Water Eaton PR6a: Land East of Oxford Road

Phase 2 Site Investigation

WE/SI/P01

SUMMARY

The site in Water Eaton, Oxfordshire, which comprises approximately 45.8ha of agricultural land, to the east of Oxford Road.

The proposed development is as follows "Outline application (with all matters except access reserved for future consideration) for the demolition of existing buildings and the erection of up to 800 dwellings (Class C3); a two form entry primary school; a local centre (comprising: convenience retailing (not less than 350sqm and up to 500sqm (Class E(a)), business uses (Class E(g)(i))) and/or financial and professional uses (Class E(c)) up to 500sqm, café or restaurant use (Class E(b)) up to 200sqm; community building (Class E and F2); car and cycle parking); associated play areas, allotments, public open green space and landscaping; new vehicular, pedestrian and cycle access points; internal roads, paths and communal parking infrastructure; associated works, infrastructure (including Sustainable Urban Drainage, services and utilities) and ancillary development. Works to the Oxford Road in the vicinity of the site to include, pedestrian and cycle infrastructure, drainage, bus stops, landscaping and ancillary development."

Geological records indicate the site to be underlain by Oxford Clay Formation with a small area of Wolvercote Sands and Gravels found towards the south of the site.

A desk study had already been undertaken by the client, for the wider site area, which was reviewed as part of this investigation. Some preliminary soakage testing has been recently undertaken and was reported under a separate cover (ref ODJ/JK/RP/JN1597, dated 15th September 2021).

As requested, this report brings together later phases of investigation, which were originally reported under separate cover, into a new revision. These include gas monitoring and further pesticide testing and risk assessment subsequent to the findings of this original report. This report has the relevant sections added, or amended, in the light of the additional work, and the full versions of the additional report are included within the appendices pages.

The original investigation comprised a preliminary Phase II assessment, with trial pitting for contamination assessment, some full-scale soakage testing in areas identified as having soakage potential from the recent preliminary soakage assessment and some groundwater monitoring from the well installed. No geotechnical interpretation is given in this report.

A single phase of intrusive investigation was carried out comprising twelve 3m deep windowless sampler trial holes, with installations, twenty 1-3m deep trial pits excavated by JCB and three 1.5/1.6m BRE 365 soakage tests.

The soils encountered comprised a Topsoil (GL- 0.1/0.4m) and Clay subsoil (-0.45-1.5m), over the Oxford Clay Formation (-3m+), with the latter generally found as a gravelly Clay often becoming shelly with depth. Shallow Made Ground was encountered in only two locations.

Groundwater was only encountered in one of the trial holes during the investigation, at a depth of around 2m, rising to 1.3m. During the monitoring period, some of the wells were dry, with levels recorded from 0.60 to 2.85m below ground level in the others.

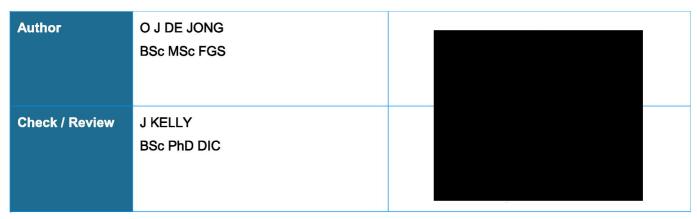
No significant groundwater conditions requiring de-watering of excavations are anticipated.

The soils analysed were free from any heavy metal, PAH and asbestos impact. This concurs with the site history presented in the desk study provided and the observations made on site. However, Pendmethalin, a widely used herbicide, was recorded at generally low concentrations in the topsoil analysed. Further assessment was recommended to better assess the risk, which was undertaken and concluded that the soils on site are unlikely to pose any significant risk to human health.

The subsequent gas monitoring program recorded no significant gas risk.

The presence of contamination may affect the classification of waste soils, or the potential for their re-use.

The contamination screening values used are valid at the time of writing but may be subject to change and any such changes will have implications for the assessments based on them. Their validity should be confirmed at the time of site development.



As with any site, areas of contamination not identified during investigation works may come to light during the course of redevelopment. Accordingly, a discovery strategy must be in place during the redevelopment to ensure that any hitherto unknown contamination is identified and dealt with in an appropriate manner. Depending on the nature of any such contamination, it may prove necessary to reassess the remedial strategy for the site. The presence of contamination may affect the classification of waste soils, or the potential for their re-use.

A formal remediation strategy and verification plan should be agreed with the regulatory authorities prior to commencement of any remedial works. This should be carried out following the further assessment recommended.

The investigation was conducted and this report has been prepared for the sole internal use and reliance Bellway Homes Limited and Christ Church, Oxford. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

For and on behalf of Southern Testing Laboratories Limited

DOCUMENT HISTORY AND STATUS

Issue No.	Date	Purpose or Status	Author	Check / Review
01	25/01/2022	Preliminary Phase II Site Investigation	ODJ	JK
02	09/03/2022	Preliminary Phase II Site Investigation	ODJ	JK
03	13/01/2023	Preliminary Phase II Site Investigation (Updated)	ODJ/ADM	JK
04	27.01.23	Preliminary Phase II Site Investigation (Updated)	ODJ/ADM	JK
05	27.02.23	Preliminary Phase II Site Investigation (Updated – Rev3)	ODJ/ADM	JK

Copyright © 2022 Southern Testing Laboratories Ltd.

TABLE OF CONTENTS

Α	INT	RODUCTION	1
	1	Authority	1
	2	Location	1
	3	Proposed Construction	1
	4	Object	1
	5	Scope	1
В	DES	K STUDY AND WALKOVER SURVEY	2
	6	Desk Study	2
	7	General Site Description	2
С	GRO	DUND INVESTIGATION	3
	8	Strategy and Method	3
	9	Weather Conditions	4
	10	Soils as Found	4
	11	Groundwater Observations	4
D	DIS	CUSSION OF GEOTECHNICAL TEST RESULTS AND RECOMMENDATIONS	5
	12	Groundwater Levels	5
	13	Soakaways	5
E	DIS	CUSSION OF GEOENVIRONMENTAL TEST RESULTS AND RECOMMENDATIONS	7
	14	Analytical Framework	7
	15	Site Investigation – Soils	8
F	SITE	INVESTIGATION – GROUND GAS	12
	16	Summary of Identified Contamination	12
	17	Discussion and Conclusions	14
	18	General Guidance	14

TABLE OF APPENDICES

APPENDIX A
Site Plans and Exploratory Hole Logs
APPENDIX B
Field Sampling and In-Situ Test Methods and Results
APPENDIX C
Contamination Laboratory Test Methods and Results
APPENDIX D
Groundwater Monitoring Data
APPENDIX F

Ground Gas Report (JN1683GG)

APPENDIX F

Pendimethaline Letter

A INTRODUCTION

1 Authority

Our authority for carrying out this work is contained in an appointment email from Glanville Consultants dated 15th July 2021 and within an appointment document from the client's solicitors, Mills and Reeve.

2 Location

The site is located approximately 1.2km to the south of Oxford Parkway train station, in the fields surrounding St Frideswide's Farm. The approximate National Grid Reference of the site is SP 50500 11290. The site location is indicated on Figure 1 within Appendix A.

3 Proposed Construction

It is proposed to develop the 45.8ha site as follows:

"Outline application (with all matters except access reserved for future consideration) for the demolition of existing buildings and the erection of up to 800 dwellings (Class C3); a two form entry primary school; a local centre (comprising: convenience retailing (not less than 350sqm and up to 500sqm (Class E(a)), business uses (Class E(g)(i)) and/or financial and professional uses (Class E(c)) up to 500sqm, café or restaurant use (Class E(b))) up to 200sqm; community building (Class E and F2); car and cycle parking); associated play areas, allotments, public open green space and landscaping; new vehicular, pedestrian and cycle access points; internal roads, paths and communal parking infrastructure; associated works, infrastructure (including Sustainable Urban Drainage, services and utilities) and ancillary development. Works to the Oxford Road in the vicinity of the site to include pedestrian and cycle infrastructure, drainage, bus stops, landscaping and ancillary development."

For the purposes of the contamination risk assessment, the proposed development land use is classified as Residential with Homegrown Produce Consumption CLEA Model Ref [1] / C4SL Report Ref [2].

The gas sensitivity of the proposed development is therefore rated as High CIRIA C665 Ref [3].

4 Object

This investigation follows-on from the recent Phase 1a investigation (ref. JN1597 Phase 1a), which was a preliminary soakage assessment. The object of this investigation was to carry out a series of full-scale BRE365 soakage tests, at locations tentatively identified as having soakage potential from the recent preliminary assessment, excavate sitewide trial pits as part of a contamination assessment alongside and the installation groundwater monitoring wells.

As requested, the report also bring together results from later investigations comprising additional pesticide testing and risk assessment and land gas monitoring and risk assessment. This report has the relevant sections added or amended in the light of the additional work, and the full versions of the additional report are included within the appendices pages.

5 Scope

This report presents our exploratory hole logs and contamination test results and our interpretation of these data.

A desk study was undertaken for the wider site by the client, which was reviewed as part of this assessment.

A UXO risk assessment was not requested within our brief for the investigation.

As with any site there may be differences in soil conditions between exploratory hole positions.

This report is not an engineering design and the figures and calculations contained in the report should be used by the Engineer, taking note that variations will apply, according to variations in design loading, in techniques used, and in site conditions. Our figures therefore should not supersede the Engineer's design.

The ground/site investigation has been completed with reference to BS 5930 Ref [4] and BS 10175 Ref [5].

Geotechnical issues are not considered in this report and are to be reported separately.

Waste Classification of soils has not been included within the brief for the investigation.

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

The investigation was conducted and this report has been prepared for the sole internal use and reliance of Bellway Homes Limited and Christ Church, Oxford. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The recommendations contained in this report may not be appropriate to alternative development schemes.

Detailed information on the proposed development, such as detailed final layout, loadings and serviceability limits was not provided. Accordingly, where geotechnical design advice is provided it is on the prescriptive basis allowed for by Eurocode 7: employing conventional and conservative design rules.

The contamination screening values used are valid at the time of writing but may be subject to change and any such changes will have implications for the assessments based on them. Their validity should be confirmed at the time of site development.

DESK STUDY AND WALKOVER SURVEY R

6 Desk Study

A desk study has been carried out by Glanville Consultants, a summary of the salient features presented within this investigation are discussed below.

- The British Geological Survey (BGS) records indicate that the site is underlain by Oxford Clay Formation and West Walton Formation. A slim band of the Wolvercote Sand and Gravel Member is present in the south.
- The site has a history of agricultural risk and as such no significant sources of on-site contamination risk have been identified.
- Effluent from Pipal Cottage has been identified as a possible risk to surface water from outside the site boundaries. This effluent is stated to be final and treated and so is likely of very low risk to the site.
- Overall, the contamination risk was generally considered very low and where contamination is found it was likely to be localised and from sources such as farm equipment leaks.

7 **General Site Description**

The site is located to the east of the A4165, Oxford Road to the north of Oxford. The northern boundary adjoins Oxford Parkway Park and Ride site. To the east, the site boundary crosses an open field, then follows field boundaries around St. Frideswide's Farm to the south, where the southern boundary adjoins Cutteslowe Park, Banbury Road North Sports Ground, and an adjacent field. The land to the south of the site boundary is within the administrative area of Oxford City Council (OCC).

Vehicular access to the site is currently available from two points on Oxford Road. The northern point provides access to Water Eaton and the southern point provides access to St. Frideswide's Farm. The southern point of access also forms part of the public right of way (PRoW) which crosses the site in an east-west direction (Route 229/9/30), continuing eastwards towards the River Cherwell and westwards through Site PR6b. A second PRoW crosses the application sites in a northeast-southwest in the southern part of the site, ending at the Oxford City boundary. A permissive footpath also runs along the southern boundary of the application site, located within Cutteslowe Park.

The site is irregular in shape and mainly consists of agricultural land, used as arable fields. Pipal Barns are also located within the site and are accessed from, and with a frontage onto, the A4165 in the north-west of the site. Pipal Cottage is located just outside the site boundary adjacent to Pipal Barns and the A4165, and St Frideswide's Farmhouse and farm buildings are located just outside the eastern site boundary.

The site generally falls away from two main high points. The first is located in the centre of the site along the western boundary with the A4165, with land falling to the north, and to the east towards St Frideswide's Farm. The second high point is located along the southern boundary, with land falling from this point to the east towards the River Cherwell, and to the north towards St Frideswide's Farm.

Across the site, field ditches and the topography allow surface water to drain in an easterly direction. These connect with a network of drainage ditches that ultimately discharge into the River Cherwell. The Cherwell River flows in a southerly direction to join the River Thames south of Oxford City. The EA Flood Map for Planning indicates that the entire site is located within Flood Zone 1, land at the lowest risk of flooding (<1 in 1,000 year return period), with an area of land adjacent to the south-east site boundary within a mixture of Flood Zone 2 (between 1 in 100 year and 1 in 1,000 year return period) and Flood Zone 3 (> 1 in 100 year return period).

The nearest designated heritage assets to the site are the Grade II* listed St Frideswide's Farmhouse and associated Grade II listed garden wall. The Oxfordshire Historic Environment Records (HER) show four non-designated heritage assets within the site boundary, including the remains of two Bronze Age barrows, possible Roman 'ridgeway', and a milestone. The two Bronze Age barrows present on site are to be retained in situ.

The field boundaries within the Site are delineated by mature, native hedgerows of variable species composition and structure, with some sections of post and wire fencing. The majority of the hedgerows are relatively species rich and regularly managed (c.1.5 m high). A small number of species-poor hedgerows are present, alongside the track leading to the Water Eaton estate, and along the southern and eastern boundaries of the south-western field.

Two small areas of broad-leaved woodland are present within the western edge of the site alongside Oxford Road, and there are sparsely scattered hedgerow trees.

The area surrounding the site includes the Oxford Parkway Park & Ride site (including the Oxford Parkway railway station) to the north. Immediately to the south is a parcel of land within Oxford City which is the subject of full planning permission for 134 dwellings (OCC Ref. 21/01449/FUL) and also land which is in sports and recreation use (including land at Oxford Hawks Hockey Club and land at Cuttleslowe Park). To the west of the site is land currently occupied by North Oxford Golf Club and which is allocated for residential development in the adopted Local Plan (Site PR6b). To the east is open countryside and which is in agricultural use.

C GROUND INVESTIGATION

8 Strategy and Method

The strategy adopted for the intrusive investigation comprised the following:

Activity / Method	Purpose	Max Depth Range (mbgl)	Installations / Notes
WLS201 – WLS212	Boreholes to investigate the shallow ground conditions within external areas. Installation of shallow land gas and groundwater monitoring wells.	3.00	38mm groundwater monitoring wells installed within all boreholes to full depth.
TP101 – TP120	Trial pits to investigate the shallow ground conditions and allow for the collection of samples mainly for contamination testing.	1.00 – 3.00	
SA101 – SA103	Trial pits to investigate the shallow ground conditions and allow for assessment of soakage potential using the BRE365 method.	1.5 / 1.6	Gravel filled with 10mm shingle to 0.10mBGL

The location of exploratory holes were chosen for a number of different reasons. The well installations were stipulated by the Client's Engineer to provide the best general coverage for groundwater monitoring points. The trial pit locations were designed to provide general coverage of the proposed development area and the soakaway test locations were chosen to target areas of potential drainage highlighted from the previous investigation. The locations of all positions are shown on Figure 2 in Appendix A.

In-situ test and sampling methods descriptions employed are given in Appendix B together with the test results.

9 Weather Conditions

The fieldwork was carried out between Tuesday 21st September 2021 and Friday 24th September 2021, at which time the weather was generally clear and dry.

10 Soils as Found

The soils encountered are described in detail on the attached exploratory hole logs (Appendix A), but in general comprised a covering of topsoil and subsoil over weathered Oxford Clay Formation over undisturbed Oxford Clay Formation. A summary is given below.

Depth (m)	Thickness (m)	Soil Type	Description
GL – 0.25/0.30m	0.25 – 0.30m	MADE GROUND	MADE GROUND composed of brown silty gravelly CLAY with rootlets, flint, limestone gravel and concrete fragments. (Only encountered in WLS201 and WLS205)
GL – 0.10/0.40m	0.10 – 0.40m	TOPSOIL	Brown to dark brown clayey silty sandy gravelly occasionally cobbly TOPSOIL with rootlets. Gravels comprise fine to coarse well-rounded to sub-angular flint.
– 0.45/1.50m	0.10 – 1.25m	SUBSOIL (CLAY)	Orange-brown to brown silty sandy gravelly CLAY subsoil. Gravels comprise fine to coarse well-rounded to sub-angular flint and occasional calcareous gravel in the north of the site.
– 1.00/3.00m	0.30 – 1.90m	CLAY	Orange-brown / grey mottled silty occasionally slightly sandy gravelly occasionally shelly CLAY. Gravels comprise fine to coarse well-rounded to sub-angular flint.
- 0.80/1.30m	0.45 – 0.90m	CLAY	Greenish-grey occasionally sandy gravelly CLAY.
– 1.50/3.20m+	0.70 – 2.10m+	CLAY	Grey to dark grey / blue-grey silty occasionally sandy gravelly shelly CLAY with lithorelic structure, calcareous nodules and occasional ancient rootlets. Gravels comprise fine to coarse well-rounded to sub-rounded flint.

Generally, the soils are in accordance with those mapped and expected on-site. Some local granular deposits were noted within the south in the areas of the mapped Wolvercote Sand and Gravel Member. Moving from south to north, the deeper undisturbed Oxford Clay Formation often become more shelly and calcareous. Towards the north of the site the shallower Oxford Clay Formation clay often had a greenish-grey tint before transitioning into the grey and blue-grey clay seen at depth.

10.1 Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of significant contamination was seen during the fieldwork, which concurs with the desk study provided. At two locations, shallow Made Ground was encountered (WLS201 and WLS205), although only concrete fragments were noted.

11 **Groundwater Observations**

Groundwater was only encountered within WLS211 during the investigation. Within this water was struck at 1.90m and rose to 1.40m after 20 minutes. This level was monitored approximately 24hours later during the subsequent day of fieldwork and had risen to 1.30m. Trial holes WLS210 and WLS212 were also monitored during this for local comparisons despite both being dry upon completion on the day of the investigation.

WLS212 remained dry and WLS210 had a water level of 0.56mBGL.

The results of the ground water monitoring are presented below.

DISCUSSION OF GEOTECHNICAL TEST RESULTS AND D RECOMMENDATIONS

12 **Groundwater Levels**

Groundwater levels vary considerably from season to season and year to year, often rising close to the ground surface in wet or winter weather, and falling in periods of drought. Long term monitoring standpipes have been installed across 12 locations on the site to help assess the ground water regime on site. To date, four monitoring visits have been completed. A summary of these results is presented below. The monitoring data is presented in full in Appendix F.

Location	Groundwater Level (mBGL)							
Location	13/10/2021	09/11/2021	08/12/2021	10/01/2022	10/02/2022			
WLS201	1.26	1.20	1.10	1.00	0.90			
WLS202	2.75	2.68	1.50	1.40	1.29			
WLS203	0.86	0.80	0.33	0.30	0.27			
WLS204	1.24	1.18	0.80	0.80	0.73			
WLS205	DRY	DRY	1.05	0.90	0.90			
WLS206	DRY	DRY	0.75	0.50	0.50			
WLS207	0.65	0.60	0.60	0.60	0.60			
WLS208	DRY	DRY	0.45	0.40	0.40			
WLS209	2.85	2.80	0.35	0.35	0.35			
WLS210	1.21	1.15	0.80	0.70	0.70			
WLS211	1.35	1.30	1.30	1.30	1.30			
WLS212	DRY	DRY	DRY	DRY	DRY			

12.1 Water Level and Groundwater Flow

From the monitoring visits completed to date, groundwater levels have been recorded in the range of 0.30 to 2.85m below ground level. At this stage, it is not possible to determine any long-term trends within the water level or establish a standard strata groundwater is found within.

Existing groundwater and surface water drainage solutions were noted during the intrusive investigations, which took the form of underground clay pipes, gravel filled French drains and ditches around the field boundaries, although it is not clear where the ditches then direct water. In addition to the agricultural land drainage, overland flow is likely to play an important part in the hydrology of the site, with the direction of water flow largely dictated by the natural topography of the site and surrounding area, which dips towards the east.

13 Soakaways

Soakage testing was carried out in trial pits SA01, SA02 and SA03. The test locations were chosen under the guidance of the client following the results of the preliminary assessment in Phase 1A.

The preliminary assessment included BH permeability tests across the site; these concluded that soakage may only be feasible in certain areas towards the south of the site. SA01, SA02 and SA03 were therefore positioned within this area to further investigation the soakage potential.

13.1 Soakage Test Results

The BRE paper DG365, Ref [6] describes a method for site testing to determine soil infiltration rates at the proposed site of a soakaway. The in-situ test method is described in Appendix B.

A total of three soakage tests were carried out across the site, at the locations shown on the attached site plan Figure 2, Appendix A. The full results of the soakage tests are presented within Appendix B.

All test pit positions were gravel filled with 10mm shingle.

The DG365 Ref [6], states that each pit should be allowed to drain three times to near empty, with filling on the same or consecutive days.

The infiltration rate from each trial hole is summarised in the table below. The soakage rate in this report in expressed as $\ell/m^2/m$ inute, which is a convenient rate to use. The BRE use a unit of m/sec, which is the value in $\ell/m^2/m$ inute divided by 60,000.

Test ID	Test Depth	Design Infiltration Rate		Notes
	(mbgl)	l/m²/minute	m/sec	
	0.70	2.02	3.37 x 10 ⁻⁵	Empty pit.
SA01	0.70	1.01	1.69 x 10 ⁻⁵	Nearly empty pit.
	0.70	0.92	1.53 x 10 ⁻⁵	Nearly empty pit.
	0.60	0.85	1.41 x 10 ⁻⁵	Nearly empty pit.
SA02	0.60	0.48	7.94 x 10 ⁻⁶	Nearly empty pit.
	0.60	0.50	8.37 x 10 ⁻⁶	Nearly empty pit.
	0.60	1.98	3.31 x 10⁻⁵	Nearly empty pit.
SA03	0.60	1.12	1.87 x 10 ⁻⁵	Nearly empty pit.
	0.60	0.57	9.58 x 10 ⁻⁶	Nearly empty pit.

Note: The Design Infiltration Rate is the lowest of the three tests which is marked in **bold**.

From the tests completed, soakage in all three pits was good. All test pits managed to complete the three tests. Generally, a minimum soakage rate of 0.1 l/m²/minute is needed for conventional soakaway design.

At this stage, subject to long-term groundwater monitoring, we consider shallow soakaway drainage systems to be viable towards the south of the site, within the superficial River Terrace Deposits. Outside of this zone, where drainage was negligible, it should be assumed that soakaways are not viable. It should be noted that high groundwater levels could preclude the use of soakaway drainage techniques even within this area, if the required unsaturated zone below the base of the soakaways cannot be achieved.

It should be noted that whilst the site does not fall within a Source Protection Zone (SPZ), the Environment Agency and local authority should be consulted for any drainage scheme incorporating soakaways.

During the intrusive investigation, various land drain systems comprising clay pipe and a gravel lined 'French-drain' were encountered. The differing types of drainage suggest that they were not installed at the same time. At this stage, the extent of field-drain coverage is unknown.

13.2 General Guidance on Design of Soakaways

Any soakaway scheme may require the approval of the Environment Agency, Building Control and, where applicable, the adopting Highways Authority.

Soakaways are used to store the immediate surface water run-off from hard surfaced areas, such as roof or carparks, and allow for efficient infiltration into the adjacent soil. They should be designed to discharge their stored water sufficiently quickly to provide the necessary capacity to receive run-off from a subsequent storm. The time taken for discharge depends upon the soakaway shape and size, and the surrounding soil's infiltration characteristics.

Groundwater levels can vary considerably from season to season and year to year, often rising in wet or winter weather, and falling in periods of drought. As such, a high groundwater table may affect the storage capacity of soakaways. In addition, it should be noted that an unsaturated zone may be required between the base of soakaways and the groundwater table, by the Environment Agency. Longer term monitoring may be required to establish actual groundwater levels as part of the planning approval process.

Groundwater levels can vary considerably from season to season and year to year, often rising in wet or winter weather, and falling in periods of drought. As such, a high groundwater table may affect the storage capacity of soakaways. In addition it should be noted that a 1m unsaturated zone is a requirement of the OCC Local Drainage Standard, between the base of the soakaways and seasonal high groundwater table. Ten months of monitoring during the wettest periods of the year are being undertaken, which should be sufficient to establish a groundwater equilibrium level for the purposes of planning. Further testing on a tighter grid may be required at a later design stage, on a phase-by-phase basis.

Current records indicate groundwater levels to be between 0.70m and 1.30mBGL in the areas around the soakage tests. Given this, and the requirement of 1.0m minimum unsaturated zone, soakaway drainage may not be possible. Some shallow infiltration may be possible in local areas, dependant on the ongoing monitoring results.

The design of soakaways can be square, circular (conventional) or trench excavations, and may be rubble filled, perforated precast concrete ring units, plastic cells or any similar structure that collects rainwater and run-off and allow discharge directly into the ground. Depending on the geological conditions, and depth at which suitable infiltration is achieved, soakaways can also be deep bored.

Long-term maintenance and inspection must be considered during the design and construction process. Maintenance of silt traps, gully pots and interceptors will improve the long-term performance of soakaways. The use of wet well chambers within the soakaway system can further assist in pollutant trapping and extending the operating life of soakaways.

Generally, roof and surface run-off should not significantly impact on groundwater quality and, subject to appropriate approvals from the Environment Agency, could be discharged directly to soakaways. However, although again subject to approvals from the Environment Agency, paved surface run-off for larger trafficked areas should generally be passed through a suitable form of oil interception device prior to discharge to the soakaway.

Care must be taken to ensure that the discharge of large volumes of surface run-off into the soil does not disrupt the existing sub-surface drainage patterns. Similarly, in areas of sloping topography, consideration should be given to the siting of soakaways to avoid potential discharge and/or flooding of down slope areas.

Soakaways should not normally be constructed closer than 5m to buildings.

E DISCUSSION OF GEOENVIRONMENTAL TEST RESULTS AND RECOMMENDATIONS

14 **Analytical Framework**

There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source - Pathway - Receptor linkages.

The CLEA model Ref [1], provides a methodology for quantitative assessment of the long-term risks posed to human health by exposure to contaminated soils. Toxicological data is used to calculate a Soil Guideline Value (SGV) for an individual contaminant, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.

In the absence of any published SGVs for certain substances, Southern Testing have derived or adopted Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4UL's Ref [7] and CL:AIRE Soil Generic Assessment Criteria Ref [8]. In addition, in 2014, DEFRA Ref [9] published the results of a research programme to develop screening values to assist decision making under Part 2A of the Environmental Protection Act. Category 4 screening levels were published for 6 substances, with reference to human health risk only. This guidance includes revisions of the CLEA exposure parameters, presenting parameters for public open space land use scenarios, and also of the toxicological approach. The screening levels represent a low risk scenario, based on a 'Low Level of Toxicological Concern' rather than the 'Minimal Risk' of CLEA, and the analytical results of this investigation may be considered relative to these levels.

Site-specific assessments are undertaken wherever possible and/or applicable.

CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.

The results of any groundwater analyses are compared to relevant quality criteria, e.g. Environmental Quality Standards (EQS) or Drinking Water Standards (DWS).

Ground gases are assessed in accordance with the guidance given in CIRIA C665 Ref [3] and BS8485 Ref [10].

The contamination screening values used are valid at the time of writing but may be subject to change and any such changes will have implications for the assessments based upon them. Their validity should be confirmed at the time of site development.

Site Investigation - Soils 15

Sampling Regime 15.1

The phase I Desk Study report provided did not highlight any specific contamination risks on-site that would need targeting. As such, the number and positions of sampling was designed to provide general coverage across the site.

15.2 Testing

The potential for contamination from agricultural use was identified in the preliminary conceptual model provided (as part of the desk study). Therefore, the following tests were selected.

Test Suite	Number of Samples	Soil Tested
STC Suite 2	20	TOPSOIL, SUBSOIL
STC Suite 3	6	TOPSOIL
GC Pesticide Screen	6	TOPSOIL

The test results are presented in full in Appendix E. A summary and discussion of the significance of the results and identified contamination sources is given below.

15.3 Test Results and Identified Contamination Sources

15.3.1 General Contaminants

The results of the key contaminant tests have been analysed in accordance with the CLEA methodology. The samples have been grouped into two populations comprising Topsoil and Subsoil. For each parameter in each population the sample mean is calculated and compared to a Tier 1 screening value. If the sample mean exceeds the screening value, the soil may be regarded as contaminated and further assessment may be required. If neither the sample mean nor any single value exceeds the screening value, the soil may be regarded as not contaminated, though further confirmatory assessment may be required. Where any single parameter value exceeds the screening value but the sample mean does not, further statistical analysis may be applied to that parameter if the available data is suitable. Such analysis would include an assessment of the Normality of the distribution of the data, consideration of the presence of outliers, and the calculation of a UCL estimate of the mean.

Summary data is presented in the tables below and the laboratory analysis is included in Appendix E. The screening values and source notes are presented in Table 1 "Tier 1 Screening Values" at the front of Appendix E.

Soil Type: TOPSOIL

Contaminants	Units	No of Samples Tested	Range	Sample Mean	Residential with Homegrown Produce Consumption Tier 1 Screening Values
Arsenic (As)	mg/kg	23	11 – 25	18	37
Cadmium (Cd)	mg/kg	23	<0.2	<0.2	11
Trivalent Chromium (CrIII)*	mg/kg	23	29 – 46	35	910
Hexavalent Chromium (CrVI)	mg/kg	23	<4.0	<4.0	6
Lead (Pb)	mg/kg	23	22 – 46	30	200
Mercury (Hg)	mg/kg	23	<0.3	<0.3	7.6 – 11
Selenium (Se)	mg/kg	23	<1.0	<1.0	250
Nickel (Ni)	mg/kg	23	16 – 36	26	130
Copper (Cu)	mg/kg	23	13 – 25	18	2,400
Zinc (Zn)	mg/kg	23	58 – 110	80	3,700
Benzo(a)pyrene (BaP)	mg/kg	23	<0.05 – 0.66	0.09	1.7 – 2.4
Naphthalene	mg/kg	23	<0.05	0.05	2.3 – 13
Acidity (pH values)	рН	23	6.6 – 8.4	7.5	-
Soil Organic Matter	%	23	2.9 – 5.6	39	-

^{*} Assumed as Total Cr minus CrVI

No significant contamination was reported in the 23 topsoil samples analysed, in terms of the determinants tested for. This concurs with the site history and the observations made on site.

Soil Type: Subsoil

Contaminants	Units	No of Samples Tested	Range	Sample Mean	Residential with Homegrown Produce Consumption Tier 1 Screening Values
Arsenic (As)	mg/kg	3	14 – 19	17	37
Cadmium (Cd)	mg/kg	3	<0.2	<0.2	11
Trivalent Chromium (CrIII)*	mg/kg	3	32 – 46	37	910
Hexavalent Chromium (CrVI)	mg/kg	3	<4.0	<4.0	6
Lead (Pb)	mg/kg	3	13 – 21	16	200
Mercury (Hg)	mg/kg	3	<0.3	<0.3	7.6 – 11
Selenium (Se)	mg/kg	3	<1.0	<1.0	250
Nickel (Ni)	mg/kg	3	24 – 29	26	130
Copper (Cu)	mg/kg	3	14 – 19	16	2,400
Zinc (Zn)	mg/kg	3	67 – 76	70	3,700
Benzo(a)pyrene (BaP)	mg/kg	3	<0.05	<0.05	1.7 – 2.4
Naphthalene	mg/kg	3	<0.05	<0.05	2.3 – 13
Acidity (pH values)	рН	3	7.9	7.9	-
Soil Organic Matter	%	3	0.9 – 2.4	1.6	-

^{*} Assumed as Total Cr minus CrVI

No significant contamination was reported in the 3 subsoil samples analysed, in terms of the determinants tested for. This concurs with the site history, the observations made on site and the results for the topsoil analysed.

15.3.2 Asbestos Containing Materials

No asbestos containing materials were detected in the samples analysed and none were observed in the exploratory holes. However, it should be noted that the exploratory holes are of small size relative to the area investigated. Therefore, the samples obtained may not reflect the full composition of the soils on the site, and there is always the potential for pockets of asbestos or for asbestos containing materials to be present, which have not been detected in the sampling.

A careful watch should be kept for any areas of Fill/backfilling or tracks where asbestos might be encountered.

15.3.3 Organic Contaminants

The following table/s summarise/s the results of the analysis for BTEX & TPH

Hydrocarbon	Measured Concentrations in mg/kg (μg/kg)						
Substance or Fraction	TP102 0.15m	TP104 0.15m	TP105 0.15m	TP110 0.15m	TP113 0.15m	TP117 0.15m	
BTEX							
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Xylenes	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MTBE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Aliphatics							
EC5-EC6	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC6-EC8	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC8-EC10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC10-EC12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
>EC12-EC16	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
>EC16-EC21	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	
>EC21-EC35	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	
Aromatics							
EC5-EC7 (Benzene)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC7-EC8 (Toluene)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC8-EC10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
>EC10-EC12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
>EC12-EC16	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
>EC16-EC21	<10	<10	<10	<10	<10	<10	
>EC21-EC35	<10	<10	<10	<10	<10	<10	

No TPH or BTEX impact was recorded in any of the six samples analysed, with all fractions below detection limit. This concurs with the site history and observations made on site.

15.3.4 Herbicides & Pesticides

As part of the initial investigation six topsoil samples recovered from the exploratory holes were screened for a wide range of herbicides and pesticides, due to the long association with agricultural land. For the majority of the compounds tested, concentrations within the samples were below the laboratory limit of detection.

However, five of the six samples screened reported generally minor concentrations of Pendimethalin, a widely used herbicide, certainly historically. The concentration range was <10 - 240µg/kg (0.010 - 0.240mg/kg).

Whilst there does not appear to be a set soil screening value for Pendimethalin, an EFSA Journal on Pendimethalin (10/2903/j.efsa.2016.4420), dated March 2016, indicates an acceptable daily intake of 125µg/kg (0.125mg/kg). EPA factsheets also cite that Pendimethalin has generally been shown to have low acute toxicity in humans, is essentially immobile in soils and does not represent a high risk to other flora and fauna below the proposed screening value.

On this basis, a mean concentration of 83.833µg/kg suggests that the Pendimethalin impact recorded is generally not significant across site.

However, samples from TP108 and TP115 reported values of 140µg/kg and 240µg/kg respectively, both of which are slightly above the screening value of 125µg/kg.

The initial report recommended additional screening around these hotspot localities to confirm reported concentrations. This work was undertaken in the summer of 2022, and reported separately. The full report is presented in Appendix F for full details. In summary, however, the additional testing and risk assessment confirmed that the soils on the site are not likely to pose any significant risk to human health, and no remediation or further work is considered necessary.

F SITE INVESTIGATION – GROUND GAS

A ground gas investigation was undertaken subsequently to the initial report during the summer of 2022. This report is now attached in Appendix E.

Based upon the work, no significant gas contamination was identified. The gas monitoring and risk assessment places the site in Characteristic Situation 1 (CS1). As such, gas protection measures are not required for the proposed development on site.

Summary of Identified Contamination 16

From the investigation and testing to date, the soils on site are generally not impacted with the range of contaminants listed in the conceptual model. Some minor Pendimethalin impact was recorded in the topsoil samples analysed, although this is not thought to be significant. Further assessment is considered necessary in this regard, however.

This concurs with the site history.

16.1 **Revised Conceptual Model**

A revised conceptual model has been designed in light of the findings of this investigation and is summarised below.

Metals	Petroleum Hydrocarbons	Pendimethalin	Asbestos	Pathways	Receptors	
N	N	N	N	Ingestion and inhalation of contaminated soil and dust		
N	N	N	n/a	Dermal contact with contaminated soil and dust	Human Health	
N	N	n/a	n/a	Inhalation of vapours or gases		
N	N	N	n/a	Uptake into edible fruit and vegetables		
N	N	n/a	n/a	Surface water run-off into surface water features		
N	N	n/a	n/a	Migration through ground into surface water or groundwater	Water Environment	
N	N	n/a	n/a	Off-site migration of contaminated groundwater		
N	N	N	n/a	Vegetation on site growing in contaminated soil	Flore and Found	
N	N	n/a	n/a	Aquatic life in affected waters	Flora and Fauna	
N	N	N	n/a	Contact with contaminated soils	Building materials / buried	
N	N	n/a	N	Fire or explosion	services	

Key:	r:									
Υ	Pollutant linkage likely	Р	Pollutant linkage possible							
N	Pollutant linkage not likely	n/a	Pathway not applicable to contaminant							

Re-use of Soils 16.2

It is anticipated that the arisings from groundworks on this site will comprise topsoil and natural soils.

Clean natural arisings from groundworks may be re-used on site without further testing (in areas where no contamination was discovered), where there is a definite use for such materials, e.g. raising levels or construction of landscaping layers or bunds as set out in the approved plans for the development.

Treated contaminated soils may be reused on site under an appropriate Materials Management Plan, where certain criteria are met, in accordance with the CL:AIRE Definition of Waste Code of Practice, Ref [11].

16.3 **Disposal of Soils**

Any soils that are not to be re-used on site will require removal and disposal to suitably licensed landfills. Different guidelines and charges will apply to different waste classifications. As waste producers, the Developer holds responsibilities under the various governing regulations, particularly the Waste Duty of Care Code of Practice under the Environmental Protection Act 1990, Ref [12].

The chemical analyses appended to this report can be used to inform the initial classification of the soils as either Hazardous or Non-Hazardous, and derive the appropriate EWC code, for offsite disposal or transfer. Waste Acceptance Criteria (WAC) testing may be needed for confirmation of the material's classification, and will be required to demonstrate an inert classification.

There are strict requirements in place for the accurate description of wastes using EWC codes and, therefore, it is essential that materials that would be given different descriptions (e.g. blacktop, made ground and natural soils), as well as those with different classifications, are carefully segregated during excavation and storage on site. This will also ensure the most cost effective disposal. Mixing these materials can give rise to significant difficulties in disposal and also substantially increase costs.

Soil arising's may be transferred to other development sites under a Materials Management Plan, where certain criteria are met, in accordance with the CL:AIRE Definition of Waste Code of Practice Ref [11].

All soils leaving site will need to be pre-treated. Waste minimisation by selective excavation is a recognised form of pre-treatment.

Discussion and Conclusions 17

Generally, the site is free from significant contamination, which concurs with the site history and the observations made during the investigation.

The results of the additional Pendimethalin investigation confirmed that the soils on the site are not likely to pose any significant risk to human health, and no remediation or further work is considered necessary.

Similarly, the gas risk assessment has not identified a gas risk and no protection measures are necessary in the new build.

As with any site, areas of contamination not identified during site investigation works may come to light in the course of redevelopment. Accordingly, a discovery strategy must be in place during the redevelopment to ensure that any hitherto unknown contamination is identified and dealt with in an appropriate manner. Depending on the nature of any such contamination, it may prove necessary to reassess the remedial strategy for the site.

A formal remediation strategy and verification plan should be agreed with the regulatory authorities prior to commencement of any remedial works.

18 General Guidance

Allowance should be made for experienced verification of any remedial works.

It may be that specific local requirements apply to this site, of which we are not aware at this time.

In general terms, the workforce and general public should be protected from contact with contaminated material. There is a range of relevant documents published by the Health and Safety Executive, and organisations such as CIRIA, and the BRE.

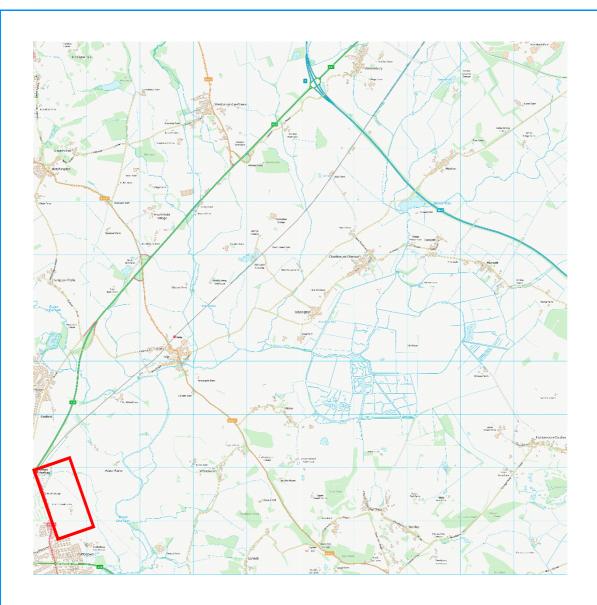
REFERENCES

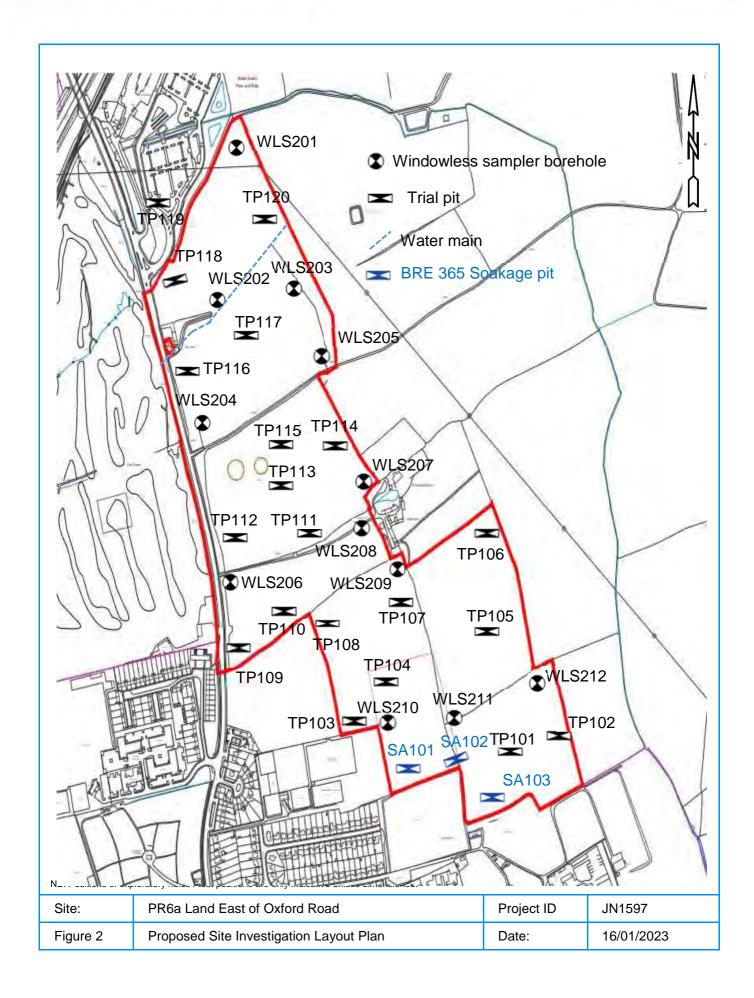
- [1] Environment Agency, "Updated technical background to the CLEA model," 2009.
- [2] Contaminated Land: Applications in Real Environments (CL:AIRE), "Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination," 2014.
- [3] CIRIA, "C665 Assessing risks posed by hazardous ground gases to buildings," 2007.
- [4] BSI Standards, "BS 5930 Code of practice for ground investigations," 2015.
- [5] BSI Standards, "BS10175 Investigation of potentially contaminated sites Code of practice," 2013.
- [6] Building Research Establishment (BRE), "DG365 Soakaway Design," 2016.
- [7] C. Nathanail, C. McCaffrey, A. Gillett and R. & N. J. Ogden, "The LQM/CIEH S4ULs for Human Health Risk Assessment," Land Quality Press, Nottingham, 2015.
- [8] EIC/AGS/CL:AIRE, "Soil Generic Assessment Criteria for Human Health Risk Assessment," 2010.
- [9] DEFRA, "SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination," 2014.
- [10] BSI Standards, "BS 8485 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings," 2015.
- [11] CL:AIRE, "CL:AIRE Definition of Waste Code of Practice," [Online]. Available: http://www.claire.co.uk/projects-and-initiatives/dow-cop.
- [12] Environment Agency, "Waste duty of care code of practice," [Online]. Available: https://www.gov.uk/government/publications/waste-duty-of-care-code-of-practice.
- [13] BSI Standards, "BS 3882:2015 Specification for Topsoil," 2015.
- [14] CIRIA, "C574 Engineering in Chalk," 2002.
- [15] R. N. Mortimore, Logging the Chalk, 2014.
- [16] BSI Standards, "BS EN ISO 22476-3:2005+A1:2011 Geotechnical investigation and testing. Field testing. Standard penetration test," 2011.
- [17] BSI Standards, "BS 1377-9:1990 Methods for test for soils for civil engineering purposes. In-situ tests," 1990.
- [18] BSI Standards, "BS EN ISO 22475-1:2006 Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution.," 2006.
- [19] BSI Standards, "BS ISO 18400-100:2017 Soil quality. Sampling. Guidance on the selection of sampling standards," 2017.

- [20] BSI Standards, "BS ISO 18400-101:2017 Soil quality. Sampling. Framework for the preparation and application of a sampling plan," 2017.
- [21] BSI Standards, "BS ISO 18400-103:2017 Soil quality. Sampling. Safety," 2017.
- [22] BSI Standards, "BS ISO 18400-105:2017 Soil quality. Sampling. Packaging, transport, storage and preservation of samples," 2017.
- [23] BSI Standards, "BS ISO 18400-107:2017 Soil quality. Sampling. Recording and reporting," 2017.

APPENDIX A

Site Plans and Exploratory Hole Logs





Contains Ordnance Survey Data © Crown Copyright and Database Right 2020

Site:	Land East of Oxford Road, Water Eaton	Project ID	JN1507
Figure 1	Site Location Plan	Date:	25/10/2021

	Key to Exploratory Hole Logs, Plans and Sections													
Backfill Symbols		Pipe Symbols		Principal Soil Types		Principal Ro Types	ock	Drilling Records						
Arisings	X	Plain Pipe		Topsoil	}	Mudstone	\equiv	Water Strike	∇					
Concrete		Slotted Pipe	目	Made Ground	***	Claystone	=	Depth Water Rose	¥					
Blacktop	****	Piezometer	ı	Clay	-=-=	Siltstone	XXX	Total Core Recovery (%) [TCR]						
Bentonite		Piezometer Tip	╅	Silt	(X X ;	Sandstone	:::	Solid Core Recovery (%) [SCR]						
Gravel Filter		Filter Tip		Sand		Limestone	+	Rock Quality Index (%) RQD]						
Sand Filter	7.7.2	Extensometer		Gravel		Chalk	1	Fracture Index (fractures / m) [FI]						
		Inclinometers	8	Peat	stiles at									

All soil and rock descriptions are in general accordance with BS5930 2015, BS EN ISO 14688-1:2002+A1:2013 and BS EN ISO 14689-1:2003. Chalk descriptions are also based on CIRIA C574 and "Logging the Chalk – R.N. Mortimer 2015". The Geology Code is only provided where a positive identification of the sample strata has been made.

	Location / Method Identifiers
вн	Borehole (undefined)
СР	Cable Percussive
RC	Rotary Core
RO	Rotary Open Hole
ODC	Rotary Odex/Symmetrix drilling cased
CP+RC	Cable Percussive to Rotary Core
SNC	Sonic
CFA	Continuous Flight Auger
FA	Flight Auger
VC	Vibro Core
WLS+RC	Windowless (Dynamic) Sampler to Rotary Core
WLS	Windowless Sampler
ws	Window Sampler
НА	Hand Auger
С	Road / Pavement Core
IP	Inspection Pit (Hand Excavation)
TP	Trial Pit (Machine Excavated)
OP	Observation Pit (Supported Excavation Hand or Machine)

	In-situ Test Location / Method
DP	Dynamic Probe
CPT	Cone Penetration Test
CBR	In-situ CBR Test
DCP	CBR using Dynamic Cone Penetrometer
CBRT	CBR using TRL Probe
РВ	Plate Bearing Test
SPT (S)	Standard Penetration Test (Split Barrel Sampler)
SPT (C)	Standard Penetration Test (Solid Cone)
N	SPT Result
-/-	Blows/Penetration (mm) after seating drive
-*/-	Total Blows / Penetration (mm)
()	Extrapolated Value
PPT	Perth Penetration (In-House Method - Equivalent N Value)
HP / UCS	Strength from Hand Penetrometer (kN/m²)
IVN	Strength from Hand Vane ((kN/m²) P = peak, R = residual
PID	Photo Ionisation Detector (ppm)
MEXE	Mexi-Cone CBR (%)

	Samples / Test Type									
В	Bulk Sample									
BLK	Block Sample									
C Core Sample										
CBRS	CBR Mould Sample									
D	Small Disturbed Sample									
ES	Environmental Sample (Soil)									
EW	Environmental Sample (Water)									
GS	Environmental Sample (Gas)									

	Samples / Test Type				
SPTLS	Standard Penetration Test Split Barrel Sample				
TW	Thin Wall Push In Sample (e.g. Shelby Sampler)				
U Undisturbed Open Drive Sample (blows to take)					
UT	Thin Wall Undisturbed Open Drive Sample (blows to take)				
W	Water Sample (Geotechnical)				
SP	Sample from Stockpile				
Р	Piston Sample				
AMAL	Amalgamated Sample				

Southern Testing S			ST Co	nsult≡		Start -	End Date:	Project ID:	Machine Type:	SA10)1
		_		uk tel:01604 50002		21/0	09/2021	JN1597	JCB 3CX	Sheet 1	of 1
Project Na	ame:	Land East of Oxfo	rd Road		Rema	rke	Co-ordi	inates:	Level (m AOD):		
Location:		Water Eaton					short-term.			ODJ	
					_						
Client:		Glanville									
Sai Depth (m)	mples ar Type	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	egend	Depth (m bgl)		Stratum Des	cription		
0.15	ES B			(0.30) (0.35)		0.30	angular flint. Orange-brown	ı silty sandy grave	e well-rounded to su elly CLAY. Gravels co sub-angular flint. at 0.65m.		1 -
											3
Pi	t Dim	ension (m)			Pit Sta	bility:	<u> </u>		Water Strikes:		
Length	Width: 0.50 Length: 2.00		-								
Depth		0.65	-								
	Deptn: 0.00		1								

Sou	■ Southern Testing ST Consult			Start -	- End Date:	Project ID:	Machine Type:	SA102		
		co.uk tel:01342 333100		.uk tel:01604 5000		21/	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project Na	ame:	Land East of Oxf	ord Road		Rema	arks:	Co-ordi	inates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton					short-term.			ОО
Client:		Glanville								
		nd Insitu Testing	<u> </u>	T1 : 1		T	<u> </u>			
Depth (m)	Type		Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des		
0.15	B			(0.30)		0.30	Gravels compr angular flint. Orange-brown	ise fine to coarse silty sandy grave well-rounded to	ly TOPSOIL with room well-rounded to summer to	ıb-
Pi	t Dim	ension (m)			Pit Sta	ability:	1		Water Strikes:	J
Width		0.50								
Length		2.20	\dashv							
Depth		0.60								

Sou	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	SA103			
		_		uk tel:01604 500		21/0	09/2021	JN1597	JCB 3CX	Sheet 1	of 1		
Project Na	ame:	Land East of Oxfor	d Road		Rema	rke	Co-ordi	nates:	Level (m AOD):	Logge ODJ			
Location:		Water Eaton			_		short-term.			ODJ			
Client:		Glanville		-1		5					Т		
Depth (m)	Type	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des					
0.15	ES B			(0.30)		0.30	Gravels compr angular flint. Orange-brown	y silty sandy gravelly TOPSOIL with rootlets. prise fine to coarse well-rounded to sub- un silty sandy slightly gravelly CLAY. Gravels e to coarse well-rounded to sub-angular flint.					
						0.70		Pit terminated	at 0.70m.		2 -		
											4 -		
Pi	t Dim	ension (m)			Pit Sta	ability:			Water Strikes:				
Width		0.50											
Length	Length: 2.20												
Depth	Depth: 0.70												

Sou	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP101
www.southe	rntesting.	co.uk tel:01342 333100	www.stconsult.co	uk tel:01604 5000.	120	21/0	9/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project Na	me:	Land East of Oxfo	ord Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton			_		short-term.			003
Client:		Glanville								
		nd Insitu Testing	Level	Thickness	 Legend	Depth		Stratum Des	cription	
2.00	ES B	Results	(m AOD)	(0.30) (0.20)		0.30 0.50	rootlets. Grave sub-angular fli Orange-brown comprise fine Grey-brown gr well-rounded	lyey sandy gravellels comprise fine nt. silty sandy slight to coarse well-rowavelly CLAY. Gravelly CLAY. Gravelly CLAY.	y cobbly TOPSOIL vector coarse well-round to coarse well-round to sub-angular sometimes of the comprise of the coarse well-round to sub-angular and chalk. Gravels comprise of gular flint and calca	avels ar flint. coarse 1 -
Pit	Pit Dimension (m)					ability:			Water Strikes:	
	Width:									
Depth:		3.00								

Southern Testing		ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP102	2	
				uk tel:01604 5000		21/	09/2021	JN1597	JCB 3CX	Sheet 1 o	ıf 1
Project N	ame:	Land East of Oxfo	ord Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger ODJ	:
Location:		Water Eaton					short-term.			ODJ	
Client:		Glanville									
Sa	imples a	nd Insitu Testing	Level	Thickness		Depth					
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Duranna alanana	Stratum Des			ı
1.00	ES			(1.25)		1.50	Gravels compr angular flint. Orange-brown	ise fine to coarse very sandy sligh	ly TOPSOIL with roce well-rounded to su tly gravelly CLAY. Gr unded to sub-angul at 1.50m.	avels	1 - 2 -
											4 -
D.	 	lancian (m)			D:+ C+-	abili+			Water Strikes:		
	1	ension (m)			rit Sta	ability:			vvater Strikes:		
Width			_								
Length											
Depth):	1.50									

Sol	uthe	ern Testing S	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP10	3
				uk tel:01604 5000.		24 /00 /2024		JN1597	JCB 3CX	Sheet 1	of 1
Project N	ame:	Land East of Oxford	d Road		Rema	ırks:	Co-ordi	nates:	Level (m AOD):	Logge ODJ	r:
Location:		Water Eaton			_		short term.			003	
					_						
Client:		Glanville	1 .								
Depth (m)	Type	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des			
0.15	ES			(0.35)		1.00	Gravels compri angular flint. Orange-brown	ise fine to coarse	ly TOPSOIL with room well-rounded to suravelly CLAY. Gravels unded to sub-angulat 1.00m.	ıb-	2 - 1 - 4 -
Pi	it Dim	ension (m)			Pit Sta	bility:			Water Strikes:		1
Width					. 11 310	y.			Tracei Stilles.		
			1								
Length		4.00	_								
Depth	ı.	1.00									

Sou	ıthe	rn Testing	ST Co	nsult			- End Date:	Project ID:	Machine Type:	TP104	
				.uk tel:01604 500	0020	21/	09/2021 Co-ordi	JN1597	Level (m AOD):	Sheet 1 o Logger:	
Project Na	ame:	Land East of Oxfor	rd Road		Rema	ırks:	Co-ordi	nates.	Level (III AOD).	LOGGET	,
Location:		Water Eaton			Stable	e in the	short term.				
Client:		Glanville									
		nd Insitu Testing	Level	Thickness		Depth				1	
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)		Stratum Des	cription		
Depth (m) 0.15 0.50 0.60	Type ES HP D	UCS(kPa)=250	(m AOD)	(0.35) (0.35) (0.10)	Legend		Orange-brown comprise fine Off-white claye coarse well-room	silty sandy gravell ise fine to coarse sandy slightly gra to coarse well-rou ey gravelly SAND. unded to sub-rou	y TOPSOIL with rock well-rounded to subavelly CLAY. Gravels unded to sub-angular Gravels comprise funded flint. AY. Gravels compringular flint.	lar flint.	2
											_
											4 —
Pi	t Dim	ension (m)			Pit Sta	bility:			Water Strikes:		
Width	:							Wet SAND from	n 0.70m		
Length											
Depth											

Southern Testing		ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP105	
www.southerntesting.co.uk tel:01342 333100 www.stconsult.co.uk tel:01604 500020 Project Name: Land East of Oxford Road						21/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project N	ame:	Land East of Oxfo	ord Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location: Water Eaton S					_		short term.			ODJ
Client:		Glanville								
	mples a	nd Insitu Testing	Level	Thickness		Depth				
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)		Stratum Des		
1.00	ES D			(0.35) (0.15)		0.35	rootlets. Grave sub-angular fli Orange-brown comprise fine Orange-brown gravelly CLAY. 0	els comprise fine nt. sandy slightly gr to coarse well-ro /grey mottled sli		ar flint.
P	it Dim	ension (m)			Pit St:	ability:			Water Strikes:	
Width		ension (m)			. 1. 3.	y.			Trace Stines.	
Length										
Depth		1.50	\dashv							

Southern Testing S			ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP106)
				.uk tel:01604 5000)20	21/	09/2021	JN1597	JCB 3CX	Sheet 1 of	1
				Rema	arke.	Co-ordi	nates:	Level (m AOD):	Logger:		
				_		short term.			ODJ		
Client:		Glanville									
Sa Depth (m)	mples ar	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum De	scription		
0.15	ES	RESURS		(0.40)		0.40	rootlets. Grave sub-angular fli Orange-brown comprise fine Orange-brown	els comprise fine nt. sandy slightly g to coarse well-ro light grey mottl Gravels comprise	Illy cobbly TOPSOIL verto coarse well-round ravelly CLAY. Gravels bunded to sub-angulated slightly sandy slight fine to coarse well-at 1.00m.	ded to	2 -
Pi	t Dim	ension (m)			Pit Sta	ability:			Water Strikes:		
Width		•									
Length			\dashv								
Depth		1.00									

Southern Testing S			ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP107
		_		uk tel:01604 5000		21/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project Name: Land East of Oxford Road				Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton					short term.			003
Client:		Glanville								
Sa	mples a	nd Insitu Testing	Level	Thickness	 Legend	Depth		Stratum Des	crintian	
Depth (m)	Туре	Results	(m AOD)	(m)	Legenu	(m bgl)	Brown clayou		ly TOPSOIL with roc	tlots
0.15 ES 0.40 ES			(0.35)		0.35	Gravels compr angular flint. Orange-brown	ise fine to coarse	well-rounded to sure welly CLAY. Gravels sub-angular flint.	ıb-	
				(0.65)		1.00		Pit terminated	at 1.00m.	1
										2
										3
										4
		analas (s.)			D': 0:				Marin C. II	
		ension (m)			Pit Sta	ability:			Water Strikes:	
Width			_							
Length			_							
Depth	ı:	1.00								

Southern Testing S			ST Co	nsult≡		Start -	End Date:	Project ID:	Machine Type:	TP108	
			www.stconsult.co.	uk tel:01604 5000	20	21/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1	L
Project Name: Land East of Oxford Road				Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ		
Location: Water Eaton						short term.			ODJ		
Client:		Glanville									
	ımples a	nd Insitu Testing	Level	Thickness		Depth					_
Depth (m)	Туре		(m AOD)	(m)	Legend	(m bgl)		Stratum Des			
0.15	ES			(0.40)		1.00	Gravels compr angular flint. Orange-brown	ise fine to coarse	ravelly CLAY. Gravels sub-angular flint.	1	
										4	1 -
D :	i+ D:	onsion (m)			Dir Cr.				Water Strike		
		nension (m)			Pit Sta	ability:			Water Strikes:		_
Width			_								
Length			\dashv								
Depth	ı:	0.65									

So	uthe	ern Testing	ST Co	nsult■		Start -	End Date:	Project ID:	Machine Type:	TP109
www.south	erntesting.	co.uk tel:01342 333100 wv	vw.stconsult.co	.uk tel:01604 5000	20	21/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton			_		short term.			003
Client:		Glanville								
	 	nd Insitu Testing	Level	Thickness	 Legend	Depth		Stratum Des	cription	
0.15 0.50 0.80	ES HP HP	UCS(kPa)=210 UCS(kPa)=230	(m AOD)	(0.40) (0.30)		0.40 -	rootlets. Grave sub-angular fli Brown silty sai coarse well-ro	ayey silty sandy gels comprise fine nt. Indy gravelly CLAY, unded to sub-angerounded to sub-argorithed gravelly Clay, counded to sub-argorithed gravelly Clay, and the sub-argorithed g	ravelly TOPSOIL wi to coarse well-rour Gravels comprise gular flint. AY. Gravels compri	fine to
P	Pit Dimension (m) Pit Stability: Water Strikes:									
Width	Vidth:									
	Length:									
Depth	1:	1.20	1							

Sol	uthe	ern Testing	ST Cor	nsult≡		Start -	End Date:	Project ID:	Machine Type:	TP110
www.southe	erntesting.	co.uk tel:01342 333100 wv	vw.stconsult.co.u	ık tel:01604 5000	20	21/0	9/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger:
Location:		Water Eaton			Stable	e in the s	short term.			023
Client:		Glanville								
Sa	ımples aı	nd Insitu Testing	Level	Thickness	Logond	Depth		Ctratum Day	anintian	
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Cross brown of	Stratum Des		da
0.15 0.50 0.70	ES D	UCS(kPa)=210		(1.15)		0.35	rootlets. Grave sub-angular fli Orange-brown	els comprise fine nt. silty sandy grave	gravelly TOPSOIL wit to coarse well-roun elly CLAY. Gravels co sub-angular flint.	ded to
1.75 1.80	HP D	UCS(kPa)=280		(1.50)		1.50			LAY. Gravels compris angular flint and rar	
2.50	HP D	UCS(kPa)=280		0		3.00		Pit terminated	at 3.00m.	3
					Dia Co				Makes 62 42 c	4
		ension (m)			Pit Sta	ability:			Water Strikes:	
Width			_							
Length			-							
Depth	ı:	3.00	1							

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP111	
www.south	erntesting.	co.uk tel:01342 333100 wv	vw.stconsult.co	uk tel:01604 500	020	24/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1	
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton			Stabl	e in the s	short term.			0.03	
Client:		Glanville									
	· ·	nd Insitu Testing	Level (m AOD)	Thickness	Legend	Depth (m bgl)		Stratum Des	cription		
0.15 0.45	ES ES	UCS(kPa)=140	(M AOD)	(m) (0.30)		1.00	Gravels compr angular flint ar Orange-brown rootlets. Grave sub-angular fli	silty sandy gravelise fine to coarse and quartzite. very sandy slightels comprise fine ant.	ly TOPSOIL with roce well-rounded to sut the gravelly CLAY with to coarse well-rounded to sut the coarse well-rounded to sub-angular flint and the coarse well-rounded to sub-angular fl	th ided to	
Pi	 it Dim	ension (m)			Pit Sta	abilitv:			Water Strikes:		
Width					Pit Stability: Water Strikes:						
Length											
Depth	ı:	1.50									

Soi	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP112
				uk tel:01604 500		24/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project Na	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton					short term.			003
Client:		Glanville								
	· ·	nd Insitu Testing	Level	Thickness	Legend	Depth		Stratum Des	cription	
0.15 0.40 1.00 2.00	ES D D HP D	UCS(kPa)=200 UCS(kPa)=350	(m AOD)	(m) (0.30) (0.35) (0.45)		0.30 0.65	rootlets. Grave sub-angular fli Orange-brown comprise fine greenish-grey coarse well-roogravel	silty sandy gravellels comprise fine nt and quartzite. sandy slightly gravell-rounded to sub-anguable to sub-	ly cobbly TOPSOIL vector to coarse well-round avelly CLAY. Gravels sub-angular flint. Avels comprise fine gular flint and clace angular flint and calcal flint flint and calcal flint flint and calcal flint fl	to rous
										4
		ension (m)			Pit St	ability:			Water Strikes:	
Width										
Length		2.00	-							
Depth	1:	2.00								

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP113	
www.south	erntesting.	co.uk tel:01342 333100 ww	w.stconsult.co.	uk tel:01604 500.	020	24/0	9/2021	JN1597	JCB 3CX	Sheet 1 of	1
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton			Stabl	e in the s	hort term.			0.03	
Client:		Glanville									
Sa Depth (m)	mples a	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des	cription		
1.50	ES	UCS(kPa)=350		(0.80)		1.20	rootlets. Grave sub-angular fli Orange-brown to coarse well-	els comprise fine nt and quartzite. sandy gravelly Crounded to sub-a	LAY. Gravels compri angular flint. ty gravelly CLAY. Gra unded to sub-angul	avels lar flint	2 - 3
Pit Dimension (m) Pit Stability: Water Strikes:											
Width:							—				
Length:											
Depth		2.00	1								

Sol	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP114
www.southe	erntesting.	co.uk tel:01342 333100 ww	w.stconsult.co	.uk tel:01604 500	020	24/	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project Na	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton					short term.			003
Client:		Glanville								
Sa Depth (m)	mples a	nd Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des	scription	
1.40 1.60 2.25	ES D HP	UCS(kPa)=300		(0.30)		0.30	rootlets. Grave sub-angular fli Greenish-grey coarse well-rogravel. Orange sand horizon Grey silty grave well-rounded to the same sand same sand same same same same same same same same	els comprise fine nt and quartzite. gravelly CLAY. Grunded to sub-angon. elly CLAY. Gravels to sub-angular fli	avels comprise fine gular flint and chalk scomprise fine to control and chalky grave and chalky grave fire gular flint and calca	to y parse I 1 1 1 1 1 1 1 1 1 1 1 1
Pi	it Dim	ension (m)			Pit Sta	ability:			Water Strikes:	
Width	Vidth:									
Length	Length:									
Depth	ı:	3.00								

So	uthe	ern Testing	ST Co	nsult≡		Start -	End Date:	Project ID:	Machine Type:	TP115
				uk tel:01604 5000		24/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ
Location:		Water Eaton					short term.			003
Client:		Glanville								
		nd Insitu Testing	Level	Thickness	Legend	Depth		Stratum Des	scription	
0.15 0.50	ES HP	UCS(kPa)=250	(m AOD)	(0.30) (0.50)		0.30 - 1.50	Gravels compr angular flint. Greenish-grey comprise fine and chalk.	silty sandy gravel ise fine to coarse slightly sandy gr to coarse sub-ro	ly TOPSOIL with rook well-rounded to surely CLAY. Gravels bunded to sub-angulate to coarse chalky	ar flint
Pi		ension (m)			Pit Sta	ability:			Water Strikes:	4
			-							
Length		4.50	-							
Depth	:	1.50	1							

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP116	
www.south	erntesting.	co.uk tel:01342 333100 ww	w.stconsult.co.	uk tel:01604 50	00020	24/	09/2021	JN1597	JCB 3CX	Sheet 1 of 1	
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	inates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton			Stable	e in the	short term.			003	
Client:		Glanville									
Sa	imples a	nd Insitu Testing	Level	Thickness	Logond	Depth		Stratum De	scription		_
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Brown clavey		lly CLAY. Gravels con	nrice	
1.00 1.10 2.00	D HP	UCS(kPa)=200 UCS(kPa)=200		(0.25) (0.10) (0.55)		0.25 0.35	orange-brown sandy signtly gravelly CLAY. Gravels comprise fine to coarse well-rounded to sub-angular flint and chalk. Greenish-grey slightly sandy gravelly CLAY. Gravels comprise fine to coarse well-rounded to sub-angular flint and chalk. Grey silty gravelly shelly CLAY. Gravels comprise fine to coarse welll-rounded to sub-angular flint and chalk.				
								T		4	ļ -
P	it Dim	ension (m)			Pit Sta	ability:			Water Strikes:		
Width	n:										
Length	1:										
Depth	n:	3.00									

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP117	
				.uk tel:01604 500		24/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1	
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton					short term.			<u> </u>	
Client:		Glanville									
	· ·	nd Insitu Testing	Level	Thickness	Legend	Depth		Stratum Des	cription		
0.15 0.50 0.70 1.00	D D HP	UCS(kPa)=170 UCS(kPa)=200	(m AOD)	(m) (0.30) (0.50)		0.30	Gravels compr angular flint. Brownish-grey comprise fine and chalk. Grey slightly gr	silty sandy gravellise fine to coarse slightly sandy gr to coarse well-ro	ly TOPSOIL with roce well-rounded to su avelly CLAY. Gravels unded to sub-angul	2 -	
	:				F 1	1				4 -	
		ension (m)		Pit Stability: Water Strikes:							
Width Length											
Depth		1.50	-								

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP118		
www.south	erntesting.	co.uk tel:01342 333100 ww	vw.stconsult.co	uk tel:01604 50.	0020	24/0	09/2021	JN1597	JCB 3CX	Sheet 1 of 1		
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	inates:	Level (m AOD):	Logger:		
Location:		Water Eaton					short term.			003		
Client:		Glanville										
Sa	mples a	nd Insitu Testing	Level	Thickness		Depth						
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Danis dasas	Stratum Des				
0.15	ES			(0.40)				rise fine to coarse	OPSOIL with rootlet			
				(0.20)		0.40	Orange sandy gravelly CLAY. Gravels comprise fine to coarse well-rounded to sub-angular flint. Grey gravelly shelly CLAY with lithorelic structure. Gravels					
0.65	HP	UCS(kPa)=180				3.00			ithorelic structure. unded to sub-angul			
1.10	НР	UCS(kPa)=200		(0.90)		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				1		
						1.50		Pit terminated at 1.50m.				
										2		
										3		
								T				
Pi	it Dim	ension (m)			Pit Sta	ability:			Water Strikes:			
Width	:											
Length			_									
Depth	:	1.50										

Sou	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP119	
		_		uk tel:01604 50		24/	09/2021	JN1597	JCB 3CX	Sheet 1 of 1	
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ord	dinates:	Level (m AOD):	Logger: ODJ	
Location:		Water Eaton			Stabl	e in the	short term.			003	
Client:		Glanville									
Sa	mples a	nd Insitu Testing	Level	Thickness	Legend	Depth		Stratum Des	ecription		
Depth (m)	Туре	Results	(m AOD)	(m)	Legenu	(m bgl)	Brown claves		with rootlets. Grave	alc	
0.15	ES			(0.20)					unded flint and cha		
						0.20			avels comprise fine		
						4	coarse well-r	ounded to sub-ang	gular flint and chalk		
						-					
				(0.90)						-	
0.75	D					4				-	
0.80	HP	UCS(kPa)=110				-					
										1 -	
						1.10	Grey very gra	avelly CLAY. Gravels	s comprise chalk wi	th	
						4	occasional fli		·	-	
						-				-	
1.50	D			(0.00)						-	
	НР	UCS(kPa)=140		(0.90)		-					
						-				-	
						-				-	
						2.00				2	
						1	Dark grey cha	alky very shelly CL	AY with lithorelic st	ructure.	
2.20	НР	UCS(kPa)=120				-				-	
						4				-	
2.50	D			(1.00)		4				-	
2.30	ES			(1.00)		-					
						4					
						-				-	
						3.00					
						3.00		Pit terminated	at 3.00m.	3 -	
										-	
										-	
										-	
										-	
										4 -	
Pit Dimension (m) Pit Stability: Water Strikes:											
Width Length			-								
Depth		3.00	1								

So	uthe	ern Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP120
www.south	erntesting.	esting.co.uk tel:01342 333100 www.stconsult.co.uk tel:01604 500020 24/09/2021 JN1597 JCB 3CX Sheet 1 of 1 1								
Project N	ame:	Land East of Oxfor	d Road		Rema	arks:	Co-ordi	nates:	Level (m AOD):	
Location:		Water Eaton			Stabl	e in the s	hort term.			
Client:		Glanville								
	· ·	nd Insitu Testing	Level	Thickness	Legend	Depth (m.hgl)		Stratum Des	scription	
1.00 2.60	ES HP	UCS(kPa)=200 UCS(kPa)=200	(m AOD)	(0.30) (0.15) (0.85)	Legenda The second sec	0.30 - 0.45 - 3.00 - 3.	Orange sandy coarse well-rouse coarse well-rouse coarse well-rouse coarse well-rouse grey sandy she	gravelly TOPSOIL to coarse well-ro gravelly CLAY. Gra unded to sub-ang gravelly CLAY. Gra unded to sub-ang	with rootlets. Grave unded flint and character comprise fine gular flint. avels comprise fine gular flint and chalk the comprise fine gular flint.	to
										4
P	it Dim	ension (m)		<u> </u>	Pit Sta	ability:			Water Strikes:	
Width										
Length	1:									
Depth	ı:	3.00								

South	ern Testin	g ST (Consult■		Start - E	nd Date	;	Project	: ID:	Hole Typ	e: WLS20)1
	co.uk tel:01342 333100	_	ult.co.uk tel:01604 500020		23/09	9/2021		JN159	97	WLS	Sheet 1 of	
Project Name:	Land East of (Oxford Roa	ad	Remai	rks:		Co-ordi	nates:	\perp	Level:	Logger:	
Location:	Water Eaton			Ground	water N	√onitorii	ng Well	- installed	to 3.0m b	ogl.		
Client:	Glanville			1								
Well Water Strikes D	Samples and Depth (m bgl) Type	d Insitu Testi e Res	ing GOV E	Thickness (m)	S Legend	Depth (m bgl)			Stratum De			
				(0.30)		0.30	CLAY,	DE GROUND , with rootl nge-brown,	lets flint an	d limesto		
				(0.30)	× × × × × × × × × × × × × × × × × × ×	0.90		vn mottled			y CLAY.	1 -
				(0.90)	X	X	from	1.8m.				2
				(0.90)	× × × × × × × × × × × × × × × × × × ×	2.10	Dark	grey/ brow	vn, silty CL	AY, with a	ancient rootlets.	
					× × ×	3.00		F	End of Boreh	ole at 3.00r	m	3
												4
		<u> </u>	<u> </u>			_ 						5 -
Hole Detail Depth (m bgl) Dia		g Details gi) Dia. (mm)	Date Dep	Waters oth Strike Depth			e to: Tim	ne (mins) Fro		Time	selling (m bgl) Remarks	

South	ern Tes	ting	ST (Consul	t■		Start	: - Enc	d Date		Pro	ject ID	: Н	ole Typ	e: WLS2	202	
www.southerntesting		_		ılt.co.uk tel:0160		1	23,	/09/2				N1597		WLS	Sheet 1	of 1	
Project Name:	Land East	— t of Oxf	ord Roa	ıd		Rema	arks:	Ţ		Co-ord	inates	!		Level:	Logge		
Location:	Water Eat	ton				Groun	dwate	_L ≥r Mo	nitorir	ng Well	l - insta	lled to	3.0m bg	gl.	ADIV	1	
Client:	Glanville					-											
Well Water Strikes		es and Ins	ısitu Testir Resı		Level (m AOD)	Thickne (m)	Leg		Depth (m bgl)	Brov	wn. siltv		ratum Des		ootlets and flint		
						(0.20)	×		0.20	and Buff CLA	limesto	one grav orown m occasion	rel. nottled o nal rootle	range, s ets.	ilightly silty		
													Υ.				
						(1.00)	Mid grey, silty CLAY, with veins of selenite and ancient rootlets. (1.00)										
								×	3.00			End	of Borehol	e at 3.00r	m	3	
																4	
Hele Det 1	ilo		otoil-			\A/c+c	rotuil.		hal\	<u> </u>			C+arad:	na/Ch!	colling (m hall		
Hole Detai		asing Do		Date	Dept	Wate th Strike Dep				e to: Tir	me (mins)	From	Standi To	ng/Chi: Time	selling (m bgl) Remarks		
			. ,											-			

Southe	rn Testing	ST C	onsult≡	:	Start - E	nd Date	:	Project ID	: Н	ole Typ	e: WLS20	03
www.southerntesting.co	o.uk tel:01342 333100	www.stconsult.	.co.uk tel:01604 500020		23/09			JN1597		WLS	Sheet 1 o	
Project Name:	Land East of Ox	ford Road	t	Rema	rks:		Co-ordii	nates:		Level:	Logger ADM	
ocation:	Water Eaton			Ground	lwater N	lonitori	ng Well -	- installed to	2.9m bg	gl.	ADIVI	
Client:	Glanville			=								
Well Water Strikes De	Samples and I	nsitu Testin Resu		Thicknes (m)	s Legend	Depth (m bgl)		St	ratum De:	scription		
	Type	Nesu		(0.60)		0.60	Brow	m, silty, slightly occasional flin occasional flin	t gravel.	red, silty	y CLAY.	1 .
				(1.20)		2.60		grey, silty CLA	/, with fr			2
								E110	oi buieno	at 3.00ľ		4
Hole Details				Water:	sstrike (n		e to: Time	e (mins) From	Standi To	ng/Chis	selling (m bgl)	5
CPUT (III DBI) DId.	(mm) Depth (m bgl)	-ια. (IIIIII)	Date Depr	Strike Depti	эери	NOS	C 10. 11111	e (mins) From	10	111116	Remarks	

South	ern Test	ting	ST (Consu	lt■		Star	t - En	d Date	:	Pro	ject ID	: Н	ole Typ	e: WLS2	04
www.southerntesting		_		lt.co.uk tel:0160)	23	3/09/				N1597		WLS	Sheet 1	
Project Name:	Land East	of Oxfo	ord Roa	ıd		Rem	arks:	\top		Co-or	dinates	:		Level:		
Location:	Water Eat	on				Groun	 ıdwat	er Mo	 onitori	ng We	ell - insta	illed to	3.0m bg	gl.	ADM	
Client:	Glanville					-										
Well Water Strikes			situ Testir		Level (m AOD)	Thickne	ess Le	gend	Depth (m bgl)			Str	ratum Des	scription		\Box
JUNES L	Depth (m bgl)	Туре	Resi	arts	_ E				(III DgI)		own, clay	ey TOPS	SOIL, wit	h rootle	ets.	-
						(1.40)			1.70	Mil	d-grey veins and a	eined or	range, sil		with selenite	1 -
						(1.30	×_ ×_ ×_ ×_		3.00			End	of Borehol	e at 3.00i	m	3 -
																4 -
Hole Detai		sing De				Wate	rstrik	œ (m	bgl)				Standi	ng/Chi	selling (m bgl)	
Depth (m bgl) Dia	a. (mm) Depth	(m bgl) Dia	a. (mm)	Date	Dept	th Strike De	pth Casing	Depth Se	aled Ros	e to: T	Time (mins)	From	То	Time	Remarks	

Project Name: Location: Client:	Land East of Ox Water Eaton		ult.co.uk tel:0160	04 500020	1	23/	09/2	2021		-					_
Location: Client:		र्rord Roa									N1597		WLS	Sheet 1	of 1
Client: Well Water	Water Eaton		JU		Rema	ırks:			Co-ord	linates:	<u> </u>		Level:	Logge ADM	
Well Water					Ground	dwate	r Mo	nitorir	ng Well	l - insta	lled to	l 2.9m bg	gl.	ADIVI	
\//ell —	Glanville				1										
	Samples and Depth (m bgl) Type		ing sults	Level (m AOD)	(0.25) (0.95)			Depth (m bgl) 0.25	MAI grav frag Buff nod	DE GRO velly CLA gments. f-brown dules.	Str UND co AY, with , silty, C	ratum Des mposed flint grav LAY, with	scription of brow vel and conoccasion	ns of selenite.	2 -
Hole Detail Depth (m bgl) Dia	Is Casing 1. (mm) Depth (m bg/)		Date	Dept	Water th Strike Depth				e to: Tin	me (mins)	From	Standi To	ng/Chi:	selling (m bgl) Remarks	5 -

South	ern Test	ting	ST (Consul	t		Start	- Enc	d Date		Pro	ject ID:	: H	ole Typ	e: WI	LS206	5
www.southerntesting	g.co.uk tel:01342 333	3100	www.stconsu	ult.co.uk tel:0160)4 500020	,	21/	'09/2 I				N1597		WLS		et 1 of 1	1
Project Name:	Land East	of Oxf	ford Roa	ıd		Rema	rks:			Co-ora	linates	•		Level:		ogger: ADM	
Location:	Water Eat	on				Ground	wate	r Mo	nitorir	ng Well	l - insta	illed to	3.0m bg	gl.			
Client:	Glanville																
Woll Water	Samples	s and In	Resi		Level (m AOD)	Thickness (m) (0.15) (1.35)	s Lege		Depth m bgl) 0.15	flint Buff cons orar	gravel. f brown sist of fi nge and	dy, clayed, slity, sli , silty, sli ine to cc	ightly gri	DIL, with avelly CI brounde n.	AY. Gravels ed flint. Mott	rled	1 - 2
							×		3.00			End	of Borehol	e at 3.00r	n		3
Hole Detai			Details Dia. (mm)	Data	Dord	Waters				- to: T:-	me (mins)	From	Standi To	ng/Chis	selling (m b		
peptri (m bgi) Dia	a. (mm) Depth	(iii ogi) D	ла. (MM)	Date	Dept	ii strike Depth	casing Di	epin Seali	KOSE	: to: IIr	ne (mins)	From	10	rime	Kem	at KS	

South	ern Te	sting	ST (Consul	t		Start	- End	Date		Pro	ject ID:	: Н	ole Typ	e: WLS2	07
www.southerntesting				ult.co.uk tel:0160			21/	′09/20				N1597		WLS	Sheet 1	
Project Name:	Land Ea	st of Ox	kford Roa	ad		Rema	rks:			Co-ord	linates	•		Level:	Logge ADM	
Location:	Water E	aton				Ground	wate	r Mor	nitorin	ng Wel	l - insta	illed to	2.8m bg	gl.		
Client:	Glanville	ē.														
Well Strikes D	Samp Depth (m bgl)	Type	Insitu Testi Res	ng ults	Level (m AOD)	Thicknes (m) (0.10)	Lege	end (r	Depth m bgl) 0.10	Bro	wn, silty	y, sandy y CLAY, w		OPSOIL, lets. Mo	with rootlets. ottled orange	
						(1.40)	X 2 2 2 2 2 2 2 2 2		1.50	Ligh	nt blue- _f	grey mot	ttled ora	nge, silt	y CLAY.	2
							X	\X	2.80			End	of Borehol	le at 2.80i	m	3
Hole Detai Depth (m bgl) Dia			Details Dia. (mm)	Date	Dept	Water : th Strike Depth				e to: Ti	me (mins)	From	Standi To	ng/Chi:	selling (m bgl)	4
, (128)	, ,, ,,		·····		78						/		-			

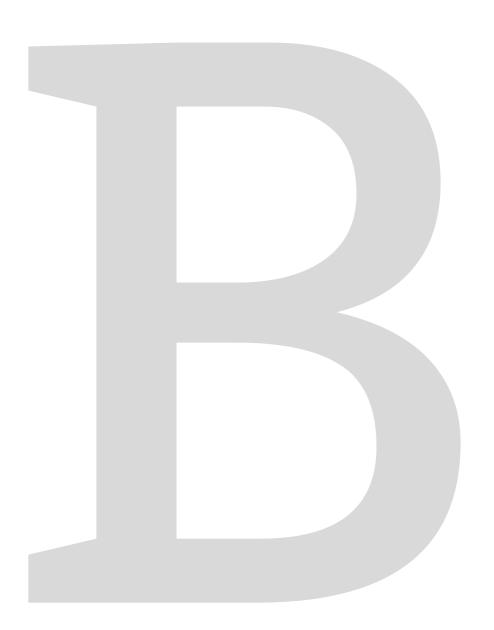
South	ern Te	sting	ST (Consul	t■		Start	- Enc	d Date		Pro	ject ID	: Н	ole Typ	e: WLS2	08
www.southerntesting	j.co.uk tel:01342	2 333100	www.stconsu	ult.co.uk tel:0160)4 500020		21/	′09/2		-		N1597		WLS	Sheet 1	
Project Name:	Land Ea	st of O	xford Roa	ad		Rema	rks:			Co-ord	linates	:		Level:	Logge ADM	
Location:	Water E	aton				Ground	wate	r Mo	nitorir	ng Wel	l - insta	lled to	3.0m bg	gl.		
Client:	Glanville	е														
Well Water			Insitu Testi Res	ing sults	Level (m AOD)	(0.15) (0.95)	Lege		Depth (m bgl) 0.15 1.10	roo' Bro' with sub	tlets. wn-buff n rootle rounde	yey sand f, fissure ts. Grave d flint.	d, silty, s els consi	CLAY, with	flint gravel and gravelly CLAY, e to medium,	2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Hole Detai			Details			Water						_			selling (m bgl)	
Depth (m bgl) Dia	a. (mm) De	pth (m bgl)	Dia. (mm)	Date	Dept	th Strike Depth	Casing D	epth Seal	Rose	e to: Tii	me (mins)	From	То	Time	Remarks	

S	out	hern	Testin	g ST (Consult		Sta	art - Ei	nd Date	9	Pro	ject ID:	Н	ole Typ	e:	WLS2	09
www.sc	outhernte	sting.co.uk tel	01342 333100	www.stcons	ult.co.uk tel:0160450	0020	2	21/09/				N1597		WLS		Sheet 1 o	
Project	Nam	e: Land	l East of C	xford Roa	ad	R	emarks	s:		Co-ordi	inates			Level:		Logger ADM	:
Locatio	n:	Wat	er Eaton			Gro	oundwa	ater M	Ionitori	ng Well	- insta	lled to 3	3.0m bg	gl.			
Client:		Glan	ville														
Moll	Water	9	amples and	1	ing values	(C)	2.00)	egend	0.15 0.90 1.00	Brow root Buff- CLAY of fii sand	lets an -brown /, with ne to m dstone. nge-bro	y, slightly d flint gr , silty, sli fine calca nedium, nottled c d initally	y gravell avel. ightly sa areous r subrour y, sandy orange, s or calcare	CLAY. Silty CLA Ous nod	r TOPSOI ghtly gra Gravels nt and Y, with a lules	velly consist	2 - 3 - 3 - 5 - 5 - 5 - 6
-	ole De	tails Dia. (mm)		Details Dia. (mm)	Date		aterstr			se to: Tim	ne (mins)	From	Standi To	ng/Chi	selling	(m bgl) Remarks	
Depth (m	ı ugi)	ia. (mm)	νερτη (m bgl	pua. (mm)	Date	veptn Stril	Le Depth Casi	ing Depth S	ROS	e to: III	ie (mins)	From	10	rime		кепаскѕ	

Sou	uthe	ern T	esting	g ST (Consult		Sta	ırt - Eı	nd Date)	Pro	ject ID:	н	ole Typ	e:	WLS21	LO
www.southe	erntesting.	co.uk tel:01	342 333100	www.stconsu	ult.co.uk tel:01604 50	0020	2	21/09/		C		N1597		WLS		Sheet 1 o	
Project Na	ame:	Land E	ast of O	xford Roa	ad	R	emarks	s: <u> </u>		Co-ordi	inates			Level:		Logger: ADM	
Location:		Water	Eaton			Gro	undwa	iter M	Ionitori	ng Well	- insta	illed to 3	3.0m bg	gl.			
Client:		Glanvi	lle														
Wall Wa			mples and	Insitu Testi	ng ults	(0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (.15) .15)	egend	Depth (m bgl) 0.15 1.20 1.90 2.00	Brow grav. Orar with suba	el and nge-bro occasion angular occasion with the second s	y, sandy, rootlets. own, silty onal roo sandsto y, very sa ty, gravel nedium, nottled o	clayey 1 / sandy, tlets. Gi ne. andy CLA	slightly gravels co	Gravels co ilty CLAY.	CLAY, fine,	1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
																	5 -
Hole Depth (m bg	Detail			Details Dia. (mm)	Date		aterstr			se to: Tim	ne (mins)	From	Standi To	ing/Chis	selling (m bgl) Remarks	
pepui (iii ug	51) DId.	. (111111)	ocpail (III Ugl)	pia. (IIIIII)	Date	∠epui 3u lk	Septir Casi	о Бериі 3	NOS	ic to. 1111	(111115)	110111	10	Time		nemarks	

Southern Te	esting	ST (Consult≡	!	Start	- End	Date		Pro	ject ID:	Н	ole Typ	e: WLS2	211
www.southerntesting.co.uk tel:013	42 333100	www.stconsu	ult.co.uk tel:01604 50002	0	21/	09/20				N1597		WLS	Sheet 1	
Project Name: Land E	ast of Ox	ford Roa	ad	Rema	rks:			Co-ordi	inates	:		Level:	Logge ADN	
Location: Water	Eaton			Ground	lwate	r Mon	itorin	ıg Well	- insta	illed to :	2.35m k	ogl.		
Client: Glanvil	lle													
	mples and In	nsitu Testi Res	- A &	(0.90)	s Lege	The state of the s	epth h bgl) 0.10 1.00	Brow of fin	el and -brown occasi lium su vn, silty ne to m	y, sandy, rootlets. , silty, ve onal roo brounde y, slightly nedium,	ery sand otlets. Gr ed, flint a y gravell subangu htly grav ist of fin d sandst	y, slightly avels conditions of the conditions o	Gravels consist and sandstone.	1
Hole Details Depth (m bgl) Dia. (mm)	Casing D Depth (m bgl)			Waters of the Strike Depth 1.90		e (m b _i	g !)	eto: Tim	ne (mins) 20 0	End of	of Borehol	le at 3.00r	selling (m bgl) Remarks	4

South	ern Test	ing	ST (Consul	t		Start	- End	d Date		Pro	ject ID:	: Н	ole Typ	e:	WLS2	12
www.southerntesting	g.co.uk tel:01342 333	3100 v	www.stconsu	ılt.co.uk tel:0160	04 500020		21,	/09/2				N1597		WLS		Sheet 1 o	
Project Name:	Land East	of Oxfc	— ord Roa	ıd		Rem	arks:	<u> </u>		Co-ord	dinates:			Level:		Logger ADM	
Location:	Water Eato	on				Groun	dwate	r Mo	nitorir	ng We	ll - insta	lled to	2.9m bg	gl.		ADIVI	
Client:	Glanville					=											
Water Water	Samples	s and Ins	situ Testir Resu		Level (m AOD)	Thickne (m) (0.10)	Leg		Depth m bgl) 0.10 1.10	Blu roo	vel. ff/ pale b careous e-grey m ttlets.	rown, s nodules	ilty CLAY	h rootle	ets and flootlets and any with a	nd fine	1
						(1.00)	×	×	3.00			End	of Borehoi	le at 3.00r	m		3
Hole Detai		sing De		5	L	Wate						Fee	1		selling (
Depth (m bgl) Dia	a. (mm) Depth ((m bgl) Dia	a. (mm)	Date	Depi	th Strike Dep	th Casing [Jepth Seal	ROS6	e to: Ti	ime (mins)	From	То	Time		Remarks	



APPENDIX B

Field Sampling and In-Situ Test Methods and Results

Soil and Rock Descriptions

All soil and rock descriptions are in general accordance with BS5930 Ref [4].

Anthropogenic soils ('made ground' or 'fill') describe materials which have been placed by man and can be divided into those composed of reworked natural soils and those composed of or containing man-made materials. 'Fill' is used to describe material placed in a controlled manner and 'made ground' is used to describe materials placed without strict engineering control.

The classification of materials such as topsoil is based on visual description only and should not be interpreted to mean that the material complies with criteria used in BS 3882 Ref [13].

Chalk descriptions are based on CIRIA C574 Ref [14] and Mortimore Ref [15].

The geology code is only provided on logs where a positive identification of the sample strata has been made.

Inspection Pit

Inspection pits are hand excavated from the surface (maximum depth 1.2 - 1.5m) using appropriate tools to locate and avoid existing buried services at exploratory hole positions. They are also regularly used as part of investigations on existing structures to expose and determine foundation detail.

Trial Pits and Trenches

Trial pits and trenches are unsupported excavations, mechanically excavated by machine to the required depth to enable visual examination, in situ testing and sampling as required from outside the excavation.

Dynamic Sampling - Window or Windowless

Window sampling is carried out by driving hollow steel tubes incorporating a longitudinal access slot (window) and a cutting shoe into the ground using a percussive 'breaker'. This enables recovery of a continuous soil sample for examination and sub-sampling.

Windowless samplers are designed for taking disturbed, continuous soil samples to depths up to 10 metres (depending on ground conditions). The samplers comprise steel tubes of about 50-100mm diameter with a rigid plastic liner (no window) and are driven into the ground with a sliding hammer mounted on a tracked purpose-designed soil sampling rig. After driving and extracting the sampler from the ground, the plastic liner is extracted together with the enclosed soil sample. The sample can then either be extracted, split and sub-sampled or plastic end caps may be fitted, the tube labelled and transported for future examination and sub-sampling.

Soil samples are disturbed by the driving process with both techniques and can be regarded as being between Class 5 up to Class 3 samples at best (in favourable ground).

The major advantage of using windowless samplers is that the plastic liner greatly reduces the possibility of cross-contamination between successive samples.

An equivalent in-situ test to the Standard Penetration Test can be carried out with the windowless sampler rig.

Standard Penetration Test (SPT)

The Standard Penetration Test (SPT) is specified in BS EN ISO 22476-3 Ref [16]. In this test, an open-ended tube is driven into the ground by blows from a free-falling hammer (with specified sizes, weights and distances).

The tube is seated by driving to a penetration of 150mm, or by 25 blows, whichever occurs first. It is then driven for a maximum of a further 300mm and the number of blows is termed the penetration resistance (N). If 300mm penetration cannot be achieved in 50 blows, the test drive is terminated and penetration depth is recorded.

When testing in gravels, a conical end piece is attached to the tube. The test is then called an SPT(C).

A classification of relative density descriptions as used on borehole logs, based upon uncorrected SPT N values, is given within BS5930 Ref [4] and set out as follows:

Classification based on uncorrected SPT N Value	Term
0 - 4	Very Loose
4 - 10	Loose
10 – 30	Medium Dense
30 – 50	Dense
Over 50	Very Dense

Hand Penetrometer Test

The handheld soil penetrometer consists of a spring loaded and calibrated plunger which is forced into cohesive soil. A reading of unconfined compression strength (equal to twice cohesion) is given on a calibrated scale. The average of a set of three readings shall be recorded.

In common with other hand methods of strength assessment it does not give an accurate indication of bearing capacity in stiff or fissured soils, because of the small test area.

In Situ California Bearing Ratio (CBR) Test

This test is specified within BS 1377-9 Ref [17], and is generally undertaken off the rear of a loaded Land Rover type vehicle. In the test, a cylindrical plunger is forced into the soil at a uniform rate (rates and sizes specified). The CBR value is the ratio of the force required to cause a standard penetration divided by the force required to cause the same penetration in a standard material (Californian limestone) expressed as a percentage. This value is used in pavement design.

Disturbed Samples

Disturbed samples were taken from exploratory holes in general accordance with BS 5930 [4] and BS EN ISO 22475-1 Ref [18] as required and stored in appropriately labelled containers. Details of the type, size and depth of sample will be recorded within the exploratory hole record. Such samples can be regarded as being between Class 5 up to Class 3 quality depending upon their method of sampling.

Environmental Samples

Environmental samples were taken from the boreholes at regular intervals in the made ground and natural soils as indicated on the exploratory hole logs. The sampling strategy was in general accordance with BS10175 Ref [5] and BS ISO 18400 Refs [19], [20], [21], [22] & [23].

These samples were collected and stored in glass jars or plastic pots and transferred to the laboratory in cool boxes as appropriate to the proposed laboratory testing.

Monitoring Well

A groundwater and/or ground gas monitoring well consists of a perforated pipe, which is installed in the ground. The standpipe is typically 50mm nominal in diameter and is installed in a lined borehole. It is perforated from the base with a sand/gravel surround through the soil horizon of interest to an appropriate depth below ground level. Above this there is a bentonite seal with solid pipework and is provided with an end cap or a gas valve at the top as appropriate.

Gas monitoring is carried out via the gas tap. Water sampling/purging can be undertaken by removing the gas tap and bung.

The well is usually completed at the surface with a flush cast iron cover or raised lockable cover.

Groundwater Monitoring – Dip Meter

The dip meter is used to measure standing water levels within boreholes. The probe is lowered into the borehole until the meter detects the groundwater with an audible 'beep'. The level is then read from the tape.

Groundwater Monitoring – Digital Level Loggers

Digital loggers placed within borehole standpipes measuring water pressure, barometric pressure and temperature were used to record data over the monitoring period. The data was processed, using proprietary software, to determine temperature and barometric pressure compensated water levels.

The equipment can record parameters at pre-determined time intervals and has a capacity of many thousands of readings and is therefore suitable for monitoring over extended periods of time.

Soakage Tests (after BRE DG365 2016)

The BRE DG365 Ref [6] paper on soakaway design allows for the design of trench soakaways as well as traditional square and circular soakaways.

The test to measure the soil infiltration rate is carried out in pits which are excavated to the full depth of the proposed soakaway. The trial pits are filled and allowed to drain to empty or near empty, three times, on the same day or on consecutive days. Water levels are recorded against time. Where the sides are unstable the pit should be filled with granular material to provide stability during the test.

Calculated soakage rates are expressed as I/m²/minute, which is a convenient rate to use. The BRE use a unit of m/sec, which is the value in I/m²/minute divided by 60,000.

Land East of Oxford Road

Site:

BRE Digest DG365 Soakage Test Test Hole No: SA101 Test No: Test No 1 (Initial) Time from Filling to Maximum Water Depth, minute 5 10 15 20 25 30 40 45 50 0.0 Test Results 0.1 0.2 **Max Water Depth** Depth below Ground Surface, m 0.3 75% Max Water 0.4 50% Max Water 0.5 0.6 0.7 8.0 Pit Length, m 2.100 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.400 Depth to Pit Base, m Total Soakage Test Time, min 0.700 45.0 Depth to Top of Permeable Soils, m 0.300 Mean Internal Discharge Area, m² 1.965 Depth to Groundwater Surface, m Discharge Rate, litre/min 3.979 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.100 2.02 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 3.37E-05 Comments: Pit was emptied at finish of test. JN1597 23/Sep/2021 Client: Glanville Consultants Limited Job No: **Test Date:**

Tested By:

DR

Engineer:

OJ

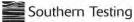
Fig. S1

BRE Digest DG365 Soakage Test Test Hole No: SA101 Test No: Test No 2 (Repeated) Time from Filling to Maximum Water Depth, minute 10 30 40 60 70 0.0 Test Results 0.1 0.2 **Max Water Depth** Depth below Ground Surface, m 0.3 75% Max Water 0.4 50% Max Water 0.5 25% Max Water 0.6 **Bottom of Hole** 0.7 8.0 Pit Length, m 2.100 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.380 Depth to Pit Base, m Total Soakage Test Time, min 0.700 60.0 Depth to Top of Permeable Soils, m 0.300 Mean Internal Discharge Area, m² 1.965 Depth to Groundwater Surface, m Discharge Rate, litre/min 1.989 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 1.01 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 1.69E-05 Comments: Pit was nearly emptied at finish of test. JN1597 23/Sep/2021 Client: Glanville Consultants Limited Job No: **Test Date:** Land East of Oxford Road Tested By: DR **Engineer:** OJ Site: Fig. S2

Land East of Oxford Road

Site:

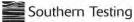
BRE Digest DG365 Soakage Test Test Hole No: SA101 Test No: Test No 3 (Repeated) Time from Filling to Maximum Water Depth, minute 10 30 40 60 70 0.0 Test Results 0.1 0.2 Max Water Depth Depth below Ground Surface, m 0.3 75% Max Water 0.4 50% Max Water 0.5 25% Max Water 0.6 **Bottom of Hole** 0.7 8.0 Pit Length, m 2.100 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.390 Depth to Pit Base, m Total Soakage Test Time, min 0.700 64.0 Depth to Top of Permeable Soils, m 0.300 Mean Internal Discharge Area, m² 1.965 Depth to Groundwater Surface, m Discharge Rate, litre/min 1.805 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.100 0.919 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 1.53E-05 Comments: Pit was nearly emptied at finish of test. JN1597 23/Sep/2021 Client: Glanville Consultants Limited Job No: **Test Date:**


Tested By:

DR

Engineer:

OJ


Fig. S3

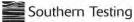
BRE Digest DG365 Soakage Test Test Hole No: SA102 **Test No:** Test No 1 (Initial) Time from Filling to Maximum Water Depth, minute 10 30 40 60 70 0.0 Test Results 0.1 0.2 Depth below Ground Surface, m Max Water Depth 0.3 75% Max Water 0.4 50% Max Water 0.5 25% Max Water **Bottom of Hole** 0.6 0.7 Pit Length, m 2.200 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.280 Depth to Pit Base, m 0.600 Total Soakage Test Time, min 60.0 Depth to Top of Permeable Soils, m Mean Internal Discharge Area, m² 0.300 1.785 Depth to Groundwater Surface, m Discharge Rate, litre/min 1.513 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.848 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 1.41E-05 Comments: Pit was nearly emptied at finish of test.

Client:	Glanville Consultants Limited	Job No:	JN1597	Test Date:	23/Se	p/2021
Site:	Land East of Oxford Road	Tested By:	DR	Engineer:	OJ	Fig. S4

Land East of Oxford Road

Site:

BRE Digest DG365 Soakage Test Test Hole No: SA102 Test No: Test No 2 (Repeated) Time from Filling to Maximum Water Depth, minute 10 20 30 40 50 60 80 90 100 0.0 Test Results 0.1 0.2 Depth below Ground Surface, m Max Water Depth 0.3 75% Max Water 0.4 50% Max Water 0.5 **Bottom of Hole** 0.6 0.7 Pit Length, m 2.200 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.250 Depth to Pit Base, m Total Soakage Test Time, min 0.600 93.0 Depth to Top of Permeable Soils, m 0.300 Mean Internal Discharge Area, m² 1.785 Depth to Groundwater Surface, m Discharge Rate, litre/min 0.850 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.476 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 7.94E-06 Comments: Pit was nearly emptied at finish of test. JN1597 23/Sep/2021 Client: Glanville Consultants Limited Job No: **Test Date:**


Tested By:

DR

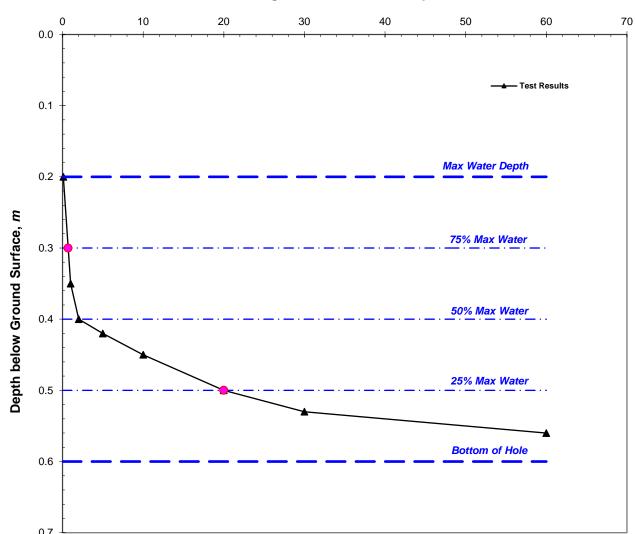
Engineer:

OJ

Fig. S5

BRE Digest DG365 Soakage Test Test Hole No: SA102 **Test No:** Test No 3 (Repeated) Time from Filling to Maximum Water Depth, minute 20 60 80 100 120 0.0 Test Results 0.1 0.2 Depth below Ground Surface, m Max Water Depth 0.3 75% Max Water 0.4 0.5 Bottom of Hole 0.6 0.7 Pit Length, m 2.200 Depth to Water at Start of Test, m 0.300 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.280 Depth to Pit Base, m 0.600 Total Soakage Test Time, min 110.0 Depth to Top of Permeable Soils, m Mean Internal Discharge Area, m² 0.300 1.785 Depth to Groundwater Surface, m Discharge Rate, litre/min 0.897 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.502 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 8.37E-06 Comments: Pit was nearly emptied at finish of test.

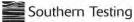
Client:	Glanville Consultants Limited	Job No:	JN1597	Test Date: 23/Sep/2021		p/2021
Site:	Land East of Oxford Road	Tested By:	DR	Engineer:	OJ	Fig. S6



BRE Digest DG365 Soakage Test Test Hole No: SA103

Test No: Test No 1 (Initial)

Time from Filling to Maximum Water Depth, minute



2.000	Depth to Water at Start of Test, m	0.200
0.450	Max Water Dropdown during Test, m	0.360
0.600	Total Soakage Test Time, min	60.0
0.300	Mean Internal Discharge Area, m^2	1.880
	Discharge Rate, litre/min	3.731
0.100	Soakage Rate, litre/m²/min	1.98
40%	BRE Soil Infiltration Rate, m/sec	3.31E-05
	0.450 0.600 0.300	 0.450 Max Water Dropdown during Test, m 0.600 Total Soakage Test Time, min 0.300 Mean Internal Discharge Area, m² Discharge Rate, litre/min 0.100 Soakage Rate, litre/m²/min

Comments:

Pit was nearly emptied at finish of test.

Client:	Glanville Consultants Limited	Job No:	JN1597	Test Date: 23/Sep/202		p/2021
Site:	Land East of Oxford Road	Tested By:	DR	Engineer:	OJ	Fig. S7

BRE Digest DG365 Soakage Test Test Hole No: SA103 **Test No:** Test No 2 (Repeated) Time from Filling to Maximum Water Depth, minute 10 20 30 40 50 60 0.0 - Test Results 0.1 Max Water Depth 0.2 Depth below Ground Surface, m 75% Max Water 0.3 50% Max Water 0.4 25% Max Water 0.5 **Bottom of Hole** 0.6 0.7 Pit Length, m 2.000 Depth to Water at Start of Test, m 0.200 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.350 Depth to Pit Base, m Total Soakage Test Time, min 0.600 57.0 Depth to Top of Permeable Soils, m 0.300 Mean Internal Discharge Area, m² 1.880 Depth to Groundwater Surface, m Discharge Rate, litre/min 2.108 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 1.12 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 1.87E-05 Comments: Pit was nearly emptied at finish of test.

Client:	Glanville Consultants Limited	Job No:	JN1597	Test Date: 23/Sep/2021		p/2021
Site:	Land East of Oxford Road	Tested By:	DR	Engineer:	OJ	Fig. S8

BRE Digest DG365 Soakage Test Test Hole No: SA103 Test No: Test No 3 (Repeated) Time from Filling to Maximum Water Depth, minute 20 60 80 120 140 0.0 Test Results 0.1 Max Water Depth 0.2 Depth below Ground Surface, m 75% Max Water 0.3 50% Max Water 0.4 25% Max Water 0.5 **Bottom of Hole** 0.6 0.7 Pit Length, m 2.000 Depth to Water at Start of Test, m 0.200 Pit Width, m 0.450 Max Water Dropdown during Test, m 0.370 Depth to Pit Base, m Total Soakage Test Time, min 120.0 0.600 Depth to Top of Permeable Soils, m Mean Internal Discharge Area, m² 0.300 1.880 Depth to Groundwater Surface, m Discharge Rate, litre/min 1.080 Soakage Rate, litre/m²/min Depth to Top of Granular Fill, m 0.575 0.100 Voids Assumed for Granular Fill, % 40% BRE Soil Infiltration Rate, m/sec 9.58E-06 Comments: Pit was nearly emptied at finish of test.

Client:	Glanville Consultants Limited	Job No:	JN1597	Test Date:	23/Se	p/2021
Site:	Land East of Oxford Road	Tested By:	DR	Engineer:	OJ	Fig. S9

APPENDIX C

Contamination Laboratory Test Methods and Results

These screening values are valid at the time of writing but may be subject to change and any such changes will have implications for the assessments based on them. Their validity should be confirmed at the time of site development.

Table 1 – Tier 1 Screening Values												
Contaminant	Units			Proposed	d Land Use							
		Residential with home grown produce consumption	Residential without home grown produce consumption	Open Space * (Residential)	Open Space * (Park)	Allotments	Commercial / Industrial					
Arsenic (As) [2]	mg/kg	37	40	79	170	43	640					
Cadmium (Cd) [2]	mg/kg	11	85	120	555	1.9	190					
Trivalent Chromium (Crlll) [2]	mg/kg	910	910	1,500	33,000	18,000	8600					
Hexavalent Chromium (CrVI) [2]	mg/kg	6	6	7.7	220	1.8	33					
Lead (Pb) [3]	mg/kg	200	310	630	1300	80	2330					
Mercury (Hg) [1,2,7]	mg/kg	7.6-11	9.2-15	40	68-71	6.0	29-320					
Selenium (Se) [2]	mg/kg	250	430	1,100	1,800	88	12,000					
Nickel (Ni) [2,4]	mg/kg	130	180	230	800	53	980					
Copper (Cu) [2,4]	mg/kg	2,400	7,100	12,000	44,000	520	68,000					
Zinc (Zn) [2,4]	mg/kg	3,700	40,000	81,000	170,000	620	730,000					
Phenol [1,2]	mg/kg	120-380	440-1200	440-1300	440-1300	23-83	440-1300					
Benzo[a]pyrene [1,5]	mg/kg	1.7-2.4	2.6	4.9	10	0.67-2.7	36					
Naphthalene [1,2]	mg/kg	2.3-13	2.3-13	77-430 ⁺	77-430 ⁺	4.1-24	77-430 ⁺					
Total Cyanide (CN) [6]	mg/kg	/	/	/	/	/	/					
Free Cyanide [6]	mg/kg	/	/	/	/	/	/					
Complex Cyanides [6]	mg/kg	/	/	/	/	/	/					
Thiocyanate [6]	mg/kg	/	/	/	/	/	1					

Notes:

- * Open Space levels calculated on the basis of the exposure modelling developed in the C4SL research.
- + Screening values constrained to saturation limit. Higher values may be acceptable on a site specific basis.
- [1] Where ranges of values are given for organic contaminants the screening value is dependent on the Soil +Organic Matter.
- [2] LQM/CIEH S4UL (2014). Copyright Land Quality Management Ltd. reproduced with permission; Publication Number S4UL 3116. All rights reserved. [3] C4SL (DEFRA 2014).
- [4] Copper, Zinc and Nickel may have phototoxic effects at the given concentrations. Alternative criteria should be adopted for importation of Topsoil or other soils for cultivation. BS3882:2015 and BS8601:2013 suggest values of 200 to 300mg/kg for Zn, 100 to 200mg/kg for Cu, and 60 to 110mg/kg for Ni, for topsoil and subsoil, depending on pH.
- [5] Based on the Surrogate Marker approach and modelled using the modified exposure parameters of C4SL but retaining 'minimal risk' HCV.
- [6] Screening criteria derived on a site specific basis if test results indicate.
- [7] S4UL for Methyl Mercury, higher concentrations may be tolerable if inorganic mercury is the only species present. Lower concentrations apply for elemental Mercury.

.

Contam Results

ST Consult Ltd Twigden Barns Brixworth Road Creaton Northamptonshire NN6 8NN

t: 01604 500020 f: 01604 500021

e: contamresults@stconsult.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

29/09/2021

Analytical Report Number: 21-13302

Project / Site name: Land East of Oxford Road Samples received on: 29/09/2021

Your job number: JN1597 Samples instructed on/

Analysis started on:

Your order number: Analysis completed by: 12/10/2021

Report Issue Number: 1 Report issued on: 12/10/2021

Samples Analysed: 26 soil samples

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

late of the late o				2020720	2020724	2020722	2020722	2020724
Lab Sample Number				2029730 TD101	2029731	2029732	2029733	2029734
Sample Reference				TP101	TP102	TP103	TP104	TP105
Sample Number				None Supplied 0.15				
Depth (m)				21/09/2021	21/09/2021	21/09/2021		21/09/2021
Date Sampled Time Taken				None Supplied			21/09/2021	
Time Taken	1	-		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	10	11	13	13
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
	1			or detected	delected	detected	actocica	detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.3	7.0	7.3	6.8	7.4
Organic Matter (automated)	%	0.1	MCERTS	3.9	3.0	3.5	3.3	4.7
, ,								
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalleids								
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20	18	16	20	16
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	38	37	29	34	34
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	38	37	29	34	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	13	16	18	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	25	23	28	28	22
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	23	21	25	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	83	69	63	79	71

Lab Sample Number				2029730	2029731	2029732	2029733	2029734
Sample Reference				TP101	TP102	TP103	TP104	TP105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-	-	-	-	-			
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	0.004
TPH-CWG - Aromatic >EC8 - EC10		0.001	MCERTS		< 0.001	-	< 0.001	< 0.001
	mg/kg	0.001	TIGENTO		< 0.001		< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	
TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16				-				< 0.001
	mg/kg	1	MCERTS	- - -	< 1.0		< 1.0	< 0.001 < 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg mg/kg	1 2	MCERTS MCERTS	-	< 1.0 < 2.0	-	< 1.0 < 2.0	< 0.001 < 1.0 < 2.0

Semiple Number 1972	Lab Sample Number				2029730	2029731	2029732	2029733	2029734
None Supplied None Supplie	•								
Perfect Nome	•								
	•								
Time Tables									
Section	•								
Name	Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	ноле зарряес	нопе эцррпец	нопе зарряес	топе зарряев	топе заррнеа
Medical Marie Ma			Š						
Michael Mich					1				
Starphose-withy Starphose-w		_							-
Semples-methy Semilor									-
MC-aghtna Servene heasechloride MC-aghtna Supril									
MC-beta 19/90 10 NONE < 10 . < 10 . < 10 .	, , ,								
MC-delta	, ,								
Histogramma (Lindane, gamma HCH)									
Page 10 NoNE < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . < 10 . <	Bifenthrin								-
Directance 19/06 10 NONE < 10 . < 10 . < 10 .	Carbophenothion								-
	Chlordane-cis		10	NONE		-		-	-
Description	Chlordane-trans	μg/kg	10	NONE	< 10	-	< 10	-	-
Page	Chlorfenvinphos	μg/kg	10	NONE	< 10	-	< 10	-	-
Spring S	Chlorothalonil	μg/kg	20	NONE	< 20	-	< 20	-	-
Special Content of Cambridge 10 None < 10 - < 10 - -	Chlorpyrifos	μg/kg	10	NONE	< 10	-	< 10	-	-
Specific	Cyfluthrin (Sum)	μg/kg	10	_	< 10	-	< 10	-	-
DDP-p/P	Cyhalothrin (Lambda)	μg/kg			< 10	-	< 10	-	-
DDE-pp D	Cypermethrin (Sum)					-		-	-
DOE-O,p' Hg/kg 10	DDD-o,p'					-		-	-
DDF-p,p'	DDD-p,p'	_				-		-	-
DDT-p,p'	**								
DDT-p.p'	***								-
Part									-
Page 10 NONE 10 - - - - - - - - - -		_							
Perneton-S		_							
Dichlorobenzonitrile, 2,6-									
19/14 10 10 10 10 10 10 10		_	10	NONE		_		_	_
	Dichlorvos	μg/kg	10	NONE	< 10	-	< 10	-	-
	Dieldrin	μg/kg	10	NONE	< 10	-	< 10	-	-
Indosulfan I (alpha isomer) Indosulfan II (beta isomer) In	Dimethoate	μg/kg	10	NONE	< 10	-	< 10	-	-
Indosulfan II (beta isomer) Indosulfan II (beta isomer) Indosulfan sulfate Indrin Indrin II (beta isomer) Indrin II (beta isomer) Indrin II (beta isomer) III	Dimethylvinphos	μg/kg	10		< 10	-	< 10	-	-
Find osulfan sulfate	Endosulfan I (alpha isomer)					-		-	-
1	Endosulfan II (beta isomer)					-		-	-
μg/kg 10 NONE < 10 - < 10 - - < 10 - - < 10 - < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	Endosulfan sulfate								
Hey	Endrin	_							
Page		_							
ctrimfos μg/kg 10 NONE < 10 - < 10 -									
Partitrothion Pag/kg 10 NONE < 10 - < 10 - -									
Page									
Part		_							
Helptachlor									
Heptachlor exo-epoxide μg/kg 10 NONE < 10 - < 10 -	Heptachlor								
Exachlorobenzene	Heptachlor exo-epoxide	_		NONE		-		-	-
Exachlorobutadiene	Hexachlorobenzene	μg/kg	10	NONE		-		-	-
Malathion μg/kg 10 NONE < 10 - < 10 - - Methacrifos μg/kg 10 NONE < 10	Hexachlorobutadiene	μg/kg	10	NONE		-		-	-
Pethacrifos μg/kg 10 NONE < 10 - < 10	Isodrin	μg/kg	20	NONE	< 20		< 20		
	Malathion	μg/kg			< 10	-	< 10	-	-
1ethoxychlor, p,p'- μg/kg 20 NONE < 20 - < 20 -	Methacrifos					-		-	-
	Methoxychlor, p,p'-	μg/kg	20	NONE	< 20	-	< 20	-	-

Lab Sample Number				2029730	2029731	2029732	2029733	2029734
Sample Reference				TP101	TP102	TP103	TP104	TP105
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	< 10	-	< 10	-	-
Omethoate	μg/kg	20	NONE	< 20	-	< 20	-	-
Parathion	μg/kg	10	NONE	< 10	-	< 10	-	-
Parathion-methyl	μg/kg	10	NONE	< 10	-	< 10	-	-
Pendimethalin	μg/kg	10	NONE	32	-	67	-	-
Pentachlorobenzene	μg/kg	10	NONE	< 10	-	< 10	-	-
Permethrin, Cis-	μg/kg	10	NONE	< 10	-	< 10	-	-
Permethrin, Trans-	μg/kg	10	NONE	< 10	-	< 10	-	-
Phorate	μg/kg	10	NONE	< 10	-	< 10	-	-
Phosalone	μg/kg	10	NONE	< 10	-	< 10	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	< 10	-	< 10	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	< 10	-	< 10	-	-
Pirimiphos-methyl	μg/kg	10	NONE	< 10	-	< 10	-	-
Propetamphos	μg/kg	10	NONE	< 10	-	< 10	i	-
Propyzamide	μg/kg	10	NONE	< 10	-	< 10	-	-
Tecnazene	μg/kg	10	NONE	< 10	-	< 10	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	< 10	-	< 10	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	< 10	-	< 10	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	< 10	-	< 10	-	-
Trifluralin	μg/kg	10	NONE	< 10	-	< 10	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2029735	2020726	2029737	2029738	2029739
					2029736			
Sample Reference				TP106	TP107	TP107	TP108	TP109 None Supplied
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.15	0.15	0.40	0.15	0.15
Date Sampled Time Taken				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken	1		I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	12	10	11	19
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
			1					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		ı .,	Lucre					
pH - Automated	pH Units	N/A	MCERTS	7.2	7.9	7.9	8.1	8.2
Organic Matter (automated)	%	0.1	MCERTS	5.4	4.6	1.5	3.8	4.8
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.33
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.31
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MICEKIS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	_							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	20	19	20	23
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	36	34	34	35	36
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	36	34	34	35	36
Copper (aqua regia extractable)	mg/kg	1	MCERTS	20	20	15	17	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	26	15	26	44
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	29	29	29	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	86	88	76	87	89

Lab Sample Number				2029735	2029736	2029737	2029738	2029739
Sample Reference				TP106	TP107	TP107	TP108	TP109
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.40	0.15	0.15
Date Sampled				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					-			
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS		-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

I ah Camula Numbar				2020725	2020726	2020727	2020720	2020720
Lab Sample Number				2029735 TP106	2029736 TP107	2029737 TP107	2029738 TP108	2029739 TP109
Sample Reference Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.40	0.15	0.15
Date Sampled				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Time Taken	I	=		попс зарряса	нопе заррпеа	тчопе зарряса	нопе заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	-	-	_	< 10	-
Aldrin	μg/kg	10	NONE	_	_	_	< 10	-
Azinphos-ethyl	μg/kg	10	NONE	_	_	_	< 10	-
Azinphos-methyl	μg/kg	10	NONE	_	_	_	< 10	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	-	< 10	-
BHC-beta	μg/kg	10	NONE	-	-	-	< 10	-
BHC-delta	μg/kg	10	NONE	-	-	-	< 10	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	-	< 10	-
Bifenthrin	μg/kg	10	NONE	-	-	-	< 10	-
Carbophenothion	μg/kg	10	NONE	-	-	-	< 10	-
Chlordane-cis	μg/kg	10	NONE	-	-	-	< 10	-
Chlordane-trans	μg/kg	10	NONE	-	-	-	< 10	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	-	< 10	-
Chlorothalonil	μg/kg	20	NONE	-	-	-	< 20	-
Chlorpyrifos	μg/kg	10	NONE	-	-	-	< 10	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	-	-	< 10	-
Cypermethrin (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
DDD-o,p'	μg/kg	10	NONE	-	-	-	< 10	-
DDD-p,p'	μg/kg "	10	NONE	-	-	-	< 10	-
DDE-o,p'	μg/kg "	10	NONE	-	-	-	< 10	-
DDE-p,p'	μg/kg	10	NONE	-	-	-	< 10	-
DDT-o,p'	μg/kg μg/kg	10 10	NONE NONE	-	-	-	< 10	-
DDT-p,p' Deltamethrin	μg/kg μg/kg	10	NONE	-	-	-	< 10 < 10	-
Demeton-O	μg/kg	10	NONE	_	_		< 10	-
Demeton-S	μg/kg	10	NONE	<u>-</u>	<u>-</u>	<u> </u>	< 10	-
Diazinon	μg/kg	10	NONE	_	_	-	< 10	_
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	_	_	_	< 10	_
Dichlorvos	μg/kg	10	NONE	-	-	-	< 10	-
Dieldrin	μg/kg	10	NONE	_	_	_	< 10	-
Dimethoate	μg/kg	10	NONE	_	_	-	< 10	_
Dimethylvinphos	μg/kg	10	NONE	-	-	_	< 10	-
Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	-	-	< 10	-
Endosulfan II (beta isomer)	μg/kg	10	NONE	-	-	-	< 10	-
Endosulfan sulfate	μg/kg	10	NONE	-	-	-	< 10	-
Endrin	μg/kg	20	NONE	-	-	-	< 20	-
Endrin aldehyde	μg/kg	10	NONE	-	-	-	< 10	-
Endrin ketone	μg/kg	10	NONE	-	-	-	< 10	-
Ethion	μg/kg	10	NONE	-	-	-	< 10	-
Etrimfos	μg/kg	10	NONE	-	-	-	< 10	-
Fenitrothion	μg/kg	10	NONE	-	-	-	< 10	-
Fenthion	μg/kg	10	NONE	-	-	-	< 10	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Heptachlor	μg/kg	10	NONE	-	-	-	< 10	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	-	-	< 10	-
Hexachlorobenzene	μg/kg	10	NONE	-	-	-	< 10	-
Hexachlorobutadiene	μg/kg	10	NONE	-	-	-	< 10	-
Isodrin	μg/kg	20	NONE	-	-	-	< 20	-
Malathion	μg/kg	10	NONE	-	-	-	< 10	-
Methacrifos	μg/kg	10	NONE	-	-	-	< 10	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	-	< 20	-

Lab Sample Number				2029735	2029736	2029737	2029738	2029739
Sample Reference				TP106	TP107	TP107	TP108	TP109
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.40	0.15	0.15
Date Sampled				21/09/2021	21/09/2021	21/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-	< 10	-
Omethoate	μg/kg	20	NONE	-	-	-	< 20	-
Parathion	μg/kg	10	NONE	-	-	-	< 10	-
Parathion-methyl	μg/kg	10	NONE	-	-	-	< 10	-
Pendimethalin	μg/kg	10	NONE	-	-	-	140	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	-	< 10	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	-	< 10	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	-	< 10	-
Phorate	μg/kg	10	NONE	-	-	-	< 10	-
Phosalone	μg/kg	10	NONE	-	-	-	< 10	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-	< 10	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	-	< 10	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-	< 10	-
Propetamphos	μg/kg	10	NONE	-	-	-	< 10	-
Propyzamide	μg/kg	10	NONE	-	-	-	< 10	-
Tecnazene	μg/kg	10	NONE	-	-	-	< 10	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	ı	-	< 10	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	ı	-	< 10	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-	< 10	-
Trifluralin	μg/kg	10	NONE	-	-	-	< 10	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2029740	2029741	2029742	2029743	2029744
Sample Reference				TP110	TP111	TP111	TP112	TP113
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.45	0.15	0.15
Date Sampled Time Taken				21/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken	T		I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	14	16	11	10
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
т			1					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		ı .,	Lucre					
pH - Automated	pH Units	N/A	MCERTS	6.6	7.0	7.9	7.1	6.9
Organic Matter (automated)	%	0.1	MCERTS	5.6	3.6	2.4	2.9	3.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.32	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.51	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.49	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.33	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.48	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.41	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.25	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.43	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	iilg/kg	0.03	PICENTO	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	3.22	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	25	22	17	20	24
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	46	34	32	31	36
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	46	34	32	31	36
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25	17	14	15	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	46	33	21	28	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	35	28	25	23	29
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	84	67	69	78

Lab Sample Number				2029740	2029741	2029742	2029743	2029744
Sample Reference				TP110	TP111	TP111	TP112	TP113
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.45	0.15	0.15
Date Sampled				21/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					-	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	1	-	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Petroleum Hydrocarbons	T							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	< 10
					II .	1	ı	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	< 10

Lab Carrella Nerrobarr	ab Sample Number					2020742	2020742	2020744
Sample Reference				2029740 TP110	2029741 TP111	2029742 TP111	2029743 TP112	2029744 TP113
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.45	0.15	0.15
Date Sampled				21/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Time raken	1	Ε.		топе заррнеа	попе заррнеа	чоне заррнеа	чоне заррнеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	-	-	-	-	-
Aldrin	μg/kg	10	NONE	_	_	_	_	-
Azinphos-ethyl	μg/kg	10	NONE	_	_	_	_	-
Azinphos-methyl	μg/kg	10	NONE	-	-	-	-	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	-	-	-
BHC-beta	μg/kg	10	NONE	-	-	-	-	-
BHC-delta	μg/kg	10	NONE	-	-	-	-	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	-	-	-
Bifenthrin	μg/kg	10	NONE	-	-	-	-	-
Carbophenothion	μg/kg	10	NONE	-	-	-	-	-
Chlordane-cis	μg/kg	10	NONE	-	-	-	-	-
Chlordane-trans	μg/kg	10	NONE	-	-	-	-	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	-	-	-
Chlorothalonil	μg/kg	20	NONE	-	-	-	-	-
Chlorpyrifos	μg/kg 	10	NONE	-	-	-	-	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	-	-	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	-	-	-	-
Cypermethrin (Sum)	μg/kg	10	NONE	-	-	-	-	-
DDD-o,p'	μg/kg	10 10	NONE NONE	-	-	-	-	-
DDD-p,p'	μg/kg μg/kg	10	NONE	- -	-	-	-	-
DDE-o,p' DDE-p,p'	μg/kg	10	NONE	_		-	-	-
DDT-o,p'	μg/kg	10	NONE	_	_		_	-
DDT-p,p'	μg/kg	10	NONE	_	_		_	-
Deltamethrin	μg/kg	10	NONE	-	-	-	-	_
Demeton-O	μg/kg	10	NONE	_	_	_	_	-
Demeton-S	μg/kg	10	NONE	-	-	-	-	-
Diazinon	μg/kg	10	NONE	-	-	-	-	-
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	-	-	-	-	-
Dichlorvos	μg/kg	10	NONE	-	-	-	-	-
Dieldrin	μg/kg	10	NONE	-	-	-	-	-
Dimethoate	μg/kg	10	NONE	-	-	-	-	=
Dimethylvinphos	μg/kg	10	NONE	-	-	-	-	-
Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	-	-	-	-
Endosulfan II (beta isomer)	μg/kg	10	NONE	-	-	-	-	-
Endosulfan sulfate	μg/kg 	10	NONE	-	-	-	-	-
Endrin	μg/kg	20	NONE	-	-	-	-	-
Endrin aldehyde	μg/kg	10	NONE	-	-	-	-	-
Endrin ketone	μg/kg	10	NONE	-	-	-	-	-
Ethion	μg/kg	10 10	NONE	-	-	-	-	-
Etrimfos	μg/kg μα/kg	10	NONE	-	-	-	-	-
Fenthion Fenthion	μg/kg μg/kg	10	NONE	-	-	-	-	-
Fenthion Fenvalerate (Sum)	μg/kg μg/kg	10	NONE	-	-	-	-	-
Heptachlor	μg/kg	10	NONE		_	-	-	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-		-	-	-
Hexachlorobenzene	μg/kg	10	NONE				-	-
Hexachlorobutadiene	μg/kg	10	NONE	-	_	-	-	-
Isodrin	μg/kg	20	NONE	-	_	_	_	_
Malathion	μg/kg	10	NONE	-	-	-	-	-
Methacrifos	μg/kg	10	NONE	-	-	-	-	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	-	-	-

Lab Sample Number				2029740	2029741	2029742	2029743	2029744
Sample Reference				TP110	TP111	TP111	TP112	TP113
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.45	0.15	0.15
Date Sampled				21/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	-	-	-
Omethoate	μg/kg	20	NONE	-	-	-	-	-
Parathion	μg/kg	10	NONE	-	-	-	-	-
Parathion-methyl	μg/kg	10	NONE	-	-	-	-	-
Pendimethalin	μg/kg	10	NONE	-	-	1	-	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	-	-	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	1	-	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	-	-	-
Phorate	μg/kg	10	NONE	-	-	-	-	-
Phosalone	μg/kg	10	NONE	-	-	1	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	-	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	1	-	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	-	-	-
Propetamphos	μg/kg	10	NONE	-	1	-	i	-
Propyzamide	μg/kg	10	NONE	-	-	-	-	-
Tecnazene	μg/kg	10	NONE	-	-	-	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	-	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	-	-	-
Trifluralin	μg/kg	10	NONE	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2029745	2020746	2020747	2029748	2029749
					2029746	2029747		
Sample Reference				TP114	TP115	TP116	TP117	TP117
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.50
Date Sampled Time Taken				24/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken	1		I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	14	14	15	3.4
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
			1					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.1	7.4	8.2	7.5	7.9
Organic Matter (automated)	%	0.1	MCERTS	4.1	3.8	3.4	3.6	0.9
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	PICERIO	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	24	16	15	11	14
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	40	36	33	32	46
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	40	36	33	32	46
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	18	15	13	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	33	29	26	24	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36	24	24	16	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	72	68	58	67

Lab Sample Number				2029745	2029746	2029747	2029748	2029749
Sample Reference				TP114	TP115	TP116	TP117	TP117
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.50
Date Sampled				24/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					-	-	-	- -
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	-	ı	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	-	ı	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	< 0.001	=
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	=
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	-
			1				- 10	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS MCERTS	-	-	-	< 10 < 10	-

Lab Sample Number				2029745	2029746	2029747	2029748	2029749
Sample Reference				TP114	TP115	TP116	TP117	TP117
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.50
Date Sampled				24/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	_	. 10	. 10	_	_
Aldrin	μg/kg	10	NONE	_	< 10 < 10	< 10 < 10	-	
Azinphos-ethyl	μg/kg	10	NONE	-	< 10	< 10	-	-
Azinphos-methyl	μg/kg	10	NONE		< 10	< 10		
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	_	< 10	< 10	-	_
BHC-beta	μg/kg	10	NONE	-	< 10	< 10	_	-
BHC-delta	μg/kg	10	NONE	_	< 10	< 10	_	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	< 10	< 10	-	-
Bifenthrin	μg/kg	10	NONE	-	< 10	< 10	-	-
Carbophenothion	μg/kg	10	NONE	-	< 10	< 10	-	-
Chlordane-cis	μg/kg	10	NONE	-	< 10	< 10	-	-
Chlordane-trans	μg/kg	10	NONE	-	< 10	< 10	-	-
Chlorfenvinphos	μg/kg	10	NONE	-	< 10	< 10	-	-
Chlorothalonil	μg/kg	20	NONE	-	< 20	< 20	-	-
Chlorpyrifos	μg/kg	10	NONE	-	< 10	< 10	-	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	< 10	< 10	-	-
Cyhalothrin (Lambda)	μg/kg	10	NONE	-	< 10	< 10	-	-
Cypermethrin (Sum)	μg/kg	10	NONE	i	< 10	< 10	-	-
DDD-o,p'	μg/kg	10	NONE	-	< 10	< 10	-	-
DDD-p,p'	μg/kg	10	NONE	-	< 10	< 10	-	-
DDE-o,p'	μg/kg	10	NONE	-	< 10	< 10	-	-
DDE-p,p'	μg/kg	10	NONE	-	< 10	< 10	-	-
DDT-o,p'	μg/kg 	10	NONE	-	< 10	< 10	-	-
DDT-p,p'	μg/kg "	10	NONE	-	< 10	< 10	-	-
Deltamethrin	μg/kg	10	NONE	-	< 10	< 10	-	-
Demeton-O	μg/kg	10	NONE	-	< 10	< 10	-	-
Demeton-S	μg/kg	10 10	NONE	-	< 10	< 10	-	-
Diazinon	μg/kg μg/kg	10	NONE	-	< 10	< 10	-	-
Dichlorobenzonitrile, 2,6-	μg/kg μg/kg	10	NONE	-	< 10	< 10	-	-
Dichlorvos Dieldrin	μg/kg μg/kg	10	NONE	-	< 10 < 10	< 10 < 10	-	-
Dimethoate	μg/kg	10	NONE	-	< 10	< 10	-	-
Dimethylvinphos	μg/kg	10	NONE		< 10	< 10		
Endosulfan I (alpha isomer)	μg/kg	10	NONE	-	< 10	< 10	_	_
Endosulfan II (beta isomer)	μg/kg	10	NONE	_	< 10	< 10	-	_
Endosulfan sulfate	μg/kg	10	NONE	-	< 10	< 10	-	_
Endrin	μg/kg	20	NONE	_	< 20	< 20	_	-
Endrin aldehyde	μg/kg	10	NONE	-	< 10	< 10	-	-
Endrin ketone	μg/kg	10	NONE	-	< 10	< 10	-	-
Ethion	μg/kg	10	NONE	-	< 10	< 10	-	-
Etrimfos	μg/kg	10	NONE	-	< 10	< 10	-	-
Fenitrothion	μg/kg	10	NONE	-	< 10	< 10	-	-
Fenthion	μg/kg	10	NONE	-	< 10	< 10	-	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	< 10	< 10	-	-
Heptachlor	μg/kg	10	NONE	-	< 10	< 10	-	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	< 10	< 10	-	-
Hexachlorobenzene	μg/kg	10	NONE	-	< 10	< 10	-	-
Hexachlorobutadiene	μg/kg	10	NONE	-	< 10	< 10	-	-
Isodrin	μg/kg	20	NONE	-	< 20	< 20	-	-
Malathion	μg/kg	10	NONE	-	< 10	< 10	-	-
Methacrifos	μg/kg	10	NONE	-	< 10	< 10	-	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	< 20	< 20	-	-

Lab Sample Number				2029745	2029746	2029747	2029748	2029749
Sample Reference				TP114	TP115	TP116	TP117	TP117
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.50
Date Sampled				24/09/2021	24/09/2021	24/09/2021	24/09/2021	24/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	< 10	< 10	-	-
Omethoate	μg/kg	20	NONE	-	< 20	< 20	-	-
Parathion	μg/kg	10	NONE	-	< 10	< 10	-	-
Parathion-methyl	μg/kg	10	NONE	-	< 10	< 10	-	-
Pendimethalin	μg/kg	10	NONE	-	240	< 10	-	-
Pentachlorobenzene	μg/kg	10	NONE	-	< 10	< 10	-	-
Permethrin, Cis-	μg/kg	10	NONE	-	< 10	< 10	-	-
Permethrin, Trans-	μg/kg	10	NONE	-	< 10	< 10	-	-
Phorate	μg/kg	10	NONE	-	< 10	< 10	-	-
Phosalone	μg/kg	10	NONE	-	< 10	< 10	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	< 10	< 10	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	< 10	< 10	-	-
Pirimiphos-methyl	μg/kg	10	NONE	-	< 10	< 10	-	-
Propetamphos	μg/kg	10	NONE	-	< 10	< 10	-	-
Propyzamide	μg/kg	10	NONE	-	< 10	< 10	-	-
Tecnazene	μg/kg	10	NONE	-	< 10	< 10	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	< 10	< 10	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	< 10	< 10	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	< 10	< 10	-	-
Trifluralin	μg/kg	10	NONE	-	< 10	< 10	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2020750	2020751	2029752	2029753	2020754
				2029750	2029751			2029754
Sample Reference				TP118	TP119	TP120	SA101	SA102 None Supplied
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.15	0.15	0.15	0.15	0.15 21/09/2021
Date Sampled Time Taken				24/09/2021	24/09/2021	24/09/2021	21/09/2021	,,
Time Taken	1		I	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	17	13	8.6	14
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0	1.0
, , , , , , , , , , , , , , , , , , ,	<u> </u>		1					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		ı	Lucrow					
pH - Automated	pH Units	N/A	MCERTS	7.9	8.1	7.6	7.2	8.4
Organic Matter (automated)	%	0.1	MCERTS	3.4	2.9	4.7	3.9	4.1
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	1.1	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.28	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.6	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	1.3	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.84	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.54	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.63	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.36	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.66	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.30	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.41	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	8.02	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids			<u>-</u>					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	15	15	19	19
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	34	32	40	30	35
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	32	40	30	35
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18	20	22	18	18
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	41	33	30	26
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	22	26	27	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	87	89	77	82

Lab Sample Number		2029750	2029751	2029752	2029753	2029754		
Sample Reference				TP118	TP119	TP120	SA101	SA102
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				24/09/2021	24/09/2021	24/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates					-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								_
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-

Lah Camula Nijumbay				2020750	2020751	2020752	2020752	2020754
Lab Sample Number				2029750 TP118	2029751 TP119	2029752 TP120	2029753 SA101	2029754 SA102
Sample Reference Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				24/09/2021	24/09/2021	24/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Time raken	1	Ε.		топе заррнеа	чоне заррнеа	тчопе заррнеа	нопе заррпеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Pesticides								
Alachlor	μg/kg	10	NONE	-	-	< 10	-	-
Aldrin	μg/kg	10	NONE	-	-	< 10	-	_
Azinphos-ethyl	μg/kg	10	NONE	_	_	< 10	_	-
Azinphos-methyl	μg/kg	10	NONE	_	-	< 10	_	-
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-	-	< 10	-	-
BHC-beta	μg/kg	10	NONE	-	-	< 10	-	-
BHC-delta	μg/kg	10	NONE	-	-	< 10	-	-
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-	-	< 10	-	-
Bifenthrin	μg/kg	10	NONE	-	-	< 10	-	-
Carbophenothion	μg/kg	10	NONE	-	-	< 10	-	-
Chlordane-cis	μg/kg	10	NONE	-	-	< 10	-	-
Chlordane-trans	μg/kg	10	NONE	-	-	< 10	-	-
Chlorfenvinphos	μg/kg	10	NONE	-	-	< 10	-	-
Chlorothalonil	μg/kg	20	NONE	-	-	< 20	-	-
Chlorpyrifos	μg/kg 	10	NONE	-	-	< 10	-	-
Cyfluthrin (Sum)	μg/kg	10	NONE	-	-	< 10	-	-
Cyhalothrin (Lambda)	μg/kg	10 10	NONE	-	-	< 10	-	-
Cypermethrin (Sum)	μg/kg	10	NONE NONE	-	-	< 10	-	-
DDD-o,p'	μg/kg μg/kg	10	NONE	-	-	< 10	-	-
DDD-p,p' DDE-o,p'	μg/kg μg/kg	10	NONE		-	< 10 < 10	-	-
DDE-p,p'	μg/kg	10	NONE			< 10	-	
DDT-o,p'	μg/kg	10	NONE	-	-	< 10	_	-
DDT-p,p'	µg/kg	10	NONE	-	-	< 10	_	-
Deltamethrin	μg/kg	10	NONE	_	_	< 10	_	-
Demeton-O	μg/kg	10	NONE	-	-	< 10	-	-
Demeton-S	μg/kg	10	NONE	-	-	< 10	-	-
Diazinon	μg/kg	10	NONE	-	-	< 10	-	-
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	-	-	< 10	-	-
Dichlorvos	μg/kg	10	NONE	-	-	< 10	-	-
Dieldrin	μg/kg	10	NONE	-	ı	< 10	-	-
Dimethoate	μg/kg	10	NONE	-	-	< 10	-	-
Dimethylvinphos	μg/kg	10	NONE	-	-	< 10	-	-
Endosulfan I (alpha isomer)	μg/kg 	10	NONE	-	-	< 10	-	-
Endosulfan II (beta isomer)	μg/kg	10	NONE	-	-	< 10	-	-
Endosulfan sulfate	μg/kg	10	NONE	-	-	< 10	-	-
Endrin	μg/kg	20 10	NONE NONE	-	-	< 20	-	-
Endrin aldehyde Endrin ketone	μg/kg μg/kg	10	NONE	-	-	< 10	-	-
Enarin ketone Ethion	μg/kg μg/kg	10	NONE	-	-	< 10 < 10	-	-
Etrimfos	μg/kg	10	NONE		-	< 10	-	-
Fenitrothion	μg/kg	10	NONE	-	<u> </u>	< 10	<u>-</u>	_
Fenthion	μg/kg	10	NONE	-	-	< 10	-	-
Fenvalerate (Sum)	μg/kg	10	NONE	-	-	< 10	-	-
Heptachlor	μg/kg	10	NONE	-	-	< 10	-	-
Heptachlor exo-epoxide	μg/kg	10	NONE	-	-	< 10	-	-
Hexachlorobenzene	μg/kg	10	NONE	-	-	< 10	-	-
Hexachlorobutadiene	μg/kg	10	NONE	-	-	< 10	-	-
Isodrin	μg/kg	20	NONE	-	-	< 20	-	-
Malathion	μg/kg	10	NONE	-	-	< 10	-	-
Methacrifos	μg/kg	10	NONE	-	-	< 10	-	-
Methoxychlor, p,p'-	μg/kg	20	NONE	-	-	< 20	-	-

Lab Sample Number				2029750	2029751	2029752	2029753	2029754
Sample Reference				TP118	TP119	TP120	SA101	SA102
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				24/09/2021	24/09/2021	24/09/2021	21/09/2021	21/09/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Mevinphos, E+Z	μg/kg	10	NONE	-	-	< 10	-	-
Omethoate	μg/kg	20	NONE	-	-	< 20	-	-
Parathion	μg/kg	10	NONE	-	-	< 10	-	-
Parathion-methyl	μg/kg	10	NONE	-	-	< 10	-	-
Pendimethalin	μg/kg	10	NONE	-	-	14	-	-
Pentachlorobenzene	μg/kg	10	NONE	-	-	< 10	-	-
Permethrin, Cis-	μg/kg	10	NONE	-	-	< 10	-	-
Permethrin, Trans-	μg/kg	10	NONE	-	-	< 10	-	-
Phorate	μg/kg	10	NONE	-	-	< 10	-	-
Phosalone	μg/kg	10	NONE	-	-	< 10	-	-
Phosphamidon (Sum)	μg/kg	10	NONE	-	-	< 10	-	-
Pirimiphos-ethyl	μg/kg	10	NONE	-	-	< 10	-	-
Pirimiphos-methyl	μg/kg	10	NONE	-	-	< 10	-	-
Propetamphos	μg/kg	10	NONE	-	-	< 10	-	-
Propyzamide	μg/kg	10	NONE	-	-	< 10	-	-
Tecnazene	μg/kg	10	NONE	-	-	< 10	-	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-	-	< 10	-	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-	-	< 10	-	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-	-	< 10	-	-
Trifluralin	μg/kg	10	NONE	-	-	< 10	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				2029755
Sample Reference				SA103
Sample Number				None Supplied
Depth (m)				0.15
Date Sampled				21/09/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	9.8
Total mass of sample received	kg	0.001	NONE	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.5
Organic Matter (automated)	%	0.1	MCERTS	3.1

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (III)	mg/kg	1	NONE	31
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	73

Lab Sample Number	2029755			
Sample Reference				SA103
Sample Number				None Supplied
Depth (m)				0.15
Date Sampled				21/09/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)				
Monoaromatics & Oxygenates				
Benzene	μg/kg	1	MCERTS	-
Toluene	μg/kg	1	MCERTS	-
Ethylbenzene	μg/kg	1	MCERTS	-
p & m-xylene	-			
o-xylene	-			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	1
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-

Sample Reference Sample Number Sample Number O.15	Lab Cample Number				2020755
None Supplied Depth (m)	Lab Sample Number				2029755
Date Sampled	-				
Pate Sampled	-				
None Supplied None None Supplied None Non					
Analytical Parameter (Soil Analysis) Pesticides Nachlor Nachron Nachron					
Alachlor	Analytical Parameter	Units	Limit of detection	Accreditation Status	
Addrin	Pesticides				
Azinphos-ethyl	Alachlor	μg/kg	10	NONE	-
Azinphos-methyl BHC-alpha (benzene hexachloride) BHC-beta BHC-beta BHC-deta BHC-d	Aldrin	μg/kg	10	NONE	-
### BHC-alpha (benzene hexachloride) ### BHC-beta ### BHC-beta ### BHC-beta ### BHC-gamma (Lindane, gamma HCH) ### BHC-gamma (Lindane, gamma (Lin	Azinphos-ethyl	μg/kg	10	NONE	-
### BHC-Oeta	Azinphos-methyl	μg/kg	10	NONE	-
### BHC-gelfa	BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	-
BRIC-gamma (Lindane, gamma HCH)	BHC-beta	μg/kg	10	NONE	-
Bifenthrin	BHC-delta	μg/kg	10	NONE	-
Carbophenothion µg/kg 10 NONE - Chlordane-cis µg/kg 10 NONE - Chlordane-cis µg/kg 10 NONE - Chlordane-cis µg/kg 10 NONE - Chlorpring µg/kg 10 NONE - Chlorpryifos µg/kg 10 NONE - Cyfluthrin (Sum) µg/kg 10 NONE - Cyfluthrin (Lambda) µg/kg 10 NONE - Cypermethrin (Sum) µg/kg 10 NONE - Cypermethrin (Sum) µg/kg 10 NONE - DDD-p/p' µg/kg 10 NONE - Cypermethrin (Sum) µg/kg 10 NONE - DDD-p/p' µg/kg 10 NONE - DDP-p/p' µg/kg 10 NONE - DDT-p,p' µg/kg 10 NONE - DDT-p,p' <td>BHC-gamma (Lindane, gamma HCH)</td> <td>μg/kg</td> <td>10</td> <td>NONE</td> <td>-</td>	BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	-
Chlordane-cis µg/kg 10 NONE - Chlordane-trans µg/kg 10 NONE - Chlordane-trans µg/kg 10 NONE - Chloredane-trans µg/kg 10 NONE - Cyfluthrin (Sum) µg/kg 10 NONE - DDD-0,p' µg/kg 10 NONE - DDD-0,p' µg/kg 10 NONE - DDE-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - DE-0,p' µg/kg 10 NONE - DE-0,p' µg/kg 10 NONE - DE-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - DE-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - DE-0,p' µg/kg					-
Chlordane-trans					-
Description					-
Chlorothalonii					
Chlorpyrifos	•				
Cyfluthrin (Sum) µg/kg 10 NONE - Cyhalothrin (Lambda) µg/kg 10 NONE - Cypermethrin (Sum) µg/kg 10 NONE - DDD-0,p' µg/kg 10 NONE - DDD-0,p' µg/kg 10 NONE - DDE-0,p' µg/kg 10 NONE - DDE-0,p' µg/kg 10 NONE - DDT-0,p' µg/kg 10 NONE - Demeton-O µg/kg 10 NONE - Demeton-S µg/kg 10 NONE - Diazinon µg/kg 10 NONE - Dichlorobenzonitrile, 2,6- µg/kg 10 NONE - Dichlorobenzonitrile, 2,6-					
Cypermethrin (Lambda) Cypermethrin (Sum) DDD-0,p' DDD-0,p' DDD-0,p' DDE-0,p' DDE-0,p' DDF-0,p' DDF-0,P' DNDE					
Cypermethrin (Sum) DDD-o,p' DDD-o,p' DDD-o,p' DDE-o,p' DDE-o,p' DDE-o,p' DDE-o,p' DDF-p,p' DNONE D-Pylkg					
DDD-0,p'					
DDD-p,p' pg/kg 10 NONE - DDE-o,p' pg/kg 10 NONE					-
DDE-O,p' Pg/kg 10					-
DDE-p,p'					
DDT-o,p' μg/kg 10 NONE - DDT-p,p' μg/kg 10 NONE - Demeton-O μg/kg 10 NONE - Demeton-S μg/kg 10 NONE - Diazinon μg/kg 10 NONE - Dichlorobenzonitrile, 2,6- μg/kg 10 NONE - Dichloroso μg/kg 10 NONE - Diedrin μg/kg 10 NONE - Endosulfan I (alpha isomer) μg/kg </td <td></td> <td></td> <td></td> <td></td> <td></td>					
DDT-p,p' μg/kg 10 NONE -					
Deltamethrin					
Demeton-O μg/kg 10 NONE - Demeton-S μg/kg 10 NONE - Diazinon μg/kg 10 NONE - Dichlorobenzonitrile, 2,6- μg/kg 10 NONE - Dichlorvos μg/kg 10 NONE - Dichloros μg/kg 10 NONE - Dichloros μg/kg 10 NONE - Dimethylinghos μg/kg 10 NONE - Endosulfan I (alpha isomer) μg/kg 10 NONE - Endosulfan II (beta isomer) μg/kg 10 NONE - Endosulfan Sulfate μg/kg 10 NONE - E			10	NONE	_
Diazinon μg/kg 10 NONE -			10	NONE	-
Dichlorobenzonitrile, 2,6- Dichloros Dichloros Dieldrin Dimethoate Dimethoate Dimethylvinphos Endosulfan I (alpha isomer) Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin aldehyde Endrin ketone Ethion Ethion Dimethoate Dimethyde Ethion Dimethyde Ethion Dimethyde Ethion Dimethyde Ethion Dimethyde Ethion Dimethyde Ethion Dimethyde Dimeth		μg/kg	10	NONE	-
Dichlorvos µg/kg 10 NONE - Dichlorvos µg/kg 10 NONE - Dimethoate µg/kg 10 NONE - Dimethylvinphos µg/kg 10 NONE - Endosulfan I (alpha isomer) µg/kg 10 NONE - Endosulfan II (beta isomer) µg/kg 10 NONE - Endosulfan sulfate µg/kg 10 NONE - Endosulfan sulfate µg/kg 10 NONE - Endrin µg/kg 20 NONE - Endrin aldehyde µg/kg 10 NONE - Endrin ketone µg/kg 10 NONE - Ethion µg/kg 10 NONE - Ethion µg/kg 10 NONE - Ethinfos µg/kg 10 NONE - Ethinfos µg/kg 10 NONE - Enerthion Pg/kg 10 NONE - Enerthion	Diazinon	μg/kg	10	NONE	-
Dieldrin μg/kg 10 NONE -	Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	-
Dimethoate μg/kg 10 NONE -	Dichlorvos	μg/kg	10	NONE	-
Dimethylvinphos	Dieldrin	μg/kg	10	NONE	-
Endosulfan I (alpha isomer) Endosulfan II (beta isomer) Endosulfan sulfate Endosulfan sulfate Endosulfan sulfate Endosulfan sulfate Endrin Endrin Endrin Endrin Endrin aldehyde Endrin ketone Endrin ketone Endrin Ethion Ethi	Dimethoate	μg/kg	10	NONE	-
Endosulfan II (beta isomer) Endosulfan sulfate Endrin Endrin Endrin Endrin Endrin µg/kg 10	Dimethylvinphos	μg/kg	10	NONE	-
Endosulfan sulfate	Endosulfan I (alpha isomer)	μg/kg	10	NONE	-
Endrin μg/kg 20 NONE - Endrin aldehyde μg/kg 10 NONE - Endrin ketone μg/kg 10 NONE - Ethion μg/kg 10 NONE - Etrimfos μg/kg 10 NONE - Fenitrothion μg/kg 10 NONE - Fenthion μg/kg 10 NONE - Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -	Endosulfan II (beta isomer)	μg/kg	10	NONE	-
Endrin aldehyde					
Endrin ketone					
Ethion μg/kg 10 NONE - Etrimfos μg/kg 10 NONE - Fenitrothion μg/kg 10 NONE - Fenthion μg/kg 10 NONE - Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Etrimfos μg/kg 10 NONE - Fenitrothion μg/kg 10 NONE - Fenthion μg/kg 10 NONE - Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					-
Fenitrothion μg/kg 10 NONE - Fenthion μg/kg 10 NONE - Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					-
Fenthion μg/kg 10 NONE - Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Fenvalerate (Sum) μg/kg 10 NONE - Heptachlor μg/kg 10 NONE - Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Heptachlor µg/kg 10 NONE - Heptachlor exo-epoxide µg/kg 10 NONE - Hexachlorobenzene µg/kg 10 NONE - Hexachlorobutadiene µg/kg 10 NONE - Isodrin µg/kg 20 NONE - Malathion µg/kg 10 NONE - Methacrifos µg/kg 10 NONE -					
Heptachlor exo-epoxide μg/kg 10 NONE - Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Hexachlorobenzene μg/kg 10 NONE - Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Hexachlorobutadiene μg/kg 10 NONE - Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Isodrin μg/kg 20 NONE - Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Malathion μg/kg 10 NONE - Methacrifos μg/kg 10 NONE -					
Methacrifos μg/kg 10 NONE -					
155					-
	Methoxychlor, p,p'-	μg/kg			-

Lab Sample Number	2029755			
Sample Reference	SA103			
Sample Number				None Supplied
Depth (m)				0.15
Date Sampled				21/09/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Mevinphos, E+Z	μg/kg	10	NONE	-
Omethoate	μg/kg	20	NONE	-
Parathion	μg/kg	10	NONE	-
Parathion-methyl	μg/kg	10	NONE	-
Pendimethalin	μg/kg	10	NONE	-
Pentachlorobenzene	μg/kg	10	NONE	-
Permethrin, Cis-	μg/kg	10	NONE	-
Permethrin, Trans-	μg/kg	10	NONE	-
Phorate	μg/kg	10	NONE	-
Phosalone	μg/kg	10	NONE	-
Phosphamidon (Sum)	μg/kg	10	NONE	-
Pirimiphos-ethyl	μg/kg	10	NONE	-
Pirimiphos-methyl	μg/kg	10	NONE	-
Propetamphos	μg/kg	10	NONE	-
Propyzamide	μg/kg	10	NONE	-
Tecnazene	μg/kg	10	NONE	-
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	-
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	-
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	-
Trifluralin	μg/kg	10	NONE	_

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

			1	
Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2029730	TP101	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2029731	TP102	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2029732	TP103	None Supplied	0.15	Brown loam with gravel and vegetation.
2029733	TP104	None Supplied	0.15	Brown loam with gravel and vegetation.
2029734	TP105	None Supplied	0.15	Brown loam with gravel and vegetation.
2029735	TP106	None Supplied	0.15	Brown loam with gravel and vegetation.
2029736	TP107	None Supplied	0.15	Brown loam with gravel and vegetation.
2029737	TP107	None Supplied	0.4	Brown loam and clay with gravel and vegetation.
2029738	TP108	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029739	TP109	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029740	TP110	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029741	TP111	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029742	TP111	None Supplied	0.45	Brown loam and clay with gravel and vegetation.
2029743	TP112	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029744	TP113	None Supplied	0.15	Brown loam and clay with gravel.
2029745	TP114	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029746	TP115	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029747	TP116	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029748	TP117	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2029749	TP117	None Supplied	0.5	Brown clay.
2029750	TP118	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2029751	TP119	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2029752	TP120	None Supplied	0.15	Brown loam with gravel and vegetation.
2029753	SA101	None Supplied	0.15	Brown loam with gravel and vegetation.
2029754	SA102	None Supplied	0.15	Brown loam with gravel and vegetation.
2029755	SA103	None Supplied	0.15	Brown loam with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

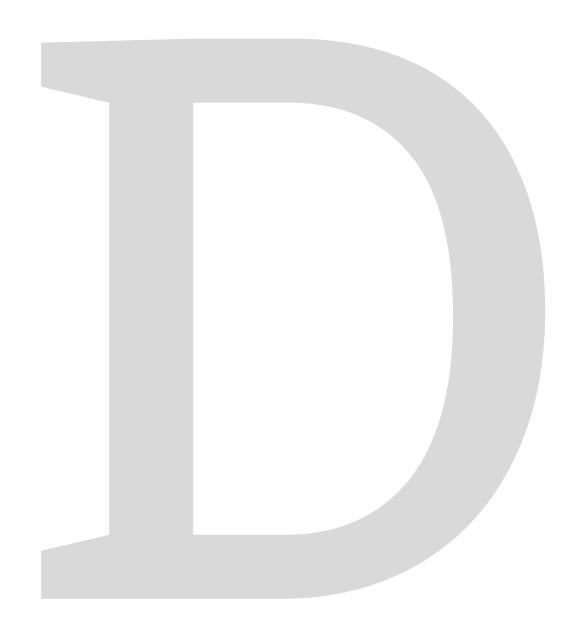
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Pesticides by GC-MS/MS	Detemination of Pesticides in soil by GC MS/MS	In-house method	L055B-PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
SA101	None Supplied	S	2029753	b	Speciated EPA-16 PAHs in soil	L064-PL	b
SA102	None Supplied	S	2029754	b	Speciated EPA-16 PAHs in soil	L064-PL	b
SA103	None Supplied	S	2029755	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP101	None Supplied	S	2029730	b	Pesticides by GC-MS/MS	L055B-PL	b
TP101	None Supplied	S	2029730	b	Pesticides extraction	L055B-PL	b
TP101	None Supplied	S	2029730	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP102	None Supplied	S	2029731	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP102	None Supplied	S	2029731	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP102	None Supplied	S	2029731	b	TPHCWG (Soil)	L088/76-PL	b
TP103	None Supplied	S	2029732	b	Pesticides by GC-MS/MS	L055B-PL	b
TP103	None Supplied	S	2029732	b	Pesticides extraction	L055B-PL	b
TP103	None Supplied	S	2029732	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP104	None Supplied	S	2029733	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP104	None Supplied	S	2029733	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP104	None Supplied	S	2029733	b	TPHCWG (Soil)	L088/76-PL	b
TP105	None Supplied	S	2029734	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP105	None Supplied	S	2029734	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP105	None Supplied	S	2029734	b	TPHCWG (Soil)	L088/76-PL	b
TP106	None Supplied	S	2029735	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP107	None Supplied	S	2029736	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP107	None Supplied	S	2029737	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP108	None Supplied	S	2029738	b	Pesticides by GC-MS/MS	L055B-PL	b
TP108	None Supplied	S	2029738	b	Pesticides extraction	L055B-PL	b
TP108	None Supplied	S	2029738	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP109	None Supplied	S	2029739	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP110	None Supplied	S	2029740	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP110	None Supplied	S	2029740	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP110	None Supplied	S	2029740	b	TPHCWG (Soil)	L088/76-PL	b
TP111	None Supplied	S	2029741	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP111	None Supplied	S	2029742	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP112	None Supplied	S	2029743	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP113	None Supplied	S	2029744	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP113	None Supplied	S	2029744	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP113	None Supplied	S	2029744	b	TPHCWG (Soil)	L088/76-PL	b
TP114	None Supplied	S	2029745	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP115	None Supplied	S	2029746	b	Pesticides by GC-MS/MS	L055B-PL	b
TP115	None Supplied	S	2029746	b	Pesticides extraction	L055B-PL	b
TP115	None Supplied	S	2029746	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP116	None Supplied	S	2029747	b	Pesticides by GC-MS/MS	L055B-PL	b
TP116	None Supplied	S	2029747	b	Pesticides extraction	L055B-PL	b
TP116	None Supplied	S	2029747	b	Speciated EPA-16 PAHs in soil	L064-PL	b
				1			
TP117 TP117	None Supplied None Supplied	S S	2029748 2029748	b b	BTEX and MTBE in soil (Monoaromatics) Speciated EPA-16 PAHs in soil	L073B-PL	b
			2029748		Speciated EPA-16 PAHs in soil	L064-PL	b
TP117	None Supplied	S	2029748	b	TPHCWG (Soil) Speciated EPA-16 PAHs in soil	L088/76-PL L064-PL	b
TP117	None Supplied	S		b	Speciated EPA-16 PAHs in soil Speciated EPA-16 PAHs in soil		b
TP118	None Supplied	S	2029750	b	<u> </u>	L064-PL	b
TP119	None Supplied	S	2029751	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP120	None Supplied	S	2029752	b	Pesticides by GC-MS/MS	LOSSB-PL	b
TP120	None Supplied	S	2029752	b	Pesticides extraction	L055B-PL	b .
TP120	None Supplied	S	2029752	b	Speciated EPA-16 PAHs in soil	L064-PL	b



APPENDIX D

Groundwater Monitoring Data

	Groundwater Monitoring Sheet									
Project Name	Land East of oxford Road, Water Eaton	Project Engineer	ODJ	Project No.	JN1597					
Client	Glanville Consultants Limited	Date of Visit	13/10/2021	Tested By	PO					
BH ID	Time of Measurement	Standing Water Level (m below cover level)	Cover Height (m above GL)	Total Well Depth (m below cover level)	Standing Water Level (m below ground level)					
WLS201	11:30	1.67	0.41	3.42	1.26					
WLS202	11:45	3.20	0.45	3.22	2.75					
WLS203	11:15	1.33	0.47	3.43	0.86					
WLS204	12:00	1.75	0.51	3.49	1.24					
WLS205	11:00	DRY	0.47	3.39	DRY					
WLS206	10:30	DRY	0.47	3.42	DRY					
WLS207	10:45	1.05	0.40	3.2	0.65					
WLS208	10:15	DRY	0.46	3.46	DRY					
WLS209	09:20	3.35	0.50	3.60	2.85					
WLS210	10:00	1.66	0.45	3.40	1.21					
WLS211	09:45	1.80	0.45	2.80	1.35					
WLS212	09:30	DRY	0.45	3.30	DRY					

Groundwater Monitoring Sheet							
Project Name	Land East of oxford Road, Water Eaton	Project Engineer	ODJ	Project No.	JN1597		
Client	Glanville Consultants Limited	Date of Visit	09/11/2021	Tested By	PO		
BH ID	Time of Measurement	Standing Water Level (m below cover level)	Cover Height (m above GL)	Total Well Depth (m below cover level)	Standing Water Level (m below ground level)		
WLS201	13:10	1.61	0.41	3.42	1.20		
WLS202	13:25	3.13	0.45	3.22	2.68		
WLS203	12:55	1.27	0.47	3.43	0.80		
WLS204	13:35	1.69	0.51	3.49	1.18		
WLS205	12:35	DRY	0.47	3.39	DRY		
WLS206	12:15	DRY	0.47	3.42	DRY		
WLS207	12:25	1.00	0.40	3.2	0.60		
WLS208	12:10	DRY	0.46	3.46	DRY		
WLS209	11:30	3.30	0.50	3.60	2.80		
WLS210	12:00	1.60	0.45	3.40	1.15		
WLS211	11:50	1.75	0.45	2.80	1.30		
WLS212	11:40	DRY	0.45	3.30	DRY		

Groundwater Monitoring Sheet							
Project Name	Land East of oxford Road, Water Eaton	Project Engineer	ODJ	Project No.	JN1597		
Client	Glanville Consultants Limited	Date of Visit	08/12/2021	Tested By	PO		
BH ID	Time of Measurement	Standing Water Level (m below cover level)	Cover Height (m above GL)	Total Well Depth (m below cover level)	Standing Water Level (m below ground level)		
WLS201	11:20	1.51	0.41	3.42	1.10		
WLS202	11:30	1.95	0.45	3.22	1.50		
WLS203	11:10	0.80	0.47	3.43	0.33		
WLS204	11:40	1.31	0.51	3.49	0.80		
WLS205	11:05	1.52	0.47	3.39	1.05		
WLS206	10:55	1.22	0.47	3.42	0.75		
WLS207	10:50	1.00	0.40	3.2	0.60		
WLS208	10:40	0.91	0.46	3.46	0.45		
WLS209	10:15	0.85	0.50	3.60	0.35		
WLS210	10:20	1.25	0.45	3.40	0.80		
WLS211	10:25	1.75	0.45	2.80	1.30		
WLS212	10:30	DRY	0.45	3.30	DRY		

Groundwater Monitoring Sheet							
Project Name	Land East of oxford Road, Water Eaton	Project Engineer	ODJ	Project No.	JN1597		
Client	Glanville Consultants Limited	Date of Visit	10/01/2022	Tested By	PO		
BH ID	Time of Measurement	Standing Water Level (m below cover level)	Cover Height (m above GL)	Total Well Depth (m below cover level)	Standing Water Level (m below ground level)		
WLS201		1.41	0.41	3.42	1.00		
WLS202		1.85	0.45	3.22	1.40		
WLS203		0.77	0.47	3.43	0.30		
WLS204		1.31	0.51	3.49	0.80		
WLS205		1.52	0.47	3.39	0.90		
WLS206	12:35	1.22	0.47	3.42	0.50		
WLS207	12:45	1.00	0.40	3.2	0.60		
WLS208	12:30	0.86	0.46	3.46	0.40		
WLS209	12:00	0.85	0.50	3.60	0.35		
WLS210	12:10	1.15	0.45	3.40	0.70		
WLS211	12:15	1.75	0.45	2.80	1.30		
WLS212	12:20	DRY	0.45	3.30	DRY		

		Groundwater	Monitoring Sh	ieet	
Project Name	Land East of oxford Road, Water Eaton	Project Engineer	ODJ	Project No.	JN1597
Client	Glanville Consultants Limited	Date of Visit	10/02/2022	Tested By	PO
BH ID	Time of Measurement	Standing Water Level (m below cover level)	Cover Height (m above GL)	Total Well Depth (m below cover level)	Standing Water Level (m below ground level)
WLS201		1.31	0.41	3.42	0.90
WLS202		1.74	0.45	3.22	1.29
WLS203		0.74	0.47	3.43	0.27
WLS204		1.24	0.51	3.49	0.73
WLS205		1.37	0.47	3.39	0.90
WLS206	12:35	0.97	0.47	3.42	0.50
WLS207	12:45	1.00	0.40	3.2	0.60
WLS208	12:30	0.86	0.46	3.46	0.40
WLS209	12:00	0.85	0.50	3.60	0.35
WLS210	12:10	1.15	0.45	3.40	0.70
WLS211	12:15	1.75	0.45	2.80	1.30
WLS212	12:20	DRY	0.45	3.30	DRY

APPENDIX E

Ground Gas Report (JN1683GG)

Ground Gas Investigation Report

Project Name: Land off Oxford Road

Location: Water Eaton

Client: Glanville Consultants

Project ID: JN1683-GG

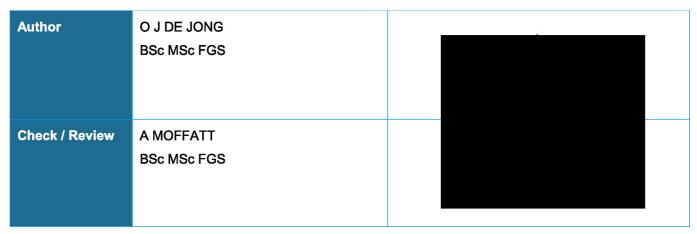
Report Date: 03 August 2022

Report Issue: 1

SUMMARY

The site, which extends to 48ha comprises arable farmland and it is proposed to redevelop the site as a mixed-use development, comprising c. 800 residential dwellings, a primary school, local centre, and will include formal and informal open space

This investigation forms part of a wider investigation being reported under the reference JN1683. The site has been subject to a previous investigation; Phase 1 Desk Study by Glanville Consultants ref. 005_8210440, dated Sept 21, and a Preliminary Phase II Site Investigation, by ST Consult ref JN1597 to which the reader is referred for full details.


The object of this investigation was to assess the likely nature and extent of any ground gas contamination on the site.

In summary, no significant ground gas contamination was discovered on-site. This was not unexpected given the lack of a direct source during intrusive investigation and innocuous site history identified by the desk studies.

The screening values used are valid at the time of writing but may be subject to change and any such changes will have implications for the assessments based on them. Their validity should be confirmed at the time of site development.

The investigation was conducted and this report has been prepared for the sole internal use and reliance of Glanville Consultants and their appointed Engineers. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

For and on behalf of Southern Testing Laboratories Limited

DOCUMENT HISTORY AND STATUS

Issue No.	Date	Purpose or Status	Author	Check / Review
01	03.08.22	Ground Gas Investigation Report	OD	AM

Copyright © 2022 Southern Testing Laboratories Ltd.

TABLE OF CONTENTS

Α	INT	RODUCTION	1
	1	Authority	1
	2	Location	1
	3	Proposed Construction	1
	4	Object	1
	5	Scope	1
В	SIT	E INVESTIGATION - GAS	2
	6	Sampling Strategy	2
	7	Monitoring Programme and Results	2
	8	Identified Gas Regime	3
	9	Summary and Conclusions	3
TA	BLE	OF APPENDICES	
	APF	PENDIX A	
		Site Plans & Logs	
	APF	PENDIX B	

Gas Monitoring Results

INTRODUCTION Α

1 **Authority**

Our authority for carrying out this work is contained in a project order form completed by John Hanlon of Glanville Consultants. Dated 10th May 2022 (ref. Q220631 rev1).

2 Location

The site is located approximately 1.2km to the south of Oxford Parkway Train Station, in the fields surrounding St. Frideswide Farm. The approximate National Grid Reference of the site is SP 50500 11290. The site location is indicated on Figure 1 within Appendix A.

3 **Proposed Construction**

It is proposed to develop the 48ha site as a mixed-use development, comprising c. 800 residential dwellings, a primary school, local centre, and will include formal and informal open space.

The gas sensitivity of the proposed development is therefore rated as High CIRIA C665 Ref [1].

4 Object

This investigation forms part of a wider investigation being reported under the reference JN1683. The object of this investigation was to assess the likely nature and extent of any ground gas contamination on the site.

5 Scope

This report presents our monitoring data and our interpretation of this data.

This report is not an engineering design and the figures and calculations contained in the report should be used by the Engineer, taking note that variations will apply, according to variations in design loading, in techniques used, and in site conditions. Our figures therefore should not supersede the Engineer's design.

The ground/site investigation has been completed with reference to BS 5930 Ref [2] and BS 10175 Ref [3].

Wider Contamination and Geotechnical issues are not considered in this report.

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

The investigation was conducted and this report has been prepared for the sole internal use and reliance of Glanville Consultants and their appointed Engineers. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The recommendations contained in this report may not be appropriate to alternative development schemes.

Detailed information on the proposed development, such as detailed final layout, loadings and serviceability limits was not provided. Accordingly, where geotechnical design advice is provided it is on the prescriptive basis allowed for by Eurocode 7: employing conventional and conservative design rules.

B **SITE INVESTIGATION - GAS**

6 Sampling Strategy

The wells used for this investigation had been previously installed during our JN1597 investigation as part of a groundwater monitoring programme. The well locations were stipulated by the Client and were designed to provide good general coverage of the site. Gas taps were then installed as part of this investigation. The relevant logs for these exploratory holes are included within Appendix A.

The locations of the monitoring wells are shown on the attached Figure 2 within Appendix A.

7 Monitoring Programme and Results

The sensitivity of the proposed development is rated as high and, therefore, six gas monitoring visits were completed over a period of two months (CIRIA C665 Ref [1], Table 5.5). The results of the monitoring programme are given in full in Appendix B and are summarised below.

Borehole Gas Monitoring Results										
Monitoring well	WLS201	WLS202	WLS203	WLS204						
Response zone / Stratum	1 – 3.0mBGL Oxford Clay Formation									
Evidence of contamination	None	None	None	None						
No. of Monitoring Events	6	6	6	6						
Methane range CH ₄ (%)	<0.1	<0.1	<0.1 – 0.1	<0.1						
Carbon dioxide range CO ₂ (%)	0.1 – 1.8	0 – 2.8	1.2 – 3.3	0 – 2.3						
Oxygen range O ₂ (%)	19.4 – 21.0	18.1 – 21.0	17.6 – 19.7	19.7 – 21.0						
Flow rate range I/hr	- 0.1 – 0.0	-0.1 – 0.1	-0.5 – 0.1	-0.2 – 0.0						
PID measurement (ppm)	0.2 – 0.5	0.3 – 1.2	0.0 - 0.5	0.0 – 1.0						
Water level (mbgl)	0.9 – 1.45m	1.99 – 2.17m	1.17 – 1.43m	0.47 – 0.91m						
Atmospheric pressure during monitoring (mb)	1003 – 1027	1001 – 1020	1005 – 1020	1007 – 1019						

	Borehole Ga	Borehole Gas Monitoring Results									
Monitoring well	WLS205	WLS206	WLS207	WLS208							
Response zone / Stratum	1 – 3.0mBGL Oxford Clay Formation										
Evidence of contamination	None	None	None	None							
No. of Monitoring Events	6	6	6	6							
Methane range CH ₄ (%)	<0.1 – 0.1	<0.1	<0.1 – 0.1	<0.1 – 0.1							
Carbon dioxide range CO2 (%)	0.2 – 1.9	1.4 – 3.0	0.6 – 2.5	2.4 – 3.7							
Oxygen range O ₂ (%)	18.9 – 20.9	18.1 – 20.1	18.5 – 20.7	17.6 – 19.4							
Flow rate range I/hr	0.0 – 0.2	0.0 – 0.8	-0.2 – 0.1	-0.2 – 0.2							
PID measurement (ppm)	0.2 – 0.5	0.2 – 0.5	0.2 – 11	0.3 – 0.4							
Water level (mbgl)	Dry	0.92 – 1.26m	0.78 – 1.16m	1.23 – 1.69m							

Borehole Gas Monitoring Results									
Atmospheric pressure during monitoring (mb)	1004 – 1019	1000 – 1022	1001 - 1026	1001 - 1027					

Borehole Gas Monitoring Results										
Monitoring well	WLS209	WLS210	WLS211	WLS212						
Response zone / Stratum	1 – 3.0mBGL Oxford Clay Formation									
Evidence of contamination	None	None	None	None						
No. of Monitoring Events	6	6	6	6						
Methane range CH ₄ (%)	<0.1	<0.1 – 0.1	<0.1	<0.1 – 0.1						
Carbon dioxide range CO ₂ (%)	<0.1 – 2.4	0.1 – 2.2	1.0 – 1.7	0.3 – 1.1						
Oxygen range O ₂ (%)	19.3 – 23.2	19.3 – 21.2	19.4 – 20.4	19.4 – 20.8						
Flow rate range I/hr	0.0 – 0.1	-0.2 – 0.1	-0.1 – 0.2	-0.1 – 0.6						
PID measurement (ppm)	0.3 – 0.4	-	0.3 – 0.4	0.2 – 0.7						
Water level (mbgl)	1.04 – 1.32m	1.09 – 1.84m	1.35 – 1.98m	Dry						
Atmospheric pressure during monitoring (mb)	1000 - 1026	1004 - 1019	1000 - 1026	1000 - 1026						

The monitoring period covered a reasonable range of atmospheric pressures, 1000 – 1027mb including some below average pressure periods. No significant levels of methane were detected. Carbon dioxide levels were also generally low, the highest value recorded was 3.7%. Flow levels were also generally low. The highest flow rate recorded was 0.8 l/hr although the majority were typically in the range -0.2 to 0.2 l/hr.

Identified Gas Regime

Gas Screening Values (GSVs) can be calculated (Ref.1) for each borehole or for the site as a whole using the worst case scenario (highest methane or carbon dioxide and highest flow encountered across the site) in order to characterise the risk of the site to the new development/proposed new occupiers of the development (Characteristic Situation, CS).

The calculated GSVs for each borehole and the site as a whole are <0.07, as little to no flow has been recorded alongside generally low carbon dioxide levels. Given these results characteristic situation CS-1 is applicable to this site. This is not unexpected given the underlying soils and site history.

9 Summary and Conclusions

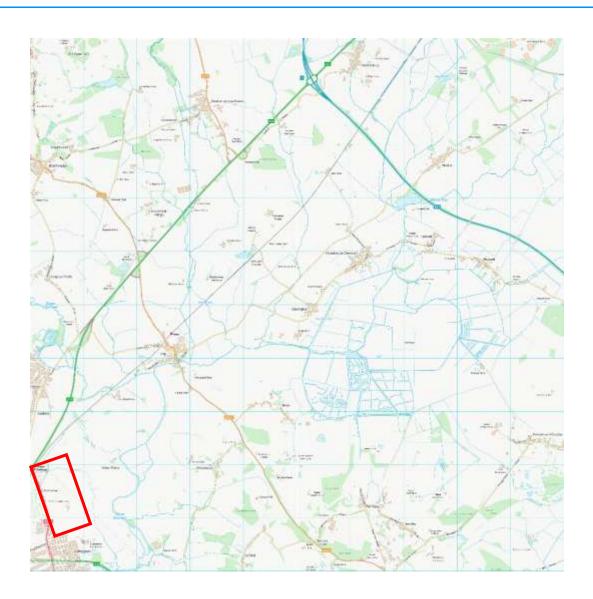
Based upon the investigation to date, no significant gas contamination has been identified. The gas monitoring and risk assessment places the site in Characteristic Situation 1 (CS1) of the modified Wilson and Card classification. As such, gas protection measures are not required for the proposed development on site.

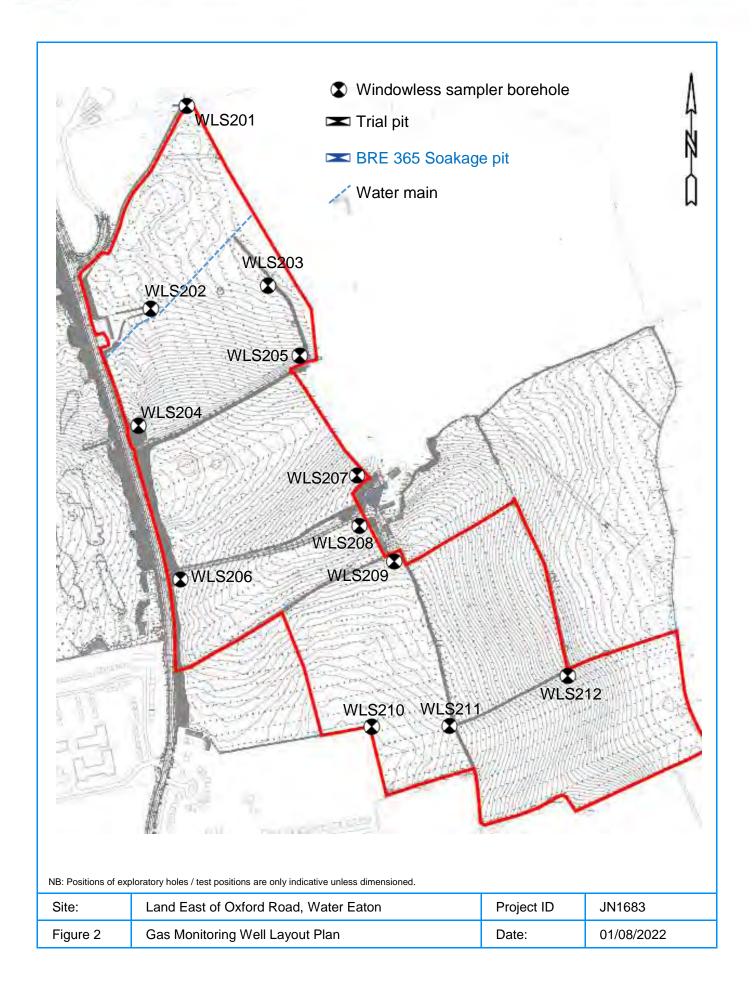
REFERENCES

- [1] CIRIA, "C665 Assessing risks posed by hazardous ground gases to buildings," 2007.
- [2] BSI Standards, "BS 5930 Code of practice for ground investigations," 2015.
- [3] BSI Standards, "BS10175 Investigation of potentially contaminated sites Code of practice," 2013.

APPENDIX A

Site Plans & Logs





Contains Ordnance Survey Data © Crown Copyright and Database Right 2020

Site:	Land East of Oxford Road, Water Eaton	Project ID	JN1683
Figure 1	Site Location Plan	Date:	01/08/2022

South	ern Testin	Consult■		Start - E	nd Date	;	Project	: ID:	Hole Typ	e: WLS20)1	
	co.uk tel:01342 333100	_	ult.co.uk tel:01604 500020		23/09	9/2021		JN159	97	WLS	Sheet 1 of	
Project Name:	Land East of (Oxford Roa	ad	Remai	rks:		Co-ordi	nates:	\perp	Level:	Logger:	
Location:	Water Eaton			Ground	water N	√onitorii	ng Well	ll - installed to 3.0m bgl.				
Client:	Glanville			1								
Well Water Strikes D	Samples and Depth (m bgl) Type	d Insitu Testi e Res	ing GOV E	Thickness (m)	S Legend	Depth (m bgl)			Stratum De			
				(0.30)		0.30	CLAY,	DE GROUND , with rootl nge-brown,	lets flint an	d limesto		
				(0.30)	× × × × × × × × × × × × × × × × × × ×	0.90		vn mottled			y CLAY.	1 -
				(0.90)	X	X	from	1.8m.				2
				(0.90)	× × × × × × × × × × × × × × × × × × ×	2.10	Dark	grey/ brow	vn, silty CL	AY, with a	ancient rootlets.	
					× × ×	3.00		F	End of Boreh	ole at 3.00r	m	3
												4
		 	<u> </u>			_ 						5 -
Hole Detail Depth (m bgl) Dia		g Details gi) Dia. (mm)	Date Dep	Waters oth Strike Depth			e to: Tim	ne (mins) Fro		Time	selling (m bgl) Remarks	

South	Southern Testing ST Consult							: - Enc	d Date		Pro	ject ID	: Н	ole Typ	e: WLS2	WLS202	
www.southerntesting		_		ılt.co.uk tel:0160		1	23,	/09/2				N1597		WLS	Sheet 1	of 1	
Project Name:	Land East	— t of Oxf	ord Roa	ıd		Rema	arks:	Ţ		Co-ord	inates	!		Level:	Logge		
Location:	Water Eat	ton				Groun	dwate	_L ≥r Mo	nitorir	ng Well	l - insta	lled to	3.0m bg	gl.	ADIV	1	
Client:	Glanville					-											
Well Water Strikes		es and Ins	ısitu Testir Resı		Level (m AOD)	(m)	Rrown silty clavey TOI							scription	potlets and flint		
				(0.20) 0.20 Blown, sity dayey TOPSOIL, with Total and limestone gravel. Buff/ light brown mottled orange, slip CLAY, with occasional rootlets.							ilightly silty						
						(1.00)	X		1.00	Gre	y-bue n	nottled o	orange, s	ilty CLA	Υ.		
						(1.00)	×	×	2.00		l grey, si ient roo		(, with ve	ins of se	elenite and	2	
								×	3.00			End	of Borehol	e at 3.00r	m	3	
																4	
Hele Det 1	ilo		otoil-			\A/c+c	rotuil.		hal\	<u> </u>			C+arad:	na/Ch!	colling (m hall		
Hole Detai		asing Do		Date	Dept	Wate th Strike Dep				e to: Tir	me (mins)	From	Standi To	ng/Chi: Time	selling (m bgl) Remarks		
			. ,											-			

Southe	rn Testing	ST C	onsult≡	:	Start - E	nd Date	:	Project ID	: Н	ole Typ	e: WLS20	03			
www.southerntesting.co	o.uk tel:01342 333100	www.stconsult.	.co.uk tel:01604 500020		23/09			JN1597		WLS	Sheet 1 o				
Project Name:										Logger ADM					
ocation:	Water Eaton			Ground	lwater N	lonitori	ng Well -	- installed to	2.9m bg	gl.	ADIVI				
Client:	Glanville			=											
Well Water Strikes De	Samples and I	nsitu Testin Resu		Thicknes (m)	s Legend	Depth (m bgl)		St	ratum De:	Description velly CLAY, with rootlets					
	Type	Nesu		(0.60)		0.60	Brow	m, silty, slightly occasional flin occasional flin	t gravel.	red, silty	y CLAY.	1 .			
				(1.20)		2.60		grey, silty CLA	/, with fr			2			
								E110	oi buieno	at 3.00ľ		4			
Hole Details				Water:	sstrike (n		e to: Time	e (mins) From	Standi To	ng/Chis	selling (m bgl)	5			
CPUT (III DBI) DId.	(mm) Depth (m bgl)	-ια. (IIIIII)	Date Depr	Strike Depti	эери	NOS	C 10. 11111	e (mins) From	10	111116	Remarks				

South	ern Test	ting	ST (Consu	lt■		Star	t - En	d Date	:	Pro	ject ID	: Н	ole Typ	e: WLS2	04
www.southerntesting		_		lt.co.uk tel:0160)	23	3/09/				N1597		WLS	Sheet 1	
Project Name:	Land East	of Oxfo	ord Roa	ıd		Rem	arks:	\top		Co-or	dinates:	:		Level:		
Location:	Water Eat	on				Groun	 ıdwat	er Mo	 onitori	ng We	ell - insta	illed to	3.0m bg	gl.	ADM	
Client:	Glanville					-										
Well Water Strikes			situ Testir		Level (m AOD)	Thickne	ess Le	gend	Depth (m bgl)			Str	ratum Des	scription		\Box
JUNES L	Depth (m bgl)	Туре	Resi	arts	_ E				(III DgI)		own, clay	ey TOPS	SOIL, wit	h rootle	ets.	-
						(1.40)			1.70	Mil	d-grey veins and a	eined or	range, sil		with selenite	1 -
						(1.30	×_ ×_ ×_ ×_		3.00			End	of Borehol	e at 3.00i	m	3 -
																4 -
Hole Detai		sing De				Wate	rstrik	œ (m	bgl)				Standi	ng/Chi	selling (m bgl)	
Depth (m bgl) Dia	a. (mm) Depth	(m bgl) Dia	a. (mm)	Date	Dept	th Strike De	pth Casing	Depth Se	aled Ros	e to: T	Time (mins)	From	То	Time	Remarks	

Project Name: Location: Client:	Land East of Ox Water Eaton		ult.co.uk tel:0160	04 500020	1	23/	09/2	2021		-					_					
Location: Client:		र्rord Roa									N1597		WLS	of 1						
Client: Well Water	Water Eaton		JU		Rema	ırks:			Co-ord	linates:	<u> </u>		Level:	Logge ADM						
Well Water					Ground	dwate	r Mo	nitorir	ng Well	l - insta	lled to	l 2.9m bg	gl.	ADIVI						
\//ell —	Glanville				1															
	Samples and Depth (m bgl) Type		ing sults	Level (m AOD)	(0.25) (0.95)			Depth (m bgl) 0.25	MAI grav frag Buff nod	DE GRO velly CLA gments. f-brown dules.	Str UND co AY, with , silty, C	ratum Des mposed flint grav LAY, with	scription of brow vel and conoccasion	ns of selenite.	2 -					
Hole Detail Depth (m bgl) Dia	Is Casing 1. (mm) Depth (m bg/)		Date	Dept	Water th Strike Depth				e to: Tin	me (mins)	From	Standi To	anding/Chiselling (m bgl) To Time Remarks							

South	ern Test	ting	ST (Consul	t		Start	- Enc	d Date		Pro	ject ID:	: H	ole Typ	e: WI	LS206	5
www.southerntesting	g.co.uk tel:01342 333	3100	www.stconsu	ult.co.uk tel:0160)4 500020	,	21/	'09/2 I				N1597		WLS		et 1 of 1	1
Project Name:	Land East	of Oxf	ford Roa	ıd		Rema	rks:			Co-ora	linates	•		Level:	ogger: ADM		
Location:	Water Eat	on				Ground	wate	r Mo	nitorir	ng Well	l - insta	illed to	3.0m bg	gl.			
Client:	Glanville																
Woll Water	Samples	s and In	Resi		Level (m AOD)	Thickness (m) (0.15) (1.35)	s Lege		Depth m bgl) 0.15	flint Buff cons orar	gravel. f brown sist of fi nge and	dy, clayed, slity, sli , silty, sli ine to cc	ightly gri	DIL, with avelly CI brounde n.	AY. Gravels ed flint. Mott	rled	1 - 2
							×		3.00			End	of Borehol	e at 3.00r	n		3
Hole Detai			Details Dia. (mm)	Data	Dord	Waters				- to: T:-	me (mins)	From	Standi To	ng/Chis	selling (m b		
peptri (m bgi) Dia	a. (mm) Depth	(iii ogi) D	ла. (MM)	Date	Dept	ii strike Depth	casing Di	epin Seali	KOSE	: to: IIr	ne (mins)	From	10	rime	Kem	at KS	

South	ern Te	sting	ST (Consul	t		Start	- End	Date		Pro	ject ID:	: Н	ole Typ	e: WLS2	07							
www.southerntesting				ult.co.uk tel:0160			21/	′09/20				N1597		WLS	Sheet 1								
Project Name:	Land Ea	st of Ox	kford Roa	ad		Rema	rks:			Co-ord	linates	•		Level:	Logge ADM								
Location:	Water E	aton				Ground	wate	r Mor	nitorin	ng Wel	l - insta	illed to	2.8m bg	gl.									
Client:	Glanville	ē.																					
Well Strikes D	Samp Depth (m bgl)	Type	Insitu Testi Res	ng ults	Level (m AOD)	Thicknes. (m) (0.10)	Lege	end (r	Depth m bgl) 0.10	Bro	wn, silty	y, sandy y CLAY, w		OPSOIL, lets. Mo	with rootlets. ottled orange								
						(1.40)	X 2 2 2 2 2 2 2 2 2		1.50	Ligh	nt blue- _f	grey mot	ttled ora	nge, silt	y CLAY.	2							
							X	\X	2.80			End	of Borehol	le at 2.80i	m	3							
Hole Detai Depth (m bgl) Dia			Details Dia. (mm)	Date	Dept	Water : th Strike Depth				e to: Ti	me (mins)	From	Standi To	ng/Chi:	selling (m bgl)	4							
, (128)	, ,, ,,		·····		78						/		-	nding/Chiselling (m bgl)									

South	ern Te	sting	ST (Consul	t■		Start	- Enc	d Date		Pro	ject ID	: Н	ole Typ	e: WLS2	08		
www.southerntesting	j.co.uk tel:01342	2 333100	www.stconsu	ult.co.uk tel:0160)4 500020		21/	′09/2		-		N1597		WLS				
Project Name:	Land Ea	st of O	xford Roa	ad		Rema	rks:			Co-ord	linates	:		Level: Logger: ADM gl. escription DIL, with flint gravel and slightly gravelly CLAY, ist of fine to medium,				
Location:	Water E	aton				Ground	wate	r Mo	nitorir	ng Wel	l - insta	lled to	3.0m bg	gl.				
Client:	Glanville	е																
Well Water			Insitu Testi Res	ing sults	Level (m AOD)	(0.15) (0.95)	Lege		Depth (m bgl) 0.15 1.10	roo' Bro' with sub	tlets. wn-buff n rootle rounde	yey sand f, fissure ts. Grave d flint.	d, silty, sels consi	CLAY, with	th ancient	2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		
Hole Detai			Details			Water						_						
Depth (m bgl) Dia	a. (mm) De	pth (m bgl)	Dia. (mm)	Date	Dept	th Strike Depth	Casing D	epth Seal	Rose	e to: Tii	me (mins)	From	То	Time	Remarks			

S	out	hern	Testin	g ST (Consult		Sta	art - Ei	nd Date	9	Pro	ject ID:	Н	ole Typ	e:	WLS2	09		
www.sc	outhernte	sting.co.uk tel	01342 333100	www.stcons	ult.co.uk tel:01604 50	0020	2	21/09/				N1597		WLS					
Project	Nam	e: Land	l East of C	xford Roa	ad	R	emarks	s:		Co-ordi	inates			WLS Sheet 1 of Level: Logger: ADM bgl. Description elly, clayey TOPSOIL, with sandy, slightly gravelly s nodules. Gravels consist unded, flint and ly CLAY. e. silty CLAY, with ancient reous nodules					
Locatio	n:	Wat	er Eaton			Gro	oundwa	ater M	Ionitori	ng Well	- insta	lled to 3	3.0m bg	WLS Sheet 1 of Level: Logger: ADM bgl. Description relly, clayey TOPSOIL, with relly, slightly gravelly is nodules. Gravels consist bunded, flint and					
Client:		Glan	ville																
Moll	Water	9	amples and	1	ing values	(C)	2.00)	egend	0.15 0.90 1.00	Brow root Buff- CLAY of fii sand	lets an -brown /, with ne to m dstone. nge-bro	y, slightly d flint gr , silty, sli fine calca nedium, nottled c d initally	y gravell avel. ightly sa areous r subrour y, sandy orange, s or calcare	y, clayey indy, slig nodules. nded, flir CLAY. silty CLA ous nod	r TOPSOI ghtly gra Gravels nt and Y, with a lules	velly consist	2 - 3 - 3 - 5 - 5 - 5 - 6		
-	ole De	tails Dia. (mm)		Details Dia. (mm)	Date		aterstr			se to: Tim	ne (mins)	From	Standi To		selling				
Depth (m	ı ugi)	ia. (mm)	νερτη (m bgl	pua. (mm)	Date	veptn Stril	Le Depth Casi	ing Depth S	ROS	e to: III	ie (mins)	From	10	rime		кепаскѕ			

Sou	uthe	ern T	esting	g ST (Consult		Sta	ırt - Eı	nd Date)	Pro	ject ID:	н	ole Typ	e:	WLS21	LO		
www.southe	erntesting.	co.uk tel:01	342 333100	www.stconsu	ult.co.uk tel:01604 50	0020	2	21/09/		C		N1597		WLS					
Project Na	ame:	Land E	ast of O	xford Roa	ad	R	emarks	s: <u> </u>		Co-ordi	inates			Level: ADM a bgl. Description They TOPSOIL, with flint dy, slightly gravelly CLAY, Gravels consist of fine, CLAY (damp). CLAY (damp). The provided in the control of the control o					
Location:		Water	Eaton			Gro	undwa	iter M	Ionitori	ng Well	- insta	illed to 3	3.0m b	WLS Sheet 1 o Level: Logger: ADM a bgl. Description ey TOPSOIL, with flint dy, slightly gravelly CLAY, Gravels consist of fine, CLAY (damp). CLAY (damp). choice at 3.00m					
Client:		Glanvi	lle																
Wall Wa			mples and	Insitu Testi	ng ults	(0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (.15) .15)	egend	Depth (m bgl) 0.15 1.20 1.90 2.00	Brow grav. Orar with suba	el and nge-bro occasion angular occasion with the second s	y, sandy, rootlets. own, silty onal roo sandsto y, very sa ty, gravel nedium, nottled o	clayey 1 / sandy, tlets. Gi ne. andy CLA	Slightly aravels co	gravelly onsist of the state of	CLAY, fine,	1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		
																	5 -		
Hole Depth (m bg	Detail			Details Dia. (mm)	Date		aterstr			se to: Tim	ne (mins)	From	Standi To						
pepui (iii ug	51) DId.	. (111111)	ocpail (III Ugl)	pia. (IIIIII)	Date	∠epui 3u lk	Septir Casi	о Бериі 3	NOS	ic to. 1111	(111115)	110111	10	Time		nemarks			

Southern Te	esting	ST (Consult≡	!	Start	- End	Date		Pro	ject ID:	Н	ole Typ	e: WLS2	211		
www.southerntesting.co.uk tel:013	42 333100	www.stconsu	ult.co.uk tel:01604 50002	0	21/	09/20				N1597		escription TOPSOIL, with flint dy, slightly gravelly CLAY, Gravels consist of fine to and limestone. Illy CLAY. Gravels consist gular flint and sandstone. avelly fine to coarse ine to medium, stone. , silty CLAY. ole at 3.00m				
Project Name: Land E	ast of Ox	ford Roa	ad	Rema	rks:			Co-ordi	inates	:		Level:				
Location: Water	Eaton			Ground	lwate	r Mon	itorin	ıg Well	- insta	illed to :	2.35m k	ogl.				
Client: Glanvil	lle															
	mples and In	nsitu Testi Res	- A &	(0.90)	s Lege	The state of the s	epth h bgl) 0.10 1.00	Brow of fin	el and -brown occasi lium su vn, silty ne to m	y, sandy, rootlets. , silty, ve onal roo brounde y, slightly nedium,	clayey T ery sand tlets. Gr ed, flint a y gravell' subangu htly grav ist of fin d sandst	y, slightly avels conditions of the conditions o	ly gravelly CLAY, onsist of fine to estone. Gravels consist and sandstone.	1		
Hole Details Depth (m bgl) Dia. (mm)	Casing D Depth (m bgl)			Watersopth Strike Depth		e (m b _i	g !)	eto: Tim	ne (mins) 20 0	From	of Borehol	ng/Chi:	selling (m bgl)	4		

South	ern Test	ing	ST (Consul	t		Start	- End	d Date		Pro	ject ID:	: Н	ole Typ	e:	WLS2	12
www.southerntesting	g.co.uk tel:01342 333	3100 v	www.stconsu	ılt.co.uk tel:0160	04 500020		21,	/09/2				N1597		WLS		Sheet 1 o	
Project Name:	Land East	of Oxfc	— ord Roa	ıd		Rem	arks:	<u> </u>		Co-ord	dinates:			Level:	:		
Location:	Water Eato	on				Groun	dwate	r Mo	nitorir	ng We	ll - insta	lled to	2.9m bg	gl.		ADM	
Client:	Glanville					=											
Water Water	Samples	s and Ins	situ Testir Resu		Level (m AOD)	Thickne (m) (0.10)	Leg		Depth m bgl) 0.10 1.10	Blu roo	vel. ff/ pale b careous e-grey m ttlets.	rown, s nodules	ilty CLAY	h rootle	ets and flootlets and any with a	nd fine	1
						(1.00)	×	×	3.00			End	of Borehoi	le at 3.00r	m		3
Hole Detai		sing De		5	L	Wate						Fee	1		selling (
Depth (m bgl) Dia	a. (mm) Depth ((m bgl) Dia	a. (mm)	Date	Depi	th Strike Dep	th Casing [Jepth Seal	ROS6	e to: Ti	ime (mins)	From	То	Time		Remarks	

APPENDIX B

Gas Monitoring Results

P	roject Nam	ie	Proje	ct No	Te	ech	Da	ate		Equipme	ent Used	
	oxford		Jn16	683	р	b	27 Ma	y 2022		GA2	000	
						ī				1	Ī	
Wel	l No	wls 209	Atm Pres	ss mb temp	1018	Flow	/ l/hr	Max: Min:	-0.1	Diff Pressure (Pa)	Max: Min:	
Well De	pth (m)		Groundwa from G		1.40	voc	ppm	Max:		LEL %	Max:	
				,,,		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
02	21.3	21.2	21.2	21.2	21.2							
CO ₂	0.0	0.0	0.0	0.0	0.0							
CH₄	0.0	0.0	0.0	0.0	0.0							
Remarks/	Weather		ļ	ļ			со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
Well	l No	wls 211	Atm Pre	ss mb	1017	Elou	/ l/hr	Max:	0.1	Diff Pressure	Max:	
wei	INO	WIS 211		temp		Flow	/	Min:	-0.1	(Pa)	Min:	
Wall Do			Groundwa	ater level	1.39	VOC		Max:			Max:	
Well De	ptn (m)		from 0	GL (m)	1.39	VOC	ppm	Min:		LEL %	Min:	
		1					econds)	· · · · · ·				
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.2	20.2	20.1	20.1	20.0	20.1	20.1	20.2	20.3	20.3		
CO ₂	1.5	1.5	1.5	1.5	1.6	1.5	1.4	1.3	1.2	1.2		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks/	Weather	-	-	-		-	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
					1010			20	0.1	Diff	24	
Wel	l No	wls 212	Atm Press	s mb temp	1019	Flow	/ l/hr	Max:	-0.1	Pressure	Max:	
								Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		dry	voc	ppm	Max:		LEL %	Max:	
				,,,,		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.0	18.4	18.4	18.4	18.4	18.9	19.8	20.1	20.2	20.2	20.3	
CO ₂	1.4	1.4	1.5	1.5	1.4	1.3	1.0	0.9	0.8	0.8	0.8	
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Pi	roject Nam	ie	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	oxford		Jn16	583	р	b	27 Ma	y 2022		GA2	000	
Well	l No	wls 210	Atm Pres	s mb	1018	Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
		W13 2 1 0		temp				Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.50	voc	ppm	Max: Min:		LEL %	Max: Min:	
				•		Time (S	econds)	•				
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.5	19.3	19.3	19.3	19.3	19.3						
CO ₂	2.1	2.2	2.2	2.2	2.2	2.2						
CH₄	0.0	0.0	0.0	0.0	0.0	0.0						
Remarks/	Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		I						T		D:#		
Well	l No	wls 208	Atm Pre	ss mb	1018	Flow	/ l/hr	Max:	0.2	Diff Pressure	Max:	
550		W13 200		temp		1101	,	Min:	-0.1	(Pa)	Min:	
Well De	nth (m)		Groundwa		1.23	voc	ppm	Max:		LEL %	Max:	
Well be	pen (m)		from G	iL (m)	1.23			Min:		LLL 70	Min:	
		1	· ·				econds)	· · · · · ·			T	
	30	60	90	120	180	240	300	360	420	480	540	600
02	17.9	17.8	17.7	17.6	17.5	17.9	18.3	18.5	18.8	18.9	19.1	19.1
CO ₂	4.2	4.3	4.4	4.6	4.6	4.0	3.7	3.5	3.2	3.1	0.3	3.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather		-	_			со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		ı								D:(f		
Well	l No	wls 206	Atm Press		1018	Flow	/ l/hr	Max:	0.8	Diff Pressure	Max:	
				temp			,	Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		0.92	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	21.0	21.0	21.0	21.0	20.0	18.7	18.7	18.8	18.9	19.0	19.0	19.0
CO ₂	0.2	0.2	0.2	0.2	1.7	2.9	2.9	2.7	2.6	2.4	2.4	2.4
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Р	roject Nam	ne	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	oxford		JN1	683	р	b	27 Ma	y 2022		GA2	000	
Wel	II No	205	Atm Pre	ss mb temp	1018	Flow	/ l/hr	Max: Min:	0.2	Diff Pressure	Max: Min:	
Well De	epth (m)		Groundw from (dry	voc	ppm	Max: Min:	-	(Pa) - LEL %	Max: Min:	
		ļ		Į.		Time (S	econds)	<u> </u>		ļ	<u> </u>	
	30	60	90	120	180	240	300	360	420	480	540	600
02	21.0	20.9	20.6	20.2	20.1	20.2	20.2	20.2	20.3	20.3	20.3	20.3
CO₂	0.0	0.1	0.5	1.1	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1
СН₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather		new loc	k fitted tap	needed		CO ppm	Max: Min:		H₂s ppm	Max: Min:	
Wel	ll No	wls 203	Atm Pre	ess mb temp	1018	Flow	/ l/hr	Max: Min:	0.0	Diff Pressure	Max: Min:	
Well De	epth (m)		Groundw from (1.17	voc	ppm	Max: Min:		(Pa) LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.4	19.5	18.9	18.3	18.0	18.5	18.8	18.9				
CO₂	0.8	1.9	2.6	3.3	3.5	2.8	2.5	2.4				
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Remarks	/Weather		n	ew tap fitte	d		CO ppm	Max: Min:		H₂s ppm	Max: Min:	
		ī						ı		D:tt	ı	
Wel	l No		Atm Press	s mb temp		Flow	/ l/hr	Max: Min:		Diff Pressure (Pa)	Max: Min:	
Well De	epth (m)		Groundw from (voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02												
CO ₂												
CH₄												
Remarks,	/Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Pi	roject Nam	ne	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	Oxford		JN1	583	р	b	06 Jun	e 2022		GA2	000	
Well	l No	WLS201	Atm Pres	s mb	1009	Elou	/ l/hr	Max:	-0.1	Diff	Max:	
vven	INO	WL3201		temp		FIOW	/ 1/ nr	Min:	-0.1	Pressure (Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.20	voc	ppm	Max: Min:		LEL %	Max: Min:	
		ļ		<u>,</u>		Time (S	econds)	ļ		ļ	!	
-	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.2	20.9	20.9	21.0	21.0	21.0	21.0	21.0				
CO ₂	0.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Remarks/	Weather		drizzle/ove	r cast hoy f	nund onon		со	Max:		H ₂ s	Max:	
			urizzie/ove	i cast box ii	ound open		ppm	Min:		ppm	Min:	
Wall	l Na	WII 5202	Atm Pre	ss mb	1009	Flou	. I /h.u	Max:	-0.1	Diff	Max:	
Well	INO	WLS202		temp		FIOW	/ l/hr	Min:	-0.1	Pressure (Pa)	Min:	
W-II D-			Groundwa	ater level	1.00	V00		Max:			Max:	
Well De	ptn (m)		from 0	iL (m)	1.99	VOC	ppm	Min:		LEL %	Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.9	20.9	21.0	21.0	21.0	21.0	21.0	21.0				
CO ₂	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0				
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Remarks/	Weather	-	ho	x found ope	an .		со	Max:		H ₂ s	Max:	
				A Tourid opt			ppm	Min:		ppm	Min:	
		ı		1				T		D:#	ı	
Well	l No	WLS203	Atm Press		1008	Flow	/ l/hr	Max:	-0.2	Diff Pressure	Max:	
				temp			,	Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.18	voc	ppm	Max: Min:		LEL %	Max: Min:	
		ı				Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.9	19.3	18.3	17.2	17.2	17.6	17.8	17.8	18.0	18.0	18.1	18.2
CO ₂	0.9	1.4	2.3	3.2	3.1	2.7	2.5	2.5	2.4	2.4	2.3	2.3
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						CO ppm	Max: Min:		H₂s ppm	Max: Min:	

No No No No No No No No	Р	roject Nam	ne	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used		
Main		Oxford		JN1	683	р	b	06 Jun	e 2022		GA2	000		
Main														
Weil Depth (m) Grounder level from E (m) 0.47 VOC pm Max: M	Wel	ll No	WLS204	Atm Pre		1008	Flow	/ l/hr	ŀ		Pressure	ŀ		
Trink Trin				Groundwa	•					-0.1				
No 10 10 10 10 10 10 10 1	Well De	epth (m)		from 0	GL (m)	0.47			Min:		LEL %	Min:		
O₂ 20.9 21.0			l	1	1				1					
CO2 0.0		30	60	90	120	180	240	300	360	420	480	540	600	
CH4 0.0	02	20.9	21.0	21.0	21.0	21.0	21.0	21.0						
Note	CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Max Max	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Max Max	Remarks	/Weather		<u>. </u>				со	Max:		H ₂ s	Max:		
Well Depth (m) Atm Press mb temp Dry VOC pm Min: -0.2 Pressure (Pa) Min: Min:			box has b	een knocke	d put back i	n place bes	t it will go		Min:		4	Min:		
Well Depth (m) Atm Press mb temp Dry VOC pm Min: -0.2 Pressure (Pa) Min: Min:														
Well No				Atm Dro	ss mb	1008			Max:	-0.2	Diff	Max:		
Well Depth (m) Groundwater level from GL (m) Dry VOC ppm Max: Min: LEL % Max: Min:	Wel	ll No	WLS205	Alm Pre	ĺ		Flow	/l/hr	Min	0.2		Min		
Minimal Min					-					-0.2	(Pa)			
Time (Seconds) Time	Well De	epth (m)				Dry	voc	ppm	ŀ		LEL %	ŀ		
30 60 90 120 180 240 300 360 420 480 540 600 O₂ 20.1 20.6 20.9 20.8 20.9 20.8 20.5 20.7 20.8 20.7 20.7 20.9 CO₂ 0.7 0.3 0.1 0.2 0.0 0.2 0.3 0.2 0.2 0.3 0.2 0.2 CH₄ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Remarks/Weather		I		from C	iL (m)				Min:			Min:		
O₂ 20.1 20.6 20.9 20.8 20.9 20.8 20.5 20.7 20.8 20.7 20.9 20.8 20.9 20.8 20.5 20.7 20.8 20.7 20.9 20.9 20.9 20.9 20.8 20.7 20.8 20.7 20.9 20.9 20.9 20.9 20.8 20.7 20.8 20.7 20.9 20.9 20.9 20.9 20.9 0.0			l		1				1 1		1 1	_ [
CO₂ 0.7 0.3 0.1 0.2 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.0 <td></td> <td>30</td> <td>60</td> <td>90</td> <td>120</td> <td>180</td> <td>240</td> <td>300</td> <td>360</td> <td>420</td> <td>480</td> <td>540</td> <td>600</td>		30	60	90	120	180	240	300	360	420	480	540	600	
CH4 0.0 <td>O₂</td> <td>20.1</td> <td>20.6</td> <td>20.9</td> <td>20.8</td> <td>20.9</td> <td>20.8</td> <td>20.5</td> <td>20.7</td> <td>20.8</td> <td>20.7</td> <td>20.7</td> <td>20.9</td>	O ₂	20.1	20.6	20.9	20.8	20.9	20.8	20.5	20.7	20.8	20.7	20.7	20.9	
Remarks/Weather	CO ₂	0.7	0.3	0.1	0.2	0.0	0.2	0.3	0.2	0.2	0.3	0.2	0.2	
Ppm Min: Ppm Min: Ppm Min: Ppm Min: Ppm Min:	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Well No	Remarks	/Weather	<u>[</u>		J			со	Max:		H ₂ s	Max:		
Well No WLS206 Atm Press mb temp Flow I/hr Min: O.1 Pressure (Pa) Min: Well Depth (m) Groundwater level from GL (m) 1.10 VOC ppm Max: Max: Min: LEL % Max: Min: Time (Seconds) 30 60 90 120 180 240 300 420 480 540 600 O2 20.9 20.9 18.0 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 2.2 2.1 2.1 2.1 <th colspa<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ppm</td><td>Min:</td><td></td><td>ppm</td><td>Min:</td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ppm</td> <td>Min:</td> <td></td> <td>ppm</td> <td>Min:</td> <td></td>								ppm	Min:		ppm	Min:	
Well No WLS206 Atm Press mb temp Flow I/hr Min: O.1 Pressure (Pa) Min: Well Depth (m) Groundwater level from GL (m) 1.10 VOC ppm Max: Max: Min: LEL % Max: Min: Time (Seconds) 30 60 90 120 180 240 300 420 480 540 600 O2 20.9 20.9 18.0 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 2.2 2.1 2.1 2.1 <th colspa<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></th>	<td></td> <td>•</td> <td></td> <td></td>											•		
Well No Well No Well Depth (m) Well Depth (m) Groundwater level from GL (m) 1.10 VOC ppm Max: Max: Min: LEL % Max: Min: Time (Seconds) 30 60 90 120 180 240 300 360 420 480 540 600 02 20.9 20.9 20.9 18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.1 2.0 CO2 0.4 0.4 0.4 2.0 2.4 2.3 2.2 2.1 2.1 2.0 CH4 0.0				Atm Press	s mh	1008			Max:	0.3		Max:		
Well Depth (m) Groundwater level from GL (m) 1.10 VOC ppm Max: Min: Max: Min: Max: Min: Min: Min: Min: Min: Min: Min: Min	Wel	II No	WLS206				Flow	/ I/hr	Min:	0.1		Min:		
Well Depth (m) from GL (m) 1.10 VOC ppm Min: LEL % Min: Time (Seconds) 30 60 90 120 180 240 300 360 420 480 540 600 O₂ 20.9 20.9 20.9 18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.1 18.1 CO₂ 0.4 0.4 0.4 0.4 2.0 2.4 2.3 2.2 2.1 2.1 2.0 CH₄ 0.0				Cuarra di							(Pa)			
Time (Seconds) 30 60 90 120 180 240 300 360 420 480 540 600 O ₂ 20.9 20.9 20.9 20.9 18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.1	Well De	epth (m)				1.10	voc	ppm	ŀ		LEL %	ŀ		
30 60 90 120 180 240 300 360 420 480 540 600 O2 20.9 20.9 20.9 18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 2.0 2.0 2.4 2.3 2.2 2.1 2.1 2.1 2.0 2.0 2.0 2.4 2.3 2.2 2.1 2.1 2.1 2.0 2.0 2.0 0.0 <t< td=""><td></td><td colspan="2"></td><td></td><td> 1-1-1</td><td></td><td>Time /s</td><td>econds)</td><td>IAIIII:</td><td></td><td><u> </u></td><td>IAIIII:</td><td></td></t<>					1-1-1		Time /s	econds)	IAIIII:		<u> </u>	IAIIII:		
O2 20.9 20.9 20.9 18.0 18.0 18.1 2.0 CH4 0.0		30	60	90	120	180			360	420	480	540	600	
CO2 0.4 0.4 0.4 0.4 2.0 2.4 2.3 2.2 2.1 2.1 2.1 2.0 CH4 0.0 0		30	00	30	120	100	240	300	300	720	700	340	300	
CH ₄ 0.0 0.0 </td <td>02</td> <td>20.9</td> <td>20.9</td> <td>20.9</td> <td>20.9</td> <td>18.0</td> <td>18.0</td> <td>18.1</td> <td>18.1</td> <td>18.1</td> <td>18.1</td> <td>18.1</td> <td>18.1</td>	02	20.9	20.9	20.9	20.9	18.0	18.0	18.1	18.1	18.1	18.1	18.1	18.1	
Remarks/Weather CO Max: H ₂ s Max:	CO ₂	0.4	0.4	0.4	0.4	2.0	2.4	2.3	2.2	2.1	2.1	2.1	2.0	
	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Remarks	/Weather						со	Max:		H ₂ s	Max:		
									Min:		ppm	Min:		

P	roject Nam	ne	Proje	ct No	Te	ch	Da	ate	Equipment Used			
	Oxford		JN1	583	р	b	06 Jun	e 2022		GA2	.000	
		ı						T		I = .co	ı	
Wel	l No	WLS207	Atm Pres	ſ	1009	Flow	/ l/hr	Max:	0.2	Diff Pressure	Max:	
				temp				Min:	0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		0.78	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (Seconds)				<u>!</u>		
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.6	20.6	20.6	20.5	20.0	19.1	18.7	18.2	18.2	18.2	18.4	18.5
CO ₂	0.9	0.9	0.9	1.0	1.3	1.8	1.9	2.0	2.0	2.0	2.0	1.9
CH₄	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather)						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		I		1	1009			Max:	-0.1	Diff	Max:	
Wel	l No	WLS208	Atm Pre	ss mb temp	1009	Flow	/ l/hr	Min:		Pressure	ŀ	
				•					-0.2	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.34	voc	ppm	Max: Min:		LEL %	Max: Min:	
		1				Time (S	econds)	· · · · · · · · · · · · · · · · · · ·		1	ı	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	17.6	17.3	17.2	17.1	17.0	17.1	17.4	17.7	17.8	18.0	18.0	18.1
CO ₂	3.6	4.0	4.0	4.0	4.0	3.7	3.5	3.3	3.2	3.1	3.1	3.0
CH₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Remarks/	'Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
				,	1009			Max:	0.0	Diff	Max:	
Wel	l No	WLS209	Atm Press	temp		Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	
Well De	pth (m)		Groundwa		1.10	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.8	21.0	21.0	21.0	21.0	21.0	21.0					
CO ₂	0.3	0.2	0.2	0.2	0.2	0.2	0.2					
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Pı	roject Nam	ne	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	Oxford		JN1	583	р	b	06 Jun	e 2022		GA2	000	
Well	l No	WLS210	Atm Pres	ſ	1009	Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
				temp			•	Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.06	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.9	21.1	21.2	21.2	21.2	21.2	21.2					
CO ₂	0.2	0.1	0.1	0.1	0.1	0.1	0.1					
CH₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1					
Remarks/	Weather		•				со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
Well	l No	Wls211	Atm Pre	ss mb	1008	Flan	/ l/hr	Max:	0.0	Diff Pressure	Max:	
weii	INO	WIS211		temp		FIOW	/ i/nr	Min:	0.0	(Pa)	Min:	
Well De			Groundwa	ater level	1 25	V00		Max:		151.0/	Max:	
Well De	ptn (m)		from G	iL (m)	1.35	۷٥٥	ppm	Min:		LEL %	Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.7	19.6	19.5	19.5	19.4	19.4	19.4	19.5	19.6	19.6	19.6	19.7
CO ₂	1.3	1.4	1.4	1.5	1.5	1.4	1.4	1.3	1.3	1.3	1.2	1.2
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather	-					со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		T		Ī								
Well	l No	WLS212	Atm Press	mb	1009	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
		WESTE		temp		1101	· ·, · · ·	Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		Dry	voc	ppm	Max: Min:		LEL %	Max: Min:	
		Time (Seconds)										
I	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	18.7	18.6	18.6	18.6	18.6	18.9	19.2	19.3	19.3	19.4	19.4	19.4
CO ₂	1.2	1.3	1.3	1.3	1.3	1.2	1.0	1.0	1.0	1.0	1.0	1.0
CH₄	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

P	roject Nam	ie	Proje	ct No	Te	ch	Da	ate	Equipment Used			
	Oxford		JN1	683	р	b	13 Jun	e 2022		GA2	.000	
		1		T				T		I =		
Well	l No	WLS 209	Atm Pres	ss mb temp	1018	Flow	/l/hr	Max: Min:	0.0	Diff Pressure	Max: Min:	
Mall Da			Groundwa	•				Max:		(Pa) LEL %	Max:	
Well De	ptii (iii)		from 0	GL (m)	1.13		ppm econds)	Min:		LEL 76	Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
	30	60	90	120	100	240	300	360	420	460	540	600
02	20.8	20.8	20.8	20.8	20.8	20.8						
CO ₂	0.3	0.3	0.3	0.3	0.3	0.3						
CH₄	0.0	0.0	0.0	0.0	0.0	0.0						
Remarks/	Weather		-				со	Max:		H ₂ s	Max:	
			dı	ry hot sunn	У		ppm	Min:		ppm	Min:	
			Atm Pre	ss mb	1018			Max:	0.2	Diff	Max:	
Wel	l No	WLS211		temp	16	Flow	/ l/hr	Min:	0.0	Pressure	Min:	
			Groundwa	ater level				Max:		(Pa)	Max:	
Well De	pth (m)		from GL (m)		1.48	voc	ppm	Min:		LEL %	Min:	
						Time (S	econds)					
•	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.0	19.8	19.8	19.7	19.6	19.7	19.8	19.9	19.9	20.0	20.0	20.0
CO ₂	1.2	1.3	1.4	1.5	1.5	1.4	1.4	1.3	1.3	1.3	1.2	1.0
CH₄	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						СО	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
			Atm Press	mb	1019			Max:	0.1	Diff	Max:	
Wel	l No	WIS212		temp	16	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	
Well De	pth (m)		Groundwa		DRY	voc	ppm	Max: Min:		LEL %	Max:	
				,		Time (S	econds)	iviin:	141111.		Min:	
<u> </u>	30	60	90	120	180	240	300	360	420	480	540	600
02	19.6	19.5	19.4	19.4	19.4	19.6	19.8	19.8	19.9	20.0	20.0	20.2
CO ₂	1.1	1.2	1.2	1.2	1.3	1.2	1.1	1.1	1.0	1.0	1.0	1.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Well Now Well Depti		WLS210	Atm Pres		1019	b	13 Jun	e 2022		GA2	000	
Well Depti	h (m)	WLS210			1019							
Well Depti	h (m)	WLS210			1019			T			T	
O ₂			Grounder	temni		Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
O ₂			Grounder	•	16			Min:	0.0	(Pa)	Min:	
	30		from (1.40	voc	ppm	Max: Min:		LEL %	Max: Min:	
	30					Time (S	econds)					
		60	90	120	180	240	300	360	420	480	540	600
CO2	19.4	19.3	19.2	19.2	19.0	19.0	19.0	19.1	19.3	19.3	19.3	19.3
	1.8	1.8	1.9	2.0	2.2	2.3	2.3	2.2	2.2	2.2	2.1	2.1
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/W	eather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
	T							1		D:tt	1	
Well N	lo	WLS208	Atm Pre		1019	Flow	/ l/hr	Max:	-0.1	Diff Pressure	Max:	
				temp	16		•	Min:	-0.1	(Pa)	Min:	
Well Depti	h (m)		Groundwa		1.37	voc	ppm	Max:		LEL %	Max:	
	` ,		from 0	GL (m)	_			Min:			Min:	
_	20	60	00	120	100		econds)	360	420	400	F40	600
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.0	17.9	17.9	17.8	17.7	17.9	18.1	18.2	18.3	18.5	18.5	18.6
CO ₂	3.9	3.9	4.0	4.0	4.1	3.8	3.6	3.5	3.2	3.3	3.3	3.2
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/W	eather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
					1010			36	0.3	Diff	80	
Well N	lo	WLS207	Atm Press	s mb temp	1019 16	Flow	/ l/hr	Max: Min:	-0.2 0.0	Pressure	Max: Min:	
				•	10				0.0	(Pa)		
Well Depti	h (m)		Groundwa from G		0.83	voc	ppm	Max: Min:		LEL %	Max: Min:	
				` '		Time (S	econds)	141111.		<u> </u>	141111.	
	30	60	90	120	180	240	300	360	420	480	540	600
02	21.3	20.3	20.4	20.5	20.4	20.5	20.5	20.5	20.4	20.1	19.8	19.8
CO ₂	0.9	0.6	0.6	0.5	0.6	0.6	0.5	0.5	0.5	0.6	0.6	0.6
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/W	eather						CO ppm	Max: Min:		H₂s ppm	Max: Min:	

Pi	roject Nam	ne	Proje	ct No	Te	ch	Da	ate	Equipment Used			
	Oxford		168	83	р	b	13 Jun	e 2022		GA2	000	
		ı		T								
Well	l No	WLS206	Atm Pres		1019	Flow	/ l/hr	Max:	0.7	Diff Pressure	Max:	
			C	temp	17			Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.10	voc	ppm	Max: Min:		LEL %	Max: Min:	
				•		Time (S	econds)	•			•	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.1	19.1	19.1	19.1	18.5	18.3	18.2	18.4	18.5	18.5	18.5	18.6
CO ₂	1.4	1.4	1.4	1.4	2.8	3.1	3.1	3.1	3.0	3.0	3.0	3.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		I		T	1010					Diff		
Well	l No	WLS205	Atm Pre		1019	Flow	/ l/hr	Max:		Pressure	Max:	
				temp	17			Min:		(Pa)	Min:	
Well De	pth (m)		Groundwa from G		DRY	voc	ppm	Max:		LEL %	Max:	
			Home	JE (III)		Time (S	econds)	Min:			Min:	
-	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.4	20.1	19.7	19.6	19.5	19.5	19.6	19.6	19.6	19.6	19.6	19.6
CO ₂	0.8	1.0	1.4	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
CH₄	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Remarks/	Weather	<u> </u>		<u> </u>			со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		ı		T						I = .ee		
Well	l No	WLS203	Atm Press		1020	Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
				temp	17			Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.18	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	18.3	18.2	18.1	18.0	18.4	18.8	19.0	19.2	19.2	19.3	19.3	19.3
CO ₂	2.9	2.9	2.9	2.9	2.4	2.1	1.8	1.7	1.6	1.6	1.5	1.5
CH ₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Remarks/	Weather		•				CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Р	roject Nam	ne	Proje	ct No	Te	ech	Da	ate		Equipme	ent Used	
	Oxford		Jn1	683	р	b	13 Jun	e 2022		GA2	000	
						ı		T		I = .co	·	
Wel	l No	WLS204	Atm Pre	ss mb temp	1019 17	Flow	/ I/hr	Max: Min:	0.0	Diff Pressure	Max: Min:	
Well De	epth (m)		Groundwa		0.58	voc	ppm	Max:		(Pa) LEL %	Max:	
			from 0	GL (m)				Min:			Min:	
	30	60	90	120	180	240	econds) 300	360	420	480	540	600
						240	300	300	420	480	340	000
O ₂	20.9	20.9	20.9	20.9	20.9							
CO ₂	0.0	0.0	0.0	0.0	0.0							
CH₄	0.0	0.0	0.0	0.0	0.0							
Remarks	/Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
					1020			Na	0.1	Diff	N/I	
Wel	l No	WLS202	Atm Pre		1020	Flow	/ l/hr	Max:	0.1	Pressure	Max:	
				temp	17			Min:	0.1	(Pa)	Min:	
Well De	epth (m)		Groundwa from C		1.94 VOC		ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.7	20.6	20.6	20.6	20.6	20.6						
CO ₂	0.0	0.0	0.0	0.0	0.0	0.0						
CH₄												
Remarks	/Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		•				ı		1		I = .co		
Wel	l No	WLS201	Atm Press		1020	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
				temp	17			Min:	0.0	(Pa)	Min:	
Well De	epth (m)		Groundwa from C		1.19	voc	ppm	Max: Min:		LEL %	Max: Min:	
		•		•		Time (S	econds)			•	•	
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.0	19.1	19.1	19.1	19.1	19.2	19.2	19.2	19.2	19.4	19.5	19.4
CO ₂	1.0	1.8	1.8	1.9	1.9	1.9	1.8	1.7	1.7	1.7	1.7	1.7
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather					ı	CO ppm	Max: Min:		H₂s ppm	Max: Min:	
							FF **					

D	Project Nam	10	Projec	rt No	Te	ech	D:	ate		Fauinma	ent Used	
	Oxford	ic	JN16	1		S		y 2022		GFM436/		
	Oxioid		21410	763			01 301	y 2022		GI 101430/	TIGEL FID	
			Atm Pres	s mb	1009			Max:	0.0	Diff	Max:	0
We	ll No	WLS201		temp	18°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
Well De	epth (m)	2.91	Groundwa		1.31	voc	ppm	Max:	0.2	LEL %	Max:	0.0
	1		from G	iL (m)				Min:	0.2		Min:	0.0
							econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.2	18.9	19.9	19.4	19.7	19.4	19.1	19.1	19.1	19.1	19.1	19.4
CO ₂	2.1	2.1	2.2	2.2	2.3	2.0	2.0	1.7	1.7	1.7	1.7	1.7
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather						со	Max:	10	H ₂ s	Max:	0
		9:48 [Ory, cloudy. I	No lock. Co	ver height	0.24m	ppm	Min:	0	ppm	Min:	0
			Atm Pre	ss mb	1007			Max:	0.0	Diff	Max:	0
We	ll No	WLS202	Auntie	temp	18°C	Flow	/ l/hr	Min:	0.0	Pressure	Min:	0
					10 0					(Pa)		
Well De	epth (m)	2.76	Groundwa from G		2.10	voc	ppm	Max:	0.3	LEL %	Max:	0.0
	<u> </u>		1101111	,		Time (S	econds)	Min:	0.3		Min:	0.0
	30	60	90	120	180	240	300	360	420	480	540	600
	1 30	- 00	30	120		240	300	300	420	400	340	
O ₂	19.3	19.1	19.1	19.0	19.0	19.2	19.3	19.4	19.5	19.7	19.5	19.5
CO ₂	0.0	0.0	0.0	0.2	0.4	0.7	0.8	0.8	0.8	0.9	0.9	0.9
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	11	0:13 Dry, clo	udy Cover	hoight 0.2	m	со	Max:	0	H ₂ s	Max:	0
		11	0:13 Dry, Clo	oudy. Cover	neight 0.2	Ш	ppm	Min:	0	ppm	Min:	0
		\\\\\ CC.22	Atm Press	mb	1009		. 176	Max:	-0.5	Diff	Max:	-8
We	ll No	WLS203		temp	17°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
			Groundwa	iter level				Max:	0.3		Max:	0.0
Well De	epth (m)	2.92	from G		1.32	voc	ppm	Min:	0.3	LEL %	Min:	0.0
		1	1			Time (S	econds)			1	1	•
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.1	18.1	18.1	18.4	18.6	19.2	19.3	19.5	19.6	19.6	19.7	19.7
CO ₂	2.3	2.3	2.3	2.2	2.1	1.7	1.5	1.4	1.3	1.3	1.3	1.2
CH ₄					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather		cloudy. No loc				со	Max:		H ₂ s	Max:	
			quickly then t	o zero arter .	z/s seconds		ppm	Min:		ppm	Min:	

		tur ti oco	347 4 8				ī			vironment		
P	roject Nam	ie	Projec			ch		ate		Equipme		
	Oxford		JN16	583	S	S	01 Jul	y 2022		GFM436/	Tiger PiD	
				ı				ı		D:ff	1	_
Wel	ll No	WLS204	Atm Pres	s mb	1007	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
VVCI		WL3204		temp	18°C	Tiow	<i>,</i> 17111	Min:	0.0	(Pa)	Min:	0
Well De	epth (m)	3.02	Groundwa		0.85	VOC	ppm	Max:	0.3	LEL %	Max:	0.0
	.,,		from G	iL (m)				Min:	0.3		Min:	0.0
						Time (S	econds)			•		
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	21.0	21.0	20.9	20.2	19.1	19.0	19.1	19.3	19.3	19.3	19.3	19.3
CO ₂	0.0	0.0	0.0	1.3	1.5	2.3	2.3	2.2	2.3	2.3	2.3	2.3
СН₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	10):37 Dry, clo	udy Coyer	hoight 0 15	m	со	Max:	0	H₂s	Max:	0
		10	1:37 Dry, Clo	uay. Cover	neight 0.15	om	ppm	Min:	0	ppm	Min:	0
			Atm Pre	ss mb	1009			Max:	0.0	Diff	Max:	0
Wel	ll No	WLS205	7.6	temp	17°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
W-II D-	th ()	2.01	Groundwa	ater level	Deni	V00		Max:	0.1		Max:	0.0
well be	epth (m)	2.91	from G	iL (m)	Dry	VOC	ppm	Min:	0.1	LEL %	Min:	0.0
						Time (S	econds)	•			•	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.8	19.7	19.8	20.0	20.0	20.0	19.9	20.0	20.0	20.0	20.0	20.2
CO ₂	1.3	1.3	1.1	1.0	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	9.0	Dry, cloud	dy height of	f cover 0.25	- Sm	со	Max:	0	H ₂ s	Max:	0
		J.(JJ Di y, ciou	ay neight of	1 00 01 0.23	7111	ppm	Min:	0	ppm	Min:	0
	II Na	Wil Cook	Atm Press	mb	1005	F1-	. 1 /h.:.	Max:	0.0	Diff	Max:	0
wel	ll No	WLS206		temp	18°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
			Groundwa	ater level				Max:	0.2		Max:	0.0
Well De	epth (m)	2.92	from G		1.17	voc	ppm	Min:	0.2	LEL %	Min:	0.0
		<u> </u>	<u> </u>			Time (S	econds)			1		
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.4	20.1	19.6	19.6	19.4	19.6	19.3	19.6	19.7	19.6	19.6	19.3
CO ₂	O ₂ 1.5 1.4 1.8 1.9				2.1	2.1	2.1	2.0	2.0	2.2	2.0	2.0
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	11	:35 Dry, clou	ıdy. Cover l	height 0.34	m.	со	Max:	-39	H ₂ s	Max:	0
			CO peaked	-	-		ppm	Min:	0	ppm	Min:	0
									-	1		-

Pr	roject Nam	ie	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	Oxford		JN1	683	S	S	01 Jul	y 2022		GFM436/	Tiger PiD	
Well	No	WLS207	Atm Pres	ss mb	1006	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
				temp	19°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)	2.74	Groundwa		0.98	voc	ppm	Max:	0.2	LEL %	Max:	>>>>
			from 0	iL (m)				Min:	0.2		Min:	<<<<
-	30	60	90	120	180	240	econds) 300	360	420	480	540	600
					100	2-10	300	300	720	400	340	
02	22.0	21.6	20.5	20.5	22.5	19.4	18.1	19.5	19.4	19.8	19.8	19.9
CO ₂	1.8	1.9	1.4	2.1	1.8	3.0	2.4	1.9	1.7	1.7	1.6	1.6
CH ₄	-0.4	0.0	-0.5	0.0	0.0	-0.4	-0.1	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather	11:	13 Dry, clou	dy/ height	of cover 0.3	3m.	со	Max:	-100 / 52	H ₂ s	Max:	0
			Stablised	l around 6 r	ninutes.		ppm	Min:	0	ppm	Min:	0
Well	No	WLS208	Atm Pre	ſ	1006	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
				temp	19°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)	2.96	Groundwa		1.61	voc	ppm	Max:	0.3	LEL %	Max:	0.0
			from 0	iL (m)				Min:	0.2		Min:	0.0
	30	60	90	120	180	240	econds) 300	360	420	480	540	600
	30	00	30	120	100	240	300	300	420	400	340	000
02	19.6	19.5	18.9	19.9	18.8	18.6	18.0	22.4	19.3	19.3	19.2	19.4
CO ₂	3.5	3.3	3.2	3.9	3.2	3.0	3.7	2.4	2.4	2.3	2.4	2.4
CH₄	-0.2	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather	12:45 Dry	, cloudy, just	had a rain sh	ower. Heigh	t of cover	со	Max:	0	H ₂ s	Max:	0
		0.35m.	Stablised abo	out 7 minute	s. Fitted new	filters.	ppm	Min:	0	ppm	Min:	0
		<u> </u>		1				ı		D:tt	ı	
Well	No	WLS209	Atm Press		1004	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
				temp	19°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)	3.02	Groundwa		1.24	voc	ppm	Max:	0.3	LEL %	Max:	49.0
1			from 0	or (iii)		Time Is	econds)	Min:	0.3		Min:	0.0
}	30	60	90	120	180	240	300	360	420	480	540	600
02	24.9	22.3	20.2	18.3	20.1	20.3	20.4	21.4	21.3	19.3	25.2	23.2
- 2												-:-
CO ₂	1.4	0.9	1.2	0.9	1.4	1.3	1.2	1.1	0.8	1.4	0.8	0.6
CH₄	-0.5	-0.9	-1.7	-1.5	-0.5	-0.1	-0.1	-0.1	-0.1	0.0	1.3	0.0
Remarks/	Weather	-	cloudy. Heigh				со	Max:	0	H ₂ s	Max:	0
			s. CO fluctuat able reading.				ppm	Min:	0	ppm	Min:	0

D	Project Nam	10	Projec	rt No	To	ech	Dr	ate		Fauinma	nt Head	
	Oxford	ie	JN16			SS		y 2022		GFM436/	Tigor DiD	
	Oxioiu		JIVIT	003	<u></u>		01 101	y 2022		GFIVI430/	riger PID	
				.1	1004	Ι		Max:	0.0	Diff	Max:	0
Wel	ll No	WLS210	Atm Pres	s mb temp	20°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
Well De	epth (m)	2.98	Groundwa from G		1.69	voc	ppm	Max:	0.5	LEL %	Max:	0.0
	I		1101110	ı		Time (S	econds)	Min:	0.5		Min:	0.0
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.7	19.2	19.2	19.2	19.1	19.2	19.2	19.3	19.3	19.5	19.7	19.7
CO ₂	1.9	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.8	1.7	1.7	1.6
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	13	3:48 Dry, clo	udy Cover	height 0 4/	 lm	со	Max:	0	H ₂ s	Max:	0
			 Dry, clo	udy. Cover	neignt 0.44	T111	ppm	Min:	0	ppm	Min:	0
344-1	II 81 -	WI-244	Atm Pre	ss mb	1004	Pl	. 1.71	Max:	0.0	Diff	Max:	0
wei	ll No	Wls211		temp	20°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
!! =		2.05	Groundwa	ter level				Max:	0.4		Max:	0.0
Well De	epth (m)	2.35	from G	iL (m)	1.72	Voc	ppm	Min:	0.4	LEL %	Min:	0.0
				•		Time (S	econds)			•	•	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.1	19.9	20.0	20.1	20.2	20.2	20.0	20.1	20.4	20.2	20.3	20.4
CO ₂	1.3	1.4	1.5	1.6	1.7	1.3	1.4	1.3	1.3	1.3	1.2	1.2
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	1.4	:35 Dry, clo	udy Coyor	haiaht 0 20	-m	со	Max:	0	H ₂ s	Max:	0
		14	1.35 Dry, Clo	udy. Cover	neight 0.25	OIII	ppm	Min:	0	ppm	Min:	0
		\A/! 6242	Atm Press	mb	1006			Max:	0.0	Diff	Max:	0
wei	ll No	WLS212		temp	20°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
=		2.0.	Groundwa	ater level				Max:	0.7		Max:	0.0
Well De	epth (m)	2.94	from G	iL (m)	Dry	VOC	ppm	Min:	0.5	LEL %	Min:	0.0
		•		•		Time (S	econds)	•		•	•	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.8	20.7	20.7	20.6	21.2	20.7	20.9	21.1	21.3	21.4	21.2	21.0
CO ₂	0.4	0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather						со	Max:	0	H ₂ s	Max:	0
		14	:15 Dry, clo	udy. Cover	height 0.26	5m	ppm	Min:	0	ppm	Min:	0

D	roject Nam	10	Projec	rt No	Te	ech	D:	ate		Fauinma	ent Used	
	Oxford	ic	JN16			S		e 2022			/Tiger PiD	
	CATOTA		31410				23 3411			C1 141430/	. 1961 1 10	
			A4 5		1003			Max:	0.0	Diff	Max:	0
We	ll No	WLS201	Atm Pres	s mb temp	18°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
Well De	epth (m)	2.91	Groundwa from G		1.24	voc	ppm	Max: Min:	0.5 0.4	LEL %	Max: Min:	0.0
				(,		Time (S	econds)	IVIIII.	0.4		IVIIII.	0.0
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.1	19.1	19.0	18.9	19.0	19.1	19.1	19.3	19.4	19.4	19.5	19.5
CO ₂	2.3	2.3	2.3	2.3	2.3	2.2	2.1	2.0	1.9	1.9	1.8	1.8
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	40:40 =	m. aleri l	latakt : C		Nie lee'	со	Max:	0	H ₂ s	Max:	0
		10:19 D	ry, cloudy. H	ieignt of co	ver 0.24m.	NO lock	ppm	Min:	0	ppm	Min:	0
		14/1 00 ==	Atm Pre	ss mb	1001		.,,	Max:	0.0	Diff	Max:	0
We	ll No	WLS202		temp	18°C	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	0
			Groundwa	ter level				Max:	1.2		Max:	0.0
Well De	epth (m)	2.76	from G		2.08	voc	ppm	Min:	1.1	LEL %	Min:	0.0
						Time (S	econds)				I.	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	18.9	18.8	18.7	18.8	18.8	19.4	19.7	20.0	19.9	20.0	20.0	20.0
CO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.2	0.3	0.3
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	10:	:46 Dry, clou	ıdv Height	of cover 0	2m	со	Max:	-20	H ₂ s	Max:	-30
		10.	.40 Di y, ciou	idy. Height	or cover o.	2111	ppm	Min:	0	ppm	Min:	0
										-		
\ \ /o	ll No	WLS203	Atm Press	mb	1005	Elou	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
we	140	W L32U3		temp	18°C	FIUM	,	Min:	0.0	(Pa)	Min:	0
Mall Da	epth (m)	2.93	Groundwa	ater level	1.28	V00	ppm	Max:	0.5	LEL %	Max:	0.0
vveli De	-pui (m)	2.93	from G	iL (m)	1.28	VUC	hhiu	Min:	0.5	LEL %	Min:	0.0
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	16.4	16.2	16.2	16.0	16.1	16.5	17.2	16.5	17.4	17.4	17.5	17.6
CO ₂	4.0	4.1	4.1	4.2	4.0	3.7	3.5	3.4	3.3	3.3	3.3	3.3
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	9:55 Di	ry, cloudy. H	eight of co	ver 0.27m	No lock	CO ppm	Max: Min:	0	H ₂ s ppm	Max: Min:	0
							phili	141111;	U	J	iviiii:	U

Parish	Р	roject Nam	ne	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
Mile		Oxford		JN1	683	S	S	23 Jun	e 2022		GFM436/	Tiger PiD	
Mile			ı								D:tt		
Martin	Wel	ll No	WLS204	Atm Pres			Flow	/ l/hr	Max:	0.0		Max:	0
Math					temp	18°C			Min:	0.0		Min:	0
Mail	Well De	epth (m)	3.01			0.75	voc	ppm	Max:	1.0	LEL %	Max:	0.0
Note		·		from G	iL (m)				Min:	1.0		Min:	0.0
Part		- 20	- 60	00	120	100			260	420	400	F40	600
CO		30	60	90	120	180	240	300	360	420	480	540	600
CH ₄ 0.0 0	02	21.2	20.9	20.9	20.8	18.6	19.0	19.4	19.6	19.7	19.7	19.6	19.7
Remarks Vestion Paris	CO ₂	0.1	0.1	0.2	0.2	1.4	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Note 11:09 Very fine drizz e. Height of cover 0.15 m ppm Min: 0 ppm Min: 0 0 ppm Min: 0 0 0 0 0 0 0 0 0 0	CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min	Remarks	/Weather	11.00	Very fine dr	izzla Haigh	nt of cover	15m	со	Max:	0	H ₂ s	Max:	0
Main			11.09	very fifte ut	izzie. Heigi	it of cover t	J.13III	ppm	Min:	0	ppm	Min:	0
Main			1		1								
Mell	Wel	ll No	W/I \$205	Atm Pre	ss mb	1004	Flow	/ l/hr	Max:	0.0		Max:	0
Maximal Max	VVC		WLSZOS		temp	18°C	1100	, ,, ,,,,	Min:	0.0		Min:	0
No No No No No No No No	Well De	enth (m)	2.80			Dry	voc	nnm	Max:	0.3	IFI %	Max:	0.0
Max	Well be		2.00	from G	iL (m)	ыу	VOC	ppiii	Min:	0.3	LLL 70	Min:	0.0
O₂ 19.3 19.2 19.2 19.1 19.2			1	· ·				econds)	· · · · · ·		1		
CO2 1.9 1.9 1.9 1.9 1.9 2.0 1.9		30	60	90	120	180	240	300	360	420	480	540	600
CH4 0.0 <td>O₂</td> <td>19.3</td> <td>19.2</td> <td>19.2</td> <td>19.2</td> <td>19.1</td> <td>19.2</td> <td>19.2</td> <td>19.2</td> <td>19.2</td> <td>19.3</td> <td>19.2</td> <td>19.2</td>	O ₂	19.3	19.2	19.2	19.2	19.1	19.2	19.2	19.2	19.2	19.3	19.2	19.2
Remarks/Weather P:35 Dry, cloudy. Height of cover 0.25 m. CO ppm Min: O O Ppm Min: O O O O O O O O O	CO ₂	1.9	1.9	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.8	1.9	1.9
No	CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Well No	Remarks	/Weather	0.2	F.D. aloud	v Hojaht o	f 001/01 0 31	- m	со	Max:	0	H ₂ s	Max:	0
Well No WLS206 Atm Press mb 20°C Flow I/hr Min: 0.0 Pressure (Pa) Min: 0.0 Well Depth (m) 2.96 Groundwater level from GL (m) 1.18 VOC ppm Max: 0.5 Min: 0.0 Max: 0.0 30 60 90 120 180 240 300 360 480 540 600 CO Max: 0.5 Max: 0.0 Nation (Pa) 19.4 19.3 19.4 19.3 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.2 2.7 2.7 2.7 2.6 2.6			9.3	5 Dry, cioud	y. neight o	r cover u.z.	oiii.	ppm	Min:	0	ppm	Min:	0
Well No WLS206 Atm Press mb 20°C Flow I/hr Min: 0.0 Pressure (Pa) Min: 0.0 Well Depth (m) 2.96 Groundwater level from GL (m) 1.18 VOC ppm Max: 0.5 Min: 0.0 Max: 0.0 30 60 90 120 180 240 300 360 480 540 600 CO Max: 0.5 Max: 0.0 Nation (Pa) 19.4 19.3 19.4 19.3 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.2 2.7 2.7 2.7 2.6 2.6													
Well Depth (m) 2.96 Groundwater level from GL (m) 1.18 VOC ppm Max: D.5 Max: D.5 Min: D.0 Max: D.5 Max: D.0 Time (Seconds) 30 60 90 120 180 240 300 360 420 480 540 600 O₂ 19.6 19.3 19.1 19.1 19.1 19.0 19.0 19.0 19.1 19.4 19.3 CO₂ 2.2 2.3 2.3 2.5 2.7 2.7 2.7 2.6 2.6 2.5 2.5 CH₄ 0.0	We!	II No	W/I \$206	Atm Press	mb	1000	Elov	(l/br	Max:	0.0		Max:	0
Well Depth (m) 2.96 Groundwater level from GL (m) 1.18 VOC ppm Max: D.5 Min: 0.0 Max: D.5 Min: 0.0 Max: D.5 Min: 0.0 Max: D.5 Min: D.0 Max: D.0 D.0 <	VVC	11110	WL3200		temp	22°C	Tiow	, ,, ,,,,	Min:	0.0		Min:	0
Trom GL (m) Min: 0.4 Min: 0.0	Well Da	anth (m)	2 06			1 10	VOC	nnm	Max:	0.5		Max:	0.0
30 60 90 120 180 240 300 360 420 480 540 600 O2 19.6 19.3 19.1 19.1 19.1 19.0 19.0 19.0 19.1 19.4 19.3 CO2 2.2 2.3 2.3 2.3 2.5 2.7 2.7 2.7 2.6 2.6 2.5 2.5 CH4 0.0 <td>well be</td> <td>eptii (iii<i>)</i></td> <td>2.90</td> <td>from G</td> <td>iL (m)</td> <td>1.10</td> <td>VOC</td> <td>ррііі</td> <td>Min:</td> <td>0.4</td> <td>LEL /6</td> <td>Min:</td> <td>0.0</td>	well be	eptii (iii <i>)</i>	2.90	from G	iL (m)	1.10	VOC	ррііі	Min:	0.4	LEL /6	Min:	0.0
O2 19.6 19.3 19.1 19.1 19.1 19.1 19.0 19.0 19.0 19.1 19.4 19.3 CO2 2.2 2.3 2.3 2.3 2.5 2.7 2.7 2.7 2.6 2.6 2.5 2.5 CH4 0.0			1	•					-		,	•	
CO2 2.2 2.3 2.3 2.3 2.5 2.7 2.7 2.7 2.6 2.6 2.5 2.5 CH ₄ 0.0 0.0 <td></td> <td>30</td> <td>60</td> <td>90</td> <td>120</td> <td>180</td> <td>240</td> <td>300</td> <td>360</td> <td>420</td> <td>480</td> <td>540</td> <td>600</td>		30	60	90	120	180	240	300	360	420	480	540	600
CH ₄ 0.0 0.0 </td <td>02</td> <td colspan="2">O₂ 19.6 19.3</td> <td>19.1</td> <td>19.1</td> <td>19.1</td> <td>19.1</td> <td>19.0</td> <td>19.0</td> <td>19.0</td> <td>19.1</td> <td>19.4</td> <td>19.3</td>	02	O ₂ 19.6 19.3		19.1	19.1	19.1	19.1	19.0	19.0	19.0	19.1	19.4	19.3
Remarks/Weather 14:57 Dry warm cloudy. Height of cover 0.47m 16:57 Dry warm cloudy. Height of cover 0.47m	CO ₂	2.0 ₂ 2.2 2.3 2.3 2.3					2.7	2.7	2.7	2.6	2.6	2.5	2.5
14:57 Dry warm cloudy. Height of cover 0.47m	CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14:5/ Dry warm cloudy. Height of cover 0.4/m	Remarks	/Weather	44.5-	D		-+ -f	0.47:	со	Max:	0	H ₂ s	Max:	0
			14:57	ry warm cl	ouay. Heigi	nt of cover	u.4/m		Min:	0	ppm	Min:	0

P	roject Nam	ie	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	Oxford		JN1	583	S	S	23 Jun	e 2022		GFM436/	Tiger PiD	
		ı						T				
Wel	l No	WLS207	Atm Pres	s mb	1001	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
		WESEG		temp	22°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)	2.79	Groundwa		0.95	voc	ppm	Max:	0.3	LEL %	Max:	0.0
1			from G	st (m)		Time (S	econds)	Min:	0.2		Min:	0.0
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.2	18.0	17.9	17.9	18.0	17.9	18.2	18.7	8.9	19.0	19.3	19.4
CO ₂	2.5	2.7	2.8	2.8	3.0	2.9	3.0	2.8	2.7	2.6	2.5	2.5
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	/Weather	12.10	Dry, cloudy,	muggy Co	ver height	0 25m	со	Max:	11	H₂s	Max:	0
		12.10	Di y, cloudy,	muggy. co	ver neight	0.23111	ppm	Min:	0	ppm	Min:	0
		ı		I	400:			1	2.5	Diff		
Wel	l No	WLS208	Atm Pre		1001	Flow	/ l/hr	Max:	0.0	Pressure	Max:	0
				temp	22°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)	2.86	Groundwa from G		1.54	voc	ppm	Max:	0.4	LEL %	Max:	0.0
			Home	JE (III)		Time (S	econds)	Min:	0.4		Min:	0.0
	30	60	90	120	180	240	300	360	420	480	540	600
02	17.6	17.2	17.2	17.2	17.2	173.0	17.5	17.7	17.6	17.7	17.6	17.6
CO ₂	4.0	4.2	4.2	4.2	4.2	4.1	4.0	3.9	3.8	3.8	3.7	3.7
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	/Weather		140 Day ala		b -:-b+ 0 25		со	Max:	0	H ₂ s	Max:	0
		12	2:49 Dry, clo	udy. Cover	neight 0.35	om	ppm	Min:	0	ppm	Min:	0
		ı		T				T				
Wel	l No	WLS209	Atm Press		1000	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	0
				temp	22°C			Min:	0.0	(Pa)	Min:	0
Well De	pth (m)		Groundwa			voc	ppm	Max:	0.4	LEL %	Max:	0.0
1	,		from G	iL (m)				Min:	0.4		Min:	0.0
	30	60	90	120	100	Time (S 240	econds) 300	360	420	480	540	600
	30	80	30	120	180	240	300	300	420	400	340	000
02	19.3	19.1	18.8	19.0	19.1	19.0	19.0	19.0	19.0	19.2	19.3	19.3
CO ₂	2.2	2.3	2.4	2.5	2.6	2.6	2.4	2.4	2.4	2.4	2.4	2.4
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	/Weather	_	ted stuck bun 120, at 3min			-	со	Max:	120	H ₂ s	Max:	40
		F 34 10	min peaked	•	•	22.20,0	ppm	Min:	0	ppm	Min:	0

Pr	roject Nam	ie	Projec	ct No	Te	ech	Da	ate		Equipme	ent Used	
	Oxford		JN16	683	S	SS	23 Jun	e 2022		GFM436/	Tiger PiD	
Wal	II Na	W/I C210	Atm Pres	s mb		Flou	. I /h	Max:		Diff	Max:	
Well	II NO	WLS210		temp	22°C	FIOW	/ I/hr	Min:		Pressure (Pa)	Min:	
Well De	epth (m)	2.96	Groundwa from G		1.53	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)			1		
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂												
CO ₂												
CH ₄												
Remarks/	/Weather	14:10 Drv	, cloudy. No	bung.new	bung instal	led. Cover	СО	Max:		H ₂ s	Max:	
,	-	110 Di y	-	ight is 0.46	_	a. Cover	ppm	Min:		ppm	Min:	
				_						<u> </u>		
			Atma Dwa	aab	100			Max:	0.0	Diff	Max:	0
Well	ll No	WLS211	Atm Pre	ss mb temp	22°C	Flow	/ I/hr	Min:	0.0	Pressure (Pa)	Min:	0
Well De	epth (m)	2.34	Groundwa from G		1.63	voc	ppm	Max:	0.3	LEL %	Max:	0.0
			Home	JL (III)		T: (C		Min:	0.3		Min:	0.0
	20	60	00	120	100	Time (S		200	420	400	F40	600
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.3	19.2	19.2	19.2	19.2	19.2	19.3	19.4	19.4	19.5	19.5	19.5
CO ₂	1.8	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.6	1.6	1.7
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	/Weather	13:21 Dr	y, warm, clo	oudv. Cover	height 0.2	5m Small	со	Max:	0	H ₂ s	Max:	0
				of web in th	-		ppm	Min:	0	ppm	Min:	0
										<u> </u>		
			Atm Press	mb	1001			Max:	0.6	Diff	Max:	3
Well	ll No	WLS212	Admiricas	temp	22°C	Flow	/l/hr	Min:	0.0	Pressure	Min:	0
			Groundwa	ator lovel				Max:	0.2	(Pa)	Max:	0.0
Well De	epth (m)	2.94	from G		Dry	voc	ppm	Min:	0.2	LEL %	Min:	0.0
				, ,		Time (S	econds)	141111.	0.2		IVIIII.	0.0
}	30	60	1.2	120	180	240	300	360	420	480	540	600
	30		1.2	120	100	240	300	300	720	700	340	000
O ₂	19.7	1.2	1.3	19.6	19.6	19.7	19.7	19.6	19.7	19.7	19.7	19.7
CO ₂	1.2	1.2	1.2	1.3	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH₄			J					I			I	
CH ₄ Remarks/	/Weather	13:44 Drv	, warm, clou	ıdy. Height	of cover 0.	25m Small	со	Max:		H ₂ s	Max:	

	roject Nam		Projec	rt No	To	ech	Dr	ite		Equipme	nt Head	
<u> </u>	oxford	ie	JN16			b b		y 2022		GA2		
	CATOTO		1 31410	,,,,	<u> </u>	·~	00 301	, 2022		GAZ		
			I	.1	1026	Π		Max:	0.1	Diff	Max:	
Wel	ll No	209	Atm Pres	s mb temp	23	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	
Well De	epth (m)		Groundwa		1.27	voc	ppm	Max: Min:		LEL %	Max: Min:	
	<u> </u>			(,		Time (S	econds)	IVIIII.			IVIIII.	
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.9	19.8	19.8	19.6	19.6	19.6	19.5	19.6	19.8			
CO ₂	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.2	1.2			
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Remarks	/Weather						со	Max:		H₂s	Max:	
							ppm	Min:		ppm	Min:	
		244	Atm Pre	ss mb	1026			Max:	0.0	Diff	Max:	
Wel	ll No	211		temp	23	Flow	/ l/hr	Min:	0.0	Pressure (Pa)	Min:	
			Groundwa	ater level				Max:			Max:	
Well De	epth (m)		from G		1.67	voc	ppm	Min:		LEL %	Min:	
			<u>. </u>			Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.9	18.8	18.8	18.7	18.8	18.9	19.0	19.1	19.2	19.4		
CO ₂	1.2	1.3	1.3	1.4	1.4	1.3	1.2	1.2	1.1	1.1		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks	/Weather	-		-		-	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
			1	1		ı		1		Diff	ı	
Wel	ll No	212	Atm Press		1026	Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
	-			temp	23		,	Min:	0.0	(Pa)	Min:	
Well De	epth (m)		Groundwa		Dry	VOC	ppm	Max:		LEL %	Max:	
	- p (111)		from G	iL (m)	2.7			Min:			Min:	
			, ,				econds)			-	-	
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.9	19.9	20.0	20.1	20.3	20.1	20.4	20.4	20.4	20.4		
CO ₂	0.3	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1		
Remarks	/Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	

Pi	roject Nam	e	Proje	ct No	Te	ch	Da	ate		Equipme	ent Used	
	oxford		JN1	683	р	b	08 Jul	y 2022		GA2	.000	
			1	T						I = .ee	ı	
Well	l No	210	Atm Pre		1026	Flow	/ l/hr	Max:	-0.2	Diff Pressure	Max:	
				temp	26			Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundw from (1.76	voc	ppm	Max: Min:		LEL %	Max: Min:	
				(,		Time (S	econds)	IVIIII.		ļ	IVIIII.	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.3	19.3	19.3	19.3	19.3	19.5	19.6	19.7	20.0	19.9	19.8	20.2
CO ₂	1.5	1.5	1.5	1.5	1.6	1.5	1.4	1.3	1.2	1.2	1.2	1.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather		·				СО	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
			1		1027			Max:	0.0	Diff	Max:	
Well	l No	208	Atm Pre	ess mb temp	26	Flow	/ l/hr	Min:	0.0	Pressure	Min:	
			Groundw	•	20			Max:	0.0	(Pa)	Max:	
Well De	pth (m)		from (1.64	voc	ppm	Min:		LEL %	Min:	
			1	T		Time (S	econds)	1		1	ı	
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.5	18.6	18.4	18.4	18.4	18.5	18.6	18.6	18.6	18.7		
CO ₂	2.6	2.6	2.7	2.7	2.6	2.5	2.5	2.4	2.4	2.3		
CH ₄	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0		
Remarks/	Weather						CO	Max:		H ₂ s ppm	Max:	
							ppm	Min:		ppiii	Min:	
			Atm Press	s mb				Max:	-0.2	Diff	Max:	
Well	l No	207	Aun Pres	temp		Flow	/l/hr	Min:	-0.2	Pressure (Pa)	Min:	
Well De	pth (m)		Groundw from (voc	ppm	Max:		LEL %	Max:	
			l lioni	or (III)		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.7	19.7	19.6	19.6	19.6	19.6	19.7	19.8	20.0	20.3	20.3	20.4
CO ₂	1.8	1.8	1.8	1.8	1.9	1.9	1.8	1.7	1.5	1.2	1.2	1.2
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

P	roject Nam	ie	Proje	ct No	Te	ech	Da	ate		Equipme	ent Used	
	oxford		jn16	583	p	b	08 Jul	y 2022		GA2	.000	
Wel	l No	204	Atm Pres	ss mb	1027	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
				temp	23		· · · · · · · · · · · · · · · · · · ·	Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		0.88	voc	ppm	Max: Min:		LEL %	Max: Min:	
			1	,- (,		Time (S	econds)	IVIIII.		<u> </u>	IVIIII.	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	21.1	21.0	20.2	20.0	20.1	20.1	20.1	20.2	20.2			
CO ₂	0.0	0.1	0.6	1.0	0.9	0.8	0.9	0.9	0.9			
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Remarks/	'Weather			ļ			со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
Well	l No	202	Atm Pre	ss mb		Elov	/ l/hr	Max:	0.1	Diff Pressure	Max:	
vvei	INO	202		temp		Flow	, ,, ,, ,,	Min:	0.0	(Pa)	Min:	
Well De	nth (m)		Groundwa	ater level	2.13	VOC	ppm	Max:		LEL %	Max:	
well be	ptii (iii)		from 0	GL (m)	2.13			Min:		LEL /6	Min:	
			I I				econds)	· ·		<u> </u>		
	30	60	90	120	180	240	300	360	420	480	540	600
02	18.7	18.7	18.6	18.5	18.4	18.4	18.4	18.4	18.4	18.3	18.3	18.3
CO ₂	0.5	0.6	0.6	0.7	1.0	1.2	1.3	1.3	1.5	1.5	1.5	1.5
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	'Weather			0			0	0		H ₂ s	Max:	
								Min:		ppm	Min:	
			l			l		Max:	0.0	Diff	Max:	
Wel	l No	201	Atm Press	s mb temp		Flow	/ l/hr	Min:	0.0	Pressure	Min:	
									0.0	(Pa)		
Well De	pth (m)		Groundwa from G		1.44	voc	ppm	Max: Min:		LEL %	Max: Min:	
				, ,		Time (S	econds)	141111.		<u> </u>	141111.	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.0	19.2	19.2	19.3	19.3	19.5	19.8	19.9	19.9	20.0	20.0	20.0
CO ₂	CO ₂ 1.6 1.6 1.6 1.6			1.6	1.6	1.4	1.3	1.1	1.1	1.1	1.0	1.0
CH₄	CH ₄ 0.0 0.0 0.0 0.0 0.0							0.0	0.0	0.0	0.0	0.0
Remarks/	'Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Pi	roject Nam	e	Proje	ct No	Te	ech	Da	ate		Equipme	nt Used	
	oxford		jn1	583	р	b	08 Jul	y 2022		GA2	000	
			ı	T		ı				I = .co		
Wel	l No	206	Atm Pre	ss mb	1027	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
				temp	26		- 	Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundw from (1.23	voc	ppm	Max: Min:		LEL %	Max: Min:	
				, ,		Time (S	econds)				141111.	
•	30	60	90	120	180	240	300	360	420	480	540	600
02	19.7	19.6	19.5	19.5	19.3	19.3	19.3	19.3	19.4	19.6		
CO ₂	1.6	1.6	1.7	1.7	1.9	1.9	1.8	1.7	1.7	1.7		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks/	Weather					. <u> </u>	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
			I	T		I		1		Diff	T	
Wel	l No	203	Atm Pre			Flow	/ l/hr	Max:	0.0	Pressure	Max:	
				temp				Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundw from (1.38	voc	ppm	Max:		LEL %	Max:	
			IIIII	JL (III)		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	17.2	17.2	17.3	17.4	17.6	17.9	18.2	18.4	18.5	18.6		
CO ₂	1.9	1.9	1.9	1.9	1.8	1.7	1.6	1.5	1.4	1.4		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks/	'Weather					<u>I</u>	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
			1	ı		1				D:ec		
Wel	l No	205	Atm Press			Flow	/ l/hr	Max:	0.1	Diff Pressure	Max:	
				temp				Min:	0.0	(Pa)	Min:	
Well De	pth (m)		Groundw		dry	voc	ppm	Max:		LEL %	Max:	
1			from (эL (m)	,			Min:		<u> </u>	Min:	
	30	60	90	120	180	240	econds) 300	360	420	480	540	600
O ₂	19.7	19.8	19.9	20.0	20.2	20.2	20.2	20.2	720	700	340	
CO ₂	0.5	0.5	0.4	0.3	0.4	0.4	0.5	0.4				
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Remarks/	'Weather					ı	CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

P	roject Nam	ie	Proje	ct No	Te	ech	Da	ate		Equipment Used		
	Oxford		Jn1	683	ŗ	b b	14 Jul	y 2022		GA2		
			Atm Pre	ss mb	1016			Max:	0.0	Diff	Max:	
Wel	ll No	209		temp	17	Flow	/ I/hr	Min:	0.0	Pressure (Pa)	Min:	
Well De	epth (m)		Groundwa from C		1.32	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)				Į.	
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.2	20.2	20.2	20.1	20.1	20.1	20.1	20.1	20.1	20.1		
CO ₂	1.8	1.8	1.8	1.9	1.9	1.8	1.8	1.7	1.7	1.7		
CH₄	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks	/Weather		cunny	with small b	oreeze		со	Max:		H ₂ s	Max:	
			Sullily	With Sinair i	Jieeze		ppm	Min:		ppm	Min:	
Mo	ll No	211	Atm Pre	ss mb	1016	Elou	/ l/hr	Max:	0.0	Diff Pressure	Max:	
wei	II NO	211	temp		110		/	Min:	-0.1	(Pa)	Min:	
!! =			Groundwa	ater level				Max:			Max:	
Well De	epth (m)		from 0	GL (m)	1.71	Voc	ppm	Min:		LEL %	Min:	
			•			Time (S	econds)			•		
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.1	20.0	19.8	19.6	19.6	19.7	19.8	19.9	20.0	20.0	20.1	20.1
CO ₂	1.4	1.5	1.6	1.8	1.8	1.7	1.6	1.6	1.5	1.5	1.4	1.4
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	-	-	-	•	-	со	Max:		H ₂ s Max:		
							ppm	Min:		ppm	Min:	
				ı		I				D:tt		
Wel	ll No	212	Atm Press		1017	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
				temp			,	Min:	0.0	(Pa)	Min:	
Well De	epth (m)			ater level	Dry	voc	ppm	Max:		LEL %	Max:	
			from 0	GL (m)	,			Min:			Min:	
			1 1			1	econds)			1 1		
	30	60	90	120	180	240	300	360	420	480	540	600
02	21.0	21.0	21.0	21.0	20.9	20.9	20.9	20.8	20.8	20.8		
CO ₂	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Remarks	/Weather	-				•	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	

Pi	roject Nam	ie	Projec	ct No	Te	ch	Da	ate		Equipme	ent Used	
	oxford		jn16	583	р	b	14 Jul	14 July 2022		GA2	.000	
		1	ı							I =	1	
Well	l No	210	Atm Pres	s mb temp	1015	Flow	/ l/hr	Max: Min:	0.0	Diff Pressure	Max: Min:	
				•					0.0	(Pa)		
Well De	pth (m)		Groundwa from G		1.84	voc	ppm	Max: Min:		LEL %	Max: Min:	
						Time (S	econds)					
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.7	19.6	19.6	19.6	19.7	19.8	19.9	20.0	20.2	20.3	20.4	20.4
CO ₂	1.7	1.7	1.7	1.7	1.7	1.5	1.4	1.4	1.2	1.1	1.0	1.0
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks/	Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		Г	Ι	T	1016				0.2	Diff	24	
Well	l No	208	Atm Press mb_ temp		1016	Flow	/ l/hr	Max:	0.2	Pressure	Max:	
			·					Min:	0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.69	voc	ppm	Max: Min:		LEL %	Max: Min:	
			l			Time (S	econds)					
-	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	18.6	18.6	18.6	18.6	18.6	18.6	18.7	18.7	18.7	18.8	18.8	18.8
CO ₂	3.1	3.2	3.2	3.2	3.2	3.1	3.0	3.0	3.0	3.0	2.9	2.9
CH ₄	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Remarks/	Weather	-		•		со		Max:		H ₂ s Max:		
							ppm	Min:		ppm	Min:	
			ı	1	1010			. 1	0.2	Diff	3, 1	
Well	l No	207	Atm Press		1016	Flow	/ l/hr	Max:	-0.2	Pressure	Max:	
				temp				Min:	-0.1	(Pa)	Min:	
Well De	pth (m)		Groundwa from G		1.16	voc	ppm	Max:		LEL %	Max:	
			1101110	, E (,		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
02	19.7	19.8	19.8	19.8	19.8	19.9	20.3	20.4	20.5	20.6	20.6	20.7
CO ₂	2.1	2.1	2.1	2.1	2.1	2.1	1.7	1.5	1.4	1.3	1.3	1.2
CH₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Remarks/	Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	

Р	roject Nam	ie	Proje	ct No	Te	ech	Da	ate		Equipme	ent Used	
	oxford		jn16	583	р	pb 1		14 July 2022		GA2	GA2000	
		1	ı			1				I	1	
Wel	ll No	206	Atm Pres	ss mb temp	1015	Flow	/ l/hr	Max:	0.0	Diff Pressure	Max:	
			Groundwa	•	18			Min: Max:	0.0	(Pa)	Min: Max:	
Well De	epth (m)		Groundwater level from GL (m)		1.26	voc	ppm	Min:		LEL %	Min:	
						Time (Seconds)						
	30	60	90	120	180	240	300	360	420	480	540	600
02	20.1	20.0	19.9	19.9	19.8	19.8	19.8	19.9	19.9	19.9	19.9	20.1
CO ₂	1.7	1.8	1.8	1.8	1.9	1.9	1.8	1.6	1.6	1.5	1.5	1.4
CH₄	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather						со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
		I	I		1016	I			2.2	Diff	- I	
Wel	ll No	205	Atm Pre	Atm Press mb		Flow	Max: / l/hr		0.0	Pressure	Max:	
			tem					Min:	0.0	(Pa)	Min:	
Well De	epth (m)		Groundwa		dry	VOC ppm		Max:		LEL %		
			from GL (m)		<u> </u>			Min:			Min:	
		1	l I	1	Time (Second			1		T		
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.5	20.5	20.6	20.6	20.6	20.6	20.6	20.8	20.8	20.8	20.7	20.8
CO ₂	0.7	0.6	0.6	0.5	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7
CH₄	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1
Remarks	/Weather	-	-	-	со		со	Мах:		H ₂ s Max:		
							ppm	Min:		ppm	Min:	
		ı	I	1		ı		1		Diff	T	
Wel	ll No	203	Atm Press		1016	Flow	/ l/hr	Max:	0.0	Pressure	Max:	
				temp				Min:	0.0	(Pa)	Min:	
Well De	epth (m)		Groundwa from G		1.43	voc	ppm	Max:		LEL %	Max:	
	1		li olii e	JL (III)		Time (S	oconds)	Min:			Min:	
	30	60	90	120	180	240	econds) 300	360	420	480	540	600
02	17.1	17.1	17.2	17.3	17.5	17.7	17.9	18.0	18.0	18.0	18.0	17.9
CO ₂	2.6	2.6	2.6	2.5	2.4	2.4	2.3	2.2	2.2	2.2	2.3	2.3
CH₄	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	
							I			I		

Р	roject Nam	ie	Proje	ct No	Te	ech	Da	ate	Equipment Used			
	oxford		jn16	583	р	b	14 Jul	y 2022		GA2	2000	
		Γ	I	T	4047	Π		1	0.0	Diff	1	
Wel	ll No	204	Atm Pres	ss mb temp	1017 22	Flow	/l/hr	Max: Min:	0.0	Pressure	Max: Min:	
			Groundwater level						0.0	(Pa)	Max:	
Well De	epth (m)		from G		0.91	voc	ppm	Max: Min:		LEL %	Min:	
		•		•		Time (Seconds)			!			
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	20.2	20.2	20.3	20.3	20.3	20.3	20.3	20.3	20.4	20.4	20.3	20.4
CO ₂	1.1	1.2	1.1	1.1	1.2	1.1	1.0	1.0	0.9	0.9	0.8	0.8
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather						со	Max:		H₂s	Max:	
						ppm	Min:		ppm	Min:		
		Π	I	T	1017	Π		Max:	0.0	Diff	Max:	
Wel	ll No	202	Atm Pre	ss mb temp	22	Flow	/ l/hr	Min:	0.0	Pressure	Min:	
			Cucumduu	Groundwater level				Max:	0.0	(Pa)	Max:	
Well De	epth (m)		from G		2.17	VOC ppm Min:				LEL %	Min:	
		•	•	•		Time (S	econds)			•	•	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	18.7	18.5	18.4	18.3	18.2	18.2	18.2	18.2	18.3	18.3	18.3	18.1
CO ₂	2.1	2.1	2.3	2.4	2.6	2.7	2.7	2.8	2.8	2.8	2.8	2.8
CH ₄	0.0	0.0	0.0	0.0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Remarks	/Weather	-	-	-		-	со	Max:		H ₂ s	Max:	
							ppm	Min:		ppm	Min:	
					1017	l		Max:	0.0	Diff	Max:	
Wel	ll No	201	Atm Press	mb temp	22	Flow	/ l/hr	Min:	0.0	Pressure	Min:	
Well De	epth (m)		Groundwa	ater level	1.45	voc	ppm	Max:	0.0	(Pa) LEL %	Max:	
			1 110111)		Time (S	econds)	Min:			Min:	
	30	60	90	120	180	240	300	360	420	480	540	600
O ₂	19.7	19.6	19.6	19.7	19.9	20.1	20.2	20.3	20.3	20.3	20.3	20.3
CO ₂	1.9	1.9	1.9	2.0	1.9	1.7	1.5	1.4	1.3	1.3	1.2	1.2
CH₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Remarks	/Weather						CO ppm	Max: Min:		H ₂ s ppm	Max: Min:	
										l .		

Head Office East Grinstead Tet: 01342 333100 enquiries@southerntesting.co.uk ST Consult Midlands Northampton Tel: 01604 500020 creaton@stconsult.co.uk ST Consult Thames Valley Hannington Tel: 01635 800 950 hannington@stconsult.co.uk ST Consult North West Warrington Tel: 01925 661 735 warrington@stconsult.co.uk

APPENDIX F

Pendimethaline Letter

Our Ref: OD/JK/RP/JN1683Rev1

Your Ref:

Wednesday 27 July 2022

Thomas Wolsey Property Limited C/O Glanville Consultant's Cornerstone House 62 Foxhalll Road Didcot Oxfordshire OX11 7AD

Re: Additional Herbicide Contamination Assessment at: Land East of Oxford Road, Water Eaton

National Grid Reference: SP 50500 11290

Geology: Wolvercote Sand and Gravel Member & Alluvium over Oxford Clay Formation

ST Consult

Twigden Barns, Brixworth Road Creaton, Northamptonshire NN6 8NN

t 01604 500020 f 01604 500021 e info@stconsult.co.uk w stconsult.co.uk ST Consult is a regional office of Southern Testing Laboratories Ltd

Joint Managing Director Dr J Kelly BSc PhD DIC

1 Authority

Dear Sir.

Our authority for carrying out this work is contained in a project order form completed by John Hanlon of Glanville Consultants. Dated 10th May 2022 (ref. Q220631 rev1).

2 Background and Objectives

This investigation and report has been conducted and prepared as an addendum report to a previous investigation completed on this site in March 2022 (ref. JN1597 Phase 2 Rev1), to which the reader is referred. The previous investigation recorded, what were considered, slightly elevated Pendimethalin concentrations 140µg/kg and 240µg/kg at TP108 and TP115 respectively.

In the absence of generic assessment criteria for Pendimethalin for human health in the UK, the results were initially compared with the European Food Safety Authority (EFSA) acceptable daily intake value of $125\mu g/kg$ within the JN1597 report. Based on the adopted screening value of $125\mu g/kg$, which is a very conservative value, the recorded concentrations of $140\mu g/kg$ and $240\mu g/kg$ were initially considered both a potential risk to human health and possible hotspots.

The object of this investigation was to undertake delineation sampling around the two possible hotspot areas, with an additional 10 samples across the wider site and a more detailed review of the available toxicity data to fully assess the potential risk.

3 Hot-spot Analysis

To assess the extent of the potential Pendimenthalin hotspot contamination discussed above, a delineation exercise was carried out comprising 4No shallow sampling around each location.

Eight delineation samples labelled HA108a - HA108d and HA115a - HA115d were taken around TP108 and TP115 respectively.

The results of the delineation sampling at each of the locations are presented in the tables below:

Location	Measured Concentration μg/kg)
TP108 (original location)	140
HA108a	76
HA108b	130
HA108c	95
HA108d	54
TP115 (original location)	240
HA115a	38
HA115b	31
HA115c	25
HA115d	32

The results of the delineation sampling show that the measured concentrations of the additional samples around both hotspot areas were generally less than the original concentrations. Around TP115, in particular, the measured concentrations were well below the potential hotspot identified.

4 Site-wide Analysis

To better assess whether the possible contamination risk was limited to the two locations identified in the initial investigation, 10 additional tests were undertaken across the site to increase the general data coverage. Of the 10 tests, Pendimethalin was recorded in 8 locations above the laboratory detection limit of $10\mu g/kg$.

A summary of the samples recording concentrations above the laboratory detection limit is presented in the table below.

Location	Measured Concentration μg/kg)
TP01	21
TP13	15
TP19	21
TP24	22
TP26	110
TP34	120
TP39	13
TP50	35

5 Screening Value

As discussed, there are currently no generic assessment criteria for Pendimethalin for human health in the UK. Using the CLEA UK model (software version 1.071), a number of Site Specific Assessment Criteria (SSAC) for Pendimethalin were derived, some of which are sensitivity analysis to provide confidence in our decision. Data regarding the physical and chemical properties of this contaminant were taken from various sources including European Food Safety Authority (EFSA Journal 2016;14(3):4420)') – 'Peer review of the pesticide risk assessment of the active substance pendimethalin' and 'Proposed EQS for Water Framework Directive Annex VIII substances: Pendimethalin (2012)'.

The European Food Safety Authority (EFSA derived an acceptable daily intake (ADI) of Pendimethalin as 0.125 mg/kg bw per day, based on the NOAEL of 12.5 mg/kg bw per day for hepatotoxicity observed in the 2-year toxicity study in dogs. The acute reference dose (ARfD) is 0.3 mg/kg bw, based on the NOAEL of 30 mg/kg bw per day for developmental toxicity observed in developmental toxicity study in rabbits.

Consumer risk assessment performed with the EFSA Pesticides Residues Intake Model (PRIMo rev 2A) indicates that there were no chronic or acute intake concerns identified, with theoretical maximum daily intake (TMDI) given as 1.4% of ADI and international short term intake (IESTI) given as 5.7% of the ARfD.

For this assessment, the **TMDI of 1.4% ADI** (1.75 μg/kg mg/kg bw per day) has been used in the CLEA model.

5.1 Site specific Modelling

The site is proposed to be developed for residential purposes with private gardens. The analysed soils comprised topsoil and sandy clay loamy subsoil. The soil types have been modelled as sandy Clay loam in the CLEA model.

Organic matter was recorded ranging between 2.9% and 5.6% with an average value of 3.9% therefore used in the model. An average pH value of 7 was also used in the model, again based on site-specific analysis. As a conservative measure, we have also modelled the risk assuming 1% SOM.

Derived Site Specific Assessment Criteria (SSAC)

SSAC (mg/kg)	SOM (%)	Oral HCV (µg/kg)	Comments
582	1	62.5	HCV based on 50% of Acceptable Daily Intake
1735	3.9	62.5	value of 125 μg/kg body weight/day

Sensitivity Analysis

By way of sensitivity analysis, ST Consult used the value of 12.5 μ g/kg (10% of ADI) in the CLEA model as the oral HCV and the resultant output is presented in the table below.

SSAC (mg/kg)	SOM (%)	Oral HCV (µg/kg)	Comments
116	1	12.5	HCV based on 10% of Acceptable Daily Intake
345	3.9	12.5	value of 125 μg/kg body weight/day

Further sensitivity analysis was carried out using the following Oral HCV values:

SSAC (mg/kg)	SOM (%)	Oral HCV (µg/kg)	Comments
57	1	6.25	HCV based on 5% of Acceptable Daily Intake
171	3.9	6.25	value of 125 μg/kg body weight/day

6 Risk Assessment & Conclusions

Pendimethalin is a selective herbicide used to control broadleaf weeds and grassy weed species in a number of crop and non-crop areas and on residential lawns and ornamentals. It has low water solubility, and the residues are tightly bound to soil and sediment particles, and the degree of sorption is dependent on the presence of organic matter.

The EPA factsheet also cited that Pendimethalin generally has been shown to be of low acute toxicity in humans, is essentially immobile in soil and is practically non-toxic by the dermal and inhalation routes.

The measured Pendimethalin concentrations above the laboratory detection limit ranged between 13 and 240 μ g/kg (0.013 and 0.240 mg/kg) across the site, which are several orders of magnitude below all the derived site-specific assessment criteria listed above.

Given the site history, it is not uncommon for trace levels of Pendimethalin, and/or other pesticides/herbicides to be present of sites such as this.

Based on the above, the recorded Pendimethalin in the soils at the site are not considered likely to pose any significant risk to human health. On this basis, no remediation or further work is considered necessary.

If you have any queries or we can be of further assistance, please do not hesitate to contact us

Yours faithfully,

Oliver de Jong BSc MSc FGS For and on behalf of Southern Testing Laboratories Limited

DDI: 01604 500022

Email: odejong@stconsult.co.uk

Contam Results

ST Consult Ltd Twigden Barns Brixworth Road Creaton Northamptonshire NN6 8NN

t: 01604 500020 f: 01604 500021

e: contamresults@stconsult.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-62311

Project / Site name: Land East of Oxford Road Samples received on: 01/06/2022

Your job number: JN1683 Samples instructed on/ 01/06/2022

Analysis started on:

Your order number: Analysis completed by: 06/06/2022

Report Issue Number: 1 Report issued on: 09/06/2022

Samples Analysed: 4 soil samples

Signed:

Adam Fenwick Technical Reviewer

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-62311 Project / Site name: Land East of Oxford Road

Lab Sample Number				2298678	2298679	2298680	2298681
Sample Reference				HA108a	HA108b	HA108c	HA108d
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.10	0.15	0.15	0.10
Date Sampled				30/05/2022	30/05/2022	30/05/2022	30/05/2022
Time Taken	,	•		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content % 0.01 NONE				2.5	6.4	3.3	1.3
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2

Pesticides

Pesticides							
Alachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Aldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Azinphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Azinphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-beta	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-delta	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Bifenthrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Carbophenothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlordane-cis	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlordane-trans	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlorfenvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlorothalonil	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Chlorpyrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cyfluthrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cyhalothrin (Lambda)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cypermethrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDD-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDD-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDE-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDE-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDT-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDT-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Deltamethrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Demeton-O	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Demeton-S	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Diazinon	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dichlorvos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dieldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dimethoate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dimethylvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan I (alpha isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan II (beta isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan sulfate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Endrin aldehyde	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endrin ketone	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Ethion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Etrimfos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenitrothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenthion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenvalerate (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Heptachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Heptachlor exo-epoxide	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Hexachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Hexachlorobutadiene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Isodrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Malathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10

Analytical Report Number: 22-62311 Project / Site name: Land East of Oxford Road

Lab Sample Number				2298678	2298679	2298680	2298681
Sample Reference				HA108a	HA108b	HA108c	HA108d
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.15	0.15	0.10
Date Sampled				30/05/2022	30/05/2022	30/05/2022	30/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Methacrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Methoxychlor, p,p'-	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Mevinphos, E+Z	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Omethoate	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Parathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Parathion-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pendimethalin	μg/kg	10	NONE	76	130	95	54
Pentachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Permethrin, Cis-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Permethrin, Trans-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phorate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phosalone	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phosphamidon (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pirimiphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pirimiphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Propetamphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Propyzamide	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Tecnazene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trifluralin	μg/kg	10	NONE	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 22-62311 Project / Site name: Land East of Oxford Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2298678	HA108a	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2298679	HA108b	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298680	HA108c	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298681	HA108d	None Supplied	0.1	Brown clay and loam with gravel and vegetation.

Analytical Report Number : 22-62311 Project / Site name: Land East of Oxford Road

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Pesticides by GC-MS/MS	Detemination of Pesticides in soil by GC MS/MS	In-house method	L055B-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 22-62311 Project / Site name: Land East of Oxford Road

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HA108a	None Supplied	S	2298678	b	Pesticides by GC-MS/MS	L055B-PL	b
HA108a	None Supplied	S	2298678	b	Pesticides extraction	L055B-PL	b
HA108b	None Supplied	S	2298679	b	Pesticides by GC-MS/MS	L055B-PL	b
HA108b	None Supplied	S	2298679	b	Pesticides extraction	L055B-PL	b
HA108c	None Supplied	S	2298680	b	Pesticides by GC-MS/MS	L055B-PL	b
HA108c	None Supplied	S	2298680	b	Pesticides extraction	L055B-PL	b
HA108d	None Supplied	S	2298681	b	Pesticides by GC-MS/MS	L055B-PL	b
HA108d	None Supplied	S	2298681	b	Pesticides extraction	L055B-PL	b

ST Consult Ltd Twigden Barns Brixworth Road Creaton Northamptonshire NN6 8NN

t: 01604 500020 **f:** 01604 500021

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-62317

Project / Site name: Land East of Oxford Road Samples received on: 01/06/2022

Your job number: Samples instructed on/ 01/06/2022

Analysis started on:

Analysis completed by: 08/06/2022

Report Issue Number: 1 Report issued on: 09/06/2022

Samples Analysed: 14 soil samples

JN1683

Signed:

Adam Fenwick Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number			·	2298692	2298693	2298694	2298695	2298696
Sample Reference				TP01	TP12	TP13	TP19	TP24
Sample Number				None Supplied				
Depth (m)	0.15	0.15	0.15	0.15	0.20			
Date Sampled	20/05/2022	20/05/2022	20/05/2022	23/05/2022	23/05/2022			
Time Taken	e Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	21	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	13	10	9.7	12
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1

Pesticides

Pesticides								
Alachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Aldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Azinphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Azinphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
BHC-beta	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
BHC-delta	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Bifenthrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Carbophenothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Chlordane-cis	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Chlordane-trans	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Chlorfenvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Chlorothalonil	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Chlorpyrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Cyfluthrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Cyhalothrin (Lambda)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Cypermethrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDD-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDD-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDE-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDE-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDT-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
DDT-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Deltamethrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Demeton-O	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Demeton-S	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Diazinon	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Dichlorvos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Dieldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Dimethoate	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Dimethylvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Endosulfan I (alpha isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Endosulfan II (beta isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Endosulfan sulfate	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Endrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Endrin aldehyde	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Endrin ketone	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Ethion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Etrimfos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Fenitrothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Fenthion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Fenvalerate (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Heptachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Heptachlor exo-epoxide	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Hexachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Hexachlorobutadiene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Isodrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Malathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Lab Sample Number				2298692	2298693	2298694	2298695	2298696
Sample Reference				TP01	TP12	TP13	TP19	TP24
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.20
Date Sampled				20/05/2022	20/05/2022	20/05/2022	23/05/2022	23/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Methacrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Methoxychlor, p,p'-	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Mevinphos, E+Z	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Omethoate	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Parathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Parathion-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pendimethalin	μg/kg	10	NONE	21	< 10	15	21	22
Pentachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Permethrin, Cis-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Permethrin, Trans-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phorate	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phosalone	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phosphamidon (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pirimiphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pirimiphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Propetamphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Propyzamide	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Tecnazene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trifluralin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample}$

Lab Sample Number				2298697	2298698	2298699	2298700	2298701
Sample Reference				TP26	TP39	TP34	TP47	TP50
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.15	0.15	0.15	0.15	0.15			
Date Sampled	19/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	21	13	< 0.1
Moisture Content	%	0.01	NONE	15	7.8	12	8.4	11
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1

Alachlor μg/kg 10 NONE < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
Azinphos-ethyl µg/kg 10 NONE < 10 < 10 < 10 < 10 < 10 Azinphos-methyl µg/kg 10 NONE < 10 < 10 < 10 < 10 Azinphos-methyl µg/kg 10 NONE < 10 < 10 < 10 < 10 BHC-alpha (benzene hexachloride) µg/kg 10 NONE < 10 < 10 < 10 < 10 BHC-beta µg/kg 10 NONE < 10 < 10 < 10 < 10 BHC-delta µg/kg 10 NONE < 10 < 10 < 10 < 10 BHC-gamma (Lindane, gamma HCH) µg/kg 10 NONE < 10 < 10 < 10 < 10 Bifenthrin µg/kg 10 NONE < 10 < 10 < 10 < 10 Carbophenothion µg/kg 10 NONE < 10 < 10 < 10 < 10 Carbophenothion µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlordane-cis µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlordane-trans µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 20 NONE < 20 < 20 < 20 < 20 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 20 NONE < 20 < 20 < 20 < 20 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 20 NONE < 20 < 20 < 20 < 20 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 20 NONE < 20 < 20 < 20 < 20 < 20 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 < 10 Chlorothalonii µg/kg 10 NONE < 10 < 10 < 10 Chlo	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
Azinphos-methyl μg/kg 10 NONE < 10 < 10 < 10 < 10 BHC-alpha (benzene hexachloride) μg/kg 10 NONE < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
BHC-alpha (benzene hexachloride)	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
BHC-beta µg/kg 10 NONE < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
BHC-delta	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 20
BHC-gamma (Lindane, gamma HCH)	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 20
Bifenthrin	< 10 < 10 < 10 < 10 < 10 < 20
Carbophenothion μg/kg 10 NONE < 10 < 10 < 10 < 10 Chlordane-cis μg/kg 10 NONE < 10	< 10 < 10 < 10 < 10 < 20
Chlordane-cis μg/kg 10 NONE < 10 < 10 < 10 < 10 Chlordane-trans μg/kg 10 NONE < 10	< 10 < 10 < 10 < 20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 20
Chlorpyrifos μg/kg 10 NONE < 10 < 10 < 10	
G. 10. F.	
Cufluthrin (Sum) 44/8 10 NONE < 10 < 10 < 10	< 10
Cynadini (Sun)	< 10
Cyhalothrin (Lambda) µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Cypermethrin (Sum) µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
DDD-o,p' $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
DDD-p,p' $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
DDE-o,p' µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
DDE-p,p' µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
DDT-o,p' µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
DDT-p,p' µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Deltamethrin μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Demeton-O μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Demeton-S μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Diazinon μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Dichlorobenzonitrile, 2,6- μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Dichlorvos μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Dieldrin μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Dimethoate μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Dimethylvinphos μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Endosulfan I (alpha isomer) μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Endosulfan II (beta isomer) $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
Endosulfan sulfate μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Endrin μg/kg 20 NONE < 20 < 20 < 20 < 20	< 20
Endrin aldehyde	< 10
Endrin ketone $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
Ethion μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Etrimfos $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
Fenitrothion µg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Fenthion $\mu g/kg$ 10 NONE < 10 < 10 < 10 < 10	< 10
Fenvalerate (Sum)	< 10
Heptachlor μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Heptachlor exo-epoxide μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Hexachlorobenzene μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Hexachlorobutadiene μg/kg 10 NONE < 10 < 10 < 10 < 10	< 10
Isodrin μg/kg 20 NONE < 20 < 20 < 20 < 20	< 20
Malathion μg/kg 10 NONE < 10 < 10 < 10 < 10	

Lab Sample Number				2298697	2298698	2298699	2298700	2298701
Sample Reference				TP26	TP39	TP34	TP47	TP50
Sample Number				None Supplied				
Depth (m)				0.15	0.15	0.15	0.15	0.15
Date Sampled				19/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Methacrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Methoxychlor, p,p'-	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Mevinphos, E+Z	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Omethoate	μg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Parathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Parathion-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pendimethalin	μg/kg	10	NONE	110	13	120	< 10	35
Pentachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Permethrin, Cis-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Permethrin, Trans-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phorate	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phosalone	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Phosphamidon (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pirimiphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Pirimiphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Propetamphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Propyzamide	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Tecnazene	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
Trifluralin	μg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Lab Sample Number	•			2298702	2298703	2298704	2298705
Sample Reference				HA115a	HA115b	HA115c	HA115d
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)	0.10	0.10	0.10	0.10			
Date Sampled				23/05/2022	23/05/2022	23/05/2022	23/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	12	11	12
Total mass of sample received	kg	0.001	NONE	1	1	1	1

Pesticides

Pesticides							
Alachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Aldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Azinphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Azinphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-alpha (benzene hexachloride)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-beta	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-delta	μg/kg	10	NONE	< 10	< 10	< 10	< 10
BHC-gamma (Lindane, gamma HCH)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Bifenthrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Carbophenothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlordane-cis	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlordane-trans	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlorfenvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Chlorothalonil	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Chlorpyrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cyfluthrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cyhalothrin (Lambda)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Cypermethrin (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDD-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDD-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDE-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDE-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDT-o,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
DDT-p,p'	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Deltamethrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Demeton-O	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Demeton-S	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Diazinon	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dichlorobenzonitrile, 2,6-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dichlorvos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dieldrin	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dimethoate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Dimethylvinphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan I (alpha isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan II (beta isomer)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endosulfan sulfate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Endrin aldehyde	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Endrin ketone	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Ethion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Etrimfos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenitrothion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenthion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Fenvalerate (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Heptachlor	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Heptachlor exo-epoxide	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Hexachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Hexachlorobutadiene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Isodrin	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Malathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
· laida iio.	F31 · · 3			` 10	, 10	` 10	` 10

Lab Sample Number				2298702	2298703	2298704	2298705
Sample Reference				HA115a	HA115b	HA115c	HA115d
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.10	0.10
Date Sampled				23/05/2022	23/05/2022	23/05/2022	23/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Methacrifos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Methoxychlor, p,p'-	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Mevinphos, E+Z	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Omethoate	μg/kg	20	NONE	< 20	< 20	< 20	< 20
Parathion	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Parathion-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pendimethalin	μg/kg	10	NONE	38	31	25	32
Pentachlorobenzene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Permethrin, Cis-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Permethrin, Trans-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phorate	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phosalone	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Phosphamidon (Sum)	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pirimiphos-ethyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Pirimiphos-methyl	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Propetamphos	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Propyzamide	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Tecnazene	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Tetrachlorobenzene, 1,2,4,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,2,3-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trichlorobenzene, 1,3,5-	μg/kg	10	NONE	< 10	< 10	< 10	< 10
Trifluralin	μg/kg	10	NONE	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample}$

Analytical Report Number : 22-62317 Project / Site name: Land East of Oxford Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2298692	TP01	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298693	TP12	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298694	TP13	None Supplied	0.15	Brown clay and loam with vegetation and stones.
2298695	TP19	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298696	TP24	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2298697	TP26	None Supplied	0.15	Brown clay and loam with gravel and vegetation.
2298698	TP39	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2298699	TP34	None Supplied	0.15	Brown clay and loam with gravel and stones.
2298700	TP47	None Supplied	0.15	Brown clay and sand with gravel and stones.
2298701	TP50	None Supplied	0.15	Brown loam and clay with gravel.
2298702	HA115a	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2298703	HA115b	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2298704	HA115c	None Supplied	0.1	Brown clay and loam with gravel and vegetation.
2298705	HA115d	None Supplied	0.1	Brown clay and loam with gravel and vegetation.

Analytical Report Number : 22-62317 Project / Site name: Land East of Oxford Road

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Pesticides by GC-MS/MS	Detemination of Pesticides in soil by GC MS/MS	In-house method	L055B-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Analytical Report Number : 22-62317 Project / Site name: Land East of Oxford Road

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

			T				
Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HA115a	None Supplied	S	2298702	b	Pesticides by GC-MS/MS	L055B-PL	b
HA115a	None Supplied	S	2298702	b	Pesticides extraction	L055B-PL	b
HA115b	None Supplied	S	2298703	b	Pesticides by GC-MS/MS	L055B-PL	b
HA115b	None Supplied	S	2298703	b	Pesticides extraction	L055B-PL	b
HA115c	None Supplied	S	2298704	b	Pesticides by GC-MS/MS	L055B-PL	b
HA115c	None Supplied	S	2298704	b	Pesticides extraction	L055B-PL	b
HA115d	None Supplied	S	2298705	b	Pesticides by GC-MS/MS	L055B-PL	b
HA115d	None Supplied	S	2298705	b	Pesticides extraction	L055B-PL	b
TP01	None Supplied	S	2298692	b	Pesticides by GC-MS/MS	L055B-PL	b
TP01	None Supplied	S	2298692	b	Pesticides extraction	L055B-PL	b
TP12	None Supplied	S	2298693	b	Pesticides by GC-MS/MS	L055B-PL	b
TP12	None Supplied	S	2298693	b	Pesticides extraction	L055B-PL	b
TP13	None Supplied	S	2298694	b	Pesticides by GC-MS/MS	L055B-PL	b
TP13	None Supplied	S	2298694	b	Pesticides extraction	L055B-PL	b
TP19	None Supplied	S	2298695	b	Pesticides by GC-MS/MS	L055B-PL	b
TP19	None Supplied	S	2298695	b	Pesticides extraction	L055B-PL	b
TP24	None Supplied	S	2298696	b	Pesticides by GC-MS/MS	L055B-PL	b
TP24	None Supplied	S	2298696	b	Pesticides extraction	L055B-PL	b
TP26	None Supplied	S	2298697	b	Pesticides by GC-MS/MS	L055B-PL	b
TP26	None Supplied	S	2298697	b	Pesticides extraction	L055B-PL	b
TP34	None Supplied	S	2298699	b	Pesticides by GC-MS/MS	L055B-PL	b
TP34	None Supplied	S	2298699	b	Pesticides extraction	L055B-PL	b
TP39	None Supplied	S	2298698	b	Pesticides by GC-MS/MS	L055B-PL	b
TP39	None Supplied	S	2298698	b	Pesticides extraction	L055B-PL	b
TP47	None Supplied	S	2298700	b	Pesticides by GC-MS/MS	L055B-PL	b
TP47	None Supplied	S	2298700	b	Pesticides extraction	L055B-PL	b
TP50	None Supplied	S	2298701	b	Pesticides by GC-MS/MS	L055B-PL	b
TP50	None Supplied	S	2298701	b	Pesticides extraction	L055B-PL	b

CLEA Software Version 1.071 Page 1 of 11

Report generated 14-Jul-22

Report title Land East of Oxford Road, Water Eaton

Created by RJ at ST consult

RESULTS

CLEA Software Version 1.071 Report generated 14-Jul-22 Page 2 of 11

Environment Agency												Apply Top	2 Approac	h to Produ	ce Group	
	ı		i	i		i		i		applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	nit	.=
	Assessm	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV		50%	rule?	Two	>	۸e	>	ace	b fr	Į.
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Top T	Gree	Root	Tube	Herb	Shrub fruit	Tree fruit
1 Pendimethalin	5.82E+02	NR	NR	1.00	NR	NR	1.61E+01 (sol)	No	No	No	No	No	No	No	No	No
2																
3				ļ												
4																
5	İ			ļ			<u> </u>	ļ								
6				ļ	l I				ļ							
7				ļ												
8				ļ												
9	ļ	<u> </u>		<u> </u>				<u> </u>								
10				į	i I	İ		<u> </u>	i i	i !						
11				ļ	l I				ļ							
12	İ			ļ			<u> </u>	ļ								
13	ļ			ļ				ļ	ļ							
14 15 16		į		<u> </u>	į			<u> </u>	į	i						
15		!		<u> </u>		ļ		<u> </u>	!							
16	1	! !		ļ	! ! !			ļ	<u> </u>							
17		į		<u> </u>	į			<u> </u>	į	i						
18	<u> </u>	ļ		ļ				ļ	<u> </u>							
19			<u> </u>	ļ				ļ								
20	İ			<u> </u>			<u> </u>	į .								

CLEA Software Version 1.071		Repo	rt generated	14-Jul-22				Page 3 of 1	11							
Environment Agency												Apply Top	2 Approac	h to Produ	uce Group)
	į		į	1 1		į	!	ı		= o applied?	vegetables	Root vegetables	vegetables	erbaceous fruit	fruit	ij
		ment Criterion	· · · · ·	 	io of ADE to		Saturation Limit (mg kg ⁻¹)	į	rule?	ow T do	Green v	oot ve	uber v	ırbacı	Shrub fı	Tree fruit
	oral	inhalation	combined	oral	innalation	combined		Oral	Inhal	∐ º	ō	R	J_	Ξ̈́	က်	Ĕ
21	_	İ	ļ		ļ	<u> </u>	ļ		<u> </u>	<u> </u>						
22	i	<u> </u>	<u> </u>		1	<u> </u>		 	ļ							
23										<u> </u>						
24		ļ		ļ	1			ļ	ļ							
25		ļ]				!	•	İ	į						
26	į	ļ			Ī			į.	ļ	İ						
27		İ				1 1			İ	İ						
28		ļ			İ			ļ		İ						
29		ļ			1	1 1			1	<u> </u>						
30	-	į		ŀ		1 1		ŀ		ir —						

CLEA Software Version 1.07	7 1	•	•	•	•	Repo	ort generated		•	14-Jul-22			•	•			Page 4 of 1	1
Environment		Soil Dis	tributio	on							Media	a Concentr	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	!		mg kg ⁻¹ FW	mg kg ⁻¹ FW
1 Pendimethalin	99.3	0.7	0.0	100.0	5.82E+02	9.07E-04	2.91E+02	2.48E-07	0.00E+00	9.01E-05	2.77E-03	0.00E+00	4.92E+01	1.10E+02	2.12E+02	0.00E+00	0.00E+00	1.01E+00
2	Ì	1		Ì											<u> </u>			
3																		
4			İ	Ī														
5			į	ļ														
6			İ	Ī		ļ												
7	1	İ	į.	İ		ĺ		ĺ	ĺ						İ			
8		İ	į.	İ						į	į	į						
			ļ	İ											İ			
10	1		İ	İ										İ				
11			ļ	ļ .							i !							
12	1	Î	İ	Ì	ĺ	ĺ	ĺ	ĺ	ĺ	ĺ	ĺ	ĺ		İ				
13			İ	[
14	Ì	Ì	ĺ	1	İ		İ											
15	1	İ	į.	İ		ĺ		ĺ	ĺ						İ			
16		İ	į	İ		İ			İ		į			!				
9 10 11 12 13 14 15 16	1	İ		İ		į		į	į	İ	İ	İ	İ	İ	ĺ			
18	1	İ	ĺ	Ì	İ	ĺ	İ	ĺ	ĺ	į	į	į			İ			
18 19	1		į	İ														
20		† !	!	1		 		 	 				!					

CLEA Software Version	า 1.071					Rep	ort generated			14-Jul-22							Page 5 of 1	1
Environment Agency		Soil Dis	stributio	on							Media	Concentra	itions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	ļ	!	!			mg kg ⁻¹ FW	mg kg ⁻¹ FW
21	İ	i	i i	Ì	İ	Ì	Ì				Ì		İ		İ		1	İ
22	ļ						î ! !											
23		1		[ļ													
24	ŀ		Ī	Ī	İ													
25	Į.	1			ļ													
26	į –	İ	İ	Ī	İ		İ											
27	į	ĺ	İ	İ	İ	İ	Î Î	ĺ			İ	ĺ	İ		İ			İ
28	İ	l	l l	İ	İ													
29	į	İ	ļ	İ	ļ	İ	i i	į			İ	į	İ	İ	İ	Í	İ	İ
30	į	i		İ	į .	į .	į	ļ			į			İ		l		

CLEA Software Version 1.071					Repo	ort generated	14-Jul-22					Page 6	of 11		
Environment Agency		Avera	ge Daily Ex	posure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dist	ribution by	/ Pathwa	y (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Pendimethalin	4.32E-03	5.59E-02	2.22E-03	9.63E-06	1.40E-04	9.85E-05	0.00E+00	6.91	89.38	3.55	0.00	0.00	0.00	0.16	0.00
2															
2 3 4 5														İ	
4															
5															
6	1										ļ				
7	İ	ĺ						ĺ	ĺ		ĺ		ĺ		
8				į	į		į	İ					İ	į	
9	İ	į	İ	İ	İ		İ	İ	į		İ	İ	İ	ļ	
10		ļ	İ	İ	İ		İ	ļ				İ		į	
11 12 13		į						İ	İ		İ	İ	İ	İ	
12	İ	ĺ						ĺ	ĺ		ĺ		ĺ		
13															
14															
15									<u> </u>	-					
16		į !						į	į		ļ	1	į	į	
17	!	<u> </u>						<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	
18									<u> </u>	-					
19	i !	i ¦		į	į		į	i i	i !		i ¦	İ	i !	į	
20															

CLEA Software Version 1.07	1				Repo	ort generated	14-Jul-22					Page 7	of 11		
Environment Agency		Avera	ge Daily Ex	posure (m	g kg ⁻¹ bw o	day ⁻¹)				Dist	tribution b	y Pathw	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21						<u> </u>									
22 23 24 25								1							
23													İ		
24				i I	i I		i I			i i		ļ]
25									ļ				ļ		
26									İ				İ		
27						i !		į	ļ			i i	ļ		
28		i				i		ĺ				į			
29		ļ		! !		ļ		i	ļ	<u> </u>		ļ	<u> </u>		
30		į	i	i	i	į	i		i	İ			i		į į

CLEA Software Version 1.071					Repo	rt generated	14-Jul-22	2							Page 8	of 11
Environment Agency		Oral Health Criteria Value (µg kg¹¹ BW day¹¹)	outout Catalonia (Atlanta Catalonia)	imaaton reauri Circia vaue (µg kg¹¹ ВW day¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day⁻¹)	Air-water partition coefficient (K_{aw}) $(cm^3 cm^{-3})$	Coefficient of Diffusion in Air $(m^2 s^{-1})$	Coefficient of Diffusion in Water ($m^2 \ s^{-1}$)	log K _{oc} (cm³ g¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g.g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Pendimethalin	TDI	62.5	NR	0	1.75	0	8.11E-08	3.97E-02	4.98E-06	3.95	5.4	0.1	0.5	10	1	1
_ 2	ļ	!														
2 3 4 5 6	į														į	
4	ļ															
5	į	ļ			ļ		ļ							ļ	ļ	
6	ļ	į			i i		į								İ	
7	ļ	ļ			ļ											
8	į															
9	ļ														ĺ	
9 10 11 12 13 14 15 16 17																
12				•									•			
13	į														į	
14																
15															<u> </u>	
16															_	
17																
18																
19																
20	ļ															

CLEA Software Version 1.0	71		Repo	ort generated	14-Jul-2	2							Page 9	of 11
Environment Agency	Oral Health Criteria Value (µg kg¹ BW day¹)	Inhalation Health Criteria Value (µg kg¹ BW day¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day¹)	Air-water partition coefficient (K_{aw}) (cm ³ cm ⁻³)	Coefficient of Diffusion in Air $(m^2 s^1)$	Coefficient of Diffusion in Water (m^2s^{-1})	log K _{oc} (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21			1	İ	į		İ	Ì	ĺ	į		İ	į	ĺ
22 23	ļ.			}	ļ		-	ļ	ļ	[}	
23				ļ	ļ		ļ	ļ	ļ				ļ	
24	į			İ	İ		İ	i	İ				İ	
25	ļ.					1		ĺ				î !		
26	İ			İ	İ		į	İ	į		į		į	
27	İ		1	İ	ļ	ĺ	İ	į		İ		İ	ļ	
28					İ		İ	İ	İ				İ	
29	İ		İ	İ	İ	ĺ	İ	ļ	İ	ļ		i i	İ	İ
30	İ		İ	İ	ļ		ļ	İ	ļ	İ		i	İ	

CLEA Software Version 1.071				Report generated	14-Jul-22				Page 10 of 11
Environment	Soil-to-water partition coefficient (cm^3g^4)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for root vegetables (mg g² plant DW or FW basis over mg g² DW soil)	Soil-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for free fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
1 Pendimethalin	5.17E+01	3.34E-03	3.09E-01	model	model	model	model	model	model
2		<u> </u>			-				
3	į								
4									
5									
6	į	į	i	i i i		i i i	i i i	i i i	
7	ļ								
8	ŀ								
9									
10	į								
11									
12	į								
13	-								
14	İ	<u> </u>	<u> </u>						
15	İ								
16	<u> </u>								
17	<u> </u>								
18	İ								
19									
20	į	j							

CLEA Software Version 1.0	71			Report generated	14-Jul-22				Page 11 of 11
Environment Agency	Soil-to-water partition coefficient (cm³ g²¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor for green vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for root vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)
21 22 23		İ							
22			-						
23		İ							
24		İ	İ						
25		Į.	[
26		ļ							
27	İ	İ		İ	İ	İ			
28		ļ							
29		İ							
30		1							

CLEA Software Version 1.071 Page 1 of 11

Report generated 14-Jul-22

Report title Land East of Oxford Road, Water Eaton

Created by RJ at ST consult

RESULTS

CLEA Software Version 1.071 Report generated 14-Jul-22 Page 2 of 11

Environment Agency												Apply Top	2 Approac	h to Produ	ce Group	
										applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	nit.	
	Assessn	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV		50%	rule?	Two	> =) A	۶. ۲	ace	b frı	fri
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Тор	Gree	Root	Tube	Herb	Shrub fruit	Tree fruit
1 Pendimethalin	1.73E+03	NR	NR	1.00	NR	NR	6.24E+01 (sol)	No	No	No	No	No	No	No	No	No
2	<u> </u>	<u>i</u>	<u> </u>	<u> </u>	İ	<u> </u>		<u> </u>	<u> </u>							
3	ļ															
4	1	-	<u> </u>	ļ	ļ	<u> </u>		ļ		-						
5	<u> </u>	1		<u> </u>			ļ	ļ								
6 7	<u> </u>	ļ	<u> </u>	ļ	ļ	!		ļ	ļ	-						
	<u> </u>	 	 	<u> </u>	i I		 	i 								
8	<u> </u>				} }				} }							
9 10	<u> </u>	<u> </u>	 	<u> </u>	<u>i</u>	i i	 	i I		l 						
11																
12	İ	ļ	 	<u> </u>	<u> </u>			<u> </u>								
13	<u> </u>				l			i								
14	1	1	1		<u> </u>				! !							
14 15				ļ	 			ļ								
16	!				!											
17	1	1														
18	į	İ		[į							
19	İ															
20																

CLEA Software Version 1.071		Repo	rt generated	14-Jul-22				Page 3 of	11							
Environment Agency												Apply Top	2 Approac	h to Produ	ıce Group)
	į		į	1 1		į	!	ı		= o applied?	vegetables	Root vegetables	vegetables	erbaceous fruit	fruit	<u> </u>
		ment Criterion	· · · · ·	 	io of ADE to		Saturation Limit (mg kg ⁻¹)	į	rule?	ow T do	Green v	oot ve	uber v	ırbacı	Shrub fı	Tree fruit
	oral	inhalation	combined	oral	innalation	combined		Oral	Inhal	∐ º	ō	R	J_	Ξ̈́	က်	Ļ
21	_	İ	ļ		1	<u> </u>	ļ		<u> </u>	<u> </u>						
22	i	<u> </u>	<u> </u>		1	<u> </u>		ļ	ļ	ļ						
23										<u> </u>						
24		ļ		ļ	1			ļ	ļ							
25		ļ]				!	ļ	İ	į						
26	į	ļ			Ī			į.	ļ	İ						
27		İ				1 1			İ	İ						
28		į							i	İ						
29	1	İ			1					<u> </u>			-			
30	-	ļ .							İ	İt .						

CLEA Software Version 1.07	71	•	•	•	•	Rep	ort generated		•	14-Jul-22			•	•			Page 4 of 1	1
Environment		Soil Dis	tributio	on							Media	a Concentr	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg ⁻¹ FW	mg kg ⁻¹ FW	!		mg kg ⁻¹ FW	mg kg ⁻¹ FW
1 Pendimethalin	99.8	0.2	0.0	100.0	1.73E+03	6.96E-04	8.67E+02	7.38E-07	0.00E+00	6.92E-05	4.19E-03	0.00E+00	3.78E+01	8.41E+01	1.63E+02	0.00E+00	0.00E+00	7.76E-01
2	ļ	1										i i		i I I	1			
3	ļ	l																
4	İ	İ	İ	Ī														
5	ļ		į	ļ														
6	İ	İ	İ	Ī		i !												
7	ļ	ļ	į.	İ		ĺ		ĺ							İ			
8	ļ	•	į.	İ					į			į						
	ļ	ļ	ļ	İ											İ			
10	İ	ļ	İ	İ									İ					
11	ļ	ļ	ļ	ļ .														
12	Ì	İ	İ	Ì	ĺ	ĺ	ĺ	ĺ	ĺ			ĺ	İ					
13		ļ	İ	[
14	İ	İ	ĺ	1	İ		İ											
15	ļ	ļ	į.	İ		ĺ		ĺ					ĺ		İ			
9 10 11 12 13 14 15 16	ļ	ļ		!		!		!					ļ					
17	İ	į		İ		İ		į	İ			İ	İ		ĺ			
18	ļ	į	ĺ	Ì	İ	[İ	ĺ	į			į			İ			
18 19	İ	İ	İ	İ														
20			!			 		 										

CLEA Software Version	า 1.071					Rep	ort generated			14-Jul-22							Page 5 of 1	1
Environment Agency		Soil Dis	stributio	on							Media	Concentra	itions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	ļ	!	!			mg kg ⁻¹ FW	mg kg ⁻¹ FW
21	İ	i	i i	Ì	İ	Ì	Ì				Ì		İ		İ		1	İ
22	ļ																	
23		1		[ļ													
24	ŀ		Ī	Ī	İ													
25	Į.	1			ļ													
26	į –	İ	İ	Ī	İ													
27	į	ĺ	İ	İ	İ	İ	İ	ĺ		ĺ	İ	ĺ	İ		İ			İ
28	İ	l	l l	İ	İ				i									
29	į	İ	ļ	İ	ļ	İ	İ	İ	İ	į	İ	į	İ	İ	İ	Í	İ	İ
30	į	i		İ	į .	į .	į	ļ	İ		į			İ		l		

CLEA Software Version 1.071					Repo	ort generated	14-Jul-22					Page 6	of 11		
Environment Agency		Avera	ge Daily Ex	posure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dist	ribution by	y Pathwa	y (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Pendimethalin	1.29E-02	4.29E-02	6.61E-03	2.87E-05	1.69E-04	9.85E-05	0.00E+00	20.58	68.68	10.58	0.00	0.00	0.00	0.16	0.00
2															
3								į	i				İ		
4															
5															
6	1														
7	İ	ĺ											ĺ		
8				į				į	į				İ		
9	İ											İ			
10 11		ļ	İ	İ				İ	İ			İ			
11		į						İ				İ	İ		
12	İ	ĺ											ĺ		
13								İ							
14	}	ļ						•					ļ		
13 14 15 16															
16		į !						į				1	į		
17	}	ļ						•	ļ				ļ		
18								ļ	ļ						
19								İ	İ				İ		
20) 					1						

CLEA Software Version 1.07	1		•		Rep	ort generated	14-Jul-22					Page 7	of 11		
Environment Agency		Avera	ge Daily Ex	oposure (m	g kg ⁻¹ bw (day ⁻¹)				Dis	tribution b	oy Pathw	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21 22 23															
22								}				-]	
23								į	İ	į		į	İ	İ	
24							j				j	j			
25								ļ				ļ			
26								ļ				į			
27		į			! !	į	i i	İ	! !		! !	į	! !	į	
28				i i	ļ		i i	İ			ļ	į		į	
29		<u> </u>			ļ			ļ	 	ļ	ļ	ļ	 	Ī	
30			ļ			į		į		į		į		į	

CLEA Software Version 1.071					Repo	rt generated	14-Jul-22	2							Page 8	of 11
Environment Agency		Oral Health Criteria Value (µg kg¹¹ BW day¹¹)	outout Catalonia (Atlanta Catalonia)	iniaation reatin Citeria value (µg kg ⁻¹ BW day ⁻¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day¹)	Air-water partition coefficient (K_{aw}) $(cm^3 cm^{-3})$	Coefficient of Diffusion in Air $(m^2 s^{-1})$	Coefficient of Diffusion in Water ($m^2 \ s^{-1}$)	log K _{oc} (cm³ g¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g.g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Pendimethalin	TDI	62.5	NR	0	1.75	0	8.11E-08	3.97E-02	4.98E-06	3.95	5.4	0.1	0.5	10	1	1
_ 2	ļ	!														
2 3 4 5 6	į														į	
4	ļ															
5	į	ļ			ļ		ļ							ļ	ļ	
6	ļ	i i			i !		į								İ	
7	ļ				ļ											
8	į															
9	ļ														ĺ	
9 10 11 12 13 14 15 16 17																
12													•			
13	į														į	
14																
15															<u> </u>	
16															_	
17																
18																
19																
20	ļ			-												

CLEA Software Version 1.0	71		Repo	ort generated	14-Jul-2	2							Page 9	of 11
Environment Agency	Oral Health Criteria Value (µg kg¹ BW day¹)	Inhalation Health Criteria Value (µg kg¹ BW day¹)	Oral Mean Daily Intake (µg day¹)	Inhalation Mean Daily Intake (µg day¹)	Air-water partition coefficient (K_{aw}) (cm ³ cm ⁻³)	Coefficient of Diffusion in Air $(m^2 s^1)$	Coefficient of Diffusion in Water (m^2s^{-1})	log K _{oc} (cm³ g⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21			1	İ	į		İ	Ì	ĺ	į		İ	į	ĺ
22 23	ļ.			}	ļ		-	ĺ		[}	
23				ļ	ļ		ļ	1					ļ	
24	į			İ	İ		İ						İ	
25	ļ.					1		1				î !		
26	İ			İ	İ		į	1		İ	į		į	
27	İ		1	İ	ļ	ĺ	İ	İ	İ	İ		İ	ļ	
28					İ		İ	İ					İ	
29	İ		İ	İ	İ	į	İ	İ	İ	ļ		i i	İ	İ
30	İ		İ	İ	ļ		ļ			İ		i	İ	

CLEA Software Version 1.071				Report generated	14-Jul-22				Page 10 of 11
Environment Agency	Soil-to-water partition coefficient (cm ³ g ¹)	Vapour pressure (Pa)	Water solubility (mg L^4)	Soli-to-plant concentration factor for green vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soli-to-plant concentration factor for herbaceous fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
1 Pendimethalin	2.02E+02	3.34E-03	3.09E-01	model	model	model	model	model	model
2									
3	į								
4									
5									
6	İ	į		i i i			i i	i i i	
7									
8									
9	1	ļ				!			
10									
11									
12									
13	ļ								
14									
15									
16	ļ	!	 		 	 		ļ !	
17	ļ								
18	į .								
19	ļ								
20	<u> </u>	<u> </u>							

CLEA Software Version 1.0	71			Report generated	14-Jul-22				Page 11 of 11
Environment Agency	Soil-to-water partition coefficient (cm³ g⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soil-to-plant concentration factor for green vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for root vegetables (mg g² plant DW or FW basis over mg g² DW soil)	Soil-to-plant concentration factor for tuber vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)
21 22 23									
22									
23									
24									
25									
26									
27	İ	ļ		İ	İ				
28									
29									
30									

Head Office East Grinstead Tel: 01342 333100 enquiries@southerntesting.co.uk

ST Consult Midlands Northampton Tel: 01604 500020 creaton@stconsult.co.uk

ST Consult Thames Valley Hannington Tel: 01635 800 950 hannington@stconsult.co.uk ST Consult North West Warrington Tel: 01925 661 735 warrington@stconsult.co.uk

