	F F	0.01	-	0.3	0.1	0.1	1.6	1.7	17.5 19.2	17.6 19.2	0	0	-	OK DRY
Wider Site R8 Wider Site R8	19/12/22	12:01	WS237	S	GL	Dry	D	1.05	-	-	996	F	0.16	-	0.3	0.1	0.1	0.5	0.5	20.6	20.8	0	0	-	DRY
Wider Site R8	19/12/22	11:29	WS238	S	GL	1.96		4.97	-	-	996	F	0.00	-	0.2	0.1	0.1	1.8	1.6	19.1	19.6	1	0	-	ОК
Wider Site R8	19/12/22	10:49	WS239	S	GL	0.98		2.28	-	-	1003	F	-0.02	-	0.3	0.1	0.1	0.8	0.8	19.5	19.6	0	0	-	ок
Wider Site R8	19/12/22	10:55	WS240	S	GL	Dry	D	1.10	-	-	1003	F	0.12	-	0.3	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	OK OK
Wider Site R8 Wider Site R8	19/12/22 19/12/22	09:50 14:55	WS241 WS242	S	GL GL	0.88		3.65	-	-	1003	F	0.03 8.85	-	-1.6	0.1	0.1	2.3	2.4	19.2 18.5	19.3 18.5	1	0	-	OK OK
	19/12/22	11:42	WS243	S	GL	Dry	D	1.03	-	-	996	F	0.12	-	0.2	0.1	0.1	0.7	0.7	20.5	20.6	0	0	-	DRY
Wider Site R8	19/12/22	13:11	WS244	S	GL	0.65		0.93	-	-	996	F	0.11	-	0.2	0.1	0.1	0.6	0.6	18.8	20.7	0	0	-	ОК
Wider Site R8	19/12/22	12:46	WS245	S	GL	0.45		2.58	-	-	997	F	9.90	-	0.3	0.1	0.1	2.0	2.0	16.3	16.4	2	0	-	OK OK
Wider Site R8 Wider Site R8	19/12/22 19/12/22	12:53 13:05	WS246 WS247	S	GL GL	0.84		0.93	-	-	996 997	F F	1.81 41.77	-	6.3	0.1	0.1	2.8	1.2	17.1	17.2	2	0	-	OK OK
	19/12/22	10:37	WS248	S	GL	1.28		1.65	-	-	1003	F	0.14	-	0.3	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	OK
Wider Site R8	19/12/22	10:19	WS249	S	GL	Dry	D	1.00	-	-	1003	F	0.06	-	0.3	0.1	0.1	1.2	1.3	18.9	19.0	0	0	-	DRY
Wider Site R8	19/12/22	10:29	WS250	S	GL	0.68		0.89	-	-	1003	F	1.02	-	0.2	0.1	0.1	1.0	1.0	19.9	20.1	0	0	-	ОК
	19/12/22	09:59	WS251	S	GL	0.32		2.00	-	-	1003	F F	-0.02	-	0.1	0.1	0.1	1.1	1.2	20.1	19.8	0	0	-	OK OK
Wider Site R8 Wider Site R9	19/12/22 10/01/23	10:05 12:58	WS252 BH201	S	GL GL	0.25 3.61		5.18 5.86	-	-	1003 997	R	0.09	-	-3.2 0.2	0.1	0.2	0.8	0.8	18.8 20.2	17.9 20.2	0	0	-	OK OK
Wider Site R9	10/01/23	13:12	BH202	S	GL	0.95		5.15	-	-	997	R	0.25	-	-4.1	0.1	0.1	0.7	0.6	20.4	20.6	0	0	-	ОК
Wider Site R9	11/01/23	11:55	BH203	S	GL	2.75		5.00	-	-	1003	R	-0.04	-	0.2	0.1	0.1	0.6	0.6	20.5	20.9	0	0	-	ОК
	11/01/23	12:26	BH204	S	GL	1.74		5.18	-	-	1003	R	0.07	-	0.2	0.1	0.1	0.8	0.8	20.1	20.4	0	0	-	OK
Wider Site R9	11/01/23	12:02	BH205 WS201	S	GL GL	0.30		4.16 1.90	-	-	1003 997	R R	8.77 0.25	-	-2.0	0.1	0.1	0.6	0.6	17.1	17.4	18	0	-	OK OK
Wider Site R9 Wider Site R9	10/01/23	12:21 12:27	WS201 WS202	S	GL	0.83		2.00	-	-	997	R	6.78	-	-2.9	0.1	0.1	0.6	0.6	19.4	19.9	1	0	-	OK OK
Wider Site R9	10/01/23	14:34	WS203	S	GL	Dry	D	2.03	-	-	995	R	0.09	-	0.2	0.1	0.1	0.6	0.6	20.5	20.7	0	0	-	DRY
	10/01/23	14:26	WS204	S	GL	Dry	D	1.05	-	-	996	R	-0.12	-	0.3	0.1	0.1	0.3	0.3	20.6	20.8	0	0	-	DRY

Monito	oring round		W	ell Details		Water	/NAPL M	onitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	Concentrat	ions (use «	< for below	(LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round	_		W II IB	dual gas			"D"		Depth	Depth to		falling (F) /	вн		Steady	CH₄	CH ₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	1	(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)		(ppm)	(ppm)	ppm using	Notes on condition of borehole (including any
				(S/D)	/ GL)							steady (S)	(hPa)												
Wider Site R9	10/01/23	14:40	WS205	S	GL	0.30		3.00	-	-	996	R R	-0.11	-	0.2	0.1	0.1	1.5	1.5	20.4	20.4	0	0	-	OK OK
Wider Site R9 Wider Site R9	10/01/23	14:19 14:10	WS206 WS207	S	GL GL	0.30		4.20 2.20	-	-	996 996	R	-0.04	-	-6.1	0.1	0.1	2.7	2.7	19.5 17.9	19.5 19.7	1	0	-	OK OK
Wider Site R9	10/01/23	14:05	WS208	S	GL	0.18		2.15	-	-	996	R	25.38	-	4.7	0.1	0.1	4.0	4.0	11.6	11.6	4	0	-	ОК
Wider Site R9	10/01/23	14:46	WS209	S	GL	0.82		3.00	-	-	996	R	-0.30	-	-1.5	0.1	0.1	1.2	1.2	19.7	19.9	1	0	-	OK
Wider Site R9 Wider Site R9	10/01/23	13:43 12:14	WS210 WS211	S	GL GL	0.24 1.54		2.60 3.40	-	-	997	R R	23.39 4.93	-	0.2	0.1	0.1	2.0	2.0	14.6	14.7	0	0	-	OK OK
Wider Site R9	10/01/23	12:38	WS213	S	GL	Dry	D	3.66	-	-	997	R	0.28	-	0.2	0.1	0.1	0.5	0.5	20.6	20.6	0	0	-	DRY
Wider Site R9	10/01/23	14:52	WS214	S	GL	Dry	D	1.02	-	-	995	R	0.04	-	0.2	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	DRY
Wider Site R9 Wider Site R9	10/01/23	13:58 11:54	WS215 WS216	S	GL GL	3.23		2.50 4.20	-	-	996 997	R	0.00	-	0.2	0.1	0.1	1.9	1.9	12.6 19.5	12.6 19.6	0	0	-	OK OK
Wider Site R9	10/01/23	12:46	WS217	S	GL	Dry	D	2.09	-	-	997	R	-0.04	-	0.2	0.1	0.1	1.7	1.7	19.9	19.9	0	0	-	DRY
Wider Site R9	10/01/23	14:56	WS218	S	GL	Dry	D	1.82	-	-	995	R	0.00	-	0.2	0.1	0.1	1.0	1.0	19.7	19.7	0	0	-	DRY
Wider Site R9	10/01/23	13:30	WS219	S	GL GL	3.28 0.84		5.00 3.00	-	-	996 997	R	0.05 -0.95	-	0.2 -4.5	0.1	0.1	1.7	1.7	19.3	19.6	0	0	-	OK OK
Wider Site R9 Wider Site R9	10/01/23 10/01/23	13:35 11:59	WS220 WS221	S	GL	Dry	D	1.99	-	-	997	R	-0.95	-	0.2	0.1	0.1	1.7	1.7	18.2	18.2	0	0	-	DRY
Wider Site R9	10/01/23	15:09	WS222	S	GL	Dry	D	2.49	-	-	995	R	0.19	-	0.2	0.1	0.1	0.7	0.7	20.5	20.5	0	0	-	DRY
Wider Site R9	10/01/23	13:26	WS223	S	GL	1.73		2.00	-	-	996	R	-0.04	-	0.2	0.1	0.1	0.5	0.5	20.3	20.4	0	0	-	OK
Wider Site R9 Wider Site R9	11/01/23 10/01/23	10:17 12:04	WS224 WS225	S	GL GL	0.44 Dry	D	2.00	-	-	1003 997	R	-0.05	-	0.2	0.1	0.1	1.0	1.0	21.2 19.5	19.5	0	0	-	OK DRY
Wider Site R9	10/01/23	12:53	WS226	S	GL	Dry	D	1.18	-	-	997	R	0.09	-	0.2	0.1	0.1	0.7	0.7	20.2	20.4	0	0	-	DRY
Wider Site R9	10/01/23	15:14	WS227	S	GL	Dry	D	2.78	-	-	995	R	0.14	-	0.2	0.1	0.1	0.8	0.8	20.3	20.4	0	0	-	DRY
Wider Site R9	11/01/23	11:47	WS228	S	GL GL	Dry	D D	1.01	-	-	1003	R	0.02	-	0.2	0.1	0.1	0.9	0.9	19.6	19.7	0	0	-	DRY
Wider Site R9 Wider Site R9	11/01/23	11:38 13:08	WS229 WS230	S	GL	Dry Dry	D	1.00	-	-	1003 997	R	-0.19	-	0.2	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY DRY
Wider Site R9	11/01/23	10:31	WS231	S	GL	3.28		5.18	-	-	1003	R	0.02	-	0.3	0.1	0.1	3.7	3.5	17.8	17.8	0	0	-	ОК
Wider Site R9	10/01/23	13:18	WS232	S	GL	0.13		3.00	-	-	997	R	-0.23	-	-4.1	0.1	0.1	0.6	0.6	20.6	20.8	0	0	-	OK
Wider Site R9 Wider Site R9	11/01/23 11/01/23	10:08	WS233 WS234	S	GL GL	0.12		2.35 1.68	-	-	1003	R	-0.53 4.12	-	-2.8	0.1	0.1	0.9	0.9	17.6 15.8	17.7 15.8	0 2	0	-	OK OK
Wider Site R9	11/01/23	14:16	WS235	S	GL	0.91		5.06	-	-	1003	R	0.02	-	0.2	0.1	0.1	1.7	1.6	17.5	17.5	0	0	-	ОК
Wider Site R9	11/01/23	14:09	WS236	S	GL	Dry	D	1.98	-	-	1003	R	0.02	-	0.3	0.1	0.1	1.9	1.9	19.2	19.2	0	0	-	DRY
Wider Site R9	11/01/23	11:28	WS237 WS238	S	GL GL	Dry 1.88	D	1.05 4.97	-	-	1003 1003	R	0.16	-	0.3	0.1	0.1	0.5 2.6	0.5 2.1	20.6 19.8	20.8	0	0	-	DRY
Wider Site R9 Wider Site R9	11/01/23 11/01/23	10:41 09:55	WS238 WS239	S	GL	0.13		2.28	-	-	1003	R	-1.48	-	-3.1	0.1	0.1	1.0	1.0	16.6	16.8	2	0	-	OK OK
Wider Site R9	11/01/23	10:01	WS240	S	GL	0.14		1.14	-	-	1003	R	24.04	-	1.8	0.1	0.1	2.0	2.0	17.4	17.4	2	0	-	ок
Wider Site R9	11/01/23	08:51	WS241	S	GL	0.55		1.98	-	-	1002	R	0.02	-	-1.7	0.1	0.1	0.7	0.7	19.8	19.8	0	0	-	OK
Wider Site R9 Wider Site R9	11/01/23 11/01/23	14:24 11:04	WS242 WS243	S	GL GL	0.22 Dry	D	3.65 1.03	-	-	1003	R	7.94 0.02	-	-3.3 0.3	0.1	0.1	0.7	0.7	18.6 21.4	18.8 21.4	0	0	-	DRY
	11/01/23	12:31	WS244	S	GL	0.66		0.93	-	-	1003	R	0.11	-	0.2	0.1	0.1	0.7	0.7	19.3	19.5	0	0	-	DRY
Wider Site R9	11/01/23	12:07	WS245	S	GL	0.28		2.58	-	-	1003	R	0.04	-	-4.5	0.1	0.1	0.8	0.8	20.9	20.9	1	0	-	ОК
Wider Site R9 Wider Site R9	11/01/23 11/01/23	12:16 12:34	WS246 WS247	S	GL GL	0.75		0.93	-	-	1003 1003	R R	0.14	-	-2.2	0.1	0.1	1.0	1.0	20.2 18.5	20.3	0	0	-	OK OK
Wider Site R9	11/01/23	09:43	WS248	S	GL	0.36		1.65	-	-	1003	R	2.68	-	-5.6	0.1	0.1	1.0	1.0	15.7	15.8	3	0	-	OK OK
Wider Site R9	11/01/23	09:26	WS249	S	GL	0.65		1.00	-	-	1003	R	-0.02	-	-1.6	0.1	0.1	1.8	1.8	19.5	19.6	1	0	-	ок
Wider Site R9	11/01/23	09:35	WS250 WS251	S	GL GL	0.22		2.00	-	-	1003	R R	0.55 -0.16	-	-4.0 -0.4	0.1	0.1	1.0	1.0	20.7 19.4	20.8 19.5	0	0	-	OK WATER LOGGED FIELD
Wider Site R9 Wider Site R9	11/01/23 11/01/23	09:02 09:14	WS251 WS252	S	GL	0.25		5.18	-	-	1003	R	-0.16	-	-4.4	0.1	0.1	1.3	1.1	16.9	17.0	0	0	-	OK
	09/02/23	14:29	BH201	S	GL	3.35		4.87	-	-	1027	R	-0.05	-	0.1	0.1	0.1	0.7	0.7	21.1	21.4	0	0	-	ОК
Wider Site R10	10/02/23	14:55	BH203	S	GL	2.82		4.84	-	-	1030	R	0.05	-	0.1	0.1	0.1	0.6	0.6	20.3	20.3	0	0	-	OK
Wider Site R10 Wider Site R10	10/02/23	15:49 15:11	BH204 BH205	S	GL GL	0.60		5.01 4.16	-	-	1030 1030	R	-0.05 -6.63	-	-0.1	0.1	0.1	0.8 1.9	0.8 1.9	20.1 15.4	20.3 15.4	2	0	-	SILT
	09/02/23	13:47	WS201	S	GL	1.64		1.95	-	-	1027	R	-0.58	-	0.1	0.1	0.1	0.7	0.5	14.2	15.7	0	0	-	ОК
Wider Site R10	09/02/23	13:56	WS202	S	GL	0.57		2.03	-	-	1027	R	-1.13	-	-0.1	0.1	0.1	0.5	0.5	20.2	20.4	2	0	-	ок
	09/02/23	15:49	WS203 WS204	S	GL GL	2.03 1.35	D D	2.03 1.35	-	-	1027 1028	R R	-0.11 0.05	-	0.1	0.1	0.1	0.6	0.6	20.8	21.4	0	0	-	DRY DRY
	09/02/23	15:58 15:35	WS204 WS205	S	GL	0.57	U	2.99	-	-	1028	R	-0.86	-	-0.1	0.1	0.1	2.6	2.5	17.9	18.1	1	0	-	OK OK
Wider Site R10	09/02/23	15:24	WS206	S	GL	1.54		4.19	-	-	1028	R	-0.11	-	0.1	0.1	0.1	1.6	1.6	20.7	20.8	0	0	-	SILT
	09/02/23	16:09	WS207	S	GL	0.58		2.16	-	-	1029	R	0.04	-	0.1	0.1	0.1	2.2	2.2	19.3	19.3	15	0	-	SILT
Wider Site R10 Wider Site R10	09/02/23	16:29 15:15	WS208 WS209	S	GL GL	0.40 1.00		3.02	-	-	1029 1028	R R	-22.80 -3.79	-	-0.4	0.1	0.1	3.2	3.2	12.5 20.1	12.5 20.3	2	0	-	WATER SILT 3rd run on gas, 2.30min water up pipe. Pi
	09/02/23	17:04	WS210	S	GL	0.49		2.61	-	-	1029	R	-24.63	-	-0.2	0.1	0.1	0.5	0.5	20.6	20.7	0	0	-	SILT
Wider Site R10	09/02/23	13:36	WS211	S	GL	1.99		3.56	-	-	1027	R	-3.23	-	-0.1	0.1	0.1	2.3	2.3	17.4	17.4	0	0	-	ОК
	09/02/23	14:06	WS213	S	GL	3.64	D*	3.65	-	-	1027	R	-0.11	-	0.1	0.1	0.1	0.5	0.5	21.1	21.1	0	0	-	OK
	09/02/23	14:57 16:48	WS214 WS215	S	GL GL	0.39	D	2.00	-	-	1027 1029	R R	0.09 -19.52	-	-0.3	0.1	0.1	0.8 1.3	0.8	20.9 15.0	21.0 15.0	3	0	-	DRY OK

Moni	toring round		V	Vell Details	s	Water.	/NAPL M	lonitoring	(m below	/ datum)		Pressure and fl	.ow (use < fo	or below Lo	D)			Gas C	oncentrati	ons (use <	for below	/LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure	Relative	Initial Gas	Steady	CH₄	CH₄	CO₂	CO₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		to		to Base	to	Depth to	pressure	falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v) -	(%v/v) -		(%v/v) -	СО	H₂S		Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R10	09/02/23	13:03	WS216	S	GL	2.97		4.07	-	-	1026	R	0.35	-	0.1	0.1	0.1	1.0	1.0	19.1	19.1	0	1	-	ОК
Wider Site R10	09/02/23	14:14	WS217	S	GL	2.08	D	2.08	-	-	1027	R	0.04	-	0.1	0.1	0.1	1.4	1.4	20.6	20.7	0	0	-	DRY
Wider Site R10	09/02/23	14:49	WS218	S	GL	1.81	D	1.81	-	-	1027	R	0.07	-	0.1	0.1	0.1	0.8	0.8	20.9	20.9	0	0	-	DRY
Wider Site R10	09/02/23	13:14 14:42	WS221 WS222	S	GL GL	2.04	D D	2.04	-	-	1027 1027	R R	0.02	-	0.1	0.1	0.1	0.8	0.8	19.7 20.8	20.0	0	0	-	DRY DRY
Wider Site R10 Wider Site R10	09/02/23	13:47	WS224	S	GL	0.56	, D	1.39	-	-	1027	R	-0.02	-	0.1	0.1	0.1	0.4	0.8	20.6	21.2	0	0	-	OK OK
Wider Site R10	09/02/23	13:20	WS225	S	GL	2.04	D	2.04	-	-	1026	R	-0.02	-	0.1	0.1	0.1	0.8	0.8	20.4	20.5	0	0	-	DRY
Wider Site R10	09/02/23	14:22	WS226	S	GL	1.18	D	1.18	-	-	1027	R	0.11	-	0.1	0.1	0.1	0.6	0.6	21.2	21.3	0	0	-	DRY
Wider Site R10 Wider Site R10	09/02/23 10/02/23	14:36 14:47	WS227 WS228	S	GL GL	2.77 1.03	D D	2.77 1.03	-	-	1027 1029	R	0.07	-	0.1	0.1	0.1	0.7	0.7	21.2	21.4	0	0	-	DRY DRY
Wider Site R10	10/02/23	14:42	WS229	S	GL	2.00	D	2.00	-	-	1029	R	0.02	-	0.1	0.1	0.1	0.5	0.5	20.9	20.9	0	0	-	DRY
Wider Site R10	10/02/23	14:08	WS231	S	GL	2.80		4.96	-	-	1030	R	0.14	-	0.1	0.1	0.1	3.3	3.3	18.5	18.5	0	0	-	ОК
Wider Site R10 Wider Site R10	10/02/23	14:35 13:21	WS232 WS233	S	GL GL	1.06 0.40	D	1.06 2.27	-	-	1029 1031	R	-0.11	-	0.1	0.1	0.1	0.5 1.0	0.5	21.2	21.5	0	0	-	DRY SILT
Wider Site R10	10/02/23	13:39	WS234	S	GL	0.40		1.67	-	-	1031	R	-13.79	-	-0.2	0.1	0.1	0.5	0.7	17.2	17.2	1	0	-	OK OK
Wider Site R10	10/02/23	14:15	WS238	S	GL	1.86		4.98	-	-	1030	R	0.04	-	0.1	0.1	0.1	1.5	1.5	19.8	19.8	1	0	-	ОК
Wider Site R10	10/02/23	12:58	WS239	S	GL	0.47		2.28	-	-	1030	R	-2.54	-	-0.3	0.1	0.1	1.2	1.1	18.9	19.0	1	0	-	ОК
Wider Site R10 Wider Site R10	10/02/23	13:14 11:06	WS240 WS241	S	GL GL	0.69		2.00	-	-	1030 1031	R R	-23.61 -0.04	-	-0.6	0.1	0.1	0.7	0.7	19.1 20.1	19.1 20.6	0	0	-	ОК
Wider Site R10	10/02/23	14:24	WS243	S	GL	1.03	D	1.03	-	-	1029	R	0.02	-	0.1	0.1	0.1	0.7	0.6	20.8	21.1	0	0	-	DRY
Wider Site R10	10/02/23	16:20	WS244	S	GL	0.64		0.95	-	-	1030	R	-14.83	-	-0.3	0.1	0.1	0.4	0.4	20.1	20.2	2	0	-	ОК
Wider Site R10	10/02/23	15:27	WS245 WS246	S	GL GL	0.59		2.56 4.48	-	-	1030 1030	R	-20.03 -3.79	-	-0.2	0.1	0.1	0.8	0.8	18.6 17.6	18.7 18.2	2	0	-	SILT
Wider Site R10 Wider Site R10	10/02/23	15:42 16:04	WS246 WS247	S	GL	0.93		0.96	-	_	1030	R	11.00	-	0.3	0.1	0.1	0.9	0.9	12.0	12.0	4	0	-	OK
Wider Site R10	10/02/23	12:14	WS248	S	GL	0.58		1.65	-	-	1031	R	-18.21	-	-0.2	0.1	0.1	0.5	0.5	19.5	19.5	1	0	-	ОК
Wider Site R10	10/02/23	11:49	WS249	S	GL	1.01	D	1.01	-	-	1031	R	0.09	-	0.1	0.1	0.1	1.7	1.7	19.1	19.2	0	0	-	DRY
Wider Site R10 Wider Site R10	10/02/23	11:57 11:21	WS250 WS251	S	GL GL	0.57		0.90 2.00	-	-	1031 1031	R	-4.21	-	-0.1	0.1	0.1	1.0	0.8	20.7	20.9	7	0	-	OK OK
Wider Site R10	10/02/23	11:38	WS252	S	GL	0.43		5.03	-	-	1031	R	-9.78	-	-0.2	0.1	0.1	1.1	1.1	18.2	18.3	0	0	-	ОК
Wider Site R11	09/03/23	14:21	BH201	S	GL	3.46		4.86	-	-	985	F	-0.04	-	0.1	0.1	0.1	0.8	0.8	21.0	20.9	0	0	-	ОК
Wider Site R11	13/03/23	12:19	BH202	S	GL	1.30 2.36		5.16 4.74	-	-	984 986	F	0.19	-	0.1	0.1	0.1	0.5	0.5	20.6 19.5	20.6	0	0	-	OK
Wider Site R11 Wider Site R11	09/03/23	12:51 12:41	CP301 CP302	S	GL GL	1.96		4.10	-	-	986	F	-0.04	-	0.1	0.1	0.1	1.6	1.6	20.3	19.5 20.2	0	0	-	SILT OK
Wider Site R11	09/03/23	14:57	CP303	S	GL	3.29		4.05	-	-	984	F	0.05	-	0.1	0.1	0.1	0.6	0.6	21.0	21.0	0	0	-	ОК
Wider Site R11	09/03/23	14:41	CP304	S	GL	3.03		4.05	-	-	985	F	0.05	-	0.1	0.1	0.1	0.7	0.7	21.1	20.8	0	0	-	ОК
Wider Site R11 Wider Site R11	09/03/23	14:08 12:12	CP305 RO301	S	GL GL	3.08 0.34		7.72	-	-	985 984	F	0.04	-	0.1	0.1	0.1	0.3	0.4	20.5	20.4	0	0	-	OK OK
Wider Site R11		12:07	RO302	S	GL	0.15		3.16	-	-	984	F	-0.14	-	-0.1	0.1	0.1	0.1	0.1	21.1	20.9	0	0	-	ОК
Wider Site R11	14/03/23	14:54	RO303	S	GL	0.18		3.54	-	-	1004	R	-0.18	-	0.1	0.1	0.1	0.1	0.1	20.9	20.8	0	0	-	ок
Wider Site R11	14/03/23	14:49	RO304	S	GL	0.32		8.04	-	-	1004	R	0.02	-	0.1	0.1	0.1	0.3	0.3	20.2	20.2	1	0	-	SILT
Wider Site R11 Wider Site R11	14/03/23 09/03/23	13:37 13:30	RO305 RO306	S	GL GL	0.13		2.38 5.55	-	-	1004 986	R F	38.20 11.37	-	0.1	0.1	0.1	1.3	1.3	17.2 19.5	17.2 19.4	3	0	-	OK OK
Wider Site R11	09/03/23	13:36	RO307	S	GL	1.38		5.13	-	-	985	F	0.26	-	0.1	0.1	0.1	0.5	0.6	21.2	21.1	0	0	-	ОК
Wider Site R11	09/03/23	13:42	RO307A	S	GL	1.39		2.16	-	-	985	F	0.02	-	0.1	0.1	0.1	0.4	0.4	21.4	21.0	1	0	-	ОК
Wider Site R11 Wider Site R11	10/03/23	12:01 12:07	RO309 RO309A	S	GL GL	5.05 4.13	D*	5.60 4.23	-	-	998	R R	-0.02	-	0.1	0.1	0.1	0.9	0.9	20.2	20.2	0	0	-	ОК
Wider Site R11	10/03/23	11:50	RO310	S	GL	4.10		6.08	-	-	998	R	0.00	-	0.1	0.1	0.1	1.5	1.5	19.9	19.8	0	0	-	ОК
Wider Site R11	10/03/23	11:34	RO311	S	GL	1.09		5.09	-	-	997	R	0.12	-	0.1	0.1	0.1	0.3	0.5	21.4	21.3	0	0	-	ок
Wider Site R11	10/03/23	11:21	RO312	S	GL	3.66		9.44	-	-	997	R	0.69	-	0.1	0.1	0.1	0.4	0.4	20.6	20.6	2	0	-	OK .
Wider Site R11 Wider Site R11	10/03/23	11:28 12:15	RO312A RO313	S	GL GL	3.18	D	2.12 4.47	-	-	997 999	R R	0.11	-	0.1	0.1	0.1	0.3 2.9	0.4 2.9	21.3 17.2	21.0 17.2	0	0	-	DRY OK
Wider Site R11	10/03/23	12:20	RO313A	S	GL	0.79	D	0.79	-	-	999	R	0.09	-	0.1	0.1	0.1	0.8	0.9	19.6	19.3	0	0	-	DRY
Wider Site R11	10/03/23	12:49	RO314	S	GL	0.75		4.66	-	-	1000	R	15.71	-	0.3	0.1	0.1	1.6	1.6	18.2	18.2	9	0	-	ОК
Wider Site R11 Wider Site R11	09/03/23	15:26 15:04	RO315 RO316	S	GL GL	0.19		5.03	-	-	985 985	F F	79.12 0.32	-	0.1	0.1	0.1	0.7	1.6 0.7	4.0 19.6	4.0 19.6	2	0	-	FLOODED AROUND STANDPIPE OK
Wider Site R11	09/03/23	15:04	RO316A	S	GL	1.16		1.31	-	-	985	F	0.32	-	0.1	0.1	0.1	0.7	0.7	21.2	21.1	0	0	-	OK OK
Wider Site R11	10/03/23	12:59	RO317	S	GL	0.23		7.45	-	-	1000	R	0.30	-	0.1	0.1	0.1	0.5	0.6	20.2	20.2	1	0	-	OK
Wider Site R11	10/03/23	13:34	RO318	S	GL	0.50		5.84	-	-	1000	R	7.26	-	0.3	0.1	0.1	1.9	1.9	15.5	15.5	3	0	-	FLOODED AROUND STANDPIPE
Wider Site R11 Wider Site R11	10/03/23	13:38 13:44	RO318A RO319	S	GL GL	0.42		4.17 5.56	-	-	1000	R R	-0.79	-	-0.1	0.1	0.1	1.7	1.7	18.7 19.5	18.6 19.5	1	0	-	OK OK
Wider Site R11	10/03/23	14:34	RO320	S	GL	0.28		5.10	-	-	1002	R	22.92	-	0.1	0.1	0.1	1.4	1.4	18.6	18.6	4	0	-	ОК
Wider Site R11	10/03/23	14:14	RO321	S	GL	0.71		3.92	-	-	1001	R	16.18	-	0.3	0.1	0.1	1.0	1.0	19.6	19.4	3	0	-	ок
Wider Site R11	10/03/23	14:19	RO321A	S	GL	0.74		2.04	-	-	1001	R	0.07	-	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	-	OK
Wider Site R11	09/03/23	13:10	WS201 WS202	S	GL GL	2.78 3.24		3.21	-	-	986 986	F F	0.05 6.12	-	0.1	0.1	0.1	0.8	0.7	10.4 20.3	11.6 20.4	0	0	-	OK OK
Wider Site R11	U9/03/23	13:18	W5202	5	GL	3.24		3.64	-	-	986	l t	6.12	-	2.1	0.1	U.1	U.b	U.b	20.3	20.4	0	U	-	OK

Monite	oring round		w	ell Details		Water	NAPL M	onitoring	(m below	datum)		Pressure and fl	ow (use < fo	r below Lo	oD)			Gas C	Concentrat	ions (use «	c for below	(LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Denth		Atm.	Atm. pressure	Relative	Initial Ga	s Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas	Туре			to Base	to	Depth to		falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v) -	(%v/v)-		co	H ₂ S		g Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R11	10/03/23	11:56	WS203	S	GL	2.69	D	2.69	_		998	R	-0.05	_	0.1	0.1	0.1	0.7	0.7	20.8	20.8	0	0	-	DRY
Wider Site R11	10/03/23	12:26	WS204	S	GL	2.91	D	3.11	-	-	1000	R	-0.04	-	0.1	0.1	0.1	1.0	1.0	18.4	18.4	0	0	-	DRY
Wider Site R11	10/03/23	11:44	WS205	S	GL	2.46		3.14	-	-	997	R	4.83	-	0.3	0.1	0.1	2.9	2.9	16.0	16.0	0	1	-	OK
Wider Site R11 Wider Site R11	10/03/23	12:34 13:05	WS206 WS207	S	GL GL	2.26		2.04	-	-	1000	R R	0.05	-	0.1	0.1	0.1	1.9 2.4	1.9 2.4	19.2 18.8	19.3 19.0	0	5	-	SILT OK
Wider Site R11	10/03/23	13:21	WS208	S	GL	3.45		3.84	-	-	1000	R	21.12	-	0.3	0.1	0.1	3.7	3.7	17.1	17.1	1	3	-	SILT
Wider Site R11	10/03/23	11:14	WS209	S	GL	2.89		3.00	-	-	997	R	1.23	-	0.2	0.1	0.1	1.6	1.6	19.4	19.4	0	0	-	ОК
Wider Site R11 Wider Site R11	10/03/23 09/03/23	14:48 12:59	WS210 WS211	S	GL GL	0.98		3.09 1.95	-	-	1002 985	R	23.40 4.23	-	0.5	0.1	0.1	1.8 2.5	1.8 2.5	16.0 17.4	16.2 17.4	0	0	-	SILT
Wider Site R11	09/03/23	13:53	WS213	S	GL	0.41	D	2.03	-	-	985	F	0.00	-	0.1	0.1	0.1	0.6	0.6	21.0	21.0	3	0	-	DRY
Wider Site R11	09/03/23	14:52	WS214	S	GL	2.03	D	2.03	-	-	984	F	0.02	-	0.1	0.1	0.1	1.1	1.1	20.5	20.8	3	0	-	DRY
Wider Site R11	10/03/23	13:59	WS215 WS216	S	GL GL	0.44		1.05 3.01	-	-	1001	R	17.24 -0.05	-	0.3	0.1	0.1	1.6	1.6	15.4 20.0	15.4	0	0	-	OK OK
Wider Site R11 Wider Site R11	09/03/23	12:23 14:02	WS216 WS217	S	GL	1.52	D	4.22	-	-	985	F	0.02	-	0.1	0.1	0.1	1.0	1.0	21.0	20.0	0	0	-	DRY
Wider Site R11	09/03/23	14:46	WS218	S	GL	0.34	D	2.20	-	-	984	F	-0.12	-	0.1	0.1	0.1	1.0	1.0	20.6	21.0	0	0	-	DRY
Wider Site R11	13/03/23	11:35	WS219	S	GL	0.19		2.21	-	-	983	F	-0.02	-	0.1	0.1	0.1	1.6	1.6	19.5	19.6	0	0	-	OK
Wider Site R11 Wider Site R11	13/03/23 09/03/23	11:49 12:30	WS220 WS221	S	GL GL	0.26	D	3.01 2.60	-	-	983 986	F F	-0.25	-	0.2	0.1	0.1	1.1	1.1	17.9 19.9	17.9 20.2	0 2	0	-	OK DRY
Wider Site R11	09/03/23	14:34	WS221	S	GL	2.34	D	3.56	-	-	985	F	-0.23	-	0.1	0.1	0.1	1.0	1.0	20.5	20.6	0	0	-	DRY
Wider Site R11	13/03/23	11:28	WS223	S	GL	3.65	D*	3.65	-	-	983	F	-0.07	-	0.1	0.1	0.1	0.5	0.5	20.2	20.2	0	0	-	ок
Wider Site R11	14/03/23	15:00	WS224	S	GL	1.00		1.00	-	-	1004	R	0.11	-	0.1	0.1	0.1	0.5	0.5	20.5	20.6	0	0	-	OK PRIV
Wider Site R11 Wider Site R11	09/03/23	12:36 14:15	WS225 WS226	S	GL GL	0.26 3.13	D D	2.54 4.06	-	-	986 985	F	-0.05	-	0.1	0.1	0.1	0.9	0.9	20.2	20.7	9	0	-	DRY DRY
Wider Site R11	09/03/23	14:29	WS227	S	GL	2.09	D	2.09	-	-	985	F	0.16	-	0.1	0.1	0.1	0.8	0.8	20.9	21.2	2	0	-	DRY
Wider Site R11	13/03/23	12:32	WS230	S	GL	1.81	D	1.81	-	-	983	F	-0.05	-	0.1	0.1	0.1	0.6	0.6	20.4	20.4	0	0	-	DRY
Wider Site R11 Wider Site R11	13/03/23	13:48 12:00	WS231 WS231	S	GL GL	3.32 0.92		4.99 3.01	-	-	983 1004	F	0.09	-	0.1	0.1	0.1	3.9 0.6	3.5 0.6	15.0 18.7	18.4	3	2	-	OK SILT
Wider Site R11	13/03/23	14:45	WS231 WS232	S	GL	2.04		2.04	-	-	984	F	2.45	-	0.2	0.1	0.1	0.7	0.7	19.7	19.7	1	1	-	OK
Wider Site R11	14/03/23	15:08	WS233	S	GL	2.50		2.50	-	-	1004	R	0.11	-	0.1	0.1	0.1	0.6	0.5	20.4	20.4	1	0	-	ок
Wider Site R11	14/03/23	14:33	WS239	S	GL	1.91		2.01	-	-	1004	R	-2.64	-	-0.8	0.1	0.1	1.2	1.2	17.2	17.2	4	3	-	ОК
Wider Site R11 Wider Site R11	14/03/23	14:39 13:03	WS240 WS241	S	GL GL	2.05		2.05	-	-	1004 1003	R	0.09	-	-0.6	0.1	0.1	0.9	0.9	18.0 20.2	18.0 20.2	0	1	-	OK OK
Wider Site R11	14/03/23	14:21	WS248	S	GL	1.18		1.18	-	-		R	2.86	-	0.9	0.1	0.1	0.8	0.8	16.5	16.5	0	3	-	ОК
Wider Site R11	14/03/23	13:56	WS249	S	GL	2.77		2.77	-	-	1004	R	-4.23	-	0.1	0.1	0.1	1.3	1.3	20.2	20.3	0	1	-	ОК
Wider Site R11 Wider Site R11	14/03/23	14:08 13:14	WS250 WS251	S	GL GL	1.09 2.61		1.09 4.97	-	-	1004	R	-0.78	-	-0.1	0.1	0.1	2.6 1.6	2.6 1.6	16.7 17.3	16.8 17.3	0	2	-	OK OK
Wider Site R11	14/03/23	13:42	WS252	S	GL	0.26		1.70	-	-	1004	R	0.07	-	0.1	0.1	0.1	0.9	0.9	20.2	20.3	1	1	-	OK OK
Wider Site R12	05/04/23	11:31	BH01	S	GL	0.17		2.94	-	-	1015	F	-0.05	-	0.1	0.1	0.1	12.5	12.5	6.2	6.2	1	0	-	ок
	05/04/23	12:01	BH02	S	GL GL	0.23		2.28	-	-	1015	F F	-0.04	-	0.1	0.1	0.1	5.1	5.3 4.3	16.8	16.4	1	0	-	SILT
Wider Site R12 Wider Site R12	05/04/23	11:27 11:17	WS01 WS02	S	GL	0.23		1.19	-	-	1015 1015	F	0.00	-	0.1	0.1	0.1	4.3 2.8	2.9	15.9 17.2	15.9 15.6	0	0	-	OK OK
	05/04/23	11:22	WS03	S	GL	0.63	D	1.97	-	-	1015	F	-0.11	-	0.1	0.1	0.1	11.6	12.2	7.4	7.4	0	0	-	DRY
	05/04/23	12:05	WS04	S	GL	0.44		1.65	-	-	1015	F	0.05	-	0.1	0.1	0.1	14.5	14.5	2.5	2.5	1	0	-	OK
	05/04/23 05/04/23	11:36 11:40	WS05 WS06	S	GL GL	0.71		0.90	-	-	1015 1015	F	-0.05 0.12	-	0.1	0.1	0.1	5.8 12.0	5.8 12.0	16.0 8.9	15.7 8.9	0	0	-	OK
	05/04/23	11:44	WS07	S	GL	0.32		2.00	-	-	1015	F	-0.07	-	0.1	0.1	0.1	2.4	2.6	18.6	17.1	2	0	-	OK
Wider Site R12	05/04/23	11:53	WS08	S	GL	0.22		5.02	-	-	1015	F	0.04	-	0.1	0.1	0.1	7.0	7.0	15.4	15.3	2	0	-	OK
	05/04/23	11:49 11:13	WS09 WS10	S	GL GL	2.95	D*	3.36	-	-	1015 1015	F F	-0.05 -0.04	-	0.1	0.1	0.1	2.9	2.9	18.8	18.5 3.3	0	0	-	OK OK
	06/04/23	12:45	BH201	S	GL	3.45		4.88	-	-	1013	F	0.11	-	0.1	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	OK OK
Wider Site R12	06/04/23	16:16	BH202	S	GL	1.44		5.16	-	-	1008	F	0.09	-	0.1	0.1	0.1	1.1	1.1	19.5	19.2	0	0	-	ОК
	05/04/23	13:37	BH203	S	GL	2.55		5.12	-	-	1015	F	0.07	-	0.1	0.1	0.1	1.0	1.0	19.1	19.0	0	0	-	OK
	05/04/23	14:35 13:58	BH204 BH205	S	GL GL	0.56		5.28	-	-	1015 1015	F	-15.25	-	-6.0	0.1	0.1	0.7	0.7	20.9 17.2	20.7 17.2	0	0	-	OK OK
	06/04/23	15:34	WS201	S	GL	0.56		1.93	-	-	1008	F	-0.07	-	0.1	0.1	0.1	0.8	2.9	19.8	19.4	0	0	-	ОК
Wider Site R12	06/04/23	15:25	WS202	S	GL	0.48		2.02	-	-	1008	F	1.07	-	-4.5	0.1	0.1	1.2	1.2	19.7	19.7	1	0	-	ОК
	06/04/23	14:36	WS203 WS204	S	GL GL	Dry Dry	D D	2.02 1.04	-	-	1008 1009	F F	-0.02 -0.02	-	0.1	0.1	0.1	0.7 1.0	1.0	20.3	20.0 17.9	0	0	-	DRY DRY
Wider Site R12	06/04/23	14:12 14:44	WS205	S	GL	0.77	D D	2.99	-	-	1009	F	0.02	-	0.1	0.1	0.1	0.8	0.9	20.5	20.2	1	0	-	OK
	06/04/23	13:59	WS206	S	GL	1.66		4.19	-	-	1009	F	-0.05	-	0.1	0.1	0.1	1.9	1.9	19.8	19.6	0	0	-	ОК
Wider Site R12	06/04/23	13:52	WS207	S	GL	0.47		2.20	-	-	1009	F	0.07	-	-4.0	0.1	0.1	1.3	1.3	20.2	20.1	1	0	-	OK
Wider Site R12 Wider Site R12	06/04/23	13:48 14:51	WS208 WS209	S	GL GL	0.26 1.16		3.01	-	-	1009	F	0.09	-	-6.1	0.1	0.1	2.0	2.0	19.8	19.8	0	0	-	OK OK
Wider Site R12	06/04/23	13:33	WS210	S	GL	0.40		2.57	-	-	1008	F	0.03	-	0.1	0.1	0.1	0.1	0.1	21.2	21.1	1	0	-	OK OK
	06/04/23	15:43	WS211	S	GL	1.23		3.56	-	-	1008	F	0.04	-	0.1	0.1	0.1	3.3	3.5	17.4	17.3	0	0	-	ОК

Round Reference Wider Site R12	Time 15:12 15:02 13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 15:24 15:43 13:16 12:10 15:07 15:14 13:15	Well ID WS213 WS214 WS215 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS238 WS238 WS239 WS239	Single or dual gas tap (S/D) S S S S S S S S S S S S S S S S S S	Type	Dry		to Base of Hole 3.65 1.00 2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09 4.94		Depth to DNAPL	1008 1008 1008 1007 1007 1008 1008 1008	Atm. pressure falling (F) / rising (R) / steady (S) F F F F F F F F F F F F F F F F F F	Relative BH pressure (hPa) 0.04 0.02 2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07 10.34	Initial Gas Flow (L/hr)	Steady Gas Flow (I/hr) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	CH4 (%v/v) - (Initial) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	CH4 (%v/v) - (Steady) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	CO ₂ (%v/v)- (Initial) 0.6 1.2 1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6 0.1 1.0	CO ₂ (%v/v) - (Steady) 0.6 1.2 1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6 0.1 1.0	(Initial) 20.5 19.4 20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	O ₂ (%v/v) - (Steady) 20.4 19.4 20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	H ₂ S (ppm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC (as ppm using PID)	Notes on condition of borehole (including any OK DRY OK OK DRY OK OK DRY DRY OK OK OK OK OK OK DRY OK OK OK DRY DRY OK OK DRY DRY DRY DRY DRY DRY DRY DR
Reference Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	15:12 15:02 13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS213 WS214 WS215 WS216 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	dual gas tap (S/D) S S S S S S S S S S S S S S S S S S	Type	Dry	denotes dry hole D* D D D D D D D D D D D D	to Base of Hole 3.65 1.00 2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09 4.94	to LNAPL	DNAPL	1008 1008 1008 1008 1008 1008 1008 1008 1007 1007 1007 1008 1007 1007 1007 1007 1007 1007 1015 1015 1015 1008 1015	falling (F) / rising (R) / steady (S) F F F F F F F F F F F F F F F F F F	BH pressure (hPa) 0.04 0.02 2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07	Flow (L/hr)	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(%v/v) - (Initial) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	(%v/v) - (Steady) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	(%v/v)- (Initial) 0.6 1.2 1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6 0.1	(%v/v)- (Steady) 0.6 1.2 1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6	(%v/v)- (Initial) 20.5 19.4 20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	(Steady) 20.4 19.4 20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	(ppm) 0 0 2 0 0 0 0 1 0 0 1 1 0 0 1 1	(ppm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ppm using PID)	OK DRY OK OK OK DRY DRY OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12	15:12 15:02 13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS213 WS214 WS215 WS216 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	(S/D) S S S S S S S S S S S S S S S S S S	GL G	Dry Dry 0.34 3.14 Dry Dry 1.28 0.91 Dry	D* D D D D D D D D D D D D D D D D D D	3.65 1.00 2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	LNAPL		(hPa) 1008 1008 1008 1007 1007 1008 1008 1008 1007 1007 1007 1007 1007 1007 1007 1007	steady (S) F F F F F F F F F F F F F F F F F F	(hPa) 0.04 0.02 2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07	(L/hr)	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(Initial) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	(Steady) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	(Initial) 0.6 1.2 1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6 0.1	0.6 1.2 1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6	(Initial) 20.5 19.4 20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	(Steady) 20.4 19.4 20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 0 2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	PID)	OK DRY OK OK OK DRY DRY OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	15:02 13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS214 WS215 WS216 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry Dry 0.34 3.14 Dry Dry 1.28 0.91 Dry	D* D D D D D D D D D D D D D D D D D D	3.65 1.00 2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09			1008 1008 1008 1007 1007 1008 1008 1008	F F F F F F F F F F F F F F F F F F F	0.04 0.02 2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 1.2 1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6	0.6 1.2 1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6	20.5 19.4 20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	20.4 19.4 20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 2 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0		DRY OK OK DRY OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	15:02 13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS214 WS215 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry 0.34 3.14 Dry 1.28 0.91 Dry Dry Dry Dry Dry Dry O.78 Dry	D D D D D D D D D D D D D D D D D D D	1.00 2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	-		1008 1008 1007 1007 1008 1008 1008 1007 1007 1008 1021 1007 1007 1007 1015	F F F F F F F F F F F F F F F F F F F	0.02 2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.2 1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6	1.2 1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6	19.4 20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	19.4 20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 2 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0	-	DRY OK OK DRY OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	13:41 12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS215 WS216 WS216 WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	0.34 3.14 Dry Dry 1.28 0.91 Dry Dry Dry Dry Dry O.78 Dry	D D D D D D D D D D D D D D D D D D D	2.54 4.07 2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	-	-	1008 1007 1007 1008 1008 1008 1007 1007	F F F F F F F F F F F F F F F F F F F	2.40 0.07 -0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07	-	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.0 1.1 1.4 1.1 1.0 0.6 1.5 0.8 0.6	1.0 1.1 1.4 1.1 1.4 0.6 1.5 0.8 0.6 0.1	20.2 19.5 20.2 19.7 20.3 19.5 18.8 20.1 20.0	20.2 19.4 19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	2 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0		OK OK DRY DRY OK OK DRY OK OK OK OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	12:06 12:30 14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS217 WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry Dry 1.28 0.91 Dry	D D D*	2.08 1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	-	-	1007 1008 1008 1008 1007 1007 1008 1021 1007 1007 1007	F F F F F F F F F F F F F F F F F F F	-0.05 -0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.4 1.1 1.0 0.6 1.5 0.8 0.6 0.1	1.4 1.1 1.4 0.6 1.5 0.8 0.6 0.1	20.2 19.7 20.3 19.5 18.8 20.1 20.0 21.1	19.9 19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 0 0 1 0 0 0	0 0 0 0 0 0	-	DRY DRY OK OK DRY OK OK OK OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	14:56 13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS218 WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry 1.28 0.91 Dry Dry Dry Dry 0.78 Dry	D D D*	1.81 4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	-		1008 1008 1008 1007 1007 1008 1021 1007 1007 1007	F F F F F F F F	-0.09 0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.1 1.0 0.6 1.5 0.8 0.6 0.1	1.1 1.4 0.6 1.5 0.8 0.6 0.1	19.7 20.3 19.5 18.8 20.1 20.0 21.1	19.6 19.7 19.5 18.5 19.8 19.7 21.1	0 0 1 0 0 0	0 0 0 0 0		DRY OK DRY DRY OK OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	13:06 13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS219 WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	1.28 0.91 Dry Dry Dry 0.78 Dry	D D D*	4.99 3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09	-		1008 1008 1007 1007 1008 1021 1007 1007 1007	F F F F F	0.02 -0.65 0.04 0.14 0.21 0.32 -0.09 -0.07	-	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.0 0.6 1.5 0.8 0.6 0.1	1.4 0.6 1.5 0.8 0.6 0.1	20.3 19.5 18.8 20.1 20.0 21.1	19.7 19.5 18.5 19.8 19.7 21.1	0 1 0 0 0	0 0 0 0 0 0 0		OK ORY DRY OK OK
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	13:11 12:14 12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS220 WS221 WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	0.91 Dry Dry Dry O.78 Dry	D D*	3.01 2.03 2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09		-	1008 1007 1007 1008 1021 1007 1007 1007	F F F F F	0.04 0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.6 1.5 0.8 0.6 0.1	0.6 1.5 0.8 0.6 0.1	19.5 18.8 20.1 20.0 21.1	19.5 18.5 19.8 19.7 21.1	0 0 1	0 0 0 0		OK DRY DRY OK OK
Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	12:55 13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS222 WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry Dry O.78 Dry	D D*	2.49 2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09 4.94		-	1007 1008 1021 1007 1007 1007 1015	F F F	0.14 0.21 0.32 -0.09 -0.07		0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1	0.8 0.6 0.1	0.8 0.6 0.1	20.1 20.0 21.1	19.8 19.7 21.1	0 0 1	0 0	-	DRY OK OK
Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	13:00 15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS223 WS224 WS225 WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL G	Dry 0.78 Dry Dry Dry Dry Dry Dry Dry 0.56 0.23	D* D D D D D D	2.01 1.39 2.04 1.18 2.77 1.03 1.99 1.09 4.94	- - - -	-	1008 1021 1007 1007 1007 1015	F F F	0.21 0.32 -0.09 -0.07	-	0.1 0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.6	0.6	20.0	19.7 21.1	0	0	-	ОК
Wider Site R12	15:34 12:19 12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	W5224 W5225 W5226 W5226 W5227 W5228 W5229 W5230 W5231 W5232 W5233 W5234 W5237 W5238 W5239 W5240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL GL GL GL GL GL GL GL GL GL GL	0.78 Dry Dry Dry Dry Dry Dry 0.44 0.40 0.56 0.23	D D D D D	1.39 2.04 1.18 2.77 1.03 1.99 1.09 4.94	- - - -	-	1021 1007 1007 1007 1015	F F	0.32 -0.09 -0.07	-	0.1 0.1 0.1	0.1	0.1	0.1	0.1	21.1	21.1	1	0		ОК
Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	12:39 12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS226 WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	S S S S S S S S S S S S S S S S S S S	GL	Dry Dry Dry Dry Dry 0.44 0.40 0.56 0.23	D D D	1.18 2.77 1.03 1.99 1.09 4.94		-	1007 1007 1015	F F	-0.07	-	0.1			1.0	1.0	10.0	10.0	0	0	-	DRY
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	12:52 13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07	WS227 WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	S S S S S S S S S S S S S S S S S S S	GL	Dry Dry Dry Dry 2.44 0.40 0.56 0.23	D D D	2.77 1.03 1.99 1.09 4.94	-	-	1007 1015	F				0.1				19.9	19.6		_		
Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	13:30 13:25 16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS228 WS229 WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239	S S S S S S S S S	GL GL GL GL GL GL GL GL GL	Dry Dry Dry 2.44 0.40 0.56 0.23	D D	1.03 1.99 1.09 4.94	-	-	1015		10.54		0.1	0.1	0.1	0.9	0.9	20.0	20.0	0	0	-	DRY
Wider Site R12 06/04/23 Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	16:26 11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS230 WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	S S S S S S S	GL GL GL GL GL	Dry 2.44 0.40 0.56 0.23		1.09 4.94	-	-	4	1	0.02	-	0.1	0.1	0.1	1.0	1.0	20.5	20.2	0	0	-	DRY
Wider Site R12 05/04/23 Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23	11:03 16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS231 WS232 WS233 WS234 WS237 WS238 WS239 WS240	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GL GL GL GL	2.44 0.40 0.56 0.23	D	4.94	-		1014	F	-0.09	-	0.1	0.1	0.1	0.5	0.5	20.6	20.6	0	0	-	DRY
Wider Site R12 06/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	16:02 15:24 15:43 13:16 12:10 15:07 15:14	WS232 WS233 WS234 WS237 WS238 WS239 WS240	S S S S	GL GL GL	0.40 0.56 0.23			1	-	1008	F	0.02	-	0.1	0.1	0.1	0.8	0.8	19.7	19.7	0	0	-	DRY
Wider Site R12	15:24 15:43 13:16 12:10 15:07 15:14	WS233 WS234 WS237 WS238 WS239 WS240	S S S	GL GL GL	0.56 0.23		2.94	-	-	1015 1008	F	-0.02 -0.05	-	0.1	0.1	0.1	4.2 0.7	0.7	15.6 19.7	15.5 19.5	0	0	-	OK OK
Wider Site R12 05/04/23 Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	13:16 12:10 15:07 15:14	WS237 WS238 WS239 WS240	S S	GL			2.28	-	-	1021	F	-0.05	-	0.1	0.1	0.1	0.4	0.4	20.9	20.7	1	0	-	ОК
Wider Site R12 05/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	12:10 15:07 15:14	WS238 WS239 WS240	S	_			1.67	-	-	1021	F	1.34	-	0.1	0.1	0.1	0.4	0.4	20.3	20.2	3	0	-	ок
Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23	15:07 15:14	WS239 WS240		GL	Dry 1.61	D	1.38 4.98	-	-	1014 1016	F	-0.02	-	0.1	0.1	0.1	0.5	0.5	21.1 19.7	20.9 15.5	0	0	-	DRY
Wider Site R12 04/04/23 Wider Site R12 04/04/23 Wider Site R12 05/04/23				GL	0.46		2.29	-	-	1010	F	-4.30	-	-2.0	0.1	0.1	0.9	0.9	17.7	17.7	1	0	-	OK OK
Wider Site R12 05/04/23	13:15	\A/C 2.4.1	S	GL	0.41		1.50	-	-	1021	F	-1.16	-	0.1	0.1	0.1	1.1	1.1	19.7	19.6	2	0	-	ОК
	10.00	WS241	S	GL	0.61		1.97	-	-	1021	F	-0.05	-	0.1	0.1	0.1	0.2	0.2	20.6	20.5	1	0	-	OK
Wider Site R12 05/04/23	12:38 14:50	WS243 WS244	S	GL GL	0.73	D	0.95	-	-	1015 1015	F	0.00	-	0.1	0.1	0.1	0.7	0.7	20.5	20.4	2	0	-	DRY OK
Wider Site R12 05/04/23	14:15	WS245	S	GL	0.69		2.54	-	-	1015	F	22.51	-	8.2	0.1	0.1	1.8	1.8	15.7	15.5	1	0	-	ОК
Wider Site R12 05/04/23	14:21	WS246	S	GL	0.80		4.48	-	-	1015	F	-0.02	-	0.1	0.1	0.1	0.2	0.2	21.4	20.8	1	0	-	ок
Wider Site R12 05/04/23 Wider Site R12 04/04/23	14:43 14:30	WS247 WS248	S	GL GL	0.29		0.96 1.65	-	-	1015 1021	F F	0.32	-	0.1	0.1	0.1	0.7	0.7	20.8	20.5	2	0	-	ABOVE GL
Wider Site R12 04/04/23	14:04	WS249	S	GL	Dry	D	1.01	-	-	1021	F	0.05	-	0.1	0.1	0.1	0.5	0.5	20.9	20.7	1	0	-	OK OK
Wider Site R12 04/04/23	14:20	WS250	S	GL	0.60		0.95	-	-	1021	F	-5.57	-	-2.0	0.1	0.1	1.6	1.6	18.1	18.0	2	0	-	ок
Wider Site R12 04/04/23	13:33	WS251 WS252	S	GL GL	0.29		2.00 5.03	-	-	1022 1021	F	-3.98 0.88	-	-1.9	0.1	0.1	0.4	0.5	20.3	20.2	0	0	-	OK OK
Wider Site R12 04/04/23 Water Only R2 04/04/23	13:52	CP301	S	GL	2.05		4.70	-	-	-	F	-	-		0.1	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	CP302	S	GL	1.94		4.09	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 04/04/23	-	CP303	S	GL	3.43		4.05	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 04/04/23 Water Only R2 04/04/23	-	CP304 CP305	S	GL GL	3.10		4.05 4.72	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	RO301	S	GL	0.44		9.72	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 04/04/23	-	RO302	S	GL	0.40		3.16	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO303 RO304	S	GL GL	0.51		8.31 3.90	-	-	-	F F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO304	S	GL	0.49		2.35	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	RO306	S	GL	0.85		5.54	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 04/04/23	-	RO307	S	GL	1.33		5.11	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO307A RO309	S	GL GL	1.41 4.94		2.17 5.60	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	RO309A	S	GL	Dry	D*	4.23	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	RO310	S	GL	3.97		6.07	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO311 RO312	S	GL GL	1.12 3.61		5.09 9.32	-	-	-	F F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO312A	S	GL	Dry	D*	2.11	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23	-	RO313	S	GL	3.31		4.47	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ок
Water Only R2 04/04/23	-	RO313A	S	GL	Dry	D	0.79	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO314 RO315	S	GL GL	0.68		4.66 5.03	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	DAMAGED OK
Water Only R2 04/04/23	-	RO316	S	GL	2.04		4.86	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK
Water Only R2 04/04/23	-	RO316A	S	GL	1.29		1.32	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ок
Water Only R2 04/04/23	-	RO317	S	GL	0.37		7.43	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2 04/04/23 Water Only R2 04/04/23	-	RO318 RO318A	S	GL GL	0.51		5.90 3.56	-	-	-	F F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK

Moni	toring round		W	Vell Details	S	Water	/NAPL M	lonitoring (m below	/ datum)		Pressure and fl	ow (use < fo	or below Lo	D)			Gas C	oncentrati	ons (use «	for below	LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure	Relative	Initial Gas	Steady	CH₄	CH₄	CO₂	CO₂	O ₂	O ₂			VOC (as	
Round Reference	Date	Time	Well ID	dual gas	(Casing	to	denotes	1 1	to	Depth to DNAPL	pressure (hPa)	falling (F) / rising (R)/	BH pressure	Flow (L/hr)	Gas Flow	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v)-	(%v/v) - (Steady)	(ppm)	H₂S (ppm)		Notes on condition of borehole (including any
Water Oak D2	04/04/22		RO319	(S/D)	/ GL)	0.47		5.56	_	_	_	steady (S)	(hPa)	_	_	_			-	-	_	_	_	-	OK
Water Only R2 Water Only R2	04/04/23	-	RO320	S	GL	0.47		4.79	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2	04/04/23	-	RO321	S	GL	0.76		3.91	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	SILT
Water Only R2	04/04/23	-	RO321A WS235	S	GL GL	0.77		2.03	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 Water Only R2	04/04/23	-	WS236	S	GL	-		-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R2	04/04/23	-	WS242	S	GL	-		-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	
Wider Site R13 Wider Site R13	12/05/23 12/05/23	13:40 15:31	BH201 BH202	S	GL GL	3.29 1.01		4.87 5.15	-	-	1018 1019	R R	0.02	0.1	0.1	0.1	0.1	0.1	0.1	19.5 22.2	19.3 21.9	0	0	-	ОК
Wider Site R13	10/05/23	15:07	BH203	S	GL	2.71		4.99	-	-	1013	R	0.11	0.1	0.1	0.1	0.1	2.1	2.1	17.1	17.1	0	0	-	OK OK
Wider Site R13	10/05/23	16:23	BH204	S	GL	1.67		5.15	-	-	1007	R	0.02	0.1	0.1	0.1	0.1	0.9	0.9	21.1	20.9	0	0	-	SILT
Wider Site R13	10/05/23	15:38	BH205	S	GL	0.21		4.12	-	-	1008	R	-5.04	-2.4	-0.2	0.1	0.1	1.4	1.4	18.5	18.4	1	0	-	OK OK
Wider Site R13 Wider Site R13	15/05/23 15/05/23	11:57 12:08	WS201 WS202	S	GL GL	0.64		1.93 2.02	-	-	1011	R R	0.05 1.07	3.0	0.1	0.1	0.1	0.7	0.8	11.6 20.4	20.3	0	0	-	OK OK
Wider Site R13	15/05/23	13:32	WS203	S	GL	2.02	D	2.02	-	-	1011	R	-0.02	0.1	0.1	0.1	0.1	0.7	0.7	20.3	20.0	1	0	-	DRY
Wider Site R13	15/05/23	13:12	WS204	S	GL	1.04	D	1.04	-	-	1011	R	-0.02	0.1	0.1	0.1	0.1	1.0	1.0	18.1	17.9	0	0	-	DRY
Wider Site R13 Wider Site R13	15/05/23 15/05/23	13:41 12:57	WS205 WS206	S	GL GL	0.51 1.25		2.99 4.19	-	-	1011	R R	-0.05	0.1	0.1	0.1	0.1	1.9	1.9	19.3 19.8	19.2 19.6	0	0	-	SILT OK
Wider Site R13	15/05/23	12:57	WS206	S	GL	0.32		2.20	-	-	1011	R	0.07	-4.0	0.1	0.1	0.1	1.3	1.3	20.2	20.1	1	0	-	OK OK
Wider Site R13	15/05/23	12:43	WS208	S	GL	0.57		2.20	-	-	1011	R	1.23	0.2	0.2	0.1	0.1	1.6	1.6	19.4	19.4	0	0	-	ОК
Wider Site R13	15/05/23	12:14	WS209	S	GL	0.84		3.01	-	-	1011	R	0.09	0.1	0.1	0.1	0.1	2.0	2.0	18.8	18.6	0	0	-	OK
Wider Site R13 Wider Site R13	15/05/23 15/05/23	12:28 11:48	WS210 WS211	S	GL GL	0.82 1.43		2.57 3.56	-	-	1011	R	0.04	0.1	0.1	0.1	0.1	3.3	0.1 3.5	21.2 17.4	21.1 17.3	0	0	-	OK OK
Wider Site R13	12/05/23	14:16	WS213	S	GL	3.58		3.66	-	-	1018	R	-0.11	0.1	0.1	0.1	0.1	0.7	0.7	20.9	20.7	0	0	-	ОК
Wider Site R13	12/05/23	14:24	WS214	S	GL	1.00	D	1.00	-	-	1018	R	-0.04	0.1	0.1	0.1	0.1	1.5	1.5	17.8	17.7	0	0	-	DRY
Wider Site R13	15/05/23	12:36	WS215 WS216	S	GL GL	2.90		2.54 4.07	-	-	1011	R R	-0.05 0.02	0.1	0.1	0.1	0.1	1.0	1.0	20.2 19.5	20.2	0	0	-	OK OK
Wider Site R13 Wider Site R13	15/05/23 12/05/23	11:21 14:09	WS216 WS217	S	GL	2.90	D	2.08	-	-	1011	R	0.02	0.1	0.1	0.1	0.1	1.3	1.3	20.9	19.4 20.6	0	0	-	DRY
Wider Site R13	12/05/23	14:33	WS218	S	GL	1.81	D	1.81	-	-	1018	R	0.14	0.1	0.1	0.1	0.1	1.5	1.5	19.7	19.4	0	0	-	DRY
Wider Site R13	12/05/23	15:02	WS219	S	GL	1.13		4.99	-	-	1019	R	0.00	0.1	0.1	0.1	0.1	1.7	1.7	19.7	19.7	0	0	-	ОК
Wider Site R13 Wider Site R13	12/05/23 15/05/23	15:14 11:30	WS220 WS221	S	GL GL	2.03	D	2.03	-	-	1019 1011	R	-0.02	0.1	0.1	0.1	0.1	1.5	0.5 1.5	21.4 18.8	21.1 18.5	0	0	-	DRY
Wider Site R13	12/05/23	13:51	WS222	S	GL	2.49	D	2.49	-	-	1018	R	0.02	0.1	0.1	0.1	0.1	1.4	1.4	19.6	19.4	0	0	-	DRY
Wider Site R13	12/05/23	14:42	WS223	S	GL	1.82		2.01	-	-	1019	R	0.11	0.1	0.1	0.1	0.1	0.5	0.5	21.2	20.9	0	0	-	ок
Wider Site R13	11/05/23	11:48	WS224 WS225	S	GL GL	2.04	D	1.39 2.04	-	-	1010 1011	R	-0.09	0.1	0.1	0.1	0.1	1.0	1.0	21.1 19.9	21.0	0	0	-	OK
Wider Site R13 Wider Site R13	15/05/23 15/05/23	11:36	WS225	S	GL	1.18	D	1.18	-	-	1011	R	-0.09	0.1	0.1	0.1	0.1	0.9	0.9	20.0	19.6 20.0	0	0	-	DRY DRY
Wider Site R13		13:44	WS227	S	GL	2.77	D	2.77	-	-	1018	R	-0.25	0.1	0.1	0.1	0.1	1.0	1.0	19.9	19.8	0	0	-	DRY
Wider Site R13		14:55	WS228	S	GL	1.00		1.00	-	-	1007	R	-0.09	0.1	0.1	0.1	0.1	1.4	1.4	19.4	19.1	0	0	-	DRY
Wider Site R13 Wider Site R13	10/05/23	14:44 13:27	WS229 WS230	S	GL GL	1.94	D	1.94	-	-	1007 1018	R R	-0.02 0.16	0.1	0.1	0.1	0.1	0.7	0.7	20.0 19.5	19.7 19.3	0	0	-	OK DRY
Wider Site R13		11:48	WS231	S	GL	2.36		4.96	-	-	1007	R	0.12	0.1	0.1	0.1	0.1	3.8	3.9	16.8	16.8	0	0	-	ОК
Wider Site R13		15:21	WS232	S	GL	0.19		2.93	-	-	1019	R	-0.12	0.1	0.1	0.1	0.1	0.3	0.3	21.8	21.6	0	0	-	ОК
Wider Site R13		11:33	WS233	S	GL	0.18		2.28	-	-	1011	R	-0.04	0.1	0.1	0.1	0.1	0.1	0.1	21.3	20.8	0	0	-	OK
Wider Site R13 Wider Site R13		12:04 10:45	WS234 WS235	S	GL GL	1.20		1.67 5.06	-	-	1011	R R	0.02	0.2	0.2	0.1	0.1	1.6	0.7 1.7	19.6 17.5	19.4 17.5	0	0	-	ОК
Wider Site R13		10:30	WS236	S	GL	2.00	D	2.00	-	-	1011	R	-0.02	0.2	0.1	0.1	0.1	0.6	0.6	19.9	19.9	0	0	-	DRY
Wider Site R13		14:32	WS237	S	GL	1.01	D	1.01	-	-	1007	R	0.12	0.1	0.1	0.1	0.1	0.7	0.7	20.5	20.3	0	0	-	DRY
Wider Site R13		13:42 11:18	WS238 WS239	S	GL GL	1.89 0.17		5.06 2.28	-	-	1007 1011	R R	0.00 -4.13	-2.1	-0.8	0.1	0.1	0.6	0.6	20.4 19.7	15.8 19.7	0	0	-	OK OK
Wider Site R13 Wider Site R13		11:18	WS240	S	GL	0.17		1.19	-	-	1011	R	2.75	0.3	0.8	0.1	0.1	0.0	0.9	20.3	20.1	2	0	-	OK OK
Wider Site R13		12:50	WS241	S	GL	0.63		1.97	-	-	1010	R	-0.11	0.1	0.1	0.1	0.1	0.1	0.1	21.5	21.3	1	0	-	OK
Wider Site R13		10:59	WS242	S	GL	0.45		3.65	-	-	1011	R	7.94	-4.9	0.1	0.1	0.1	2.6	2.7	18.0	17.9	1	0	-	OK
Wider Site R13 Wider Site R13		14:06 17:02	WS243 WS244	S	GL GL	0.27	D	0.88	-	-	1007 1008	R R	0.14 18.85	7.3	0.1	0.1	0.1	0.8	0.8	20.4	20.2	3	0	-	DRY OK
Wider Site R13		15:51	WS245	S	GL	0.31		2.52	-	-	1007	R	6.98	3.4	0.2	0.1	0.1	1.7	1.7	17.3	17.3	4	0	-	SILT
Wider Site R13		16:02	WS246	S	GL	0.85		4.55	-	-	1008	R	-0.05	0.1	0.1	0.1	0.1	0.1	0.1	22.1	21.8	0	0	-	SILT
Wider Site R13		16:45	WS247	S	GL	-0.18		0.89	-	-	1008	R R	9.84	3.8	0.1	0.1	0.1	1.2	1.2	18.5	18.4	5	0	-	ABOVE GROUND LEVEL
Wider Site R13 Wider Site R13		14:08 13:43	WS248 WS249	S	GL GL	0.43		1.65	-	-	1010 1010	R R	2.15 0.02	0.2	0.4	0.1	0.1	0.6 3.1	0.6 3.1	20.2 16.8	20.0	1	0	-	ОК
Wider Site R13		13:57	WS250	S	GL	0.32		0.90	-	-	1010	R	7.53	2.8	0.5	0.1	0.1	3.3	3.3	15.6	15.5	1	0	-	ОК
Wider Site R13		13:14	WS251	S	GL	0.33		2.00	-	-	1010	R	-3.58	-1.7	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	-	ОК
Wider Site R13		13:30	WS252 CP301	S	GL GL	0.25 1.70		4.98 4.70	-	-	1010	R R	-0.12	0.1	0.1	0.1	0.1	0.2	0.2	21.9	21.7	0	0	-	OK OK
Water Only R3	11/05/23	-	CP301 CP302	S	GL	1.70		4.70	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК

Moni	toring round		V	Vell Details	5	Water	/NAPL Moi	nitoring (m below	/ datum)		Pressure and fl	ow (use < fo	r below Lo	D)			Gas C	oncentrati	ons (use «	for below	(LoD)		,	Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure	Relative	Initial Gas	Steady	CH₄	CH₄	CO₂	CO₂	O ₂	O ₂			VOC (as	
Round Reference	Date	Time	Well ID	dual gas			denotes		to	Depth to DNAPL	pressure	falling (F) /	BH	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v) -		(%v/v) -	CO	H ₂ S		Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DINAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Water Only R3	11/05/23	-	CP303	S	GL	3.16		4.01	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	CP304	S	GL	2.87		4.06	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	CP305	S	GL	2.84		4.72	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO301 RO302	S	GL GL	0.30		7.69 3.15	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO303	S	GL	0.11		3.53	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO304	S	GL	0.28		8.00	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO305 RO306	S	GL GL	0.35		2.38 5.54	-	-	-	R R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO307	S	GL	1.18		5.11	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO307A	S	GL	1.20		2.17	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3 Water Only R3	11/05/23	-	RO309 RO309A	S	GL GL	4.77		5.60 4.23	-	-	-	R R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO310	S	GL	3.89		6.27	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO311	S	GL	1.00		5.09	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO312	S	GL	3.56		9.32	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3 Water Only R3	11/05/23	-	RO312A RO313	S	GL GL	2.04		2.11 4.47	-	-	-	R R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO313A	S	GL	0.79	D	0.79	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R3	11/05/23	-	RO314	S	GL	0.68		4.66	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	DAMAGED
Water Only R3	11/05/23	-	RO315 RO316	S	GL GL	0.19 2.09		5.03 4.86	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO316A	S	GL	0.99		1.32	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO317	S	GL	0.34		7.43	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ок
Water Only R3	11/05/23	-	RO318	S	GL	0.50		5.90	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO318A RO319	S	GL GL	0.48		3.16 5.56	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO320	S	GL	0.31		4.79	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO321	S	GL	0.73		3.91	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	SILT
Water Only R3 Wider Site R14	11/05/23	16:04	RO321A BH201	S	GL GL	0.76 3.12		2.03 4.89	-	-	1019	R	-0.05	0.1	0.1	0.1	0.1	1.1	1.1	20.5	20.2	0	0	-	ОК
Wider Site R14	07/06/23	15:31	BH202	S	GL	2.10		5.11	-	-	1019	S	0.11	0.1	0.1	0.1	0.1	0.1	0.1	22.2	21.9	0	0	-	ОК
Wider Site R14	06/06/23	15:07	BH203	S	GL	0.77		5.10	-	-	1019	S	0.16	0.1	0.1	0.1	0.1	2.1	2.1	17.1	17.1	0	0	-	ОК
Wider Site R14	06/06/23	16:23	BH204	S	GL	1.55		5.03	-	-	1019	S	0.02	0.1	0.1	0.1	0.1	0.9	0.9	21.1	20.9	0	0	-	SILT
Wider Site R14 Wider Site R14	06/06/23	15:38 13:08	BH205 WS201	S	GL GL	0.25 1.84		4.16 1.95	-	-	1019 1019	S	-5.04 0.05	-2.4 0.1	-0.2 0.1	0.1	0.1	1.4	1.4	18.5 12.7	18.4	0	0	-	ОК
Wider Site R14	05/06/23	13:21	WS202	S	GL	0.70		2.03	-	-	1020	S	-2.57	-0.3	0.1	0.1	0.1	0.5	0.5	19.7	19.5	0	0	-	ОК
Wider Site R14		13:52	WS203	S	GL	2.02	D	2.02	-	-	1019	S	0.14	0.1	0.1	0.1	0.1	1.0	1.1	20.2	19.9	0	0	-	DRY
Wider Site R14 Wider Site R14	05/06/23	14:12 13:40	WS204 WS205	S	GL GL	0.67	D	3.00	-	-	1019 1020	S	0.00	0.1	0.1	0.1	0.1	0.2	0.2	18.2 21.2	17.9 21.0	0	0	-	DRY OK
Wider Site R14		14:21	WS206	S	GL	1.66		4.16	-	-	1019	S	0.12	0.1	0.1	0.1	0.1	2.5	2.5	19.7	19.5	0	0	-	ОК
Wider Site R14	05/06/23	14:35	WS207	S	GL	0.70		-0.24	-	-	1020	S	0.05	0.1	0.1	0.1	0.1	0.1	0.3	21.5	20.7	1	0	-	ОК
Wider Site R14		15:03	WS208	S	GL	0.47		2.22	-	-	1020	S	-19.45	-7.2	-0.2	0.1	0.1	1.6	1.8	19.4	19.2	3	0	-	OK
Wider Site R14 Wider Site R14		16:08 15:43	WS209 WS210	S	GL GL	0.57		3.00 2.58	-	-	1019 1019	S	0.07 -14.03	-5.8	-0.1	0.1	0.1	0.0	0.1	21.7	21.1	1	0	-	ОК
Wider Site R14		12:59	WS211	S	GL	2.22		3.56	-	-	1019	S	0.02	0.1	0.1	0.1	0.1	2.9	2.9	17.9	17.9	0	0	-	ОК
Wider Site R14		14:16	WS213	S	GL	3.65	D	3.65	-	-	1018	S	-0.11	0.1	0.1	0.1	0.1	0.7	0.7	20.9	20.7	0	0	-	DRY
Wider Site R14 Wider Site R14		14:24 13:42	WS214 WS216	S	GL GL	2.97	D	1.01 4.09	-	-	1018 1019	S	-0.04 -0.19	0.1	0.1	0.1	0.1	1.5	1.5	17.8 18.9	17.7 18.6	0	0	-	DRY OK
Wider Site R14		14:09	WS217	S	GL	2.08	D	2.08	-	-	1018	S	0.04	0.1	0.1	0.1	0.1	1.3	1.3	20.9	20.6	0	0	-	DRY
Wider Site R14	09/06/23	14:33	WS218	S	GL	1.81	D	1.81	-	-	1018	S	0.14	0.1	0.1	0.1	0.1	1.5	1.5	19.7	19.4	0	0	-	DRY
Wider Site R14		15:02	WS219	S	GL	1.55		4.99	-	-	1019	S	0.00	0.1	0.1	0.1	0.1	1.7	1.7 0.5	19.7	19.7	0	0	-	OK OK
Wider Site R14 Wider Site R14		15:14 13:48	WS220 WS221	S	GL GL	2.03	D	3.00 2.03	-	-	1019 1019	S	-0.02 -0.09	0.1	0.1	0.1	0.1	0.4	1.1	21.4 19.9	21.1 19.8	0	1	-	OK DRY
Wider Site R14		13:51	WS222	S	GL	2.49	D	2.49	-	-	1018	S	0.02	0.1	0.1	0.1	0.1	1.4	1.4	19.6	19.4	0	0	-	DRY
Wider Site R14		14:42	WS223	S	GL	1.91		2.01	-	-	1019	S	0.11	0.1	0.1	0.1	0.1	0.5	0.5	21.2	20.9	0	0	-	ОК
Wider Site R14 Wider Site R14		11:48 13:55	WS224 WS225	S	GL GL	2.04	D	2.04	-	-	1019 1019	S	0.19	0.1	0.1	0.1	0.1	1.3	1.3	21.1 19.6	21.0 19.5	0	0	-	OK DRY
Wider Site R14		16:15	WS226	S	GL	1.18	D	1.18	-	-	1019	S	-0.07	0.1	0.1	0.1	0.1	0.9	0.9	20.0	20.0	0	0	-	DRY
Wider Site R14	09/06/23	13:44	WS227	S	GL	2.77	D	2.77	-	-	1018	S	-0.25	0.1	0.1	0.1	0.1	1.0	1.0	19.9	19.8	0	0	-	DRY
Wider Site R14	06/06/23	14:55	WS228	S	GL	1.95	D D	1.95	-	-	1019	S S	-0.09	0.1	0.1	0.1	0.1	1.4	1.4	19.4	19.1	0	0	-	DRY
Wider Site R14 Wider Site R14		14:44 15:52	WS229 WS230	S	GL GL	1.07	D	1.07	-	-	1019 1018	S	-0.02 0.05	0.1	0.1	0.1	0.1	0.7	0.7	20.0	19.7 21.0	0	0	-	DRY DRY
Wider Site R14	06/06/23	11:48	WS231	S	GL	3.07		4.98	-	-	1010	S	0.12	0.1	0.1	0.1	0.1	3.8	3.9	16.8	16.8	0	0	-	ОК
Wider Site R14	09/06/23	15:21	WS232	S	GL	0.71		2.95	-	-	1019	S	-0.12	0.1	0.1	0.1	0.1	0.3	0.3	21.8	21.6	0	0	-	ОК

Monit	oring round		W	ell Details	•	Water	/NAPL Mo	onitorina	(m bolov	v datum)		Pressure and flo	ow (uso < fo	r bolow Lo	ND)			Gas C	Concentrat	ions (uso c	for bolow	(LoD)			Local conditions
Monit	oning round		w			water	- NAP L MI	Januaring (m betov	v datum)				L Detow Lo				aas C	oncentrat	lens (use <	l Delow	2007			Local conditions
				Single or		Depth	"D"	Depth	Depth		Atm.	Atm. pressure		Initial Gas	Steady	CH₄	CH₄	CO₂	CO2	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		to	denotes			Depth to	pressure	falling (F) /	ВН	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v)-	(%v/v)-	(%v/v) -	co	H ₂ S	ppm using	Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
				(3/0)								steady (5/													
Wider Site R14	08/06/23	11:33	WS233	S	GL	0.72		1.95	-	-	1019	S	-0.04	0.1	0.1	0.1	0.1	0.1	0.1	21.3	20.8	0	0	-	OK
Wider Site R14	08/06/23	12:04	WS234	S	GL	0.82		1.67	-	-	1019	S	7.21	3.0	0.2	0.1	0.1	0.7	0.7	19.6	19.4	6	0	-	OK OK
Wider Site R14 Wider Site R14	07/06/23 07/06/23	14:22 14:14	WS235 WS236	S	GL GL	0.87 1.98	D	1.98	-	-	1019 1019	S	-0.16 -0.07	0.1	0.1	0.1	0.1	3.2	3.5	19.9 16.7	19.0 16.7	2	0	-	DRY
Wider Site R14	06/06/23	14:32	WS237	S	GL	1.37	D	1.37	-	_	1020	S	0.12	0.1	0.1	0.1	0.1	0.7	0.7	20.5	20.3	0	0	-	DRY
Wider Site R14	06/06/23	13:42	WS238	S	GL	1.98		4.98	-	-	1020	S	0.00	0.1	0.1	0.1	0.1	1.2	2.3	20.4	15.8	2	0	-	ОК
Wider Site R14	08/06/23	11:18	WS239	S	GL	0.76		2.29	-	-	1019	S	-4.13	-2.1	-0.8	0.1	0.1	0.6	0.6	19.7	19.7	0	0	-	ОК
Wider Site R14	08/06/23	12:50	WS241	S	GL	1.17		1.97	-	-	1019	S	-0.11	0.1	0.1	0.1	0.1	0.1	0.1	21.5	21.3	1	0	-	ОК
Wider Site R14	07/06/23	14:40	WS242	S	GL	0.45		3.53	-	-	1020	S	-14.90	-5.6	-0.1	0.1	0.1	0.9	0.9	13.0	13.0	36	0	-	ОК
Wider Site R14	06/06/23	14:06	WS243	S	GL	1.02	D	1.02	-	-	1020	S	0.14	0.1	0.1	0.1	0.1	1.2	1.2	20.4	20.2	0	0	-	DRY
Wider Site R14	06/06/23	17:02	WS244	S	GL	0.88		0.95	-	-	1019	S	18.85	7.3	0.1	0.1	0.1	0.8	0.8	20.7	20.7	3	0	-	ОК
Wider Site R14	06/06/23	15:51	WS245	S	GL	0.74		2.16	-	-	1019	S	6.98	3.4	0.2	0.1	0.1	1.7	1.7	17.3	17.3	4	0	-	SILT
Wider Site R14	06/06/23	16:02	WS246	S	GL	1.09		4.49	-	-	1019	S	-0.05	0.1	0.1	0.1	0.1	0.1	0.1	22.1	21.8	0	0	-	SILT
Wider Site R14	06/06/23	16:45	WS247	S	GL GL	0.21		0.96 1.66	-	-	1019 1019	S	9.84 2.15	3.8 0.2	-0.1	0.1	0.1	0.6	0.6	18.5 20.2	18.4	5	0	-	OK
Wider Site R14	08/06/23	14:08 13:43	WS248 WS249	S	GL	0.92	D	0.98	-	-	1019	S	0.02	0.2	0.4	0.1	0.1	3.1	3.1	16.8	20.0 16.8	1	0	-	DRY
Wider Site R14 Wider Site R14	08/06/23	13:57	WS250	S	GL	0.90	D	0.90	-	_	1019	S	7.53	2.8	0.5	0.1	0.1	3.3	3.3	15.6	15.5	1	0	-	DRY
Wider Site R14	08/06/23	13:14	WS251	S	GL	0.62		2.00	_	_	1019	S	-3.58	-1.7	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	_	OK
Wider Site R14	08/06/23	13:30	WS252	S	GL	0.70		4.97	-	-	1019	S	-0.12	0.1	0.1	0.1	0.1	0.2	0.2	21.9	21.7	0	0	-	ОК
Water Only R4	05/06/23	-	CP301	S	GL	2.16		4.71	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
Water Only R4	07/06/23	-	CP302	S	GL	1.85		4.12	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP303	S	GL	2.95		4.01	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP304	S	GL	2.97		4.08	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP305	S	GL	2.94		4.72	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO301	S	GL	0.26		7.47	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO302	S	GL	0.70		3.18	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	08/06/23	-	RO303	S	GL	0.77		3.63	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	08/06/23	-	RO304	S	GL	0.50		7.98 2.40	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4 Water Only R4	09/06/23	-	RO305 RO306	S	GL GL	0.40		5.44	_	-	-	S	-		-	-		-	-	-	-		-	-	
Water Only R4	05/06/23	_	RO307	S	GL	1.36		5.17	_	_	_	S	_	_	-	-	-	_	_	_	_	-	-	_	
Water Only R4	05/06/23	-	RO307A	S	GL	1.36		2.20	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO309A	S	GL	4.24		4.34	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO309	S	GL	4.96		5.60	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO310	S	GL	3.93		5.91	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO311	S	GL	1.09		5.05	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO312A	S	GL	2.21	D	2.21	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R4	05/06/23	-	RO312	S	GL	3.59		9.39	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
	05/06/23	-	RO313	S	GL	3.44	_	4.64	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
	05/06/23	-	RO313A	S	GL	0.78	D	0.78	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R4	05/06/23	-	RO314 RO315	S	GL GL	0.90		4.60 4.61	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO316A	S	GL	1.22		1.41		-		S	-	-	-	-	-		-	-	_		-	-	
Water Only R4 Water Only R4	09/06/23	-	RO316A	S	GL	2.24		5.46	-	-	-	S	-	-	-	-	-	-	-	-	-		-	-	
	05/06/23	-	RO317	S	GL	0.63		7.59	-	-	_	S	_	-	-	-	-	-	-	-	-	-	-	-	
	05/06/23	-	RO318	S	GL	0.68		5.90	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO318A	S	GL	0.67		4.16	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	ANTS
Water Only R4	05/06/23	-	RO319	S	GL	0.66		5.56	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO320	S	GL	0.53		5.09	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO321	S	GL	0.87		3.89	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
Water Only R4	09/06/23	-	RO321A	S	GL	0.79		2.04	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
-	08/06/23	-	WS240	S	GL	0.00		0.00	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	Mower damaged - no pipe to test
Water Only R4	05/06/23	-	WS215	S	GL	0.00		0.00	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	Vandalism - pipe damaged

		$D \cdot I$	4	
Ground	(¬AC	RICK L	ICCPCCM	nent
GIUUIIU	UUS	111311 /	13363311	$I \cup I I \cup I$

		Site:	Begbroke	, Oxfordsl	hire						Notes:														
	Job	number:	19114								Where th	he flow or conc	entration is	less than t	the limit of	detection	n of the ins	strument,	the detec	tion limit	is reported	d.			
		Client:	Oxford Ur	niversity D	evelopr	nent Ltd					Blue text	t indicates wate	r level abo	ve top of s	creen		D* indica	ites minin	nal water i	in well, lik	ely to be a	associat	ed with	water trapp	ped in the end cap
Mor	itoring round	1	V	Vell Details	S	Water	/NAPL M	onitoring	(m belov	/ datum)		Pressure and fl	ow (use < fo	r below Lo	D)			Gas (Concentrat	ions (use	for below	LoD)			Local conditions
				Single or	Datum	Donth	"D"	Donth	Donth		Atm.	Atm. pressure	Relative	Initial Gas	Stoody	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		Depth to		Depth to Base	Depth to	Depth to	pressure	falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v∕v) -			(%v∕v) -	со	H₂S		Notes on condition of borehole (including an)
Reference				tap (S/D)	(Casing		dry hole			DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(l/hr)	(L/hr)	(Initial)	(Steady)	(Initial)			(Steady)	(ppm)	(ppm)	PID)	
Landfill R1	24/08/21	11:23	BH01	S	GL	3.37		9.98	_		1023	R	0.14	_	0.2	0.1	0.1	13.0	13.0	8.4	8.4	6	0	_	ОК
Landfill R1	24/08/21	14:18	BH02	S	GL	3.02		8.75	-	-	1023	R	0.00	-	0.2	0.1	0.1	8.8	8.7	12.2	12.3	2	0	-	ОК
Landfill R1	24/08/21	11:51	BH03	S	GL	3.35		8.11	-	-	1025	R	0.02	-	0.2	0.1	0.1	14.8	14.7	5.9	5.9	10	0	-	ОК
Landfill R1	24/08/21	11:16	WS01	S	GL	Dry	D*	3.24	-	-	1023	R	0.05	-	0.2	0.1	0.1	12.8	12.8	9.6	9.6	1	0	-	ОК
Landfill R1 Landfill R1	24/08/21	12:54 13:01	WS02 WS03	S	GL GL	Dry Dry	D D	3.69 2.69	-	-	1025 1024	R	0.02	-	0.3	0.1	0.1	3.2 8.9	3.2 8.9	17.4 12.5	17.5 12.5	3	0	-	DRY DRY
Landfill R1	24/08/21	12:33	WS04	S	GL	Dry	D	3.07	-	-	1024	R	0.00	-	0.2	0.3	0.3	15.5	15.5	1.8	1.8	4	0	-	DRY
Landfill R1	24/08/21	11:31	WS05	S	GL	2.59		3.17	-	-	1023	R	0.04	-	0.3	0.1	0.1	8.2	8.2	12.8	12.8	1	0	-	ОК
Landfill R1	24/08/21	11:39	WS06	S	GL	1.88		2.10	-	-	1024	R	0.07	-	0.1	0.1	0.1	8.5	8.4	12.0	12.0	2	0	-	ОК
Landfill R1 Landfill R1	24/08/21	11:58 12:23	WS07 WS08	S	GL GL	Dry Dry	D*	2.54 3.91	-	-	1025 1025	R	0.12	-	0.2	0.1	0.1	7.5	7.5	16.5 14.8	17.5 14.8	0	0	-	OK DRY
Landfill R1	24/08/21	12:08	WS09	S	GL	Dry	D	3.05	-	-	1025	R	0.02	-	0.1	0.1	0.1	3.1	3.1	18.3	18.4	1	0	-	DRY
Landfill R1	24/08/21	12:43	WS10	S	GL	Dry	D	3.11	-	-	1024	R	0.04	-	0.2	0.1	0.1	6.1	6.1	12.4	12.4	0	0	-	DRY
Landfill R2	07/09/21	10:43	BH01	S	GL	3.91		9.98	-	-	1014	F	0.07	-	0.2	0.1	0.1	11.6	11.6	9.0	9.0	1	0	-	CO MAXED OUT AT 248ppm BEFORE SETTLING BACK [
Landfill R2	07/09/21	11:27	BH02 BH03	S	GL GL	3.02		8.75 8.11	-	-	1015 1014	F	0.02	-	-0.5	0.1	0.1	9.7	9.7	11.8 12.7	11.9 12.7	5 6	0	-	OK
Landfill R2 Landfill R2	07/09/21	11:03 10:39	WS01	S	GL	3.38 Dry	D	3.15	-	-	1014	F	0.03	-	0.2	0.1	0.1	13.3	13.3	10.7	10.7	1	0	-	OK DRY
Landfill R2	07/09/21	11:42	WS02	S	GL	Dry	D	3.60	-	-	1015	F	0.25	-	0.2	0.1	0.1	3.8	3.8	16.9	16.9	1	0	-	DRY
Landfill R2	07/09/21	11:48	WS03	S	GL	Dry	D	2.62	-	-	1015	F	0.05	-	0.2	0.1	0.1	9.0	9.0	11.6	11.6	3	0	-	DRY
Landfill R2	07/09/21	11:31	WS04	S	GL	Dry	D	3.01	-	-	1015	F	0.02	-	0.2	0.2	0.2	16.3	16.3	1.1	1.1	4	0	-	DRY
Landfill R2 Landfill R2	07/09/21	10:51 10:57	WS05 WS06	S	GL GL	2.61 Dry	D*	3.17 2.10	-	-	1014 1014	F	-0.02	-	0.1	0.1	0.1	7.1	7.1	16.3 12.8	16.4 12.8	0	0	-	ОК
Landfill R2	07/09/21	11:09	WS07	S	GL	Dry	D*	2.54	-	-	1015	F	0.04	-	0.2	0.1	0.1	3.9	3.9	16.4	16.4	0	0	-	OK
Landfill R2	07/09/21	11:22	WS08	S	GL	Dry	D	3.88	-	-	1015	F	-0.05	-	0.1	0.1	0.1	7.2	7.2	14.4	14.5	1	0	-	DRY
Landfill R2	07/09/21	11:15	WS09	S	GL	Dry	D	2.96	-	-	1015	F	0.07	-	0.2	0.1	0.1	3.2	3.2	17.5	17.5	1	0	-	DRY
Landfill R2 Landfill R3	07/09/21	11:37 12:17	WS10 BH01	S	GL GL	Dry 3.96	D	3.05 9.98	-	-	1015 1004	F	0.02 -0.12	-	0.2	0.1	0.1	3.7 11.5	3.6 11.5	9.7	15.7 9.7	0	0	-	DRY SAMPLE
Landfill R3	14/09/21	13:03	BH02	S	GL	3.04		8.75	-	-	1005	F	0.00	-	0.1	0.1	0.1	10.6	10.6	11.8	11.8	2	0	_	SAMPLE
Landfill R3	14/09/21	12:34	BH03	S	GL	3.39		8.11	-	-	1004	F	0.07	-	-1.3	0.1	0.1	8.1	8.1	13.3	13.4	3	0	-	SAMPLE
Landfill R3	14/09/21	12:04	WS01	S	GL	Dry	D	3.15	-	-	1004	F	-0.09	-	0.1	0.1	0.1	11.3	11.3	12.8	12.8	0	0	-	DRY
Landfill R3	14/09/21	13:21	WS02 WS03	S	GL GL	Dry	D*	3.69 2.69	-	-	1005 1005	F	-0.07 0.14	-	0.2	0.1	0.1	7.3	7.3	17.6 14.6	17.7	0	0	-	OK OK
Landfill R3 Landfill R3	14/09/21	13:26 13:13	WS04	S	GL	Dry Dry	D*	3.07	-	-	1005	F	-0.25	-	0.1	0.1	0.1	14.1	14.1	4.1	14.6 4.1	0	0	-	ОК
Landfill R3	14/09/21	12:23	WS05	S	GL	2.63		3.10	-	-	1004	F	-0.04	-	0.1	0.1	0.1	4.8	4.8	16.5	16.5	0	0	-	ОК
Landfill R3	14/09/21	12:28	WS06	S	GL	1.89		2.10	-	-	1004	F	0.12	-	0.1	0.1	0.1	6.0	6.0	14.9	14.9	0	0	-	ОК
Landfill R3	14/09/21	12:49	WS07	S	GL	Dry	D*	2.54	-	-	1004	F	0.02	-	0.1	0.1	0.1	3.4	3.4	17.5	17.5	0	0	-	ОК
Landfill R3 Landfill R3	14/09/21	12:59 12:54	WS08 WS09	S	GL GL	Dry	D*	3.91	-	-	1005	F F	-0.11	-	0.1	0.1	0.1	7.2	7.2 3.4	15.1	15.1 18.5	0	0	-	ОК
Landfill R3	14/09/21	13:17	WS10	S	GL	Dry	D*	3.11	-	-	1005	F	-0.05	-	0.1	0.1	0.1	9.1	4.0	13.6	15.9	0	0	-	ОК
Landfill R4	21/09/21	11:38	BH01	S	GL	3.97		9.98	-	-	1023	R	0.05	-	0.1	0.1	0.1	9.9	9.9	12.3	12.3	3	1	-	ОК
Landfill R4	21/09/21	12:23	BH02	S	GL	3.05		8.75	-	-	1024	R	-0.04	-	0.1	0.1	0.1	6.1	6.1	15.6	15.6	3	0	-	ОК
Landfill R4 Landfill R4	21/09/21	12:00 11:33	BH03 WS01	S	GL GL	3.42 Dry	D	8.11 3.15	-	-	1024 1023	R R	-0.35	-	-1.0 0.1	0.1	0.1	5.5 6.6	5.5 6.6	15.7 15.3	15.8 15.3	0	1	-	OK DRY
Landfill R4	21/09/21	12:39	WS02	S	GL	Dry	D*	3.69	-	-	1025	R	0.00	-	0.1	0.1	0.1	4.4	4.4	16.6	16.6	1	0	-	OK OK
Landfill R4	21/09/21	12:45	WS03	S	GL	Dry	D	2.65	-	-	1024	R	0.02	-	0.2	0.1	0.1	8.5	8.5	12.5	12.5	2	0	-	ОК
Landfill R4	21/09/21	12:29	WS04	S	GL	Dry	D	3.00	-	-	1025	R	0.12	-	0.2	0.1	0.1	5.3	5.3	13.1	13.2	2	0	-	DRY
Landfill R4 Landfill R4	21/09/21	11:44	WS05 WS06	S	GL GL	2.71	D*	3.10 2.10	-	-	1023 1024	R R	-0.07 -0.07	-	0.1	0.1	0.1	7.1	7.0	16.7	16.7 13.6	0	0	-	ОК
Landfill R4	21/09/21	11:54 12:06	WS07	S	GL	Dry	D*	2.54	-	-	1024	R	0.02	-	0.1	0.1	0.1	3.1	3.1	17.6	17.6	0	0	-	ОК
Landfill R4	21/09/21	12:18	WS08	S	GL	Dry	D	4.83	-	-	1024	R	-0.05	-	0.2	0.1	0.1	7.0	7.0	14.5	14.5	1	0	-	DRY
Landfill R4	21/09/21	12:11	WS09	S	GL	Dry	D	2.97	-	-	1024	R	-0.12	-	0.2	0.1	0.1	3.3	3.3	17.9	17.9	1	0	-	DRY
Landfill R4	21/09/21	12:34	WS10	S	GL	Dry	D	3.05	-	-	1025	R	0.07	-	0.2	0.1	0.1	3.5	3.5	16.3	16.3	1	0	-	DRY
Landfill R5 Landfill R5	28/09/21	12:07 12:45	BH01 BH02	S	GL GL	3.98		9.98 8.75	-	-	1006	R R	0.04	-	0.1	0.1	0.1	13.6 5.6	12.0 5.6	11.5	11.5 16.5	3	0	-	ОК
Landfill R5	28/09/21	12:23	BH03	S	GL	3.45		8.11	-	-	1007	R	0.04	-	-0.2	0.1	0.1	5.7	5.7	15.6	15.7	3	1	-	OK OK
Landfill R5	28/09/21	12:02	WS01	S	GL	Dry	D	3.15	-	-	1006	R	-0.16	-	0.1	0.1	0.1	2.5	2.5	19.4	19.4	0	0	-	DRY
Landfill R5	28/09/21	13:01	WS02	S	GL	Dry	D*	3.69	-	-	1007	R	0.04	-	0.1	0.1	0.1	4.8	4.8	17.0	17.1	0	0	-	ОК
Landfill R5	28/09/21	13:08	WS03	S	GL	Dry	D D	2.65	-	-	1007 1007	R R	0.21	-	0.2	0.1	0.1	9.5	9.5	12.9	13.0	1	0	-	DRY
Landfill R5 Landfill R5	28/09/21	12:50 12:14	WS04 WS05	S	GL GL	2.88	U	3.00	-	-	1007	R	0.07	-	0.1	0.1	0.1	1.1	0.4	12.5 17.8	12.5 20.3	0	0	-	DRY OK
Landfill R5	28/09/21	12:18	WS06	S	GL	1.89		2.10	-	-	1007	R	0.04	-	0.2	0.1	0.1	5.2	5.2	15.6	15.6	0	1	-	ОК

Mon	itoring round		V	Vell Details	s	Water.	/NAPL M	onitoring	(m below	/ datum)		Pressure and fl	ow (use < fo	or below Lo	D)			Gas C	oncentrat	ions (use	for below	(LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure	Relative	Initial Gas	Steady	CH₄	CH₄	CO₂	CO₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		to		1	to	Depth to	pressure	falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v) -	(%v/v) -		(%v/v) -	co	H₂S		Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Landfill R5	28/09/21	12:34	WS07	S	GL	Dry	D*	2.54	-	-	1007	R	0.04	-	0.2	0.1	0.1	2.4	2.4	18.8	18.8	0	0	-	ок
Landfill R5	28/09/21	12:40	WS08	S	GL	Dry	D	4.83	-	-	1007	R	-0.07	-	0.1	0.1	0.1	5.8	5.8	16.6	16.7	0	0	-	DRY
Landfill R5	28/09/21	12:29	WS09	S	GL	Dry	D D	2.97	-	-	1007	R R	-0.05	-	0.2	0.1	0.1	3.5	3.5	18.2	18.3	0	0	-	DRY
Landfill R5 Landfill R6	28/09/21 05/10/21	12:54 11:49	WS10 BH01	S	GL GL	Dry 3.96	D	3.05 9.98	-	-	1007 993	R	0.05	-	0.2	0.1	0.1	5.4 15.1	5.4 15.1	9.7	9.7	0	0	-	DRY OK
Landfill R6	05/10/21	12:24	BH02	S	GL	3.08		8.75	-	-	994	R	-0.07	-	0.2	0.1	0.1	3.9	3.9	18.3	18.4	1	0	-	ОК
Landfill R6	05/10/21	12:05	BH03	S	GL	3.42		8.11	-	-	993	R R	0.09	-	0.2	0.1	0.1	5.1	5.1	16.2	16.2	2	0	-	OK
Landfill R6 Landfill R6	05/10/21 05/10/21	11:45 12:37	WS01 WS02	S	GL GL	Dry 3.47	D	3.15	-	-	992	R	0.09	-	0.2	0.1	0.1	3.2 6.1	3.2 5.9	18.5 15.4	18.6 15.4	0	0	-	DRY OK
Landfill R6	05/10/21	12:42	WS03	S	GL	Dry	D	2.65	-	-	994	R	0.11	-	0.2	0.1	0.1	10.4	10.4	10.5	10.6	0	0	-	DRY
Landfill R6	05/10/21	12:28	WS04	S	GL	Dry	D	3.00	-	-	994	R	0.05	-	0.2	0.1	0.1	4.3	4.3	15.9	15.9	0	0	-	DRY
Landfill R6 Landfill R6	05/10/21 05/10/21	11:55 12:00	WS05 WS06	S	GL GL	Dry 1.89	D*	3.10 2.10	-	-	993	R	-0.05	-	0.2	0.1	0.1	4.6 7.5	7.4	17.5 13.8	19.1	0	0	-	ОК
Landfill R6	05/10/21	12:09	WS07	S	GL	Dry	D*	2.54	-	-	993	R	0.07	-	0.2	0.1	0.1	1.8	1.8	19.2	19.4	0	0	-	ОК
Landfill R6	05/10/21	12:19	WS08	S	GL	Dry	D	4.83	-	-	994	R	0.05	-	0.2	0.1	0.1	5.7	5.7	15.8	15.8	0	0	-	DRY
Landfill R6	05/10/21	12:14	WS09 WS10	S	GL GL	Dry Dry	D D	2.97 3.05	-	-	994	R R	0.14	-	0.2	0.1	0.1	3.9 1.0	3.9	18.0 19.4	18.0 20.3	0	0	-	DRY
Landfill R6 Wider Site R1	05/10/21 12/09/22	12:32 13:52	BH201	S	GL	4.18		5.00	-	-	1003	F	-0.07	-	0.2	0.1	0.1	0.8	0.8	20.1	20.3	1	1	-	DIN .
Wider Site R1	12/09/22	14:12	BH202	S	GL	3.21		5.24	-	-	1004	F	-0.12	-	0.1	0.1	0.1	0.7	0.7	20.3	20.4	2	0	-	
Wider Site R1	12/09/22	15:50	BH203	S	GL	3.53		6.00	-	-	1004	F	0.05	-	0.1	0.1	0.1	0.9	0.9	20.1	20.1	2	0	-	
Wider Site R1 Wider Site R1	12/09/22	16:20 15:58	BH204 BH205	S	GL GL	2.63 1.15		5.13 4.12	-	-	1003	F F	-0.07	-	0.1	0.1	0.1	0.8	0.8	20.4	20.6	3	0	-	
Wider Site R1	13/09/22	13:07	WS201	S	GL	Dry	D	1.80	-	-	1005	F	5.79	-	0.1	0.1	0.1	2.1	0.7	19.7	19.9	0	1	-	
Wider Site R1	13/09/22	13:22	WS202	S	GL	1.57		2.98	-	-	1005	F	0.09	-	0.1	0.1	0.1	1.1	1.1	19.8	19.8	1	0	-	
Wider Site R1	13/09/22	14:30 14:15	WS203 WS205	S	GL GL	Dry 1.42	D	1.97 2.95	-	-	1004	F F	0.00	-	0.3	0.1	0.1	0.7 3.6	0.7 3.1	19.7 18.1	20.4	1	0	-	
Wider Site R1 Wider Site R1	13/09/22	15:00	WS205	S	GL	2.14		4.20	-	-	1005	F	0.00	-	0.1	0.1	0.1	1.7	1.7	19.5	19.5	1	0	-	
Wider Site R1	15/09/22	10:11	WS207	S	GL	1.84		2.12	-	-	1007	R	0.07	-	-0.1	0.1	0.1	0.4	0.4	20.8	20.8	0	0	-	
Wider Site R1	15/09/22	10:28	WS208	S	GL	0.56		2.20	-	-	1007	R	0.16	-	3.2	0.1	0.1	0.7	0.7	20.6	20.6	13	0	-	
Wider Site R1 Wider Site R1	13/09/22	15:36 15:55	WS209 WS210	S	GL GL	1.62 0.75		3.29 4.58	-	-	1005 1005	F F	-1.04	-	0.3	0.1	0.1	0.4	0.3	19.7 20.8	19.7 21.0	7	0	-	
Wider Site R1	13/09/22	12:47	WS211	S	GL	1.01		5.01	-	-	1005	F	-0.02	-	0.0	0.1	0.1	2.5	2.5	19.0	19.0	1	1	-	
Wider Site R1	13/09/22	13:53	WS213	S	GL	Dry	D	3.60	-	-	1005	F	0.04	-	0.2	0.1	0.1	0.9	0.7	20.5	20.5	1	0	-	
Wider Site R1 Wider Site R1	13/09/22 15/09/22	15:18 10:40	WS214 WS215	S	GL GL	0.90	D	0.97 2.53	-	-	1004	F R	0.07	-	0.3	0.1	0.1	0.2	0.2	20.4	20.4	0	0	-	
Wider Site R1	12/09/22	12:51	WS216	S	GL	Dry	D*	4.05	-	-	1004	F	-0.07	-	0.1	0.1	0.1	1.9	1.9	19.7	19.7	0	0	-	
Wider Site R1	12/09/22	13:25	WS217	S	GL	Dry	D	2.02	-	-	1003	F	0.09	-	0.2	0.1	0.1	1.3	1.3	19.2	19.3	1	1	-	
Wider Site R1	15/09/22	11:40	WS218	S	GL GL	Dry	D D	2.07	-	-	1007 1007	R	-0.05 0.04	-	0.2	0.1	0.1	0.8	0.8	20.7	20.7	0	0	-	
Wider Site R1 Wider Site R1	15/09/22 15/09/22	11:25 10:57	WS219 WS220	S	GL	2.77	D	4.93 3.00	-	-	1007	R	0.04	-	0.2	0.1	0.1	0.6	0.6	20.1	20.1	0	0	-	
Wider Site R1	12/09/22	13:08	WS221	S	GL	Dry	D	1.99	-	-	1003	F	0.00	-	0.3	0.1	0.1	1.0	0.9	19.9	19.9	0	1	-	
Wider Site R1	12/09/22	13:34	WS222	S	GL	Dry	D	2.43	-	-	1003	F	-0.05	-	0.2	0.1	0.1	0.9	0.9	19.9	19.9	1	1	-	
Wider Site R1 Wider Site R1	15/09/22 15/09/22	11:33 12:36	WS223 WS224	S	GL GL	Dry	D D	2.97 1.33	-	-	1007	R R	0.02	-	0.2	0.1	0.1	0.5 1.0	0.5 1.0	20.9	20.9	0	0	-	
Wider Site R1	12/09/22	13:15	WS225	S	GL	Dry	D	1.98	-	-	1003	F	-0.14	-	0.4	0.1	0.1	0.9	0.9	19.4	19.6	1	1	-	
Wider Site R1	12/09/22	13:45	WS226	S	GL	Dry	D	1.12	-	-	1003	F	0.00	-	0.2	0.1	0.1	0.4	0.4	20.2	20.3	1	1	-	
Wider Site R1	12/09/22	13:40	WS227 WS228	S	GL GL	Dry Dry	D D	2.73 0.97	-	-	1003	F F	-0.02 0.07	-	0.2	0.1	0.1	0.4	0.4	20.0	20.0	1	0	-	
Wider Site R1 Wider Site R1	12/09/22	15:40 15:35	WS229	S	GL	Dry	D	1.95	-	-	1003	F	0.07	-	0.2	0.1	0.1	0.4	0.5	20.8	20.8	1	0	-	
Wider Site R1	12/09/22	14:06	WS230	S	GL	Dry	D	1.09	-	-	1003	F	0.07	-	0.2	0.1	0.1	0.6	0.6	20.5	20.5	1	0	-	
Wider Site R1	12/09/22	14:19	WS231	S	GL	4.49		5.07	-	-	1004	F	0.04	-	0.2	0.1	0.1	0.8	0.8	20.4	20.4	2	0	-	
Wider Site R1 Wider Site R1	15/09/22 15/09/22	11:09 12:46	WS232 WS234	S	GL GL	1.46		3.42 1.62	-	-	1007	R R	0.02	-	0.2	0.1	0.1	0.4	0.4	20.8	20.8	0	0	-	
Wider Site R1	22/09/22	10:53	WS235	S	GL	1.36		4.91	-	-	1014	F	0.02	-	0.3	0.1	0.1	1.9	1.7	19.1	19.2	0	0	-	
Wider Site R1	22/09/22	10:35	WS236	S	GL	Dry	D	1.95	-	-	1014	F	0.04	-	0.3	0.1	0.1	2.2	2.2	19.6	19.6	0	0	-	
Wider Site R1	12/09/22	15:26	WS237 WS238	S	GL GL	Dry 3.84	D	1.01 5.06	-	-	1003 1003	F F	0.05	-	0.3	0.1	0.1	0.2 1.3	0.2	21.0 19.8	21.0	2	0	-	
Wider Site R1 Wider Site R1	12/09/22 15/09/22	14:33 11:57	WS239	S	GL	1.38		2.23	-	-	1003	R	0.02	-	0.2	0.1	0.1	0.8	0.9	20.7	20.1	0	0	-	
Wider Site R1	15/09/22	12:10	WS240	S	GL	Dry	D	1.10	-	-	1007	R	-0.02	-	0.2	0.1	0.1	1.2	1.2	20.6	20.6	0	0	-	
Wider Site R1	15/09/22	12:22	WS240	S	GL	1.36		2.20	-	-	1007	R	0.07	-	0.2	0.1	0.1	1.9	1.9	19.6	19.6	0	0	-	
Wider Site R1 Wider Site R1	15/09/22 22/09/22	13:19 11:34	WS241 WS242	S	GL GL	1.59 0.70		1.94 3.57	-	-	1007 1014	R F	0.05	-	0.2	0.1	0.1	0.4	0.4	20.9 19.8	20.9	0	0	-	
Wider Site R1	12/09/22	14:46	WS242	S	GL	Dry	D	1.00	-	-	1003	F	0.14	-	0.3	0.1	0.1	0.6	0.6	20.5	20.6	1	0	-	
Wider Site R1	12/09/22	16:33	WS244	S	GL	Dry	D	0.88	-	-	1003	F	0.07	-	0.2	0.1	0.1	0.1	0.1	20.7	20.8	1	0	-	
Wider Site R1	12/09/22	16:03	WS245	S	GL	1.10		2.56	-	-	1004	F	0.05	-	-0.1	0.1	0.1	0.1	0.1	21.0	21.2	2	0	-	

Monito	oring round		W	ell Details		Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrat	ions (use «	c for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas		Depth	"D"	Depth	Depth	Depth to	Atm.	falling (F) /	BH	Initial Gas	Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	_	(Casing	1 1		to Base of Hole		DNAPL	pressure	rising (R)/	pressure	Flow	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) -	(%v/v) - (Steady)	(ppm)		ppm using	Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ury note	oi note	LNAPL		(hPa)	steady (S)	(hPa)	(L/hr)	(UTIII)	(IIIILIAL)	(Steauy)	(IIIIIat)	(Steady)	(IIIIIai)	(Steady)			PID/	
Wider Site R1	12/09/22	16:12	WS246	S	GL	1.44		4.55	-	-	1004	F	0.12	-	0.2	0.1	0.1	0.7	0.7	20.5	20.5	2	0	-	
Wider Site R1	12/09/22	16:26	WS247	S	GL	Dry	D*	0.89	-	-	1003	F	0.16	-	0.2	0.1	0.1	0.5	0.5	20.2	20.2	1	0	-	
Wider Site R1	15/09/22	15:40	WS248	S	GL	Dry	D	2.02	-	-	1007	R	0.12	-	0.2	0.1	0.1	0.7	0.7	20.8	20.8	0	0	-	
Wider Site R1 Wider Site R1	15/09/22 15/09/22	13:51 14:20	WS249 WS250	S	GL GL	Dry Dry	D D	0.97	-	-	1007 1007	R	0.14	-	0.2	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R1	15/09/22	13:36	WS251	S	GL	0.90		2.95	-	-	1007	R	0.11	-	0.2	0.1	0.1	0.2	0.2	21.2	21.2	0	0	-	
Wider Site R1	15/09/22	14:07	WS252	S	GL	Dry	D	5.05	-	-	1007	R	0.05	-	-4.5	0.1	0.1	0.1	0.1	21.2	21.2	1	0	-	
Wider Site R2	26/09/22	14:37	BH201	S	GL	3.69		5.90	-	-	996	F	0.00	-	0.3	0.1	0.1	1.1	1.1	20.9	20.9	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 27/09/22	13:50 13:01	BH202 BH203	S	GL GL	3.95 Dry	D*	5.74	-	-	996 995	F	-0.07 0.07	-	0.3	0.1	0.1	0.7	0.7	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	12:36	BH204	S	GL	3.43		5.99	-	-	996	F	0.04	-	0.3	0.1	0.1	1.0	1.0	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	12:48	BH205	S	GL	-		6.03	-	-	996	F	0.02	-	0.2	0.1	0.1	0.2	0.2	21.2	21.4	0	0	-	
Wider Site R2	26/09/22	11:07	WS201	S	GL	Dry	D	1.86	-	-	995	F	-0.07	-	0.3	0.1	0.1	1.5	1.4	19.7	19.7	0	0	-	
Wider Site R2	26/09/22	11:18	WS202	S	GL GL	Dry Dry	D D	1.98	-	-	996 995	F	-0.05	-	0.3	0.1	0.1	0.8	0.8	20.4	20.4	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 26/09/22	11:42 12:09	WS203 WS205	S	GL	Dry	D	2.92	-	-	996	F	0.00	-	0.3	0.1	0.1	3.4	3.3	18.7	18.7	0	0	-	
Wider Site R2	26/09/22	11:34	WS213	S	GL	Dry	D	3.60	-	-	996	F	0.02	-	0.3	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R2	26/09/22	13:24	WS214	S	GL	Dry	D	0.98	-	-	996	F	0.05	-	0.3	0.1	0.1	0.4	0.4	21.7	21.7	0	0	-	
Wider Site R2	26/09/22	13:07	WS219	S	GL	4.34		4.96	-	-	996	F	0.00	-	0.3	0.1	0.1	1.5	1.5	20.6	20.6	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 26/09/22	15:19 14:12	WS221 WS222	S	GL GL	Dry Dry	D D	1.98	-	-	997 996	F	0.00	-	0.3	0.1	0.1	1.2	2.1	20.9	20.9	0	0	-	
Wider Site R2	27/09/22	11:42	WS224	S	GL	Dry	D*	1.36	-	-	996	F	-0.02	-	0.3	0.1	0.1	0.8	0.2	20.9	21.4	0	0	-	
Wider Site R2	26/09/22	15:14	WS225	S	GL	Dry	D	1.98	-	-	997	F	0.04	-	0.3	0.1	0.1	0.9	0.9	21.0	21.3	0	0	-	
Wider Site R2	26/09/22	14:55	WS226	S	GL	Dry	D	1.11	-	-	997	F	0.12	-	0.3	0.1	0.1	0.6	0.6	21.3	21.3	0	0	-	
Wider Site R2	27/09/22	13:08	WS228	S	GL	Dry	D	0.97	-	-	995	F	0.05	-	0.3	0.1	0.1	0.8	0.8	21.5	21.5	0	0	-	
Wider Site R2 Wider Site R2	27/09/22	13:14 14:27	WS229 WS231	S	GL GL	Dry Dry	D D	1.93 4.50	-	-	995 994	F	0.12	-	0.3	0.1	0.1	0.9 2.5	0.9	21.3	21.4	0	0	-	
Wider Site R2	26/09/22	13:42	WS232	S	GL	1.47		3.95	-	-	996	F	-0.07	-	0.3	0.1	0.1	0.8	0.8	21.2	21.2	0	0	-	
Wider Site R2	27/09/22	11:50	WS234	S	GL	1.22		1.60	-	-	996	F	0.07	-	0.3	0.1	0.1	0.1	0.1	21.6	21.6	0	0	-	
Wider Site R2	26/09/22	15:46	WS235	S	GL	1.36		4.93	-	-	997	F	0.04	-	0.3	0.1	0.1	1.7	1.7	19.9	19.9	0	0	-	
Wider Site R2	26/09/22	15:39	WS236 WS237	S	GL GL	Dry	D D	1.93 0.93	-	-	997 995	F F	0.07	-	0.3	0.1	0.1	0.5	0.5	21.0	21.0	0	0	-	
Wider Site R2 Wider Site R2	27/09/22	13:29 14:15	WS237 WS238	S	GL	3.95	D	5.93	-	-	995	F	0.04	-	0.3	0.1	0.1	2.0	2.0	20.2	20.2	0	0	-	
Wider Site R2	27/09/22	12:04	WS239	S	GL	1.39		2.21	-	-	996	F	0.00	-	0.3	0.1	0.1	0.8	0.8	21.2	21.2	0	0	-	
Wider Site R2	27/09/22	11:57	WS240	S	GL	Dry	D	1.07	-	-	996	F	0.11	-	0.3	0.1	0.1	1.3	1.3	21.0	21.0	0	0	-	
Wider Site R2	27/09/22	11:04	WS241	S	GL	1.56		1.93	-	-	996	F	-0.04	-	0.3	0.1	0.1	1.3	1.3	20.3	20.3	0	0	-	
Wider Site R2 Wider Site R2	26/09/22 27/09/22	15:53 13:55	WS242 WS243	S	GL GL	0.79 Dry	D	3.56 0.97	-	-	997 995	F	0.04	-	0.3	0.1	0.1	1.2	0.9	20.7	20.7	0	0	-	
	27/09/22	12:19	WS244	S	GL	Dry	D	0.84	-	-	996	F	0.05	-	0.3	0.1	0.1	0.6	0.6	21.3	21.3	0	0	-	
Wider Site R2	27/09/22	12:56	WS245	S	GL	1.15		2.47	-	-	996	F	-0.02	-	-0.2	0.1	0.1	0.1	0.1	21.5	21.5	0	0	-	
Wider Site R2	27/09/22	14:07	WS246	S	GL	1.48		4.43	-	-	995	F	0.09	-	0.3	0.1	0.1	1.1	0.7	20.5	21.3	0	0	-	
	27/09/22	12:24	WS247	S	GL	Dry	D D*	0.87	-	-	996	F F	0.05	-	0.3	0.1	0.1	1.2	1.2	20.6	20.6	0	0	-	
	27/09/22	11:21 10:41	WS248 WS249	S	GL GL	Dry Dry	D	1.59 0.97	-	-	996 996	F	0.05	-	0.3	0.1	0.1	0.6	0.6	21.0	21.1	0	0	-	
	27/09/22	10:48	WS250	S	GL	Dry	D	0.84	-	-	996	F	0.04	-	0.3	0.1	0.1	0.6	0.6	20.9	20.9	0	0	-	
Wider Site R3	10/10/22	16:35	BH201	S	GL	4.29		5.00	-	-	1014	R	0.02	-	0.2	0.1	0.1	0.8	0.8	20.1	20.1	0	0	-	
Wider Site R3	10/10/22	12:12	BH202	S	GL	3.28		5.23	-	-	1014	R	0.05	-	0.3	0.1	0.1	0.6	0.6	21.5	21.7	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	15:19 14:49	BH203 BH204	S	GL GL	3.54 2.63		6.00 5.10	-	-	1014 1016	R R	-0.09	-	0.2	0.1	0.1	0.4	0.4	20.5	20.5	0	0	-	
Wider Site R3	10/10/22	15:26	BH205	S	GL	1.15		4.12	-	-	1014	R	0.00	-	0.2	0.1	0.1	0.8	0.3	21.4	21.0	0	0	-	
Wider Site R3	10/10/22	09:37	WS201	S	GL	Dry	D	1.86	-	-	1012	R	0.14	-	0.2	0.1	0.1	0.9	0.8	20.0	20.5	0	0	-	
Wider Site R3	10/10/22	09:44	WS202	S	GL	Dry	D	1.97	-	-	1012	R	0.04	-	0.0	0.1	0.1	0.7	0.7	20.4	20.4	0	1	-	
Wider Site R3	10/10/22	10:46	WS203	S	GL	Dry	D	1.98	-	-	1013	R	-0.04	-	0.3	0.1	0.1	0.7	0.7	20.8	21.1	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	10:58 10:38	WS204 WS205	S	GL GL	Dry 1.46	D	1.00 2.96	-	-	1013 1013	R R	-0.02 0.05	-	0.1	0.1	0.1	2.3	0.3 2.3	20.9 19.8	21.2 19.9	0	0	-	
Wider Site R3	10/10/22	10:38	WS206	S	GL	2.18		4.30	-	-	1013	R	-0.02	-	0.2	0.1	0.1	1.5	1.5	20.1	20.2	0	0	-	
Wider Site R3	10/10/22	11:08	WS207	S	GL	0.84		2.15	-	-	1013	R	-0.05	-	-0.1	0.1	0.1	0.8	0.8	20.9	21.0	0	0	-	
Wider Site R3	10/10/22	11:15	WS208	S	GL	0.59		2.22	-	-	1014	R	2.91	-	-4.7	0.1	0.1	1.1	1.1	20.6	20.6	4	0	-	
Wider Site R3	10/10/22	10:22	WS209	S	GL	1.66		2.99	-	-	1013	R	0.02	-	0.3	0.1	0.1	2.1	2.0	20.0	20.0	0	0	-	
Wider Site R3 Wider Site R3	10/10/22	11:28 09:30	WS210 WS211	S	GL GL	3.15		3.52	-	-	1014 1012	R R	0.12	-	-3.0 0.3	0.1	0.1	3.3	3.3	20.6 17.9	20.7 18.0	0	1	-	
Wider Site R3	10/10/22	09:30	WS211	S	GL	Dry	D	3.63	-	-	1012	R	-0.11	-	0.3	0.1	0.1	0.6	0.6	20.6	20.6	0	1	-	
Wider Site R3	10/10/22	10:05	WS214	S	GL	Dry	D	0.96	-	-	1012	R	0.18	-	0.2	0.1	0.1	0.7	0.7	20.7	20.8	0	1	-	
Wider Site R3	10/10/22	11:37	WS215	S	GL	0.96		2.53	-	-	1014	R	0.07	-	0.0	0.1	0.1	0.2	0.2	21.2	21.3	0	0	-	
Wider Site R3	10/10/22	17:20	WS216	S	GL	Dry	D*	4.05	-	-	1014	R	0.02	-	0.1	0.1	0.1	1.0	1.0	20.2	21.0	0	0	-	

Monito	ring round		We	ell Details		Water	/NAPL M	onitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrat	ions (use «	< for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas			"D"	Depth	Depth	Depth to		falling (F) /	ВН		Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	-	(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)		(ppm)	(ppm)	ppm using	Notes on condition of borehole (including an
				(S/D)	/ GL)		Í					steady (S)	(hPa)												
	10/10/22	17:07 10:14	WS217 WS218	S	GL GL	Dry Dry	D D	2.02 1.77	-	-	1014 1013	R	0.00	-	0.2	0.1	0.1	1.3	1.2	20.1	19.8	0	0	-	
	10/10/22 10/10/22	11:50	WS218	S	GL	4.07	U	4.95	-	-	1013	R	0.00	-	0.1	0.1	0.1	1.3	1.3	20.7	20.5	0	0	-	
	10/10/22	11:44	WS220	S	GL	1.74		2.98	-	-	1014	R	0.05	-	0.1	0.1	0.1	0.6	0.6	20.9	21.1	0	0	-	
	10/10/22	17:26	WS221	S S	GL	Dry	D D	1.99	-	-	1014 1014	R	0.04	-	0.3	0.1	0.1	1.0	0.9	19.9	19.9	0	0	-	
Wider Site R3 Wider Site R3	10/10/22 10/10/22	16:51 11:56	WS222 WS223	S	GL GL	Dry Dry	D	1.97	-	-	1014	R	-0.05	-	0.2	0.1	0.1	0.6	0.5	20.5	20.5	0	0	-	
	10/10/22	12:53	WS224	S	GL	Dry	D	1.36	-	-	1015	R	-0.05	-	0.1	0.1	0.1	0.6	0.5	21.6	21.8	0	0	-	
	10/10/22	17:24	WS225	S	GL	Dry	D	1.98	-	-	1014	R	-0.02	-	0.3	0.1	0.1	1.0	1.0	20.5	20.5	0	0	-	
	10/10/22 10/10/22	17:00 16:42	WS226 WS227	S	GL GL	Dry Dry	D D	2.72	-	-	1014	R	0.04	-	0.2	0.1	0.1	1.0	0.4	20.5	20.5	0	0	-	
	10/10/22	15:12	WS228	S	GL	Dry	D	0.99	-	-	1014	R	-0.07	-	0.2	0.1	0.1	0.4	0.4	21.0	21.1	0	0	-	
Wider Site R3	10/10/22	15:08	WS229	S	GL	Dry	D	1.95	-	-	1014	R	0.05	-	0.2	0.1	0.1	0.4	0.3	20.5	20.9	0	0	-	
	10/10/22	12:20	WS230 WS231	S	GL GL	Dry 4.50	D	1.10 5.07	-	-	1014 1014	R	0.07	-	0.1	0.1	0.1	0.6 1.9	2.0	21.5	21.6	0	0	-	
	10/10/22 10/10/22	16:27 12:05	WS231 WS232	S	GL	1.96		2.97	-	-	1014	R	0.02	-	0.3	0.1	0.1	0.6	0.6	21.4	21.6	0	0	-	
	10/10/22	13:00	WS233	S	GL	1.35		2.25	-	-	1015	R	0.16	-	0.2	0.1	0.1	1.8	1.7	20.5	20.5	0	0	-	
	10/10/22	13:08	WS234	S	GL	1.25		1.64	-	-	1015	R	0.02	-	0.2	0.1	0.1	0.3	0.3	21.2	21.5	0	0	-	
	10/10/22 10/10/22	15:46 15:40	WS235 WS236	S	GL GL	1.96		4.91 1.96	-	-	1014	R R	0.16	-	0.2	0.1	0.1	1.2	1.2	20.7	20.6	0	0	-	
	10/10/22	15:02	WS237	S	GL	Dry	D	1.01	-	-	1014	R	0.02	-	0.2	0.1	0.1	0.2	0.4	21.2	21.4	0	0	-	
	10/10/22	16:20	WS238	S	GL	3.90		5.06	-	-	1014	R	0.02	-	0.3	0.1	0.1	1.3	0.9	21.0	21.0	0	0	-	
	10/10/22	13:23	WS239 WS240	S	GL GL	1.39 Dry	D	1.10	-	-	1015 1015	R	-0.04	-	0.2	0.1	0.1	0.6	0.6 1.0	21.2	21.2	0	0	-	
	10/10/22 10/10/22	13:17 14:33	WS241	S	GL	1.57		1.94	-	-	1016	R	-0.04	-	0.1	0.1	0.1	1.1	1.0	21.1	21.3	0	0	-	
	10/10/22	15:50	WS242	S	GL	0.72		3.61	-	-	1014	R	0.04	-	0.2	0.1	0.1	1.2	1.2	19.0	18.8	1	0	-	
	10/10/22	14:56	WS243	S	GL	Dry	D	1.00	-	-	1014	R	0.07	-	0.3	0.1	0.1	0.4	0.4	20.0	20.5	0	0	-	
	10/10/22 10/10/22	14:37 16:04	WS244 WS245	S	GL GL	1.10	D	0.88 2.56	-	-	1016	R	-0.07	-	-0.2	0.1	0.1	0.5	0.5	21.8	21.8	1	0	-	
	10/10/22	16:14	WS246	S	GL	Dry	D	4.55	-	-	1014	R	0.05	-	0.2	0.1	0.1	0.4	0.8	20.5	21.0	0	0	-	
	10/10/22	14:43	WS247	S	GL	Dry	D	0.92	-	-	1016	R	0.00	-	0.3	0.1	0.1	1.1	1.1	21.2	21.2	0	0	-	
Wider Site R3 Wider Site R3	10/10/22 10/10/22	13:32 13:50	WS248 WS249	S	GL GL	0.07	D*	0.97	-	-	1015 1016	R	-0.07	-	0.1	0.1	0.1	0.5	0.5	21.2	21.4	0	0	-	
Wider Site R3	10/10/22	13:41	WS250	S	GL	Dry	D	0.85	-	-	1016	R	0.02	-	0.3	0.1	0.1	0.5	0.5	21.3	21.3	0	0	-	
Wider Site R3	10/10/22	14:09	WS251	S	GL	0.93		1.96	-	-	1016	R	-0.28	-	-0.5	0.1	0.1	1.0	0.9	20.3	20.7	1	0	-	
Wider Site R3	10/10/22	13:58	WS252	S S	GL	1.00		5.05	-	-	1014 1006	R	0.12	-	0.2	0.1	0.1	0.8	0.9	20.5	20.6	1	0	-	
	19/10/22 19/10/22	16:13 14:02	BH201 BH202	S	GL GL	4.29 3.38		5.24	-	-	1009	F	0.09	-	0.2	0.1	0.1	0.7	0.9	21.5	21.5	0	0	-	OK OK
	19/10/22	12:39	BH203	S	GL	3.54		6.00	-	-	1010	F	0.12	-	0.2	0.1	0.1	0.4	0.4	21.1	21.1	0	0	-	ок
	19/10/22	13:42	BH204	S	GL	2.60		5.10	-	-	1009	F	0.14	-	0.1	0.1	0.1	0.8	0.8	21.1	21.1	0	0	-	ОК
	19/10/22 19/10/22	12:46 16:51	BH205 WS201	S	GL GL	1.16 Dry	D	4.12 1.86	-	-	1010	F F	0.00	-	0.2	0.1	0.1	0.3	0.3	21.3	21.4	0	0	-	OK DRY
	19/10/22	17:02	WS202	S	GL	1.72		1.97	-	-	1007	F	-0.02	-	0.1	0.1	0.1	0.2	0.2	21.9	21.9	0	0	-	OK
Wider Site R4	19/10/22	15:25	WS203	S	GL	Dry	D	1.99	-	-	1007	F	0.00	-	0.2	0.1	0.1	0.7	0.7	21.4	21.5	0	0	-	DRY
	19/10/22	15:18	WS204	S	GL	Dry	D	1.00	-	-	1008	F F	-0.21	-	0.2	0.1	0.1	0.6	0.4	20.8	20.9	0	0	-	DRY
	19/10/22 19/10/22	15:33 15:11	WS205 WS206	S	GL GL	2.21		2.96 4.30	-	-	1007	F	-0.02 -0.11	-	0.2	0.1	0.1	2.3	1.5	20.0	20.0	0	0	-	OK OK
	19/10/22	15:02	WS207	S	GL	0.81		2.15	-	-	1008	F	0.05	-	-1.7	0.1	0.1	1.9	1.9	20.6	20.7	1	0	-	ок
	19/10/22	14:52	WS208	S	GL	0.57		2.22	-	-	1008	F	2.98	-	-5.8	0.1	0.1	2.3	2.3	20.0	20.2	3	0	-	OK
	19/10/22 19/10/22	15:05 14:24	WS209 WS210	S	GL GL	0.76		2.99	-	-	1008	F	-0.07	-	-2.6	0.1	0.1	1.8	1.8	20.5	20.5	2	0	-	OK OK
	19/10/22	16:42	WS211	S	GL	3.15		3.52	-	-	1006	F	0.16	-	0.1	0.1	0.1	3.5	3.2	18.8	18.9	0	0	-	ОК
	19/10/22	14:36	WS213	S	GL	Dry	D	3.63	-	-	1006	F	0.09	-	0.3	0.1	0.1	1.1	1.1	21.0	21.0	0	0	-	DRY
	19/10/22	15:41	WS214	S	GL	Dry 0.92	D	0.97 2.53	-	-	1007	F	0.12 -0.14	-	0.2	0.1	0.1	0.9	0.9	21.1	21.5	0	0	-	DRY
	19/10/22 19/10/22	14:43 17:12	WS215 WS216	S	GL GL	Dry	D*	4.05	-	-	1009	F	0.04	-	0.2	0.1	0.1	1.0	1.0	19.0	21.5 18.2	0	0	-	OK OK
	19/10/22	16:34	WS217	S	GL	Dry	D	2.02	-	-	1006	F	0.02	-	0.2	0.1	0.1	0.6	0.6	21.8	21.8	0	0	-	DRY
	19/10/22	15:47	WS218	S	GL	Dry	D	1.76	-	-	1007	F	-0.02	-	0.2	0.1	0.1	0.9	0.9	21.4	21.4	0	0	-	DRY
	19/10/22 19/10/22	14:32 14:37	WS219 WS220	S	GL GL	3.92 1.73		4.95 2.98	-	-	1008	F F	0.05	-	0.2	0.1	0.1	0.6	0.6	20.6	20.6	0	0	-	OK OK
	19/10/22	17:29	WS221	S	GL	Dry	D	1.99	-	-	1009	F	0.00	-	0.2	0.1	0.1	1.9	0.7	19.7	19.9	0	0	-	DRY
	19/10/22	15:55	WS222	S	GL	Dry	D	2.44	-	-	1007	F	0.14	-	0.2	0.1	0.1	0.8	0.8	21.5	21.5	0	0	-	DRY
	19/10/22	14:18	WS223	S	GL	Dry	D	1.98	-	-	1008	F	-0.04	-	0.1	0.1	0.1	0.5	0.5	21.3	21.4	0	0	-	DRY
	19/10/22 19/10/22	11:53 17:36	WS224 WS225	S	GL GL	Dry Dry	D*	1.36	-	-	1011	F F	0.02	-	0.2	0.1	0.1	0.5	0.5	20.9	21.0	0	0	-	OK DRY

Monit	oring round		W	ell Details		Water	/NAPL M	lonitoring	(m belov	/ datum)		Pressure and fl	ow (use < fo	r below Lo	oD)			Gas C	Concentrat	ions (use <	or below	(LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Denth		Atm.	Atm. pressure	Relative	Initial Ga	s Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas	Туре			to Base		Depth to		falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v) -	(%v/v)-		со	H ₂ S		g Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R4	19/10/22	16:08	WS226	S	GL	Dry	D	1.14	-	-	998	F	0.09	_	0.2	0.1	0.1	0.4	0.3	21.8	21.8	0	0	-	DRY
Wider Site R4	19/10/22	16:00	WS227	S	GL	Dry	D	2.72	-	-	1006	F	0.00	-	0.2	0.1	0.1	0.9	0.9	21.6	21.6	0	0	-	DRY
Wider Site R4	19/10/22	12:32	WS228	S	GL	Dry	D	0.99	-	-	1010	F	-0.07	-	0.1	0.1	0.1	0.5	0.5	21.2	21.3	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	12:28 16:21	WS229 WS230	S	GL GL	Dry Dry	D D	1.95	-	-	1010	F F	-0.12 0.04	-	0.2	0.1	0.1	0.6	0.6	21.2	21.4	0	0	-	DRY DRY
Wider Site R4	19/10/22	12:05	WS231	S	GL	4.55		5.07	-	-	1011	F	0.14	-	0.2	0.1	0.1	2.2	2.2	20.1	20.1	0	0	-	ОК
Wider Site R4	19/10/22	14:08	WS232	S	GL	1.45		2.97	-	-	1009	F	0.12	-	0.2	0.1	0.1	0.6	0.6	21.1	21.3	0	0	-	ОК
Wider Site R4 Wider Site R4	19/10/22 19/10/22	11:37 11:45	WS233 WS234	S	GL GL	1.35		2.25 1.64	-	-	1011	F F	-0.05	-	0.2	0.1	0.1	0.4	0.4	20.3	20.3	0	0	-	OK OK
Wider Site R4	19/10/22	12:54	WS235	S	GL	1.41		4.91	-	-	1010	F	0.16	-	0.2	0.1	0.1	1.3	1.3	20.7	20.7	0	0	-	ОК
Wider Site R4	19/10/22	13:00	WS236	S	GL	Dry	D	1.96	-	-	1010	F	0.19	-	0.2	0.1	0.1	1.8	1.8	20.2	20.2	0	0	-	DRY
Wider Site R4	19/10/22	12:22	WS237	S	GL GL	Dry	D	1.01 5.06	-	-	1010 1010	F	0.02	-	0.2	0.1	0.1	2.0	2.0	21.3	21.4	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	12:10 11:27	WS238 WS239	S	GL	3.97 1.37		2.22	-	-	1010	F	0.16	-	0.2	0.1	0.1	0.6	0.6	21.2	20.0	0	0	-	OK OK
Wider Site R4	19/10/22	11:32	WS240	S	GL	Dry	D	1.10	-	-	1012	F	0.09	-	0.3	0.1	0.1	1.0	1.0	20.9	21.0	0	0	-	DRY
Wider Site R4	19/10/22	10:28	WS241	S	GL	1.54		1.94	-	-	1013	F	0.18	-	0.3	0.1	0.1	1.6	1.6	19.6	19.7	0	0	-	OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	13:09 12:16	WS242 WS243	S	GL GL	0.72 Dry	D	3.61 1.00	-	-	1010	F F	0.21	-	-3.8	0.1	0.1	0.7	0.6	18.8	18.8	0	0	-	OK DRY
Wider Site R4	19/10/22	13:58	WS244	S	GL	Dry	D	0.88	-	-	1010	F	0.00	-	0.1	0.1	0.1	0.7	0.3	21.1	21.5	0	0	-	DRY
Wider Site R4	19/10/22	13:25	WS245	S	GL	1.10		2.56	-	-	1010	F	0.16	-	-0.2	0.1	0.1	0.3	0.3	21.3	21.5	1	0	-	ОК
Wider Site R4	19/10/22	13:38	WS246	S	GL	1.43	D*	4.55	-	-	1010	F	0.05	-	0.1	0.1	0.1	0.8	0.8	21.0	21.1	0	0	-	OK OK
Wider Site R4 Wider Site R4	19/10/22 19/10/22	13:47 11:16	WS247 WS248	S	GL GL	Dry Dry	D* D*	1.60	-	-	1010	F	-0.05	-	0.1	0.1	0.1	0.5	0.5	20.5	20.7	0	0	-	OK OK
Wider Site R4	19/10/22	11:03	WS249	S	GL	Dry	D	0.95	-	-	1012	F	0.04	-	0.1	0.1	0.1	0.4	0.4	21.2	21.2	0	0	-	DRY
Wider Site R4	19/10/22	11:09	WS250	S	GL	Dry	D	0.86	-	-	1012	F	0.18	-	0.2	0.1	0.1	0.5	0.5	21.2	21.3	0	0	-	DRY
Wider Site R4 Wider Site R4	19/10/22 19/10/22	10:38 10:51	WS251 WS252	S	GL GL	0.84		1.96 5.05	-	-	1013 1012	F	-0.16 -0.02	-	-0.5 -5.2	0.1	0.1	1.4	0.9	19.2 20.3	19.2 20.6	1	0	-	OK OV
Wider Site R5	26/10/22	15:43	BH201	S	GL	4.27		5.00	-	-	1004	R	0.11	-	0.3	0.1	0.1	0.8	0.7	20.8	20.8	0	0	-	OK OK
Wider Site R5	26/10/22	13:35	BH202	S	GL	3.33		5.24	-	-	1003	R	-0.05	-	0.2	0.1	0.1	0.8	0.8	19.9	20.1	0	0	-	ОК
Wider Site R5	25/10/22	13:14	BH203	S	GL	3.21		6.00	-	-	1005	R	-0.02	-	0.3	0.1	0.1	0.8	0.8	19.7	19.8	0	0	-	OK OK
Wider Site R5 Wider Site R5	25/10/22 25/10/22	13:45 13:21	BH204 BH205	S	GL GL	2.48 0.73		5.10 4.12	-	-	997	R	-0.07 0.02	-	-3.6	0.1	0.1	0.8	0.8	20.3	20.4	1	0	-	OK OK
Wider Site R5	25/10/22	11:36	WS201	S	GL	Dry	D	1.86	-	-	1004	R	0.11	-	0.1	0.1	0.1	1.3	0.7	19.9	20.3	0	0	-	DRY
Wider Site R5	25/10/22	11:42	WS202	S	GL	1.14		1.99	-	-	1005	R	0.12	-	0.2	0.1	0.1	0.6	0.6	20.4	20.5	0	0	-	ОК
Wider Site R5 Wider Site R5	26/10/22 26/10/22	14:42 14:34	WS203 WS204	S	GL GL	Dry Dry	D D	1.99	-	-	1004	R	-0.02	-	0.3	0.1	0.1	0.6	0.6	20.7	20.7	0	0	-	DRY DRY
Wider Site R5	26/10/22	14:48	WS205	S	GL	1.03		2.96	-	-	1004	R	0.07	-	0.2	0.1	0.1	1.7	1.6	20.1	20.3	0	0	-	ОК
Wider Site R5	26/10/22	15:07	WS206	S	GL	1.74		4.30	-	-	1004	R	0.04	-	0.3	0.1	0.1	1.6	1.6	19.0	19.0	0	0	-	ОК
Wider Site R5	26/10/22 26/10/22	14:28	WS207 WS208	S	GL GL	0.59		2.15	-	-	1004	R	-0.58 15.96	-	-2.3	0.1	0.1	1.5	1.5	20.5	20.5	3	0	-	OK OK
Wider Site R5 Wider Site R5	26/10/22	14:23 15:02	WS209	S	GL	1.52		2.99	-	-	1004	R	0.05	-	0.0	0.1	0.1	1.6	1.6	19.9	19.9	0	0	-	OK OK
Wider Site R5	26/10/22	14:15	WS210	S	GL	0.53		2.60	-	-	1004	R	11.62	-	0.2	0.1	0.1	1.3	1.3	20.3	20.4	2	0	-	ОК
Wider Site R5	25/10/22	11:27	WS211	S	GL	3.10		3.52	-	-	1004	R	0.23	-	0.2	0.1	0.1	3.3	3.3	18.1	18.1	0	0	-	OK
Wider Site R5 Wider Site R5	26/10/22 26/10/22	14:54 15:14	WS213 WS214	S	GL GL	Dry Dry	D D	3.63 0.97	-	-	1004	R R	0.00	-	0.3	0.1	0.1	0.5	0.5	20.6	20.7	0	0	-	DRY DRY
Wider Site R5	26/10/22	14:09	WS215	S	GL	0.57		2.53	-	-	1004	R	9.63	-	-1.7	0.1	0.1	0.6	0.6	20.7	20.7	1	0	-	ок
Wider Site R5	25/10/22	10:56	WS216	S	GL	Dry	D*	4.05	-	-	1005	R	-0.14	-	0.2	0.1	0.1	1.5	1.5	19.7	19.8	0	0	-	ОК
Wider Site R5 Wider Site R5	25/10/22	11:53	WS217 WS218	S	GL GL	Dry Dry	D D	1.76	-	-	1004	R	-0.11	-	0.3	0.1	0.1	1.5	1.4	19.8	19.9	0	0	-	DRY DRY
Wider Site R5	26/10/22	15:19 13:55	WS218	S	GL	3.82	U	4.95	-	-	1004	R	-0.07	-	0.2	0.1	0.1	1.0	1.0	19.8	19.9	0	0	-	OK OK
Wider Site R5	26/10/22	13:50	WS220	S	GL	1.42		2.98	-	-	1004	R	0.07	-	0.3	0.1	0.1	0.6	0.6	19.7	19.8	0	0	-	ОК
Wider Site R5	25/10/22	11:03	WS221	S	GL	Dry	D	1.99	-	-	1004	R	0.07	-	0.2	0.1	0.1	1.4	1.4	19.8	19.9	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22	15:25 14:01	WS222 WS223	S	GL GL	Dry Dry	D D	1.98	-	-	1004	R R	-0.09	-	0.2	0.1	0.1	0.7	0.7	20.7	20.8	0	0	-	DRY DRY
Wider Site R5	26/10/22	13:22	WS224	S	GL	0.95		1.36	-	-	1003	R	0.07	-	0.1	0.1	0.1	0.3	0.2	19.9	21.0	0	0	-	OK OK
Wider Site R5	25/10/22	11:09	WS225	S	GL	Dry	D	1.98	-	-	1005	R	0.02	-	0.1	0.1	0.1	1.0	1.0	19.9	20.0	0	0	-	DRY
Wider Site R5	26/10/22	15:38	WS226	S	GL GL	Dry	D D	2.72	-	-	1004	R R	0.04	-	0.2	0.1	0.1	0.5	0.5	20.5	20.5	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 25/10/22	15:30 13:06	WS227 WS228	S	GL	Dry Dry	D	0.99	-	-	1004	R	0.19	-	0.2	0.1	0.1	0.8	0.8	20.8	20.8	0	0	-	DRY DRY
Wider Site R5	25/10/22	12:57	WS229	S	GL	Dry	D	1.95	-	-	1004	R	0.09	-	0.3	0.1	0.1	0.6	0.6	20.5	20.5	0	0	-	DRY
Wider Site R5	26/10/22	15:51	WS230	S	GL	Dry	D	1.10	-	-	1005	R	0.04	-	0.3	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY
Wider Site R5 Wider Site R5	25/10/22 26/10/22	12:35 13:42	WS231 WS232	S	GL GL	1.31		5.07 2.97	-	-	1005	R	-0.09	-	0.3	0.1	0.1	0.6	0.6	19.2 20.2	19.2	0	0	-	OK OK
Wider Site R5	26/10/22	13:06	WS233	S	GL	1.20		2.23	-	-	1004	R	-0.03	-	0.2	0.1	0.1	1.8	1.8	19.1	19.2	0	0	-	OK OK
Wider Site R5	26/10/22	13:14	WS234	S	GL	1.06		1.64	-	-	1003	R	0.05	-	0.3	0.1	0.1	0.6	0.3	20.2	20.5	0	0	-	ОК

Monit	oring round		W	ell Details		Water	/NAPL M	onitoring	(m belov	v datum)		Pressure and fl	ow (use < fo	r below L	oD)			Gas C	Concentrat	ions (use <	for below	LoD)			Local conditions
				Single or								Atm. pressure													
Round				dual gas		Depth	"D"		Depth	Depth to	Atm.	falling (F) /	BH		s Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID		(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)		(%v/v) - (Steady)	(ppm)	(ppm)	ppm using PID)	Notes on condition of borehole (including any
				(S/D)	/ GL)	water	ary note	or riote			un az	steady (S)	(hPa)	(0 1117	(5 1117	(iiiiciae)	(Sieday)	(initiat)	(Stoday)	(micrae)	ioleady,			, 15,	
Wider Site R5	25/10/22	12:12	WS235	S	GL	1.23		4.91	-	-	1005	R	0.16	-	0.3	0.1	0.1	1.7	1.7	19.0	19.0	0	0	-	ОК
Wider Site R5 Wider Site R5	25/10/22 25/10/22	12:06 12:52	WS236 WS237	S	GL GL	Dry Dry	D D	1.96	-	-	1005	R R	0.02	-	0.3	0.1	0.1	0.4	0.4	19.2 20.4	19.2 20.5	0	0	-	DRY DRY
Wider Site R5	25/10/22	12:40	WS238	S	GL	3.90		5.06	-	-	1005	R	-0.14	-	0.2	0.1	0.1	2.2	2.2	19.6	19.7	0	0	-	OK .
Wider Site R5	26/10/22	12:55	WS239	S	GL	1.27		2.22	-	-	1003	R	0.02	-	0.3	0.1	0.1	0.7	0.7	19.8	19.9	0	0	-	ОК
Wider Site R5	26/10/22	13:00	WS240	S	GL	Dry	D	1.10	-	-	1003	R	0.09	-	0.3	0.1	0.1	1.1	1.1	19.7	19.8	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 25/10/22	11:59 12:17	WS241 WS242	S	GL GL	1.36 0.52		1.94 3.61	-	-	1002	R	0.16 19.09	-	1.0	0.1	0.1	2.4	2.4	19.9 18.6	19.9 18.8	1	0	-	OK OK
Wider Site R5	25/10/22	12:46	WS243	S	GL	Dry	D	1.00	-	-	1004	R	-0.02	-	0.3	0.1	0.1	0.6	0.6	20.3	20.3	0	0	-	DRY
Wider Site R5	25/10/22	14:00	WS244	S	GL	Dry	D	0.88	-	-	1005	R	-0.18	-	0.3	0.1	0.1	0.5	0.5	19.7	19.8	0	0	-	DRY
Wider Site R5	25/10/22	13:26	WS245	S	GL	0.63		2.56	-	-	1005	R R	0.04	-	-4.5	0.1	0.1	0.8	0.8	20.9	20.9	1	0	-	OK OK
Wider Site R5 Wider Site R5	25/10/22 25/10/22	13:35 13:53	WS246 WS247	S	GL GL	0.71		4.55 0.92	-	-	1005 1005	R	0.14	-	-2.2	0.1	0.1	1.0	1.0	20.2 18.5	20.3	0	0	-	OK OK
Wider Site R5	26/10/22	12:44	WS248	S	GL	1.37		1.60	-	-	1003	R	0.07	-	0.3	0.1	0.1	0.7	0.7	20.0	20.1	0	0	-	OK
Wider Site R5	26/10/22	12:30	WS249	S	GL	Dry	D	0.95	-	-	1003	R	0.11	-	0.2	0.1	0.1	1.1	1.1	19.3	19.3	0	0	-	DRY
Wider Site R5	26/10/22	12:37	WS250 WS251	S	GL GL	Dry 0.54	D	0.86 1.96	-	-	1003	R	-0.04	-	-1.4	0.1	0.1	0.6 1.3	0.6	19.8 19.2	19.8 19.4	0	0	-	DRY
Wider Site R5 Wider Site R5	26/10/22 26/10/22	12:08 12:20	WS251 WS252	S	GL	0.54		5.05	-	-	1003	R	-3.08	-	-1.4	0.1	0.1	1.3	1.1	19.2	19.4	1	0	-	OK
Wider Site R6	02/11/22	14:15	BH201	S	GL	4.20		5.80	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.9	0.9	20.3	20.3	0	0	-	
Wider Site R6	02/11/22	11:48	BH202	S	GL	3.27		5.15	-	-	1006	R	0.09	-	0.1	0.1	0.1	1.1	1.1	19.2	19.5	0	0	-	
Wider Site R6 Wider Site R6	01/11/22	14:43 15:09	BH203 BH204	S	GL GL	3.16 2.43		5.00	-	-	998 998	F	-0.02	-	0.2	0.1	0.1	0.8	0.8	20.1 19.7	20.1 19.9	0	0	-	
Wider Site R6	01/11/22	14:51	BH205	S	GL	0.69		4.16	-	-	999	F	0.12	-	-2.9	0.1	0.1	0.3	0.3	20.9	21.1	1	0	-	
Wider Site R6	02/11/22	11:16	WS201	S	GL	Dry	D	1.90	-	-	1006	R	0.00	-	0.1	0.1	0.1	2.9	0.8	19.4	19.8	0	0	-	Dry
Wider Site R6	02/11/22	11:21	WS202	S	GL	1.05		2.00	-	-	1006	R	0.00	-	-4.5	0.1	0.1	1.2	1.2	19.7	19.7	0	0	-	
Wider Site R6	02/11/22	13:04 12:54	WS203 WS204	S	GL GL	Dry Dry	D D	2.00 1.00	-	-	1005 1005	R	-0.12	-	0.1	0.1	0.1	0.7	0.7	20.0	20.2	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	13:10	WS204	S	GL	0.95	U	3.11	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.2	0.2	20.3	20.5	1	0	-	Dry
Wider Site R6	02/11/22	13:30	WS206	S	GL	1.64		4.20	-	-	1004	R	-0.21	-	0.1	0.1	0.1	2.0	2.0	18.2	18.2	0	0	-	
Wider Site R6	02/11/22	12:47	WS207	S	GL	0.57		2.20	-	-	1006	R	0.07	-	-4.0	0.1	0.1	1.3	1.3	20.1	20.2	0	0	-	
Wider Site R6 Wider Site R6	02/11/22	12:41 13:27	WS208 WS209	S	GL GL	0.38		3.00	-	-	1006 1004	R	0.09	-	-6.1 0.1	0.1	0.1	2.0	2.0	19.8 18.6	19.8 18.8	0	0	-	
Wider Site R6	02/11/22	12:33	WS210	S	GL	0.50		2.60	-	-	1006	R	1.44	-	-6.1	0.1	0.1	1.3	1.3	19.7	20.0	0	0	-	
Wider Site R6	02/11/22	11:09	WS211	S	GL	3.05		3.40	-	-	1007	R	0.04	-	0.1	0.1	0.1	3.5	3.3	17.3	17.4	0	0	-	
Wider Site R6	02/11/22	13:18	WS213	S	GL	Dry	D	3.65	-	-	1004	R	0.00	-	0.1	0.1	0.1	0.6	0.6	19.8	20.1	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	13:45 12:25	WS214 WS215	S	GL GL	0.54	D	1.00 2.50	-	-	1004	R R	0.00 2.40	-	0.1	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	Dry
Wider Site R6	02/11/22	10:36	WS216	S	GL	3.90		4.20	-	-	1006	R	-0.07	-	0.1	0.1	0.1	0.9	0.9	19.9	19.9	0	0	-	
Wider Site R6	02/11/22	11:36	WS217	S	GL	Dry	D	2.05	-	-	1006	R	0.00	-	0.1	0.1	0.1	1.8	1.8	19.1	19.4	0	0	-	Dry
Wider Site R6	02/11/22	13:51	WS218	S	GL	Dry	D	1.80	-	-	1003	R R	0.00	-	0.1	0.1	0.1	1.1	1.1	19.6	19.7	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	12:10 12:04	WS219 WS220	S	GL GL	3.72 1.38		5.00 3.00	-	-	1006	R	0.04	-	0.1	0.1	0.1	0.8	0.8	19.2 19.2	19.2 19.2	0	0	-	
Wider Site R6	02/11/22	10:49	WS221	S	GL	Dry	D	2.05	-	-	1007	R	0.00	-	0.1	0.1	0.1	1.6	1.6	19.2	19.2	0	0	-	Dry
Wider Site R6	02/11/22	13:58	WS222	S	GL	Dry	D	2.53	-	-	1003	R	0.14	-	0.1	0.1	0.1	0.8	0.8	19.8	20.1	0	0	-	Dry
Wider Site R6 Wider Site R6	02/11/22	12:16 13:48	WS223 WS224	S	GL GL	Dry 1.04	D	2.00	-	-	1006 998	R	0.07	-	0.1	0.1	0.1	0.6	0.6	19.6 20.3	19.6 21.0	0	0	-	Dry OK
Wider Site R6	01/11/22	10:56	WS225	S	GL	Dry	D	2.00	-	-	1007	R	0.00	-	0.5	0.1	0.1	1.2	1.2	19.3	19.3	0	0	-	Dry
Wider Site R6	02/11/22	14:10	WS226	S	GL	Dry	D	1.10	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.7	0.7	19.9	19.9	0	0	-	Dry
Wider Site R6	02/11/22	14:04	WS227	S	GL	Dry	D	2.80	-	-	1003	R	0.00	-	0.1	0.1	0.1	0.8	0.8	20.2	20.2	0	0	-	Dry
Wider Site R6 Wider Site R6	01/11/22	14:36 14:32	WS228 WS229	S	GL GL	Dry Dry	D D	1.01	-	-	998	F F	0.02	-	0.2	0.1	0.1	0.9	0.9	19.6 20.4	19.7 20.6	0	0	-	DRY DRY
Wider Site R6	02/11/22	14:32	WS230	S	GL	Dry	D	1.10	-	-	1003	R	0.00	-	0.2	0.1	0.1	0.7	0.7	19.7	19.7	0	0	-	Dry
Wider Site R6	01/11/22	14:12	WS231	S	GL	4.47		5.18	-	-	998	F	0.07	-	0.2	0.1	0.1	2.7	2.7	17.9	17.9	0	0	-	ок
Wider Site R6	02/11/22	11:56	WS232	S	GL	1.27		3.00	-	-	1006	R	0.00	-	0.1	0.1	0.1	0.7	0.7	19.5	19.7	0	0	-	l ov
Wider Site R6 Wider Site R6	01/11/22	13:40 13:55	WS233 WS234	S	GL GL	1.19		2.35 1.68	-	-	999	F F	0.00	-	0.1	0.1	0.1	0.3	0.3	18.9 20.6	19.2 20.6	0	0	-	OK OK
Wider Site R6	01/11/22	11:53	WS235	S	GL	1.20		5.06	-	-	999	F	0.03	-	0.2	0.1	0.1	1.7	1.6	17.5	17.5	0	0	-	OK OK
Wider Site R6	01/11/22	11:47	WS236	S	GL	Dry	D	2.00	-	-	998	F	-0.02	-	0.2	0.1	0.1	0.6	0.6	19.9	19.9	0	0	-	DRY
Wider Site R6	01/11/22	14:28	WS237	S	GL	Dry	D	1.05	-	-	998	F	-0.04	-	0.3	0.1	0.1	0.5	0.5	20.3	20.3	0	0	-	DRY
Wider Site R6 Wider Site R6	01/11/22	14:16 13:21	WS238 WS239	S	GL GL	3.88 1.25		4.97 2.28	-	-	998	F F	-0.02	-	0.2	0.1	0.1	0.8	0.8	18.9 19.5	19.0 19.6	0	0	-	OK OK
Wider Site R6	01/11/22	13:21	WS240	S	GL	Dry	D	1.14	-	-	999	F	0.12	-	0.3	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	DRY
Wider Site R6	01/11/22	12:18	WS241	S	GL	1.33		1.98	-	-	999	F	1.02	-	0.3	0.1	0.1	1.5	1.5	19.2	19.3	0	0	-	ОК
Wider Site R6	01/11/22	12:11	WS242	S	GL	0.45		3.65	-	-	999	F	7.94	-	-4.9	0.1	0.1	2.7	2.6	17.9	18.0	1	0	-	ОК
Wider Site R6	01/11/22	14:22	WS243	S	GL	Dry	D	1.03	-	-	998	F	0.09	-	0.3	0.1	0.1	0.6	0.6	20.1	20.5	0	0	-	DRY

Mon	itoring round	ı .	ν	Vell Details	s	Water	/NAPL M	lonitoring	m belov	/ datum)		Pressure and fl	.ow (use < fo	or below Lo	D)			Gas C	oncentrat	ions (use <	for below	LoD)			Local conditions
				Single or	Datum	Depth	"D"	Donth	Donth		Atm	Atm. pressure	Relative	Initial Cas	Steady	CH₄	CH₄	CO₂	CO₂	0-	0-			VOC (as	
Round	Date	Time	Well ID	dual gas		to		Depth to Base	Depth to	Depth to	Atm. pressure	falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v)-	O₂ (%v/v) -	O₂ (%v/v) -	со	H₂S		Notes on condition of borehole (including an)
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R6	01/11/22	15:19	WS244	S	GL	Dry	D	0.93	_	_	999	F	0.00	-	0.3	0.1	0.1	0.7	0.7	19.3	19.5	0	0	-	DRY
Wider Site R6	01/11/22	14:57	WS245	S	GL	0.61		2.58	-	-	999	F	-0.02	-	-6.5	0.1	0.1	0.6	0.6	20.9	21.0	1	0	-	OK
Wider Site R6	01/11/22	15:03	WS246	S	GL	1.11		4.49	-	-	999	F	2.78	-	-3.3	0.1	0.1	0.9	0.9	18.9	18.9	0	0	-	ок
Wider Site R6	01/11/22	15:14	WS247	S	GL	0.67		0.93	-	-	999	F	0.28	-	0.2	0.1	0.1	1.6	1.6	16.9	16.9	0	0	-	ОК
Wider Site R6 Wider Site R6	01/11/22	13:08 12:54	WS248 WS249	S	GL GL	1.34 Dry	D	1.65	-	-	999	F	0.14	-	0.3	0.1	0.1	0.9	0.9	19.8 19.3	19.8 19.3	0	0	-	OK DRY
Wider Site R6	01/11/22	13:00	WS250	S	GL	Dry	D	0.89	-	-	999	F	1.39	-	0.3	0.1	0.1	0.8	0.8	19.8	19.8	0	0	-	DRY
Wider Site R6	01/11/22	12:28	WS251	S	GL	0.50		2.00	-	-	999	F	1.44	-	-1.0	0.1	0.1	1.0	1.0	19.4	19.4	2	0	-	ОК
Wider Site R6 Wider Site R7	01/11/22 17/11/22	12:40 13:55	WS252 BH201	S	GL GL	0.47 4.19		5.18 5.86	-	-	999 1004	F	6.53 0.11	-	-2.5 0.3	0.2	0.2	0.8	0.7	19.5 20.8	19.5 20.8	0	0	-	OK OK
Wider Site R7	17/11/22	11:47	BH202	S	GL	3.26		5.15	-	-	1004	F	0.09	-	0.1	0.1	0.1	1.1	1.1	19.2	19.5	0	0	-	ОК
Wider Site R7	16/11/22	15:27	BH203	S	GL	3.15		5.00	-	-	981	F	-0.02	-	0.3	0.1	0.1	0.8	0.8	19.7	19.8	0	0	-	ок
Wider Site R7	16/11/22	15:58	BH204	S	GL	0.68		5.18	-	-	981	F	-0.07 0.02	-	0.1	0.1	0.1	0.8	0.8	20.3	20.4	0	0	-	ОК
Wider Site R7 Wider Site R7	16/11/22 17/11/22	15:34 14:47	BH205 WS201	S	GL GL	Dry	D	4.16 1.90	-	-	981 1004	F	-0.07	-	-3.6 0.1	0.1	0.1	0.7 2.9	0.6	20.6 19.4	20.9 19.8	0	0	-	DRY
Wider Site R7	17/11/22	14:53	WS202	S	GL	1.04		2.00	-	-	1004	F	0.12	-	0.2	0.1	0.1	0.6	0.6	20.4	20.5	0	0	-	ОК
Wider Site R7	17/11/22	12:54	WS203	S	GL	Dry	D	2.00	-	-	1004	F	-0.04	-	0.1	0.1	0.1	0.7	0.7	20.0	20.2	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 17/11/22	12:46 13:00	WS204 WS205	S	GL GL	0.94	D	3.00	-	-	1004 1004	F F	-0.02	-	0.2	0.1	0.1	0.2	0.2	21.3	21.4	1	0	-	DRY OK
Wider Site R7	17/11/22	13:19	WS206	S	GL	1.63		4.20	-	-	1004	F	0.04	-	0.3	0.1	0.1	1.6	1.6	19.0	19.0	0	0	-	ОК
Wider Site R7	17/11/22	12:40	WS207	S	GL	0.55		2.20	-	-	1004	F	0.07	-	-4.0	0.1	0.1	1.3	1.3	20.1	20.2	1	0	-	ок
Wider Site R7	17/11/22	12:35	WS208	S	GL	0.29		2.15	-	-	1004	F	2.45	-	-6.1	0.1	0.1	1.7	1.7	19.8	19.8	3	0	-	OK
Wider Site R7 Wider Site R7	17/11/22 17/11/22	13:14 12:27	WS209 WS210	S	GL GL	0.36		3.00 2.60	-	-	1004	F	0.05	-	-6.1	0.1	0.1	1.6	1.6	19.9 19.7	19.9	3	0	-	OK OK
Wider Site R7	17/11/22	14:38	WS211	S	GL	2.20		3.40	-	-	1004	F	0.23	-	0.2	0.1	0.1	3.3	3.3	18.1	18.1	0	0	-	ОК
Wider Site R7	17/11/22	13:06	WS213	S	GL	Dry	D	3.65	-	-	1004	F	0.00	-	0.3	0.1	0.1	0.5	0.5	20.6	20.7	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 17/11/22	13:26 12:21	WS214 WS215	S	GL GL	0.40	D	1.00 2.50	-	-	1004	F F	0.02 2.40	-	0.1	0.1	0.1	1.2	1.0	19.4	19.4	0	0	-	DRY OK
Wider Site R7	17/11/22	14:15	WS215 WS216	S	GL	3.85		4.20	-	-	1004	F	-0.07	-	0.1	0.1	0.1	0.9	0.9	19.9	19.9	0	0	-	OK OK
Wider Site R7	17/11/22	15:02	WS217	S	GL	Dry	D	2.05	-	-	1004	F	-0.05	-	0.1	0.1	0.1	1.8	1.8	19.1	19.4	0	0	-	DRY
Wider Site R7	17/11/22	13:31	WS218	S	GL	Dry	D	1.80	-	-	1004	F	-0.07	-	0.2	0.1	0.1	1.0	1.0	20.4	20.6	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 17/11/22	12:07 12:02	WS219 WS220	S	GL GL	3.34 1.20		5.00 3.00	-	-	1004 1004	F	0.04	-	0.1	0.1	0.1	0.6	0.6	19.2 19.7	19.2 19.8	0	0	-	OK OK
Wider Site R7	17/11/22	14:22	WS221	S	GL	Dry	D	2.05	-	-	1004	F	0.00	-	0.1	0.1	0.1	1.6	1.6	19.2	19.2	0	0	-	DRY
Wider Site R7	17/11/22	13:37	WS222	S	GL	Dry	D	2.50	-	-	1004	F	-0.09	-	0.2	0.1	0.1	0.7	0.7	20.7	20.8	0	0	-	DRY
Wider Site R7 Wider Site R7	17/11/22 17/11/22	12:13 11:34	WS223 WS224	S	GL GL	Dry 0.84	D	2.00	-	-	1004 1004	F	0.07	-	0.1	0.1	0.1	0.6	0.6	19.6 19.9	19.6 21.0	0	0	-	DRY OK
Wider Site R7	17/11/22	14:28	WS225	S	GL	Dry	D	2.00	-	-	1004	F	0.02	-	0.1	0.1	0.1	1.0	1.0	19.9	20.0	0	0	-	DRY
Wider Site R7	17/11/22	13:50	WS226	S	GL	Dry	D	1.10	-	-	1004	F	0.00	-	0.1	0.1	0.1	0.7	0.7	19.9	19.9	0	0	-	DRY
Wider Site R7	17/11/22	13:42	WS227	S	GL	Dry	D	2.80	-	-	1004	F	0.19	-	0.2	0.1	0.1	0.8	0.8	20.8	20.8	0	0	-	DRY
Wider Site R7 Wider Site R7	16/11/22 16/11/22	15:19 15:10	WS228 WS229	S	GL GL	Dry	D D	1.01	-	-	981 981	F	0.02	-	0.2	0.1	0.1	0.9	0.9	19.6 20.4	19.7 20.6	0	0	-	DRY DRY
Wider Site R7	17/11/22	14:03	WS230	S	GL	Dry	D	1.10	-	-	1004	F	0.02	-	0.1	0.1	0.1	0.8	0.8	19.7	19.7	0	0	-	DRY
Wider Site R7	16/11/22	14:02	WS231	S	GL	4.29		5.18	-	-	982	F	0.02	-	0.3	0.1	0.1	3.7	3.5	17.8	17.8	0	0	-	ок
Wider Site R7	17/11/22	11:54	WS232 WS233	S	GL GL	0.99		3.00 2.35	-	-	1004 1004	F F	-0.05	-	0.2	0.1	0.1	2.0	0.6 2.0	20.2 18.9	20.2 19.2	0	0	-	OK OK
Wider Site R7 Wider Site R7	17/11/22 17/11/22	11:18 11:26	WS233	S	GL	1.01		1.68	-	-	1004	F	0.05	-	0.1	0.1	0.1	0.3	0.3	20.6	20.6	0	0	-	OK OK
Wider Site R7	16/11/22	11:53	WS235	S	GL	0.98		5.06	-	-	984	F	-0.02	-	0.1	0.1	0.1	1.7	1.2	18.5	18.5	1	0	-	ОК
Wider Site R7	16/11/22	11:46	WS236	S	GL	Dry	D	1.98	-	-	984	F	-0.02	-	0.2	0.1	0.1	1.9	1.9	18.1	18.1	0	0	-	DRY
Wider Site R7 Wider Site R7	16/11/22 16/11/22	15:05 14:12	WS237 WS238	S	GL GL	3.74	D	1.05 4.97	-	-	981 982	F F	-0.04	-	0.3	0.1	0.1	0.5 2.6	0.5 2.1	20.3 19.8	20.3	0	0	-	DRY OK
Wider Site R7	17/11/22	11:07	WS239	S	GL	1.25		2.28	-	-	1004	F	0.02	-	0.3	0.1	0.1	0.7	0.7	19.8	19.9	0	0	-	ок
Wider Site R7	17/11/22	11:12	WS240	S	GL	Dry	D	1.10	-	-	1004	F	0.09	-	0.3	0.1	0.1	1.1	1.1	19.7	19.8	0	0	-	DRY
Wider Site R7	17/11/22	10:05	WS241	S	GL	1.24		1.98 3.65	-	-	1004 984	F	0.16	-	0.2	0.1	0.1	1.2	1.2	19.9	19.9	0	0	-	ОК
Wider Site R7 Wider Site R7	16/11/22 16/11/22	12:01 14:35	WS242 WS243	S	GL GL	0.31 Dry	D	1.03	-	-	984	F	0.02	-	0.1	0.1	0.1	0.7	0.7	16.9 21.4	17.0 21.4	0	0	-	DRY
Wider Site R7	16/11/22	16:15	WS244	S	GL	Dry	D	0.93	-	-	981	F	0.00	-	0.3	0.1	0.1	0.7	0.7	19.3	19.5	0	0	-	DRY
Wider Site R7	16/11/22	15:39	WS245	S	GL	0.56		2.58	-	-	981	F	0.04	-	-4.5	0.1	0.1	0.8	0.8	20.9	20.9	1	0	-	ОК
Wider Site R7	16/11/22 16/11/22	15:48	WS246 WS247	S	GL GL	0.98		0.93	-	-	981 981	F	0.14	-	-2.2 0.1	0.1	0.1	1.0	1.0	20.2 18.5	20.3	0	0	-	OK OK
Wider Site R7 Wider Site R7	17/11/22	16:06 10:56	WS247 WS248	S	GL	1.30		1.65	-	-	1004	F	0.03	-	0.1	0.1	0.1	0.7	0.7	20.0	20.1	0	0	-	OK OK
Wider Site R7	17/11/22	10:41	WS249	S	GL	Dry	D	1.00	-	-	1004	F	0.04	-	0.2	0.1	0.1	1.3	1.3	19.3	19.3	0	0	-	DRY
Wider Site R7	17/11/22	10:48	WS250	S	GL	0.70		0.89	-	-	1004	F	1.39	-	0.3	0.1	0.1	0.8	0.8	19.8	19.8	0	0	-	OK
Wider Site R7	17/11/22	10:13	WS251 WS252	S	GL GL	0.39		2.00 5.18	-	-	1004 1004	F F	6.53	-	-1.0 -2.5	0.1	0.1	1.0	1.0	19.4 19.5	19.4 19.5	1	0	-	OK OK
Wider Site R7	17/11/22	10:31	VV 5252	3	GL	U.32		5.18	-		1004	F	0.53		-2.5	U.2	U.Z	1.2	1.2	19.5	19.5	1	U	_	OK

Monito	oring round	l	W	ell Details	i I	Water/	/NAPL M	onitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrati	ons (use <	for below	LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Depth		Atm.	Atm. pressure		Initial Gas	s Steady	CH₄	CH₄	CO2	CO₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas				to Base		Depth to		falling (F) /	ВН	Flow		(%v/v)-		(%v/v)-	(%v/v) -	(%v/v)-		CO	H ₂ S		Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R8	21/12/22	10:26	BH201	S	GL	4.20		5.86	-	-	1003	F	0.12	-	0.1	0.1	0.1	0.9	0.9	20.3	20.3	0	0	-	ОК
	21/12/22	10:45	BH202	S	GL	3.30		5.15	-	-	1003	F	-0.05	-	0.2	0.1	0.1	0.8	0.8	19.9	20.1	0	0	-	ОК
Wider Site R8	19/12/22	12:23	BH203	S	GL	2.82		5.00	-	-	997	F	-0.04	-	0.2	0.1	0.1	0.6	0.6	20.5	20.9	0	0	-	ОК
Wider Site R8 Wider Site R8	19/12/22 19/12/22	13:00 12:32	BH204 BH205	S	GL GL	0.42		5.18 4.16	-	-	996 997	F	0.07 8.77	-	-2.0	0.1	0.1	0.8	0.8	20.1	20.4 17.4	18	0	-	OK OK
	21/12/22	09:49	WS201	S	GL	Dry	D	1.90	-	-	1003	F	0.11	-	0.1	0.1	0.1	1.3	0.7	19.9	20.3	0	0	-	DRY
Wider Site R8	21/12/22	09:57	WS202	S	GL	1.10		2.00	-	-	1003	F	1.07	-	-4.5	0.1	0.1	1.2	1.2	19.7	19.7	1	0	-	OK
Wider Site R8 Wider Site R8	21/12/22	12:06 11:58	WS203 WS204	S	GL GL	Dry Dry	D D	2.00	-	-	1003	F	-0.04 -0.02	-	0.1	0.1	0.1	0.7	0.7	20.0	20.2	0	0	-	DRY DRY
Wider Site R8	21/12/22	12:13	WS205	S	GL	0.55		3.00	-	-	1003	F	0.07	-	0.2	0.1	0.1	1.7	1.6	20.1	20.3	0	0	-	ОК
Wider Site R8	21/12/22	11:51	WS206	S	GL	1.44		4.20	-	-	1003	F	-0.21	-	0.1	0.1	0.1	2.0	2.0	18.2	18.2	0	0	-	ОК
Wider Site R8 Wider Site R8	21/12/22	11:42 11:37	WS207 WS208	S	GL GL	0.42		2.20	-	-	1003 1003	F	-0.58 10.96	-	-2.3	0.1	0.1	1.5	1.5	20.5	20.5	3	0	-	OK OK
Wider Site R8	21/12/22	12:19	WS209	S	GL	0.98		3.00	-	-	1003	F	0.09	-	0.0	0.1	0.1	2.0	2.0	18.6	18.8	0	0	-	ОК
Wider Site R8	21/12/22	11:20	WS210	S	GL	0.33		2.60	-	-	1003	F	2.25	-	0.9	0.1	0.1	1.3	1.3	20.3	20.4	2	0	-	ОК
Wider Site R8	21/12/22	09:38	WS211 WS213	S	GL GL	1.98 Dry	D	3.40	-	-	1003 1003	F	0.04	-	0.1	0.1	0.1	3.5 0.6	3.3 0.5	17.3 19.7	17.4 19.8	0	0	-	OK DRY
	21/12/22	10:03 12:25	WS213	S	GL	Dry	D	1.00	-	-	1003	F	0.00	-	0.2	0.1	0.1	1.1	1.0	20.2	20.2	0	0	-	DRY DRY
Wider Site R8	21/12/22	11:29	WS215	S	GL	0.33		2.50	-	-	1003	F	3.50	-	-1.4	0.1	0.1	0.6	0.6	20.7	20.7	1	0	-	ОК
	21/12/22	09:25	WS216	S	GL	3.80	D	4.20	-	-	1003	F	-0.10	-	0.2	0.1	0.1	1.5	1.5	19.7	19.8	0	0	-	OK DDV
Wider Site R8 Wider Site R8	21/12/22	10:11 12:31	WS217 WS218	S	GL GL	Dry Dry	D	2.05 1.80	-	-	1003	F	-0.11 -0.09	-	0.3	0.1	0.1	1.5	1.4	19.8 19.6	19.9 19.7	0	0	-	DRY DRY
Wider Site R8	21/12/22	11:05	WS219	S	GL	3.31		5.00	-	-	1003	F	0.02	-	0.3	0.1	0.1	1.0	1.0	19.8	19.9	0	0	-	ОК
Wider Site R8	21/12/22	11:11	WS220	S	GL	0.99		3.00	-	-	1003	F	0.02	-	0.2	0.1	0.1	0.8	0.8	19.2	19.2	0	0	-	OK
Wider Site R8 Wider Site R8	21/12/22	09:30 12:44	WS221 WS222	S	GL GL	Dry Dry	D D	2.05	-	-	1003	F F	0.02	-	0.2	0.1	0.1	0.8	0.8	18.8 19.8	18.9 20.1	0	0	-	DRY DRY
	21/12/22	10:58	WS223	S	GL	Dry	D	2.00	-	-	1003	F	0.02	-	0.2	0.1	0.1	0.5	0.5	20.4	20.5	0	0	-	DRY
Wider Site R8	19/12/22	11:13	WS224	S	GL	0.64		1.40	-	-	1003	F	0.11	-	0.3	0.1	0.1	0.4	0.1	20.3	21.0	0	0	-	ОК
Wider Site R8 Wider Site R8	21/12/22	09:35 10:21	WS225 WS226	S	GL GL	Dry Dry	D D	2.00	-	-	1003	F	0.07	-	0.1	0.1	0.1	0.5	0.5	19.3 20.5	19.3 20.5	0	0	-	DRY DRY
	21/12/22	12:49	WS227	S	GL	Dry	D	2.80	-	-	1003	F	0.20	-	0.2	0.1	0.1	0.8	0.8	20.2	20.2	0	0	-	DRY
Wider Site R8	19/12/22	12:17	WS228	S	GL	Dry	D	1.01	-	-	996	F	-0.16	-	0.2	0.1	0.1	0.8	0.8	20.1	20.2	0	0	-	DRY
Wider Site R8 Wider Site R8	19/12/22 21/12/22	12:12 10:40	WS229 WS230	S	GL GL	Dry Dry	D D	1.00	-	-	996 1003	F	0.21	-	0.3	0.1	0.1	0.6	0.6	20.6	20.6	0	0	-	DRY DRY
Wider Site R8	19/12/22	11:20	WS231	S	GL	3.49		5.18	-	-	997	F	-0.05	-	0.3	0.1	0.1	3.6	3.6	17.1	17.1	0	0	-	OK
Wider Site R8	21/12/22	10:51	WS232	S	GL	0.87		3.00	-	-	1003	F	-0.20	-	-2.9	0.1	0.1	0.7	0.7	19.5	19.7	0	0	-	ОК
Wider Site R8 Wider Site R8	19/12/22 19/12/22	11:02 11:13	WS233 WS234	S	GL GL	0.33		2.35 1.68	-	-	1003 1003	F	-0.10 0.04	-	0.2	0.1	0.1	0.2	0.3	19.1 20.5	19.2 20.6	0	0	-	OK OK
Wider Site R8	19/12/22	14:37	WS235	S	GL	0.94		5.06	-	-	1003	F	0.01	-	0.3	0.1	0.1	1.6	1.7	17.5	17.6	0	0	-	ОК
Wider Site R8	19/12/22	14:29	WS236	S	GL	Dry	D	1.98	-	-	1003	F	0.02	-	0.3	0.1	0.1	1.9	1.9	19.2	19.2	0	0	-	DRY
	19/12/22	12:01	WS237 WS238	S	GL GL	Dry 1.96	D	1.05 4.97	-	-	996 996	F F	0.16	-	0.3	0.1	0.1	0.5	0.5	20.6 19.1	20.8 19.6	0	0	-	DRY OK
Wider Site R8 Wider Site R8	19/12/22 19/12/22	11:29 10:49	WS239	S	GL	0.98		2.28	-	-	1003	F	-0.02	-	0.3	0.1	0.1	0.8	0.8	19.5	19.6	0	0	-	ОК
	19/12/22	10:55	WS240	S	GL	Dry	D	1.10	-	-	1003	F	0.12	-	0.3	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	ОК
Wider Site R8	19/12/22	09:50	WS241	S	GL	0.88		1.98 3.65	-	-	1003	F	0.03	-	-1.6	0.1	0.1	1.5	1.5	19.2	19.3	0	0	-	OK OK
Wider Site R8 Wider Site R8	19/12/22 19/12/22	14:55 11:42	WS242 WS243	S	GL GL	0.28 Dry	D	1.03	-	-	1003 996	F	0.12	-	-1.2 0.2	0.1	0.1	0.7	0.7	18.5 20.5	18.5 20.6	0	0	-	OK DRY
Wider Site R8	19/12/22	13:11	WS244	S	GL	0.65		0.93	-	-	996	F	0.11	-	0.2	0.1	0.1	0.6	0.6	18.8	20.7	0	0	-	ОК
Wider Site R8	19/12/22	12:46	WS245	S	GL	0.45		2.58	-	-	997	F	9.90	-	0.3	0.1	0.1	2.0	2.0	16.3	16.4	2	0	-	OK OK
Wider Site R8 Wider Site R8	19/12/22 19/12/22	12:53 13:05	WS246 WS247	S	GL GL	0.84		0.93	-	-	996 997	F	1.81 41.77	-	6.3	0.1	0.1	2.8	1.2	17.1 13.4	17.2 13.4	2	0	-	ОК
Wider Site R8	19/12/22	10:37	WS248	S	GL	1.28		1.65	-	-	1003	F	0.14	-	0.3	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	ОК
	19/12/22	10:19	WS249	S	GL	Dry	D	1.00	-	-	1003	F	0.06	-	0.3	0.1	0.1	1.2	1.3	18.9	19.0	0	0	-	DRY
Wider Site R8 Wider Site R8	19/12/22 19/12/22	10:29 09:59	WS250 WS251	S	GL GL	0.68		0.89 2.00	-	-	1003 1003	F F	-0.02	-	0.2	0.1	0.1	1.0	1.0	19.9 20.1	20.1 19.8	0	0	-	OK OK
Wider Site R8	19/12/22	10:05	WS251	S	GL	0.32		5.18	-	-	1003	F	1.03	-	-3.2	0.1	0.1	1.1	1.2	18.8	17.9	0	0	-	ОК
Wider Site R9	10/01/23	12:58	BH201	S	GL	3.61		5.86	-	-	997	R	0.09	-	0.2	0.1	0.1	0.8	0.8	20.2	20.2	0	0	-	ОК
Wider Site R9	10/01/23	13:12	BH202	S	GL	0.95		5.15	-	-	997	R R	0.25	-	-4.1	0.1	0.1	0.7	0.6	20.4	20.6	0	0	-	OK OK
	11/01/23	11:55 12:26	BH203 BH204	S	GL GL	2.75 1.74		5.00 5.18	-	-	1003	R R	-0.04 0.07	-	0.2	0.1	0.1	0.6	0.6	20.5	20.9	0	0	-	ОК
Wider Site R9	11/01/23	12:02	BH205	S	GL	0.30		4.16	-	-	1003	R	8.77	-	-2.0	0.1	0.1	2.3	2.3	17.1	17.4	18	0	-	ОК
Wider Site R9	10/01/23	12:21	WS201	S	GL	0.83		1.90	-	-	997	R	0.25	-	0.1	0.1	0.1	0.6	0.6	14.5	14.6	0	0	-	ОК
Wider Site R9 Wider Site R9	10/01/23	12:27 14:34	WS202 WS203	S	GL GL	0.12 Dry	D	2.00	-	-	997 995	R R	6.78 0.09	-	-2.9	0.1	0.1	0.4	0.4	19.4 20.5	19.9 20.7	0	0	-	OK DRY
	10/01/23	14:26	WS204	S	GL	Dry	D	1.05	-	-	996	R	-0.12	-	0.3	0.1	0.1	0.3	0.3	20.6	20.8	0	0	-	DRY

Monit	oring round		W	ell Details		Water	NAPL M	onitoring	(m below	datum)		Pressure and fl	ow (use < fo	r below Lo	oD)			Gas C	Concentrat	ions (use	< for below	(LoD)			Local conditions
Round Reference	Date	Time	Well ID	Single or dual gas tap (S/D)		to		Depth to Base of Hole	to	Depth to DNAPL	Atm. pressure (hPa)	Atm. pressure falling (F) / rising (R) / steady (S)	Relative BH pressure (hPa)	Initial Ga Flow (l/hr)	Steady Gas Flow (l/hr)	CH ₄ (%v/v) - (Initial)	CH ₄ (%v/v) - (Steady)	CO₂ (%v∕v) - (Initial)	CO₂ (%v / v) - (Steady)	O₂ (%v/v) - (Initial)	O₂ · (%v/v) - (Steady)	CO (ppm)	H₂S (ppm)	VOC (as ppm usin	g Notes on condition of borehole (including any
Wider Site R9	10/01/23	14:40	WS205	S	GL	0.30		3.00	-	-	996	R	-0.11	-	0.2	0.1	0.1	1.5	1.5	20.4	20.4	0	0	-	OK .
Wider Site R9	10/01/23	14:19	WS206	S	GL	1.22		4.20	-	-	996	R	-0.04	-	0.2	0.1	0.1	1.9	1.9	19.5	19.5	0	0	-	ок
Wider Site R9 Wider Site R9	10/01/23	14:10 14:05	WS207 WS208	S	GL GL	0.30		2.20	-	-	996 996	R	-0.44 25.38	-	-6.1 4.7	0.1	0.1	2.7 4.0	2.7 4.0	17.9 11.6	19.7 11.6	4	0	-	OK OK
Wider Site R9	10/01/23	14:46	WS209	S	GL	0.82		3.00	-	-	996	R	-0.30	-	-1.5	0.1	0.1	1.2	1.2	19.7	19.9	1	0	-	ОК
Wider Site R9	10/01/23	13:43	WS210	S	GL	0.24		2.60	-	-	997	R	23.39	-	4.1	0.1	0.1	2.0	2.0	14.6	14.7	0	0	-	ОК
Wider Site R9 Wider Site R9	10/01/23	12:14 12:38	WS211 WS213	S	GL GL	1.54 Dry		3.40	-	-	997 997	R	4.93 0.28	-	0.2	0.1	0.1	0.5	0.5	16.6 20.6	16.6 20.6	0	0	-	OK DRY
Wider Site R9	10/01/23	14:52	WS214	S	GL	Dry	D	1.02	-	-	995	R	0.04	-	0.2	0.1	0.1	0.9	0.9	19.8	19.8	0	0	-	DRY
Wider Site R9	10/01/23	13:58	WS215	S	GL	0.27		2.50	-	-	996	R	12.26	-	0.2	0.1	0.1	1.9	1.9	12.6	12.6	4	0	-	OK OK
Wider Site R9 Wider Site R9	10/01/23	11:54 12:46	WS216 WS217	S	GL GL	3.23 Dry	D	4.20 2.09	-	-	997 997	R	-0.04	-	0.2	0.1	0.1	1.2	1.2	19.5 19.9	19.6 19.9	0	0	-	OK DRY
Wider Site R9	10/01/23	14:56	WS218	S	GL	Dry	D	1.82	-	-	995	R	0.00	-	0.2	0.1	0.1	1.0	1.0	19.7	19.7	0	0	-	DRY
Wider Site R9	10/01/23	13:30	WS219 WS220	S	GL GL	3.28 0.84		5.00 3.00	-	-	996 997	R	0.05 -0.95	-	0.2 -4.5	0.1	0.1	1.7	1.7	19.3 18.2	19.6 18.2	0 2	0	-	OK OK
Wider Site R9 Wider Site R9	10/01/23	13:35 11:59	WS221	S	GL	Dry	D	1.99	-	-	997	R	-0.93	-	0.2	0.1	0.1	1.7	1.7	18.8	18.9	0	0	-	DRY
Wider Site R9	10/01/23	15:09	WS222	S	GL	Dry	D	2.49	-	-	995	R	0.19	-	0.2	0.1	0.1	0.7	0.7	20.5	20.5	0	0	-	DRY
Wider Site R9 Wider Site R9	10/01/23 11/01/23	13:26 10:17	WS223 WS224	S	GL GL	1.73 0.44		2.00	-	-	996 1003	R	-0.04 0.07	-	0.2	0.1	0.1	0.5	0.5	20.3	20.4	0	0	-	OK OK
Wider Site R9	10/01/23	12:04	WS225	S	GL	Dry	D	2.00	-	-	997	R	-0.05	-	0.2	0.1	0.1	1.0	1.0	19.5	19.5	0	0	-	DRY
Wider Site R9	10/01/23	12:53	WS226	S	GL	Dry	D	1.18	-	-	997	R	0.09	-	0.2	0.1	0.1	0.7	0.7	20.2	20.4	0	0	-	DRY
Wider Site R9 Wider Site R9	10/01/23	15:14 11:47	WS227 WS228	S	GL GL	Dry Dry	D D	2.78 1.01	-	-	995 1003	R	0.14	-	0.2	0.1	0.1	0.8	0.8	20.3 19.6	20.4 19.7	0	0	-	DRY DRY
Wider Site R9	11/01/23	11:38	WS229	S	GL	Dry	D	1.00	-	-	1003	R	0.05	-	0.2	0.1	0.1	0.7	0.7	20.4	20.6	0	0	-	DRY
Wider Site R9	10/01/23	13:08	WS230	S	GL	Dry	D	1.15	-	-	997	R	-0.19	-	0.2	0.1	0.1	0.7	0.7	20.0	20.1	0	0	-	DRY
Wider Site R9 Wider Site R9	11/01/23	10:31 13:18	WS231 WS232	S	GL GL	3.28 0.13		5.18 3.00	-	-	1003 997	R	-0.23	-	0.3 -4.1	0.1	0.1	3.7 0.6	3.5 0.6	17.8 20.6	17.8 20.8	0	0	-	OK OK
Wider Site R9	11/01/23	10:08	WS233	S	GL	0.12		2.35	-	-	1003	R	-0.53	-	-2.8	0.1	0.1	1.5	1.5	17.6	17.7	0	0	-	ОК
Wider Site R9	11/01/23	10:24	WS234	S	GL	0.21		1.68	-	-	1003	R	4.12	-	-3.2	0.1	0.1	0.9	0.9	15.8	15.8	2	0	-	OK
Wider Site R9 Wider Site R9	11/01/23 11/01/23	14:16 14:09	WS235 WS236	S	GL GL	0.91 Dry		5.06 1.98	-	-	1003	R	0.02	-	0.2	0.1	0.1	1.7	1.6	17.5	17.5 19.2	0	0	-	OK DRY
Wider Site R9	11/01/23	11:28	WS237	S	GL	Dry	D	1.05	-	-	1003	R	0.16	-	0.3	0.1	0.1	0.5	0.5	20.6	20.8	0	0	-	DRY
Wider Site R9	11/01/23	10:41	WS238	S	GL	1.88		4.97	-	-	1003	R	0.07	-	0.2	0.1	0.1	2.6	2.1	19.8	19.8	0	0	-	OK
Wider Site R9 Wider Site R9	11/01/23 11/01/23	09:55 10:01	WS239 WS240	S	GL GL	0.13		2.28	-	-	1003 1003	R	-1.48 24.04	-	-3.1 1.8	0.1	0.1	2.0	2.0	16.6 17.4	16.8 17.4	2	0	-	OK OK
Wider Site R9	11/01/23	08:51	WS241	S	GL	0.55		1.98	-	-	1002	R	0.02	-	-1.7	0.1	0.1	0.7	0.7	19.8	19.8	0	0	-	ОК
Wider Site R9	11/01/23 11/01/23	14:24	WS242 WS243	S	GL GL	0.22	D	3.65 1.03	-	-	1003 1003	R	7.94 0.02	-	-3.3	0.1	0.1	0.7	0.7	18.6 21.4	18.8 21.4	0	0	-	OK DRV
Wider Site R9 Wider Site R9	11/01/23	11:04 12:31	WS244	S	GL	0.66		0.93	-	-	1003	R	0.02	-	0.3	0.1	0.1	0.7	0.7	19.3	19.5	0	0	-	DRY
Wider Site R9	11/01/23	12:07	WS245	S	GL	0.28		2.58	-	-	1003	R	0.04	-	-4.5	0.1	0.1	0.8	0.8	20.9	20.9	1	0	-	ОК
Wider Site R9	11/01/23 11/01/23	12:16 12:34	WS246 WS247	S	GL GL	0.75		4.49 0.93	-	-	1003 1003	R R	0.14	-	-2.2	0.1	0.1	1.0	1.0	20.2 18.5	20.3	0	0	-	OK OK
Wider Site R9 Wider Site R9	11/01/23	09:43	WS247	S	GL	0.36		1.65	-	-	1003	R	2.68	-	-5.6	0.1	0.1	1.0	1.0	15.7	15.8	3	0	-	OK OK
Wider Site R9	11/01/23	09:26	WS249	S	GL	0.65		1.00	-	-	1003	R	-0.02	-	-1.6	0.1	0.1	1.8	1.8	19.5	19.6	1	0	-	ОК
Wider Site R9 Wider Site R9	11/01/23 11/01/23	09:35 09:02	WS250 WS251	S	GL GL	0.22		2.00	-	-	1003 1003	R	0.55 -0.16	-	-4.0	0.1	0.1	1.0	1.0	20.7 19.4	20.8 19.5	0	0	-	OK WATER LOGGED FIELD
Wider Site R9	11/01/23	09:14	WS252	S	GL	0.19		5.18	-	-	1003	R	-0.39	-	-4.4	0.1	0.1	1.3	1.3	16.9	17.0	0	0	-	OK
	09/02/23	14:29	BH201	S	GL	3.35		4.87	-	-	1027	R	-0.05	-	0.1	0.1	0.1	0.7	0.7	21.1	21.4	0	0	-	ОК
Wider Site R10 Wider Site R10	10/02/23	14:55 15:49	BH203 BH204	S	GL GL	2.82 1.82		4.84 5.01	-	-	1030 1030	R	-0.05	-	0.1	0.1	0.1	0.6	0.6	20.3	20.3	0	0	-	OK SILT
Wider Site R10	10/02/23	15:11	BH205	S	GL	0.60		4.16	-	-	1030	R	-6.63	-	-0.1	0.1	0.1	1.9	1.9	15.4	15.4	2	0	-	OK .
Wider Site R10	09/02/23	13:47	WS201	S	GL	1.64		1.95	-	-	1027	R	-0.58	-	0.1	0.1	0.1	0.7	0.5	14.2	15.7	0	0	-	ОК
Wider Site R10 Wider Site R10	09/02/23	13:56 15:49	WS202 WS203	S	GL GL	2.03	D	2.03	-	-	1027 1027	R	-1.13 -0.11	-	-0.1	0.1	0.1	0.5	0.5	20.2	20.4	0	0	-	OK DRY
Wider Site R10	09/02/23	15:58	WS204	S	GL	1.35	D	1.35	-	-	1027	R	0.05	-	0.1	0.1	0.1	0.6	0.6	20.5	20.5	0	0	-	DRY
Wider Site R10	09/02/23	15:35	WS205	S	GL	0.57		2.99	-	-	1028	R	-0.86	-	-0.1	0.1	0.1	2.6	2.5	17.9	18.1	1	0	-	OK
Wider Site R10 Wider Site R10	09/02/23	15:24 16:09	WS206 WS207	S	GL GL	1.54 0.58		4.19 2.16	-	-	1028 1029	R	-0.11	-	0.1	0.1	0.1	1.6 2.2	1.6 2.2	20.7 19.3	20.8	15	0	-	SILT
Wider Site R10	09/02/23	16:29	WS208	S	GL	0.40		2.20	-	-	1029	R	-22.80	-	-0.4	0.1	0.1	3.2	3.2	12.5	12.5	4	0	-	WATER SILT 3rd run on gas, 2.30min water up pipe. Pi
Wider Site R10	09/02/23	15:15	WS209	S	GL	1.00		3.02	-	-	1028	R	-3.79	-	-0.4	0.1	0.1	1.1	1.1	20.1	20.3	2	0	-	ок
Wider Site R10 Wider Site R10	09/02/23 09/02/23	17:04 13:36	WS210 WS211	S	GL GL	0.49 1.99		2.61 3.56	-	-	1029 1027	R	-24.63 -3.23	-	-0.2	0.1	0.1	0.5 2.3	0.5 2.3	20.6 17.4	20.7 17.4	0	0	-	SILT OK
	09/02/23	14:06	WS211 WS213	S	GL	3.64	D*	3.56	-	-	1027	R	-3.23	-	0.1	0.1	0.1	0.5	0.5	21.1	21.1	0	0	-	OK OK
Wider Site R10	09/02/23	14:57	WS214	S	GL	2.00	D	2.00	-	-	1027	R	0.09	-	0.1	0.1	0.1	0.8	0.8	20.9	21.0	0	0	-	DRY
Wider Site R10	09/02/23	16:48	WS215	S	GL	0.39		2.52	-	-	1029	R	-19.52	-	-0.3	0.1	0.1	1.3	1.3	15.0	15.0	3	0	-	OK

Monito	oring round		W	ell Details		Water/	/NAPL M	onitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	oD)			Gas C	oncentrat	ions (use ·	< for below	/ LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round	.		W. II IB	dual gas			"D"	Depth	Depth	Depth to		falling (F) /	вн		s Steady	CH₄	CH ₄	CO ₂	CO ₂	O ₂	O ₂	со	H₂S	VOC (as	
Reference	Date	Time	Well ID		(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)		(ppm)	(ppm)	ppm usin PID)	Notes on condition of borehole (including any
				(S/D)	/ GL)		,	51110			, a.,	steady (S)	(hPa)		, w		, cromay,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, January,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, Cromay,				
	09/02/23	13:03	WS216	S	GL	2.97		4.07	-	-	1026	R	0.35	-	0.1	0.1	0.1	1.0	1.0	19.1	19.1	0	1	-	ОК
Wider Site R10 Wider Site R10	09/02/23	14:14 14:49	WS217 WS218	S	GL GL	2.08 1.81	D D	2.08	-	-	1027 1027	R	0.04	-	0.1	0.1	0.1	0.8	0.8	20.6	20.7	0	0	-	DRY
Wider Site R10	09/02/23	13:14	WS218 WS221	S	GL	2.04	D	2.04	-	-	1027	R	0.02	-	0.1	0.1	0.1	1.2	1.2	19.7	20.0	0	0	-	DRY
Wider Site R10	09/02/23	14:42	WS222	S	GL	2.49	D	2.49	-	-	1027	R	0.07	-	0.1	0.1	0.1	0.8	0.8	20.8	20.8	0	0	-	DRY
Wider Site R10	10/02/23	13:47	WS224	S	GL	0.56		1.39	-	-	1030	R	-0.02	-	0.1	0.1	0.1	0.4	0.3	20.6	21.2	0	0	-	ок
	09/02/23	13:20	WS225	S	GL	2.04	D	2.04	-	-	1026	R	-0.02	-	0.1	0.1	0.1	0.8	0.8	20.4	20.5	0	0	-	DRY
Wider Site R10 Wider Site R10	09/02/23	14:22 14:36	WS226 WS227	S	GL GL	2.77	D D	2.77	-	-	1027 1027	R	0.11	-	0.1	0.1	0.1	0.6	0.6	21.2	21.3	0	0	-	DRY
Wider Site R10	10/02/23	14:47	WS228	S	GL	1.03	D	1.03	-	-	1029	R	0.05	-	0.1	0.1	0.1	0.8	0.8	20.1	20.3	0	0	-	DRY
Wider Site R10	10/02/23	14:42	WS229	S	GL	2.00	D	2.00	-	-	1029	R	0.02	-	0.1	0.1	0.1	0.5	0.5	20.9	20.9	0	0	-	DRY
Wider Site R10	10/02/23	14:08	WS231	S	GL	2.80		4.96	-	-	1030	R	0.14	-	0.1	0.1	0.1	3.3	3.3	18.5	18.5	0	0	-	ОК
Wider Site R10 Wider Site R10	10/02/23	14:35 13:21	WS232 WS233	S	GL GL	0.40	D	2.27	-	-	1029 1031	R	-0.11	-	0.1	0.1	0.1	0.5 1.0	0.5	21.2	21.5	0	0	-	DRY
Wider Site R10	10/02/23	13:39	WS234	S	GL	0.33		1.67	-	-	1031	R	-13.79	-	-0.2	0.1	0.1	0.5	0.5	17.2	17.2	1	0	-	OK
Wider Site R10	10/02/23	14:15	WS238	S	GL	1.86		4.98	-	-	1030	R	0.04	-	0.1	0.1	0.1	1.5	1.5	19.8	19.8	1	0	-	ОК
Wider Site R10	10/02/23	12:58	WS239	S	GL	0.47		2.28	-	-	1030	R	-2.54	-	-0.3	0.1	0.1	1.2	1.1	18.9	19.0	1	0	-	ОК
Wider Site R10	10/02/23	13:14	WS240	S	GL	0.69		1.50	-	-	1030	R	-23.61	-	-0.6	0.1	0.1	0.7	0.7	19.1	19.1	1	0	-	OK OK
Wider Site R10 Wider Site R10	10/02/23	11:06 14:24	WS241 WS243	S	GL GL	1.03	D	1.03	-	-	1031 1029	R	-0.04	-	0.1	0.1	0.1	0.6	0.5	20.1	20.6	0	0	-	DRY
Wider Site R10	10/02/23	16:20	WS244	S	GL	0.64		0.95	-	-	1030	R	-14.83	-	-0.3	0.1	0.1	0.4	0.4	20.1	20.2	2	0	-	OK OK
Wider Site R10	10/02/23	15:27	WS245	S	GL	0.59		2.56	-	-	1030	R	-20.03	-	-0.2	0.1	0.1	0.8	0.8	18.6	18.7	1	0	-	SILT
Wider Site R10	10/02/23	15:42	WS246	S	GL	0.93		4.48	-	-	1030	R	-3.79	-	-0.2	0.1	0.1	2.4	2.1	17.6	18.2	2	0	-	ОК
Wider Site R10	10/02/23	16:04	WS247	S	GL	0.03		0.96 1.65	-	-	1030	R	11.00	-	0.3	0.1	0.1	0.9	0.9	12.0	12.0	4	0	-	OK OK
Wider Site R10 Wider Site R10	10/02/23	12:14 11:49	WS248 WS249	S	GL GL	0.58 1.01	D	1.03	-	-	1031 1031	R	-18.21 0.09	-	-0.2	0.1	0.1	0.5 1.7	0.5 1.7	19.5 19.1	19.5 19.2	0	0	-	DRY
Wider Site R10	10/02/23	11:57	WS250	S	GL	0.57		0.90	-	-	1031	R	0.11	-	0.1	0.1	0.1	1.0	1.0	20.7	20.9	0	0	-	OK .
Wider Site R10	10/02/23	11:21	WS251	S	GL	0.43		2.00	-	-	1031	R	-4.21	-	-0.1	0.1	0.1	1.0	0.8	19.1	19.3	7	0	-	ОК
Wider Site R10	10/02/23	11:38	WS252	S	GL	0.43		5.03	-	-	1031	R	-9.78	-	-0.2	0.1	0.1	1.1	1.1	18.2	18.3	0	0	-	ОК
	09/03/23	14:21	BH201	S	GL	3.46		4.86	-	-	985	F	-0.04	-	0.1	0.1	0.1	0.8	0.8	21.0	20.9	0	0	-	OK OK
Wider Site R11 Wider Site R11	13/03/23 09/03/23	12:19 12:51	BH202 CP301	S	GL GL	1.30 2.36		5.16 4.74	-	-	984 986	F	0.19	-	0.1	0.1	0.1	0.5 1.6	0.5 1.6	20.6 19.5	20.6 19.5	0	0	-	OK SILT
	09/03/23	12:41	CP302	S	GL	1.96		4.10	-	-	986	F	-0.04	-	0.1	0.1	0.1	1.0	1.0	20.3	20.2	0	0	-	OK .
Wider Site R11	09/03/23	14:57	CP303	S	GL	3.29		4.05	-	-	984	F	0.05	-	0.1	0.1	0.1	0.6	0.6	21.0	21.0	0	0	-	ОК
Wider Site R11	09/03/23	14:41	CP304	S	GL	3.03		4.05	-	-	985	F	0.05	-	0.1	0.1	0.1	0.7	0.7	21.1	20.8	0	0	-	ОК
	09/03/23	14:08 12:12	CP305 RO301	S	GL GL	3.08 0.34		7.72	-	-	985	F	0.04	-	0.1	0.1	0.1	0.3	0.4	20.5	20.4	0	0	-	OK OK
Wider Site R11 Wider Site R11	13/03/23 13/03/23	12:12	RO302	S	GL	0.34		3.16	-	-	984	F	-0.14	-	-0.1	0.1	0.1	0.3	0.4	21.1	20.1	0	0	-	OK OK
	14/03/23	14:54	RO303	S	GL	0.18		3.54	-	-	1004	R	-0.18	-	0.1	0.1	0.1	0.1	0.1	20.9	20.8	0	0	-	ОК
Wider Site R11	14/03/23	14:49	RO304	S	GL	0.32		8.04	-	-	1004	R	0.02	-	0.1	0.1	0.1	0.3	0.3	20.2	20.2	1	0	-	SILT
Wider Site R11	14/03/23	13:37	RO305	S	GL	0.13		2.38	-	-	1004	R	38.20	-	1.5	0.1	0.1	1.3	1.3	17.2	17.2	3	0	-	ОК
	09/03/23	13:30 13:36	RO306 RO307	S	GL GL	0.76 1.38		5.55	-	-	986 985	F F	0.26	-	0.1	0.1	0.1	0.5	0.6	19.5 21.2	19.4 21.1	0	0	-	OK OK
	09/03/23	13:42	RO307A	S	GL	1.39		2.16	-	-	985	F	0.02	-	0.1	0.1	0.1	0.4	0.4	21.4	21.0	1	0	-	OK OK
	10/03/23	12:01	RO309	S	GL	5.05		5.60	-	-	998	R	0.12	-	0.1	0.1	0.1	1.0	1.0	20.2	20.2	0	0	-	ОК
	10/03/23	12:07	RO309A	S	GL	4.13	D*	4.23	-	-		R	-0.02	-	0.1	0.1	0.1	0.9	0.9	20.4	20.2	0	0	-	ОК
	10/03/23	11:50	RO310	S	GL	4.10		6.08	-	-	998	R	0.00	-	0.1	0.1	0.1	1.5	1.5	19.9	19.8	0	0	-	OK OK
Wider Site R11 Wider Site R11	10/03/23	11:34 11:21	RO311 RO312	S	GL GL	1.09 3.66		5.09 9.44	-	-	997 997	R	0.12	-	0.1	0.1	0.1	0.3	0.5	21.4	21.3	2	0	-	OK OK
	10/03/23	11:28	RO312A	S	GL	2.12	D	2.12	-	-	997	R	0.11	-	0.1	0.1	0.1	0.3	0.4	21.3	21.0	0	0	-	DRY
Wider Site R11	10/03/23	12:15	RO313	S	GL	3.18		4.47	-	-	999	R	0.86	-	0.1	0.1	0.1	2.9	2.9	17.2	17.2	0	0	-	ОК
	10/03/23	12:20	RO313A	S	GL	0.79	D	0.79	-	-	999	R	0.09	-	0.1	0.1	0.1	0.8	0.9	19.6	19.3	0	0	-	DRY
Wider Site R11	10/03/23	12:49	RO314	S	GL	0.75		4.66	-	-	1000	R	15.71	-	0.3	0.1	0.1	1.6	1.6	18.2	18.2	9	0	-	OK
	09/03/23	15:26 15:04	RO315 RO316	S	GL GL	0.19 2.29		5.03	-	-	985 985	F	79.12 0.32	-	0.1	0.1	0.1	0.7	0.7	4.0 19.6	4.0 19.6	2	0	-	FLOODED AROUND STANDPIPE
	09/03/23	15:08	RO316A	S	GL	1.16		1.31	-	-	985	F	0.11	-	0.1	0.1	0.1	0.2	0.2	21.2	21.1	0	0	-	OK OK
Wider Site R11	10/03/23	12:59	RO317	S	GL	0.23		7.45	-	-	1000	R	0.30	-	0.1	0.1	0.1	0.5	0.6	20.2	20.2	1	0	-	ОК
	10/03/23	13:34	RO318	S	GL	0.50		5.84	-	-	1000	R	7.26	-	0.3	0.1	0.1	1.9	1.9	15.5	15.5	3	0	-	FLOODED AROUND STANDPIPE
Wider Site R11	10/03/23	13:38	RO318A	S	GL	0.42		4.17	-	-	1000	R	0.97	-	0.1	0.1	0.1	1.7	1.7	18.7	18.6	1	0	-	OK
Wider Site R11 Wider Site R11	10/03/23	13:44 14:34	RO319 RO320	S	GL GL	0.33		5.56	-	-	1000	R R	-0.79 22.92	-	-0.1	0.1	0.1	1.0	1.0	19.5 18.6	19.5 18.6	4	0	-	OK OK
Wider Site R11	10/03/23	14:34	RO321	S	GL	0.28		3.92	-	-	1002	R	16.18	-	0.1	0.1	0.1	1.0	1.0	19.6	19.4	3	0	-	OK OK
Wider Site R11	10/03/23	14:19	RO321A	S	GL	0.74		2.04	-	-	1001	R	0.07	-	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	-	ОК
Wider Site R11	09/03/23	13:10	WS201	S	GL	2.78		3.21	-	-	986	F	0.05	-	0.1	0.1	0.1	0.8	0.7	10.4	11.6	0	0	-	ОК
Wider Site R11	09/03/23	13:18	WS202	S	GL	3.24		3.64	-	-	986	F	6.12	-	2.1	0.1	0.1	0.6	0.6	20.3	20.4	0	0	-	ОК

Property of the property of		using D) DRY DRY DRY OK SILT
Section Part	H ₂ S (ppm) ppm us PID	using D) DRY DRY OK SILT OK DRY
Moder Seefall 10,00723 1546 1556 1	(ppm) PID: 0 - 0 - 1 - 0 - 5 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	DRY
Marcor Same File Marcor Same	0	DRY OK SILT OK SILT OK SILT OK DRY SILT OK SILT OK SILT OK SILT OK DRY
Moder See File 1999/12 12-96 1952/06 5 5 5 12-96 5 5 5 12-96 5 5 5 5 12-96 5 5 5 5 5 5 5 5 5	0	DRY OK SILT OK SILT OK SILT OK DRY SILT OK SILT OK SILT OK SILT OK DRY
Medic Signatia 1000/22	1 - 0 - 5 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	OK SILT OK SILT OK SILT OK SILT OK SILT OK DRY
Worker Service Ministry Min	5 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	OK SILT OK SILT OK DRY DRY
Substitute 19,003/23 1321 M9208 5	3 - 0 - 0 - 0 - 0 - 3 - 0 - 0 - 0 - 2 - 0 -	SILT OK DRY DRY
Neder Start 1 (1908/22) 11:94 (1908/29) S GL 289 500 - - 997 R 1.28 - 0.02 0.1 0.1 1.6 1.6 1.9 1.9 1.9 1.9 1.0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	OK SILT OK DRY DRY
wider Size RII m000/23 1.94 MS210 S GL 2.88 1.00 - - 1.00 R 2.34 - - 0.5 0.1 0.1 1.8 1.8 1.6 0.0 1.2 Vider Size RII 0.0002/3 1.85 0.5 GL 0.01 0.0 2.5 2.5 1.74<	0 - 0 - 0 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	OK DRY DRY
Noder Ster R11 09/03/23 1355 W5214 5 Gil 0.41 0 0 2.03 	0 - 0 - 3 - 0 - 0 - 0 - 0 - 0 - 2 - 0 -	DRY DRY
Wider Steel 1 89/33/23 1452 W5214 S 64 203 0 2.03 . 984 F 0.02 . 0.1 0.1 0.1 1.1 1.1 2.05 208 3 2.06 2.07	0 - 3 - 0 - 0 - 0 - 0 - 0 - 2 - 0 -	DRY
Wider Stefil 1003/23 12-52 WS216 S Gil 1.05 W 1.05 1001 R 17.74 - 0.3 0.1 0.1 1.6 1.6 1.6 1.54 15.4 15.4 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 - 0 - 0 - 0 - 2 - 0 -	ок
Wider Site R11 09/03/23 1460 WS217 S GL 1.52 D 4.22 - - 985 F 0.02 - 0.1 0.1 0.1 1.2 1.2 2.10 0 Wider Site R11 09/03/23 13.09 20.2 2.2 - - 984 F -0.02 - 0.1 1.0 1.0 0.0 0.1 0.1 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 1.1 1.1 1.1 1.7 9.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 - 0 - 0 - 2 - 0 -	
Wider Site R11 09/03/23 14:46 MSY318 S GL 0.19 2.21 - - 984 F -0.12 - 0.1 0.1 0.1 1.0 1.0 1.0 2.0 0.0 0.0 0.0 0.1 1.1 1.1 1.7 9.7 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0	0 - 0 - 2 - 0 -	OK .
Wider Site R11 13/03/23 11:35 WS219 S GL 0.19 2.21 - 983 F 0.02 - 0.1 0.1 1.6 1.6 1.95 1.96 0 wider Site R11 13/03/23 11:49 WS220 S GL 1.01 3.01 - 988 F 0.25 - 0.1 0.1 0.1 1.1 1.1 1.79 0.2 2 Wider Site R11 09/09/23 14:34 WS222 S GL 2.34 D 3.56 - 985 F -0.07 - 0.1 0.1 0.1 1.0 1.0 2.0 2 0 0 0.0 0.1 0.0 0.2 <t< td=""><td>0 - 2 - 0 -</td><td>5.11</td></t<>	0 - 2 - 0 -	5.11
Wider Site R11 09/03/23 12:30 WS221 S GL 0.26 0 2.60 - - 986 F -0.25 - 0.1 0.1 0.1 0.1 1.2 1.2 19:9 20.2 2	0 -	OK OK
Wider Site R11 09/03/23 14:34 WS222 S GL 2.34 D 3.56 - - 985 F -0.07 - 0.1 0.1 0.1 0.1 1.0 1.0 20.5 20.6 0		ОК
Wider Site R11	0 -	DRY DRY
Wider Site R11 14/03/23 15.00 WS224 S GL 1.00 - - 1004 R 0.11 - 0.1 0.1 0.5 0.5 20.5 20.6 0 Wider Site R11 09/03/23 12:36 WS225 S GL 0.26 D 2.54 - 986 F -0.05 - 0.1 0.1 0.1 0.9 0.9 20.2 20.7 9 Wider Site R11 09/03/23 14:15 WS227 S GL 2.09 D	0 -	
Wider Site R11 09/03/23 14:15 W5226 S GL 3.13 D 4.06 985 F 0.00 - 0.1 0.1 0.1 0.1 0.6 0.6 21.1 21.4 1 Wider Site R11 09/03/23 14:29 W5277 S GL 2.09 D 2.09 985 F 0.16 - 0.1 0.1 0.1 0.1 0.8 0.8 0.8 20.9 21.2 2 Wider Site R11 13/03/23 12:32 W5230 S GL 1.81 D 1.81 983 F - 0.05 - 0.1 0.1 0.1 0.1 0.6 0.6 20.4 20.4 0 Wider Site R11 13/03/23 12:00 W5231 S GL 3.32 4.99 983 F 0.09 - 0.1 0.1 0.1 0.1 3.9 3.5 15.0 18.4 1 Wider Site R11 14/03/23 12:00 W5231 S GL 0.92 3.01 1004 R 0.07 - 0.1 0.1 0.1 0.1 0.6 0.6 18.7 18.7 3 Wider Site R11 14/03/23 15:08 W5233 S GL 2.04 2.04 984 F 2.45 - 0.2 0.1 0.1 0.1 0.6 0.6 18.7 19.7 19.7 1 Wider Site R11 14/03/23 14:33 W5239 S GL 1.91 2.01 1004 R 0.11 0.1 0.1 0.1 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:39 W5240 S GL 1.91 2.01 1004 R 2.264 - 0.8 0.1 0.1 1.2 12 17.2 17.2 4 Wider Site R11 14/03/23 13:03 W5241 S GL 2.05 2.05 2.05 1003 R 0.09 - 0.1 0.1 0.1 0.1 0.1 0.9 0.9 0.9 2.0.2 20.2 0 Wider Site R11 14/03/23 14:39 W5240 S GL 2.04 2.04 2.04 2.04 R 2.264 - 0.08 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 14:39 W5240 S GL 2.05 2.05 2.05 1003 R 0.09 - 0.1 0.1 0.1 0.1 0.1 0.9 0.9 0.9 20.2 20.2 0 Wider Site R11 14/03/23 13:03 W5241 S GL 2.05 2.05 2.05 1003 R 0.09 - 0.1 0.1 0.1 0.1 0.1 0.9 0.9 0.9 20.2 20.2 0 Wider Site R11 14/03/23 14:21 W5248 S GL 2.77 2.77 1004 R 2.26 - 0.9 0.1 0.1 0.1 0.1 0.1 1.3 1.3 1.3 18.0 18.0 0 Wider Site R11 14/03/23 13:36 W5249 S GL 2.77 2.77 1004 R 2.23 - 0.1 0.1 0.1 0.1 0.1 1.3 1.3 1.3 20.2 20.3 0 Wider Site R11 14/03/23 13:14 W5251 S GL 2.61 4.97 1004 R 2.31 - 0.2 0.1 0.1 0.1 0.1 1.2 1.2 17.2 17.2 17.2 17.2 17.2 17.2	0 -	
Wider Site R11 19/03/23 14:29 WS227 S GL 2.09 D 2.09 985 F 0.16 - 0.1 0.1 0.1 0.1 0.8 0.8 20.9 21.2 2 Wider Site R11 13/03/23 12:32 WS230 S GL 1.81 D 1.81 983 F -0.05 - 0.1 0.1 0.1 0.6 0.6 0.6 20.4 20.4 0 Wider Site R11 13/03/23 13:48 WS231 S GL 3.32 4.99 983 F 0.09 - 0.1 0.1 0.1 0.1 0.6 0.6 0.6 18.7 18.7 18.7 Wider Site R11 14/03/23 12:00 WS231 S GL 0.92 3.01 - 1004 R 0.07 - 0.1 0.1 0.1 0.1 0.6 0.6 18.7 18.7 3 Wider Site R11 14/03/23 15:08 WS233 S GL 2.04 2.04 984 F 2.45 - 0.2 0.1 0.1 0.1 0.7 0.7 0.7 19.7 19.7 19.7 1 Wider Site R11 14/03/23 15:08 WS233 S GL 2.50 2.50 1004 R 0.11 - 0.1 0.1 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:33 WS239 S GL 1.91 2.01 1004 R 0.11 - 0.1 0.1 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:39 WS240 S GL 0.47 1.39 1004 R 2.264 - 0.8 0.1 0.1 1.2 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 2.05 - 1004 R 2.25 2.0 1.004 R 2.25 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0 -	510
Wider Site R11 13/03/23 12:32 WS230 S GL 181 D 1.81 983 F -0.05 - 0.1 0.1 0.1 0.6 0.6 20.4 20.4 0 Wider Site R11 13/03/23 13:48 WS231 S GL 3.32 4.99 983 F -0.09 - 0.1 0.1 0.1 0.1 3.9 3.5 15.0 18.4 1 Wider Site R11 14/03/23 12:00 WS231 S GL 0.92 3.01 1004 R -0.07 - 0.1 0.1 0.1 0.1 0.6 0.6 0.6 18.7 18.7 3 Wider Site R11 14/03/23 15:08 WS232 S GL 2.04 2.04 984 F -2.45 - 0.2 0.1 0.1 0.1 0.1 0.6 0.6 0.6 18.7 18.7 3 Wider Site R11 14/03/23 15:08 WS232 S GL 2.05 2.05 1004 R -0.11 - 0.1 0.1 0.1 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:33 WS239 S GL 1.91 2.01 1004 R -2.64 - 0.8 0.1 0.1 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 13:03 WS240 S GL 0.47 1.39 1004 R -2.31 - 0.66 0.1 0.1 1.3 1.3 18.0 18.0 3 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 1003 R -2.31 - 0.66 0.1 0.1 0.1 0.9 0.9 2.0.2 20.2 20 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 1004 R -2.31 - 0.66 0.1 0.1 0.1 0.9 0.9 2.0.2 20.2 0.0 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 1004 R -2.31 - 0.6 0.1 0.1 0.1 0.9 0.9 2.0.2 20.2 0.0 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 1004 R -2.31 - 0.6 0.1 0.1 0.1 0.9 0.9 2.0 20.2 20.2 0.0 Wider Site R11 14/03/23 13:05 WS249 S GL 1.18 1.18 R 2.86 - 0.9 0.1 0.1 0.1 0.1 0.8 0.8 16.5 16.5 16.5 0 Wider Site R11 14/03/23 13:05 WS249 S GL 2.77 2.77 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.8 0.8 16.5 16.5 16.5 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 - 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.2 20.3 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.2 20.3 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.3 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.3 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 1004 R -4.23 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.3 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4	0 -	DICI
Wider Site R11 14/03/23 12:00 WS231 S GL 0.92 3.01 - - 1004 R 0.07 - 0.1 0.1 0.6 0.6 18.7 18.7 3 Wider Site R11 13/03/23 14:45 WS232 S GL 2.04 2.04 - - 984 F 2.45 - 0.2 0.1 0.1 0.7 0.7 19.7 19.7 1 Wider Site R11 14/03/23 15:08 WS233 S GL 2.50 2.50 - - 1004 R 0.11 - 0.1 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:33 WS239 S GL 0.47 1.39 - 1004 R -2.64 - -0.8 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 13:03 WS241	0 -	
Wider Site R11 13/03/23 14:45 WS232 S GL 2.04 2.04 - - 984 F 2.45 - 0.2 0.1 0.1 0.7 0.7 19.7 19.7 1 Wider Site R11 14/03/23 15:08 WS233 S GL 2.50 2.50 - - 1004 R 0.11 - 0.1 0.1 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:33 WS239 S GL 1.91 2.01 - 1004 R -2.64 - -0.8 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 13:03 WS240 S GL 2.05 2.05 - - 1004 R -2.31 - -0.6 0.1 0.1 1.3 13.0 18.0 18.0 18.0 18.0 18.0 19.0 19.0 19.0	0 -	ОК
Wider Site R11 14/03/23 15:08 WS233 S GL 2.50 2.50 1004 R 0.11 - 0.1 0.1 0.1 0.0 0.6 0.5 20.4 20.4 1 Wider Site R11 14/03/23 14:33 WS239 S GL 1.91 2.01 1004 R -2.64 0.8 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 14:39 WS240 S GL 0.47 1.39 1004 R -2.31 0.6 0.1 0.1 1.3 1.3 18.0 18.0 3 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 1003 R 0.09 - 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.2 0 Wider Site R11 14/03/23 14:21 WS248 S GL 1.18 1.18 R 2.86 - 0.9 0.1 0.1 0.1 0.1 0.8 0.8 16.5 16.5 0 Wider Site R11 14/03/23 13:56 WS249 S GL 2.77 2.77 1004 R -4.23 - 0.1 0.1 0.1 0.1 1.3 1.3 1.3 20.2 20.3 0 Wider Site R11 14/03/23 14:08 WS250 S GL 1.09 1.09 1004 R 2.31 - 0.2 0.1 0.1 0.1 2.6 2.6 16.7 16.8 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 1003 R 0.07 - 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.3 1 Wider Site R11 14/03/23 13:42 WS252 S GL 0.26 1.70 1004 R 0.78 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 20.2 20.3 1 Wider Site R12 05/04/23 11:31 BH01 S GL 0.17 2.94 1015 F -0.05 - 0.1 0.1 0.1 0.1 0.1 5.1 5.3 16.8 16.4 1 Wider Site R12 05/04/23 12:01 BH02 S GL 0.23 2.28 1015 F -0.04 - 0.1 0.1 0.1 0.1 5.1 5.3 16.8 16.4 1	2 -	SIEI
Wider Site R11 14/03/23 14:33 WS239 S GL 1.91 2.01 - - 1004 R -2.64 - -0.8 0.1 0.1 1.2 1.2 17.2 17.2 4 Wider Site R11 14/03/23 14:39 WS240 S GL 0.47 1.39 - - 1004 R -2.31 - -0.6 0.1 0.1 1.3 1.3 18.0 18.0 3 Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 2.05 - - 1003 R 0.09 - 0.1 0.1 0.1 0.9 0.9 20.2 20.1 3.1 3.3<	0 -	
Wider Site R11 14/03/23 13:03 WS241 S GL 2.05 2.05 - - 1003 R 0.09 - 0.1 0.1 0.9 0.9 20.2 20.2 0 Wider Site R11 14/03/23 14:21 WS248 S GL 1.18 1.18 - - R 2.86 - 0.9 0.1 0.1 0.8 0.8 16.5 16.5 0 Wider Site R11 14/03/23 13:56 WS249 S GL 2.77 2.77 - - 1004 R -4.23 - 0.1 0.1 0.1 1.3 1.3 20.2 20.3 0 Wider Site R11 14/03/23 14:08 WS250 S GL 1.09 1.09 - - 1004 R 2.31 - 0.2 0.1 0.1 2.6 2.6 16.7 16.8 0 Wider Site R11 14/03/23 13:14 WS251 <td>3 -</td> <td>ОК</td>	3 -	ОК
Wider Site R11 14/03/23 14:21 WS248 S GL 1.18 1.18 - - R 2.86 - 0.9 0.1 0.1 0.8 0.8 16.5 16.5 0 Wider Site R11 14/03/23 13:56 WS249 S GL 2.77 - - 1004 R -4.23 - 0.1 0.1 0.1 1.3 1.3 20.2 20.3 0 Wider Site R11 14/03/23 14:08 WS250 S GL 1.09 1.09 - - 1004 R 2.31 - 0.2 0.1 0.1 2.6 2.6 16.7 16.8 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 - - 1003 R -0.78 - -0.1 0.1 1.6 1.6 16.7 16.8 0 Wider Site R11 14/03/23 13:42 WS252 S <td>2 -</td> <td>OK .</td>	2 -	OK .
Wider Site R11 14/03/23 13:56 WS249 S GL 2.77 - - 1004 R -4.23 - 0.1 0.1 0.1 1.3 1.3 20.2 20.3 0 Wider Site R11 14/03/23 14:08 WS250 S GL 1.09 1.09 - - 1004 R 2.31 - 0.2 0.1 0.1 2.6 2.6 16.7 16.8 0 Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 - - 1003 R -0.78 - -0.1 0.1 1.6 1.6 17.3 17.3 0 Wider Site R11 14/03/23 13:42 WS252 S GL 0.26 1.70 - - 1004 R 0.07 - 0.1 0.1 0.1 0.9 0.9 20.2 20.3 1 Wider Site R12 05/04/23 11:31 BH02 </td <td>3 -</td> <td></td>	3 -	
Wider Site R11 14/03/23 13:14 WS251 S GL 2.61 4.97 - - 1003 R -0.78 - -0.1 0.1 1.6 1.6 1.73 17.3 0 Wider Site R11 14/03/23 13:42 WS252 S GL 0.26 1.70 - - 1004 R 0.07 - 0.1 0.1 0.9 0.9 20.2 20.3 1 Wider Site R12 05/04/23 11:31 BH01 S GL 0.17 2.94 - - 1015 F -0.05 - 0.1 0.1 0.1 12.5 12.5 6.2 6.2 6.2 1 Wider Site R12 05/04/23 12:01 BH02 S GL 0.23 2.28 - - 1015 F -0.04 - 0.1 0.1 0.1 5.1 5.3 16.8 16.4 1	1 -	
Wider Site R11 14/03/23 13:42 WS252 S GL 0.26 1.70 - - 1004 R 0.07 - 0.1 0.1 0.9 0.9 20.2 20.3 1 Wider Site R12 05/04/23 11:31 BH01 S GL 0.17 2.94 - - 1015 F -0.05 - 0.1 0.1 0.1 12.5 12.5 6.2 6.2 1 Wider Site R12 05/04/23 12:01 BH02 S GL 0.23 2.28 - - 1015 F -0.04 - 0.1 0.1 0.1 5.1 5.3 16.8 16.4 1	1 -	ОК
Wider Site R12 05/04/23 11:31 BH01 S GL 0.17 2.94 1015 F -0.05 - 0.1 0.1 0.1 12.5 12.5 6.2 6.2 1 Wider Site R12 05/04/23 12:01 BH02 S GL 0.23 2.28 1015 F -0.04 - 0.1 0.1 0.1 5.1 5.3 16.8 16.4 1	1 -	OK OK
	0 -	OK OK
	0 -	SILT
Wider Site R12 05/04/23 11:27 WS01 S GL 0.25 2.28 1015 F 0.07 - 0.1 0.1 0.1 4.3 4.3 15.9 15.9 0	0 -	
Wider Site R12 05/04/23 11:17 WS02 S GL 0.17 1.19 - - 1015 F 0.00 - 0.1 0.1 0.1 2.8 2.9 17.2 15.6 0 Wider Site R12 05/04/23 11:22 WS03 S GL 0.63 D 1.97 - - 1015 F -0.11 - 0.1 0.1 0.1 11.6 12.2 7.4 7.4 0	0 -	0.0
Wider Site R12 05/04/23 12:05 WS04 S GL 0.44 1.65 1015 F 0.05 - 0.1 0.1 14.5 14.5 2.5 2.5 1	0 -	
Wider Site R12 05/04/23 11:36 WS05 S GL 0.71 1.01 1015 F -0.05 - 0.1 0.1 0.1 5.8 5.8 16.0 15.7 0	0 -	0.0
Wider Site R12 05/04/23 11:40 WS06 S GL 0.28 0.90 - - 1015 F 0.12 - 0.1 0.1 12.0 12.0 8.9 8.9 0 Wider Site R12 05/04/23 11:44 WS07 S GL 0.32 2.00 - - 1015 F -0.07 - 0.1 0.1 0.1 0.1 2.4 2.6 18.6 17.1 2	0 -	OK OK
Wider Site R12 05/04/23 11:44 W307 3 GL 0.32 2.00 - - 1015 F -0.07 - 0.1 0.1 0.1 2.4 2.6 18.6 17.1 2 2 2 2 2 2 2 2 2	0 -	
Wider Site R12 05/04/23 11:49 WS09 S GL Dry D* 3.36 1015 F -0.05 - 0.1 0.1 0.1 2.9 2.9 18.8 18.5 0	0 -	ОК
Wider Site R12 05/04/23 11:13 WS10 S GL 2.95 3.43 1015 F -0.04 - 0.1 0.1 0.1 13.2 13.2 3.3 3.3 0	0 -	
Wider Site R12 06/04/23 12:45 BH201 S GL 3.45 4.88 1007 F 0.11 - 0.1 0.1 0.1 0.9 0.9 19.8 19.8 0 Wider Site R12 06/04/23 16:16 BH202 S GL 1.44 5.16 1008 F 0.09 - 0.1 0.1 0.1 1.1 1.1 19.5 19.2 0	0 -	
Wider Site R12 05/04/23 13:37 BH203 S GL 2.55 5.12 1015 F 0.07 - 0.1 0.1 1.0 1.0 19.1 19.0 0	0 -	
Wider Site R12 05/04/23 14:35 BH204 S GL 1.84 5.28 1015 F 0.04 - 0.1 0.1 0.1 0.7 0.7 20.9 20.7 0	0 -	ОК
Wider Site R12 05/04/23 13:58 BH205 S GL 0.56 4.41 1015 F -15.256.0 0.1 0.1 0.8 0.8 17.2 17.2 1 Wider Site R12 06/04/23 15:34 WS201 S GL 0.56 1.93 1008 F -0.07 - 0.1 0.1 0.1 0.8 2.9 19.8 19.4 0	0 -	
Wider Site R12 06/04/23 15:25 WS202 S GL 0.48 2.02 1008 F 1.074.5 0.1 0.1 1.2 1.2 19.7 19.7 1	0 -	
Wider Site R12 06/04/23 14:36 WS203 S GL Dry D 2.02 1008 F -0.02 - 0.1 0.1 0.1 0.7 0.7 20.3 20.0 1	0 -	DRY
Wider Site R12 06/04/23 14:12 WS204 S GL Dry D 1.04 1009 F -0.02 - 0.1 0.1 0.1 1.0 1.0 18.1 17.9 0		
Wider Site R12 06/04/23 14:44 WS205 S GL 0.77 2.99 1008 F 0.02 - 0.1 0.1 0.1 0.8 0.9 20.5 20.2 1 Wider Site R12 06/04/23 13:59 WS206 S GL 1.66 4.19 1009 F -0.05 - 0.1 0.1 0.1 1.9 1.9 19.8 19.6 0	0 - 0 - 0 -	OK OK
Wider Site R12 06/04/23 13:52 WS207 S GL	0 - 0 - 0 - 0 -	
Wider Site R12 06/04/23 13:48 WS208 S GL 0.26 2.20 1009 F 2.456.1 0.1 0.1 1.7 1.7 19.8 19.8 3	0 - 0 - 0 -	OK OK
Wider Site R12 06/04/23 14:51 WS209 S GL 1.16 3.01 1008 F 0.09 - 0.1 0.1 0.1 2.0 2.0 18.8 18.6 0	0 - 0 - 0 - 0 -	
Wider Site R12 06/04/23 13:33 WS210 S GL 0.40 2.57 1008 F 0.04 - 0.1 0.1 0.1 0.1 0.1 21.2 21.1 1 Wider Site R12 06/04/23 15:43 WS211 S GL 1.23 3.56 1008 F 0.04 - 0.1 0.1 0.1 3.3 3.5 17.4 17.3 0	0 - 0 - 0 - 0 - 0 - 0 - 0 -	

Monit	oring round		W	ell Details	;	Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and fl	ow (use < fo	or below L	oD)			Gas C	oncentrat	ions (use •	k for below	/LoD)			Local conditions
				Single or	Datum	Depth	"D"	Depth	Denth		Atm.	Atm. pressure	Relative	Initial Ga	s Steady	CH₄	CH₄	CO ₂	CO₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		to		to Base		Depth to		falling (F) /	вн	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v)-	(%v/v)-		со	H₂S		g Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(l/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
Wider Site R12	06/04/23	15:12	WS213	S	GL	Dry	D*	3.65	-	-	1008	F	0.04		0.1	0.1	0.1	0.6	0.6	20.5	20.4	0	0	-	ОК
Wider Site R12	06/04/23	15:02	WS214	S	GL	Dry	D	1.00	-	-	1008	F	0.02	-	0.1	0.1	0.1	1.2	1.2	19.4	19.4	0	0	-	DRY
Wider Site R12	06/04/23	13:41	WS215 WS216	S	GL GL	0.34 3.14		2.54 4.07	-	-	1008 1007	F	2.40 0.07	-	0.1	0.1	0.1	1.0	1.0	20.2 19.5	20.2 19.4	0	0	-	OK OK
Wider Site R12 Wider Site R12	06/04/23	12:06 12:30	WS217	S	GL	Dry	D	2.08	-	-	1007	F	-0.05	-	0.1	0.1	0.1	1.4	1.4	20.2	19.4	0	0	-	DRY
Wider Site R12	06/04/23	14:56	WS218	S	GL	Dry	D	1.81	-	-	1008	F	-0.09	-	0.1	0.1	0.1	1.1	1.1	19.7	19.6	0	0	-	DRY
Wider Site R12 Wider Site R12	06/04/23	13:06 13:11	WS219 WS220	S	GL GL	0.91		4.99 3.01	-	-	1008	F	-0.65	-	0.1	0.1	0.1	0.6	0.6	20.3 19.5	19.7 19.5	0	0	-	OK OK
Wider Site R12	06/04/23	12:14	WS221	S	GL	Dry	D	2.03	-	-	1007	F	0.04	-	0.1	0.1	0.1	1.5	1.5	18.8	18.5	0	0	-	DRY
Wider Site R12	06/04/23	12:55	WS222	S	GL	Dry	D*	2.49	-	-	1007	F	0.14	-	0.1	0.1	0.1	0.8	0.8	20.1	19.8	0	0	-	DRY
Wider Site R12 Wider Site R12	06/04/23	13:00 15:34	WS223 WS224	S	GL GL	0.78	D*	2.01 1.39	-	-	1008	F	0.21	-	0.1	0.1	0.1	0.6	0.6	20.0	19.7 21.1	0	0	-	OK OK
Wider Site R12	06/04/23	12:19	WS225	S	GL	Dry	D	2.04	-	-	1007	F	-0.09	-	0.1	0.1	0.1	1.0	1.0	19.9	19.6	0	0	-	DRY
Wider Site R12 Wider Site R12	06/04/23	12:39 12:52	WS226 WS227	S	GL GL	Dry Dry	D D	1.18 2.77	-	-	1007 1007	F	-0.07 10.34	-	0.1	0.1	0.1	0.9	0.9	20.0	20.0	0	0	-	DRY DRY
Wider Site R12	05/04/23	13:30	WS228	S	GL	Dry	D	1.03	-	-	1015	F	0.02	-	0.1	0.1	0.1	1.0	1.0	20.5	20.2	0	0	-	DRY
Wider Site R12	05/04/23	13:25	WS229	S	GL	Dry	D	1.99	-	-	1014	F	-0.09	-	0.1	0.1	0.1	0.5	0.5	20.6	20.6	0	0	-	DRY
Wider Site R12 Wider Site R12	06/04/23	16:26 11:03	WS230 WS231	S	GL GL	Dry 2.44	D	1.09 4.94	-	-	1008 1015	F	-0.02	-	0.1	0.1	0.1	0.8 4.2	0.8 4.2	19.7 15.6	19.7 15.5	0	0	-	DRY OK
Wider Site R12	06/04/23	16:02	WS232	S	GL	0.40		2.94	-	-	1008	F	-0.05	-	0.1	0.1	0.1	0.7	0.7	19.7	19.5	0	0	-	OK
Wider Site R12	04/04/23	15:24	WS233	S	GL	0.56		2.28	-	-	1021	F	-0.05	-	0.1	0.1	0.1	0.4	0.4	20.9	20.7	1	0	-	OK
Wider Site R12 Wider Site R12	04/04/23	15:43 13:16	WS234 WS237	S	GL GL	0.23 Dry	D	1.67	-	-	1021 1014	F	0.00	-	0.1	0.1	0.1	0.4	0.4	20.3	20.2	0	0	-	OK DRY
Wider Site R12	05/04/23	12:10	WS238	S	GL	1.61		4.98	-	-	1016	F	-0.02	-	0.1	0.1	0.1	1.4	2.1	19.7	15.5	2	0	-	OK
Wider Site R12	04/04/23	15:07	WS239	S	GL	0.46		2.29	-	-	1021	F	-4.30	-	-2.0	0.1	0.1	0.9	0.9	17.7	17.7	1	0	-	OK
Wider Site R12 Wider Site R12	04/04/23	15:14 13:15	WS240 WS241	S	GL GL	0.41		1.50 1.97	-	-	1021 1021	F	-1.16 -0.05	-	0.1	0.1	0.1	0.2	0.2	19.7 20.6	19.6 20.5	1	0	-	OK OK
Wider Site R12	05/04/23	12:38	WS243	S	GL	Dry	D	1.02	-	-	1015	F	0.00	-	0.1	0.1	0.1	0.7	0.7	20.5	20.4	0	0	-	DRY
Wider Site R12	05/04/23	14:50	WS244 WS245	S	GL GL	0.73		0.95 2.54	-	-	1015 1015	F	0.32	-	0.1 8.2	0.1	0.1	0.4	0.4	21.4 15.7	21.1 15.5	2	0	-	OK OK
Wider Site R12 Wider Site R12	05/04/23	14:15 14:21	WS246	S	GL	0.89		4.48	-	-	1015	F	-0.02	-	0.1	0.1	0.1	0.2	0.2	21.4	20.8	1	0	-	OK OK
Wider Site R12	05/04/23	14:43	WS247	S	GL	0.29		0.96	-	-	1015	F	0.32	-	0.1	0.1	0.1	0.7	0.7	20.8	20.5	1	0	-	ABOVE GL
Wider Site R12 Wider Site R12	04/04/23	14:30 14:04	WS248 WS249	S	GL GL	0.84 Dry	D	1.65	-	-	1021 1021	F	0.86	-	0.1	0.1	0.1	0.3	0.3	20.1	20.0	1	0	-	OK OK
Wider Site R12	04/04/23	14:20	WS250	S	GL	0.60		0.95	-	-	1021	F	-5.57	-	-2.0	0.1	0.1	1.6	1.6	18.1	18.0	2	0	-	OK OK
Wider Site R12	04/04/23	13:33	WS251	S	GL	0.29		2.00	-	-	1022	F	-3.98	-	-1.9	0.1	0.1	0.4	0.5	20.3	20.2	0	1	-	OK
	04/04/23	13:52	WS252 CP301	S	GL GL	2.05		5.03 4.70	-	-	1021	F	0.88	-	0.1	0.1	0.1	0.7	0.7	20.3	20.3	1 -	-	-	OK OK
	04/04/23	-	CP302	S	GL	1.94		4.09	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
	04/04/23	-	CP303	S S	GL	3.43		4.05	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
	04/04/23	-	CP304 CP305	S	GL GL	3.10		4.05	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
	04/04/23	-	RO301	S	GL	0.44		9.72	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ок
	04/04/23	-	RO302 RO303	S	GL GL	0.40		3.16 8.31	-	-	-	F F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
	04/04/23	-	RO304	S	GL	0.45		3.90	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK
	04/04/23	-	RO305	S	GL	0.49		2.35	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK .
	04/04/23	-	RO306 RO307	S	GL GL	0.85		5.54	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
	04/04/23	-	RO307A	S	GL	1.41		2.17	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK
	04/04/23	-	RO309	S	GL	4.94		5.60	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK
	04/04/23	-	RO309A RO310	S	GL GL	3.97	D*	4.23 6.07	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
	04/04/23	-	RO311	S	GL	1.12		5.09	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ок
-	04/04/23	-	RO312	S	GL	3.61	D*	9.32	-	-	-	F F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
-	04/04/23	-	RO312A RO313	S	GL GL	3.31	D*	2.11 4.47	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2	04/04/23	-	RO313A	S	GL	Dry	D	0.79	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	DRY
	04/04/23	-	RO314 RO315	S	GL GL	0.68		4.66 5.03	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	DAMAGED
	04/04/23	-	RO316	S	GL	2.04		4.86	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ok
Water Only R2	04/04/23	-	RO316A	S	GL	1.29		1.32	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
	04/04/23	-	RO317 RO318	S	GL GL	0.37		7.43 5.90	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2		-	RO318A	S	GL	0.88		3.56	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK

			Į W	Vell Details	s	Water.	/NAPL M	onitoring (m below	datum)		Pressure and flo	ow (use < fo	r below Lo	D)			Gas C	oncentrati	ions (use <	for below	LoD)			Local conditions
				Single or	Datum							Atm. pressure	Relative												
Round				dual gas		Depth	"D"		Depth	Depth to	Atm.	falling (F) /	вн	Initial Gas		CH₄	CH₄	CO ₂	CO ₂	O ₂	O ₂	со	H ₂ S	VOC (as	
Reference	Date	Time	Well ID	tap	(Casing	to water		to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)		(%v/v) - (Steady)	(ppm)	(ppm)	ppm using PID)	Notes on condition of borehole (including any
W	0.4./0.4./0.0		00240	(S/D)	/ GL)	0.47		F. F.C				steady (S)	(hPa)												
Water Only R2 Water Only R2	04/04/23	-	RO319 RO320	S	GL GL	0.47		5.56 4.79	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R2	04/04/23	-	RO321	S	GL	0.76		3.91	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	SILT
Water Only R2	04/04/23	-	RO321A	S	GL	0.77		2.03	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R2 Water Only R2	04/04/23	-	WS235 WS236	S	GL GL	-		-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R2	04/04/23	-	WS242	S	GL	-		-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	
Wider Site R13	12/05/23	13:40	BH201	S	GL	3.29		4.87	-	-	1018	R	0.02	0.1	0.1	0.1	0.1	1.3	1.3	19.5	19.3	0	0	-	ок
Wider Site R13	12/05/23	15:31	BH202	S	GL	1.01		5.15	-	-	1019	R R	0.11	0.1	0.1	0.1	0.1	0.1	0.1	22.2	21.9	0	0	-	OK OK
Wider Site R13 Wider Site R13	10/05/23	15:07 16:23	BH203 BH204	S	GL GL	2.71 1.67		4.99 5.15	-		1007 1007	R	0.16	0.1	0.1	0.1	0.1	0.9	0.9	17.1 21.1	17.1 20.9	0	0	-	OK SILT
Wider Site R13	10/05/23	15:38	BH205	S	GL	0.21		4.12	-	-	1008	R	-5.04	-2.4	-0.2	0.1	0.1	1.4	1.4	18.5	18.4	1	0	-	OK
Wider Site R13	15/05/23	11:57	WS201	S	GL	0.64		1.93	-	-	1011	R	0.05	0.1	0.1	0.1	0.1	0.7	0.8	11.6	10.4	0	0	-	ОК
	15/05/23	12:08	WS202 WS203	S	GL GL	2.02	D	2.02	-	-	1011	R	-0.02	3.0 0.1	0.1	0.1	0.1	0.6	0.6	20.4	20.3	1	0	-	DRY
Wider Site R13 Wider Site R13	15/05/23 15/05/23	13:32 13:12	WS203	S	GL	1.04	D	1.04	-	-	1011	R	-0.02	0.1	0.1	0.1	0.1	1.0	1.0	18.1	17.9	0	0	-	DRY
Wider Site R13	15/05/23	13:41	WS205	S	GL	0.51		2.99	-	-	1011	R	0.05	0.1	0.1	0.1	0.1	1.9	1.9	19.3	19.2	0	0	-	SILT
Wider Site R13	15/05/23	12:57	WS206	S	GL	1.25		4.19	-	-	1011	R	-0.05	0.1	0.1	0.1	0.1	1.9	1.9	19.8	19.6	0	0	-	ОК
Wider Site R13	15/05/23 15/05/23	12:50 12:43	WS207 WS208	S	GL GL	0.32		2.20	-	-	1011 1011	R	0.07 1.23	-4.0 0.2	0.1	0.1	0.1	1.3	1.3	20.2 19.4	20.1 19.4	0	0	-	OK OK
Wider Site R13 Wider Site R13	15/05/23	12:43	WS209	S	GL	0.84		3.01	-	-	1011	R	0.09	0.2	0.2	0.1	0.1	2.0	2.0	18.8	18.6	0	0	-	OK
Wider Site R13	15/05/23	12:28	WS210	S	GL	0.82		2.57	-	-	1011	R	0.04	0.1	0.1	0.1	0.1	0.1	0.1	21.2	21.1	1	0	-	ОК
Wider Site R13	15/05/23	11:48	WS211	S	GL	1.43		3.56	-	-	1011	R	0.04	0.1	0.1	0.1	0.1	3.3	3.5	17.4	17.3	0	0	-	ОК
Wider Site R13 Wider Site R13	12/05/23 12/05/23	14:16 14:24	WS213 WS214	S	GL GL	3.58 1.00	D	3.66 1.00	-	-	1018 1018	R R	-0.11	0.1	0.1	0.1	0.1	0.7 1.5	0.7 1.5	20.9 17.8	20.7 17.7	0	0	-	DRY
Wider Site R13	15/05/23	12:36	WS215	S	GL	0.24		2.54	-	-	1011	R	-0.05	0.1	0.1	0.1	0.1	1.0	1.0	20.2	20.2	0	0	-	OK OK
Wider Site R13	15/05/23	11:21	WS216	S	GL	2.90		4.07	-	-	1011	R	0.02	0.1	0.1	0.1	0.1	1.1	1.1	19.5	19.4	0	0	-	ОК
Wider Site R13	12/05/23	14:09	WS217	S	GL	2.08	D	2.08	-	-	1018	R	0.04	0.1	0.1	0.1	0.1	1.3	1.3	20.9	20.6	0	0	-	DRY
	12/05/23 12/05/23	14:33 15:02	WS218 WS219	S	GL GL	1.81	D	1.81 4.99	-	-	1018 1019	R R	0.14	0.1	0.1	0.1	0.1	1.5	1.5	19.7 19.7	19.4 19.7	0	0	-	DRY OK
Wider Site R13	12/05/23	15:14	WS220	S	GL	0.91		3.02	-	-	1019	R	-0.02	0.1	0.1	0.1	0.1	0.4	0.5	21.4	21.1	0	0	-	OK OK
Wider Site R13	15/05/23	11:30	WS221	S	GL	2.03	D	2.03	-	-	1011	R	0.04	0.1	0.1	0.1	0.1	1.5	1.5	18.8	18.5	0	0	-	DRY
Wider Site R13	12/05/23	13:51	WS222	S	GL	2.49	D	2.49	-	-	1018	R	0.02	0.1	0.1	0.1	0.1	1.4	1.4	19.6	19.4	0	0	-	DRY
Wider Site R13 Wider Site R13	12/05/23 11/05/23	14:42 11:48	WS223 WS224	S	GL GL	0.40		2.01	-	-	1019 1010	R	0.11	0.1	0.1	0.1	0.1	0.5	0.5	21.2	20.9	0	0	-	OK OK
Wider Site R13	15/05/23	11:36	WS225	S	GL	2.04	D	2.04	-	-	1011	R	-0.09	0.1	0.1	0.1	0.1	1.0	1.0	19.9	19.6	0	0	-	DRY
Wider Site R13	15/05/23		WS226	S	GL	1.18	D	1.18	-	-	1011	R	-0.07	0.1	0.1	0.1	0.1	0.9	0.9	20.0	20.0	0	0	-	DRY
	12/05/23	13:44	WS227	S	GL	2.77	D	2.77	-	-	1018	R R	-0.25	0.1	0.1	0.1	0.1	1.0	1.0	19.9	19.8	0	0		DRY
Wider Site R13 Wider Site R13	10/05/23	14:55 14:44	WS228 WS229	S	GL GL	1.00		1.00	-	-	1007 1007	R	-0.09 -0.02	0.1	0.1	0.1	0.1	0.7	0.7	19.4	19.1	0	0	-	DRY OK
Wider Site R13		13:27	WS230	S	GL	1.08	D	1.08	-	-	1018	R	0.16	0.1	0.1	0.1	0.1	1.1	1.1	19.5	19.3	0	0	-	DRY
	10/05/23	11:48	WS231	S	GL	2.36		4.96	-	-	1007	R	0.12	0.1	0.1	0.1	0.1	3.8	3.9	16.8	16.8	0	0		ОК
	12/05/23 11/05/23	15:21 11:33	WS232 WS233	S	GL GL	0.19		2.93	-	-	1019 1011	R R	-0.12 -0.04	0.1	0.1	0.1	0.1	0.3	0.3	21.8	21.6	0	0	-	OK OK
Wider Site R13 Wider Site R13		12:04	WS234	S	GL	0.17		1.67	-	-	1011	R	7.21	3.0	0.1	0.1	0.1	0.7	0.7	19.6	19.4	6	0	-	ОК
Wider Site R13	15/05/23	10:45	WS235	S	GL	1.20		5.06	-	-	1011	R	0.02	0.2	0.1	0.1	0.1	1.6	1.7	17.5	17.5	0	0	-	ок
	15/05/23	10:30	WS236	S	GL	2.00	D	2.00	-	-	1011	R	-0.02	0.2	0.1	0.1	0.1	0.6	0.6	19.9	19.9	0	0	-	DRY
	10/05/23	14:32 13:42	WS237 WS238	S	GL GL	1.01	D	5.06	-	-	1007	R R	0.12	0.1	0.1	0.1	0.1	0.7	0.7 2.3	20.5	20.3 15.8	2	0	-	DRY OK
	11/05/23	11:18	WS239	S	GL	0.17		2.28	-	-	1011	R	-4.13	-2.1	-0.8	0.1	0.1	0.6	0.6	19.7	19.7	0	0	-	OK
Wider Site R13	11/05/23	11:25	WS240	S	GL	0.14		1.19	-	-	1011	R	2.75	0.3	0.8	0.1	0.1	0.9	0.9	20.3	20.1	2	0	-	ок
Wider Site R13		12:50	WS241	S	GL	0.63		1.97	-	-	1010	R	-0.11	0.1	0.1	0.1	0.1	0.1	0.1	21.5	21.3	1	0	-	OK
	15/05/23 10/05/23	10:59 14:06	WS242 WS243	S	GL GL	1.01	D	3.65 1.01	-	-	1011	R R	7.94 0.14	-4.9 0.1	0.1	0.1	0.1	2.6 1.2	1.2	18.0 20.4	20.2	0	0	-	DRY
	10/05/23	17:02	WS244	S	GL	0.27		0.88	-	-	1007	R	18.85	7.3	0.1	0.1	0.1	0.8	0.8	20.7	20.7	3	0	-	OK OK
	10/05/23	15:51	WS245	S	GL	0.31		2.52	-	-	1007	R	6.98	3.4	0.2	0.1	0.1	1.7	1.7	17.3	17.3	4	0	-	SILT
	10/05/23	16:02	WS246	S	GL	0.85		4.55	-	-	1008	R	-0.05	0.1	0.1	0.1	0.1	0.1	0.1	22.1	21.8	0	0	-	SILT AROVE CROUND LEVEL
	10/05/23 11/05/23	16:45 14:08	WS247 WS248	S	GL GL	0.00		0.89 1.65	-	-	1008 1010	R R	9.84 2.15	3.8 0.2	0.1	0.1	0.1	0.6	0.6	18.5 20.2	18.4 20.0	5	0	-	ABOVE GROUND LEVEL OK
	11/05/23	13:43	WS249	S	GL	0.69		1.01	-	-	1010	R	0.02	0.1	0.1	0.1	0.1	3.1	3.1	16.8	16.8	1	0	-	ОК
Wider Site R13		13:57	WS250	S	GL	0.32		0.90	-	-	1010	R	7.53	2.8	0.5	0.1	0.1	3.3	3.3	15.6	15.5	1	0	-	ОК
Wider Site R13		13:14	WS251 WS252	S	GL GL	0.33		2.00 4.98	-	-	1010	R R	-3.58 -0.12	-1.7	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	-	OK OK
Wider Site R13 Water Only R3		13:30	WS252 CP301	S	GL	1.70		4.98	-	-	1010	R	-0.12	0.1	0.1	0.1	0.1	0.2	0.2	21.9	21.7	-	-		OK OK
-	11/05/23	-	CP302	S	GL	1.69		4.09	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-		ОК

Monit	oring round		W	'ell Details	;	Water	/NAPL M	lonitoring	(m belov	v datum)		Pressure and flo	ow (use < fo	r below Lo	D)			Gas C	Concentrat	ions (use <	k for below	LoD)			Local conditions
				Single or	Datum			T				Atm. pressure	Relative												
Round				dual gas		1 ' 1	"D"	Depth	Depth	Depth to	Atm.	falling (F) /	вн		Steady	CH₄	CH₄	CO ₂	CO ₂	O ₂	02	со	H₂S	VOC (as	
Reference	Date	Time	Well ID	tap	(Casing			to Base of Hole		DNAPL	pressure (hPa)	rising (R)/	pressure	Flow (l/hr)	Gas Flow (l/hr)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(%v/v) - (Initial)	(%v/v) - (Steady)	(ppm)	(ppm)	ppm using	Notes on condition of borehole (including any
				(S/D)	/ GL)							steady (S)	(hPa)						,						
Water Only R3	11/05/23	-	CP303	S	GL	3.16		4.01	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK
Water Only R3	11/05/23	-	CP304 CP305	S	GL GL	2.87		4.06	-	-	-	R R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3 Water Only R3	11/05/23	-	RO301	S	GL	0.30		7.69	_	-	_	R	-	-	-	_	-	-	-	-	-	-	_	-	OK OK
Water Only R3	11/05/23	-	RO302	S	GL	0.17		3.15	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO303	S	GL	0.11		3.53	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO304	S	GL	0.28		8.00	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO305	S	GL	0.35		2.38	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO306 RO307	S	GL GL	0.69 1.18		5.54	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO307A	S	GL	1.20		2.17	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO309	S	GL	4.77		5.60	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO309A	S	GL	4.13		4.23	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO310	S	GL	3.89		6.27	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO311	S	GL	1.00		5.09	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3 Water Only R3	11/05/23 11/05/23	-	RO312 RO312A	S	GL GL	3.56 2.04		9.32	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO313	S	GL	2.89		4.47	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK OK
Water Only R3	11/05/23	-	RO313A	S	GL	0.79	D	0.79	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R3	11/05/23	-	RO314	S	GL	0.68		4.66	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	DAMAGED
Water Only R3	11/05/23	-	RO315	S	GL	0.19		5.03	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO316	S	GL	2.09		4.86	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK
Water Only R3	11/05/23 11/05/23	-	RO316A RO317	S	GL GL	0.99		7.43	-	-	-	R R	-	-	-	-	-	-	-	-	-	-	-	-	OK OV
Water Only R3 Water Only R3	11/05/23	-	RO317	S	GL	0.50		5.90	_	-	-	R	-	-	-	-	-	-	-	-	-	_	_	_	OK OK
Water Only R3	11/05/23	-	RO318A	S	GL	0.48		3.16	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	OK .
Water Only R3	11/05/23	-	RO319	S	GL	0.46		5.56	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO320	S	GL	0.31		4.79	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	ОК
Water Only R3	11/05/23	-	RO321	S	GL	0.73		3.91	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	SILT
Water Only R3 Wider Site R14	07/06/23	16:04	RO321A BH201	S	GL GL	0.76 3.12		2.03 4.89	-	-	1019	R	-0.05	0.1	0.1	0.1	0.1	1.1	1.1	20.5	20.2	0	0	-	OK OK
Wider Site R14	09/06/23	15:31	BH202	S	GL	2.10		5.11	-	-	1019	S	0.11	0.1	0.1	0.1	0.1	0.1	0.1	22.2	21.9	0	0	-	OK OK
Wider Site R14	06/06/23	15:07	BH203	S	GL	0.77		5.10	-	-	1019	S	0.16	0.1	0.1	0.1	0.1	2.1	2.1	17.1	17.1	0	0	-	ОК
Wider Site R14	06/06/23	16:23	BH204	S	GL	1.55		5.03	-	-	1019	S	0.02	0.1	0.1	0.1	0.1	0.9	0.9	21.1	20.9	0	0	-	SILT
Wider Site R14	06/06/23	15:38	BH205	S	GL	0.25		4.16	-	-	1019	S	-5.04	-2.4	-0.2	0.1	0.1	1.4	1.4	18.5	18.4	1	0	-	ОК
Wider Site R14	05/06/23	13:08	WS201	S	GL	0.70		2.03	-	-	1019	S	0.05 -2.57	-0.3	0.1	0.1	0.1	1.1	0.5	12.7 19.7	12.3	0	0	-	OK OK
Wider Site R14 Wider Site R14	05/06/23 05/06/23	13:21 13:52	WS202 WS203	S	GL GL	2.02	D	2.03	_	-	1020 1019	S	0.14	0.1	0.1	0.1	0.1	1.0	1.1	20.2	19.5 19.9	0	0	-	DRY
	05/06/23	14:12	WS204	S	GL	1.05	D	1.05	-	-	1019	S	0.00	0.1	0.1	0.1	0.1	3.4	3.8	18.2	17.9	0	0	-	DRY
Wider Site R14	05/06/23	13:40	WS205	S	GL	0.67		3.00	-	-	1020	S	0.14	0.1	0.1	0.1	0.1	0.2	0.2	21.2	21.0	1	0	-	ОК
Wider Site R14	05/06/23	14:21	WS206	S	GL	1.66		4.16	-	-	1019	S	0.12	0.1	0.1	0.1	0.1	2.5	2.5	19.7	19.5	0	0	-	ОК
Wider Site R14	05/06/23	14:35	WS207	S	GL	0.70		-0.24	-	-	1020	S	0.05	0.1	0.1	0.1	0.1	0.1	0.3	21.5	20.7	1	0	-	OK
Wider Site R14 Wider Site R14	05/06/23 05/06/23	15:03 16:08	WS208 WS209	S	GL GL	1.05		3.00	-	-	1020 1019	S	-19.45 0.07	-7.2 0.1	-0.2	0.1	0.1	0.0	0.1	19.4 21.7	19.2 21.1	1	0	-	OK OK
	05/06/23	15:43	WS210	S	GL	0.57		2.58	_	-	1019	S	-14.03	-5.8	-0.1	0.1	0.1	0.6	0.6	20.6	20.4	1	0	-	OK OK
Wider Site R14	05/06/23	12:59	WS211	S	GL	2.22		3.56	-	-	1019	S	0.02	0.1	0.1	0.1	0.1	2.9	2.9	17.9	17.9	0	0	-	OK OK
Wider Site R14	09/06/23	14:16	WS213	S	GL	3.65	D	3.65	-	-	1018	S	-0.11	0.1	0.1	0.1	0.1	0.7	0.7	20.9	20.7	0	0	-	DRY
Wider Site R14	09/06/23	14:24	WS214	S	GL	1.01	D	1.01	-	-	1018	S	-0.04	0.1	0.1	0.1	0.1	1.5	1.5	17.8	17.7	0	0	-	DRY
	07/06/23	13:42	WS216	S	GL	2.97		4.09	-	-	1019	S	-0.19	0.1	0.1	0.1	0.1	1.5	1.5	18.9	18.6	0	0	-	OK Day
	09/06/23	14:09 14:33	WS217 WS218	S	GL GL	2.08	D D	2.08	-	-	1018	S	0.04	0.1	0.1	0.1	0.1	1.3	1.3	20.9 19.7	20.6 19.4	0	0	-	DRY DRY
Wider Site R14	09/06/23	15:02	WS219	S	GL	1.55		4.99	-	-	1019	S	0.00	0.1	0.1	0.1	0.1	1.7	1.7	19.7	19.7	0	0	-	OK .
	09/06/23	15:14	WS220	S	GL	1.22		3.00	-	-	1019	S	-0.02	0.1	0.1	0.1	0.1	0.4	0.5	21.4	21.1	0	0	-	ОК
Wider Site R14	07/06/23	13:48	WS221	S	GL	2.03	D	2.03	-	-	1019	S	-0.09	0.1	0.1	0.1	0.1	1.1	1.1	19.9	19.8	0	1	-	DRY
Wider Site R14	09/06/23	13:51	WS222	S	GL	2.49	D	2.49	-	-	1018	S	0.02	0.1	0.1	0.1	0.1	1.4	1.4	19.6	19.4	0	0	-	DRY
	09/06/23	14:42	WS223	S	GL	1.91		2.01	-	-	1019	S	0.11	0.1	0.1	0.1	0.1	0.5	0.5	21.2	20.9	0	0	-	OK OK
Wider Site R14 Wider Site R14	08/06/23	11:48 13:55	WS224 WS225	S	GL GL	2.04	D	2.04	-	-	1019	S	0.19	0.1	0.1	0.1	0.1	1.3	1.3	21.1 19.6	21.0 19.5	0	0	-	OK DRY
Wider Site R14	07/06/23	16:15	WS226	S	GL	1.18	D	1.18	-	-	1019	S	-0.07	0.1	0.1	0.1	0.1	0.9	0.9	20.0	20.0	0	0	-	DRY
Wider Site R14	09/06/23	13:44	WS227	S	GL	2.77	D	2.77	-	-	1018	S	-0.25	0.1	0.1	0.1	0.1	1.0	1.0	19.9	19.8	0	0	-	DRY
	06/06/23	14:55	WS228	S	GL	1.95	D	1.95	-	-	1019	S	-0.09	0.1	0.1	0.1	0.1	1.4	1.4	19.4	19.1	0	0	-	DRY
Wider Site R14	06/06/23	14:44	WS229	S	GL	1.07	D	1.07	-	-	1019	S	-0.02	0.1	0.1	0.1	0.1	0.7	0.7	20.0	19.7	0	0	-	DRY
	07/06/23	15:52	WS230	S	GL	1.46	D	1.46	-	-	1018	S	0.05	0.1	0.1	0.1	0.1	0.0	0.0	21.2	21.0	0	0	-	DRY
	06/06/23	11:48	WS231	S	GL	3.07		4.98	-	-	1010	S	0.12	0.1	0.1	0.1	0.1	3.8	3.9	16.8	16.8	0	0	-	OK OK
Wider Site R14	09/06/23	15:21	WS232	S	GL	0.71		2.95	-	-	1019	S	-0.12	0.1	0.1	0.1	0.1	0.3	0.3	21.8	21.6	0	0	-	OK

Monit	oring round		W	ell Details	•	Water	/NAPL Mo	onitorina	(m bolov	v datum)		Pressure and flo	ow (uso < fo	r bolow Lo	ND)			Gas C	oncentrat	ions (uso c	for bolow	(LoD)			Local conditions
Monit	oning round		w			water	- NAP L MI	Januaring (m betov	v datum)				L Detow Lo				aas C	oncentrat	lens (use <	l Delow	2007			Local conditions
				Single or		Depth	"D"	Depth	Depth		Atm.	Atm. pressure		Initial Gas	Steady	CH₄	CH₄	CO₂	CO ₂	O ₂	O ₂			VOC (as	
Round	Date	Time	Well ID	dual gas		to	denotes			Depth to	pressure	falling (F) /	ВН	Flow	Gas Flow	(%v/v) -	(%v/v) -	(%v/v)-	(%v/v)-	(%v/v)-	(%v/v) -	co	H ₂ S	ppm using	Notes on condition of borehole (including any
Reference				tap (S/D)	(Casing	water	dry hole	of Hole	LNAPL	DNAPL	(hPa)	rising (R)/ steady (S)	pressure (hPa)	(L/hr)	(L/hr)	(Initial)	(Steady)	(Initial)	(Steady)	(Initial)	(Steady)	(ppm)	(ppm)	PID)	
				(3/0)								steady (5/													
Wider Site R14	08/06/23	11:33	WS233	S	GL	0.72		1.95	-	-	1019	S	-0.04	0.1	0.1	0.1	0.1	0.1	0.1	21.3	20.8	0	0	-	OK
Wider Site R14	08/06/23	12:04	WS234	S	GL	0.82		1.67	-	-	1019	S	7.21	3.0	0.2	0.1	0.1	0.7	0.7	19.6	19.4	6	0	-	OK OK
Wider Site R14 Wider Site R14	07/06/23 07/06/23	14:22 14:14	WS235 WS236	S	GL GL	0.87 1.98	D	1.98	-	-	1019 1019	S	-0.16 -0.07	0.1	0.1	0.1	0.1	3.2	3.5	19.9 16.7	19.0 16.7	2	0	-	DRY
Wider Site R14	06/06/23	14:32	WS237	S	GL	1.37	D	1.37	-	_	1020	S	0.12	0.1	0.1	0.1	0.1	0.7	0.7	20.5	20.3	0	0	-	DRY
Wider Site R14	06/06/23	13:42	WS238	S	GL	1.98		4.98	-	_	1020	S	0.00	0.1	0.1	0.1	0.1	1.2	2.3	20.4	15.8	2	0	-	OK
Wider Site R14	08/06/23	11:18	WS239	S	GL	0.76		2.29	-	-	1019	S	-4.13	-2.1	-0.8	0.1	0.1	0.6	0.6	19.7	19.7	0	0	-	ОК
Wider Site R14	08/06/23	12:50	WS241	S	GL	1.17		1.97	-	-	1019	S	-0.11	0.1	0.1	0.1	0.1	0.1	0.1	21.5	21.3	1	0	-	ОК
Wider Site R14	07/06/23	14:40	WS242	S	GL	0.45		3.53	-	-	1020	S	-14.90	-5.6	-0.1	0.1	0.1	0.9	0.9	13.0	13.0	36	0	-	ОК
Wider Site R14	06/06/23	14:06	WS243	S	GL	1.02	D	1.02	-	-	1020	S	0.14	0.1	0.1	0.1	0.1	1.2	1.2	20.4	20.2	0	0	-	DRY
Wider Site R14	06/06/23	17:02	WS244	S	GL	0.88		0.95	-	-	1019	S	18.85	7.3	0.1	0.1	0.1	0.8	0.8	20.7	20.7	3	0	-	ОК
Wider Site R14	06/06/23	15:51	WS245	S	GL	0.74		2.16	-	-	1019	S	6.98	3.4	0.2	0.1	0.1	1.7	1.7	17.3	17.3	4	0	-	SILT
Wider Site R14	06/06/23	16:02	WS246	S	GL	1.09		4.49	-	-	1019	S	-0.05	0.1	0.1	0.1	0.1	0.1	0.1	22.1	21.8	0	0	-	SILT
Wider Site R14	06/06/23	16:45	WS247	S	GL GL	0.21		0.96 1.66	-	-	1019 1019	S	9.84 2.15	3.8 0.2	-0.1	0.1	0.1	0.6	0.6	18.5 20.2	18.4	5	0	-	OK
Wider Site R14	08/06/23	14:08 13:43	WS248 WS249	S	GL	0.92	D	0.98	-	-	1019	S	0.02	0.2	0.4	0.1	0.1	3.1	3.1	16.8	20.0 16.8	1	0	-	DRY
Wider Site R14 Wider Site R14	08/06/23	13:57	WS250	S	GL	0.90	D	0.90	-	_	1019	S	7.53	2.8	0.5	0.1	0.1	3.3	3.3	15.6	15.5	1	0	-	DRY
Wider Site R14	08/06/23	13:14	WS251	S	GL	0.62		2.00	_	_	1019	S	-3.58	-1.7	0.1	0.1	0.1	0.3	0.4	21.1	20.7	0	0	_	OK
Wider Site R14	08/06/23	13:30	WS252	S	GL	0.70		4.97	-	_	1019	S	-0.12	0.1	0.1	0.1	0.1	0.2	0.2	21.9	21.7	0	0	-	ОК
Water Only R4	05/06/23	-	CP301	S	GL	2.16		4.71	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
Water Only R4	07/06/23	-	CP302	S	GL	1.85		4.12	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP303	S	GL	2.95		4.01	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP304	S	GL	2.97		4.08	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	CP305	S	GL	2.94		4.72	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO301	S	GL	0.26		7.47	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO302	S	GL	0.70		3.18	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	08/06/23	-	RO303	S	GL	0.77		3.63	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	08/06/23	-	RO304	S	GL	0.50		7.98 2.40	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4 Water Only R4	09/06/23	-	RO305 RO306	S	GL GL	0.40		5.44	_	-	-	S	-		-	-		-	-	-	-		-	-	
Water Only R4	05/06/23	_	RO307	S	GL	1.36		5.17	_	_	_	S	_	_	-	-	-	_	_	_	_	-	-	_	
Water Only R4	05/06/23	-	RO307A	S	GL	1.36		2.20	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO309A	S	GL	4.24		4.34	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO309	S	GL	4.96		5.60	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO310	S	GL	3.93		5.91	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO311	S	GL	1.09		5.05	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO312A	S	GL	2.21	D	2.21	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R4	05/06/23	-	RO312	S	GL	3.59		9.39	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
	05/06/23	-	RO313	S	GL	3.44	_	4.64	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
	05/06/23	-	RO313A	S	GL	0.78	D	0.78	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	DRY
Water Only R4	05/06/23	-	RO314 RO315	S	GL GL	0.90		4.60 4.61	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO316A	S	GL	1.22		1.41		-		S	-	-	-	-	-		-	-	_		-	-	
Water Only R4 Water Only R4	09/06/23	-	RO316A	S	GL	2.24		5.46	-	-	-	S	-	-	-	-	-	-	-	-	-		-	-	
	05/06/23	-	RO317	S	GL	0.63		7.59	-	-	_	S	_	-	-	-	-	-	-	-	-	-	-	-	
	05/06/23	-	RO318	S	GL	0.68		5.90	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	05/06/23	-	RO318A	S	GL	0.67		4.16	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	ANTS
Water Only R4	05/06/23	-	RO319	S	GL	0.66		5.56	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO320	S	GL	0.53		5.09	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
Water Only R4	09/06/23	-	RO321	S	GL	0.87		3.89	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	silt
Water Only R4	09/06/23	-	RO321A	S	GL	0.79		2.04	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	
-	08/06/23	-	WS240	S	GL	0.00		0.00	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	Mower damaged - no pipe to test
Water Only R4	05/06/23	-	WS215	S	GL	0.00		0.00	-	-	-	S	-	-	-	-	-	-	-	-	-	-	-	-	Vandalism - pipe damaged

Project: Begbroke, Oxfordhsire Project Number: 19114

CIRIA Ground Gas Risk Assessment

Number of Monitoring Rounds	11
Number of Locations	13

Number of Readings	78
Number of Readings with Flow Rate	78

Max CH₄	Worst Case Flow
0.3	0.3

Max CO ₂	Worst Case Flow
16.3	0.3

Worst Case Site GSV CH ₄
0.0009

Worst Case Site GSV CO ₂	
0.0489	

	CH₄	CO ₂				
	Visit GSVs	Visit GSVs				
CS1	60	60				
CS2	0	0				
CS3	0	0				
CS4	0	0				
CS5	0	0				
CS6	0	0				

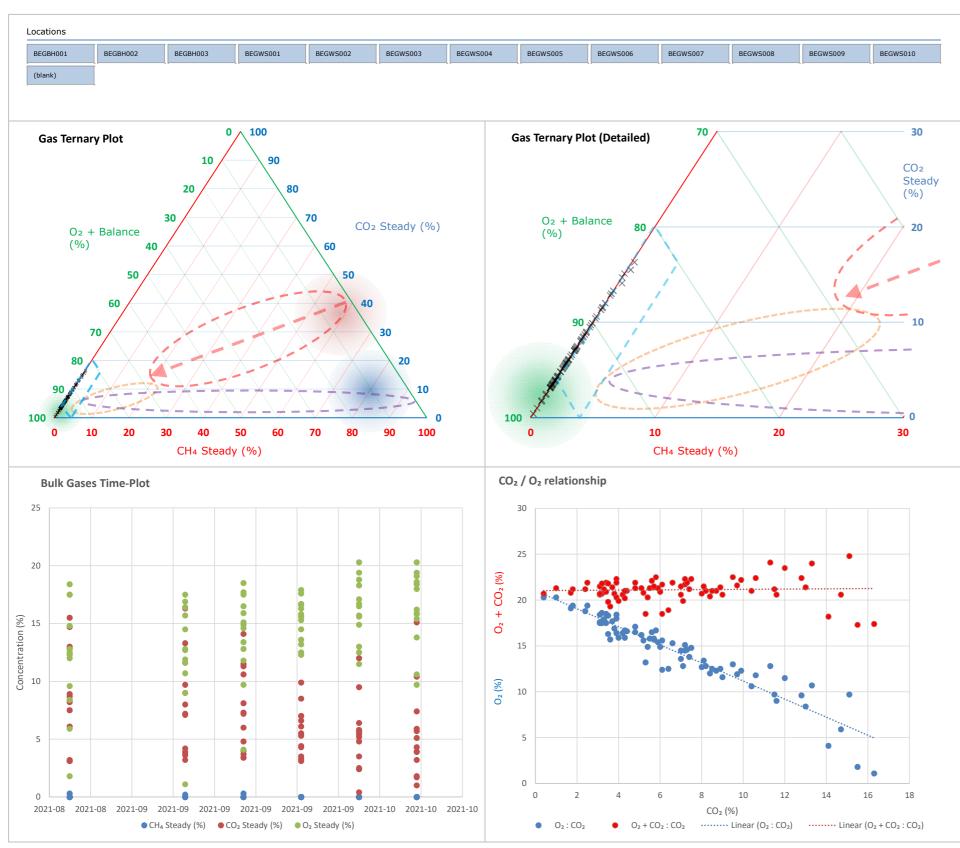
Flooded Well - Groundwater level above screen

Negative Flow Converted to positive for calculation purposes

Location	Strata	Data	Pressure	Relative	Flow Rate	Atmos.	CH₄ (% vol)	(%l	.EL)	CO ₂ (% vol)	O ₂ (%	% vol)	Visit GSV -	Visit GSV -
Location		Date	Trend	Pressure	(l/hr)	Pressure	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	CH₄	CO ₂
BH01		24/08/21	R	0.14	0.2	1023	0.1	0.1	2.0	2.0	13.0	13.0	8.4	8.4	-	-
	Oxford Clay	07/09/21	F	0.07	0.2	1014	0.1	0.1	2.0	2.0	11.6	11.6	9.0	9.0	-	-
	Formation / Kellways Sand Member	14/09/21	F	-0.12	0.1	1004	0.1	0.1	2.0	2.0	11.5	11.5	9.7	9.7	-	-
		21/09/21	R	0.05	0.1	1023	0.1	0.1	2.0	2.0	9.9	9.9	12.3	12.3	-	-
		28/09/21	R	0.04	0.1	1006	0.1	0.1	2.0	2.0	13.6	12.0	11.5	11.5	-	-
		05/10/21	R	0.16	0.1	993	0.1	0.1	2.0	2.0	15.1	15.1	9.7	9.7	-	-
		24/08/21	R	0.00	0.2	1023	0.1	0.1	2.0	2.0	8.8	8.7	12.2	12.3	-	-
	Oxford Clay	07/09/21	F	0.02	0.1	1015	0.1	0.1	2.0	2.0	9.7	9.7	11.8	11.9	-	-
BH02	Formation /	14/09/21	F	0.00	0.1	1005	0.1	0.1	2.0	2.0	10.6	10.6	11.8	11.8	-	-
DI 102	Kellways	21/09/21	R	-0.04	0.1	1024	0.1	0.1	2.0	2.0	6.1	6.1	15.6	15.6	-	-
	Sand Member	28/09/21	R	0.09	0.1	1007	0.1	0.1	2.0	2.0	5.6	5.6	16.4	16.5	-	-
		05/10/21	R	-0.07	0.2	994	0.1	0.1	2.0	2.0	3.9	3.9	18.3	18.4	-	-
		24/08/21	R	0.02	0.2	1025	0.1	0.1	2.0	2.0	14.8	14.7	5.9	5.9	-	-
	Oxford Clay	07/09/21	F	0.05	-0.5	1014	0.1	0.1	2.0	2.0	8.0	8.0	12.7	12.7	-	-
BH03	Formation /	14/09/21	F	0.07	-1.3	1004	0.1	0.1	2.0	2.0	8.1	8.1	13.3	13.4	-	-
	Kellways Sand Member	21/09/21	R	0.05	-1	1024	0.1	0.1	2.0	2.0	5.5	5.5	15.7	15.8	-	-
		28/09/21	R	0.04	-0.2	1007	0.1	0.1	2.0	2.0	5.7	5.7	15.6	15.7	-	-
		05/10/21	R	0.09	0.2	993	0.1	0.1	2.0	2.0	5.1	5.1	16.2	16.2	-	-
		24/08/21	R	0.05	0.2	1023	0.1	0.1	2.0	2.0	12.8	12.8	9.6	9.6	0.0002	0.0256
		07/09/21	F	0.02	0.2	1014	0.1	0.1	2.0	2.0	13.3	13.3	10.7	10.7	0.0002	0.0266
WS01	Landfill	14/09/21	F	-0.09	0.1	1004	0.1	0.1	2.0	2.0	11.3	11.3	12.8	12.8	0.0001	0.0113
VV 30 1		21/09/21	R	-0.35	0.1	1023	0.1	0.1	2.0	2.0	6.6	6.6	15.3	15.3	0.0001	0.0066
		28/09/21	R	-0.16	0.1	1006	0.1	0.1	2.0	2.0	2.5	2.5	19.4	19.4	0.0001	0.0025
		05/10/21	R	0.09	0.2	992	0.1	0.1	2.0	2.0	3.2	3.2	18.5	18.6	0.0002	0.0064
	River Terrace Deposits	24/08/21	R	0.02	0.3	1025	0.1	0.1	2.0	2.0	3.2	3.2	17.4	17.5	0.0003	0.0096
		07/09/21	F	0.25	0.2	1015	0.1	0.1	2.0	2.0	3.8	3.8	16.9	16.9	0.0002	0.0076
WS02		14/09/21	F	-0.07	0.2	1005	0.1	0.1	2.0	2.0	3.7	3.7	17.6	17.7	0.0002	0.0074
VV 302		21/09/21	R	0.00	0.2	1025	0.1	0.1	2.0	2.0	4.4	4.4	16.6	16.6	0.0002	0.0088
		28/09/21	R	0.04	0.1	1007	0.1	0.1	2.0	2.0	4.8	4.8	17.0	17.1	0.0001	0.0048
		05/10/21	R	0.09	0.1	994	0.1	0.1	2.0	2.0	6.1	5.9	15.4	15.4	0.0001	0.0059
WS03	Landfill	24/08/21	R	0.02	0.3	1024	0.1	0.1	2.0	2.0	8.9	8.9	12.5	12.5	0.0003	0.0267
		07/09/21	F	0.05	0.2	1015	0.1	0.1	2.0	2.0	9.0	9.0	11.6	11.6	0.0002	0.0180
		14/09/21	F	0.14	0.1	1005	0.1	0.1	2.0	2.0	7.3	7.3	14.6	14.6	0.0001	0.0073
W 000		21/09/21	R	0.02	0.2	1024	0.1	0.1	2.0	2.0	8.5	8.5	12.5	12.5	0.0002	0.0170
		28/09/21	R	0.21	0.2	1007	0.1	0.1	2.0	2.0	9.5	9.5	12.9	13.0	0.0002	0.0190
		05/10/21	R	0.11	0.2	994	0.1	0.1	2.0	2.0	10.4	10.4	10.5	10.6	0.0002	0.0208

Project: Begbroke, Oxfordhsire Project Number: 19114

CIRIA Ground Gas Risk Assessment


Location	Strata	Strata Date	Pressure	Relative	Flow Rate	Atmos.	CH₄ ((% vol)	(%l	_EL)	CO ₂ (% vol)	O ₂ (% vol)		Visit GSV -	Visit GSV -
	Strata		Trend	Pressure	(l/hr)	Pressure	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	CH₄	CO ₂
WS04		24/08/21	R	0.00	0.2	1024	0.3	0.3	6.0	6.0	15.5	15.5	1.8	1.8	0.0006	0.0310
		07/09/21	F	0.02	0.2	1015	0.2	0.2	4.0	4.0	16.3	16.3	1.1	1.1	0.0004	0.0326
	l on dfill	14/09/21	F	-0.25	0.1	1005	0.3	0.3	6.0	6.0	14.1	14.1	4.1	4.1	0.0003	0.0141
	Landfill	21/09/21	R	0.12	0.2	1025	0.1	0.1	2.0	2.0	5.3	5.3	13.1	13.2	0.0002	0.0106
		28/09/21	R	0.07	0.1	1007	0.1	0.1	2.0	2.0	6.4	6.4	12.5	12.5	0.0001	0.0064
		05/10/21	R	0.05	0.2	994	0.1	0.1	2.0	2.0	4.3	4.3	15.9	15.9	0.0002	0.0086
		24/08/21	R	0.04	0.3	1023	0.1	0.1	2.0	2.0	8.2	8.2	12.8	12.8	0.0003	0.0246
		07/09/21	F	0.02	0.1	1014	0.1	0.1	2.0	2.0	4.2	4.2	16.3	16.4	0.0001	0.0042
WS05	Landfill	14/09/21	F	-0.04	0.1	1004	0.1	0.1	2.0	2.0	4.8	4.8	16.5	16.5	0.0001	0.0048
W303	Lanunn	21/09/21	R	-0.07	0.1	1023	0.1	0.1	2.0	2.0	4.3	4.3	16.7	16.7	0.0001	0.0043
		28/09/21	R	0.02	0.1	1007	0.1	0.1	2.0	2.0	1.1	0.4	17.8	20.3	0.0001	0.0004
		05/10/21	R	0.07	0.2	993	0.1	0.1	2.0	2.0	4.6	1.7	17.5	19.1	0.0002	0.0034
		24/08/21	R	0.07	0.1	1024	0.1	0.1	2.0	2.0	8.5	8.4	12.0	12.0	0.0001	0.0084
		07/09/21	F	-0.04	0.1	1014	0.1	0.1	2.0	2.0	7.1	7.1	12.8	12.8	0.0001	0.0071
WS06	Landfill	14/09/21	F	0.12	0.1	1004	0.1	0.1	2.0	2.0	6.0	6.0	14.9	14.9	0.0001	0.0060
W 306	Lanum	21/09/21	R	-0.07	0.1	1024	0.1	0.1	2.0	2.0	7.1	7.0	13.5	13.6	0.0001	0.0070
		28/09/21	R	0.04	0.2	1007	0.1	0.1	2.0	2.0	5.2	5.2	15.6	15.6	0.0002	0.0104
		05/10/21	R	-0.05	0.1	993	0.1	0.1	2.0	2.0	7.5	7.4	13.8	13.8	0.0001	0.0074
		24/08/21	R	0.12	0.2	1025	0.1	0.1	2.0	2.0	3.1	3.1	16.5	17.5	0.0002	0.0062
		07/09/21	F	0.04	0.2	1015	0.1	0.1	2.0	2.0	3.9	3.9	16.4	16.4	0.0002	0.0078
WS07	Landfill	14/09/21	F	0.02	0.1	1004	0.1	0.1	2.0	2.0	3.4	3.4	17.5	17.5	0.0001	0.0034
******	Lanam	21/09/21	R	0.02	0.2	1024	0.1	0.1	2.0	2.0	3.1	3.1	17.6	17.6	0.0002	0.0062
		28/09/21	R	0.04	0.2	1007	0.1	0.1	2.0	2.0	2.4	2.4	18.8	18.8	0.0002	0.0048
		05/10/21	R	0.07	0.2	993	0.1	0.1	2.0	2.0	1.8	1.8	19.2	19.4	0.0002	0.0036
		24/08/21	R	0.02	0.2	1025	0.1	0.1	2.0	2.0	7.5	7.5	14.8	14.8	0.0002	0.0150
	Landfill	07/09/21	F	-0.05	0.1	1015	0.1	0.1	2.0	2.0	7.2	7.2	14.4	14.5	0.0001	0.0072
WS08		14/09/21	F	0.02	0.1	1005	0.1	0.1	2.0	2.0	7.2	7.2	15.1	15.1	0.0001	0.0072
		21/09/21	R	-0.05	0.2	1024	0.1	0.1	2.0	2.0	7.0	7.0	14.5	14.5	0.0002	0.0140
		28/09/21	R	-0.07	0.1	1007	0.1	0.1	2.0	2.0	5.8	5.8	16.6	16.7	0.0001	0.0058
		05/10/21	R	0.05	0.2	994	0.1	0.1	2.0	2.0	5.7	5.7	15.8	15.8	0.0002	0.0114
		24/08/21	R	0.02	0.1	1025	0.1	0.1	2.0	2.0	3.1	3.1	18.3	18.4	0.0001	0.0031
	Landfill	07/09/21	F	0.07	0.2	1015	0.1	0.1	2.0	2.0	3.2	3.2	17.5	17.5	0.0002	0.0064
WS09		14/09/21	F	-0.11	0.1	1004	0.1	0.1	2.0	2.0	3.4	3.4	18.5	18.5	0.0001	0.0034
		21/09/21	R	-0.12	0.2	1024	0.1	0.1	2.0	2.0	3.3	3.3	17.9	17.9	0.0002	0.0066
		28/09/21	R	-0.05	0.2	1007	0.1	0.1	2.0	2.0	3.5	3.5	18.2	18.3	0.0002	0.0070
		05/10/21	R	0.14	0.2	994	0.1	0.1	2.0	2.0	3.9	3.9	18.0	18.0	0.0002	0.0078
	Landfill	24/08/21	R	0.04	0.2	1024	0.1	0.1	2.0	2.0	6.1	6.1	12.4	12.4	0.0002	0.0122
		07/09/21	F	0.02	0.2	1015	0.1	0.1	2.0	2.0	3.7	3.6	14.4	15.7	0.0002	0.0072
WS10		14/09/21	F	-0.05	0.1	1005	0.1	0.1	2.0	2.0	9.1	4.0	13.6	15.9	0.0001	0.0040
-		21/09/21	R	0.07	0.2	1025	0.1	0.1	2.0	2.0	3.5	3.5	16.3	16.3	0.0002	0.0070
		28/09/21	R	0.05	0.2	1007	0.1	0.1	2.0	2.0	5.4	5.4	14.8	14.9	0.0002	0.0108
		05/10/21	R	0.02	0.2	994	0.1	0.1	2.0	2.0	1.0	1.0	19.4	20.3	0.0002	0.0020

Hydrock Bulk Gases Ternary Plot Analysis

Client:	Oxford University Development Ltd.
Site Name:	Begbroke
Contract Number:	C-19114-C
Assessment Date:	08/10/2021

Key:										
	Indicative of landfill gas migration (assuming source composition 60% methane / 40% carbon dioxide) as it displaces air from the ground. Assumes no chemical changes. Below 20% methane and 13% carbon dioxide relationship for landfill gas migration unclear. Arrow shows direction of dilution with fresh air									
0	Microbial respiration of organic material in soil. Zero methane and low flow. (Direct consumption of oxygen to produce carbon dioxide)									
	Potentially indicative of methane outgassing from groundwater to borehole headspace (Hydrock dataset).									
<u></u>	Potentially indicative of microbial degradation of LNAPL vapours in unsaturated zone. (Hydrock dataset)									
	Indicative of a landfill gas source (e.g 60% CH ₄ / 40% CO ₂)									
	Indicative of geogenic gas (e.g mine-workings)									
	Fresh air									
	Additional Notes									
oxygen to produce carbon o	elationship between CO_2 and O_2 indicates depletion of lioxide via microbial respiration using the following equation: In this scenerio CO_2 + O_2 should be around 21% (i.e. the O_2 ohere)									
decomposition in small anal methanogens. Oxygen conc	ounts of methane up to about 3% caused by anaerobic erobic hotspots or the reduction of carbon dioxide by entrations may be depleted but in this scenario oxygen be emitted quickly from the ground and it does not pose a									
After										

Wilson et al, 2018. Ground Gas Information Sheet No. 1

09/07/2019

Version:

Hydrock datasets (methane outgassing / LNAPL vapour degradation)

Appendix F Contamination Test Results and GQRA

Contamination Test Results

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-17130

Project / Site name: Begbroke Samples received on: 10/02/2023

Your job number: 19114 Samples instructed on/ 10/02/2023

Analysis started on:

Your order number: PO24069 Analysis completed by: 22/02/2023

Report Issue Number: 1 Report issued on: 22/02/2023

Samples Analysed: 8 soil samples

Signed:

Joanna Wawrzeczko Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2582360	2582361	2582362	2582363	2582364
Sample Reference				TP317	TP315	TP303	TP304	TP309
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.10	0.80	0.10
Date Sampled		02/02/2023	02/02/2023	02/02/2023	31/01/2023	06/02/2023		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Time Taken			1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	16	15	16	21
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
	-							
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSO	DSO	DSO	DSO	DSO
·								
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	8	8	8.1	7
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate				0.011				
Equivalent)	g/l	0.00125	MCERTS	0.011	0.019	0.0031	0.0053	0.0051
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.033	0.0039	0.015	0.0043	0.031
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	-	-	-
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/kg	0.1	ISO 17025	-	-	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
W 77 7 2		N.						
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80

Lab Sample Number				2582360	2582361	2582362	2582363	2582364
Sample Reference				TP317	TP315	TP303	TP304	TP309
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.10	0.80	0.10
Date Sampled				02/02/2023	02/02/2023	02/02/2023	31/01/2023	06/02/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
		Ε.		топе варриев	Hone Supplied	топе варриса	топе варриев	попе варриев
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-			_	-	3	_	_
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	32	35	62	21
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.93	1.1	1.1	1.6	0.95
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.3	0.8	< 0.2	1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	32	40	40	49	34
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	40	41	50	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	9.4	19	16	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	12	160	18	21
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	31	28	58	19
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	49	70	70	89	51
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	58	41	65	89	55
	-		I .	50		- 00	03	55
Monoaromatics & Oxygenates								
Benzene	μg/kg	5	MCERTS	< 5.0	_	< 5.0	_	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0		< 5.0		< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	-	< 5.0	-	< 5.0
'	μg/kg	5	MCERTS	< 5.0	-	< 5.0		< 5.0
p & m-xylene o-xylene	μg/kg	5	MCERTS	< 5.0	-	< 5.0	<u> </u>	< 5.0
,	μg/kg	5	NONE		-			
MTBE (Methyl Tertiary Butyl Ether)	P9/119		HOME	< 5.0	-	< 5.0	-	< 5.0
Datus lavore Harden andre on								
Petroleum Hydrocarbons	malka	0.001	NONE	. 0.004	ſ	0.004		. 0.004
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg			< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	< 8.4	-	< 8.4	-	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	-	< 10	-	< 10
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	< 8.4	-	< 8.4	-	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) FH CLI+HS 1D AR	mg/kg	10	NONE	< 10	-	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	< 10	-	< 10	-	< 10
		-	-	-				-
TPH Total C5 - C44 EH_CU+HS_ID_TOTAL	mg/kg	10	NONE	< 10	-	< 10	_	< 10
BcoS_ID_TOTAL				- 10	1	- 10		- 10

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number				2582365	2582366	2582367
Sample Reference				TP309	TP310	TP312
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	1.00	0.40	0.10			
Date Sampled	06/02/2023	06/02/2023	06/02/2023			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	30	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.3	17	21
Total mass of sample received	kg	0.001	NONE	1	1	1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSO	DSO	DSO
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	8.5	7.7	7.6
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.005	0.0028	0.0067
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0015	0.0073	0.026
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERIS	< 0.05	< 0.05	< 0.05
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80

Lab Sample Number				2582365	2582366	2582367
Sample Reference				TP309	TP310	TP312
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.40	0.10
Date Sampled				06/02/2023	06/02/2023	06/02/2023
Time Taken	None Supplied	None Supplied	None Supplied			
		Ε.		топе варриеа	топе варриса	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	57	16	17
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1	1
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.4	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	52	33	34
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	52	33	35
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9	12	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	11	12	22
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	20	19
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (agua regia extractable)	mg/kg	1	MCERTS	100	51	53
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	45	57
. (. 4						
Monoaromatics & Oxygenates						
Benzene	μg/kg	5	MCERTS	_	_	< 5.0
Toluene	μg/kg	5	MCERTS	_	_	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	_	-	< 5.0
p & m-xylene	μg/kg	5	MCERTS	_	_	< 5.0
o-xylene	μg/kg	5	MCERTS	_	_	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	_	_	< 5.0
						1 5.10
Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >EC5 - EC6 _{HS 1D AL}	mg/kg	0.001	NONE	_	_	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	NONE			< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS 1D AL	mg/kg	0.001	NONE	_		< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	_	_	< 1.0
TPH-CWG - Aliphatic >EC12 - EC12 EH_CJ_1D_AL	mg/kg	2	MCERTS		-	< 2.0
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	8	MCERTS		-	
	mg/kg	8	MCERTS	-	-	< 8.0
TPH-CWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	-	-	< 8.0
TPH-CWG - Aliphatic > EC16 - EC35 EH_CU_1D_AL	mg/kg	8.4	NONE	-	-	< 10
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	10	NONE			< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_ID_AL	mg/kg	10	NONE	-	-	< 10
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	INOINE	-	-	< 10
TRU 0110 1 1 505		0.001	NONE			
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR}	mg/kg	0.001	NONE	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	NONE	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	NONE	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	-	-	< 10
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	< 10
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 23-17130 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2582360	TP317	None Supplied	0.1	Brown clay and sand with gravel and vegetation.
2582361	TP315	None Supplied	0.5	Brown clay and sand with gravel.
2582362	TP303	None Supplied	0.1	Brown clay and sand with gravel and vegetation.
2582363	TP304	None Supplied	0.8	Brown clay and sand with gravel and vegetation.
2582364	TP309	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2582365	TP309	None Supplied	1	Brown gravelly sand with stones.
2582366	TP310	None Supplied	0.4	Brown clay and sand with gravel and vegetation.
2582367	TP312	None Supplied	0.1	Brown clay and sand with gravel and vegetation.

Analytical Report Number: 23-17130 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS

Analytical Report Number: 23-17130 Project / Site name: Begbroke

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analyti	tical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
------------------------------	--------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil*, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

Sample Deviation Report

Analytical Report Number: 23-17130 Project / Site name: Begbroke

 $This \ deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please$ note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

key. a - No sampling date b - incorrect container c - nording time d - neadspace e - remperature										
Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation			
TP303	None Supplied	S	2582362	С	Free cyanide in soil	L080-PL	С			
TP304	None Supplied	S	2582363	С	Free cyanide in soil	L080-PL	с			
TP315	None Supplied	S	2582361	С	Free cyanide in soil	L080-PL	с			
TP317	None Supplied	S	2582360	С	Free cyanide in soil	L080-PL	С			

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park

Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-85537

Project / Site name: Begbroke Samples received on: 21/09/2022

Your job number: 19114 Samples instructed on/ 21/09/2022

Analysis started on:

Your order number: PO19941 Analysis completed by: 28/09/2022

Report Issue Number: 1 **Report issued on:** 28/09/2022

Samples Analysed: 6 soil samples

Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2432695	2432696	2432697	2432698	2432699
Sample Reference				HP201	HP202	HP203	HP204	HP205
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.10	0.10	0.10
Date Sampled				14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
		Ξ.						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	약	Sta					
(Soil Analysis)	Ŗ	ete	itat					
		<u> </u>	ion					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	11	13	8.9	13
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.8	0.8	0.8
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSA	DSA	DSA	DSA	DSA
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	7.1	7.7	7.9	7.5
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate				0.014	0.015	0.0096	0.0053	0.019
Equivalent)	g/l	0.00125	MCERTS	0.014	0.015	0.0096	0.0053	0.019
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.035	0.05	0.021	0.02	0.042
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	1.3	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.59	2.6	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.2	0.81	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.79	3.2	0.27	0.28	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.68	3.1	0.25	0.25	< 0.05
	mg/kg	0.05	MCERTS	0.56	2.3	0.18	0.25	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS		1.7	0.23		
Chrysene	mg/kg	0.05	MCERTS	0.53			0.25	< 0.05
Benzo(b)fluoranthene		0.05	MCERTS	0.67	2	0.27	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg			0.27	1.5	0.14	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.51	1.8	0.24	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.33	1.2	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.38	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.51	1.6	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.64	22.1	1.58	1.03	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	25	30	23	18	21
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.2	1.1	0.98	0.85
Boron (water soluble)	mg/kg	0.2	MCERTS	2	3.9	1.4	2.3	3.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	1.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	2	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	30	39	36	30	26
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	39	36	30	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	30	23	21	22
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	50	44	30	47
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25	27	27	26	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51	55	54	44	42
	mg/kg	1	MCERTS					
Zinc (aqua regia extractable)	g, kg			130	260	130	110	150

Lab Sample Number				2432695	2432696	2432697	2432698	2432699
Sample Reference				HP201	HP202	HP203	HP204	HP205
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.10	0.10	0.10
Date Sampled				14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	1		1	топе заррнеа	топе заррнеа	чоне заррнеа	топе заррнеа	нопе зарряеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	-		•					
Monoaromatics & Oxygenates	I		MCEDIC					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg 	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 _{HS 1D AL}	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 +EC10 _{HS_1D_AL} TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	2.5	< 2.0
TPH-CWG - Aliphatic >EC12 - EC10 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC10 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS					
TPH-CWG - Aliphatic (ECS - ECS3) EH_CU+HS_ID_AL TPH-CWG - Aliphatic (ECS - EC44) EH_CU+HS_ID_AL	mg/kg	10	NONE	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10
TITI CWG Allphatic (LCS LC++) EH_CU+HS_ID_AL	9/119	10	HOHE	< 10	< 10	< 10	< 10	< 10
TOUL CIVIC Assessment FCF FC7	mg/kg	0.001	MCERTS	0.001	0.001	0.004	0.004	0.004
TPH-CWG - Argentia > EC7 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Argentia > EC10 HS_1D_AR	mg/kg	1	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Argentia > EC12 - EC12 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Argentia > EC16 = EC16 EH_CU_1D_AR	mg/kg	10	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}		10	MCERTS	< 10	18	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg			< 10	44	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4 10	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg mg/kg	10	MCERTS NONE	< 10	63	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	< 10	63	< 10	< 10	< 10
TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	< 10	63	< 10	< 10	< 10
VOCs			****	1	1			ı
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Cis-1,2-dichloroethene	-	1	MCERTS	-	< 1.0	-	-	< 1.0
	μg/kg							< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg μg/kg	1 1 1	MCERTS MCERTS	-	< 1.0 < 1.0	-	-	< 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane	μg/kg μg/kg μg/kg μg/kg	1 1 1	MCERTS MCERTS MCERTS	-	< 1.0 < 1.0 < 1.0	-	-	< 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg μg/kg μg/kg μg/kg	1 1 1 1	MCERTS MCERTS MCERTS MCERTS	- - -	< 1.0 < 1.0 < 1.0 < 1.0	- - -	- - -	< 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS	- - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0		- - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,1-Dichloropropene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		- - - - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	1 1 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	- - - -	- - - -	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0

Sample Reference Sample Number Depth (m) Date Sampled Time Taken Analytical Parameter				HP201 None Supplied 0.10	HP202 None Supplied	HP203 None Supplied	HP204 None Supplied	HP205
Depth (m) Date Sampled Time Taken					None Supplied	None Supplied	None Cumplied	
Date Sampled Time Taken				0.10			None Supplied	None Supplied
Time Taken				0.10	0.10	0.10	0.10	0.10
				14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Analytical Parameter				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
(Soil Analysis)	Units	Limit of detection	Accreditation Status					
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	< 1.0	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	< 1.0

SVOCs

51003								
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	-	< 0.2

Lab Sample Number				2432695	2432696	2432697	2432698	2432699
Sample Reference				HP201	HP202	HP203	HP204	HP205
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.10	0.10	0.10
Date Sampled				14/09/2022	14/09/2022	14/09/2022	14/09/2022	14/09/2022
Time Taken				None Supplied				
		Lim	>					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	_	< 0.1	_	_	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	_	< 0.2	_	_	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	_	< 0.1	-	_	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	< 0.1	-	_	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	_	< 0.1	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	< 0.1	_	_	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	_	< 0.05	-	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	< 0.2	_	_	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	_	< 0.2	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	_	< 0.3	_	_	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	_	< 0.2	_	_	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	_	< 0.2	_	_	< 0.2
Fluorene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	_	< 0.3	_	_	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS		< 0.2	_		< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS		< 0.3	_		< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	_	2.6	_	_	< 0.05
Anthracene	mg/kg	0.05	MCERTS		0.81	_		< 0.05
Carbazole	mg/kg	0.3	MCERTS		< 0.3	-	-	< 0.03
Dibutyl phthalate	mg/kg	0.2	MCERTS	_	< 0.2	-	_	< 0.2
Anthraquinone	mg/kg	0.2	MCERTS	-	< 0.2	-	-	< 0.2
Fluoranthene	mg/kg	0.05	MCERTS		3.2		-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	_	3.1	-	_	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	-	< 0.03
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	2.3	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS		1.7	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	2	-	-	< 0.05
	mg/kg	0.05	MCERTS	-		-	-	
Benzo(x)gurrana	mg/kg	0.05	MCERTS	-	1.5	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	1.8	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS					< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	-	0.38	-	-	< 0.05
Benzo(ghi)perylene	.iig/ikg	0.03	HOLINIS	-	1.6	-	-	< 0.05

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number		2432700		
Sample Reference				HP206
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				14/09/2022
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	11
Total mass of sample received	kg	0.001	NONE	0.8

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSA

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.5
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate				
Equivalent)	g/l	0.00125	MCERTS	0.0066
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.022

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0

Speciated PAHs

mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	0.28
mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	0.51
mg/kg	0.05	MCERTS	0.46
mg/kg	0.05	MCERTS	0.38
mg/kg	0.05	MCERTS	0.33
mg/kg	0.05	MCERTS	0.48
mg/kg	0.05	MCERTS	0.16
mg/kg	0.05	MCERTS	0.37
mg/kg	0.05	MCERTS	0.23
mg/kg	0.05	MCERTS	< 0.05
mg/kg	0.05	MCERTS	0.33
	mg/kg	mg/kg 0.05 mg/kg 0.05	mg/kg 0.05 MCERTS mg/kg 0.05 MCERTS

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.53

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	32
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8
Chromium (III)	mg/kg	1	NONE	31
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	130

Analytical Report Number: 22-85537 Project / Site name: Begbroke

Lab Sample Number				2432700
Sample Reference				HP206
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				14/09/2022
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				
Benzene	μg/kg	1	MCERTS	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_ID_AL}	mg/kg	10	NONE	< 10
TRU CHC Assessive FCF FC7	//	0.001	MCEDIC	2.221
TPH-CWG - Aromatic > EC5 - EC7 _{HS_1D_AR}	mg/kg mg/kg	0.001	MCERTS MCERTS	< 0.001
TPH-CWG - Aromatic > EC9 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 0.001
	mg/kg	2	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR} TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 2.0 < 10
	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic > EC21 - EC35 _{EH_CU_1D_AR} TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	< 10 < 8.4
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU_1D_AR} TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_ID_AR TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_ID_AR	mg/kg	10	NONE	< 10

VOCs

TPH Total C5 - C44 EH_CU+HS_1D_TOTAL

VOCS				
Chloromethane	μg/kg	1	ISO 17025	-
Chloroethane	μg/kg	1	NONE	-
Bromomethane	μg/kg	1	ISO 17025	-
Vinyl Chloride	μg/kg	1	NONE	-
Trichlorofluoromethane	μg/kg	1	NONE	-
1,1-Dichloroethene	μg/kg	1	NONE	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-
Trichloromethane	μg/kg	1	MCERTS	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-
Benzene	μg/kg	1	MCERTS	-

mg/kg

NONE

< 10

Lab Sample Number				2432700
Sample Reference				HP206
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				14/09/2022
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Tetrachloromethane	μg/kg	1	MCERTS	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-
Trichloroethene	μg/kg	1	MCERTS	-
Dibromomethane	μg/kg	1	MCERTS	-
Bromodichloromethane	μg/kg	1	MCERTS	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-
Toluene	μg/kg	1	MCERTS	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-
Dibromochloromethane	μg/kg	1	ISO 17025	-
Tetrachloroethene	μg/kg	1	NONE	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-
Chlorobenzene	μg/kg	1	MCERTS	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-
Ethylbenzene	μg/kg	1	MCERTS	-
p & m-Xylene	μg/kg	1	MCERTS	-
Styrene	μg/kg	1	MCERTS	-
Tribromomethane	μg/kg	1	NONE	-
o-Xylene	μg/kg	1	MCERTS	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-
Isopropylbenzene	μg/kg	1	MCERTS	-
Bromobenzene	μg/kg	1	MCERTS	-
n-Propylbenzene	μg/kg	1	ISO 17025	-
2-Chlorotoluene	μg/kg	1	MCERTS	-
4-Chlorotoluene	μg/kg	1	MCERTS	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-
tert-Butylbenzene	μg/kg	1	MCERTS	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-
sec-Butylbenzene	μg/kg	1	MCERTS	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-
Butylbenzene	μg/kg	1	MCERTS	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-

SVOCs

Aniline	mg/kg	0.1	NONE	-
Phenol	mg/kg	0.2	ISO 17025	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-
2-Methylphenol	mg/kg	0.3	MCERTS	-
Hexachloroethane	mg/kg	0.05	MCERTS	-
Nitrobenzene	mg/kg	0.3	MCERTS	-
4-Methylphenol	mg/kg	0.2	NONE	-

Lab Camula Number				2422700
Lab Sample Number				2432700
Sample Reference				HP206
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				14/09/2022
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Isophorone	mg/kg	0.2	MCERTS	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-
Naphthalene	mg/kg	0.05	MCERTS	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-
4-Chloroaniline	mg/kg	0.1	NONE	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-
Acenaphthylene	mg/kg	0.05	MCERTS	-
Acenaphthene	mg/kg	0.05	MCERTS	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-
Dibenzofuran	mg/kg	0.2	MCERTS	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-
Fluorene	mg/kg	0.05	MCERTS	-
Azobenzene	mg/kg	0.3	MCERTS	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-
Phenanthrene	mg/kg	0.05	MCERTS	-
Anthracene	mg/kg	0.05	MCERTS	-
Carbazole	mg/kg	0.3	MCERTS	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-
Anthraquinone	mg/kg	0.3	MCERTS	-
Fluoranthene	mg/kg	0.05	MCERTS	-
Pyrene	mg/kg	0.05	MCERTS	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-
Chrysene	mg/kg	0.05	MCERTS	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 22-85537 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2432695	HP201	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2432696	HP202	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2432697	HP203	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2432698	HP204	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2432699	HP205	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2432700	HP206	None Supplied	0.1	Brown loam and sand with gravel and vegetation.

Analytical Report Number: 22-85537 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES, Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

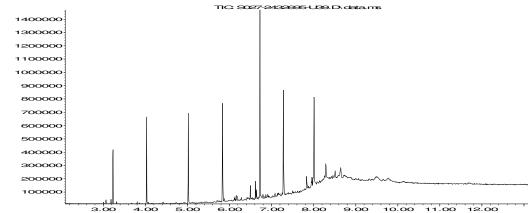
Analytical Report Number: 22-85537 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

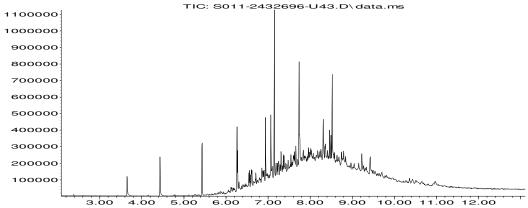
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

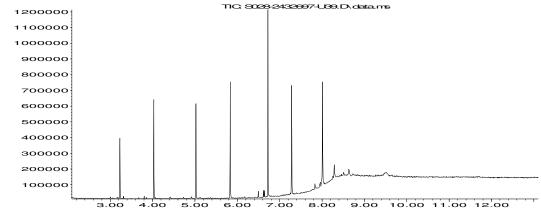

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

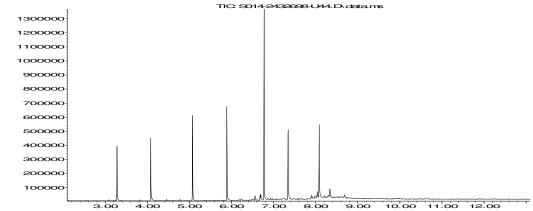
Information in Support of Analytical Results

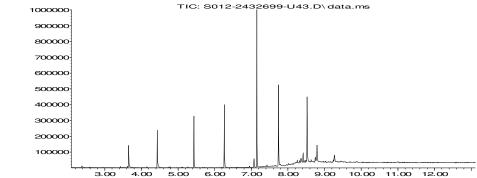

List of HWOL Acronyms and Operators

		List of TWOL Actoryths and Operators
Acror	nym Descr	iptions
HS	S Heads	pace Analysis
MS	S Mass :	spectrometry
FIC	D Flame	Ionisation Detector
GC	C Gas Ch	nromatography
EH	H Extrac	table Hydrocarbons (i.e. everything extracted by the solvent(s))
CL	J Clean-	up - e.g. by Florisil®, silica gel
10	GC - Si	ingle coil/column gas chromatography
20	GC-GC	C- Double coil/column gas chromatography
Tot	al Alipha	itics & Aromatics
AL	L Alipha	itics
AF	R Aroma	atics
#1	1 EH_20	D_Total but with humics mathematically subtracted
#2	2 EH_2Γ	D_Total but with fatty acids mathematically subtracted
_	Opera	tor - understore to separate acronyms (exception for +)
+	Opera	tor to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

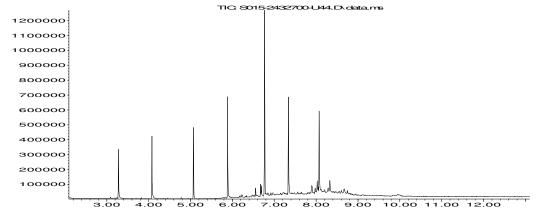


Time-->




Time-->

Time-->



Time-->

Time-->

Time-->

Sample Deviation Report

Analytical Report Number : 22-85537 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Toct Dof	Test Deviation
HP201	None Supplied	S	2432695	С	Free cyanide in soil	L080-PL	С
HP202	None Supplied	S	2432696	С	Free cyanide in soil	L080-PL	С
HP203	None Supplied	S	2432697	С	Free cyanide in soil	L080-PL	С
HP204	None Supplied	S	2432698	С	Free cyanide in soil	L080-PL	С
HP205	None Supplied	S	2432699	С	Free cyanide in soil	L080-PL	С
HP206	None Supplied	S	2432700	С	Free cyanide in soil	L080-PL	С

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

06/09/2022

Analytical Report Number: 22-82372

Project / Site name: Begbroke Samples received on: 06/09/2022

Your job number: 19174 Samples instructed on/

Analysis started on:

Your order number: PO19941 Analysis completed by: 14/09/2022

Report Issue Number: 1 Report issued on: 14/09/2022

Samples Analysed: 15 soil samples

Signed:

Claire Brown-Crociquia Group Customer Services Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2414894	2414895	2414896	2414897	2414898
Sample Reference		WS213	WS213	WS205	WS205	WS209		
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.60	0.30
Date Sampled				28/08/2022	22/08/2022	22/08/2022	22/08/2022	22/08/2022
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	2.1	4.1	11	15	7.4
Total mass of sample received	kg	0.001	NONE	1.1	1.1	1.1	1.1	1.1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SFS	SFS	SFS	SFS	SFS
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	7.9	8.0	7.4
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0061	0.0052	0.0095	0.0077	0.011
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.017	0.0057	0.023	0.0095	0.031
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs		•						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.25	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.28	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.2	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.18	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	-							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	0.91	< 0.80	< 0.80
				. 3.00	. 3.00			

Lab Sample Number				2414894	2414895	2414896	2414897	2414898
Sample Reference				WS213	WS213	WS205	WS205	WS209
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.60	0.30
Date Sampled				28/08/2022	22/08/2022	22/08/2022	22/08/2022	22/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	•	•		=			
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	67	64	35	34	36
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.6	1.6	2	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.7	0.9	1.3	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	69	58	49	64	38
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	70	58	50	64	38
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	14	19	19	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	20	40	25	31
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
, , , , ,	mg/kg	1	MCERTS	< 0.3 40	38	35	< 0.3 45	25
Nickel (aqua regia extractable)	mg/kg	1	MCERTS					
Selenium (aqua regia extractable)		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	250	110	83	100	68
Zinc (aqua regia extractable)	IIIg/kg	1	MCERTS	100	100	120	120	95
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	_	-	-	-	-
TPH-CWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	_	-	_	-	-
TPH-CWG - Aliphatic > EC12 - EC16 EH_CU_ID_AL	mg/kg	2	MCERTS	_	-	-	_	-
TPH-CWG - Aliphatic > EC16 - EC21 EH CU ID AL	mg/kg	8	MCERTS	_	-	-	_	-
TPH-CWG - Aliphatic > EC21 - EC35 EH_CU_ID_AL	mg/kg	8	MCERTS	_	-	-	_	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	_	-	-	_	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	_	_	_	_	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	_	_	_	_	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE		-	-	-	-
EH_LU+H5_ID_AL	3, 3							
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D AR	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	_	-	_	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_ID_AR	mg/kg	10	NONE	_	-	-	_	-
, - / Li_comb_tb_Ar					1		1	
TPH Total C5 - C44 EH CU+HS 1D TOTAL	mg/kg	10	NONE	-	-	-	_	-
	.515		1		_		_	-

Sample Reference	Lah Sampla Number			-	2414904	2/1/2005	2414906	2/1/2007	2414000
Sample Number Depth (m)	Lab Sample Number	2414894 WS213	2414895 WS213	2414896 WS205	2414897 WS205	2414898 ws200			
Depth (m)	•								
Detail Sampled	-								
None Supplied None Supplie									
Analytical Parameter (Soil Analysis)									
VOCATION	Time raken	1	=		чоне заррнеа	чоне заррнеа	чоне заррнеа	чоне заррнеа	чоне заррнеа
1490 14 150 1700 1	Analytical Parameter (Soil Analysis)	Units	mit of detection	Accreditation Status					
1490 14 150 1700 1	VOCs								
Chlorosthane		μg/kg	1	ISO 17025	_	_	-	-	-
Bernomethane			1	NONE	-	-	-	-	_
Vary Cloride			1	ISO 17025	_	_	-	_	_
Time Technolomomethane			1	NONE	_	_	-	-	-
1,1 Dictionsethene	,	μg/kg	1	NONE	-	-	-	-	-
CS-1_2-dichloropteme	1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
MIDE (Methyl Tertary Bulyl Ether)	1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	-
1,1-Dichloroethane	Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
1.2-Dichloropropone	MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		-	-
Titchkoroethane	1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	=
1,1-1 Trichloroethane	2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1.1-Dichloropropene	1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Paris 1,2-dichloroethene	1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	ı	-	-
Derzene	1,1-Dichloropropene	μg/kg	1		-	-	-	-	-
Tetrachioromethane	Trans-1,2-dichloroethene				-	-	-	-	-
1,2-Dichloropropane	Benzene				-	-	-	-	-
Trichloroethene					-	-	-	-	-
Dibromomethane 19g/kg 1 MCRTS -					-	-	-	-	-
Second Childrom Channe 198/16 1 MCERTS					-	-	-	-	-
1 150 17025									
Trans-1,3-dichloropropene									
Toluene 19/kg 1 MCERTS - - - - - - - - -									
1,1,2-Trichloroethane 1,3-Dichloropropane 1,3-Bichloropropane 1,3-Bichloropene 1,3-Bi									
1,3-Dichloropropane									
Dibromochloromethane yg/kg 1 ISO 17025 - - - - - - - - -									
Tetrachloroethene µg/kg 1 NONE									
1,2-Dibromethane 1,1,1,1,2-Tetrachloroethane 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,									
Spring 1 MCERTS - - - - - - - - -									_
1,1,1,2-Tetrachloroethane	,								
Ethylbenzene						_			_
P & m-Xylene Pg/kg 1 MCERTS - - - - - -					_	_	_	_	_
Figure F			1		_	_	-	_	_
Tribromomethane			1	MCERTS	_	_	-	-	-
Description	,		1	NONE	-	-	-	-	-
Figure F	o-Xylene		1	MCERTS	-	-	-	-	-
Bromobenzene μg/kg 1 MCERTS	1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
μg/kg 1 ISO 17025 -		μg/kg	1	MCERTS	-	-	-	-	-
2-Chlorotoluene	Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene μg/kg 1 MCERTS	n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
1,3,5-Trimethylbenzene μg/kg 1 ISO 17025	2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
μg/kg 1 MCERTS - - - - - - - - -	4-Chlorotoluene	μg/kg	1	MCERTS	-	-	<u>-</u>	-	-
1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 -	1,3,5-Trimethylbenzene	μg/kg			-	-	-	-	-
μg/kg 1 MCERTS - - - - - - - - -	tert-Butylbenzene	μg/kg	1		-	-	-	-	-
1,3-Dichlorobenzene μg/kg 1 ISO 17025	1,2,4-Trimethylbenzene	μg/kg			-	-	-	-	-
p-Isopropyltoluene μg/kg 1 ISO 17025	sec-Butylbenzene				-	-	-	-	-
1,2-Dichlorobenzene μg/kg 1 MCERTS	1,3-Dichlorobenzene				-	-	-	-	-
1,4-Dichlorobenzene μg/kg 1 MCERTS	p-Isopropyltoluene				-	-	-	-	-
-, / - / - / - / - / - / - / - / - / - /	1,2-Dichlorobenzene								-
Butylbenzene µg/kg 1 MCERTS									
	Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-

Lab Sample Number				2414894	2414895	2414896	2414897	2414898
Sample Reference				WS213	WS213	WS205	WS205	WS209
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.60	0.30
Date Sampled				28/08/2022	22/08/2022	22/08/2022	22/08/2022	22/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Lab Sample Number				2414894	2414895	2414896	2414897	2414898
Sample Reference				WS213	WS213	WS205	WS205	WS209
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.60	0.30
Date Sampled				28/08/2022	22/08/2022	22/08/2022	22/08/2022	22/08/2022
Time Taken				None Supplied				
		Ę						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	redi					
(Soil Analysis)	Ŗ	ete	is ta					
		ti i	9					
	<u> </u>	3	<u> </u>				<u> </u>	
SVOCs								
	ma/ka	0.1	NONE	ı	I	1		ı
Aniline	mg/kg			-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	_	-	_	-	_
Pyrene	mg/kg	0.05	MCERTS	_	-	_	-	_
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	_	-	-	-	_
Benzo(a)anthracene	mg/kg	0.05	MCERTS		-	-	-	
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS		_		_	_
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_	-	_	-	_
	, ,		<u> </u>					

Lab Sample Number				2414894	2414895	2414896	2414897	2414898
Sample Reference				WS213	WS213	WS205	WS205	WS209
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	0.50	0.20	0.60	0.30			
Date Sampled	28/08/2022	22/08/2022	22/08/2022	22/08/2022	22/08/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Pesticide and Herbicide Screen

	GCMS Pesticide Screen		N/A	NONE	-	-	None Detected	-	-
--	-----------------------	--	-----	------	---	---	---------------	---	---

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	2.8	2.8	5.2	6.5	2.4
Total mass of sample received	kg	0.001	NONE	1.1	1.1	1.1	1.1	1.1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SFS	SFS	SFS	SFS	SFS
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	7.7	7.9	8.1	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.007	0.006	0.01	0.0072	0.012
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.018	0.02	0.027	0.014	0.019
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
		I.	I	` 0.00	` 0.00	` 0.00	` 0.00	1 0.00

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Time raken	1	_	1	чоне заррнеа	топс Заррпса	чоне заррнеа	попс зарряса	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	-	š						
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	63	52	67	79	47
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.4	1.6	1.6	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.9	2.4	1.7	1.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	50	48	56	60	47
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	52	49	57	61	48
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	14	19	16	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	35	55	34	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33	31	39	44	32
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	91	90	100	110	90
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	96	86	96	92	110
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	_	-	_	-	_
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS. 1D. AL	mg/kg	0.001	MCERTS	_	-	-	_	_
TPH-CWG - Aliphatic > EC6 - EC8 HS 1D AL	mg/kg	0.001	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >ECO - ECO HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	_	_	-	-	
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS		_	-	_	
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS		-			
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	<u>-</u>	_	<u> </u>	<u>-</u>	-
TPH-CWG - Aliphatic >EC21 - EC21 _{EH_CU_1D_AL} TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS		-		-	-
	mg/kg	10	MCERTS	-	-		-	
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE		-	-		-
TPH CMC Aliphatic (FCE FCSE)				-	_	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg mg/kg	10 10	MCERTS NONE	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	INOINE	-	-	-	-	-
TRU GMC A FOF TOT	pg = /1	0.001	MCERTC		1		1	
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	-	-	-
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-
			•		_		•	

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		ion	=					
VOCs							-	
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chloroethane	μg/kg	1	NONE	-	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg 	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg 	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg 	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg 	1	MCERTS	-	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025 ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane 1,3-Dichloropropane	μg/kg	1	ISO 17025				_	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	<u>-</u>		-
Tetrachloroethene	µg/kg	1	NONE			_	_	
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	_		_	_
Chlorobenzene	μg/kg	1	MCERTS	_	_	_	_	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	_
Ethylbenzene	μg/kg	1	MCERTS	_	_	_	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	_	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
	+							_
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)					0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
				J				
SVOCs		0.4	NONE				1	
Aniline	mg/kg	0.1	NONE ISO 17025	-	-	-	-	-
Phenol	mg/kg			-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg			-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether 2-Methylphenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Z-Methylphenoi Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	-
Nitrobenzene	mg/kg	0.03	MCERTS	-	-	-		-
4-Methylphenol	mg/kg	0.2	NONE			_	_	_
Isophorone	mg/kg	0.2	MCERTS				_	_
2-Nitrophenol	mg/kg	0.3	MCERTS	<u> </u>	<u>-</u>	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS				_	_
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	_	_	_	_
Naphthalene	mg/kg	0.05	MCERTS				_	
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	_	_	_	_
4-Chloroaniline	mg/kg	0.1	NONE	_	_	_	_	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	_	_	_	_
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	_	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	ı	-	1	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	-
Anthracene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.05	MCERTS	-	-	-	<u>-</u>	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	<u>-</u>	-
Pyrene Butyl benzyl phthalate	mg/kg	0.03	ISO 17025	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-		-
Chrysene	mg/kg	0.05	MCERTS	-	<u>-</u>	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	<u> </u>	<u>-</u>	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	_	-
201120(11) Indoording test	319						I	

Lab Sample Number				2414899	2414900	2414901	2414902	2414903
Sample Reference				WS214	WS203	WS204	WS204	WS217
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.20	0.60	0.10
Date Sampled				22/08/2022	23/08/2022	23/08/2022	23/08/2022	23/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Pesticide and Herbicide Screen

	GCMS Pesticide Screen		N/A	NONE	-	-	None Detected	-	-
--	-----------------------	--	-----	------	---	---	---------------	---	---

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.20	0.30	0.80
Date Sampled				23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	2.6	2.8	6	14	17
Total mass of sample received	kg	0.001	NONE	1.1	1.1	1.1	1.1	0.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	GFI	GFI	GFI	GFI	GFI
General Inorganics	T		Lucross					1
pH - Automated	pH Units	N/A	MCERTS	7.7	7.3	7.9	8.3	7.8
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.028	0.032	0.037	0.2	0.9
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.018	0.017	0.022	0.013	0.029
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.35	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.21	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.18	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.39	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.18	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.24	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29	< 0.05	< 0.05
Total PAH	ma/l:-	0.0	MCEDTC					1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	2.55	< 0.80	< 0.80

Lab Sample Number				2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.20	0.30	0.80
Date Sampled				23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022
Time Taken				None Supplied				
Time runeii	1	-		None Supplied	None Supplied	топе заррнеа	попе Заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					•			=
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	57	43	35	34	27
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.1	0.98	0.96	0.81
Boron (water soluble)	mg/kg	0.2	MCERTS	0.2	0.7	0.8	1.1	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	5.5
Chromium (III)	mg/kg	1	NONE	55	40	36	29	20
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	56	41	36	30	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	11	14	14	22
Lead (aqua regia extractable)	mg/kg	1	MCERTS	32	31	34	40	65
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36	27	24	21	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	96	81	61	56	46
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	92	76	100	93	120
Ziric (aqua regia extractable)	9/9			92	70	100	93	120
Managementics & Overgonates								
Monoaromatics & Oxygenates	ua/ka	1	MCERTS	I		.10	- 1.0	. 1.0
Benzene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS		-	< 1.0	< 1.0	< 1.0
Ethylbenzene	_	1	MCERTS			< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	pg/kg		TICERTS	-	-	< 1.0	< 1.0	< 1.0
But also at the transfer of								
Petroleum Hydrocarbons	T n .	0.004	MCERTS	1				
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	-	< 10	< 10	< 10
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	-	-	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	-	-	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4	NONE	-	-	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	< 10	< 10	< 10
, , , , , , , , , , , , , , , , , , , ,	-				=			
TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	< 10	< 10	< 10
15.2.100 GT. EN_CO+NS_ID_IOTAL	3, 3					< 10	× 10	\ 10

Lab Sample Number				2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.20	0.30	0.80
Date Sampled				23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	-	š						
VOCs			100 17005					
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chloroethane	μg/kg "	1	NONE	-	-	-	-	< 1.0
Bromomethane	μg/kg 	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	μg/kg 	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg 	1	NONE	-	-	-	-	< 1.0
1,1-Dichloroethene	μg/kg 	1	NONE	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg "	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloroethane	μg/kg "	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloropropene	μg/kg "	1	MCERTS	-	-	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025 ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	μg/kg μg/kg	1	NONE	-	-	-	-	< 1.0
Tetrachloroethene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg μg/kg	1	MCERTS					< 1.0
Chlorobenzene		1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene Styrene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0 < 1.0
Tribromomethane	μg/kg μg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-		-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	<u> </u>	<u> </u>	-	-	< 1.0
Bromobenzene	µg/kg	1	MCERTS				-	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	<u> </u>		<u> </u>	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	<u>-</u>	_	-		< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	_	_	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	_	_	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	_	_	_	_	< 1.0
			ISO 17025		_	-	-	< 1.0
	μg/kg	1	150 1/025	-				
p-Isopropyltoluene 1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
p-Isopropyltoluene								

Lab Sample Number		•		2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)	0.20	0.30	0.20	0.30	0.80			
Date Sampled	23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0

				2444004	2444005	2444006	244 4007	244 4000
Lab Sample Number				2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)				0.20	0.30	0.20	0.30	0.80
Date Sampled				23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022
Time Taken		-	•	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS MCERTS	-	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	NONE	-	-	-	-	< 0.3
4-Methylphenol	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Isophorone	_	0.2	MCERTS					< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	< 0.3
Naphthalene	mg/kg	0.03	MCERTS	-	-	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	NONE	-	-	-	-	< 0.3
4-Chloroaniline Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1 < 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	_	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS			_		< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	<u>-</u>	<u>-</u>	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE		_	_	_	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS		-	_		< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS		-	_		< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS		-	_		< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	_	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	_	_	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	-	_	_	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	_	-	_	_	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	_	-	_	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05

Lab Sample Number				2414904	2414905	2414906	2414907	2414908
Sample Reference				WS226	WS227	HP210	HP208	HP208
Sample Number				None Supplied				
Depth (m)	0.20	0.30	0.20	0.30	0.80			
Date Sampled	23/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05

N/A

NONE

GCMS Pesticide Screen

Pesticide and Herbicide Screen

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-82372 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2414894	WS213	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2414895	WS213	None Supplied	0.5	Brown loam and sand with gravel and vegetation.
2414896	WS205	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2414897	WS205	None Supplied	0.6	Brown clay and loam with gravel.
2414898	WS209	None Supplied	0.3	Brown loam and sand with gravel and plastic.
2414899	WS214	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2414900	WS203	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2414901	WS204	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
2414902	WS204	None Supplied	0.6	Brown loam and sand with gravel and vegetation.
2414903	WS217	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
2414904	WS226	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
2414905	WS227	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
2414906	HP210	None Supplied	0.2	Brown loam and sand with gravel and chalk.
2414907	HP208	None Supplied	0.3	Brown loam and sand with gravel and brick.
2414908	HP208	None Supplied	0.8	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 22-82372 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/deanup.	L076-PL	D	MCERTS

Analytical Report Number : 22-82372 Project / Site name: Begbroke

Water matrix abbreviations:

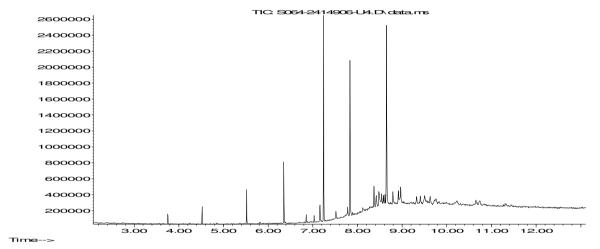
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
GC Pesticide Screen (TIC)	Analysis of unknown pesticides by GCMS	GC Pesticide Screen (TIC)	L064B	D	NONE
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

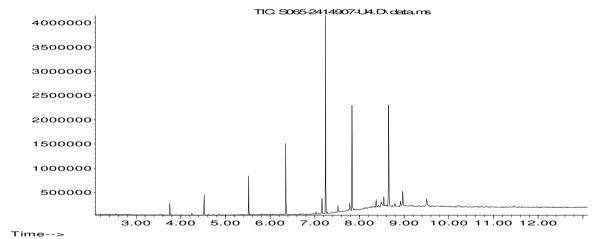
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

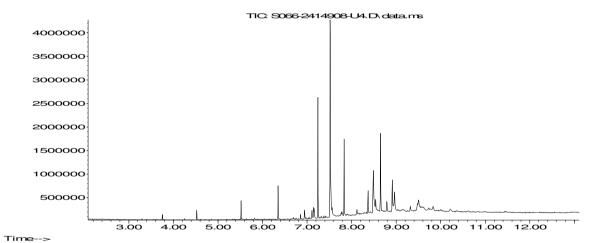
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results


List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total


Abundance

Abundance

Sample Deviation Report

Analytical Report Number : 22-82372 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP208	None Supplied	S	2414907	С	Free cyanide in soil	L080-PL	С
HP208	None Supplied	S	2414908	С	Free cyanide in soil	L080-PL	С
HP210	None Supplied	S	2414906	С	Free cyanide in soil	L080-PL	С
WS203	None Supplied	S	2414900	С	Free cyanide in soil	L080-PL	С
WS204	None Supplied	S	2414901	С	Free cyanide in soil	L080-PL	С
WS204	None Supplied	S	2414902	С	Free cyanide in soil	L080-PL	С
WS205	None Supplied	S	2414896	С	Free cyanide in soil	L080-PL	С
WS205	None Supplied	S	2414897	С	Free cyanide in soil	L080-PL	С
WS209	None Supplied	S	2414898	С	Free cyanide in soil	L080-PL	С
WS213	None Supplied	S	2414894	С	Free cyanide in soil	L080-PL	С
WS213	None Supplied	S	2414895	С	Free cyanide in soil	L080-PL	С
WS214	None Supplied	S	2414899	С	Free cyanide in soil	L080-PL	С
WS217	None Supplied	S	2414903	С	Free cyanide in soil	L080-PL	С
WS226	None Supplied	S	2414904	С	Free cyanide in soil	L080-PL	С
WS227	None Supplied	S	2414905	С	Free cyanide in soil	L080-PL	С

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road

Spratton Northamptonshire

t: 01604842888

f: 01604842666

NN6 8LD

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-82408

Project / Site name: Begbroke Samples received on: 06/09/2022

Your job number: 19114 Samples instructed on/ 06/09/2022

Analysis started on:

Your order number: PO19941 Analysis completed by: 13/09/2022

Report Issue Number: 1 Report issued on: 13/09/2022

Samples Analysed: 15 soil samples

Signed:

Anna Goc Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting

asbestos - 6 months from reporting Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Lab Camula Number				2415122	2415122	2415124	2415125	2415126
Lab Sample Number Sample Reference				2415132 HP207	2415133 HP209	2415134 WS232	2415135 WS230	2415136 WS211
Sample Number				None Supplied				
Depth (m)				0.70	0.30	0.20	0.20	0.10
Date Sampled				25/08/2022	25/08/2022	26/08/2022	26/08/2022	26/08/2022
Time Taken				None Supplied				
Tancon	1	<u> </u>		топе заррнеа	чоне заррнеа	чоне заррнеа	топе заррнеа	попе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	27
Moisture Content	%	0.01	NONE	9.1	4.5	6.8	4.1	3.6
Total mass of sample received	kg	0.001	NONE	0.4	0.3	0.8	0.8	0.8
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SZS	SZS	SZS	SZS	SZS
General Inorganics							1	
pH - Automated	pH Units	N/A	MCERTS	8.2	8.5	8	7.6	8.1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.0022	0.0093	0.0058	0.0037	0.02
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0021	0.0053	0.011	0.017	0.012
, ,								
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	•						•	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	73	49	20	44	45
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.5	0.87	1.3	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.9	0.9	1.3	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE MCERTS	58	52	32	44	39
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	59 7.5	52	33 13	46	40 13
,	mg/kg	1	MCERTS	17	14	25	14	
Lead (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	16 < 0.3	< 0.3	26 < 0.3	28 < 0.3
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	1	MCERTS	< 0.3 36	< 0.3 37	< 0.3 19	< 0.3 30	< 0.3 27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	120	98	52	83	71
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	89	99	59	89	95
(aqua regia extractable)	J. J		<u> </u>	U J	23	JJ	03	33

Lab Sample Number				2415132	2415133	2415134	2415135	2415136
Sample Reference				HP207	HP209	WS232	WS230	WS211
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.30	0.20	0.20	0.10
Date Sampled				25/08/2022	25/08/2022	26/08/2022	26/08/2022	26/08/2022
Time Taken								
Tille Takeli		_		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg mg/kg	0.001	MCERTS MCERTS	-	< 0.001 < 0.001	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	-	< 8.4	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	< 10	-	-	-
TOU CANC Assertion FCF FC7	malles	0.001	MCERTS		. 0.004			
TPH-CWG - Aromatic > EC5 - EC7 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR}	mg/kg			-	< 0.001	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS MCERTS	-	< 0.001	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	< 1.0	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	< 2.0	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg		NONE	-	< 10	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4		-	< 8.4	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10 10	MCERTS NONE	-	< 10	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	< 10	-	-	-
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	1	< 10			

Lah Sample Number				2/15122	2/15122	2/15124	2/15125	2/15126
Lab Sample Number Sample Reference				2415132 HP207	2415133 HP209	2415134 WS232	2415135 WS230	2415136 WS211
Sample Number				None Supplied				
Depth (m)				0.70	0.30	0.20	0.20	0.10
Date Sampled				25/08/2022	25/08/2022	26/08/2022	26/08/2022	26/08/2022
Time Taken				None Supplied				
Time raken		=		чоне заррнеа	нопе заррпса	чоне заррнеа	нопе заррпеа	нопе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	_	< 1.0	-	-	-
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	-	_
Bromomethane	μg/kg	1	ISO 17025	_	< 1.0	-	-	-
Vinyl Chloride	μg/kg	1	NONE	_	< 1.0	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Trans-1,2-dichloroethene	μg/kg "	1	NONE	-	< 1.0	-	-	-
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS MCERTS	-	< 1.0	-	-	-
Trichloroethene	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	-	-
Dibromomethane Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	_	-	_
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	_	-	_
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	_
1,1,2-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0	_	_	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Tribromomethane	μg/kg	1	NONE	-	< 1.0	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Bromobenzene	μg/kg	1	MCERTS ISO 17025	-	< 1.0	-	-	-
n-Propylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	-	-
2-Chlorotoluene 4-Chlorotoluene	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025		< 1.0	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS		< 1.0	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	_	< 1.0	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	_	< 1.0	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
					•			

Lab Sample Number				2415132	2415133	2415134	2415135	2415136
Sample Reference				HP207	HP209	WS232	WS230	WS211
Sample Number				None Supplied				
Depth (m)				0.70	0.30	0.20	0.20	0.10
Date Sampled	Date Sampled					26/08/2022	26/08/2022	26/08/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	-	=
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	_	< 1.0	_	-	-

Lab Sample Number				2415132	2415133	2415134	2415135	2415136
Sample Reference				HP207	HP209	WS232	WS230	WS211
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.30	0.20	0.20	0.10
Date Sampled				25/08/2022	25/08/2022	26/08/2022	26/08/2022	26/08/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		on on						
SVOCs					ı			T
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS MCERTS	-	< 0.2	-	-	-
1,2-Dichlorobenzene	mg/kg			-	< 0.1	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
2-Methylphenol	mg/kg mg/kg	0.3	MCERTS MCERTS	-	< 0.3	-	-	-
Hexachloroethane		0.03	MCERTS	-	< 0.05	-	-	-
Nitrobenzene	mg/kg mg/kg	0.3	NONE	-	< 0.3	-	-	-
4-Methylphenol		0.2	MCERTS		< 0.2	-	-	-
Isophorone	mg/kg mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
2,4-Dimethylphenol		0.3	MCERTS	-	< 0.3	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
1,2,4-Trichlorobenzene	mg/kg mg/kg	0.05	MCERTS	-	< 0.3	-	-	-
Naphthalene	mg/kg	0.03	MCERTS		< 0.05	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	NONE	-	< 0.3	-	-	-
4-Chloroaniline	mg/kg	0.1	MCERTS	-	< 0.1 < 0.1		-	-
Hexachlorobutadiene 4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1			
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS		< 0.2			
2-Methylnaphthalene	mg/kg	0.1	NONE		< 0.1			
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	< 0.1	_	_	_
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	_	_	_
Acenaphthene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	_
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	< 0.2	-	_	_
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	_	-	_
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	< 0.05	_	_	_

Lab Sample Number				2415132	2415133	2415134	2415135	2415136
Sample Reference				HP207	HP209	WS232	WS230	WS211
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.70	0.30	0.20	0.20	0.10			
Date Sampled	25/08/2022	25/08/2022	26/08/2022	26/08/2022	26/08/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg 0.05 MCERTS			-	< 0.05	-	-	-
Dibenz(a,h)anthracene	mg/kg 0.05 MCERTS			-	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-

Pesticide and Herbicide Screen

GCMS Pesticide Screen	N/A	NONE	-	-	None Detected	None Detected	None Detected

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2415137	2415138	2415139	2415140	2415141
Sample Reference				BH201	BH202	BH204	BH205	BH205
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.10	0.40
Date Sampled				30/08/2022	31/08/2022	31/08/2022	01/09/2022	01/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	3.5	4.4	4.8	8.2	8.8
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4	0.4
Total mass of sample received				0.1	0.1	0.1	0.1	0.1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SZS	SZS	SZS	SZS	SZS
ASDESTOS Analyst ID	14/74	14/73	14/74	525	525	525	525	525
Conoral Inorganics								
General Inorganics	pH Units	NI/A	MCERTS		^	•	7.0	0.5
pH - Automated		N/A 1	MCERTS	6.6	8	8	7.6	8.5
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MICERIS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.0035	0.0041	0.0025	0.011	0.0037
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.011	0.0057	0.0033	0.017	0.0019
<u> </u>								
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (monoriyane)				V 1.0	V 1.0	V 1.0	V 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Secret(Sulberheite	5, 3		1	₹ 0.05	\ 0.05	\ 0.0J	\ 0.05	\ 0.0 <i>3</i>
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
57555550 TOWN ELTY 10 17815	5, 3		1	₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	45	29	24	24	49
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1	0.85	1.2	1.4
Boron (water soluble)	mg/kg	0.00	MCERTS	0.7	0.4	0.4	2	0.6
,	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1.0	NONE	43	34	31	< 1.6 42	< 1.6 49
` '	mg/kg	1	MCERTS	43				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS		34 11	31 12	42	50
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13			15	15
Lead (aqua regia extractable)		0.3	MCERTS	29	20	14	32	16
Mercury (aqua regia extractable)	mg/kg		1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	23	21	29	42
Selenium (aqua regia extractable)	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	80	64	53	64	85
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	76	71	66	88	73

Lab Sample Number				2415137	2415138	2415139	2415140	2415141
Sample Reference				BH201	BH202	BH204	BH205	BH205
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.10	0.40
Date Sampled				30/08/2022	31/08/2022	31/08/2022	01/09/2022	01/09/2022
Time Taken				None Supplied				
Tille Takell	1	_	I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
					-			
Monoaromatics & Oxygenates				="				
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	-	-	-
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-

Lah Camula Nijumbay				2415127	2415120	2415120	2415140	2415141
Lab Sample Number				2415137 BH201	2415138 BH202	2415139 BH204	2415140 BH205	2415141 BH205
Sample Reference						-		
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.10	0.40
Date Sampled				30/08/2022	31/08/2022	31/08/2022	01/09/2022	01/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025					
Chloroethane	μg/kg	1	NONE	-	-	-	-	-
	μg/kg	1	ISO 17025	-	-			-
Bromomethane	μg/kg	1	NONE					
Vinyl Chloride		1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene				-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025 MCERTS	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1			-	-		-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg			-	-	-	-	=
2,2-Dichloropropane	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
Trichloromethane	μg/kg	1		-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg 	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	=
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	=
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	=
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	=
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	=
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	=
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	=
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	=
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-

Lab Sample Number				2415137	2415138	2415139	2415140	2415141
Sample Reference				BH201	BH202	BH204	BH205	BH205
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.10	0.40
Date Sampled				30/08/2022	31/08/2022	31/08/2022	01/09/2022	01/09/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	_	-	-	-	_

Sample Number									
None Suppled None	Lab Sample Number					2415138			2415141
Depth (m)	-								BH205
Date Sampled									None Supplied
									0.40
Analytical Parameter (Se) (Se) (Se) (Se) (Analysis) (Se) (Se) (Se) (Analysis) (Se) (Se) (Analysis) (Se) (Se) (Analysis) (Se) (Se) (Analysis) (Analysis) (Se) (Analysis) (Analysis) (Se) (Analysis) (Analy						31/08/2022	31/08/2022	01/09/2022	01/09/2022
SPOCG	Time Taken				None Supplied				
Note		Units	Limit of detecti	Accreditation Status					
Anillee mg/kg 0.2 SO 12925			on .	_					
Precent	SVOCs								
Description	Aniline	mg/kg			-	-	-	-	-
Seg2-chloroethylpether	Phenol				-	-	-	-	-
1-3-Dichierobenzere	2-Chlorophenol				-	-	-	-	-
1.2-Dechlorobersene	Bis(2-chloroethyl)ether				-	-	-	-	-
1.4-Dicklorobenzene	1,3-Dichlorobenzene				-	-	-	-	-
Be/C - Alteriorisopropylyther mg/ng 0.1 MCERTS <					-	-	-	-	-
Mesachloroethane					-	-	-	-	-
Nitroberusene									-
Nitroberszere					-	-	-	-	-
Methylphenol	Hexachloroethane				-	-	-	-	-
Sophorone									-
No.						-		-	-
2,4-Dimethylphenol					-	-	-	-	-
Bis(2-chloroethoxy)methane	•				-	-	-	-	-
1,2,4-Trichlorobenzene					-	-	-	-	-
Naphthalene	, , , , , , , , , , , , , , , , , , , ,								-
2,4-Dichlorophenol mg/kg 0.3 MCERTS .									
4-Chloroaniline mg/kg 0.1 NONE					-	-	-	-	-
Hexachiorobutadiene									
### Accharghylphenol mg/kg 0.1 NONE									
2,4,6-Trichlorophenol mg/kg 0.1 MCERTS - <									
2,4,5-Trichlorophenol mg/kg 0.2 MCERTS - <	* *								
Z-Methylaphthalene									
2-Chloronaphthalene mg/kg 0.1 MCERTS - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Dimethylphthalate									
2,6-Dinitrotoluene mg/kg 0.1 MCERTS	•								
Acenaphthylene	* *								
Acenaphthene mg/kg 0.05 MCERTS									
2,4-Dinitrotoluene									
Dibenzofuran mg/kg 0.2 MCERTS - - - - - - - - -	,								
4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 -	,								
Diethyl phthalate mg/kg 0.2 MCERTS -								_	_
A-Nitroaniline mg/kg 0.2 MCERTS - - - - - - - - -					_	_	-	-	-
Fluorene mg/kg 0.05 MCERTS									
Azobenzene mg/kg 0.3 MCERTS -									_
Bromophenyl phenyl ether mg/kg 0.2 MCERTS - - - - - - - - -									-
Hexachlorobenzene mg/kg 0.3 MCERTS -						-			-
Phenanthrene mg/kg 0.05 MCERTS - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>									-
Anthracene mg/kg 0.05 MCERTS -								-	-
Carbazole mg/kg 0.3 MCERTS -			0.05	MCERTS	-	-	-	-	-
Dibutyl phthalate mg/kg 0.2 MCERTS -			0.3	MCERTS	-	-	-	-	-
Anthraquinone mg/kg 0.3 MCERTS - <td></td> <td>mg/kg</td> <td>0.2</td> <td>MCERTS</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		mg/kg	0.2	MCERTS	-	-	-	-	-
Fluoranthene mg/kg 0.05 MCERTS - <td></td> <td>mg/kg</td> <td>0.3</td> <td>MCERTS</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		mg/kg	0.3	MCERTS	-	-	-	-	-
Butyl benzyl phthalate		mg/kg	0.05	MCERTS	-	-	_	-	-
Butyl benzyl phthalate mg/kg 0.3 ISO 17025 -		mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)anthracene mg/kg 0.05 MCERTS - <th< td=""><td></td><td></td><td>0.3</td><td>ISO 17025</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>			0.3	ISO 17025	-	-	-	-	-
Chrysene mg/kg 0.05 MCERTS -			0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - - -			0.05	MCERTS	-	-	-	-	-
 			0.05	MCERTS	-	-	-	-	-
		mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene mg/kg 0.05 MCERTS	Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-

Lab Sample Number				2415137	2415138	2415139	2415140	2415141
Sample Reference				BH201	BH202	BH204	BH205	BH205
Sample Number				None Supplied				
Depth (m)	0.20	0.10	0.20	0.10	0.40			
Date Sampled	30/08/2022	31/08/2022	31/08/2022	01/09/2022	01/09/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Pesticide and Herbicide Screen

GCMS Pesticide Screen	N/A	NONE	-	-	-	None Detected	-

U/S = Unsuitable Sample I/S = Insufficient Sample

							1	
Lab Sample Number				2415142	2415143	2415144	2415145	2415146
Sample Reference				BH203	BH203	WS244	WS241	WS251
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.20	0.20
Date Sampled				01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022
Time Taken	_	1	1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	3.8	4.2	4.7	18	18
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.8	0.8	0.9
			<u> </u>	0	0	0.0	0.0	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SZS	SZS	SZS	SZS	SZS
Aspestos Analyst ID	.,		.,	323	323	323	323	323
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.1	7.5	7.6	7.8	8.1
pri - Automated Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SU4 16hr extraction (2:1 Leachate	mg/kg		LICERTS					
Equivalent)	g/l	0.00125	MCERTS	0.0045	0.0041	0.0064	0.011	0.012
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.012	0.0078	0.012	0.026	0.016
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
· · ·			•					
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	29	31	20	18	16
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.98	1.1	0.93	1	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.1	0.4	3.5	1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	33	38	34	36	45
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	38	35	37	45
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	10	16	21	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	27	18	23	33	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	25	21	24	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Seletilutti (aqua regia extractable)								
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	59	71	52	55	64

Lab Sample Number				2415142	2415143	2415144	2415145	2415146
Sample Reference			BH203	BH203	WS244	WS241	WS251	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			0.10	0.50	0.20	0.20	0.20	
Date Sampled			01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022	
Time Taken			None Supplied	None Supplied	None Supplied		None Supplied	
Tille Takell	1	_	I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
					=	-	3-	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS ID AL	mg/kg	0.001	MCERTS		I -	I -	_	
TPH-CWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	-	_	_	-	_
TPH-CWG - Aliphatic > EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	MCERTS	-	_	_	-	_
TPH-CWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	_	_	-	_
TPH-CWG - Aliphatic > EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	_	_	-	_
TPH-CWG - Aliphatic >EC16 - EC21 EH CU 1D AL	mg/kg	8	MCERTS		_	_		_
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS		_	_		_
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	_	_	_	-	_
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE		_	_		_
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS					_
TPH-CWG - Aliphatic (EC5 - EC53) _{EH_CU+HS_1D_AL} TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	<u> </u>			-	-
TITI CWG Allphatic (ECS ECTT) EH_CO+HS_ID_AL	9/9			-		_	_	-
TPH-CWG - Aromatic >EC5 - EC7 HS. 1D. AR	mg/kg	0.001	MCERTS	_	_	_		_
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
	mg/kg	1	MCERTS		_			
TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	10	MCERTS		-			
TPH-CWG - Aromatic > EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-		-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	5, 5	8.4 10	MCERTS		_			
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg mg/kg	10	NONE	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	INUINE	-	-	-	-	-
TDU T		4.0	No.			ı	T.	
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-

Lab Sample Number			1	2/151/2	2/151/12	2415144	2/151/5	2/151/6
Lab Sample Number Sample Reference				2415142 BH203	2415143 BH203	2415144 WS244	2415145 WS241	2415146 WS251
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.20	0.20
Date Sampled				01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022
Time Taken				None Supplied				
Time raken	1	=		тчопе заррпеа	чоне заррнеа	тчопе заррпеа	топс Заррпса	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chloroethane	μg/kg	1	NONE	-	-	-	-	_
Bromomethane	μg/kg	1	ISO 17025	-	-	-	_	_
Vinyl Chloride	μg/kg	1	NONE	-	-	_	_	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	1	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg 	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	ISO 17025	-				-
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-		-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS					
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	<u> </u>	-	<u>-</u>	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	_	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	_
1.2-Dibromoethane	μg/kg	1	ISO 17025	_	_	_	_	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-		-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg 	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025 MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	µg/Ng		PICERIO	-		-		-

Lab Sample Number				2415142	2415143	2415144	2415145	2415146
Sample Reference				BH203	BH203	WS244	WS241	WS251
Sample Number				None Supplied				
Depth (m)	0.10	0.50	0.20	0.20	0.20			
Date Sampled	01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	_	-	-	-	_

Lab Sample Number				2415142	2415142	2415144	2415145	2415146
Sample Reference				2415142 BH203	2415143 BH203	2415144 WS244	2415145 WS241	2415146 WS251
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.20	0.20
Date Sampled				01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022
Time Taken				None Supplied				
Time raken		□.	ı	тчопе заррпеа	чоне заррнеа	тчопе заррнеа	топе заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	_	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	_	_	_	_
2-Chlorophenol	mg/kg	0.1	MCERTS	-	_	_	_	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS NONE	-	-	-	-	-
4-Chloroaniline	mg/kg mg/kg	0.1	MCERTS	-	-	-	-	-
Hexachlorobutadiene 4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	_		_	_
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	_		_	_
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	_
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	_	_	_	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	=
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	-
Anthracene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole Dibutyl phthalate	mg/kg	0.3	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-		-	-
Pyrene	mg/kg	0.05	MCERTS	-		-	-	
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	_	_	_	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
	_			-	_	-	_	-

Lab Sample Number				2415142	2415143	2415144	2415145	2415146
Sample Reference				BH203	BH203	WS244	WS241	WS251
Sample Number				None Supplied				
Depth (m)	0.10	0.50	0.20	0.20	0.20			
Date Sampled	01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Pesticide and Herbicide Screen

GCMS Pesticide Screen	N/A	NONE	-	-	-	None Detected	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-82408 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2415132	HP207	None Supplied	0.7	Brown clay and sand with gravel.
2415133	HP209	None Supplied	0.3	Brown sand with gravel and fibrous material.
2415134	WS232	None Supplied	0.2	Brown sand with fibrous material and gravel
2415135	WS230	None Supplied	0.2	Brown sand with gravel and fibrous material.
2415136	WS211	None Supplied	0.1	Brown gravelly sand with stones and fibrous material.
2415137	BH201	None Supplied	0.2	Brown sand with fibrous material and gravel
2415138	BH202	None Supplied	0.1	Brown sand with gravel.
2415139	BH204	None Supplied	0.2	Brown sand with gravel.
2415140	BH205	None Supplied	0.1	Brown sand with fibrous material and gravel
2415141	BH205	None Supplied	0.4	Brown clay and sand with gravel.
2415142	BH203	None Supplied	0.1	Brown loam and clay with gravel.
2415143	BH203	None Supplied	0.5	Brown clay and sand with gravel.
2415144	WS244	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2415145	WS241	None Supplied	0.2	Brown clay and loam with gravel.
2415146	WS251	None Supplied	0.2	Brown loam and clay with gravel.

Analytical Report Number : 22-82408 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Analytical Report Number : 22-82408 Project / Site name: Begbroke

Water matrix abbreviations:

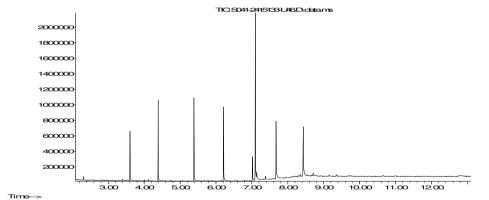
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
GC Pesticide Screen (TIC)	Analysis of unknown pesticides by GCMS	GC Pesticide Screen (TIC)	L064B	D	NONE
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Abundance

Sample Deviation Report

Analytical Report Number : 22-82408 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID					Test Ref	Test Deviation
BH201	None Supplied	S	2415137	С	Free cyanide in soil	L080-PL	С
HP207	None Supplied	S	2415132	С	Free cyanide in soil	L080-PL	С
HP209	None Supplied	S	2415133	С	Free cyanide in soil	L080-PL	С
WS211	None Supplied	S	2415136	С	Free cyanide in soil	L080-PL	С
WS230	None Supplied	S	2415135	С	Free cyanide in soil	L080-PL	С
WS232	None Supplied	S	2415134	С	Free cyanide in soil	L080-PL	С

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton

Northamptonshire

NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-82414

Project / Site name: Begbroke Samples received on: 06/09/2022

Your job number: 19114 Samples instructed on/ 06/09/2022

Analysis started on:

Your order number: PO19941 Analysis completed by: 13/09/2022

Report Issue Number: 1 Report issued on: 13/09/2022

Samples Analysed: 15 soil samples

Signed:

Anna Goc Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number			· · · · · · · · · · · · · · · · · · ·	2415194	2415195	2415196	2415197	2415198
Sample Reference				WS215	WS208	WS208	WS210	WS222
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.50	0.10	0.20
Date Sampled		-		25/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	22	12	23	9.3	3.2
	kg	0.001	NONE					
Total mass of sample received	9	0.001	HOHE	0.9	0.9	0.9	0.9	0.9
Ashartas in Sail	Type	N/A	ISO 17025	Not detected				
Asbestos in Soil	N/A	N/A	N/A	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	IV/A	IV/M	1V/A	SCA	SCA	SCA	SCA	SCA
Comment Transporter								
General Inorganics	alter a	A17*	MCERTO					
pH - Automated	pH Units	N/A	MCERTS	7.6	7.3	8.2	7.3	7.9
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.017	0.016	0.15	0.014	0.003
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.033	0.04	0.009	0.03	0.014
	1			0.055	0.01	0.005	0.03	0.011
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (mononyunc)	3/3	_		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids	_		T	Ī	,		Ī	T
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	25	36	27	26	41
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.8	2.1	1.7	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	4.2	1	0.3	2.9	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	47	54	55	55	39
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	48	55	56	56	40
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	23	25	18	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	32	36	21	31	27
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	37	52	33	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	1	MCERTS	72	86	57	81	73
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	12	00	37	01	77

Lab Cannala Nomban				2415104	2415105	2415106	2415107	2415100
Lab Sample Number				2415194	2415195	2415196	2415197	2415198
Sample Reference	WS215	WS208	WS208	WS210	WS222			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	0.10	0.50	0.10	0.20			
Date Sampled	25/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Pesticide and Herbicide Screen							
GCMS Pesticide Screen	N/A	NONE	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number		·		2415199	2415200	2415201	2415202	2415203
Sample Reference				WS207	WS201	WS202	WS216	WS216
Sample Number				None Supplied				
Depth (m)				0.10	0.20	0.20	0.20	0.50
Date Sampled				25/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022
Time Taken	1		1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	13	7.4	3.9	8.2
Total mass of sample received	kg	0.001	NONE	0.4	0.9	0.9	0.9	0.9
	-	•					•	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SCA	SCA	SCA	SCA	SCA
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.6	8.4	7.9	7.9	8.2
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.01	0.0056	0.0075	0.0029	0.0013
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.03	0.0057	0.011	0.006	< 0.0010
Traction organic curbon (1 00) natornated	1	l.		0.03	0.0037	0.011	0.000	< 0.0010
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
roal menon (mononyane)	1	<u> </u>		11.0	110	11.0	1.0	11.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.03	HICERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Specialization for Environmental	5,9	1		< 0.00	< 0.00	< 0.00	\ 0.00	\ U.UU
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	29	19	28	65	93
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.6	1.3	1.9	2.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.3	1.6	0.9	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	47	43	46	65	100
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	48	44	46	66	100
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	21	15	18	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	20	21	26	22
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	32	29	49	57
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	78	65	73	120	190
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	82	88	81	110	130

Lab Sample Number				2415199	2415200	2415201	2415202	2415203
Sample Reference	WS207	WS201	WS202	WS216	WS216			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	0.20	0.20	0.20	0.50			
Date Sampled	25/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Building the high con-								
Pesticide and Herbicide Screen		ī	1					
GCMS Pesticide Screen		N/A	NONE	-	None Detected	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number		·		2415204	2415205	2415206	2415207	2415208
Sample Reference				WS212	WS202	WS231	WS238	WS238
Sample Number				None Supplied				
Depth (m)				0.20	1.10	0.20	0.20	0.60
Date Sampled				30/08/2022	30/08/2022	31/08/2022	31/08/2022	31/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	57	26	< 0.1
Moisture Content	%	0.01	NONE	4.1	11	2.3	5.2	6.2
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.9	0.9	0.9
Total mass of sample received				0.5	0.5	0.5	0.5	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A		LFT	LFT		LFT
Asbestos Analyst 1D	.,,,,	.,,,,	. 47.	LFT	LFI	LFI	LFT	LFI
Community and the community of the commu								
General Inorganics	att the 2 ·	N/A	MCERTC	7.0	0.3	7.0	7.0	•
pH - Automated	pH Units	N/A	MCERTS	7.6	8.2	7.9	7.8	8
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.0058	0.01	0.0022	0.028	0.0031
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.014	0.0027	0.0066	0.019	0.0077
		I	I	0.011	0.002/	0.0000	0.019	3.0077
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	. 1.0	. 1.0	. 1.0	. 1.0	. 1.0
Total Phenois (mononydric)	mg/kg		FICERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
opeciated Total ELA TOTALIS	.515			< 0.00	< 0.00	< 0.00	< 0.00	< 0.00
Heavy Metals / Metalloids								
	mg/kg	1	MCERTS	62	40	20	40	44
Arsenic (aqua regia extractable)	mg/kg	0.06	MCERTS	62	48	30	48	44
Beryllium (aqua regia extractable)	_	0.06	MCERTS	1.5	1.5	0.88	1.3	1.1
Boron (water soluble)	mg/kg			2.2	0.7	0.7	2	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	54	48	29	47	40
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	54	49	30	48	40
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	18	14	16	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	21	21	22	19
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	49	27	34	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	96	92	51	94	79
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	94	87	65	94	83

Lab Sample Number	•				2415205	2415206	2415207	2415208
Sample Reference	WS212	WS202	WS231	WS238	WS238			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.20	1.10	0.20	0.20	0.60
Date Sampled				30/08/2022	30/08/2022	31/08/2022	31/08/2022	31/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticide and Herbicide Screen			_					
GCMS Pesticide Screen		N/A	NONE	-	-	None Detected	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-82414 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2415194	WS215	None Supplied	0.2	Brown loam and clay with gravel.
2415195	WS208	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2415196	WS208	None Supplied	0.5	Brown loam and clay with gravel.
2415197	WS210	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2415198	WS222	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2415199	WS207	None Supplied	0.1	Brown loam and clay with gravel.
2415200	WS201	None Supplied	0.2	Brown clay and loam with gravel.
2415201	WS202	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2415202	WS216	None Supplied	0.2	Brown clay and sand with gravel and vegetation.
2415203	WS216	None Supplied	0.5	Brown clay and loam with gravel.
2415204	WS212	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2415205	WS202	None Supplied	1.1	Brown clay and sand with gravel and vegetation.
2415206	WS231	None Supplied	0.2	Brown sand with stones and gravel
2415207	WS238	None Supplied	0.2	Brown sand with stones and fibrous material.
2415208	WS238	None Supplied	0.6	Brown sand with gravel.

Analytical Report Number: 22-82414 Project / Site name: Begbroke

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
GC Pesticide Screen (TIC)	Analysis of unknown pesticides by GCMS	GC Pesticide Screen (TIC)	L064B	D	NONE
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 22-82414 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS201	None Supplied	S	2415200	С	Free cyanide in soil	L080-PL	С
WS202	None Supplied	S	2415201	С	Free cyanide in soil	L080-PL	С
WS202	None Supplied	S	2415205	С	Free cyanide in soil	L080-PL	С
WS207	None Supplied	S	2415199	С	Free cyanide in soil	L080-PL	С
WS208	None Supplied	S	2415195	С	Free cyanide in soil	L080-PL	С
WS208	None Supplied	S	2415196	С	Free cyanide in soil	L080-PL	С
WS210	None Supplied	S	2415197	С	Free cyanide in soil	L080-PL	С
WS212	None Supplied	S	2415204	С	Free cyanide in soil	L080-PL	С
WS215	None Supplied	S	2415194	С	Free cyanide in soil	L080-PL	С
WS216	None Supplied	S	2415202	С	Free cyanide in soil	L080-PL	С
WS216	None Supplied	S	2415203	С	Free cyanide in soil	L080-PL	С
WS222	None Supplied	S	2415198	С	Free cyanide in soil	L080-PL	С

Nathan Thompson Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton

Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-82420

Project / Site name: Begbroke Samples received on: 06/09/2022

Your job number: 19113 Samples instructed on/ 06/09/2022

Analysis started on:

Analysis completed by: 13/09/2022

Report Issue Number: 1 Report issued on: 13/09/2022

Samples Analysed: 15 soil samples

PO19941

Signed:

Anna Goc
Junior Reporting Specialist
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2415222	2415223	2415224	2415225	2415226
Sample Reference				WS250	WS227	WS243	WS245	WS246
Sample Number				None Supplied				
Depth (m)				0.20	0.70	0.40	0.50	0.20
Date Sampled				01/09/2022	23/08/2022	02/09/2022	02/09/2022	02/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	54	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	6.2	3.4	6.2	9.9	7.2
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.8	0.8	0.8
				***	***			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	NTK	NTK	NTK	NTK	NTK
		1	<u> </u>					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	7.8	7.9	7.9	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate				0.0095	< 0.0013	0.0029	0.005	0.0038
Equivalent)	g/l	0.00125	MCERTS					
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.019	0.0059	0.0057	0.0014	0.011
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
ocuzo(giii)pei yiene	91.19	00		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Hazay Matale / Matallaida								
Heavy Metals / Metalloids	mg/kg	1	MCERTS	17	27	E0	21	22
Arsenic (aqua regia extractable)	mg/kg	0.06	MCERTS	17	37 1.1	58 1.6	31 1.2	23 1.2
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.99 1.7	0.3	2	0.3	
Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	1.6 < 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	1.9	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1.0	NONE	38	39	63	< 1.6 42	< 1.6 44
Chromium (agua regia extractable)	mg/kg	1	MCERTS	40	40	64	42	44
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	11	17	11	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	18	18	14	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	26	39	42	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	57	72	110	71	64
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	66	68	98	54	97
(aqua regia exadetable)	<i>J</i> , <i>J</i>			00	00	90	JT	31

Lab Sample Number				2415222	2415223	2415224	2415225	2415226
Sample Reference				WS250	WS227	WS243	WS245	WS246
Sample Number				None Supplied				
Depth (m)				0.20	0.70	0.40	0.50	0.20
Date Sampled				01/09/2022	23/08/2022	02/09/2022	02/09/2022	02/09/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Petroleum Hydrocarbons		0.001	MCEDIC	T	1		т	
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	-	-	< 8.4	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg mg/kg	10 10	MCERTS NONE	-	-	< 10	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	ilig/kg	10	INOINE	-	-	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	_	<u> </u>	< 0.001		_
TPH-CWG - Aromatic > EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	_		< 0.001	_	
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	_	-	< 0.001	_	
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	_	-	< 1.0	_	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	_	-	< 2.0	_	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	_	-	< 10	_	_
TPH-CWG - Aromatic > EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	_	-	< 10	_	
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	_	-	< 8.4	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	_	-	< 10	-	-
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	-	-	< 10	-	-
TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	< 10	-	-
Pesticide and Herbicide Screen	-		-					
GCMS Pesticide Screen		N/A	NONE	-	-	-	-	None Detected

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2415227	2415228	2415229	2415230	2415231
Sample Reference				WS237	WS229	WS243	WS245	WS206
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.20	0.20
Date Sampled				02/09/2022	02/09/2022	02/09/2022	02/09/2022	24/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	19	< 0.1
Moisture Content	%	0.01	NONE	2.5	3.2	3.4	8.2	4.2
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.8	0.8	0.8
· · · · · · · · · · · · · · · · · · ·				0.0	0.0	0.0	0.0	0.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	NTK	NTK	NTK	NTK	NTK
Aspestos Analyst ID	.,	,	,	IVIK	IVIK	INTE	IVIK	INTE
General Inorganics								
	pH Units	N/A	MCERTS	7.6	7 -	7.0	7.0	77
pH - Automated	mg/kg	1 1	MCERTS	7.6	7.5	7.9	7.9	7.7
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	PICEK13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.0044	0.0035	0.0045	0.0044	0.0043
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.011	0.0095	0.024	0.014	0.023
, ,								
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
				1 2.0	1 2.0	1 2.0	12.0	1 210
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
(3/por/	5, 5			\ 0.03	\ 0.03	× 0.03	× 0.03	7 0.03
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
	5, 5			₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	48	48	52	18	64
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.4	1.3	1.1	1.4
Boron (water soluble)	mg/kg	0.00	MCERTS	0.9	0.7	1.4	1.4	2.7
	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1.0	NONE	< 1.6 45	< 1.6 48	< 1.8 46	37	52
, ,	mg/kg	1	MCERTS			47		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	46	49	21	37	53 16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	15		11	
Lead (aqua regia extractable)		0.3	MCERTS	31	28	29	19	36
Mercury (aqua regia extractable)	mg/kg		1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	33	34	24	34
Selenium (aqua regia extractable)	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	83	120	84	55	110
Zinc (aqua regia extractable)	mg/kg	1	MCEKIS	86	90	120	71	110

Lab Sample Number				2415227	2415228	2415229	2415230	2415231
Sample Reference				WS237	WS229	WS243	WS245	WS206
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.20	0.20
Date Sampled				02/09/2022	02/09/2022	02/09/2022	02/09/2022	24/08/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			··		·
				İ			<u> </u>	
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	<u> </u>	l -	_	<u> </u>	_
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	_	_	-	_	_
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	MCERTS	_	_		_	_
TPH-CWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	_	_	-	_	_
TPH-CWG - Aliphatic > EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	_	_	-	_	_
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC21 - EC35 FH CU 1D AI	mg/kg	8	MCERTS	_	_	-	_	_
TPH-CWG - Aliphatic >EC16 - EC35 FH CU 1D AI	mg/kg	10	MCERTS	-	-	_	_	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	-	-	_	_	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	-	_	_	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	-	-
. , , , , , , , , , , , , , , , , , , ,								1
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC7 - EC8 _{HS 1D AR}	mg/kg	0.001	MCERTS	_	-	-	_	-
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	-	-	-
TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	-	-	-
Pesticide and Herbicide Screen	•		-					
GCMS Pesticide Screen		N/A	NONE	-	-	-	-	-

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample}$

Lab Sample Number				2415232	2415233	2415234	2415235	2415236
Sample Reference				WS218	WS218	WS223	WS219	WS220
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.60	0.10	0.20	0.10
Date Sampled				24/08/2022	24/08/2022	24/08/2022	24/08/2022	24/08/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	1.9	3.6	3.6	4.7	4.6
Total mass of sample received	kg	0.001	NONE	0.4	0.8	0.8	0.8	0.8
Total mass of sample received			l	0.1	0.0	0.0	0.0	0.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SSZ	SSZ	SSZ	SSZ	SSZ
Aspestos Analyst ID	.,	,	.,	332	332	332	332	332
General Inorganics								
	pH Units	N/A	MCERTS	7.6	7 0	7 5	7.0	7.0
pH - Automated	mg/kg	1 1	MCERTS	7.6	7.8	7.5	7.9	7.9
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	пу/кд	1	PICERIO	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Equivalent)	g/l	0.00125	MCERTS	0.0045	0.0024	0.0083	0.0056	0.0047
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.014	0.0092	0.02	0.018	0.013
			•					
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
				1 2.0	1 2.0	1 2.0	12.0	12.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
` '	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
20.120(3m)pci fiche	5, 9			₹ 0.05	\ 0.05	\ 0.0J	\ 0.05	\ 0.03
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
	3, 3		-	₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00	₹ 0.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	48	51	59	27	22
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.2	1.5	0.81	0.91
Boron (water soluble)	mg/kg	0.00	MCERTS	0.5	0.6	1.8	0.6	0.91
,	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1.0	NONE	< 1.6 47	43	53	30	32
` '	mg/kg	1	MCERTS			53 54		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	48	44		31	33
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	11	17	14	14
Lead (aqua regia extractable)		0.3	MCERTS	31	23	28	23	25
Mercury (aqua regia extractable)	mg/kg			< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	29	35	20	21
Selenium (aqua regia extractable)	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	83	79	97	49	53
Zinc (aqua regia extractable)	mg/kg	1	I-ICEK IS	84	87	120	73	65

Lab Sample Number				2415232	2415233	2415234	2415235	2415236
Sample Reference				WS218	WS218	WS223	WS219	WS220
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.60	0.10	0.20	0.10
Date Sampled				24/08/2022	24/08/2022	24/08/2022	24/08/2022	24/08/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Managementics & Operandos								
Monoaromatics & Oxygenates			MCERTS		1			
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
o-xylene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	ру/ку	1	PICERTS	-	-	< 1.0	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU 1D AL	mg/kg	8	MCERTS	-	-	< 8.0	-	-
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aliphatic > EC35 - EC44 EH CU 1D_AL	mg/kg	8.4	NONE	-	-	< 8.4	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	-	< 2.0	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	< 8.4	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	< 10	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	< 10	-	-
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	l -	< 10	_	_
THE CU+HS_ID_TOTAL		1 20				< 10	-	
Pesticide and Herbicide Screen								
GCMS Pesticide Screen		N/A	NONE	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-82420 Project / Site name: Begbroke

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2415222	WS250	None Supplied	0.2	Brown sand with fibrous material and gravel
2415223	WS227	None Supplied	0.7	Brown sand with gravel.
2415224	WS243	None Supplied	0.4	Brown clay and sand with fibrous material and stones.
2415225	WS245	None Supplied	0.5	Brown clay and loam with gravel.
2415226	WS246	None Supplied	0.2	Brown clay and loam with gravel.
2415227	WS237	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2415228	WS229	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2415229	WS243	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2415230	WS245	None Supplied	0.2	Brown sand with fibrous material and stones.
2415231	WS206	None Supplied	0.2	Brown sand with gravel and fibrous material.
2415232	WS218	None Supplied	0.1	Brown sand with fibrous material and gravel
2415233	WS218	None Supplied	0.6	Brown sand with gravel.
2415234	WS223	None Supplied	0.1	Brown sand with gravel and fibrous material.
2415235	WS219	None Supplied	0.2	Brown sand with fibrous material and gravel
2415236	WS220	None Supplied	0.1	Brown sand with fibrous material and gravel

Analytical Report Number : 22-82420 Project / Site name: Begbroke

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
GC Pesticide Screen (TIC)	Analysis of unknown pesticides by GCMS	GC Pesticide Screen (TIC)	L064B	D	NONE
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS

Analytical Report Number : 22-82420 Project / Site name: Begbroke

Water matrix abbreviations:

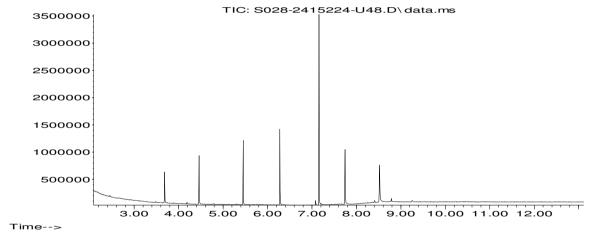
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

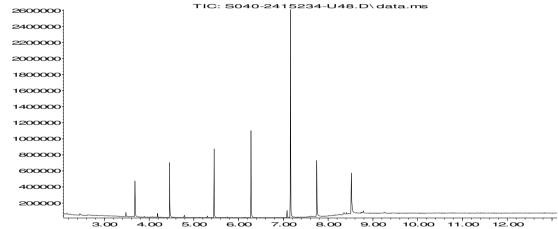
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results


List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
 +	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Abundance

Time-->

Sample Deviation Report

Analytical Report Number : 22-82420 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS206	None Supplied	S	2415231	С	Free cyanide in soil	L080-PL	С
WS218	None Supplied	S	2415232	С	Free cyanide in soil	L080-PL	С
WS218	None Supplied	S	2415233	С	Free cyanide in soil	L080-PL	С
WS219	None Supplied	S	2415235	С	Free cyanide in soil	L080-PL	С
WS220	None Supplied	S	2415236	С	Free cyanide in soil	L080-PL	С
WS223	None Supplied	S	2415234	С	Free cyanide in soil	L080-PL	С
WS227	None Supplied	S	2415223	С	Free cyanide in soil	L080-PL	С

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-83964

Project / Site name: Begbroke Samples received on: 13/09/2022

Your job number: 19114 Samples instructed on/ 13/09/2022

Analysis started on:

Your order number: PO19941 Analysis completed by: 21/09/2022

Report Issue Number: 1 Report issued on: 21/09/2022

Samples Analysed: 15 soil samples

Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate. $\label{eq:potential}$

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-83964 Project / Site name: Begbroke

									•
Sample Number	Lab Sample Number				2423858	2423859	2423860	2423861	2423862
Depth (m) Dept	Sample Reference								
Detail D	Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	Depth (m)				0.50	0.20	0.20	0.20	0.20
Analytical Parameter Gold Analysis)	Date Sampled				08/09/2022	07/09/2022	07/09/2022	07/09/2022	07/09/2022
Stone Content No. 0.1 NONE C.0.1 C	Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	Stone Content	%		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Note		%	0.01	NONE					
Note-detected Note-detecte									
Selection Analyst ID					0.5	0.5	0.5	0.5	0.5
Selection Analyst ID	Achartas in Sail	Tyne	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Final Prince Fina									
MEATS NA MERTS 7.9 7.6 7.3 7.7 7.9	ASDESIOS AllalySt ID				MLO	MLO	MLO	MLO	MLO
MEATS NA MERTS 7.9 7.6 7.3 7.7 7.9	Conoral Inorganics								
Free Cyanide water Sources SUP 1917 extraction (2:1 Leaknate gui water Sources SUP 1917 extraction (2:1 Leaknate gui water Sources SUP 1917 extraction (FOC) Automated NA 0.001 MCRRTS 0.0007 0.022 0.026 0.023 0.017 0.022 0.028		nH Hnite	N/A	MCEDIC	7.0	7.0	7.2	77	7.0
wilder Soutions SNA Table redardation (2:1 Leadmate) gn 0.0012 MCRTS 0.0072 0.026 0.023 0.017 0.022 Fraction Organic Carbon (FOC) Automated NA 0.001 MCRTS 0.0087 0.029 0.022 0.022 0.028 Total Phenois Total Phenois (monohydric) mg/lag 1 MCERTS < 1.0									
General Carbon (FOC) Automated N/A 0.001 MCERTS 0.0072 0.026 0.023 0.017 0.0028		тіу/кд	1	PICERIS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Equivalent)	g/l	0.00125	MCERTS	0.0072	0.026	0.023	0.017	0.022
Total Phenois Total Phenois (monohydric)	Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0087	0.029	0.022	0.022	0.028
MCERTS	· · ·	-							
MCERTS	Total Phenois								
Speciated PAHs		mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	Total Frictions (monority arie)	5. 5			V 1.0	< 1.0	V 1.0	< 1.0	V 1.0
Accessaphthylene	Speciated PAHs								
Accession Marker	Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pubmente	Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Purpose	Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Demzo(a)anthracene	Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(h)fluoranthene	Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene		mg/kg	0.05	MCERTS				< 0.05	
Benzo(a)pyrene		mg/kg	0.05	MCERTS					
Indeno(1,2,3-cd)pyrene	Benzo(a)pyrene	_							
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05			0.05	MCERTS					
Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <				MCERTS					
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80			0.05	MCERTS					
Heavy Metals / Metalloids MCERTS	15 71-1								
Heavy Metals / Metalloids Mg/kg 1 MCERTS 29 20 15 14 15	Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Arsenic (aqua regia extractable)		5. 5			. 0.00	. 0.00	. 0.00	. 0.00	` 0.00
Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 1.1 1.3 0.96 0.8 0.88	Heavy Metals / Metalloids								
Mode Mode	Arsenic (aqua regia extractable)								
Cadmium (aqua regia extractable) mg/kg 1.8 MCERTS 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1.8 < 1	Beryllium (aqua regia extractable)								
Chromium (hexavalent)	Boron (water soluble)	_							
Chromium (III) mg/kg 1 NONE 45 42 38 31 36 Chromium (aqua regia extractable) mg/kg 1 MCERTS 45 44 39 32 36 Copper (aqua regia extractable) mg/kg 1 MCERTS 16 19 12 11 14 Lead (aqua regia extractable) mg/kg 1 MCERTS 19 33 22 19 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 20.3 < 0.3 < 0.3 < 0.3 < 0.3 Nickel (aqua regia extractable) mg/kg 1 MCERTS 23 25 18 17 17 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <t< td=""><td>Cadmium (aqua regia extractable)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Cadmium (aqua regia extractable)								
Chromium (aqua regia extractable)	Chromium (hexavalent)	mg/kg	1.8		< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Copper (aqua regia extractable) mg/kg 1 MCERTS 16 19 12 11 14 Lead (aqua regia extractable) mg/kg 1 MCERTS 19 33 22 19 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS <0.3	Chromium (III)		1		45	42	38	31	36
Lead (aqua regia extractable) mg/kg 1 MCERTS 19 33 22 19 22 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Chromium (aqua regia extractable)	mg/kg	1		45	44	39	32	36
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	19	12	11	14
Nickel (aqua regia extractable) mg/kg 1 MCERTS 23 25 18 17 17 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	Lead (aqua regia extractable)	mg/kg	1	MCERTS	19	33	22	19	22
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Vanadium (aqua regia extractable) mg/kg 1 MCERTS 69 61 53 46 49	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	25	18	17	17
(-1	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	Vanadium (aqua regia extractable)	mg/kg	1		69	61	53	46	49
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	92	58	53	61

Analytical Report Number: 22-83964 Project / Site name: Begbroke

Lab Sample Number				2423858	2423859	2423860	2423861	2423862
Sample Reference				TP224	TP232	TP234	TP230	TP231
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.20	0.20	0.20	0.20
Date Sampled				08/09/2022	07/09/2022	07/09/2022	07/09/2022	07/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	_	< 1.0	_
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH CU 1D AL}	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU 1D AL	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	-	-	-	< 8.4	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg	10	NONE	-	-	-	< 10	-
_ '8 8								
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	MCERTS	-	_	_	< 0.001	_
TPH-CWG - Aromatic >EC7 - EC8 _{HS 1D AR}	mg/kg	0.001	MCERTS	-	-	_	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH CU 1D AR}	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH CU 1D AR}	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	_	< 10	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	-	-	< 8.4	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	_	< 10	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_ID_AR}	mg/kg	10	NONE	-	-	-	< 10	-
			•					•
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	< 10	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Analytical Report Number: 22-83964 Project / Site name: Begbroke

					T			
Lab Sample Number				2423863	2423864	2423865	2423866	2423867
Sample Reference				TP201	TP205	TP211	WS249	WS252
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.15	0.15	0.10	0.10
Date Sampled				09/09/2022	09/09/2022	09/09/2022	06/09/2022	06/09/2022
Time Taken	_			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.8	5.3	4.5	4.4	9.3
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.9	0.9	0.9
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	KSZ	GFI	GFI
	-			•	•	•		•
General Inorganics					•			
pH - Automated	pH Units	N/A	MCERTS	8.4	7.8	7.9	6.9	7.9
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0026	0.0042	0.003	0.0096	0.026
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0027	0.02	0.012	0.015	0.025
Traction organic carbon (1 00) Automated			<u> </u>	0.0027	0.02	0.012	0.013	0.025
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (monoriyane)	3, 3			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Harris Markets (Markette)								
Heavy Metals / Metalloids	pa a Re-		MCERTC	62	F4	30	10	3.4
Arsenic (aqua regia extractable)	mg/kg	0.06	MCERTS MCERTS	83	54	39	18	24
Beryllium (aqua regia extractable)	mg/kg mg/kg	0.06	MCERTS	1.8	1.5	1.1	0.81	1.2
Boron (water soluble)		0.2	MCERTS	0.2	0.5	0.7	0.5	1.8
Cadmium (aqua regia extractable)	mg/kg mg/kg	1.8	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)		1.8	NONE	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	MCERTS	66	53	40	32	44
Chromium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	66	54	41	32	45
Copper (aqua regia extractable)			MCERTS	17	22	16	8.9	14
Lead (aqua regia extractable)	mg/kg mg/kg	0.3		18	31	32	15	23
Mercury (aqua regia extractable)		0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg			48	35	25	16	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	130	97	75	51	68
Zinc (aqua regia extractable)	ilig/kg		FICERIO	130	100	70	40	76

Lab Sample Number		2423863	2423864	2423865	2423866	2423867		
Sample Reference				TP201	TP205	TP211	WS249	WS252
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.15	0.15	0.10	0.10
Date Sampled				09/09/2022	09/09/2022	09/09/2022	06/09/2022	06/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Tuken	1	-		None Supplied	None Supplied	тчопе заррпеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates			MCEDIC					
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU 1D AL	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU 1D AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44 FH CILID AL	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	MCERTS	_	-	_	_	_
TPH-CWG - Aromatic >EC7 - EC8 _{HS 1D AR}	mg/kg	0.001	MCERTS	_	-	-	_	-
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	_	-	_	_	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH, CU_1D, AR}	mg/kg	2	MCERTS	_	-	-	_	-
TPH-CWG - Aromatic > EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	_	-	-	_	-
TPH-CWG - Aromatic > EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	_	_	-	_	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_ID_AR}	mg/kg	8.4	NONE	_	-	-	_	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_ID_AR	mg/kg	10	MCERTS	_	_	-	_	-
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_ID_AR	mg/kg	10	NONE	_	_	_	_	_
CITCUTTO_ID_AK	1							
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	_	_	_	_	_
· · · · · · · · · · · · · · · · · · ·								

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number		2423868	2423869	2423870	2423871	2423872		
Sample Reference				WS252	WS239	WS248	TP227	TP221
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.10	0.10	0.20	0.20
Date Sampled				06/09/2022	06/09/2022	06/09/2022	05/09/2022	05/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	7.7	9.1	4.5	3.9
Total mass of sample received	kg	0.001	NONE	0.9	0.8	0.9	0.4	0.9
					<u> </u>			
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	KSZ	KSZ	KSZ
, , ,			1					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	8	6.8	8.1	7.5
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.014	0.0043	0.011	0.0027	0.005
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0053	0.021	0.026	0.013	0.012
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
operated four EFA 10 FA 15	<i>J.</i> 9			< 0.00	< 0.00	< 0.00	₹ 0.00	₹ 0.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	38	13	14	36	41
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.64	0.86	1	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1	0.5	1.1	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	45	23	33	38	43
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	46	25	34	39	43
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.5	11	13	16	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	13	23	55	20	34
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	26	15	17	25	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	74	< 1.0 41	< 1.0 49	72	74
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	45	48	52		91
Airic (aqua regia extractable)	9/9		1	45	48	52	89	31

Lab Sample Number		2423868	2423869	2423870	2423871	2423872		
Sample Reference				WS252	WS239	WS248	TP227	TP221
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.10	0.10	0.20	0.20
Date Sampled				06/09/2022	06/09/2022	06/09/2022	05/09/2022	05/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Tuken	1	-		None Supplied	None Supplied	чоне Заррнеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates			MCEDIC					
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44 EH CU 1D AL	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	-	-
	-							
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	MCERTS	_	-	_	-	_
TPH-CWG - Aromatic >EC7 - EC8 _{HS 1D AR}	mg/kg	0.001	MCERTS	_	-	_	-	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS 1D AR}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	_	-	_	-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	_	-	_	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	_	-	_	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_ID_AR	mg/kg	10	MCERTS	_	_	_	_	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_ID_AR}	mg/kg	8.4	NONE	_	-	_	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU_HS_1D_AR	mg/kg	10	MCERTS	_	_	_	_	_
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	_	_	_	_	_
/ En_comb_tb_AR								
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	_	_	_	_	_
- EI_COTID_IOIAE								

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2423858	TP224	None Supplied	0.5	Brown clay and sand.
2423859	TP232	None Supplied	0.2	Brown loam and clay with vegetation.
2423860	TP234	None Supplied	0.2	Brown loam and clay with vegetation and gravel
2423861	TP230	None Supplied	0.2	Brown loam and clay with vegetation and gravel
2423862	TP231	None Supplied	0.2	Brown loam and clay with vegetation and gravel
2423863	TP201	None Supplied	0.7	Brown sandy clay with gravel.
2423864	TP205	None Supplied	0.15	Brown loam and clay with vegetation and gravel
2423865	TP211	None Supplied	0.15	Brown loam and clay with vegetation and gravel
2423866	WS249	None Supplied	0.1	Brown loam and clay with vegetation and gravel
2423867	WS252	None Supplied	0.1	Brown loam and clay with vegetation and gravel
2423868	WS252	None Supplied	0.4	Brown clay and sand with vegetation.
2423869	WS239	None Supplied	0.1	Brown loam and clay with vegetation and gravel
2423870	WS248	None Supplied	0.1	Brown loam with gravel and vegetation.
2423871	TP227	None Supplied	0.2	Brown loam with gravel and vegetation.
2423872	TP221	None Supplied	0.2	Brown loam with gravel and vegetation.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

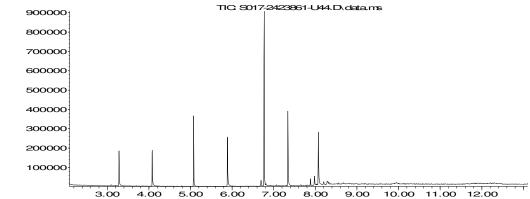
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (Π) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description Analytical Method Reference Method number Analysis Accurate
--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Abundance

Time-->

Sample Deviation Report

Analytical Report Number : 22-83964 Project / Site name: Begbroke

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Toct Rof	Test Deviation
TP221	None Supplied	S	2423872	С	Free cyanide in soil	L080-PL	С
TP227	None Supplied	S	2423871	С	Free cyanide in soil	L080-PL	С
WS239	None Supplied	S	2423869	С	Free cyanide in soil	L080-PL	С
WS248	None Supplied	S	2423870	С	Free cyanide in soil	L080-PL	С
WS249	None Supplied	S	2423866	С	Free cyanide in soil	L080-PL	с
WS252	None Supplied	S	2423867	С	Free cyanide in soil	L080-PL	С
WS252	None Supplied	S	2423868	С	Free cyanide in soil	L080-PL	С

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-83965

Project / Site name: Begbroke Samples received on: 13/09/2022

Your job number: 19114 Samples instructed on/ 13/09/2022

Analysis started on:

Your order number: PO19941 Analysis completed by: 22/09/2022

Report Issue Number: 1 Report issued on: 22/09/2022

Samples Analysed: 14 soil samples

Dominika Warjan
Junior Reporting Specialist
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number		2423844	2423845	2423846	2423847	2423848		
Sample Reference				WS225	WS225	WS221	WS247	WS236
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	0.20	0.20	0.20	0.20
Date Sampled				31/08/2022	31/08/2022	31/08/2022	31/08/2022	05/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	3.7	4.9	4.3	9.2	2
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.4	0.9	0.9
				0.5	0.5	· · ·	0.5	0.5
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SPU	SPU SPU	SPU	SPU SPU	SPU SPU
ASDESTOS Alialyst ID			,	350	350	350	350	350
General Inorganics								
General Inorganics	pH Units	N/A	MCERTS	7.0	o	7.0	77	0.1
pH - Automated Free Cyanide	mg/kg	1 1	MCERTS	7.8 < 1.0	8 < 1.0	7.9 < 1.0	7.7 < 1.0	8.1 < 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate	ilig/kg		FICERIS					
Equivalent)	g/l	0.00125	MCERTS	0.0021	0.0069	0.031	0.03	0.011
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.015	0.013	0.023	0.018	0.042
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
. ,	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		< 0.05	< 0.05 < 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	0.22
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05				< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.34
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05				0.39
Pyrene	mg/kg	0.05	MCERTS		< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	_	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.24
Chrysene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.42
Benzo(b)fluoranthene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.52
Benzo(k)fluoranthene	mg/kg			< 0.05	< 0.05	< 0.05	< 0.05	0.21
Benzo(a)pyrene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.41
Indeno(1,2,3-cd)pyrene	mg/kg			< 0.05	< 0.05	< 0.05	< 0.05	0.32
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	PICERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.49
Total DAII								
Total PAH	malke	0.8	MCEDTC					
Speciated Total EPA-16 PAHs	mg/kg	0.0	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	3.56
Harris Martala (Martalla)								
Heavy Metals / Metalloids				_		_	<u>.</u>	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	51	27	31	30	25
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	0.89	1.2	1.2	0.47
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	1.1	2.4	0.8	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	52	31	41	44	18
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	52	32	41	44	18
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	13	14	9.5	29
Lead (aqua regia extractable)	mg/kg	1	MCERTS	33	94	21	22	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	24	24	24	14
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	94	63	69	74	59
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	67	75	77	67
	_							

[
Lab Sample Number				2423844	2423845	2423846	2423847	2423848
Sample Reference				WS225	WS225	WS221	WS247	WS236
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	0.20	0.20	0.20	0.20
Date Sampled				31/08/2022	31/08/2022	31/08/2022	31/08/2022	05/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ε.						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	약	creditat Status					
(Soil Analysis)	<u>Ŗ</u>	l et	itat					
		₹.	ġ					
		9						
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
·								
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	_	-	< 0.001
TPH-CWG - Aliphatic > EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	_	_	_	_	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS					< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH CU 1D AL}	mg/kg	1	MCERTS	-				< 1.0
	mg/kg	2	MCERTS					
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}				-	-	-	-	12
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-	-	-	14
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-	-	-	250
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	-	-	-	-	270
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	-	-	-	-	470
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	-	-	-	-	280
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	-	750
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	9.7
TPH-CWG - Aromatic >EC16 - EC21 EH CU 1D AR	mg/kg	10	MCERTS	-	-	-	-	13
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	440
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4	NONE	-	_	-	_	990
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	_	_	_	_	470
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	_	_	_	_	1500
7 21,00110,10,11	-			<u>I</u>				1500
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	_	_	_	_	2200
EI_COTID_IOIAL				<u>I</u>				2200
VOCs								
Chloromethane	μg/kg	1	ISO 17025	_	_	_	_	< 1.0
Chloroethane	μg/kg	1	NONE			-	_	< 1.0
	µg/kg		ISO 17025			-	-	
Bromomethane		1		-	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg 	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg 	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0

Lab Sample Number	2423844	2423845	2423846	2423847	2423848			
Sample Reference				WS225	WS225	WS221	WS247	WS236
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	0.20	0.20	0.20	0.20
Date Sampled				31/08/2022	31/08/2022	31/08/2022	31/08/2022	05/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	1	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-		-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	1	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	< 0.2

Lab Sample Number				2423844	2423845	2423846	2423847	2423848
Sample Reference				WS225	WS225	WS221	WS247	WS236
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	0.20	0.20	0.20	0.20
Date Sampled	31/08/2022	31/08/2022	31/08/2022	31/08/2022	05/09/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
		Ξ.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	_	_	_	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	_	_	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	_	_	_	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	_	_	_	_	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	_	_	_	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	_	_	_	_	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	_	_	_	_	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	_	_	_	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	_	_	_	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	_	_	_	_	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	_	_	_	_	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	_		-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS			_	_	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-		-	-	0.22
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Carbazole	mg/kg	0.03	MCERTS	-	-	-	-	< 0.05
Dibutyl phthalate	mg/kg	0.3	MCERTS	-		-	-	< 0.2
Anthraquinone	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	0.34
	mg/kg	0.05	MCERTS	-	-	-	-	0.39
Pyrene Butyl benzyl phthalate	mg/kg	0.03	ISO 17025			-	-	< 0.3
	mg/kg	0.05	MCERTS	-	-	-	-	0.24
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	0.42 0.52
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	0.52
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	
Benzo(a)pyrene		0.05	MCERTS	-	-	-	-	0.41
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS		-			0.32
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	-		-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.03	FIGERIA	-	-	-	-	0.49

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number	2423849	2423850	2423851	2423852	2423853			
Sample Reference				WS228	WS235	WS242	TP206	TP217
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.20	0.20	0.20	0.20	0.40			
Date Sampled	05/09/2022	05/09/2022	05/09/2022	08/09/2022	08/09/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
		Ē						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	redi Stat					
(Soil Analysis)	ts	ete	us					
		籄	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.1	5.7	8.2	7.1	2.5
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.9	0.9	0.9
Total mass of sample received	_	ı		0.5	0.5	0.5	0.5	0.5
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SPU SPU	SPU SPU	SPU	SPU	SPU
ASSESSED FillelySt 15			·	31 0	31 0	31 0	31 0	310
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.5	7.8	7.7	7.8	8.3
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate	9,9	t						
Equivalent)	g/l	0.00125	MCERTS	0.0044	0.0022	0.024	0.0038	0.0029
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0073	0.011	0.014	0.016	0.0037
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	48	45	24	59	78
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.2	1.1	1.5	1.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	1	0.6	0.4	0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	49	45	34	55	55
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	50	46	35	56	56
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18	14	18	18	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	20	18	26	26	15
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	35	28	34	34	30
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	91	80	56	100	110
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	77	96	89	99	80
,								