

Partnership No: OC 300776

Heyford Park Dorchester Living: Phase 9

Remediation Earthworks Completion Report

For Urban Regen Ltd. & Dorchester Living

May 2023

Report Ref: R1742-R23-v4

DOCUMENT CONTROL SHEET

Report Title:	Heyford Park, Dorchester Phase 9 Remediation Earthworks Completion Report
Client:	Urban Regen Ltd & Dorchester Living
Report Reference Number:	R1742b-R23
Report Status:	Final
Version:	v4
Report Date:	10 th May 2023

Signed for Smith Grant LLP:

	Name	Position	Signature	Date
Author	S D Miller BSc MCIWEM	Senior Consultant		10.05.23
Reviewer	D Wayland BSc MSc AssocClWM MClWEM C.WEM	Partner		10.05.23

Document Revision Record:

Version	Report Status	Date	Details of Revision
v1	Draft	13.08.21	Draft issued to client for comment
v2	Final	20.08.21	Final for issue.
v3	Final	05.12.22	Updated to included additional formation sampling / aggregate sampling results.
v4	Final	10.05.23	Minor edits following client comments.

This report has been prepared by Smith Grant LLP for the sole and exclusive use of Urban Regen Ltd and Dorchester Living. All reasonable skill, care and diligence has been exercised within the terms of the contract with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report may be relied upon or transferred to any other parties only with the express written authorisation of Smith Grant LLP, such consent not to be unreasonably withheld or delayed. If any Third Party comes into possession of this report, they rely on it at their own risk and the authors owe them no duty or care of skill.

Smith Grant LLP reserves the right to alter any of the foregoing information in the event of new information being disclosed or provided and in the light of changes to legislation, guidelines, and responses by the statutory and regulatory authorities.

Contents

- 1 Introduction
- 2 Remediation Strategy
- 3 Description of Works
- 4 Inspections and Testing
- 5 Conclusions and Recommendations

Drawings

- 01 Phase 9 Boundary Plan
- 02 Phase 9 Hotspot Investigations
- 03 Formation Sampling Locations
- 04 Outstanding Remedial Works

351-20-001-01A As built topographic survey and constraints (Sheet 1 of 9) 351-20-001-02B As built topographic survey and constraints (Sheet 2 of 9) 351-20-001-03B As built topographic survey and constraints (Sheet 3 of 9) 351-20-001-04A As built topographic survey and constraints (Sheet 4 of 9) 351-20-001-05A As built topographic survey and constraints (Sheet 5 of 9) 351-20-001-06B As built topographic survey and constraints (Sheet 5 of 9) 351-20-001-07A As built topographic survey and constraints (Sheet 6 of 9) 351-20-001-07A As built topographic survey and constraints (Sheet 7 of 9) 351-20-001-08A As built topographic survey and constraints (Sheet 8 of 9) 351-20-001-08A As built topographic survey and constraints (Sheet 8 of 9)

0521-PH9-102 Proposed Layout

Appendices

- A Walkover Photographic Record
- B Hotspot Photographic Record
- C Formation Validation Photographic Record
- D Laboratory Test Certificates
- E Ph9 Baseball Pitch Topsoil & Formation Report
- F PAH Ratio Cross Plot

1. Introduction

- 1.1. Planning Consent for the redevelopment of the area referred to as Phase 9 within the former RAF/USAF Upper Heyford Airbase New Settlement Area (NSA) was granted by Cherwell District Council (CDC) on 7th December 2016 (ref. 16/02446/F). Dorchester Living (DL) intend to redevelop the site with the construction of 296 residential dwellings with associated infrastructure and areas of landscaping and public open space.
- 1.2. Urban Regen Ltd. (URL) was instructed by DL to carry out demolition, remediation and preparatory earthworks within Phase 9 to allow construction works to commence. URL duly instructed Smith Grant LLP (SGP) to carry out the verification works and produce the earthworks completion reporting.
- 1.3. The above planning consent contains the following conditions relating to contamination remediation:

Pre-Commencement Conditions (phased)

- 10 No development shall take place within a phase or sub-phase hereby approved until a Remediation Strategy that includes the following components to deal with the risks associated with contamination of that phase or sub-phase has been submitted to and approved, in writing, by the Local Planning Authority:
- a). A preliminary risk assessment which has identified:
 - All previous uses.
 - Potential contaminants associated with those uses.
 - A conceptual model of the site indicating sources, pathways and receptors.
 - Potentially unacceptable risks arisings from contamination affecting that phase or subphase.
- b). A site investigation scheme, based on (a) to provide information for a detailed assessment of the risks to all receptors that may be affected, including those off-site.
- *c).* The results of the site investigation and the detailed risk assessment referred to in (b) and, based on these, an options appraisal and remediation strategy giving full details of the remediation measures required and how they are to be undertaken.
- d). A verification plan providing details of the data that will be collected in order to demonstrate that the works set out in the remediation strategy in (c) are complete and identifying and requirements for longer-term monitoring of pollutant linkages, maintenance and arrangements for contingency action.

Any changes to these components require the express written consent from the Local Planning Authority. The scheme shall be implemented as approved.

Conditions Requiring Approval or Compliance Before Specific Construction Stages

¹⁹ If, during development, contamination not previously identified is found to be present, no further development shall take place until full details of a remediation strategy detailing how the unsuspected contamination shall be dealt with has been submitted to and approved in writing by the Local Planning Authority. Thereafter the remediation strategy shall be carried out in accordance with the approved details.

Conditions Requiring Approval or Compliance Before Occupation

- 22 Prior to the first use or occupation of any phase or sub-phase of the development hereby approved, a verification report for that phase or sub-phase, demonstrating completion of works set out in the remediation strategy approved under Condition 10 and the effectiveness of the remediation shall be submitted to and approved, in writing, by the Local Planning Authority. The report shall include results of sampling and monitoring carried out in accordance with the approved verification plan to demonstrate that the site remediation criteria have been met. It shall also include any plan (a "long-term monitoring and maintenance plan") for longer-term monitoring of pollutant linkages, maintenance and arrangements for contingency action, as identified in the verification plan. The long-term monitoring and maintenance plan shall be implemented as approved.
- 1.4. It is understood that Condition 10a has been approved following consultation between Planning and the Local Authority Environmental Protection Officer (EPO) on 16.06.18 when it was acknowledged that an intrusive investigation and Remediation Strategy was required.
- 1.5. A site investigation report was produced by Hydrock (ref. HPW-HYD-MS-ZZ-RP-G-0001) in February 2017 which has been submitted to satisfy Condition 10b. LA EPO approval of this report was received on 04.11.20 under discharge of condition application 20/02729/DISC. Commentary was provided by the Environment Agency (EA) on 26.03.21 with general agreement of the findings of the site investigation but with requirements for further groundwater investigation within Phase 9 following building demolition and tank removal. The request for additional groundwater investigation was limited to the area of BH01 and BH02 and this element of the works was subsequently completed by Jomas Environmental Engineering (JEE) as reported in their Supplementary Geo-environmental Assessment Report for the site (ref: P2087J2052b/SC; 28th September 2021).
- 1.6. A Remediation Statement (10c) which covered Phase 9 and other development phases was prepared by Hydrock (ref. HPW-HYD-PX-REM-RP-GE-P1-S2, April 2017); however, it was decided that a revised Strategy should be produced to align remedial and verification works to the SGP Remediation Strategy which was produced to cover the neighbouring NSA areas (R1742-R01-v1; May 2014) under Planning Consent 10/1642/OUT for consistency. Approval of the Strategy was received from the LA on 26.03.21 and, following submission of the aforementioned JEE supplementary reporting, the EA also provided correspondence confirming approval of the Remediation Strategy on 15.12.21 under discharge of condition application 21/03858/DISC (EA ref: WA/2021/129492/01-L01).
- 1.7. This verification report is intended to assist in the discharge of Condition 10d (although some aspects can only be completed by the developers).
- 1.8. This report deals with the completion of preparatory remedial works by URL for DL across the Phase 9 area and this report (v3) has been specifically updated to include the additional formation testing and aggregate stockpile sampling following additional limited preparatory works within areas not previously accessible during the v2 reporting. The exception to this is

the former Phase 9 baseball pitch for which a separate completion report has been produced by SGP (ref. R1742-R22). The Phase 9 site and area covered by this report is provided in Drawing D01.

- 1.9. Remedial works were not completed in verge areas along the western boundary and in the southeast of the site due to coverage by several developer stockpiles and the presence of trees. These areas are shown within D04 and will be subject to further verification works and reporting at a later date.
- 1.10. A development layout has been provided by DL (ref. 0521-Ph9-102) which shows that the site is to comprise a variety of detached, semi-detached and terraced housing with private gardens, areas of public open space and associated infrastructure. A large area of public open space with a pond, children's play area and football pitch are proposed in the southeast of the site.

Figure 1.1 Approximate Phase 9 Boundaries

Red –Phase 9 area Blue – Phase 9 Baseball Pitch (report ref. R1742b-R22) Green – Area covered by this report (ref. R1742-R23-v3)

1.11. SGP has regularly inspected the URL preparatory earthworks carried out to date and has collected samples of recovered topsoil, formation soils, site generated aggregate and remediated hotspot areas. This report describes the works carried out, drawing conclusions, and making recommendations concerning the further works required by Dorchester in order to fully discharge Planning Conditions 10.

2. Remediation Strategy

2.1. Expected Contamination

- 2.1.1. The Phase 9 area formed part of the wider Upper Heyford Airbase which was developed and used by the United States Airforce. It is understood that the site originally formed housing for families living on the airbase, but once expansion of the base took place, the buildings were converted into the 'Upper Heyford American High School' with playing fields and a boiler house. The area of the site covered by this report is the main developed area of the site with the former dormitory buildings / classrooms and boiler house.
- 2.1.2. Identified known or potential contamination sources determined from the historical uses of the site and site investigations were generally found to be minor, consisting of low-level but pervasive contamination by metals / PAHs with localised areas of made ground and the potential for localised hydrocarbons associated with bulk fuel storage tanks within the area of the former boiler house.
- 2.1.3. Two localised hotspots (TP102 and TP104) were identified by Hydrock where black staining / tar odours were reported, however no source could be attributed to these observations so further investigation within both areas was recommended.
- 2.1.4. More recent supplementary works undertaken by SGP identified that the former POL (Petroleum Oil Lubricant) pipeline extended beneath the eastern portion of the Phase 9 area. The POL system was a supply pipe present on the Upper Heyford Flying Field which connected to the National Fuel Pipeline (NFP) located to the south of Phase 9 and transported fuel around the airbase. Decommissioning of the POL pipeline was undertaken and reported by Vertase (ref. 1246DOR) in 2012, but it was recognised that there was potential for fuel contamination around the pipeline. SGP undertook a supplementary investigation along the POL pipeline in January 2021 (ref. R1742b-R21) and identified a hydrocarbon hotspot attributed to the fuel pipeline in the north of the baseball pitch area.
- 2.1.5. The fuel hotspot area within the baseball pitch has been remediated and reported within the Phase 9 Baseball Pitch Completion Report (ref: R1742b-R22). As part of the supplementary investigation works, trial-pitting along the route of the pipeline was undertaken and no further impacted soils along the pipeline route were identified. It was, however, acknowledged that localised areas of impacted soils could be present along the pipeline and that the remediation contractor during removal of the pipeline should remain vigilant and notify SGP of any contamination indicators, if encountered. The pipework has now been removed from Phase 9 and URL have confirmed that no contamination indicators were encountered.
- 2.1.6. Natural background contamination may be present in the bedrock and soils. The site lies within, or adjacent to, the "ironstone domain" as described in DEFRA Technical Guidance Sheet TGS01 "Arsenic", July 2012, and within 1km of mapped outcrops of ironstones within

the Jurassic sedimentary rocks. Within the ironstone domain, the normal background concentration (NBC) of arsenic is reported to be 220 mg/kg; the NBC is defined as the upper 95% confidence limit of the 95th percentile of topsoil concentrations. This value substantially exceeds the criteria for garden soils (Remediation Strategy, Table 3.3).

2.2. <u>Remediation Objectives and Approach</u>

- 2.2.1. The key contamination remediation objectives are to:
 - create a significant betterment of the groundwater environment thereby protecting groundwater quality at and beyond the site boundary;
 - remove / remediate significant pollution sources such as hydrocarbon hotspots, if present, that pose a risk to man and the environment, to the extent feasible;
 - break significant or potentially significant future pollutant linkages resulting from the change of land use, in particular related to shallow garden soils and human exposure;
 - carry out further soil investigations / inspections to complete gaps in the existing investigation coverage;
 - respond appropriately to contingencies, in particular the discovery of previously undisclosed contamination;
 - remove development constraints and prepare the site physically to enable residential development;
 - manage all emissions to air and water to protect surface waters, groundwater and the atmosphere during the remediation works;
 - provide appropriate additional protection measures, where necessary, to be implemented during construction - including building gas barriers, water mains protection, and garden / open space soil quality and thickness.
- 2.2.2. The general requirements for garden and landscaped soils taken from the Remediation Strategy are as follows:
 - provision of 600mm of clean soil cover within garden areas / 300mm in soft landscaping where the underlying soils contain one or more concentrations of substances in excess of contamination targets set out in Table 3.3 of the Strategy;
 - materials to be used as garden/landscape soils must be suitable for use, validated, and comply with contamination targets set out in the Remediation Strategy at a rate of 1 sample per 500m³;
 - imported soils used for cover purposes to comply with contamination targets set out in the approved Remediation Strategy at a rate of 1 sample per 250m³ with a minimum of 3 samples per source;
 - in areas where natural uncontaminated soils are present following the site re-grade, clean topsoil may be required as a growing medium but there will be no requirement for a full 600mm of placed soil cover.

2.2.3. It is confirmed that Phase 9 may be generally classed as "Green" under the NHBC classification scheme with no special measures required to address risks posed by ground gas. In localised areas of hydrocarbon contamination such as around USTs / the fuel pipeline where it is not feasible to remove impacted soils (such as adsorption into bedrock etc) then post-remediation vapour monitoring may be necessary to assess whether vapour protection measures are required. In the absence of further monitoring or assessment then precautionary VOC protection measures may be required.

2.3. Site Characterisation

- 2.3.1. The site was formerly agricultural land with a surface watercourse (Gallos Brook) in the east until 1966 when the site was developed to form part of RAF Upper Heyford. It is understood that the site was originally used for the housing of families on the airbase before later being used as a school (Upper Heyford American High School) with playing fields, classrooms, a boiler house, gymnasium and playing fields / baseball pitches.
- 2.3.2. Gallos Brook, which was originally a surface watercourse, has since been culverted beneath the site. It is understood that surface water drainage from the wider airfield to the north discharges into the brook.
- 2.3.3. An oil-fired boiler house was located in the approximate centre of the site which is assumed to have provided heating to the former buildings on site with three associated underground storage tanks present. No significant contamination was reported by Hydrock who carried out the intrusive investigation on the site, however entries were limited around the tanks due to the presence of live services at the time of investigation. However, Hydrock borehole BH2 is located to the south of the boiler house (although not directly downgradient with groundwater flow reported in a south to southeast direction) within which elevated hydrocarbons were reported.
- 2.3.4. Following building demolition and tank removal, further groundwater monitoring works were undertaken by JEE as reported in their Supplementary Geo-environmental Assessment Report for the site (ref: P2087J2052b/SC; 28th September 2021). The works involved the drilling of 5 rotary boreholes to depths of 10m bgl (including a replacement borehole in the area of Hydrock borehole BH2) with the installation of monitoring wells to facilitate the collection of groundwater samples. Samples were collected from these boreholes on two occasions within which no hydrocarbons were reported above laboratory detection limits. It was therefore concluded that the groundwater underlying the site was not significantly impacted by petroleum hydrocarbons arising from historic uses of the site.
- 2.3.5. A Petroleum Oil Lubricant (POL) pipeline was present in the east of the site which extends from the southern boundary adjacent to Gallos Brook where it was formerly connected to the National Fuel Pipeline (NFP). The POL pipeline crossed the site via two routes: the first extended from the southern boundary in a northerly direction parallel to Gallos Brook up to

Camp Road, whilst a second spurred northwest running along the site's eastern boundary before later joining to the other pipeline within the Phase 9 baseball pitch area. The pipeline was decommissioned by Vertase in 2012 which included the clearing, foam filling and breaking of the pipeline.

- 2.3.6. SGP carried out supplementary investigation works along the POL pipeline in December 2020 and excavated 4 entries (TP8-TP11) within the main phase 9 site to confirm the presence / depth of the pipeline and assess the presence of any fuel impacted soils. The pipeline was encountered within all entries excluding TP11 and no fuel impacted soils around the pipeline were encountered. Impacted soils were limited to an area within the Phase 9 baseball pitch which has subsequently been remediated and validated (see report: R1742-R22).
- 2.3.7. Hydrock also identified two further potential contamination hotspots attributed to visual / olfactory contamination indicators and elevated hydrocarbon concentrations above GACs within entries TP102 and TP104. The descriptions suggest the presence of tar or bitumen which appear to be localised in nature; in any case, further investigation and remediation was recommended.
- 2.3.8. The site was found to have a generally thin veneer of made ground, largely consisting of reworked natural soils with inert inclusions such as glass and brick, however localised incidences of ash and asphalt were recorded.

2.4. Phase-specific Strategy

- 2.4.1. It was concluded that Phase 9 posed a localised risk of contamination associated with the former underground fuel tanks within the area of the former boiler house, localised areas of made ground containing anthropogenic inclusions of ash and asphalt, and two areas of elevated hydrocarbons associated with tar / bitumen indicators. It was also recognised that there was potential around the area of the decommissioned pipeline for any localised impacted soils associated with historical leeks, although no evidence has been reported to date to confirm this.
- 2.4.2. The site-wide strategy of ensuring clean cover soils to 600mm depth (subject to formation testing) is considered to be an appropriate approach. No requirement for the remediation of hydrocarbon impacted soils or groundwater was identified pending additional inspection / investigation of the former UST locations after emptying and removal of the tanks, removal of the decommissioned POL pipeline, and further investigation of two localised hotspot areas.

3. Description of Works

3.1. General Approach

- 3.1.1. Preparatory works within the main Phase 9 site included:
 - soft strip and vegetation clearance;
 - asbestos survey and strip in accessible buildings and structures;
 - segregation of waste materials including wood, metal and plastic for recovery / disposal;
 - demolition of all above ground structures;
 - recovery of topsoil.
- 3.1.2. Remediation earthworks within the main Phase 9 site included:
 - Grubbing out of relict ground floor slabs, foundations and roadways;
 - Removal / treatment of underground storage tanks in accordance with the Remediation Strategy;
 - Removal of decommissioned POL pipeline;
 - Further investigation / remediation of Hydrock hotspots TP102 & TP104;
 - Crushing on-site of suitable hard materials (masonry, concrete and brick) to recover aggregate for reuse.
- 3.1.3. The initial remediation and site preparatory works within the central, northern and eastern parts of Phase 9 (as reported in R1742-R23-v3) were carried out over a period from January 2021 to May 2021. URL then returned to site in October 2022 to carry out further remedial works in the south and along part of the western boundary; however, it is understood that remediation of some peripheral areas to the southeast and along parts of the western boundary are yet to take place and that these will be completed at a later date and will be subject to additional reporting. The areas where outstanding works are required are detailed on the accompanying URL as-built drawings appended to this report and within drawing D04.
- 3.1.4. The existing buildings were demolished following an asbestos survey and removal was carried out by a specialist sub-contractor (Elite). Removal of any asbestos containing material (ACM) from the buildings was carried out prior to demolition; copies of the asbestos survey reports and removal of ACM certificates are retained by URL and are available on request.
- 3.1.5. Relict structures including basal slabs, foundations and redundant infrastructure were removed. Recoverable materials such as concrete, brick and masonry were segregated before crushing to produce aggregate to be used by the developer as bulk fill or for construction platforms / sub-base under building footprints and roads. Scrap metal and any timbers were sent off-site for recycling. An estimated 13,356m³ of site-generated aggregate was placed within 4 temporary stockpiles (referred to as Ph9-Agg-SP1, Ph9-Agg-SP2, Ph9-Agg-SP3 & Ph9-Agg-SP4) which have been handed over to the developer for reuse within the

site. An additional circa 600m³ of aggregate was also produced on Phase 9 for reuse on the site from waste DH building materials from across the wider development (referred to as Ph9-DH-Agg) – results of the testing of this material are also included within this report.

3.1.6. Approximately 2,700m³ of topsoil was recovered from the site (mainly from verges around the former buildings) which has been stockpiled within the east of Phase 9. Shallow natural deposits of sandy clay or reworked natural deposits with occasional inclusions of inert materials (brick etc.) were present at surface level following removal of buildings, slabs and topsoil. Formation testing has been undertaken across the site as per the Remediation Strategy to establish the suitability of the shallow soils for retention within garden areas.

3.2 <u>Contamination Hot-Spots</u>

- 3.2.1 Three areas within Phase 9 (excluding the baseball pitch) were determined as potential contamination hotspots which required further investigation and, if necessary, remediation. These included:
 - USTs associated with the former boiler house
 - Hydrock TP102 (black staining and tar odour hydrocarbon exceedances)
 - Hydrock TP104 (black staining and tar odour) hydrocarbon exceedances)
- 3.2.2 The redundant fuel pipeline which crossed the eastern part of Phase 9 was also identified as a potential contamination hotspot, however supplementary investigation works along the pipeline prior to the commencement of remedial works did not identify any contamination beyond that which was present within the Phase 9 baseball pitch, as remediated and reported within SGP report R1742b-R22. A recommendation was therefore made for a watching brief to be maintained during the removal of the pipeline for any impacted soils which was duly undertaken and no contamination indicators were reported during these works.
- 3.2.3 Investigation, remediation and verification testing have been undertaken at the 3 potential hotspot areas as described in Section 4 and 5 of this report. Prior to the removal of the USTs and sampling of the resultant void, emptying and purging was completed by specialist contractor CSG.
- 3.2.4 All validation testing on the base and sidewalls of remedial excavations were carried out by SGP in accordance with the Remediation Strategy.

3.3 Validation of Formation Level Strata

3.3.1 It is a requirement under the Remediation Strategy that a 600mm cover of clean soils is to be placed over made ground in garden areas; however, due to the requirement to trim development areas by -200mm below existing ground levels, made ground was largely absent due to the shallowness of the natural strata or comprised inert materials (brick fragments etc.) within reworked natural soils. This meant that a 400mm depth of natural soil /

reworked natural soils with occasional inert inclusion (brick etc.) could form part of the full 600mm of garden soil cover after placement of garden topsoil.

- 3.3.2 In-situ sampling of the formation level strata was carried out by sampling of the upper 400mm at a test frequency of 1 sample per 500m³, the residual 400mm depth equating to 1 sample per 1,250m² plan area of development. Seventy-four in-situ samples were collected from the exposed formation level with depth validation photos showing the 0-400mm soil profile. Samples were analysed for a suite of contaminants as specified with the Remediation Strategy.
- 3.3.3 Where exceedances have been reported further assessment has been made and/or recommendations for an appropriate soil cover system to be adopted as per the Strategy requirements.

3.4 Site Waste Management

3.4.1 As described previously, waste materials removed from the Phase 9 area included timber, scrap metal and ACM. Wood and metal were carefully segregated and sent off-site to be recycled and ACMs were stripped from the buildings prior to demolition by an appropriately qualified sub-contractor and disposed at an appropriate waste accepting facility. URL maintain copies of all waste transfer documentation which can be provided on request.

3.5 Constraints and Limitations

3.5.1 Remedial works have been carried out across the vast majority of the Phase 9 area as per the accompanying as-built drawings; however, remedial works are still required within some peripheral verge areas in the southeast and along the western boundary. Further verification reporting within these outstanding areas including formation testing, as necessary, are still required as per drawing D04.

3.6 <u>Unforeseen Contamination</u>

3.6.1 During the removal of surface hardstanding in the northwest, fragments of ACM were observed within the top 0.5m of soils within a localised area. An excavator was used to expose the soils whilst a specialist sub-contractor carried out hand-picking to remove visible ACM. Removed ACM was double-bagged and disposed of to a suitable accepting waste facility. Following the completion of hand-picking, SGP attended site and collected 8 samples from the remediated area (1 sample per 5m²) for asbestos identification to confirm the absence / presence of residual fibres within the shallow soils.

4. Inspections and Testing

4.1. SGP attended the site on 1 occasion in 2018 to carry out a pre-remediation walkover, 11 visits during the first phase of remediation earthworks, 1 visit following completion of the first phase of earthworks (08.06.21), 2 visits following completion of the second phase of remediation earthworks and to carry out formation sampling (18-19.10.22) and a final visit to carry out aggregate stockpile sampling (25.10.22). The dates and activities carried out in the Phase 9 area during SGP attendance cross-referenced to the site inspection photographic record (Appendix A), hotspot photographic record (Appendix B), formation soil photographic record (Appendix C) and laboratory analysis (Appendix D) are summarised in the table below.

Date	Description of Site Works	SGP Activities	Record
22.05.18	None	Pre-commencement walkover	Appendix A – Photo 1-7
20.01.21	Vegetation strip (north) / ACM strip	Site walkover	Appendix A - Photos: 8-10
02.02.21	Building demolition / recovery of waste materials / breaking out hardstanding / ACM strip	Site walkover	Appendix A - Photos: 11-13
08.02.21	Recovery of building demolition wastes / regrade in area of eastern most buildings following ACM strip / demolition	Site walkover	Appendix A – Photos 14-16
16.02.21	Substation demolition, ACM strip	Site walkover	Appendix A – Photos 17-22
17.02.21	Substation demolition, ACM strip	Site walkover / HS-TP104 investigation	Appendix B – HS-TP104 Appendix D - Lab Ref: 21- 2316
02.03.21	Building demolition / ACM strip / material recovery	Site walkover / Formation sampling (S1-S11)	Appendix A – Photos 23-28 Appendix C – Photos 1-11 Appendix D - Lab Ref: 21- 06789
09.03.21	Building demolition / ACM strip / material recovery / removal of hardstanding	Site walkover / Formation sampling (S12-S23) / exposure of UST tanks	Appendix A – Photos 29-36 Appendix C – Photos 12-23 Appendix D - Lab Ref: 21- 07749
06.04.21	Crushing hardstanding / waste recovery	Site walkover / Formation sampling (S24-S37) / aggregate sampling / topsoil sampling	Appendix A – Photos 37-42 Appendix C – Photos 24-37 Appendix D - Lab Ref: 21- 11321, 21-11315
20.04.21	Crushing hardstanding / waste recovery / ACM handpick within HS-ACM	Site walkover / aggregate sampling	Appendix A – Photos 43-49 Appendix D - Lab Ref: 21- 13303

Table 4.1 SGP Inspection Summary

Date	Description of Site Works	SGP Activities	Record
28.04.21	Crushing hardstanding	Site walkover / Formation sampling (S38-S51) / HS-TP102 investigation / HS-ACM sampling / UST validation sampling / aggregate sampling	Appendix A – Photos 50-53 Appendix B – HS-TP104; HS-ACM, HS-UST Appendix C – Photos 38-51 Appendix D – 21-14510, 21-14505, 21-14506, 210506-141
13.05.21	None – first phase of works completed	Completion visit / aggregate sampling	Appendix A – Photos 54-58 Appendix D – 21-16265
08.06.21	None – first phase of works completed	Aggregate sampling	Appendix D – 21-19648
Remobilisa	ation to carry out additional preparato	ry works within areas in the west and	south which were previously
constraine	d due to stockpiles		
18.10.22	None – works completed	Formation sampling (S52-S56)	Appendix C – Photos 52-60 Appendix D – 22-40691
19.10.22	None – works completed	Formation sampling (S57-S74)	Appendix C – Photos 61-79 Appendix D – 22-40691
25.10.22	None – works completed	Aggregate sampling	Appendix A – Photo 59 Appendix D – 22-41389

4.2. Hydrock TP104 Hotspot

- 4.2.1. Following the completion of building demolition and the breaking out of surface hardstanding, SGP attended site on 17.02.21 to carry out the excavation of trenches to inspect the ground within the area of Hydrock TP104. Two trenches (TP1 and TP2) were excavated parallel to one another, encompassing an area of 7m x 5m.
- 4.2.2. The ground was recorded as a natural dark brown clay with angular gravel underlain by a coarse gravel of limestone in a light brown clayey soil. TP1 was excavated to 0.8m bgl and TP2 to 1.1m bgl. A photographic record is provided in Appendix B.
- 4.2.3. No black staining or odours were observed and screening of arisings with a photoionisation detector (PID) failed to exceed detection limits (<0.1ppm).
- 4.2.4. Three samples (HS-TP104-S1 to -S3) were collected at depths ranging from 0.0-0.4m and 0.4-1.1m which were submitted for fractioned hydrocarbon analysis (lab ref. 21-2316). Concentrations are compared to the assessment criteria for hydrocarbon remediation as set out in Table 3.4 of the Remediation Strategy (adopted from Table B2 of the Watermans Controlled Waters DQRA, ref. EED10658-14.1.7_FA) and the garden soils criteria in Table 3.3 of the Strategy.

Contaminant	Samples	Range of Concentrations (mg/kg unless stated)	Hotspot Criteria (Table 3.4) Screening criteria (mg/kg unless stated)	Garden Soils Criteria (Table 3.3) Screening criteria (mg/kg unless stated)	Exceedance Concentration & location
Aliphatic C5-C6	3	<0.1	-	42	None
Aliphatic C6-C8	3	<0.1	-	100	None
Aliphatic C8-C10	3	<0.1	80	27	None
Aliphatic C10-C12	3	<0.2	1000	130	None
Aliphatic C12-C16	3	<4	1000	1100	None
Aliphatic C16-C21	3	<7-14	1000	65,000	None
Aliphatic C21-C35	3	<7-63	1000	65,000	None
Aromatic C5-C7	3	<0.1	-	42	None
Aromatic C7-C8	3	<0.1	-	130	None
Aromatic C8-C10	3	<0.1	-	34	None
Aromatic C10-C12	3	<0.2	7	74	None
Aromatic C12-C16	3	<4	120	140	None
Aromatic C16-C21	3	<7-33	440	260	None
Aromatic C21-C35	3	<7-231	1000	1100	None
Benzene	3	<0.005	0.08 (Table 3.3)		None
Toluene	3	<0.005	120 (Table 3.3)		None
Ethylbenzene	3	<0.005	65 (Tab	le 3.3)	None
m/p-Xylene	3	<0.005	42 (Tab	le 3.3)	None
o-xylene	3	<0.005	44 (Tab	le 3.3)	None

Table 4.2 TP104-HS validation data

4.2.5. No exceedances were reported which is consistent with the observed ground conditions. It was noted that within the immediate surrounding area a tarmac surface layer was present which could have possibly been associated with Hydrock's observations of black staining and a tar odour.

4.3 Hydrock TP102 Hotspot

- 4.3.1 Following the clearance of surface materials and breaking out of surface hardstanding, SGP attended site on 28.04.21 to carry out an investigation within the area of Hydrock TP102. Two trenches were excavated (TP1 and TP2) to lengths extending 12m to allow inspection of the ground.
- 4.3.2 Both TP1 and TP2 recorded a light brown clay soil (0-0.2m) underlain by a thin layer of coarse black gravel (0.2-0.3m) then natural limestone gravel. Following identification of the black gravel (which was suspected to be the material reported by Hydrock), the extent of this material was uncovered and removed by an excavator and placed within the stockpile of stripped tarmac for disposal. The extent of the remediated area was approximately 10m x 15m and coincided with the area of a former radio mast on the site, the black gravel presumably relating to its base. Soils were screened with a PID during removal with readings

consistently below detection limits (<0.1ppm), although this is typical of a bitumen bound aggregate. A photographic record is presented in Appendix B.

4.3.3 Six validation samples were collected on a 1 per 5m² spacing (TP102-HS-SS1 to SS6) of the stripped surface following removal of the black aggregate and a single sample of the removed material (TP102-HS-S1). Samples were submitted for fractionated hydrocarbon analysis (lab ref. 21-14505) and are compared to the assessment criteria for hydrocarbon remediation as set out in Table 3.4 of the Remediation Strategy (adopted from Table B2 of the Watermans Controlled Waters DQRA, ref. EED10658-14.1.7_FA) and the garden soils criteria in Table 3.3 of the Strategy.

Contaminant	Samples	Range of Concentrations (mg/kg unless stated)	Hotspot Criteria (Table 3.4) Screening criteria (mg/kg unless stated)	Garden Soils Criteria (Table 3.3) Screening criteria (mg/kg unless stated)	Exceedance Concentration & location
Aliphatic C5-C6	7	<1	-	42	None
Aliphatic C6-C8	7	<1	-	100	None
Aliphatic C8-C10	7	<1-4.2	80	27	None
Aliphatic C10-C12	7	<1-42	1000	130	None
Aliphatic C12-C16	7	<1-99	1000	1100	None
Aliphatic C16-C21	7	<1-78	1000	65,000	None
Aliphatic C21-C35	7	<1-320	1000	65,000	None
Aromatic C5-C7	7	<1	-	42	None
Aromatic C7-C8	7	<1	-	130	None
Aromatic C8-C10	7	<1-2	-	34	None
Aromatic C10-C12	7	<1-11	7	74	TP102-HS-S1
Aromatic C12-C16	7	<1-660	120	140	TP102-HS-S1
Aromatic C16-C21	7	<1-2,400	440	260	TP102-HS-S1
Aromatic C21-C35	7	<1-6,700	1000	1100	TP102-HS-S1
Benzene	7	<0.005	0.08 (Ta	ble 3.3)	None
Toluene	7	<0.005	120 (Table 3.3)		None
Ethylbenzene	7	<0.005	65 (Table 3.3)		None
m/p-Xylene	7	<0.005	42 (Tab	le 3.3)	None
o-xylene	7	<0.005	44 (Table 3.3)		None

Table 4.3 TP102-HS Remediation Validation Data

4.3.4 No exceedances were reported within the validation samples collected from the retained soils following removal of the black aggregate confirming the effectiveness of the remedial works. Exceedances were limited to sample TP102-HS-S1 which was collected from the removed black aggregate.

4.4 <u>ACM Hotspot</u>

4.4.1 Following building demolition and removal of hardstanding, a localised area of ACM was observed within the surface soils by URL in the northwest of the site. Handpicking was

undertaken by specialist sub-contractor Elite with all ACM double-bagged and placed in secure skips along with the ACM removed as part of the pre-demolition building strip. Following removal of surface deposits an excavator was used to carry out a shallow (0.5m turnover of soils) to allow the sub-contractor to inspect and undertake further picking, if necessary. The remediated area extended approximately 10m x 20m.

- 4.4.2 Following handpicking of visible ACM, SGP attended site and collected samples of the retained soils on a 1 per 5m² frequency for asbestos identification to assess whether any loose fibres remained within the soils.
- 4.4.3 During sampling the soils were inspected for any potential ACM, no such materials were observed with the soils consisting of re-worked sandy clay with coarse limestone gravel and inclusions of brick. A photographic record is presented in Appendix B and a copy of the laboratory rest results (lab ref. 21-14505) in Appendix D.
- 4.4.4 Composite samples were collected from a depth of 0-0.5m across the remediated area and submitted for asbestos identification analysis. Any samples where a positive identification was reported were scheduled for further quantification analysis to establish the volume of fibres present. The results are summarised in the table below and are compared to the garden soils criteria of <0.001%.</p>

Sample	Asbestos Identification	Mass (%)	Garden Soils Criteria (Table 3.3)	Exceedance
PH9-ACMHS-S1	NAD	-		No
PH9-ACMHS-S2	Amosite – Fibre Clump	<0.001		No
PH9-ACMHS-S3	NAD	-		No
PH9-ACMHS-S4	NAD	-	<0.001%	No
PH9-ACMHS-S5	NAD	-		No
PH9-ACMHS-S6	NAD	-		No
PH9-ACMHS-S7	NAD	-]	No
PH9-ACMHS-S8	NAD	-		No

Table 4.4 ACM Hotspot Remediation Validation Data

- 4.4.5 A single incidence of asbestos was reported within sample PH9-ACMHS-S2 with fibre clumps of amosite; however, quantification confirmed a mass of <0.001% which did not result in an exceedance. No incidences were reported within the remainder of the samples.
- 4.5 <u>USTs</u>
- 4.5.1 SGP attended site on 09.03.21 to both uncover / establish how many tanks remained adjacent to the former boiler house in the centre of the site. Following confirmation that 3 tanks were present that were filled with water and a surface layer of floating oil, URL commissioned CSG to empty and purge the tanks prior to removal.

- 4.5.2 SGP re-attended site on 28.04.21 following the immediate removal of the tanks to inspect the remediation excavation and collect validation samples from the base and sidewalls. A photographic record is presented in Appendix B.
- 4.5.3 Visual inspection and screening of the removed concrete cradle with a PID was also undertaken which confirmed the absence of any visible staining or presence of volatile organic compounds (VOCs). The material was therefore deemed to be uncontaminated and suitable for processing.
- 4.5.4 Observed ground conditions consisted of a sandy clay soil with coarse limestone gravel to approximately 2.3m bgl where weathered bedrock was encountered. The depth of the excavation extended to a depth of approximately 2.8m.
- 4.5.5 Visual inspection of the base and sidewalls was undertaken with no staining or areas of free product observed. No odours were recorded from the excavation and screening of soils from the base and sidewall with a PID failed to exceed detection limits (<0.1ppm). A photographic record is provided in Appendix B.
- 4.5.6 Eight composite samples were collected from the sidewalls (PH9-UST-SS1 to SS8) and 4 from the base (PH9-UST-SS9 to SS12). The spacing of samples was completed in accordance with the approved Remediation Strategy with 1 sample collected per 15m² of the excavated surface. All validation samples were submitted for TPHCWG and BTEX analysis (lab ref. 21-14510) and the results have been compared to the assessment criteria for hydrocarbon remediation as summarised in the table below:

	Range of		Table B2	
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria* (mg/kg unless stated)	Exceedances Concentration & location
Aliphatic C5-C6	12	<1	-	-
Aliphatic C6-C8	12	<1	-	-
Aliphatic C8-C10	12	<1	80	None
Aliphatic C10-C12	12	<1-51	1000	None
Aliphatic C12-C16	12	<1-280	1000	None
Aliphatic C16-C21	12	<1-300	1000	None
Aliphatic C21-C35	12	<1-250	1000	None
Aromatic C6-C7	12	<1	-	-
Aromatic C7-C8	12	<1	-	-
Aromatic C8-C10	12	<1	-	-
Aromatic C10-C12	12	<1-70	7	(4): SS1, SS2, SS9 & SS10
Aromatic C12-C16	12	<1-330	120	(4): SS1, SS2, SS9 & SS10
Aromatic C16-C21	12	<1-32,000	440	(2): SS1 & SS2
Aromatic C21-C35	12	<1-1,100	1000	(1): SS2
Benzene	12		0.08 (Table B1)	None

Table 4.5 Ph9 UST Hotspot Remediation Validation Data

		Range of	Table B2	
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria* (mg/kg unless stated)	Exceedances Concentration & location
Toluene	12		120 (Table B1)	None
Ethyl benzene	12		65 (Table B1)	None
m/p-Xylene	12		42 (Table B1)	None
o-xylene	12		44 (Table B1)	None

- 4.5.7 Exceedances were reported within the aromatic hydrocarbon >C10 fractions within samples SS1 and SS2 (eastern sidewall) and SS9 and SS10 (base), as summarised below:
 - C10-C12 (criteria 7 mg/kg): SS1 47 mg/kg, SS2 40 mg/kg, SS9 70 mg/kg and SS10 - 35 mg/kg
 - C12-C16 (criteria 120 mg/kg): SS1 190 mg/kg, SS2 250 mg/kg, SS9 330 mg/kg and SS10 - 250 mg/kg
 - C16-C21 (criteria 440 mg/kg): SS1 32,000 mg/kg and SS2 610 mg/kg
 - C21-C35 (criteria 1000 mg/kg): SS2 1,100 mg/kg
- 4.5.8 Exceedances were generally considered to be minor in respect of the assessment criteria. Given the low mobility due to a high viscosity and low volatility of the fractions for which there were exceedances, the risks to groundwater, human health and the proposed development is considered to be low. Two of the exceedance locations were from the base where further removal could not take place due to the presence of intact bedrock.
- 4.5.9 A significantly elevated concentration of the aromatic C16-C21 fraction was reported within sample SS1 with a concentration of 32,000 mg/kg compared to the criteria of 440 mg/kg. It is noted that sample SS2 located on the same sidewall also reported an exceedance of this fraction, albeit much lower. At the concentration reported free product would be anticipated, however no product or staining was observed. Similarly, no odours were noted during sampling which may readily be anticipated at the reported concentrations if heating oil impacted soil was present.
- 4.5.10 It was noted during the site works that a former road ran immediately parallel to the eastern site boundary and it is considered most likely that some cross-contamination of the tarmac has occurred during sampling. Due to the high sidewalls an excavator was utilised to collect sidewall and basal samples and this was completed by a toothed bucket being dragged up the sidewall from base to the surface. This could have inadvertently resulted in the collection of any tarmac at the surface.

4.6 Phase 9 Baseball Pitch Topsoil

4.6.1 Two sources of topsoil have been recovered as part of the Phase 9 remedial works, the first was associated with the former baseball pitch which has been duly reported within the Phase

9 Baseball Pitch Completion Report (ref. R1742-R22), however for completeness the results have been reproduced in the section below.

- 4.6.2 Prior to the commencement of preparatory earthworks, including the recovery of topsoil, SGP carried out both in-situ topsoil and formation soil testing in 2018. The findings were reported in a letter report (R1742b-L07; August 2018), a copy of which is provided in Appendix E.
- 4.6.3 SGP collected 9 in-situ samples on the working assumption that circa 4,400m³ of topsoil was present across the baseball pitch area ((14,650m²) x assumed thickness of topsoil (0.3m)) to achieve a sampling frequency of 1 per 500m³. URL having since confirmed following recovery that 3,700m³ of topsoil was recovered from the baseball pitch. A testing frequency of 1 sample per 410m³ has therefore been achieved, satisfying the prescribed rate of 1 sample per 500m³. The stockpile is currently located within the main Phase 9 area covered by this report.
- 4.6.4 The results of the baseball pitch topsoil sampling (lab ref. 18-7823 and 18-14613) are reproduced in the table below and are compared to the garden cover criteria outlined in Table 3.3 of the Remediation Strategy.

		Range of	Res	idential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
SOM	9	1.5-3.8	-	None
рН	9	7.74-8.25	-	None
asbestos fibre	9	NAD	<0.001%	None
arsenic	9	15.2-52.1	37 (S4UL)	(1): Ph9-S9A
cadmium	9	0.1-0.2	11 (S4UL)	None
chromium	9	36.9-82.2	910 (S4UL)	None
chromium IV	9	<0.3	6 (S4UL)	None
copper	9	10-29	2400 (S4UL)	None
lead	9	17-88	200 (C4SL)	None
mercury	9	<0.1	1.2 (S4UL)	None
nickel	9	18.3-51.50	180 (S4UL)	None
selenium	9	<1-2	250 (S4UL)	None
vanadium	9	52-119	410 (S4UL)	None
zinc	9	64-174	3700 (S4UL)	None
naphthalene	9	<0.04	2.3 (S4UL)	None
acenaphthylene	9	<0.03	170 (S4UL)	None
acenaphthene	9	<0.05	210 (S4UL)	None
fluorene	9	<0.04	170 (S4UL)	None
phenanthrene	9	<0.03-0.26	95(S4UL)	None
anthracene	9	<0.04-0.09	280 (S4UL)	None
fluoranthene	9	0.09-0.95	2400 (S4UL)	None
pyrene	9	0.09-0.87	620 (S4UL)	None
benzo(a)anthracene	9	0.06-0.59	7.2 (S4UL)	None
chrysene	9	0.06-0.46	15 (S4UL)	None

Table 4.6 Ph9 Baseball Pitch Site-Won Topsoil

		Range of	Residential Use		
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances	
benzo(bk)fluoranthene	9	0.11-1.09	-	-	
benzo(a)pyrene	9	0.06-0.59	2.2 (S4UL)	None	
indeno(123cd)pyrene	9	0.04-0.44	27 (S4UL)	None	
dibenzo(ah)anthracene	9	0.04-0.09	0.24(S4UL)	None	
benzo(ghi)perylene	9	0.04-0.4	320 (S4UL)	None	
aliphatic C5-C6	9	<0.1	42 (S4UL)	None	
aliphatic C6-C8	9	<0.1	100 (S4UL)	None	
aliphatic C8-C10	9	<0.1	27 (S4UL)	None	
aliphatic C10-C12	9	<0.2	130 (S4UL)	None	
aliphatic C12-C16	9	<4	1100 (S4UL)	None	
aliphatic C16-C21	9	<7	5000 (S4UL)	None	
aliphatic C21-C35	9	<7	5000 (S4UL)	None	
aromatic C5-C7	9	<0.1	70 (S4UL)	None	
aromatic C7-C8	9	<0.1	130 (S4UL)	None	
aromatic C8-C10	9	<0.1	34 (S4UL)	None	
aromatic C10-C12	9	<0.2	74 (S4UL)	None	
aromatic C12-C16	9	<4	140 (S4UL)	None	
aromatic C16-C21	9	<7	260 (S4UL)	None	
aromatic C21-C35	9	<7	1100 (S4UL)	None	
benzene	9	<0.005	0.08 (S4UL)	None	
toluene	9	<0.005	130 (S4UL)	None	
ethylbenzene	9	<0.005	47 (S4UL)	None	
o-xylene	9	<0.005	60 (S4UL)	None	
m-xylene	9	<0.005	56 (S4UL)	None	
p-xylene	9	<0.005	56 (S4UL)	None	
methyl tert butyl ether	9	<0.005	-	None	

Notes to table:

S4UL: Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management Ltd reproduced with permission publication number S4UL3102. All rights reserved.

C4SL: Category 4 Screening Levels published by CL:AIRE (C4SLs); 'residential without home grown produce land use' (at 1% SOM)

- 4.6.5 A single minor exceedance was reported for arsenic within sample Ph9-S9A with a concentration of 52.1 mg/kg compared to the criterion of 37 mg/kg.
- 4.6.6 Statistical analysis was undertaken that confirms the exceedance is an outlier of the dataset and is not representative of the soil concentrations and can therefore be excluded from the dataset. When this value is removed, the upper confidence limit (0.95) for arsenic is reduced to 23.26, well below the criteria of 37 mg/kg.

Table 4.7 Statistical Analysis of Arsenic

statistic	arsenic (mg/kg)
criterion	37
no. of samples	9

Grubbs outlier test for highest value (P0.05)	Ph9-S9A (max value 52.1 mg/kg) is an outlier
arithmetic mean, including outlier	22.42
upper confidence limit (UCL 0.95) including outlier	39.09 (fail)
arithmetic mean, excluding Ph9-S9A outlier	18.71
upper confidence limit (UCL 0.95) excluding Ph9-S9A outlier	23.26 (pass)

- 4.6.7 No made ground or ashy deposits were observed within the topsoil and it is anticipated that some vertical mixing of the underlying ironstone within which naturally elevated arsenic at similar concentrations have been reported within the wider Heyford Park development area. Typically the bio-accessibility of naturally occurring arsenic associated with ironstones (normally present in the form of arsenopyrite) will be low, and the risk to future residential use is therefore considered to be low.
- 4.7 Phase 9 Topsoil
- 4.7.1 In addition to the topsoil recovered from the Phase 9 baseball pitch, approximately 2,700m³ of topsoil was recovered from the remainder of the Phase 9 area (as covered within this report) from areas of soft landscaping and verges around the former buildings.
- 4.7.2 SGP attended site on 06.01.21 and collected 6 samples from the stockpiled material, satisfying the prescribed sampling frequency of 1 per 500m³ for site-won topsoil. A copy of the lab results (ref. 21-11321) is provided in Appendix D with results compared to the garden cover criteria outlined in Table 3.3 of the Remediation Strategy. Due to several exceedances, comparison to the S4UL for public open space within a residential setting (POS_{resi}) have also been utilised to assess the potential for reuse in less sensitive areas of the development.

Contaminant	Samples	Range of Concentrations (mg/kg unless stated)	Garden Cover System Screening criteria (mg/kg unless stated)	Exceedances	POS _{resi} Screening criteria (mg/kg unless stated)	Exceedances
SOM	6	3.1-5.3	-	-	-	-
рН	6	8.2-8.4	-	-	-	-
asbestos fibre	6	NAD	<0.001%	None	<0.001%	None
arsenic	6	21-54	37 (S4UL)	(1): S4	79	None
cadmium	6	0.29-0.38	11 (S4UL)	None	120	None
chromium	6	25-63	910 (S4UL)	None	1,500	None
chromium IV	6	<0.5	6 (S4UL)	None	7.7	None
copper	6	15-23	2400 (S4UL)	None	2,400	None
lead	6	33-77	200 (C4SL)	None	630	None
mercury	6	<0.1-0.13	1.2 (S4UL)	None	16	None
nickel	6	20-38	180 (S4UL)	None	230	None

Table 4.8 Summary of Ph9 Topsoil

23

Contaminant	Samples	Range of Concentrations (mg/kg unless stated)	Garden Cover System Screening criteria (mg/kg unless stated)	Exceedances	POS _{resi} Screening criteria (mg/kg unless stated)	Exceedances
vanadium	6	45-100	410 (S4UL)	None	2,000	None
zinc	6	62-130	3700 (S4UL)	None	81,000	None
naphthalene	6	<0.1	2.3 (S4UL)	None	4,900	None
acenaphthylene	6	<0.1	170 (S4UL)	None	15,000	None
acenaphthene	6	<0.1	210 (S4UL)	None	15,000	None
fluorene	6	<0.1	170 (S4UL)	None	9,900	None
phenanthrene	6	0.57-3.90	95(S4UL)	None	3,100	None
anthracene	6	0.19-1.10	280 (S4UL)	None	74,000	None
fluoranthene	6	1.90-9.70	2400 (S4UL)	None	3,100	None
pyrene	6	1.90-9.60	620 (S4UL)	None	7,400	None
benzo(a)anthracene	6	0.37-4.30	7.2 (S4UL)	None	29	None
chrysene	6	0.87-5.10	15 (S4UL)	None	57	None
benzo(bk)fluoranthene	6	2.09-10.60	-	-	-	-
benzo(b)fluoranthene	6	1.6-7.8	2.6 (S4UL)	(3): S2, S4, S5	7.1	None
benzo(k)fluoranthene	6	0.49-2.80	77 (S4UL)	None	190	None
benzo(a)pyrene	6	1.10-5.60	2.2 (S4UL)	(1): S2	5.7	None
indeno(123cd)pyrene	6	0.19-4.80	27 (S4UL)	None	82	None
dibenzo(ah)anthracene	6	0.10-0.77	0.24(S4UL)	(4): S1. S2. S3. S5	29	None
benzo(ghi)perylene	6	0.65-4.10	320 (S4UL)	None	640	None
aliphatic C5-C6	6	<1	42 (S4UL)	None	570,000	None
aliphatic C6-C8	6	<1	100 (S4UL)	None	600,000	None
aliphatic C8-C10	6	<1	27 (S4UL)	None	13,000	None
aliphatic C10-C12	6	<1	130 (S4UL)	None	13,000	None
aliphatic C12-C16	6	<1	1100 (S4UL)	None	13,000	None
aliphatic C16-C21	6	<1	5000 (S4UL)	None	250,000	None
aliphatic C21-C35	6	<1-7.9	5000 (S4UL)	None	250,000	None
aromatic C5-C7	6	<1-34	70 (S4UL)	None	56,000	None
aromatic C7-C8	6	<1	130 (S4UL)	None	56,000	None
aromatic C8-C10	6	<1	34 (S4UL)	None	5,000	None
aromatic C10-C12	6	<1	74 (S4UL)	None	5,000	None
aromatic C12-C16	6	<1	140 (S4UL)	None	5,100	None
aromatic C16-C21	6	<1	260 (S4UL)	None	3,800	None
aromatic C21-C35	6	<1	1100 (S4UL)	None	3,800	None
benzene	6	<0.001	0.08 (S4UL)	None	72	None
toluene	6	<0.001	130 (S4UL)	None	56,000	None
ethylbenzene	6	< 0.001	47 (S4UL)	None	5,700	None
o-xylene	6	<0.001	60 (S4UL)	None	6,600	None
m-xylene	6	< 0.001	56 (S4UL)	None	5,900	None
p-xylene	6	<0.001	56 (S4UL)	None	5,900	None

- 4.7.3 A single minor elevated arsenic concentration was reported within sample S4 with a concentration of 54 mg/kg compared to the garden criteria of 37 mg/kg, although this was below the POS_{resi} value of 79mg/kg.
- 4.7.4 Multiple PAH exceedances were also reported for dibenzo(ah)anthracene (4), benzo(b)fluoranthene (3) and benzo(a)pyrene (1) when compared to the garden cover criteria.
- 4.7.5 Due to the frequency of the reported exceedances, it is considered that this topsoil is unsuitable for reuse as garden soils, however no exceedances were reported when concentrations were compared to the S4UL criteria for public open spaces within a residential setting (POS_{resi}). It is therefore considered that this material is suitable for reuse in areas of soft-landscaping and areas of public open space but must be excluded for private gardens.

4.8 Validation of Formation Soils

- 4.8.1 Sampling and analysis were carried out to determine the suitability of formation level soils to form part of the 600mm soil cover system. Development levels for the site are yet to be confirmed by the developer; however, in-situ sampling of the formation level will determine whether a reduced 200mm topsoil cover can be placed within garden areas providing the 400mm of natural strata is chemically suitable for retention.
- 4.8.2 In-situ sampling of subsoils was carried out through the excavation and sampling of the top 400mm of natural subsoil with a total of 74 samples collected. Assuming an approximate area of 92,000m², the volume of validated soils is effectively 36,800m³ and the test rate is equivalent to 1 sample per 497m², achieving the specified rate of 1 sample per 500m³.
- 4.8.3 Sampled soils generally consisted of a natural or re-worked natural sandy soil with coarse limestone gravel; occasional sandy clay to clay soil was also encountered. Inclusions of brick, tarmac and bituminous gravel were occasionally noted but was generally limited to surface deposits, particularly in the southwest of the site. No inclusions of ash, clinker or slag were observed either during sampling or walkover inspections.
- 4.8.4 A photographic record confirming the depth and soil profile at each test location is provided within Appendix C and laboratory test certificates (lab ref. 21-0779, 21-11315, 21-14506, 210506-141 & 22-40691) are provided in Appendix D. All sample locations are shown within Drawing D03.
- 4.8.5 Results are summarised in the table below and are compared to assessment criteria for garden cover soils.

			Residential Use	
Contaminant	Samples	Range of Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
SOM	74	<0.4-5.9	-	None
pН	74	7.9-9.10	-	None
asbestos fibre	74	NAD	<0.001%	None
arsenic	74	5.8-43	37 (S4UL)	(1): SS43
cadmium	74	<0.1-0.24	11 (S4UL)	None
chromium	74	3.2-45	910 (S4UL)	None
chromium IV	74	<0.5	6 (S4UL)	None
copper	74	1.4-19	2400 (S4UL)	None
lead	74	1.5-65	200 (C4SL)	None
mercury	74	<0.1	1.2 (S4UL)	None
nickel	74	2.8-39	180 (S4UL)	None
vanadium	74	7.8-76	410 (S4UL)	None
zinc	74	3.9-62	3700 (S4UL)	None
naphthalene	74	<0.01-1.2	2.3 (S4UL)	None
acenaphthylene	74	<0.01-0.98	170 (S4UL)	None
acenaphthene	74	<0.01-2.0	210 (S4UL)	None
fluorene	74	<0.01-1.9	170 (S4UL)	None
phenanthrene	74	<0.02-14.0	95(S4UL)	None
anthracene	74	<0.02-4.7	280 (S4UL)	None
fluoranthene	74	<0.02-36.0	2400 (S4UL)	None
pyrene	74	<0.02-38.0	620 (S4UL)	None
benzo(a)anthracene	74	<0.01-21.0	7.2 (\$4UL)	(5): S53, S55, S56, S62, S63
chrvsene	74	<0.01-24.0	15 (S4UL)	(2): \$53, \$63
benzo(b)fluoranthene	74	<0.02-37.0	2.6 (S4UL)	(13): SS26, SS28, SS37, S53, S55, S56, S57, S59, S61, S62, S63, S71, S73
benzo(k)fluoranthene	74	<0.01-14.0	77 (S4UL)	None
benzo(a)pyrene	74	<0.02-32.0	2.2 (S4UL)	(13): SS26, SS28, SS37, S53, S55, S56, S57, S59, S61, S62, S63, S71, S73
indeno(123cd)pyrene	74	<0.02-22.0	27 (S4UL)	None
dibenzo(ah)anthracene	74	<0.02-5.7	0.24(S4UL)	(6): SS26, SS28, SS37, S53, S56, S63
benzo(ghi)perylene	74	<0.02-21.0	320 (S4UL)	None
aliphatic C5-C6	74	<1	42 (S4UL)	None
aliphatic C6-C8	74	<1	100 (S4UL)	None
aliphatic C8-C10	74	<1	27 (S4UL)	None
aliphatic C10-C12	74	<1-45.0	130 (S4UL)	None
aliphatic C12-C16	74	<0.1-120.0	1,100 (S4UL)	None
aliphatic C16-C21	74	<0.1-75.0	5,000 (S4UL)	None
aliphatic C21-C35	74	<0.1-86.0	5,000 (S4UL)	None
aromatic C5-C7	74	<1	70 (S4UL)	None
aromatic C7-C8	74	<1	130 (S4UL)	None
aromatic C8-C10	74	<1	34 (S4UL)	None
aromatic C10-C12	74	<1	74 (S4UL)	None
aromatic C12-C16	74	<1-6.6	140 (S4UL)	None
aromatic C16-C21	74	<0.1-170	260 (S4UL)	None

Table 4.9 Analysis of Formation Soils

	Pange of Concentrations		Residential Use		
Contaminant	Samples	(mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances	
aromatic C21-C35	74	<0.1-1,200	1,100 (S4UL)	(1): S54	
benzene	74	<0.001	0.08 (S4UL)	None	
toluene	74	<0.001	130 (S4UL)	None	
ethylbenzene	74	<0.001	47 (S4UL)	None	
o-xylene	74	<0.001	60 (S4UL)	None	
m-xylene	74	<0.001	56 (S4UL)	None	
p-xylene	74	<0.001	56 (S4UL)	None	

4.8.6 Exceedances were limited to a single minor incidence of elevated arsenic in sample PH9-SS43, a minor exceedance for aromatic C21-C35 hydrocarbons in sample Ph9-S54 and multiple minor to significantly elevated PAHs (benzo(a)anthracene, chrysene, benzo(a)pyrene, dibenzo(ah)anthracene and benzo(b)fluoranthene) in up to 13 samples. These are discussed further in the sections below. No asbestos was detected.

Arsenic

4.8.7 A minor arsenic exceedance was reported within 1 of the 74 samples collected with a concentration of 43 mg/kg in sample PH9-SS43 compared to the criteria of 37mg/kg. Given the consistency in the formation soils and the absence of any identified anthropogenic material (excluding occasional brick, tarmac and bituminous gravel), it was determined that a statistical estimate should be carried out on the sample mean with Phase 9 treated as a single averaging area.

statistic	arsenic (mg/kg)
criterion	37.0
no. of samples	74
arithmetic mean	18.06 (pass)
upper confidence limit (UCL 0.95)	19.79 (pass)

 Table 4.10 Analysis of Formation Soils

- 4.8.8 The statistical analysis shows that the arsenic dataset has a UCL (0.95) of 19.79 mg/kg and an arithmetic mean concentration 18.06 mg/kg, significantly below the criterion of 37 mg/kg.
- 4.8.9 The soil sampled was of natural appearance from an area of the site remote from identified historical contaminative activities and was identical in appearance to other soils around the phase and is therefore likely to be of natural origin (mineralisation). Typically, the bio-accessibility of naturally occurring arsenic associated with ironstones (normally present in the form of arsenopyrite) will be low, and the risk to future residential use is therefore considered also likely to be low. The S4UL for arsenic in residential garden soil where plants may be grown for consumption is 37 mg/kg. The maximum soil concentration recorded was only slightly above this value.

Aromatic C21-35 Hydrocarbons

4.8.10 A single exceedance was reported within 1 of the 74 samples (Ph9-S54) collected for C21-35 aromatic hydrocarbons at 1,200mg/kg, marginally exceeding the adopted screening criteria of 1,100mg/kg. The likely source of the exceedance is the occasional inclusion of tarmac / bituminous gravel within some of the shallow soils in the southwest of the site where this sample was collected from which are likely remnants of former roads / pathways in this area. However, when taking into account the organic matter content of the sample (2.5%), the screening criterion for 2.5% SOM is considered to be more appropriate (1,500mg/kg) which was not exceeded. The minor exceedance reported is therefore not considered to preclude reuse of the formation soils within gardens / landscaping areas in this location.

PAHs

- 4.8.11 Elevated PAHs were reported within up to 13 samples for either all, or a subset of, the following compounds: benzo(a)anthracene (9.2-21 mg/kg), chrysene (15-24 mg/kg) benzo(a)pyrene (2.4-32.0 mg/kg), dibenzo(ah)anthracene (0.64-5.7 mg/kg) and benzo(b)fluoranthene (2.9-37.0 mg/kg).
- 4.8.12 PAH ratio analysis has been undertaken to determine the probable source of the elevated PAHs and source identification suggests a coal / coal tar source a copy of the plot is included within Appendix F. It is most likely that this signature relates to inclusions of broken out tarmac which has mostly been removed from the site although some residues may remain in surface soils within these locations. It is noted that occasional inclusions of tarmac / bituminous gravel were described in the shallow soils in the southwest of the site where some of the exceedances were reported.
- 4.8.13 In the absence of further mitigation, the elevated PAHs recorded in combination with a coal tar signature present a potential risk to future residents if retained within shallow garden soils. As a result, a clean soil cover system will be required within gardens in these parts of the site.

4.9 Validation of Phase 9 Generated Aggregate

4.9.1 Four stockpiles of aggregate have been generated from recovered hardstanding in the Phase 9 area including 195m³ recovered from Phase 8. A stockpile of aggregate generated from construction waste from the wider DH development has also been produced (Ph9-DH-Agg). The approximate volume of processed material in each stockpile following completion of the works is as follows:

Stockpile Ref	Approximate Volume (m ³)	No. Asbestos Tests	Sampling Frequency	No. Geotech Tests	Sampling Frequency [#]
Ph9-AGG-1	1,725	4	1 per 430m ³	1	1 per 1,725m ³
Ph9-AGG-2	8,440	16	1 per 527m ³	3	1 per 2,813m ³
Ph9-AGG-3	2,590	6	1 per 430m ³	4	1 per 648m ³

Table 4.10 Summary of Phase 9 generated aggregate

Stockpile Ref	Approximate Volume (m ³)	No. Asbestos Tests	Sampling Frequency	No. Geotech Tests	Sampling Frequency [#]
Ph9-AGG-4	600	2	1 per 300m ³	1	1 per 600m ³
Ph9-DH-Agg	600	2	1 per 300m ³	1	1 per 600m ³

[#]No frequency for geotechnical testing under approved Strategy. Sampling as instructed by client.

4.9.2 Sampling frequencies for asbestos identification (lab ref. 21-11321, 21-13303, 21-14505, 21-16265, 21-19648 & 22-41389) were undertaken in accordance with the approved Remediation Strategy at a frequency of 1 sample per 500m³. A sampling frequency of 1 per 527m³ was achieved for aggregate stockpile Ph9-AGG-2, however this is only considered marginal and not likely to impact the assessment or conclusions made. The requirement or frequency of geotechnical sampling of aggregates was not specified within the Strategy and so testing was completed as per the client's request.

Table 4.11 Asbestos Screening Summary for Phase Generated Aggregate

Stockpile Ref	Lab Ref	Sample	Asbestos Identification	Asbestos Concentration (%)	ACM Identification
Ph9- 21 11221	21-11321	Agg-060421-S1	NAD		
AGG-1	21 11021	Agg-060421-S2	NAD		
	04 40040	AGG-SP1-S3	NAD		
	21-19040	AGG-SP1-S4	NAD		
		Ph9-Agg2-S1	Yes	0.009	Chrysotile – fibre / clumps
		Ph9-Agg2-S2	Yes	<0.001	Chrysotile – fibre / clumps
		Ph9-Agg2-S3	NAD		
		Ph9-Agg2-S4	Yes	<0.001	Chrysotile – fibre / clumps
Ph9-		Ph9-Agg2-S5	NAD		
AGG-2	21-13303 & 21-14505	Ph9-Agg2-S6	NAD		
		Ph9-Agg2-S7	NAD		
		Ph9-Agg2-S8	NAD		
		Ph9-Agg2-S9	Yes	<0.001	Chrysotile – fibre / clumps
		Ph9-Agg2-S10	NAD		
		Ph9-Agg2-S11	NAD		
		Ph9-Agg2-S12	NAD		
		Ph9-Agg2-S13	NAD		
	21-19648	Ph9-Agg2-S14	NAD		
		Ph9-Agg2-S15	NAD		
		Ph9-Agg2-S16	NAD		
		Ph9-Agg3-S1	NAD		
Ph9-		Ph9-Agg3-S2	NAD		
AGG-3	21 1405 8 21 16265	Ph9-Agg3-S3	NAD		
	21-1405 & 21-10205	Ph9-Agg3-S4	NAD		
		Ph9-Agg3-S5	Yes	0.008	Chrysotile – fibre / clumps
		Ph9-Agg3-S6	Yes	<0.001	Chrysotile – fibre / clumps
Ph9-	22-41389	Ph9-Agg4-S1	NAD		
AGG-4	22-41000	Ph9-Agg4-S1	NAD		
PH9-DH-	22-41389	PH9-DH-Agg-S1	NAD		
Ayy 22-41389	PH9-DH-Agg-S2	NAD			

- 4.9.3 No asbestos was detected in Ph9-Agg-1, Ph9-AGG-4 or PH9-DH-Agg whilst positive incidences of chrysotile fibre/clumps were reported in 4 out of 10 samples from Ph9-Agg-2 and 2 out of 6 samples from Ph9-Agg-3. Following the positive identifications, quantification analysis was scheduled to determine the mass of asbestos present. Concentrations were generally below detection limits (<0.001%), however two samples, one sample from each stockpile recorded a mass at 0.008% (Ph9-Agg-3) and 0.009% (Ph9-Agg-2). This signified the requirement for further assessment to assess the suitability for use of the aggregate within the development. Even though feedstock materials were inspected by URL for ACM prior to crushing, it is envisaged that the most likely source of the contamination were discrete deposits of ACM within recovered structures.
- 4.9.4 The ACM present within the aggregate has been confirmed by the laboratory analysis as chrysotile fibres (fibres / clumps). As the asbestos was detected in a loose form and has therefore already degraded from its former matrix, it is considered to be in the state with the highest amount of respirable fibres (CIRIA C733¹). The influence on soil type can also affect fibre release with granular soils (sands and gravels) resulting in a higher airborne fibre count following disturbance compared to clay soils¹. As the material is question is aggregate (i.e., gravel), a high proportion for airborne release of fibres can therefore be assumed.
- 4.9.5 The main receptors considered are adult workers during the movement and placement of aggregate as either general fills or placement as piling mats below permanent structures (plots) and within road boxes. The aggregate within stockpiles Ph9-Agg-2 and Ph9-Agg-3 is not suitable for placement within service corridors where disturbance during maintenance works could occur. The isolation of aggregate under permanent structures, outside service corridors and the top 600mm of garden soils is unlikely to result in exposure to future site occupants or maintenance workers. During the construction phase works, exposure is likely to occur during the disturbance and movement of the impacted aggregate.
- 4.9.6 Even though the sensitivity of the site is considered to be high (residential), due to the isolation of the material beneath future permanent structures, hardstanding, or at depth as general fill, where required, this will greatly limit the pathway for future exposure. For this assessment to remain valid, and in accordance with the requirement to maintain exposure to asbestos to levels which are as low as reasonably practicable, aggregate from stockpiles Ph9-Agg-2 and Ph9-Agg-3 must be excluded from the upper 600mm of private garden areas or upper 300mm within areas of public open space / landscaping.
- 4.9.7 It is therefore considered that the site generated aggregate is suitable for its understood, intended purpose, although appropriate control measures in accordance with CAR2012 should be employed during the initial placement of the material within the development to

¹ CIRIA (C733). Asbestos in soil and made ground.

minimise the level of exposure to site workers. Such measures are anticipated to include dust suppression during disturbance / placement works.

5. Conclusions & Recommendations

5.1. <u>Conclusions</u>

- 5.1.1. Remedial works in accordance with the Remediation Strategy have been completed within the majority of the Phase 9 area as detailed within the URL as-built drawings. It is acknowledged that some peripheral areas along the western boundary and in the south-east (proposed POS), are yet to undergo preparatory works which have largely been constrained due to the presence of stockpiles. It is understood that these areas will be subject to remedial works, verification testing and reporting at a later date.
- 5.1.2. Further investigation, remediation and assessment has been undertaken within identified potential contamination hotspots (TP102, TP104 and USTs), whilst a previously unexpected asbestos hotspot was also remediated and validated.
- 5.1.3. Investigation within the area of TP102 confirmed the presence of a black bitumen bound gravel immediately below surface soils possibly associated with the base of a former radio mast. Removal of the black gravel was completed, and verification testing of the stripped surface soils reported to no exceedances to be present.
- 5.1.4. Investigation of TP104 where Hydrock had previously reported black stained gravel with tar odour was completed through excavation of trenches, however no such material was encountered with only natural soils present. Chemical testing of the soils was carried out with no exceedances reported. The area of TP104 was located adjacent to a road covered in tarmac and it is considered likely that Hydrock's observations may have related to this area.
- 5.1.5. Three underground storage tanks associated with the former boiler house were uncovered, emptied and removed. Twelve validation samples were collected from the base and sidewalls of the excavations with 2 minor exceedances reported within the base and 1 minor exceedance in the eastern sidewall. A fourth, more significant exceedance was also reported within the eastern sidewall with an aromatic C16-C21 concentration of 32,000 mg/kg. Such a concentration would be indicative of free product; however, no staining or product was observed on the soils during sampling. If any residual heating oil was present, either associated with historical leaks or spills, then due to the low mobility and high viscosity some staining would be present. It was concluded that the elevated concentration is most likely to be associated with residual fragments of tarmac which may have been inadvertently sampled by the machine bucket during collection. A broken-out road which was surfaced with tarmac was located to the immediate east which coincides with the sampling location.
- 5.1.6. Following removal of surface hardstanding in the northwest, a localised area of ACM was identified on formation soils. Handpicking was undertaken by a specialist sub-contractor, following which samples of surface soils were collected and submitted for asbestos identification to ascertain whether any residual fibres were present. A single incidence of

- 5.1.7. Two stockpiles of topsoil are present within Phase 9 with approximately 3,700m³ recovered from the former baseball pitch (which has been reported under separate cover) and 2,700m³ from verges around the former building on the main Phase 9 site. Topsoil from the baseball pitch reported 1 minor exceedance or arsenic, however statistical analysis confirms this is an outlier, is not representative of the wider soils and that the material is suitable for reuse as garden soils, although this is subject to regulatory approval. Topsoil from the wider Phase 9 area contained multiple PAH exceedances when compared to residential soils criteria, however no exceedances were reported when compared to criteria for a public open space within a residential setting (POS_{resi}). It is concluded that the topsoil from the baseball pitch is suitable for use in residential gardens (subject to regulator approval) and that the topsoil from the remainder of the Phase 9 area should only be used for placement within areas of public open space and soft landscaping.
- 5.1.8. Formation testing of the top 400mm of site soils has been completed within the remediated area with 74 samples collected. A single minor arsenic exceedance of 43 mg/kg was reported, however, when the total averaging area is taken into account the mean / UCL (0.95) values were substantially below the residential assessment criteria of 37 mg/kg. A single minor exceedance for aromatic C21-35 aromatic hydrocarbons was also reported when compared against the criterion for 1% SOM; however, when compared to the more appropriate criterion for 2.5% SOM (based on the recorded SOM content of the exceeding sample), no exceedance was reported.
- 5.1.9. Multiple PAH exceedances were reported within 13 of the formation soil samples (SS26, SS28, SS37, S53, S55, S56, S57, S59, S61, S62, S63, S71 & S73) with PAH ratio analysis suggesting a coal / coal tar signature. It was concluded on the basis of the source identification that the most probable source was inclusions of residual tarmac following the breaking out and removal of hardstanding descriptions of tarmac and bituminous gravel in the shallow soils in the southwest add further evidence to this conclusion. Such exceedances preclude the retention of these soils within the top 600mm of garden areas therefore a recommendation for a 600mm clean soil cover system has been made for the gardens within the affected areas.
- 5.1.10. Exceedances of residential screening criteria have been detected in the formation soils within 2 samples (S71 & S73) collected from the proposed POS area in the southeast of the site for benzo(a)pyrene (2.4-7.5 mg/kg) and benzo(b)fluoranthene (2.9-9.1 mg/kg). However, given the proposed nature of this area of the site, the S4UL criteria for POS_{park} (1% SOM) is considered more appropriate. This raises the screening criteria for benzo(a)pyrene to 11 mg/kg and benzo(b)fluoranthene to 13 mg/kg, neither of which were exceeded with respect to

these samples. Based on current information it is therefore anticipated that a cover system will not be required in the POS area, however it is also acknowledged that further remediation and formation sampling is required in the southeast corner of the site. Any topsoil used as dressing in this area must also be demonstrably suitable for use.

- 5.1.11. Five stockpiles (SP1, SP2, SP3, SP4 & DH-agg) of aggregate have been produced with a total approximate volume of 13,956m³ and testing was undertaken for asbestos identification at a frequency of approximately 1 per 500m³. No asbestos was detected in SP1, SP4 or DH-agg, however low-level fibres were reported within SP2 (non-detect to 0.009%) and SP3 (non-detect to 0.008%). Aggregate from SP2 and SP3 should not be used as backfill within service corridors but is considered suitable for use below permanent structures (plots, drives, roads etc.) where future disturbance is highly unlikely. Appropriate mitigation measures should be deployed during the movement of the aggregate to reduce the likelihood of residual fibre mobilisation and to maintain exposure to asbestos to levels which are as low as reasonably practicable.
- 5.1.12. A risk assessment with regards to water pipelines may be required by the utility provider. This should be undertaken utilising the information provided within this report and supplemented as appropriate by other reporting pertaining to the site.
- 5.1.13. No specific testing has been undertaken for potentially aggressive conditions to concrete. Reference should be made to the preceding site investigation reports.

5.2. <u>Recommendations</u>

- 5.2.1. To secure completion of remediation in Phase 9 in accordance with the Remediation Strategy and the recommendations made within this report (subject to Local Authority Approval), the developer is required to complete the following actions:
 - A 600mm clean soil cover system is required in the gardens of Plots 630-640, 664-666, 668-673, 677-684, 691-694, 769-770 & 781-784 (according to proposed development layout drawing 0521-PH9-102) with depth verification to confirm the depth of placed soils at a frequency of 1 depth test per 3 plots;
 - Placement of clean topsoil to a nominal depth of 150-200mm within all remaining gardens / POS / landscaped areas;
 - Site-won materials to be used as clean soil cover within gardens / POS / landscaped areas must be suitable for use and validated to comply with contamination targets set out in Table 3.3 of the Remediation Strategy with sampling to be carried out at a rate of 1 sample per 500m³, either in stockpile or in-situ in after placement as garden / landscaping soils;
 - Imported soils used for cover purposes are to comply with contamination targets set out in Table 3.3 of the Remediation Strategy with sampling to be carried out at a rate

of 1 sample per 250m³ (minimum 3 samples per single source), either in stockpile or in-situ in after placement as garden / landscaping soils;

- Reuse of site-won (Phase 9 main area) topsoil within POS / landscaped areas only.
 Topsoil recovered from baseball pitch suitable for use in gardens;
- Completion of preparatory works including formation testing within outstanding areas as per Drawing D04.
- 5.2.2. With the adoption of the above normal practices for Brownfield development, and on the information available to it, SGP concludes that the preparatory remedial works have been completed in accordance with the agreed strategy. In the event that any previously undisclosed contamination or suspect materials are identified then this should be assessed by an appropriately qualified and experienced person.

5.3. Limitations

- 5.3.1. SGP reserves the right to alter any of the foregoing information in the event of new information being disclosed or provided and in the light of changes to legislation, guidelines and responses by the statutory and regulatory authorities.
- 5.3.2. This report has been prepared by Smith Grant LLP, for the sole and exclusive use of Urban Regen Ltd. and Dorchester Living, and the benefit of this report may not be assigned to any third party without the prior agreement in writing of Smith Grant LLP.
- 5.3.3. Reasonable skill, care and diligence have been exercised within the timescale and budget available, and in accordance with the technical requirements of the brief. Notwithstanding the efforts made by the professional team in undertaking the assessment and preparing this report, it is possible that other ground conditions and contamination as yet undetected may exist. Reliance on the findings of this report must therefore be limited accordingly. Such reliance must be based on the whole report and not on extracts which may lead to incomplete or incorrect conclusions when taken out of context. This report reviews and relies upon site investigations largely conducted by others. If errors or omissions in previous work have been noted then these have been duly noted, however SGP accepts no responsibility for advice given on the basis of incorrect factual information provided to it.
DRAWINGS

Sheet Plan Scale 1:5000

	Notes:					
	Site boundary				-	
	Approximate e	extent of remediation	works		~	~~~~
	Contour (0.1m	interval)			_	
	Spot level				>	× 120.12
	Bottom / top c	of bank				
	Building footp	rints (see note 2)				
	In ground exca	vations (see note 3)			Z	777
	Tank excavatio	on (see note 4)			2	
	Contaminatior	excavation (see note	es 6, 7, and 8)			///
	Contaminatior	unremediated (see r	note 9)		×	***
	POL pipeline a	s surveyed by Vertase	e (approximate posi	tion only	× () =	
	Developer con	pound area (see note	e 10)	,	,	777
	Notos				C.	
	Notes					
* 123.00	 This plan validation 	is to be read in c report.	onjuction with the	e associ	ated	SGF
	2. Made gro	und associated with	the removal of the	e histori	c bui	ilding
	ground le	vels.	kimately 0.5-1.5m i	Selow re	mea	lated
	Made gro trenches.	ound associated wit deep foundations a	h the removal of nd EWS's extends	[:] buildin to appr	g se oxim	ervice
	1.5-2.5m	pelow remediated gro	ound levels.			
60	4. Made gro extends to	ound associated wit papproximately 4m b	n the removal of elow remediated g	round le	ind vels.	tank
	5. Localised works ma	areas of made grou	nd associated with	n the rei	medi Ian	atio
	6. The exten	t of the contaminatio	on excavation is app	roximate	e onl	у.
	 In-ground remediate 	contamination exe ed ground levels.	cavations extend	to 2-3	m b	elov
$\langle \rangle$	8. Fill materi	als used to make up a	any bulk deficit due	to conta	amin	atior
	9. Contamin	ation unremediated	due to restriction	s (and	exter	nding
$\langle \rangle \langle \rangle$	beyond th 10. A layer of	e site boundary). crush approximately	300mm thick was e	establish	ed o	n top
	of remedi	ated levels to establis	sh the developer co	mpound		
	Survey Informa Co-ord System:	Co-ord Type:	Primary Survey Control:	Secondary	Survey (Control:
	OSGB36(15)	Grid	Leica SmartNet		Site	
	B 24/04/23 A 23/07/21	As built and constraints informati As built and constraints informati	ion updated. ion updated.	1	M.I.C W.I.C	B.C B.C
	Rev Date	Amendment		C	Drawn	Checke
		Urba	INReg	Je		
1		ESTABLISHE	Ð 2001			
	Client:					
		Dorchost	or Homos			
		Dorchest	ernomes)		
	Decised					
	Project:					
	U	pper Heyfo	ord (Phase	e 9)		
				-		
	Title:					
	As bι	uilt topogra	aphic surv	ey a	nd	
	c c	onstraints (Sheet 2 o	f 9)		
	Scalar	First Issue	Drawn:	Charles		
	1:250 @A1	1st Mar 2021	D.J.Woodrow	B.C	Carte	۱r
	Drawing No:			F	levision	:
	25	1_20_0	$01_{-}02$		F	2

Sheet Plan Scale 1:5000

Notes:						
Site boundary	-					
Approximate extent of remediation works	~	~~~~				
Contour (0.1m interval)	-					
Spot level	;	× 120.12				
Bottom / top of bank						
Building footprints (see note 2)						
In ground excavations (see note 3)						
Tank excavation (see note 4)	E					
Contamination excavation (see notes 6, 7, and 8)	E					
Contamination unremediated (see note 9)	Ś					
POL pipeline as surveyed by Vertase (approximate position of	only) =					
Developer compound area (see note 10)						
Notes						
1. This plan is to be read in conjuction with the ass	ociated	SGP				
validation report.	oric hu	ilding				
foundations extends to approximately 0.5-1.5m below	remed	liated				
ground levels. 3. Made ground associated with the removal of buil	ding se	ervice				
trenches, deep foundations and EWS's extends to ap 1.5-2.5m below remediated ground levels	proxim	ately				
4. Made ground associated with the removal of in-g	round	tanks				
 5. Localised areas of made ground associated with the	remedi	ation				
works may be present but which are not detailed on thi6. The extent of the contamination excavation is approxim	s plan. nate onl	у.				
7. In-ground contamination excavations extend to 2 remediated ground levels	2-3m k	elow				
8. Fill materials used to make up any bulk deficit due to co	ontamin	ation				
 excavation was provided by the Client Contamination unremediated due to restrictions (an 	d exte	nding				
beyond the site boundary).	ished o	n ton				
 of remediated levels to establish the developer compo	ind.	n top				
Survey Information:						
Co-ord System: Co-ord Type: Primary Survey Control: Secondary Survey Control: OSGB36(15) Grid Leica SmartNet Site						
B 24/04/23 As built levels/contours updated post stockpile removal. A 23/07/21 As built and constraints information updated.	D.J.W D.J.W	B.C B.C.				
Rev Date Amendment	Drawn	Checked				
Urban Regen ESTABLISHED 2001						
Client:						
Dorchester Homes						
Project:						
Upper Heyford (Phase 9))					
	ا۔ ۔ م					
As built topographic survey	and					
constraints (Sheet 3 of 9)					
Scale: First Issue: Drawn: Checke	ed:					
1:250 @A1 1st Mar 2021 D.J.Woodrow	B.Carte	er				

351-20-001-03

В

35:	1-2	0-	00	1-	06
55.		U		_	

351-20-001-0)
--------------	---

Α

•		511		State 1.5	000		
	Notes:						
	Site bound	lary					
	Approximate extent of remediation works						
	Contour (0.1m interval)						
	Spot level					× 120.12	
	Bottom / t	op of b	bank				
	Building fo	otprint	ts (see note 2)				
	In ground	excava	tions (see note 3)				
	Tank exca	vation ((see note 4)				
	Contamina	ation ex	xcavation (see note	s 6, 7, and 8)			
	Contamina	ation u	nremediated (see n	ote 9)			
	POL pipeli	ne as si	urveyed by Vertase	(approximate posit	tion only)		
	Developer	compo	ound area (see note	10)			
	Notes						
	 This plan is to be read in conjuction with the associated SGP validation report. Made ground associated with the removal of the historic building foundations extends to approximately 0.5-1.5m below remediated ground levels. Made ground associated with the removal of building service trenches, deep foundations and EWS's extends to approximately 1.5-2.5m below remediated ground levels. Made ground associated with the removal of in-ground tanks extends to approximately 4m below remediated ground levels. Localised areas of made ground associated with the remediated on this plan. The extent of the contamination excavation is approximate only. In-ground contamination excavations extend to 2-3m below remediated ground levels. Fill materials used to make up any bulk deficit due to contamination excavation was provided by the Client Contamination unremediated due to restrictions (and extending beyond the site boundary). A layer of crush approximately 300mm thick was established on top 						
$\left \right $	Survey Info	ormatio	On: Co-ord Type:	Primary Survey Control:	Secondary Surv	vey Control:	
	OSGB36	(15)	Grid	Leica SmartNet	Sit	e	

Spot level

Bottom / top of bank

Building footprints (see note 2)

In ground excavations (see note 3)

Tank excavation (see note 4)

Contamination excavation (see notes 6, 7, and 8)

Contamination unremediated (see note 9)

POL pipeline as surveyed by Vertase (approximate position only) Developer compound area (see note 10)

×120.12

Notes

- This plan is to be read in conjuction with the associated SGP validation report.
- Made ground associated with the removal of the historic building foundations extends to approximately 0.5-1.5m below remediated ground levels.
- Made ground associated with the removal of building service trenches, deep foundations and EWS's extends to approximately
- 1.5-2.5m below remediated ground levels.
 Made ground associated with the removal of in-ground tanks extends to approximately 4m below remediated ground levels.
 Localised areas of made ground associated with the remediation
- works may be present but which are not detailed on this plan. The extent of the contamination excavation is approximate only.
- In-ground contamination excavations extend to 2-3m below remediated ground levels.
- Fill materials used to make up any bulk deficit due to contamination excavation was provided by the Client Contamination unremediated due to restrictions (and extending
- beyond the site boundary). 10. A layer of crush approximately 300mm thick was established on top of remediated levels to establish the developer compound.

Survey Information: Primary Survey Control: Secondary Survey Control: Co-ord System: Co-ord Type:

OSGB36(15)		Grid	Leica SmartNet	Site	
A	24/04/23	As built levels/contours updated p	ost stockpile removal.	D.J.W	B.C
Rev	Date	Amendment		Drawn	Checked

Dorchester Homes

Upper Heyford (Phase 9)

As built topographic survey and constraints (Sheet 9 of 9)

Sicale:First Issue:Drawn:1:250 @A123rd Jul 2021D.J.Woodrow Drawing No:

351-20-001-09

B.Carter

Α

APPENDIX A

Site Photographs

Smith Grant LLP

Environmental Consultancy

APPENDIX B

Hotspot Photographic Record

Job Number: R1742b (Heyford Park – Phase 9)	Date: 28.04.21	Hotspot Location: ACM-HS	Compiled By: DW
Lab Ref: 21-14505		Samples: Ph9-ACMHS-S1 to S8	
	and the second s		
 (S1) following completion of hand-picking. No visible ACM observed 	(S2) following completion of hand-picking.	No visible ACM (S3) following completion of ha	gl and collection of sample nd-picking. No visible ACM
28.04.21 - Excavation to 0.6m bgl and collection of sample	28.04.21 - Excavation to 0.6m bgl and col	lection of sample 28.04.21 - Excavation to 0.6m k	gl and collection of sample
(S4) following completion of hand-picking. No visible ACM observed	(S5) following completion of hand-picking. observed	No visible ACM (S6) following completion of ha observed	nd-picking. No visible ACM

Job Number: R1742b (Heyford Park – Phase 9)	Date: 28.04.21	Hotspot Location: HS-TP102	Compiled By: DW
Lab Ref: 21-14505	•	Samples: HS-TP102-HS1 (contam); HS-TP102-SS1	to SS6 (stripped surface)
28.04.21 – Excavation of trench 1 within Hydrock hotspot area TP102.	28.04.21 – Black gravel present reworked natural (0-0.2m) and under gravel	below surface cover of erlain by natural limestone 28.04.21 – Black gravel within aerial mast, possible former bas	approximate area of former
28.04.21 – Trench 2 excavated adjacent to access road into site, no black gravel encountered	28.04.21 – Natural strata of limes (weathered bedrock) within trench co area impacted by black gravel	tone gravel in clays soil onfirming limited extend of	k stained gravel

Job Number: R1742b (Heyford Park – Phase 9)	Date: 17.02.21	Hotspot Location: HS-TP104	Compiled By: DW
Lab Ref: 21-2316		Samples: HS-TP104-S1 to -S3	
The transformation of transform	T.02.21 – Excavation of trench to 0.8m du possible drain and water pipe	e to presence of 17.02.21 – Arisings side cass limestone gravel in brown clay (v	t and consisted of coarse veathered bedrock). No visual
Tr.02.21 – Excavation of second trench to 1.1m bgl	17.02.21 – Natural soils encountered from t base, consisting of limestone gravel in clay s	he surface to the oil 01 Oliractory evidence of containing samples. No visual or olfactory PID <0.1ppm.	s and collection of validation, evidence of contamination,

Job Number: R1742b (Heyford Park – Phase 9)	Image: r: R1742b (Heyford Park – Phase 9) Date: 28.04.21 Hotspot Loc		Compiled By: DW
Lab Ref: 21-14505		Samples: Ph9-UST-SS1 to SS12	I
09.03.21 – Exposure of tank locations following demolition of boiler house	09.03.21 – Tank surface exposed confirming Removal of cover confirms water filled with	g 3 tanks present. some floating oil 28.04.21 – Excavation void foll soils present on all sides. No e	lowing removal of tanks. Natural evidence of staining on sidewalls
28.04.21 – Base of excavation at approximately 2.8m bgl. Limestone gravel present to 2.3m bgl with limestone bedrock to base	28.04.21 – No visual or olfactory evidence with PID <0.1ppm in all instances	of contamination 28.04.21 – Sidewalls and the indicators of fuel contamination	ase absent from staining or n

APPENDIX C

Formation Validation Photographic Record

28.04.21 – Formation Validation: S41

28.04.21 – Formation Validation: S42

19.10.22 – Formation Validation: S60 (1/2)

19.10.22 – Formation Validation: S60 (2/2)

19.10.22 – Formation Validation: S66 (1/2)

19.10.22 – Formation Validation: S66 (2/2)

APPENDIX C

Laboratory Certificates

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Three samples were received for analysis on 19th February, 2021 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name: Reference: Location: Contact: EMT Job No: Smith Grant LLP R1742B Heyford PH9 Dan Wayland 21/2316

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

										-		
EMT Sample No.	1-2	3-4	5-6									
Sample ID	HS-TP104-S1	HS-TP104-S2	HS-TP104-S3									
Depth	0.0-0.4	0.0-0.4	0.4-1.1							Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V J	٧J	V J									
Sample Date	17/02/2021	17/02/2021	17/02/2021									
Sample Date	17/02/2021	17/02/2021	17/02/2021									
Sample Type	Clay	Clay	Clay									
Batch Number	1	1	1							LOD/LOR	Units	Method
Date of Receipt	19/02/2021	19/02/2021	19/02/2021									No.
TPH CWG												
Aliphatics												
>C5-C6 #M	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C10-C12 ***	<0.2 ^{3V}	<0.2 ^{3V}	<0.2 ^{3V}							<0.2	mg/kg	TM5/PM8/PM16
>C12-C16***	<4	<4	<4°							<4	mg/kg	TM5/PM8/PM16
>C16-C21	14 00 SV	*</td <td><!--"</td--><td></td><td></td><td></td><td></td><td></td><td></td><td><7</td><td>mg/kg</td><td>TM5/PM8/PM16</td></td>	"</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><7</td> <td>mg/kg</td> <td>TM5/PM8/PM16</td>							<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	77	<19	<19							<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics		10	10							10	ilig/itg	
>C5-EC7#	<0.1	<0.1	<0.1							<0.1	ma/ka	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2 ^{SV}	<0.2 ^{SV}	<0.2 ^{SV}							<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4 ^{SV}	<4 ^{SV}	<4 ^{SV}							<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	33 ^{sv}	<7 ^{SV}	<7 ^{SV}							<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	231 ^{SV}	<7 ^{SV}	<7 ^{SV}							<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	264	<19	<19							<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	341	<38	<38							<38	mg/kg	TM5/TM36/PM8/PM12/PM16
	-	-	-							-		
MTBE"	<5	<5	<5							<5	ug/kg	TM36/PM12
Benzene "	<5	<5	<5							<5	ug/kg	TM36/PM12
Toluene	<0	<0	<0							<0	ug/kg	TM26/PM12
Ethyldenzene	<5	<5	<5							<5	ug/kg	TM36/PM12
o-Xvlene [#]	<5	<5	<5							<5	ug/kg	TM36/PM12
		Ū									ugnig	
Natural Moisture Content	22.9	11.2	12.0							<0.1	%	PM4/PM0
Sample Type	Clay	Clay	Clay								None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown								None	PM13/PM0
Other Items	stones	stones	stones								None	PM13/PM0
												}
	1	1	1	1	1	1	1	1	1	1		1

Element Materials Technology

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford PH9
Contact:	Dan Wayland

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason					
	No deviating sample report results for job 21/2316										

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/2316

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/2316

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Element Materials Technology

EMT Job No: 21/2316

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes

Method Code Appendix

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-06789-1		
Initial Date of Issue:	10-Mar-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Heyford - Phase 9		
Quotation No.:	Q15-02887	Date Received:	04-Mar-2021
Order No.:		Date Instructed:	04-Mar-2021
No. of Samples:	11		
Turnaround (Wkdays):	5	Results Due:	10-Mar-2021
Date Approved:	10-Mar-2021		
Approved By:			
Details:	Glynn Harvey, Technical Manager		

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
		Sa	ample Lo	ocation:	PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
	Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bot	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	15	13	15	15	11	10	12	6.9	13
рН	U	2010		4.0	8.7	8.6	8.6	8.6	8.7	8.6	8.6	8.7	8.6
Arsenic	U	2450	mg/kg	1.0	12	20	15	16	25	24	25	10	21
Cadmium	U	2450	mg/kg	0.10	0.18	0.12	0.13	0.16	0.16	0.15	0.15	< 0.10	0.23
Chromium	U	2450	mg/kg	1.0	21	20	26	25	20	18	18	4.0	25
Copper	U	2450	mg/kg	0.50	14	9.0	13	14	10	10	9.8	1.7	11
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	20	20	24	26	21	18	19	3.9	24
Lead	U	2450	mg/kg	0.50	17	9.8	12	15	10	12	9.8	1.9	17
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	47	28	47	44	28	30	26	4.6	41
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.95	0.67	0.84	1.4	0.55	1.1	0.74	< 0.40	1.2
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic IPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic IPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I otal Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
I otal Petroleum Hydrocarbons	N III	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene		2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

<u> Results - Soil</u>

Client: Smith Grant LLP	Chemtest Job No.:			21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	
Quotation No.: Q15-02887	0	Chemte	est Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
	Sample Location:			PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9	
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bot	ttom De	oth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	st Sam	1153722	1153723	
		Sa	ample Lo	ocation:	PH9-S10	PH9-S11
			Sampl	e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0	0
		Bot	tom Dep	oth (m):	0.4	0.4
			Date Sa	ampled:	02-Mar-2021	02-Mar-2021
	Asbestos Lab:				COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	12	7.5
рН	U	2010		4.0	8.4	8.6
Arsenic	U	2450	mg/kg	1.0	13	13
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	9.4	7.2
Copper	U	2450	mg/kg	0.50	5.0	3.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	9.3	7.0
Lead	U	2450	mg/kg	0.50	7.7	5.8
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	21	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.1	0.60
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1153722	1153723
		Sample Location:			PH9-S10	PH9-S11
			Sample	e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0	0
		Bot	tom Dep	oth (m):	0.4	0.4
			Date Sa	ampled:	02-Mar-2021	02-Mar-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	0.78
Anthracene	U	2700	mg/kg	0.10	< 0.10	0.40
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	1.7
Pyrene	U	2700	mg/kg	0.10	< 0.10	1.6
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	0.90
Chrysene	U	2700	mg/kg	0.10	< 0.10	0.90
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.60
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.17
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	0.56
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	7.6
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Re	port	Emai	l: info@chemtest.c
Report No.:	21-06789-2		
Initial Date of Issue:	10-Mar-2021	Date of Re-Issue:	18-Mar-2021
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Heyford - Phase 9		
Quotation No.:	Q15-02887	Date Received:	04-Mar-2021
Order No.:		Date Instructed:	04-Mar-2021
No. of Samples:	11		
Turnaround (Wkdays):	15	Results Due:	24-Mar-2021
Date Approved:	18-Mar-2021		
Approved By:			
Details:	- Glynn Harvey, Technical Manager		

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
		Sa	ample Lo	ocation:	PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bot	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
		-	Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	Ν	2030	%	0.020	15	13	15	15	11	10	12	6.9	13
рН	U	2010		4.0	8.7	8.6	8.6	8.6	8.7	8.6	8.6	8.7	8.6
Arsenic	U	2450	mg/kg	1.0	12	20	15	16	25	24	25	10	21
Cadmium	U	2450	mg/kg	0.10	0.18	0.12	0.13	0.16	0.16	0.15	0.15	< 0.10	0.23
Chromium	U	2450	mg/kg	1.0	21	20	26	25	20	18	18	4.0	25
Copper	U	2450	mg/kg	0.50	14	9.0	13	14	10	10	9.8	1.7	11
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	20	20	24	26	21	18	19	3.9	24
Lead	U	2450	mg/kg	0.50	17	9.8	12	15	10	12	9.8	1.9	17
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	40	40	45	49	41	38	41	7.8	49
Zinc	U	2450	mg/kg	0.50	47	28	47	44	28	30	26	4.6	41
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.95	0.67	0.84	1.4	0.55	1.1	0.74	< 0.40	1.2
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I otal Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic IPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
I otal Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
		Sa	ample L	ocation:	PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bo	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest	tos Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	st Sam	1153722	1153723	
		Sa	ample Lo	ocation:	PH9-S10	PH9-S11
			Sampl	e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0	0
		Bot	tom Dep	oth (m):	0.4	0.4
			Date Sa	ampled:	02-Mar-2021	02-Mar-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	12	7.5
рН	U	2010		4.0	8.4	8.6
Arsenic	U	2450	mg/kg	1.0	13	13
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	9.4	7.2
Copper	U	2450	mg/kg	0.50	5.0	3.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	9.3	7.0
Lead	U	2450	mg/kg	0.50	7.7	5.8
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	19	15
Zinc	U	2450	mg/kg	0.50	21	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.1	0.60
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	ntest Jo	ob No.:	21-06789	21-06789
Quotation No.: Q15-02887	C	Chemte	st Sam	ple ID.:	1153722	1153723
		Sa	ample Lo	ocation:	PH9-S10	PH9-S11
			Sample	e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0	0
		Bot	tom Dep	oth (m):	0.4	0.4
			Date Sa	mpled:	02-Mar-2021	02-Mar-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	υ	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	0.78
Anthracene	U	2700	mg/kg	0.10	< 0.10	0.40
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	1.7
Pyrene	U	2700	mg/kg	0.10	< 0.10	1.6
Benzo[a]anthracene	υ	2700	mg/kg	0.10	< 0.10	0.90
Chrysene	U	2700	mg/kg	0.10	< 0.10	0.90
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.60
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.17
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	0.56
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	υ	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	7.6
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

-			
Report No.:	21-07749-1		
Initial Date of Issue:	17-Mar-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R172B Heyford - Ph9		
Quotation No.:		Date Received:	11-Mar-2021
Order No.:		Date Instructed:	11-Mar-2021
No. of Samples:	12		
Turnaround (Wkdays):	5	Results Due:	17-Mar-2021
Date Approved:	17-Mar-2021		
Approved By:			
Details:	Glynn Harvey, Technical Manager		

<u> Results - Soil</u>

Quotation No.:CD-Dereter Sample Type1158/2491158/2481158/249115	Client: Smith Grant LLP		Che	mtest J	ob No.:	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749
ImageImageSampleImagePH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812PH9-S812S30	Quotation No.:		Chemte	est Sam	ple ID.:	1158239	1158240	1158241	1158242	1158243	1158244	1158245	1158246	1158247
Image Image <th< td=""><td></td><td></td><td>Sa</td><td>ample L</td><td>ocation:</td><td>PH9-SS12</td><td>PH9-SS13</td><td>PH9-SS14</td><td>PH9-SS15</td><td>PH9-SS16</td><td>PH9-SS17</td><td>PH9-SS18</td><td>PH9-SS19</td><td>PH9-SS20</td></th<>			Sa	ample L	ocation:	PH9-SS12	PH9-SS13	PH9-SS14	PH9-SS15	PH9-SS16	PH9-SS17	PH9-SS18	PH9-SS19	PH9-SS20
Image: Note of the set of th				Sampl	e Type:	SOIL								
Image: Normal problemImage: Normal proble				Top De	pth (m):	0	0	0	0	0	0	0	0	0
Determinand Normal Service 09-Mar-2201			Bot	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Determine Network SDR M DUR M DUR M DUR MM				Date Sa	ampled:	09-Mar-2021								
Determinand ACM TypeNoSinceNo<				Asbest	os Lab:	DURHAM								
ACM Type U 2192 N/A No - <	Determinand	Accred.	SOP	Units	LOD									
Asbestos Identification U 2192 NA No Absetos	АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture N 2030 % 0.020 9.6 10 9.7 9.1 10 10 12 11 11 pH U 2010 4.0 8.9 8.9 9.0 8.8 8.9 8.9 9.0 8.8 8.9 8.9 8.9 9.0 8.8 8.9 8.9 9.0 8.8 8.9 8.9 2.0	ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
pH U 2010 4.0 8.9 8.9 8.9 8.9 8.9 8.9 8.9 Assenic U 2450 mg/kg 0.10 0.15 0.11 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	Moisture	N	2030	%	0.020	9.6	10	9.5	9.1	10	10	12	11	11
ArsenicU2450mg/kg1.02.63.12.13.52.63.32.72.42.6CadmiumU2450mg/kg0.00.150.11<0.10	рН	U	2010		4.0	8.9	8.9	9.0	9.0	8.8	8.9	8.9	8.9	8.9
	Arsenic	U	2450	mg/kg	1.0	26	31	21	35	26	33	27	24	26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cadmium	U	2450	mg/kg	0.10	0.15	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	Chromium	U	2450	mg/kg	1.0	13	14	7.8	14	16	18	16	14	19
	Copper	U	2450	mg/kg	0.50	7.2	5.8	3.5	5.9	6.9	7.8	5.9	5.1	7.4
Nickel U 2450 mg/kg 0.50 12 11 7.2 12 16 17 13 11 17 Lead U 2450 mg/kg 0.50 8.3 7.2 3.3 6.7 6.6 9.0 6.6 6.4 8.2 Selenium U 2450 mg/kg 0.50 <0.20	Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nickel	U	2450	mg/kg	0.50	12	11	7.2	12	16	17	13	11	17
Selenium U 2450 mg/kg 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50	Lead	U	2450	mg/kg	0.50	8.3	7.2	3.3	6.7	6.6	9.0	6.6	6.4	8.2
Vanadium U 2450 mg/kg 5.0 30 36 22 37 35 43 35 32 39 Zinc U 2450 mg/kg 0.50 30 19 7.9 15 18 19 54 16 23 Chromium (Hexavalent) N 2490 mg/kg 0.50 < 0.50	Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vanadium	U	2450	mg/kg	5.0	30	36	22	37	35	43	35	32	39
Chromium (Hexavalent) N 2490 mg/kg 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 <	Zinc	U	2450	mg/kg	0.50	30	19	7.9	15	18	19	54	16	23
Organic Matter U 2625 % 0.40 0.90 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40	Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic TPH >C5C6 N 2680 mg/kg 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	Organic Matter	U	2625	%	0.40	0.90	< 0.40	< 0.40	0.41	< 0.40	< 0.40	< 0.40	0.69	< 0.40
Aliphatic TPH >C66-C8 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10 U 2680 mg/kg 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12 U 2680 mg/kg 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C12-C16 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <td>Aliphatic TPH >C10-C12</td> <td>U</td> <td>2680</td> <td>mg/kg</td> <td>1.0</td> <td>< 1.0</td>	Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35 0 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aliphatic TPH >C16-C21	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C33-C44 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aliphatic TPH >C21-C35		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Initial Alignatic Hydrocarbons N 2680 Img/kg 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <	Aliphatic TPH >C35-C44	N N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Arromatic TPH >C3-C7 N 2660 Hig/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aremetic TPU > C5_C7	IN N	2000	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Atomatic TPH >C1-C6 N 2660 Ing/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C3-C7	IN N	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Arromatic TPH >C10-C12 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C8 C10		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C10 C12		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C10 U 260 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C10-C12		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35 U 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C16-C21	11	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44 N 2680 mg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Aromatic TPH >C21_C35		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aromatic TPH > $C35$ - $C44$	N	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons N 2680 mg/kg 50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Total Aromatic Hydrocarbons	N	2680	ma/ka	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons N 2680 mg/kg 10.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	Total Petroleum Hydrocarbons	N	2680	ma/ka	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	Naphthalene	U	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749
Quotation No.:	(Chemte	est Sam	ple ID.:	1158239	1158240	1158241	1158242	1158243	1158244	1158245	1158246	1158247
		Sa	ample L	ocation:	PH9-SS12	PH9-SS13	PH9-SS14	PH9-SS15	PH9-SS16	PH9-SS17	PH9-SS18	PH9-SS19	PH9-SS20
			Sampl	le Type:	SOIL								
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bo	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	09-Mar-2021								
			Asbest	tos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-07749	21-07749	21-07749
Quotation No.:	(Chemte	est Sam	ple ID.:	1158248	1158249	1158250
		Sa	ample Lo	ocation:	PH9-SS21	PH9-SS22	PH9-SS23
			Sampl	e Type:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0	0	0
		Bot	tom Dep	oth (m):	0.4	0.4	0.4
			Date Sa	ampled:	09-Mar-2021	09-Mar-2021	09-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-
Moisture	Ν	2030	%	0.020	27	38	16
рН	U	2010		4.0	8.9	9.0	9.1
Arsenic	U	2450	mg/kg	1.0	30	12	10
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	16	4.7	3.2
Copper	U	2450	mg/kg	0.50	6.4	1.9	1.4
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	16	4.3	2.8
Lead	U	2450	mg/kg	0.50	7.1	2.1	1.5
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	36	11	10
Zinc	U	2450	mg/kg	0.50	18	5.3	3.9
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	< 0.40	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-07749	21-07749	21-07749
Quotation No.:	(Chemte	est Sam	ple ID.:	1158248	1158249	1158250
		Sa	ample Lo	ocation:	PH9-SS21	PH9-SS22	PH9-SS23
			Sample	e Type:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0	0	0
		Bot	ttom Dep	oth (m):	0.4	0.4	0.4
			Date Sa	ampled:	09-Mar-2021	09-Mar-2021	09-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу			
U	UKAS accredited		
Μ	MCERTS and UKAS accredited		
Ν	Unaccredited		
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis		
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis		
Т	This analysis has been subcontracted to an unaccredited laboratory		
I/S	Insufficient Sample		
U/S	Unsuitable Sample		
N/E	not evaluated		
<	"less than"		
>	"greater than"		
SOP	Standard operating procedure		
LOD	Limit of detection		

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com
😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-11315-1		
Initial Date of Issue:	16-Apr-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Heyford Ph9		
Quotation No.:		Date Received:	09-Apr-2021
Order No.:		Date Instructed:	09-Apr-2021
No. of Samples:	14		
Turnaround (Wkdays):	5	Results Due:	15-Apr-2021
Date Approved:	15-Apr-2021		
Approved By:			
Details:	Glynn Harvey, Technical Manager		

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	(Chemte	est Sam	ple ID.:	1175986	1175987	1175988	1175989	1175990	1175991	1175992	1175993	1175994
		Cli	ent Sam	ple ID.:	S24	S25	S26	S27	S28	S29	S30	S31	S32
		Sa	ample L	ocation:	Ph9-								
			Sampl	e Type:	SOIL								
			Date Sa	ampled:	06-Apr-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	6.0	10	9.6	8.9	12	10	18	14	15
рН	U	2010		4.0	8.0	8.4	8.3	8.2	8.4	8.5	8.6	8.2	8.5
Arsenic	U	2450	mg/kg	1.0	18	20	17	17	23	18	16	22	13
Cadmium	U	2450	mg/kg	0.10	0.17	0.12	< 0.10	< 0.10	0.22	0.11	< 0.10	0.15	< 0.10
Chromium	U	2450	mg/kg	1.0	16	14	14	13	25	15	12	21	9.6
Copper	U	2450	mg/kg	0.50	9.3	6.3	6.3	7.2	14	7.4	7.7	12	4.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	22	11	13	11	22	14	13	21	9.0
Lead	U	2450	mg/kg	0.50	25	8.5	7.2	6.5	23	8.4	7.3	15	5.0
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	29	32	29	28	53	36	24	44	19
Zinc	U	2450	mg/kg	0.50	28	23	18	18	46	29	13	37	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.86	< 0.40	0.52	< 0.40	2.2	1.0	< 0.40	0.69	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	27	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	18	26	< 1.0	< 1.0	34	140	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	18	26	< 5.0	< 5.0	34	170	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	18	26	< 10	< 10	34	170	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	(Chemte	est Sam	ple ID.:	1175986	1175987	1175988	1175989	1175990	1175991	1175992	1175993	1175994
		Cli	ent Sam	ple ID.:	S24	S25	S26	S27	S28	S29	S30	S31	S32
		Sa	ample L	ocation:	Ph9-								
			Sampl	e Type:	SOIL								
		Date Sampled:			06-Apr-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	2.5	0.23	2.0	1.3	1.4	1.5	< 0.10	0.58	< 0.10
Anthracene	U	2700	mg/kg	0.10	0.63	0.10	0.77	0.42	0.45	0.45	< 0.10	0.14	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	3.2	0.94	6.9	1.8	6.5	3.2	< 0.10	1.0	< 0.10
Pyrene	U	2700	mg/kg	0.10	2.9	1.1	7.0	1.7	6.7	3.0	< 0.10	1.1	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.95	0.50	3.0	0.51	3.3	1.2	< 0.10	0.36	< 0.10
Chrysene	U	2700	mg/kg	0.10	1.2	0.61	3.0	0.69	3.6	1.3	< 0.10	0.51	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.3	1.1	3.9	< 0.10	5.1	1.9	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.51	0.38	1.6	< 0.10	2.0	0.77	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	0.81	0.72	2.8	< 0.10	3.5	1.1	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	0.59	0.49	2.3	< 0.10	2.7	0.79	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	0.64	< 0.10	0.67	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.50	0.50	1.8	< 0.10	2.4	0.78	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	15	6.7	36	6.4	38	16	< 2.0	3.7	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	(Chemte	est Sam	ple ID.:	1175995	1175996	1175997	1175998	1175999
		Cli	ent Sam	ple ID.:	S33	S34	S35	S36	S37
		Sa	ample Lo	ocation:	Ph9-	Ph9-	Ph9-	Ph9-	Ph9-
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
АСМ Туре	U	2192		N/A	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected				
ACM Detection Stage	U	2192		N/A	-	-	-	-	-
Moisture	N	2030	%	0.020	16	13	13	17	11
pН	U	2010		4.0	8.4	8.4	8.2	8.3	8.3
Arsenic	U	2450	mg/kg	1.0	14	16	23	23	25
Cadmium	U	2450	mg/kg	0.10	0.12	0.13	0.18	0.18	0.21
Chromium	U	2450	mg/kg	1.0	16	26	34	38	25
Copper	U	2450	mg/kg	0.50	7.8	8.9	15	16	13
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	15	20	27	34	21
Lead	U	2450	mg/kg	0.50	8.4	14	17	17	20
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	31	44	63	65	52
Zinc	U	2450	mg/kg	0.50	19	43	53	59	39
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	0.52	0.83	0.78	0.88
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	12
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	12
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	12
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.18
Acenaphthylene	U	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	0	Chemte	st Sam	ple ID.:	1175995	1175996	1175997	1175998	1175999
		Clie	ent Sam	ple ID.:	S33	S34	S35	S36	S37
		Sa	ample Lo	ocation:	Ph9-	Ph9-	Ph9-	Ph9-	Ph9-
			Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL
	D		Date Sa	ampled:	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021
	Asbestos Lab:		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD					
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.39
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.31
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	3.6
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.2
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	11
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	11
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.3
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.0
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	5.1
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.3
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.0
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.9
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.3
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.5
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	54
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-11321-1		
Initial Date of Issue:	16-Apr-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Heyford - Ph9		
Quotation No.:		Date Received:	09-Apr-2021
Order No.:		Date Instructed:	09-Apr-2021
No. of Samples:	10		
Turnaround (Wkdays):	5	Results Due:	15-Apr-2021
Date Approved:	15-Apr-2021		
Approved By:			
Details:	Rachel Robertson, Deputy Technical Manager		

Client: Smith Grant LLP		Chem	itest Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	st Samp	le ID.:	1176016	1176017
		Sar	nple Lo	cation:	Shilling St -	Altus St -
	_				Tarmac	Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
Determinend	Access		Jale Sa		06-Apr-2021	06-Apr-2021
Determinand	Accrea.	50P	Units	LOD		
Chromatogram (TPH)	Ν			N/A	See Attached	See Attached
Diesel Present	Ν	2670		N/A	False	False
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	330	32
Coal Tar Quantification (%)	Ν		%	0.001	0.15	0.017
Coal Tar Quantification	Ν		mg/kg	10.0	1500	170
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	1500	170
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10	1900	200
Naphthalene	Ν	2700	mg/kg	0.10	2.0	1.4
Acenaphthylene	Ν	2700	mg/kg	0.10	4.3	7.3
Acenaphthene	Ν	2700	mg/kg	0.10	8.8	18
Fluorene	Ν	2700	mg/kg	0.10	7.7	15
Phenanthrene	Ν	2700	mg/kg	0.10	55	130
Anthracene	Ν	2700	mg/kg	0.10	21	58
Fluoranthene	Ν	2700	mg/kg	0.10	85	360
Pyrene	Ν	2700	mg/kg	0.10	84	380
Benzo[a]anthracene	Ν	2700	mg/kg	0.10	34	150
Chrysene	Ν	2700	mg/kg	0.10	40	140
Benzo[b]fluoranthene	Ν	2700	mg/kg	0.10	63	200
Benzo[k]fluoranthene	Ν	2700	mg/kg	0.10	26	76
Benzo[a]pyrene	Ν	2700	mg/kg	0.10	46	160

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nnle I o	cation.	Shilling St -	Altus St -
		oui		oution.	Tarmac	Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
		C	ate Sa	mpled:	06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD		
Indeno(1,2,3-c,d)Pyrene	N	2700	mg/kg	0.10	35	120
Dibenz(a,h)Anthracene	N	2700	mg/kg	0.10	9.8	25
Benzo[g,h,i]perylene	N	2700	mg/kg	0.10	29	98
Coronene	N	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2700	mg/kg	2.0	550	1900
Double Ratio Fluoranthene:Pyrene	N	2700		0.010	1.0	0.96
Double Ratio Benzo(a)Anthracene:Chrysene	N	2700		0.010	0.86	1.1
N-Nitrosodimethylamine	N	2790	mg/kg	0.50	< 0.50	< 0.50
Phenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Chlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Methylphenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachloroethane	N	2790	mg/kg	0.50	< 0.50	< 0.50
N-Nitrosodi-n-propylamine	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
4-Methylphenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Nitrobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Isophorone	N	2790	mg/kg	0.50	< 0.50	< 0.50

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nnle I o	cation.	Shilling St -	Altus St -
		our		oution.	Tarmac	Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
			Date Sai	mpled:	06-Apr-2021	06-Apr-2021
Determinand	Accred.	I. SOP Units LOD				
2-Nitrophenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dimethylphenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dichlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Naphthalene	Ν	2790	mg/kg	0.50	6.5	< 0.50
4-Chloroaniline	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorobutadiene	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2-Methylnaphthalene	Ν	2790	mg/kg	0.50	5.7	< 0.50
4-Nitrophenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorocyclopentadiene	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2,4,6-Trichlorophenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2-Chloronaphthalene	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2-Nitroaniline	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Acenaphthylene	Ν	2790	mg/kg	0.50	0.67	< 0.50
Dimethylphthalate	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Acenaphthene	N	2790	mg/kg	0.50	10	< 0.50

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nnle I o	cation.	Shilling St -	Altus St -
		Oai		cation.	Tarmac	Tarmac
			Sample	e Type:	MISCSOLID	MISCSOLID
			Date Sa	mpled:	06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD		
3-Nitroaniline	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Dibenzofuran	N	2790	mg/kg	0.50	6.8	< 0.50
4-Chlorophenylphenylether	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Fluorene	Ν	2790	mg/kg	0.50	6.3	< 0.50
Diethyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
4-Nitroaniline	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Azobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Pentachlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Phenanthrene	Ν	2790	mg/kg	0.50	60	9.5
Anthracene	Ν	2790	mg/kg	0.50	17	3.0
Carbazole	Ν	2790	mg/kg	0.50	5.0	0.73
Di-N-Butyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
Fluoranthene	Ν	2790	mg/kg	0.50	62	18
Pyrene	Ν	2790	mg/kg	0.50	46	15
Butylbenzyl Phthalate	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Benzo[a]anthracene	Ν	2790	mg/kg	0.50	19	6.9

Project: R1742b Heyford - Ph9

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	st Samp	le ID.:	1176016	1176017
		Sar	nple Lo	Shilling St - Tarmac	Altus St - Tarmac	
			Sample	Type:	MISCSOLID	MISCSOLID
		0	Date Sa	mpled:	06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD		
Chrysene	Ν	2790	mg/kg	0.50	19	6.3
Bis(2-Ethylhexyl)Phthalate	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	Ν	2790	mg/kg	0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	Ν	2790	mg/kg	0.50	26	7.7
Benzo[k]fluoranthene	Ν	2790	mg/kg	0.50	8.0	2.7
Benzo[a]pyrene	Ν	2790	mg/kg	0.50	21	6.5
Indeno(1,2,3-c,d)Pyrene	Ν	2790	mg/kg	0.50	10	3.1
Dibenz(a,h)Anthracene	Ν	2790	mg/kg	0.50	2.4	0.69
Benzo[g,h,i]perylene	N	2790	mg/kg	0.50	12	3.9
Moisture	N		%	0.10	< 0.10	< 0.10
Interpretive Report	N			N/A	See Below	See Below
SVOC TIC	Ν	2790	mg/kg	N/A	See Below	None Detected
(SVOC TIC) Dibenzothiophene	N	2790	mg/kg	N/A	3.7	

Sample 1176016 contains coal tar contamination. Dibenzothiphene, a biomarker present in coal tar, has been detected by SVOC analysis. This, in conjunction with the elevated PAH contamination detected, confirms the presence of coal tar in this sample.

Sample 1176017 is inconclusive for coal tar contamination. Dibenzothiphene, a biomarker present in coal tar, has not been detected by SVOC analysis. This, in conjunction with the elevated PAH contamination detected, means we cannot confirm the presence of coal tar in this sample.

Client: Smith Grant LLP		Chem	itest Jo	b No.:	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421- S2
			Sample	Type:	SOIL							
		0	Date Sa	mpled:	06-Apr-2021							
		1000	Asbesto	s Lab:	DURHAM							
Determinand	Accred.	SOP	Units	LOD								
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected							
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	21	26	20	20	22	23		
рН	U	2010		4.0	8.4	8.3	8.3	8.2	8.3	8.2		
Arsenic	U	2450	mg/kg	1.0	23	21	24	54	28	24		
Cadmium	U	2450	mg/kg	0.10	0.37	0.35	0.29	0.29	0.36	0.38		
Chromium	U	2450	mg/kg	1.0	30	25	27	63	35	32		
Copper	U	2450	mg/kg	0.50	21	23	15	19	20	19		
Mercury	U	2450	mg/kg	0.10	0.13	< 0.10	< 0.10	< 0.10	0.10	0.12		
Nickel	U	2450	mg/kg	0.50	24	20	21	38	30	26		
Lead	U	2450	mg/kg	0.50	45	42	33	44	77	46		
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Vanadium	U	2450	mg/kg	5.0	53	45	52	100	61	56		
Zinc	U	2450	mg/kg	0.50	80	74	62	130	91	86		
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Organic Matter	U	2625	%	0.40	3.6	5.3	3.1	4.8	4.5	5.3		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

Client: Smith Grant LLP		Chem	itest Jo	b No.:	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421- S2
			Sample	Type:	SOIL	SOIL						
		Ľ)ate Sai	mpled:	06-Apr-2021	06-Apr-2021						
			Asbesto	s Lab:	DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	7.9		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	7.9		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	34	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	34	< 10	< 10	< 10	< 10	< 10		
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		

Client: Smith Grant LLP		Chem	itest Jo	b No.:	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421- S2
			Sample	Type:	SOIL	SOIL						
		D	Date Sai	mpled:	06-Apr-2021	06-Apr-2021						
		1	Asbesto	s Lab:	DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	U	2700	mg/kg	0.10	0.57	2.5	0.58	3.9	1.7	0.72		
Anthracene	U	2700	mg/kg	0.10	0.19	0.63	0.20	1.1	0.53	0.22		
Fluoranthene	U	2700	mg/kg	0.10	2.1	9.7	1.9	5.1	3.7	2.0		
Pyrene	U	2700	mg/kg	0.10	2.1	9.6	1.9	4.9	3.6	2.0		
Benzo[a]anthracene	U	2700	mg/kg	0.10	1.0	4.3	0.37	2.0	1.7	1.1		
Chrysene	U	2700	mg/kg	0.10	1.2	5.1	0.87	2.3	1.9	1.2		
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.9	7.8	1.6	2.7	2.7	1.6		
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.95	2.8	0.51	1.0	1.3	0.49		
Benzo[a]pyrene	U	2700	mg/kg	0.10	1.2	5.6	1.2	1.7	1.7	1.1		
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	1.1	4.8	0.19	1.1	1.4	0.85		
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.26	0.77	0.56	< 0.10	0.32	0.10		
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.88	4.1	0.65	1.3	1.2	1.0		
Total Of 16 PAH's	U	2700	mg/kg	2.0	14	58	11	27	22	12		
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

<u> Results - Soil</u>

Client: Smith Grant LLP		Chem	itest Jo	b No.:	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	st Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421- S2
			Sample	Type:	SOIL	SOIL						
		C	Date Sa	mpled:	06-Apr-2021	06-Apr-2021						
		1	Asbesto	os Lab:	DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

TPH Chromatogram on Misc Sample: 1176017

Double Ratio Plot

Sample No.	Fluoranthene	Pyrene	Benzo[a]Anthracene	Chrysene	Fluoranthene : Pyrene Ratio	Benzo[a]Anthracene : Chrysene Ratio
1176016	85	84	34	40	1.00	0.86
1176017	360	380	150	140	0.96	1.10

TPH Interpretation

Job	Sample	Matrix	Location	Sample Ref	Sample ID	Sample Depth (m)	Gasoline / Diesel Present	TPH Interpretation
21-11321	1176016	М	Shilling St - Tarmac				No	PAH and Heavy Oil
21-11321	1176017	М	Altus St - Tarmac				No	PAH and Heavy Oil

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Re	port	Ema	il: info@chemtest.co
Report No.:	21-13303-2		
Initial Date of Issue:	27-Apr-2021	Date of Re-Issue:	05-May-2021
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Hayford - Phase 9		
Quotation No.:		Date Received:	23-Apr-2021
Order No.:		Date Instructed:	23-Apr-2021
No. of Samples:	6		
Turnaround (Wkdays):	8	Results Due:	05-May-2021
Date Approved:	05-May-2021		
Approved By:			
Details:	- Glynn Harvey, Technical Manager		

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-13303	21-13303	21-13303	21-13303	21-13303	21-13303
Quotation No.:	(Chemte	est Sam	ple ID.:	1185894	1185895	1185896	1185897	1185898	1185899
		Sa	ample Lo	ocation:	Ph9-AGG2-S1	Ph9-AGG2-S2	Ph9-AGG2-S3	Ph9-AGG2-S4	Ph9-AGG2-S5	Ph9-AGG2-S6
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	Fibres/Clumps	Fibres/Clumps	-	Fibres/Clumps	-	-
Asbestos Identification	U	2192		N/A	Chrysotile	Chrysotile	No Asbestos Detected	Chrysotile	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	Stereo Microscopy	Stereo Microscopy	-	Stereo Microscopy	-	-
Asbestos by Gravimetry	U	2192	%	0.001	0.009	<0.001		<0.001		
Total Asbestos	U	2192	%	0.001	0.009	<0.001		<0.001		

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

Report Information

кеу	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Re	port	Ema	il: info@chemtest.c
Report No.:	21-14505-3		
Initial Date of Issue:	12-May-2021	Date of Re-Issue:	17-May-2021
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742B Heyford - Phase 9		
Quotation No.:		Date Received:	04-May-2021
Order No.:		Date Instructed:	04-May-2021
No. of Samples:	23		
Turnaround (Wkdays):	12	Results Due:	19-May-2021
Date Approved:	15-May-2021		
Approved By:			
Details:	Glynn Harvey, Technical Manager		

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	Chemtest Sample ID.:		1192608	1192609	1192610	1192611	1192612	1192613	1192614	1192615	1192616		
		Sa	ample L	ocation:	PH9-AGG2-S7	PH9-AGG2-S8	PH9-AGG2-S9	PH9-AGG2- S10	PH9-AGG3-S1	PH9-AGG3-S2	PH9-AGG3-S3	PH9-AGG3-S4	PH9-ACMHS- S1
		Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):									0
		Bot	ttom De	pth (m):									0.5
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	Fibres/Clumps	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	Amosite	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	Stereo Microscopy	-	-	-	-	-	-
Asbestos by Gravimetry	U	2192	%	0.001			< 0.001						
Total Asbestos	U	2192	%	0.001			<0.001						
Moisture	N	2030	%	0.020									
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0									
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0									
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0									
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0									
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0									
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0									
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0									
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0									
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0									
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0									
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0									
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0									
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0									
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0									
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0									
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0									
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0									
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0									
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0									
Benzene	U	2760	µg/kg	1.0									
Toluene	U	2760	µg/kg	1.0									
Ethylbenzene	U	2760	µg/kg	1.0									
m & p-Xylene	U	2760	µg/kg	1.0									
o-Xylene	U	2760	µg/kg	1.0									
PAH-MS	SN			N/A									

<u> Results - Soil</u>

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	Chemtest Sample ID.:		1192617	1192618	1192619	1192620	1192621	1192622	1192623	1192624	1192625		
		6	omplo L	o oction:	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	TD400 U.C. 04	
	Sample Escation.			S2	S3	S4	S5	S6	S7	S8	TP102-HS-S1	TP102-HS-SST	
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0	0	0	0	0	0	0	0.2	
		Bot	ttom De	pth (m):	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM		
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	Fibres/Clumps	-	-	-	-	-	-		
Asbestos Identification	U	2192		N/A	Amosite	No Asbestos Detected							
ACM Detection Stage	U	2192		N/A	Stereo Microscopy	-	-	-	-	-	-		
Asbestos by Gravimetry	U	2192	%	0.001	<0.001								
Total Asbestos	U	2192	%	0.001	<0.001								
Moisture	N	2030	%	0.020								9.2	8.9
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0								4.2	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0								42	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0								99	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0								78	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0								320	< 1.0
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0								130	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0								680	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0								2.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0								11	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0								660	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0								2400	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0								6700	< 1.0
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0								460	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0								10000	< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0								11000	< 10
Benzene	U	2760	µg/kg	1.0								< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0								< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0								< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0								< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0								< 1.0	< 1.0
PAH-MS	SN			N/A								See Attached	See Attached

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	(Chemte	est Sam	ple ID.:	1192626	1192627	1192628	1192629	1192630
		Sa	ample Lo	ocation:	TP102-HS-SS2	TP102-HS-SS3	TP102-HS-SS4	TP102-HS-SS5	TP102-HS-SS6
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):					
		Bo	ttom De	oth (m):					
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
			Asbest	os Lab:					
Determinand	Accred.	SOP	Units	LOD					
АСМ Туре	U	2192		N/A					
Asbestos Identification	U	2192		N/A					
ACM Detection Stage	U	2192		N/A					
Asbestos by Gravimetry	U	2192	%	0.001					
Total Asbestos	U	2192	%	0.001					
Moisture	Ν	2030	%	0.020	11	11	24	23	22
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.2
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.6
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	6.8
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	5.4	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	17	< 1.0	< 1.0	< 1.0	46
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	23	< 5.0	< 5.0	< 5.0	46
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	23	< 10	< 10	< 10	53
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN			N/A	See Attached				

Test Methods

SOP	Title	Parameters included	Method summary			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection			
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.			

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Report No.: 21-14506-1 Initial Date of Issue: 12-May-2021 Client Smith Grant LLP **Client Address:** Station House, Station Road Ruabon Wrexham LL14 6DL Contact(s): Dan Wayland R1742b Heyford - Phase 9 Project **Quotation No.: Date Received:** 04-May-2021 Order No.: Date Instructed: 04-May-2021 No. of Samples: 14 Turnaround (Wkdays): 7 **Results Due:** 12-May-2021 **Date Approved:** 12-May-2021 Subcon Results Due: 25-May-2021 **Approved By:** Und land

Details:

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Client: Smith Grant LLP	Chemtest Job No.:		21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506		
Quotation No.:	Ch	Chemtest Sample ID.:		1192631	1192632	1192633	1192634	1192635	1192636	1192637	1192638	1192639	1192640	
		Sa	nple Lo	cation:	Ph9 - S38	Ph9 - S39	Ph9 - S40	Ph9 - S41	Ph9 - S42	Ph9 - S43	Ph9 - S44	Ph9 - S45	Ph9 - S46	Ph9 - S47
			Sample	e Type:	SOIL									
		[Date Sa	mpled:	28-Apr-2021									
			Asbesto	os Lab:	COVENTRY									
Determinand	Accred.	SOP	Units	LOD										
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-	-
Ashastas Identification		2102			No Asbestos									
Aspestos identification	0	2192		IN/A	Detected									
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-	-
Moisture	Ν	2030	%	0.020	29	43	33	22	32	11	13	38	19	38
рН	U	2010		4.0	8.7	8.6	8.5	8.9	8.8	8.7	8.5	8.7	8.5	8.5
Arsenic	U	2450	mg/kg	1.0	40	32	30	36	27	43	23	24	21	17
Cadmium	U	2450	mg/kg	0.10	< 0.10	0.10	< 0.10	< 0.10	0.11	0.12	< 0.10	0.11	0.11	0.11
Chromium	U	2450	mg/kg	1.0	20	15	14	17	43	24	45	45	39	26
Copper	U	2450	mg/kg	0.50	9.6	8.6	6.9	7.6	17	11	18	16	17	14
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	19	14	14	16	39	25	38	36	35	22
Lead	U	2450	mg/kg	0.50	9.8	13	7.4	8.3	21	12	20	18	19	17
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.29	0.35	< 0.20	0.23
Vanadium	U	2450	mg/kg	5.0	47	38	37	44	76	59	73	73	68	50
Zinc	U	2450	mg/kg	0.50	24	21	17	19	53	27	61	61	50	42
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	0.41	< 0.40	< 0.40	0.72	< 0.40	0.66	0.45	0.79	0.71
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	12	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	12	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	6.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	170	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	170	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	180	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN			N/A	See Attached									

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-14506	21-14506	21-14506	21-14506
Quotation No.:	Ch	emtes	t Samp	le ID.:	1192641	1192642	1192643	1192644
		Sar	nple Lo	cation:	Ph9 - S48	Ph9 - S49	Ph9 - S50	Ph9 - S51
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL
	Date Sample		mpled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	
			Asbesto	s Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-	-
Moisture	N	2030	%	0.020	52	44	38	32
pH	U	2010	,,,	4 0	8.5	87	86	8.9
Arsenic	Ŭ	2450	ma/ka	1.0	14	12	31	18
Cadmium	Ŭ	2450	ma/ka	0.10	< 0.10	< 0.10	0.15	< 0.10
Chromium	Ŭ	2450	ma/ka	10	11	9.0	26	7 1
Copper	Ū.	2450	ma/ka	0.50	81	6.8	15	42
Mercury	Ŭ	2450	ma/ka	0.00	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	Ŭ	2450	ma/ka	0.50	12	94	27	83
Lead	Ŭ	2450	ma/ka	0.50	8.0	6.9	17	5.2
Selenium	Ŭ	2450	ma/ka	0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	Ŭ	2450	ma/ka	5.0	21	17	66	21
Zinc	Ŭ	2450	ma/ka	0.50	14	92	38	13
Chromium (Hexavalent)	N	2490	ma/ka	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	< 0.40	0.88	< 0.40
Aliphatic TPH >C5-C6	N	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10
Benzene	U	2760	µg/kạ	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kạ	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kạ	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN			N/A	See Attached	See Attached	See Attached	See Attached
Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-14510-1		
Initial Date of Issue:	10-May-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R1742b Heyford Ph9		
Quotation No.:		Date Received:	04-May-2021
Order No.:		Date Instructed:	04-May-2021
No. of Samples:	12		
Turnaround (Wkdays):	5	Results Due:	10-May-2021
Date Approved:	10-May-2021		
Approved By:			
Details:	Glynn Harvey, Technical Manager		

Project: R1742b Heyford Ph9

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510
Quotation No.:	(Chemte	est Sam	ple ID.:	1192654	1192655	1192656	1192657	1192658	1192659	1192660	1192661	1192662
		¢.	ampla L	ocation:	Ph9 - UST -								
		0		scation.	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS9
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.80
		Во	ttom De	pth (m):	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	
			Date Sa	ampled:	28-Apr-2021								
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	6.2	10	14	15	21	22	13	12	10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	26	17	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	51
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	150	110	< 1.0	< 1.0	< 1.0	< 1.0	7.5	< 1.0	280
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	180	130	< 1.0	< 1.0	< 1.0	< 1.0	14	< 1.0	300
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	210	180	< 1.0	< 1.0	< 1.0	< 1.0	28	< 1.0	250
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	560	430	< 5.0	< 5.0	< 5.0	< 5.0	49	< 5.0	880
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	47	40	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	70
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	190	250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	330
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	32000	610	< 1.0	< 1.0	< 1.0	< 1.0	40	56	390
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	560	1100	< 1.0	< 1.0	< 1.0	< 1.0	170	200	580
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	32000	2000	< 5.0	< 5.0	< 5.0	< 5.0	210	250	1400
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	33000	2400	< 10	< 10	< 10	< 10	260	250	2300
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: R1742b Heyford Ph9

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-14510	21-14510	21-14510
Quotation No.:	(Chemte	st Sam	ple ID.:	1192663	1192664	1192665
		6		ootion:	Ph9 - UST -	Ph9 - UST -	Ph9 - UST -
		30		Joalion.	SS10	SS11	SS12
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	2.80	2.80	2.80
		Bot	tom Dep	oth (m):			
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021
Determinand	Accred.	SOP	Units	LOD			
Moisture	Ν	2030	%	0.020	9.4	9.4	11
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	34	6.7	9.2
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	230	40	62
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	230	47	74
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	180	52	67
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	670	150	210
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	35	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	250	46	75
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	280	69	120
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	370	180	220
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	930	290	410
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	1600	440	620
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	1.4	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

27-May-2021

Amended Report					
Report No.: Initial Date of Issue:	21-16265-2 20-May-2021	Date of Re-Issue:			
Client	Smith Grant LLP				
Cheffit Address:	Ruabon Wrexham LL14 6DL				
Contact(s):	Scott Miller				

Project	R1742b Heyford (Phase 9)		
Quotation No.:	Q15-02887	Date Received:	17-May-2021
Order No.:		Date Instructed:	17-May-2021
No. of Samples:	2		
Turnaround (Wkdays):	9	Results Due:	27-May-2021
Date Approved:	27-May-2021		
Approved By:			

Details:

Glynn Harvey, Technical Manager

Project: R1742b Heyford (Phase 9)

Olivert Origith Origin LLD		Char		ah Na -	04 40005	04 40005
Client: Smith Grant LLP		Cnei	ntest J	:.0N DC	21-16265	21-16265
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1201418	1201419
		Sa	ample Lo	ocation:	Agg-SP3-S5	Agg-SP3-S6
			Sampl	e Type:	SOIL	SOIL
			Date Sa	ampled:	13-May-2021	13-May-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	Fibres/Clumps	Fibres/Clumps
Asbestos Identification	U	2192		N/A	Chrysotile	Chrysotile
ACM Detection Store		2102			Stereo	Stereo
ACM Delection Stage	0	2192		IN/A	Microscopy	Microscopy
Asbestos by Gravimetry	U	2192	%	0.001	0.008	<0.001
Total Asbestos	U	2192	%	0.001	0.008	< 0.001

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

Report Information

кеу	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

😵 eurofins

Chemtest

UKAS UKAS TESTING 2183

2183 THE LEVING CHITPLE ACCESS

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-19648-1		
Initial Date of Issue:	15-Jun-2021		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Scott Miller		
Project	RI742d Heyford, Dorchester		
Quotation No.:	Q15-02887	Date Received:	10-Jun-2021
Order No.:		Date Instructed:	10-Jun-2021
No. of Samples:	11		
No. of Samples: Turnaround (Wkdays):	11 5	Results Due:	16-Jun-2021
No. of Samples: Turnaround (Wkdays): Date Approved:	11 5 15-Jun-2021	Results Due:	16-Jun-2021
No. of Samples: Turnaround (Wkdays): Date Approved: Approved By:	11 5 15-Jun-2021	Results Due:	16-Jun-2021
No. of Samples: Turnaround (Wkdays): Date Approved: Approved By:	11 5 15-Jun-2021	Results Due:	16-Jun-2021

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648
Quotation No.: Q15-02887		Chemte	est Sam	ple ID.:	1218258	1218259	1218260	1218261	1218262	1218263	1218264	1218265	1218266
		Cli	ent San	nple ID.:	TP1-S1	TP2-S1	S11	S12	S13	S14	S15	S16	S17
		Sa	ample L	ocation:	CULV	CULC	AGG-SP2						
			Samp	le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Bo	ttom De	pth (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
			Date Sa	ampled:	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021
			Asbest	tos Lab:			DURHAM						
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A			-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A			No Asbestos Detected						
Moisture	N	2030	%	0.020	16	11						1	1
Soil Colour	N	2040	1	N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0						1	
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0							
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0							
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0							
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0							
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	< 10	< 10							
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0							
Toluene	М	2760	µg/kg	1.0	< 1.0	< 1.0							
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0							
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0							
o-Xylene	M	2760	µg/kg	1.0	< 1.0	< 1.0							

Client: Smith Grant LLP		Che	mtest Jo	21-19648	21-19648	
Quotation No.: Q15-02887	(Chemte	st Sam	1218267	1218268	
		Cli	ent Sam	S3	S4	
		Sa	ample Lo	ocation:	AGG-SP1	AGG-SP1
			Sampl	e Type:	SOIL	SOIL
			Top De	oth (m):	2.1	2.1
		Bot	tom Dep	oth (m):	2.4	2.4
			Date Sa	ampled:	08-Jun-2021	08-Jun-2021
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020		
Soil Colour	N	2040		N/A	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Sand
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0		
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0		
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0		
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0		
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0		
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0		
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		
Benzene	М	2760	µg/kg	1.0		
Toluene	М	2760	µg/kg	1.0		
Ethylbenzene	М	2760	µg/kg	1.0		
m & p-Xylene	М	2760	µg/kg	1.0		
o-Xylene	М	2760	ua/ka	1.0		

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

TEST CERTIFICATE

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

9.5

62.3

6.55

PSD Assessment of material for use in Earthworks

Tested in Accordance with: BS 1377-2:1990: Clause 9.2 Smith Grant LLP Client: Client Reference: R1742B Job Number: 21-68265 **Client Address:** Station House, Station Road, Ruabon, Wrexham, Date Sampled: 06/04/2021 LL146DL Date Received: 09/04/2021 Contact: **Daniel Wayland** Date Tested: 27/04/2021 Site Address: Hayford Phase 9 Sampled By: Client Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1834720 Depth Top [m]: Not Given AGG 060421 S1 Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: B CRUSHED CONCRETE Sample Description: Sample Preparation: Sample was whole tested, oven dried at 106.0 °C and broken down by hand. sieve class only --minimum -x--- maximum 100 90 1 % 80 1 Percentage Passing 70 1 60 50 40 30 1 20 10 0 0.001 0.010 10.000 100.000 1000.000 0.100 1.000 Particle Size mm Uniformity Coefficient [Cu] **Material Type** Sieving D60 6F2 mm Selected granular material Particle Size D10 Passing mm Pass or Fail % Material Specification mm 500 100 Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013 300 100 150 100 100 125 100 100 PASS _ 90 94 PASS 80 100 Earthworks -75 86 65 100 PASS 63 61 50 49 37.5 35 45 100 FAIL Specification for Highway Works, Volume 1, Series 600, TABLE 6/2 28 27 20 20 14 15 10 12 15 60 FAIL 10 6.3 5 9 10 45 FAIL 3.35 8 2 7 1.18 6 0.6 5 0 25 PASS 0.425 5 0.3 4 0.212 4 0.15 3 0.063 3 0 12 PASS Remarks: Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. This report includes a statement of conformity to an industry standard specification, as such risks associated with uncertainty in relation to the decision rules applied do not need to be considered.

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Client: Client Address:

Contact:

Hole No .:

Site Address:

Test Results:

Sample Reference:

Sample Description:

Laboratory Reference: 1834720

TEST CERTIFICATE

Testing for Constituents of Coarse Recycled Aggregate Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: R1742B Job Number: 21-68265 Date Sampled: 06/04/2021 Date Received: 09/04/2021 Date Tested: 27/04/2021 Sampled By: Client

Depth Top [m]: Not Given Depth Base [m]: Not Given Sample Type: B

Sample preparation:

Smith Grant LLP

Daniel Wayland

Hayford Phase 9

AGG 060421 S1

CRUSHED CONCRETE

Not Given

LL146DL

Station House, Station Road, Ruabon, Wrexham,

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Sample was dried at 106°C

Constituents	Proportion (cm3/kg)
Floating (FL)	1.4

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	92
Unbound Aggregate (Ru)	1
Masonry (Rb)	8.2
Bituminous materials (Ra)	0
Glass (Rg)	0
Other (X)	0.1

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

PSD Assessment of material for use in Earthworks

Envi 4041 Tested in Accordance with: BS 1377-2:1990: Clause 9.2 Smith Grant LLP Client: Client Reference: R1742B Job Number: 21-75647 **Client Address:** Station House, Station Road, Ruabon, Wrexham, Date Sampled: 12/05/2021 LL146DL Date Received: 13/05/2021 Contact: Scott Miller Date Tested: 03/06/2021 Site Address: Heyford Phase 9 Sampled By: Client Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 1874622 Depth Top [m]: Not Given Agg SP3 - GS1 to GS3 Hole No .: Depth Base [m]: Not Given Sample Reference: Not Given Sample Type: B CRUSHED CONCRETE Sample Description: Sample was whole tested, oven dried at 40.0 °C and broken down by hand. Sample Preparation: sieve class only --minimum -x--- maximum 100 90 1 % 80 1 Percentage Passing 70 60 50 40 30 20 10 0 0.001 0.010 10.000 100.000 1000.000 0.100 1.000 Particle Size mm Uniformity Coefficient [Cu] **Material Type** 55 Sieving D60 6F2 mm 45.1 Particle Size D10 0.824 Passing Selected granular material mm % Material Specification Pass or Fail mm 500 100 Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013 300 100 150 100 100 125 100 100 PASS _ 90 98 80 100 PASS Earthworks -75 87 65 100 PASS 63 75 50 64 37.5 53 45 100 PASS Specification for Highway Works, Volume 1, Series 600, TABLE 6/2 28 48 20 39 14 30 10 24 15 60 PASS 6.3 19 5 17 10 45 PASS 3.35 15 2 13 1.18 11 0.6 9 0 25 PASS 0.425 8 0.3 7 0.212 6 0.15 5 0.063 4 0 12 PASS

Remarks:

arks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. This report includes a statement of conformity to an industry standard specification, as such risks associated with uncertainty in relation to the decision rules applied do not need to be considered.

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Client: **Client Address:**

Contact:

Hole No .:

Site Address:

Test Results:

Sample Reference:

Sample Description:

Laboratory Reference: 1874622

TEST CERTIFICATE

Testing for Constituents of Coarse Recycled Aggregate Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: R1742B Job Number: 21-75647 Date Sampled: 12/05/2021 Date Received: 13/05/2021 Date Tested: 03/06/2021 Sampled By: Client

Depth Top [m]: Not Given Depth Base [m]: Not Given Sample Type: B

Sample preparation:

Not Given

Smith Grant LLP

Ruabon, Wrexham,

LL146DL

Scott Miller

Heyford Phase 9

Agg SP3 - GS1 to GS3

CRUSHED CONCRETE

Station House, Station Road,

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Sample was dried at 40°C

Constituents	Proportion (cm3/kg)
Floating (FL)	1

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	88
Unbound Aggregate (Ru)	0.9
Masonry (Rb)	9.9
Bituminous materials (Ra)	0.4
Glass (Rg)	0.1
Other (X)	0.1

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

PSD Assessment of material for use in Earthworks

4041		-	Tected in		ith: BS 1377-2.100		0.0.2	En	vironmental Sci
Client:	Smith Gran	tIIP	i esteu ii	Accordance w	IIII. DO 1377-2.198		Client Reference	• R1742B	
Client Address:	Station Hou	eo Station	Road				Joh Number	. 21-75652	
	Ruabon, Wi	rexham	Noau				Date Sampler	12/05/2021	
	LL146DL	ovinanti					Date Received	13/05/2021	
Contact:	megan ione	s@smithar	ant co uk				Date Received	03/06/2021	
Sito Addrose:	Heyford Ph	aco Q	an				Sampled By	Client	
Testing carried ou	neyloru Fili it at i2 Analytical I	imited ul F	Pionierow	30 41-711 Ru	da Slaska. Poland		Sampled by		
Testing camea ou	n at iz Analyticai E	militou, un r	loineion	00, 41-71114	uu olaska, r olahu				
Leboratory Defora	1874642						Dopth Top Im	I. Not Given	
	Acc SD2 (261 to C62					Deptit Top [m]	I. Not Given	
	Agy 3F2 - C	331 10 033					Depin base [m]		
Sample Reference	e: Nut Given	lightly clave	v oondw		abblaa		Sample Type	, D	
Sample Description	on: Sample was	e whole test	y sanuy '	dried at 40.0 °	C and broken dowr	hy han	d		
		S WHOIC LESI	eu, oven			i by han	u.		
			— sieve	e class only	e minimum	*-	maximum		
100									
90									+++++
≈ 80 -			┼╌┼╌╬╎╌┝						<u>+</u> ++++
2 70			┉┈						+++++
% 60	+ + + + + + + + + + + + + + + + + + + +						* / /		+++++
6 50	+ + + + + + + + + + + + + + + + + + + +								+
5 40	+ + + + + + + + + + + + + + + + + + + +		┿╍┝╍╋┝╍┝╸			*			+
10									
8 20					*-				
0.001	0.0	10	0.	100	1.000		10.000 100.0	00	1000.000
				P	article Size mm				
				F Notorial Ture	article Size mm	ח ר	Iniformity Coofficient ICu	1	76
Siev	ving			P Material Type 652	Particle Size mm] [Uniformity Coefficient [Cu		76
Siev Particle Size	Ving		Select	F Material Type 6F2 red grapular ma	earticle Size mm		Uniformity Coefficient [Cu 060 010	l mm	76 53.9 0 709
Siev Particle Size mm	ving Passing %	Mate	Select erial Spe	F Material Type 6F2 ted granular ma cification	earticle Size mm terial Pass or Fail		Jniformity Coefficient [Cu 060 010	l mm	76 53.9 0.709
Siev Particle Size mm 500	ving Passing % 100	Mate	Select erial Spe	F Material Type 6F2 ted granular ma cification	earticle Size mm terial Pass or Fail		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul	mm mm ated in accord	76 53.9 0.709
Siev Particle Size mm 500 300	ving Passing % 100 100	Mate	Select erial Spe	F Material Type 6F2 ted granular ma cification	earticle Size mm Iterial Pass or Fail		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 35 EN ISO 14688-2: 2004 +	mm mm ated in accord	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150	ving Passing % 100 100 100 100	Mate	Select erial Spe	F Material Type 6F2 ted granular ma cification	terial Pass or Fail		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 +	mm mm ated in accord A1: 2013	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125	ving Passing % 100 100 100 100 100 100	Mate	Select erial Spe	F Material Type 6F2 ted granular ma cification	terial Pass or Fail PASS		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 +	mm mm ated in accord A1: 2013	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90	/ing Passing % 100 100 100 100 100 95	Mate 100 80	Select erial Spe - -	F Material Type 6F2 ted granular ma cification 100 100	terial Pass or Fail PASS PASS		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw	mm mm ated in accord A1: 2013 orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75	Ving Passing % 100 100 100 100 95 83	Mate 100 80 65	Select erial Spe - -	F Material Type 6F2 ted granular ma cification 100 100 100	terial Pass or Fail PASS PASS PASS PASS		Uniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw	mm mm ated in accord A1: 2013 orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63	ving Passing % 100 100 100 100 95 83 69	Mate 100 80 65	Select erial Spe - - -	F Material Type 6F2 ded granular ma cification 100 100 100	earticle Size mm terial Pass or Fail PASS PASS PASS PASS		Jniformity Coefficient [Cu D60 D10 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw	mm mm ated in accord A1: 2013 orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50	ving Passing % 100 100 100 100 95 83 69 56	Mate 100 80 65	Select erial Spe - - -	F Material Type 6F2 ted granular ma cification 100 100 100	erticle Size mm terial Pass or Fail PASS PASS PASS		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw	mm mm ated in accord A1: 2013 orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5	ving Passing % 100 100 100 100 95 83 69 56 48	Mate 100 80 65 45	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100	erticle Size mm terial Pass or Fail PASS PASS PASS PASS		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw	mm mm ated in accord A1: 2013 orks ay Works, Vo	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28	ving Passing % 100 100 100 95 83 69 56 48 39	Mate 100 80 65 45	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100	erticle Size mm terial Pass or Fail PASS PASS PASS PASS		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	ated in accord A1: 2013 orks ay Works, Vo TABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20	ving Passing % 100 100 100 95 83 69 56 48 39 31	Mate 100 80 65 45	Select erial Spe - - -	F Material Type 6F2 ted granular ma cification 100 100 100	erticle Size mm terial Pass or Fail PASS PASS PASS PASS		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	ated in accord A1: 2013 orks ay Works, Vo FABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14	ving Passing % 100 100 100 95 83 69 56 48 39 56 48 39 31 24	Mate 100 80 65 45	Select erial Spe - - -	F Material Type 6F2 ted granular ma cification 100 100 100	terial Pass or Fail PASS PASS PASS PASS PASS		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	ated in accord A1: 2013 orks ay Works, Vo FABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10	ving Passing % 100 100 100 95 83 69 56 48 39 56 48 39 31 24 20	Mate 100 80 65 45 15	Select erial Spe - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS		Jniformity Coefficient [Cuj 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3	ving Passing % 100 100 100 95 83 69 56 48 39 56 48 39 31 24 20 16	Mate 100 80 65 45 15	Select erial Spe - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100	earticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 5	ving Passing % 100 100 100 95 83 69 56 48 39 56 48 39 31 24 20 16 15	Mate 100 80 65 45 15 10	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 60 45	earticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 060 010 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks orks ay Works, Va FABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13	Mate 100 80 65 45 15 10	Select erial Spe - - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks orks	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 3.35 2	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12	Mate 100 80 65 45 15 10	Select erial Spe - - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks orks ay Works, Va FABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 12 11	Mate 100 80 65 45 15 10	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Va ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 11 11 10	Mate 100 80 65 45 15 10	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45 25	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Va ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 11 11 10 9	Mate 100 80 65 45 15 10 0	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45 25	terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS PAS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Va ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.5	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 11 11 10 9 8 8	Mate 100 80 65 45 15 10 0	Select erial Spe - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 45 25	terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS PAS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm mm ated in accord A1: 2013 orks ay Works, Va ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.212	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 11 11 10 9 8 8 7	Mate 100 80 65 45 15 10 0	Select erial Spe - - - - -	F Material Type 6F2 aed granular ma cification 100 100 100 100 45 25	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS PAS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Vo ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15 0.425	Ving Passing % 100 100 100 95 83 69 56 48 39 31 24 20 16 15 13 12 11 10 9 8 7 6 -	Mate 100 80 65 45 15 10 0	Select erial Spe - - - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 100 25 25	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS PAS		Jniformity Coefficient [Cu 260 210 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Vo ABLE 6/2	76 53.9 0.709 dance with
Siev Particle Size mm 500 300 150 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15 0.063	ving Passing % 100 100 100 95 83 69 56 48 39 56 48 39 31 24 20 16 15 13 12 11 10 9 8 7 6 5 5	Mate 100 80 65 45 15 10 0	Select erial Spe - - - - - -	F Material Type 6F2 ted granular ma cification 100 100 100 100 100 25 25 12	erticle Size mm terial Pass or Fail PASS PASS PASS PASS PASS PASS PASS PAS		Jniformity Coefficient [Cu D60 D10 Jniformity Coefficient calcul 3S EN ISO 14688-2: 2004 + Earthw Specification for Highw Series 600, 1	mm ated in accord A1: 2013 orks ay Works, Vo FABLE 6/2	76 53.9 0.709 dance with

Remarks: Re-issue 1: PSD classified.

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. This report includes a statement of conformity to an industry standard specification, as such risks associated with uncertainty in relation to the decision rules applied do not need to be considered. PL T

Page 1 of 1

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

Testing for Constituents of Coarse Recycled Aggregate

Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: R1742B Job Number: 21-75652 Date Sampled: 12/05/2021 Date Received: 13/05/2021 Date Tested: 03/06/2021 Sampled By: Client

Contact:megan.jones@smithgrant.co.ukSite Address:Heyford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

4041

Client: Client Address:

Laboratory Reference:1874642Hole No.:Agg SP2 - GS1 to GS3Sample Reference:Not GivenSample Description:Multicolor slightly clayey sandy GRAVEL with cobbles

Station House, Station Road,

Smith Grant LLP

Ruabon, Wrexham,

LL146DL

Depth Top [m]: Not Given Depth Base [m]: Not Given Sample Type: B

Sample preparation:

Sample was dried at 40°C

Constituents	Proportion (cm3/kg)
Floating (FL)	1

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	88
Unbound Aggregate (Ru)	1.4
Masonry (Rb)	7
Bituminous materials (Ra)	2.9
Glass (Rg)	0
Other (X)	0.1

Remarks: Re-issue 1: PSD classified.

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-40691-1		
Initial Date of Issue:	31-Oct-2022		
Client	Smith Grant LLP		
Client Address:	Bryn Estyn Business Centre Bryn Estyn Road Wrexham LL13 9TY		
Contact(s):	Scott Miller		
Project	R1742b Heyford (Dorchester)		
Quotation No.:	Q15-02887	Date Received:	24-Oct-2022
Order No.:		Date Instructed:	24-Oct-2022
No. of Samples:	23		
Turnaround (Wkdays):	5	Results Due:	28-Oct-2022
Date Approved:	31-Oct-2022		
Approved By:			
Details:	- Stuart Henderson, Technical Manager		

Client: Smith Grant LLP		Che	mtest J	ob No.:	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1531155	1531156	1531157	1531158	1531159	1531160	1531161	1531162	1531163
		Sa	ample Lo	ocation:	Ph9-S52	Ph9-S53	Ph9-S54	Ph9-S55	Ph9-S56	Ph9-S57	Ph9-S58	Ph9-S59	Ph9-S60
			Sampl	e Type:	SOIL								
			Date Sa	ampled:	18-Oct-2022	18-Oct-2022	18-Oct-2022	18-Oct-2022	18-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022
			Asbest	os Lab:	NEW-ASB								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	11	7.5	11	9.1	8.9	12	11	8.0	11
рН	U	2010		4.0	8.2	8.2	8.3	8.4	8.3	8.1	8.0	8.2	7.9
Arsenic	U	2455	mg/kg	0.5	7.8	8.1	7.9	11	6.8	7.5	9.3	6.7	11
Cadmium	U	2455	mg/kg	0.10	0.20	0.22	0.10	< 0.10	< 0.10	0.11	0.11	0.11	0.13
Chromium	U	2455	mg/kg	0.5	13	11	12	10	7.0	12	16	9.6	17
Copper	U	2455	mg/kg	0.50	7.4	9.9	7.5	5.1	4.3	6.2	8.5	6.2	10
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	10	9.4	10	7.6	6.1	8.1	13	7.7	14
Lead	U	2455	mg/kg	0.50	11	15	11	12	8.9	19	8.9	14	14
Selenium	U	2455	mg/kg	0.25	0.58	0.50	0.48	0.49	0.34	0.35	0.61	0.37	0.69
Vanadium	U	2455	mg/kg	0.5	23	22	24	21	14	22	31	19	35
Zinc	U	2455	mg/kg	0.50	40	45	28	22	19	39	35	62	39
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	2.5	5.9	2.5	1.8	3.4	1.5	1.7	1.9	3.3
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	45	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	120	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	75	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	86	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	330	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	0	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	6.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	170	15	15	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	1200	120	45	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	1400	140	60	< 5.0	< 5.0	< 5.0	< 5.0
Lotal Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	1/00	140	60	< 10	< 10	< 10	< 10
		2700	mg/kg	0.10	< 0.10	1.2	< 0.10	< 0.10	0.59	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		2700	mg/kg	0.10	< 0.10	0.98	< 0.10	< 0.10	0.51	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		2/00	mg/kg	0.10	< 0.10	1.5	< 0.10	< 0.10	2.0	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	1.1	< 0.10	< 0.10	1.9	< 0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Chemtest Job No.:			22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691
Quotation No.: Q15-02887	0	Chemte	est Sam	ple ID.:	1531155	1531156	1531157	1531158	1531159	1531160	1531161	1531162	1531163
		Sa	ample Lo	ocation:	Ph9-S52	Ph9-S53	Ph9-S54	Ph9-S55	Ph9-S56	Ph9-S57	Ph9-S58	Ph9-S59	Ph9-S60
			Sampl	e Type:	SOIL								
			Date Sa	ampled:	18-Oct-2022	18-Oct-2022	18-Oct-2022	18-Oct-2022	18-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022
		Asbestos Lab:			NEW-ASB								
Determinand	Accred.	SOP	Units	LOD									
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	9.6	1.5	9.2	14	3.8	< 0.10	1.3	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	4.4	0.41	3.3	4.7	1.2	< 0.10	0.41	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	1.7	36	2.4	20	26	7.0	< 0.10	3.7	1.5
Pyrene	U	2700	mg/kg	0.10	2.0	38	2.4	19	24	7.0	< 0.10	3.7	1.6
Benzo[a]anthracene	U	2700	mg/kg	0.10	1.1	21	1.1	9.2	11	3.3	< 0.10	2.2	0.78
Chrysene	U	2700	mg/kg	0.10	1.0	24	1.3	10	8.3	3.2	< 0.10	2.3	0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	37	1.6	12	14	4.2	< 0.10	3.6	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	14	0.69	4.8	5.9	1.8	< 0.10	1.5	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	32	1.4	9.8	12	3.5	< 0.10	2.7	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	22	< 0.10	< 0.10	7.8	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	5.7	< 0.10	< 0.10	3.1	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	21	< 0.10	< 0.10	7.4	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	5.8	270	13	97	140	35	< 2.0	21	4.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP	Chemtest Job No.:		22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691		
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1531164	1531165	1531166	1531167	1531168	1531169	1531170	1531171	1531172
		Sa	ample Lo	ocation:	Ph9-S61	Ph9-S62	Ph9-S63	Ph9-S64	Ph9-S65	Ph9-S66	Ph9-S67	Ph9-S68	Ph9-S69
			Sampl	e Type:	SOIL								
			Date Sa	ampled:	19-Oct-2022								
			Asbest	os Lab:	NEW-ASB								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	9.3	12	9.1	12	7.8	10	9.4	14	12
рН	U	2010		4.0	8.4	8.7	9.0	8.4	8.1	8.1	8.1	8.2	8.1
Arsenic	U	2455	mg/kg	0.5	7.3	11	8.3	11	12	9.5	12	7.1	8.7
Cadmium	U	2455	mg/kg	0.10	0.10	0.14	0.22	0.24	0.20	0.15	0.14	0.10	0.11
Chromium	U	2455	mg/kg	0.5	10	16	14	23	16	14	20	10	13
Copper	U	2455	mg/kg	0.50	7.4	10	7.6	9.4	19	8.8	11	6.5	7.2
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	8.4	12	9.6	12	12	11	16	8.2	10
Lead	U	2455	mg/kg	0.50	11	16	25	65	24	19	16	9.5	14
Selenium	U	2455	mg/kg	0.25	0.39	0.60	0.48	0.60	0.56	0.47	0.67	0.36	0.56
Vanadium	U	2455	mg/kg	0.5	21	30	24	30	28	27	31	21	25
Zinc	U	2455	mg/kg	0.50	30	42	53	48	60	38	35	27	28
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	4.3	3.8	2.9	1.9	2.9	1.6	3.3	1.3	2.7
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	82	57	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	99	57	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	48	51	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	830	540	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	880	590	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	980	640	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	0.99	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	0.59	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	1.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	1.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Chemtest Job No.:			22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691	22-40691
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1531164	1531165	1531166	1531167	1531168	1531169	1531170	1531171	1531172
		Sa	ample Lo	ocation:	Ph9-S61	Ph9-S62	Ph9-S63	Ph9-S64	Ph9-S65	Ph9-S66	Ph9-S67	Ph9-S68	Ph9-S69
			Sampl	e Type:	SOIL								
			Date Sa	ampled:	19-Oct-2022								
			Asbest	os Lab:	NEW-ASB								
Determinand	Accred.	SOP	Units	LOD									
Phenanthrene	U	2700	mg/kg	0.10	1.4	1.1	8.6	< 0.10	0.56	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	0.45	0.73	3.5	< 0.10	0.22	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	3.4	14	26	< 0.10	2.4	1.2	1.7	0.61	0.68
Pyrene	U	2700	mg/kg	0.10	3.7	18	28	< 0.10	2.6	1.6	1.7	0.98	0.59
Benzo[a]anthracene	U	2700	mg/kg	0.10	2.1	9.8	14	< 0.10	1.3	1.0	0.76	0.43	< 0.10
Chrysene	U	2700	mg/kg	0.10	2.4	12	15	< 0.10	1.5	1.1	1.0	0.41	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	3.5	20	23	< 0.10	1.9	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	1.5	8.3	8.5	< 0.10	0.83	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	2.6	17	19	< 0.10	1.7	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	5.7	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	21	100	180	< 2.0	13	4.9	5.2	2.4	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP		Che	mtest J	ob No.:	22-40691	22-40691	22-40691	22-40691	22-40691
Quotation No.: Q15-02887	(Chemte	st Sam	ple ID.:	1531173	1531174	1531175	1531176	1531177
		Sa	ample Lo	ocation:	Ph9-S70	Ph9-S71	Ph9-S72	Ph9-S73	Ph9-S74
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	19-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022	18-Oct-2022
			Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD					
АСМ Туре	U	2192		N/A	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected				
Moisture	N	2030	%	0.020	11	8.4	9.0	6.8	8.6
рН	U	2010		4.0	8.1	8.1	8.1	8.5	8.0
Arsenic	U	2455	mg/kg	0.5	9.8	7.0	14	8.5	5.8
Cadmium	U	2455	mg/kg	0.10	0.14	0.17	0.11	0.12	< 0.10
Chromium	U	2455	mg/kg	0.5	13	9.6	17	13	9.0
Copper	U	2455	mg/kg	0.50	8.5	5.1	7.6	7.9	7.0
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06
Nickel	U	2455	mg/kg	0.50	11	7.9	13	9.7	8.2
Lead	U	2455	mg/kg	0.50	16	12	11	14	13
Selenium	U	2455	mg/kg	0.25	0.62	0.40	0.48	0.45	0.46
Vanadium	U	2455	mg/kg	0.5	25	18	26	24	14
Zinc	U	2455	mg/kg	0.50	35	25	31	28	27
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	3.6	0.94	1.9	2.0	3.2
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	4.4	4.1	< 1.0	6.3	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	11	18	< 1.0	96	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	16	22	< 5.0	100	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	16	22	< 10	100	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP	Chemtest Job No.:			ob No.:	22-40691	22-40691	22-40691	22-40691	22-40691
Quotation No.: Q15-02887	(Chemte	st Sam	ple ID.:	1531173	1531174	1531175	1531176	1531177
		Sa	ample Lo	ocation:	Ph9-S70	Ph9-S71	Ph9-S72	Ph9-S73	Ph9-S74
		Sample Type			SOIL	SOIL	SOIL	SOIL	SOIL
		Date Sample			19-Oct-2022	19-Oct-2022	19-Oct-2022	19-Oct-2022	18-Oct-2022
	Asbestos Lab			os Lab:	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD					
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	1.9	< 0.10	5.4	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	0.69	< 0.10	2.1	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	1.4	3.9	0.33	12	0.28
Pyrene	U	2700	mg/kg	0.10	1.4	3.7	0.33	11	0.34
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.75	2.0	< 0.10	5.9	< 0.10
Chrysene	U	2700	mg/kg	0.10	0.76	2.5	< 0.10	7.4	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	2.9	< 0.10	9.1	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	1.3	< 0.10	3.6	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	2.4	< 0.10	7.5	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	4.3	21	< 2.0	64	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-41389-1		
Initial Date of Issue:	07-Nov-2022		
Client	Smith Grant LLP		
Client Address:	Bryn Estyn Business Centre Bryn Estyn Road Wrexham LL13 9TY		
Contact(s):	Scott Miller		
Project	R1742b Heyford (Dorchester)		
Quotation No.:	Q15-02887	Date Received:	28-Oct-2022
Order No.:		Date Instructed:	28-Oct-2022
No. of Samples:	18		
Turnaround (Wkdays):	5	Results Due:	03-Nov-2022
Date Approved:	07-Nov-2022		
Approved By:			
Details:	Stuart Henderson, Technical Manager		

Client: Smith Grant LLP	Chemtest Job No.:		22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389		
Quotation No.: Q15-02887		Chemte	est Sam	ple ID.:	1534351	1534352	1534353	1534354	1534355	1534356	1534357	1534358	1534359
		Sa	ample L	ocation:	PH10-S1	PH10-S2	PH10-S3	PH10-S4	PH10-S5	PH10-S6	PH10-S7	PH10-S8	PH10-S9
			Samp	le Type:	SOIL								
			Date Sa	ampled:	25-Oct-2022								
			Asbest	tos Lab:	DURHAM								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	N	2030	%	0.020	13	15	12	8.4	14	13	14	15	8.9
рН	U	2010		4.0	8.6	8.5	8.7	8.7	8.4	8.5	8.6	8.7	8.7
Arsenic	U	2455	mg/kg	0.5	7.1	8.5	10	11	18	10	8.6	11	8.0
Cadmium	U	2455	mg/kg	0.10	< 0.10	< 0.10	0.12	< 0.10	0.35	0.11	0.10	0.25	0.10
Chromium	U	2455	mg/kg	0.5	11	11	16	16	28	15	12	17	12
Copper	U	2455	mg/kg	0.50	5.4	5.7	7.3	7.5	14	8.1	6.5	9.8	5.6
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	8.5	9.2	13	15	24	13	9.9	14	9.7
Lead	U	2455	mg/kg	0.50	10	11	14	9.6	20	16	11	18	9.5
Selenium	U	2455	mg/kg	0.25	0.31	0.32	0.43	0.39	0.92	0.45	0.38	0.63	0.49
Vanadium	U	2455	mg/kg	0.5	19	21	28	28	47	29	23	32	23
Zinc	U	2455	mg/kg	0.50	31	27	30	30	62	34	27	34	22
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	5.3	3.0	2.8	1.0	2.2	2.9	3.3	1.7	2.0
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
I otal Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromalic TPH >C3-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C6		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10 C12		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C12		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C10	N	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21 C25		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	ma/ka	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nanhthalene		2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenanhthylene	11	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
		2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
/ toonapritriono		2100	Ling/kg	0.10	- 0.10	- 0.10	\$ 0.10	- 0.10	- 0.10	- 0.10	- 0.10	- 0.10	- 0.10

Client: Smith Grant LLP		Chemtest Job No.:			22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389
Quotation No.: Q15-02887	(Chemte	est Sam	ple ID.:	1534351	1534352	1534353	1534354	1534355	1534356	1534357	1534358	1534359
		Sa	ample Lo	ocation:	PH10-S1	PH10-S2	PH10-S3	PH10-S4	PH10-S5	PH10-S6	PH10-S7	PH10-S8	PH10-S9
			Sampl	e Type:	SOIL	SOIL	SOIL						
	Date Sampled:		25-Oct-2022										
	Asbestos Lab:		DURHAM										
Determinand	Accred.	SOP	Units	LOD									
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	0.55	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	0.17	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	1.2	0.92	0.33	< 0.10	0.44	< 0.10	0.35	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	1.3	1.1	0.38	< 0.10	0.49	< 0.10	0.48	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.57	0.34	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	1.0	0.61	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.61	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	0.74	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	7.2	3.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP	Chemtest Job No.:				22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389
Quotation No.: Q15-02887	Chemtest Sample ID.:			1534360	1534361	1534362	1534363	1534364	1534365	1534366	1534367	1534368	
		Sa	ample Lo	ocation:	PH10-S10	PH10-S11	PH10-S12	PH10-S13	PH10-S14	PH9-Agg-4-S1	PH9-Agg-4-S2	PH9-DH-Agg- S1	PH9-DH-Agg- S2
			Sampl	е Туре:	SOIL								
	Date Sampled: Asbestos Lab:				25-Oct-2022								
					DURHAM								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
Moisture	Ν	2030	%	0.020	8.4	11	9.5	12	12				
рН	U	2010		4.0	8.8	8.8	8.7	8.8	8.8				
Arsenic	U	2455	mg/kg	0.5	14	12	13	6.8	9.0				
Cadmium	U	2455	mg/kg	0.10	0.11	< 0.10	0.11	< 0.10	0.16				
Chromium	U	2455	mg/kg	0.5	18	14	16	9.5	11				
Copper	U	2455	mg/kg	0.50	8.1	6.8	7.2	4.3	5.7				
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Nickel	U	2455	mg/kg	0.50	14	12	13	7.6	9.3				
Lead	U	2455	mg/kg	0.50	13	8.1	11	8.6	13				
Selenium	U	2455	mg/kg	0.25	0.61	0.46	0.48	0.31	0.38				
Vanadium	U	2455	mg/kg	0.5	38	30	31	19	20				
Zinc	U	2455	mg/kg	0.50	31	24	27	17	23				
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
Organic Matter	U	2625	%	0.40	2.1	1.6	3.0	2.2	1.9				
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPU > C5_C7	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0				
Aromatic TPH >C3-C7	N N	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C8 C10		2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C10-C12		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C12-C16		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C21-C35		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Aromatic TPH >C35-C44	N	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Total Aromatic Hydrocarbons	N	2680	ma/ka	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0				
Total Petroleum Hydrocarbons	N	2680	ma/ka	10.0	< 10	< 10	< 10	< 10	< 10				
Naphthalene		2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Acenaphthylene	Ŭ	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Acenaphthene	Ŭ	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
	ı ĭ					55	55		.	1	1		

Client: Smith Grant LLP	Chemtest Job No.:				22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389	22-41389
Quotation No.: Q15-02887	Chemtest Sample ID.:				1534360	1534361	1534362	1534363	1534364	1534365	1534366	1534367	1534368
	Sample Location:				PH10-S10	PH10-S11	PH10-S12	PH10-S13	PH10-S14	PH9-Agg-4-S1	PH9-Agg-4-S2	PH9-DH-Agg-	PH9-DH-Agg-
	<u>_</u>									00	00	S1	S2
	Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Date Sampled:				25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022	25-Oct-2022
	Asbestos Lab:			DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD									
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.40	0.40				
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.50	0.50				
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.29				
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.51				
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest Willie Snaith Rd Newmarket Suffolk **CB8 7SQ**

Attention: Chemtest Subcontracting

CERTIFICATE OF ANALYSIS

Date of report Generation:	11 May 2021
Customer:	Chemtest
Sample Delivery Group (SDG):	210506-141
Your Reference:	
Location:	21-14506
Report No:	597497

We received 14 samples on Thursday May 06, 2021 and 14 of these samples were scheduled for analysis which was completed on Tuesday May 11, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan **Operations Manager**

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version Issued: 11/05/2021 Version: 2.7

SDG:

Location:

CERTIFICATE OF ANALYSIS

20798

Validated

Repor

Report Number: Superseded Report: 597497

Received Sample Overview

Client Reference:

Order Number:

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
24219553	PH9-S38			04/05/2021
24219554	PH9-S39			04/05/2021
24219555	PH9-S40			04/05/2021
24219557	PH9-S41			04/05/2021
24219558	PH9-S42			04/05/2021
24219559	PH9-S43			04/05/2021
24219560	PH9-S44			04/05/2021
24219562	PH9-S45			04/05/2021
24219563	PH9-S46			04/05/2021
24219564	PH9-S47			04/05/2021
24219565	PH9-S48			04/05/2021
24219566	PH9-S49			04/05/2021
24219567	PH9-S50			04/05/2021
24219568	PH9-S51			04/05/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

	SDC:	040500 444	С	ERTIFICATE OF ANALYSIS													
(ALS)	Location:	210506-141 21-14506		Ord	er Nu	mber	ce:	207	98				Su	perse	ded Re	er: eport:	
Results Legend	t rermination	Lab Sample I	No(s)	24219553	24219554	24219555	24219557	24219558	24219559	24219560	24219562	24219563	24219564	24219565	24219566	24219567	24219568
Sample Types -		Custome Sample Refe	rence	PH9-S38	PH9-S39	PH9-S40	PH9-S41	PH9-S42	PH9-S43	PH9-S44	PH9-S45	PH9-S46	PH9-S47	PH9-S48	PH9-S49	PH9-S50	PH9-S51
S - Soil/Solid UNS - Unspecified GW - Ground Wat SW - Surface Wat LE - Land Leachat PL - Prenared Lea	d Solid er er te	AGS Refere	nce														
PR - Process Water SA - Saline Water TE - Trade Effluen TS - Treated Sewa	er age	Depth (m	1)														
RE - Recreational DW - Drinking Water UNL - Unspecified SL - Sludge G - Gas OTH - Other	Water r Non-regulatory I Liquid	Containe	r	250g Amber Jar (ALE210)													
		Sample Ty	ре	ა	S	ა	ა	ა	ა	ა	ა	S	S	S	ა	ა	ω
PAH by GCMS		All	NDPs: 0 Tests: 14	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Sample description		All	NDPs: 0 Tests: 14														
				X	X	X	Х	х	х	х	Х	х	х	х	х	х	Х

21-14506

Validated

597497

Report Number:

Superseded Report:

Sample Descriptions

Order Number:

20798

Grain Sizes							
very fine <0.	063mm fine 0.0	63mm - 0.1mm m	nedium 0.1mm	n - 2mm coa	irse 2mm - 1	0mm very coa	rse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
24219553	PH9-S38		Dark Brown	Loamy Sand	Stones	None	
24219554	PH9-S39		Dark Brown	Loamy Sand	Stones	None	
24219555	PH9-S40		Dark Brown	Loamy Sand	Stones	None	
24219557	PH9-S41		Dark Brown	Loamy Sand	Stones	Vegetation	
24219558	PH9-S42		Dark Brown	Loamy Sand	Stones	None	
24219559	PH9-S43		Dark Brown	Loamy Sand	Stones	None	
24219560	PH9-S44		Dark Brown	Sandy Clay Loam	Stones	None	
24219562	PH9-S45		Dark Brown	Clay Loam	None	None	
24219563	PH9-S46		Dark Brown	Clay Loam	None	None	
24219564	PH9-S47		Dark Brown	Loamy Sand	None	None	
24219565	PH9-S48		Dark Brown	Loamy Sand	None	None	
24219566	PH9-S49		Light Brown	Sandy Silt Loam	None	None	
24219567	PH9-S50		Dark Brown	Loamy Sand	Stones	Vegetation	
24219568	PH9-S51		Light Brown	Loamy Sand	None	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALS

CERTIFICATE OF ANALYSIS

	ALS SDG: Location:		210506-141 21-14506	Clier Orde	nt Reference: er Number: 20	798	Report Numb Superseded Re	per: 597497 sport:	
Notesting Notesting NotestingNotesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting Notesting 	Results Legend		Customer Sample Ref.	PH9-S38	PH9-S39	PH9-S40	PH9-S41	PH9-S42	PH9-S43
	# ISO17025 accredited. M mCERTS accredited. ag Aqueous / settled sample.								
	diss.filt Dissolved / filtered sample. ot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
	* Subcontracted - refer to subcontractor repr accreditation status.	ort for the	Date Sampled Sample Time	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
NoteNoteNoteNoteNoteNoteNoteNoteNoteConstructIdeaAddIdIdeaIde	efficiency of the method. The results of ind compounds within samples aren't correcte	lividual d for the	Date Received	06/05/2021	06/05/2021	06/05/2021	06/05/2021	06/05/2021	06/05/2021
Dotume Minore Mathematical sectors Mathmatemater Mathma	recovery (F) Trigger breach confirmed		Lab Sample No.(s)	24219553	24219554	24219555	24219557	24219558	24219559
nime controllation (Sample and Controllation (Sample a	Component	LOD/Units	AGS Reference Method						
Kink singleIII	loisture Content Ratio (% of as	%	PM024	9.4	11	9	11	13	7.4
Image: Section of the section of t	ceived sample)								
Image: sector									
Image: sector of the sector									
Image: sector of the sector									
Image: section of the section of th									
Image: sector of the sector									
Image: sector of the sector									
Image: section of the section of th									
Image: sector of the sector									
Image: sector of the sector									
Image: set of the									
Image: sector of the sector									
Image: set of the		1							
Image: set of the									
Image: sector of the sector									
Image: sector of the sector									
Image: set of the									
Image: series of the series									
Image: set of the									
Image: set of the									
Image: set of the									
Image: series of the series									
Image: set of the									
Image: set of the									
Image: set of the									
Image: sector									
Image: set of the									
Image: set of the									
Image: sector									
Image: state of the state of		+							
Image: selection of the									
Image: state of the state									
Image: state of the state of		1							
Image: state of the state of									
Image: Second									
Image: set of the									
Image: selection of the									
Image: Second									
Image: state of the state of									
Image:									
Image: Second									
		1							
		1							

ALS

CERTIFICATE OF ANALYSIS

SDG: Location:		210506-141 21-14506	Clier Orde	nt Reference: er Number: 20	0798	Report Numb Superseded Re	per: 597497 aport:	
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample Ref.	PH9-S44	PH9-S45	PH9-S46	PH9-S47	PH9-S48	PH9-S49
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	t for	Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
** % recovery of the surrogate standard to check	ck the	Sample Time						
efficiency of the method. The results of indiv compounds within samples aren't corrected	idual for the	Date Received SDG Ref	06/05/2021 210506-141	06/05/2021 210506-141	06/05/2021 210506-141	06/05/2021 210506-141	06/05/2021 210506-141	06/05/2021 210506-141
(F) Trigger breach confirmed 1-4+S@ Sample deviation (see appendix)		Lab Sample No.(s)	24219560	24219562	24219563	24219564	24219565	24219566
Component	LOD/Units	Method						
loisture Content Ratio (% of as	%	PM024	13	14	15	13	16	17
eceived sample)								
					1			
				ļ				
	1			1	1	1	1	

(ALS)	

CERTIFICATE OF ANALYSIS

	SDG:		210506-141	Clier	nt Reference:	20709	Report Numb	ber: 597497	
(\mathbf{A})	Location:		21-14506	Orde	er Number:	20798	Superseded R	aport:	
	Desults Lemend								
#	ISO17025 accredited.		Customer Sample Ref.	PH9-S50	PH9-S51				
M aq	mCERTS accredited. Aqueous / settled sample.								
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Depth (m) Sample Type	Soil/Solid (S)	Soil/Solid (S)				
•	Subcontracted - refer to subcontractor report accreditation status.	for	Date Sampled	04/05/2021	04/05/2021				
*	% recovery of the surrogate standard to chec efficiency of the method. The results of indivi	k the idual	Sample Time Date Received	06/05/2021	06/05/2021				
	compounds within samples aren't corrected f	for the	SDG Ref	210506-141	210506-141				
(F) 1-4+8@	Trigger breach confirmed Sample deviation (see appendix)		Lab Sample No.(s)	24219567	24219568				
Compo	onent	LOD/Units	Method						
Moistur	e Content Ratio (% of as	%	PM024	10	12				
receive	d sample)								
<u> </u>			+						
—			+ +						
			+ +						
<u> </u>			+ +						
					L				
—			 						
			+						
—			+ +						
			+ +						
		L							
—			<u> </u>						
		1			1				

15:52:08 11/05/2021

ALS

CERTIFICATE OF ANALYSIS

SDG: Location:		210506-141 21-14506	Clien Orde	t Reference: r Number:	207	98	Report Num Superseded R	ber: 597497 eport:	
PAH by GCMS					-			-	
Results Legend # ISO17025 accredited.		Customer Sample Ref.	PH9-S38	PH9-S39		PH9-S40	PH9-S41	PH9-S42	PH9-S43
M mCERTS accredited. aq Aqueous / settled sample.		Durit (a)							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.	-	Depth (m) Sample Type	Soil/Solid (S)	Soil/Solid (S)		Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
 Subcontracted - reter to subcontractor report accreditation status. ** % recovery of the surrought standard to che 	rt tor	Date Sampled Sample Time	04/05/2021	04/05/2021		04/05/2021	04/05/2021	04/05/2021	04/05/2021
efficiency of the method. The results of indiv	vidual	Date Received	06/05/2021	06/05/2021		06/05/2021	06/05/2021	06/05/2021	06/05/2021
recovery	for the	SDG Ref	210506-141 24219553	210506-141 24219554		210506-141 24219555	210506-141 24219557	210506-141 24219558	210506-141 24219559
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference	24213000	24210004		24213000	24213001	24213000	242 13003
Component	LOD/Units	Method							
Naphthalene-d8 % recovery**	%	TM218	78.1	76.2		85.6	85.2	76.6	76.9
Acenaphthene-d10 % recovery**	%	TM218	80.2	78.9		82.9	76.5	75.9	78
Phenanthrene-d10 % recovery**	%	TM218	90.5	84.9		93.8	81.1	84.3	90.6
Chrysene-d12 % recovery**	%	TM218	94.6	90.2		82.8	71.2	84.9	91.4
Perylene-d12 % recovery**	%	TM218	85.1	79.1		75	69.3	74	82.3
Naphthalene	<9 µg/kg	TM218	<9 M	<9	М	<9 M	<9 M	<9 M	<9 N
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12	М	<12 M	<12 M	<12 M	<12 N
Acenaphthene	<8 µg/kg	TM218	<8 M	<8	м	22.5 M	<8 M	<8 M	<8
Fluorene	<10 µg/kg	TM218	<10M	<10	М	13.3 M	<10 M	<10 M	<10
Phenanthrene	<15 µg/kg	TM218	<15 M	<15	М	223 M	<15 M	44.7 M	<15 M
Anthracene	<16 µg/kg	TM218	<16 M	<16	М	46 M	<16 M	<16 M	<16 N
Fluoranthene	<17 µg/kg	TM218	<17 M	<17	М	387 M	<17 M	118 M	21 N
Pyrene	<15 µg/kg	TM218	<15 M	<15	м	324 M	<15 M	109 M	16.6 N
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14	М	138 M	<14 M	67.5 M	<14 N
Chrysene	<10 µg/kg	TM218	<10 M	<10	М	129 M	<10 M	58.2 M	<10 N
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15	М	157 M	<15 M	89 M	<15 N
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14	М	57.6 M	<14 M	31.3 M	<14
Benzo(a)pyrene	<15 µg/kg	TM218	<15 M	<15	М	119 M	<15 M	60.4 M	<15 N
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 M	<18	М	82.7 M	<18 M	41.6 M	<18 N
Dipenzo(a,n)anthracene	<23 µg/kg	TM218	<23 M	<23	М	<23 M	<23 M	<23 M	<23 N
Benzo(g,n,i)perviene	<24 µg/kg	TM218	<24 M	<24	М	80.1 M	<24 M	43.5 M	<24 N
	1								l

ALS

CERTIFICATE OF ANALYSIS

SDG:	2	10506-141	Clien	t Reference: r Number:	207	'98	Report Num Superseded F	ber: 597497 Report:	
			0100						
Results Legend	C	ustomer Sample Ref.	PH9-S44	PH9-S45		PH9-S46	PH9-S47	PH9-S48	PH9-S49
M mCERTS accredited. aq Aqueous / settled sample.									
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	Soil/Solid (S)	Soil/Solid (S)		Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
 Subcontracted - refer to subcontractor report accreditation status. 	ort for	Date Sampled	04/05/2021	04/05/2021		04/05/2021	04/05/2021	04/05/2021	04/05/2021
** % recovery of the surrogate standard to che efficiency of the method. The results of indi	eck the vidual	Sample Time Date Received		06/05/2021		06/05/2021	06/05/2021	06/05/2021	06/05/2021
compounds within samples aren't corrected recovery	i for the	SDG Ref	210506-141	210506-141		210506-141	210506-141	210506-141	210506-141
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	24219560	24219562		24219563	24219564	24219565	24219566
Component	LOD/Units	Method							
Naphthalene-d8 % recovery**	%	TM218	84.9	86.6		86.4	81.1	74.2	75.4
Acenaphthene-d10 %	%	TM218	82.6	79	_	81	77.7	76.5	77
recovery**									
Phenanthrene-d10 % recovery**	%	TM218	93.5	85.6		90.6	85.7	86.5	81
Chrvsene-d12 % recoverv**	%	TM218	80.2	74.9		97.1	82.6	89.7	84.1
	,,								
Perylene-d12 % recovery**	%	TM218	74.1	72.7		93.4	80.6	80	72.8
Naphthalene	<9 µg/kg	TM218	<9	<9		<9	<9	<9	<9
			М		М	М	N	M	N
Acenaphthylene	<12 µg/kg	TM218	<12	<12	м	<12	<12	<12	<12
Acenaphthene	<8 µg/kg	TM218	<8	<8	IVI	<8	<8	<8	<8
-			М		М	М	N	М	Ν
Fluorene	<10 µg/kg	TM218	<10 M	<10	м	<10 M	<10 N	<10 M	<10
Phenanthrene	<15 µg/kg	TM218	<15	<15		<15	22.3	<15	<15
A	110	TM040	M		М	M	N	M	
Anthracene	< ть µg/кg	11/1/2/18	<16 M	< 10	м	< 16 M	<10 N	< 10 M	<10 N
Fluoranthene	<17 µg/kg	TM218	<17	<17		34.6	119	<17	47
Pvrene	<15 µa/ka	TM218	<15	<15	М	M	N 111	<15	N
. ,	10 µg/lig		M		М	M	N	M	
Benz(a)anthracene	<14 µg/kg	TM218	<14	<14	м	22	69.8	<14	<14
Chrysene	<10 µg/kg	TM218	<10	<10	IVI	19.1	56.4	<10	20.7
-			Μ		М	М	N	M	Ν
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15	м	28.1 M	145 N	<15 M	47.4 N
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14	<14		<14	40.8	<14	18.7
Benzo(a)ovrene	<15 µa/ka	TM218	M	<15	М	M	101	<15 M	32.9
Bonzo(u)pyrono	no pg/kg	THE	M		М	M	N	M	02.0 N
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18	<18		<18	94.2	<18	30.1
Dibenzo(a,h)anthracene	<23 µa/ka	TM218	<23	<23	IVI	<23	<23	<23	<23
(1), //			M		М	M	N	M	N
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24	<24	м	<24	106	<24	33
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	<118	<118	IVI	154	865	<118	274

CERTIFICATE OF ANALYSIS

SDG:	2	10506-141	Clien	t Reference: r Number:	207	98	Report Numb	er: 597497	
	2	1 14000	Olde	r Number.	201		Capellocatio	port	
Results Legend # ISO17025 accredited.	Ci	ustomer Sample Ref.	PH9-S50	PH9-S51					
M mCERTS accredited. aq Aqueous / settled sample. disc filt Discolved / filtered sample		Denth (m)							
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Sample Type	Soil/Solid (S)	Soil/Solid (S)					
accreditation status. ** % recovery of the surrogate standard to check efficiency of the method. The results of individ	the	Sample Time							
compounds within samples aren't corrected for recovery	or the	Date Received SDG Ref	210506-141	210506-141					
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	24219567	24219568					
Component Naphthalene-d8 % recovery**	LOD/Units %	Method TM218	75.2	81.2	_				
Acenanhthene_d10 %	%	TM218	77.8	79.1					
recovery**	/0	TW2 10	00.5	00.5					
Phenanthrene-d10 % recovery**	%	TM218	90.5	88.5					
Chrysene-d12 % recovery**	%	TM218	91.7	78.4					
Perylene-d12 % recovery**	%	TM218	82.7	70.4					
Naphthalene	<9 µg/kg	TM218	14.8 M	<9	М				
Acenaphthylene	<12 µg/kg	TM218	29.1 M	<12	М				
Acenaphthene	<8 µg/kg	TM218	230 M	<8	М				
Fluorene	<10 µg/kg	TM218	<10 M	<10	М				
Phenanthrene	<15 µg/kg	TM218	1920 M	45.8	М				
Anthracene	<16 µg/kg	TM218	543 M	<16	м				
Fluoranthene	<17 µg/kg	TM218	3140 M	182	м				
Pyrene	<15 µg/kg	TM218	2540 M	171	м				
Benz(a)anthracene	<14 µg/kg	TM218	1330 M	77.8	М				
Chrysene	<10 µg/kg	TM218	1110 M	73.6	м				
Benzo(b)fluoranthene	<15 µg/kg	TM218	1420 M	106	м				
Benzo(k)fluoranthene	<14 µg/kg	TM218	474 M	34.6	м				
Benzo(a)pyrene	<15 µg/kg	TM218	1040 M	68.1	м				
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	630 M	51.4	М				
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	131 M	<23	м				
Benzo(g,h,i)perylene	<24 µg/kg	TM218	660 M	54	м				
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	15200	864					

CERTIFICATE OF ANALYSIS

20798

Client Reference: Order Number: Report Number: Superseded Report:

597497

Validated

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos
		Containing Material
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS Client Reference:

Validated

597497

Report Number: Superseded Report:

210506-141 Client Reference: Order Number: 20798 Test Completion Dates

						-				
Lab Sample No(s)	24219553	24219554	24219555	24219557	24219558	24219559	24219560	24219562	24219563	24219564
Customer Sample Ref.	PH9-S38	PH9-S39	PH9-S40	PH9-S41	PH9-S42	PH9-S43	PH9-S44	PH9-S45	PH9-S46	PH9-S47
AGS Ref.										
Depth										
Туре	Soil/Solid (S)									
PAH by GCMS	10-May-2021	10-May-2021	10-May-2021	11-May-2021	10-May-2021	10-May-2021	10-May-2021	11-May-2021	10-May-2021	10-May-2021
Sample description	07-May-2021									

Lab Sample No(s)	24219565	24219566	24219567	24219568
Customer Sample Ref.	PH9-S48	PH9-S49	PH9-S50	PH9-S51
AGS Ref.				
Depth				
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
PAH by GCMS	10-May-2021	10-May-2021	10-May-2021	10-May-2021
Sample description	07-May-2021	07-May-2021	07-May-2021	07-May-2021

CERTIFICATE OF ANALYSIS

ALS	SDG: Location:	210506-141 21-14506	Client Reference: Order Number:	20798	Report Number: Superseded Report:	597497
(ALS)						

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained will be of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
+	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name		
Chrysofile	White Asbestos		
Amosite	Brow n Asbestos		
Cio d dolite	Blue Asbe stos		
Fibrous Act nolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX D

Topsoil & Formation Validation Report (ref. R1742b-L07; August 2018) Contaminated Land Air Quality Environmental Audit

Partnership No: OC 300776

Our ref: R1742B-L07 Your ref:

07th August 2018

Andy Walker Urban Regen 23 Springvale Bolton BL7 0FS

by e-mail: andy.walker@urbanregen.co.uk

Dear Andy

Upper Heyford – Dorchester Phase 9 – Basketball Pitch Supplementary Site Investigation

SGP have been instructed to produce a validation report for a parcel of land formerly occupied by a baseball pitch associated with RAF Heyford which is currently utilised as a public open space for recreational use. This parcel of land forms the north-west corner of the wider Phase 9 area (see Drawing D01).

The site is part of a wider area covered by a Hydrock Remediation Strategy (ref. HPW-HYD-PX-REM-RP-GE-3000-P1-S2, April 2017) which states that a site wide engineered cover system is required to comprise of a 200mm hard dig layer, geotextile and 400mm clean soil cover. At present it is unknown whether the Strategy has been approved, however it is proposed that a revised Strategy to cover the Phase 9 area is appropriate given the absence of made ground in some locations and that the made ground consists largely of placed uncontaminated natural soils. These remedial recommendations are consistent with those made with the approved Remediation Strategy (R1742-R01-v3) which covers other phases of the Heyford Park New Settlement Area. This report has therefore been produced to satisfy the proposed remedial recommendations.

No potential contaminative activities such as the storage of fuels (ASTs, USTs, boiler house etc.) was identified within previous reporting with historical mapping confirming the site remained undeveloped until the construction of a baseball pitch sometime between 1979 and 1992.

Given the effective Greenfield history of the site it may be underlain by natural soils or made ground comprising of reworked natural soils, negating the requirement for an engineered cover system.

In-situ sampling was therefore completed to ascertain whether the natural soils were suitable for retention within shallow garden soils and to also determine the extent and chemistry of shallow made ground soils present across the site.

In-situ Topsoil Testing

It is a requirement under the Hydrock Strategy that site won soils are sampled at a minimum test frequency of 1 sample per 250m³, however proposed recommendations under a revised Strategy and in line with previous remedial works within the Heyford development specify testing of site won soils at a frequency of 1 per 500m³.

Assuming an approximate site area of 14,650m² and a nominal topsoil thickness of 0.3m, this equivalates to an approximate volume of 4,395m³. Sampling was carried out in-situ with the proposed

sampling frequency of 1 sample per 500m³ resulting in the collection of 9 samples (achieving a frequency of 1 per 488m³) to assess the potential for recovery and reuse within the development.

Samples were collected by SGP and were placed in appropriate laboratory-provided containers and stored in cooled boxes. Samples submitted for chemical analysis were delivered to Exova-Jones Environmental Ltd (EJEL) within 24 hours of collection and samples for asbestos screen were sent to Chemtest within 48 hours of collection. SGP retains chain of custody documentation.

The results of the soil analyses are compared to human health critical values (CVs) for initial screening purposes. The CVs adopted are appropriate to the environmental setting and proposed future residential use of the site and are taken primarily from the LQM / CIEH Suitable for Use Levels (S4ULs) which are used to define land that is 'not contaminated'. These a derived for a sandy loam soil; reference is initially made to the S4ULs derived for a soil with 1% organic matter as a conservative assumption for screening purposes.

The Defra Category 4 Screening Level (C4SL) for lead in soils under residential land-use has been utilised to allow an initial screening for risk to human health. This is intended to demonstrate that land is definitely not Contaminated Land as defined under Part IIA of the Environmental Protection Act. The adoption of the C4SL in a planning scenario has not been universally accepted, however in the absence of other generic screening criteria for lead following the withdrawal of the SGV by the EA it is considered appropriate to utilise the screening criterion.

Chemical laboratory certificate (18-7823) and asbestos laboratory certificate (18-14613) are attached. Results are summarised in the table below and are compared to assessment criteria for garden cover soils as per above.

It is noted that published criteria have been utilised to reflect those proposed within a revised Strategy with some values differing slightly from those within the current Hydrock Strategy.

		Range of	Residential Use		
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances	
SOM	9	1.5-3.8	-	None	
рН	9	7.74-8.25	-	None	
asbestos fibre*	9	NAD	<0.001%	None	
antimony	9	2-5	550 (GAC)	None	
arsenic	9	15.2-52.1	37 (S4UL)	(1): Ph9-S9A	
barium	9	59-107	1300 (GAC)	None	
beryllium	9	0.9-3.0	1.7 (S4UL)	(1): Ph9-S9A	
cadmium	9	0.1-0.2	11 (S4UL)	None	
chromium	9	36.9-82.2	910 (S4UL)	None	
chromium IV	9	<0.3	6 (S4UL)	None	
cobalt	9	7.6-13.6	-	None	
copper	9	10-29	2400 (S4UL)	None	
lead	9	17-88	200 (C4SL)	None	
mercury	9	<0.1	170 (S4UL)	None	
molybdenum	9	1.5-2.3	670 (GAC)	None	
nickel	9	18.3-51.50	180 (S4UL)	None	

Table 2. Analysis Summary for in-situ Topsoil

		Range of	Residential Use			
Contaminant	Contaminant Samples Concentrations (mg/kg unless stated		Screening criteria (mg/kg unless stated)	Exceedances		
selenium	9	<1-2	250 (S4UL)	None		
vanadium	9	52-119	410 (S4UL)	None		
water soluble boron	9	0.9-2.9	290 (S4UL)	None		
zinc	9	64-174	3700 (S4UL)	None		
naphthalene	9	<0.04	2.3 (S4UL)	None		
acenaphthylene	9	<0.03	170 (S4UL)	None		
acenaphthene	9	<0.05	210 (S4UL)	None		
fluorene	9	<0.04	170 (S4UL)	None		
phenanthrene	9	<0.03-0.26	95(S4UL)	None		
anthracene	9	<0.04-0.09	280 (S4UL)	None		
fluoranthene	9	0.09-0.95	2400 (S4UL)	None		
pyrene	9	0.09-0.87	620 (S4UL)	None		
benzo(a)anthracene	9	0.06-0.59	7.2 (S4UL)	None		
chrysene	9	0.06-0.46	15 (S4UL)	None		
benzo(bk)fluoranthene	9	0.11-1.09	-	-		
benzo(a)pyrene	9	0.06-0.59	2.2 (S4UL)	None		
indeno(123cd)pyrene	9	0.04-0.44	27 (S4UL)	None		
dibenzo(ah)anthracene	9	0.04-0.09	0.24(S4UL)	None		
benzo(ghi)perylene	9	0.04-0.4	320 (S4UL)	None		
aliphatic C5-C6	9	<0.1	42 (S4UL)	None		
aliphatic C6-C8	9	<0.1	100 (S4UL)	None		
aliphatic C8-C10	9	<0.1	27 (S4UL)	None		
aliphatic C10-C12	9	<0.2	130 (S4UL)	None		
aliphatic C12-C16	9	<4	1100 (S4UL)	None		
aliphatic C16-C21	9	<7	5000 (S4UL)	None		
aliphatic C21-C35	9	<7	5000 (S4UL)	None		
aromatic C5-C7	9	<0.1	70 (S4UL)	None		
aromatic C7-C8	9	<0.1	130 (S4UL)	None		
aromatic C8-C10	9	<0.1	34 (S4UL)	None		
aromatic C10-C12	9	<0.2	74 (S4UL)	None		
aromatic C12-C16	9	<4	140 (S4UL)	None		
aromatic C16-C21	9	<7	260 (S4UL)	None		
aromatic C21-C35	9	<7	1100 (S4UL)	None		
benzene	9	<0.005	0.08 (S4UL)	None		
toluene	9	<0.005	130 (S4UL)	None		
ethylbenzene	9	<0.005	47 (S4UL)	None		
o-xylene	9	<0.005	60 (S4UL)	None		
m-xylene	9	<0.005	56 (S4UL)	None		
p-xylene	9	<0.005	56 (S4UL)	None		
methyl tert butyl ether	9	<0.005		None		

 Notes to table:

 S4UL:
 Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management Ltd reproduced with permission publication number S4UL3102. All rights reserved.

 GAC:
 Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential scenario with consumption of homegrown produce (1% SOM).

 C4SL:
 Category 4 Screening Levels published by CL:AIRE (C4SLs); 'residential without home grown produce land use' (at 1% SOM)

Two minor exceedances were reported and were limited to a single sample (Ph9-S9A). Arsenic was recorded at 52.1 mg/kg (criteria of 37 mg/kg), and beryllium at 3 mg/kg (criteria of 1.7 mg/kg). In the absence of anthropogenic material, statistical analysis has been carried out on the sample mean, the results are tabulated in the table below:

statistic	arsenic (mg/kg)	beryllium (mg/kg)
criterion	37	1.7
no. of samples	9	9
Grubbs outlier test for highest value (P0.05)	Ph9-S9A (max value 52.1	Ph9-S9A (max value 3.0
	mg/kg) is an outlier	mg/kg) is an outlier
arithmetic mean, including outlier	22.42	1.36
upper confidence limit (UCL 0.95) including	39.09 (fail)	2.28 (fail)
outlier		
arithmetic mean, excluding Ph9-S9A outlier	18.71	1.15
upper confidence limit (UCL 0.95) excluding	23 26 (pass)	1 25 (pass)
Ph9-S9A outlier	20.20 (p000)	

Table 3. Statistical Analysis of Arsenic and

Statistical analysis confirms that both exceedances are outliers of the dataset and are not representative of the soil concentrations and can therefore be excluded from the dataset. When these exceedances are removed, the UCL (0.95) for arsenic is 23.26 mg/kg and 1.25 mg/kg for beryllium resulting in no exceedances.

In-Situ Future Formation Soil Validation

Under a revised Strategy and in accordance with validation works within the wider Heyford Park development, sampling of the underlying 400mm subsoil beneath any topsoil or removed hardstanding would be sampled to determine its retention as part of the 600mm garden cover providing that it is uncontaminated and suitable for such use.

In-situ sampling of subsoils below the topsoil cover was completed through the excavation and sampling of the top 400mm of soil. Sampling was completed at a test frequency of 1 sample per 500m³, the residual depth of 400mm equating to 1 sample per 1,250m² plan area of development.

Twelve in-situ samples were collected from the underlying soil with depth validation photos showing the extent of the 400mm depth range appended to this report with sampling locations reproduced in Drawing D01. Assuming an approximate site area of 14,650m², the volume of validated soils is effectively 5,860m³, exceeding the specified sampling rate of 1 sample per 500m³ (1 per 488m³ achieved).

Sampled soils generally comprised of a dark brown clay soil with coarse gravel of limestone although inclusions of brick fragments (S5, S6, S11 and S12) and tarmac (S7 and S11) were observed. No inclusions of ash, slag or clinker were observed but it is noted that Hydrock reported ash within 2 locations. A plan detailing the validation entries with Hydrock's trial-pits is provided in Drawing D01.

Table 4. Analysis Summary of Formation Soils

		Range of	Residential Use			
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances		
SOM	12		-	None		
рН	12	7.53-8.47	-	None		
asbestos fibre*	12	NAD	<0.001%	None		
antimony	12	1-3	550 (GAC)	None		
arsenic	12	14.3-25.1	37 (S4UL)	None		
barium	12	49.119	1300 (GAC)	None		
beryllium	12	0.9-1.4	1.7 (S4UL)	None		
cadmium	12	<0.1-0.2	11 (S4UL)	None		
chromium	12	32.3-47	910 (S4UL)	None		
chromium IV	12	<0.3	6 (S4UL)	None		
cobalt	12	6.3-12.5	-	None		
copper	12	9-57	2400 (S4UL)	None		
lead	12	11-59	200 (C4SL)	None		
mercury	12	<0.1	170 (S4UL)	None		
molybdenum	12	1.2-2.6	670 (GAC)	None		
nickel	12	16.3-31.6	180 (S4UL)	None		
selenium	12	<1	250 (S4UL)	None		
vanadium	12	42-69	410 (S4UL)	None		
water soluble boron	12	0.7-3.4	290 (S4UL)	None		
zinc	12	52-204	3700 (S4UL)	None		
naphthalene	12	<0.04-0.06	2.3 (S4UL)	None		
acenaphthylene	12	<0.03-0.08	170 (S4UL)	None		
acenaphthene	12	<0.05-0.23	210 (S4UL)	None		
fluorene	12	<0.04-0.15	170 (S4UL)	None		
phenanthrene	12	<0.03-2.93	95(S4UL)	None		
anthracene	12	<0.04-0.87	280 (S4UL)	None		
fluoranthene	12	<0.03-6.08	2400 (S4UL)	None		
pyrene	12	<0.03-6.08	620 (S4UL)	None		
benzo(a)anthracene	12	<0.06-2.15	7.2 (S4UL)	None		
chrysene	12	<0.02-2.15	15 (S4UL)	None		
benzo(bk)fluoranthene	12	<0.07-3.83	-	-		
benzo(a)pyrene	12	<0.04-2.22	2.2 (S4UL)	(2) Ph9-S4		
indeno(123cd)pyrene	12	<0.04-1.60	27 (S4UL)	None		
dibenzo(ah)anthracene	12	<0.04-0.28	0.24(S4UL)	(2) Ph9-S4 & Ph9-S11		
benzo(ghi)perylene	12	<0.04-1.51	320 (S4UL)	None		
aliphatic C5-C6	12	<0.1	42 (S4UL)	None		
aliphatic C6-C8	12	<0.1	100 (S4UL)	None		
aliphatic C8-C10	12	<0.1	27 (S4UL)	None		

		Range of	Resi	dential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
aliphatic C10-C12	12	<0.2	130 (S4UL)	None
aliphatic C12-C16	12	<4	1100 (S4UL)	None
aliphatic C16-C21	12	<7	5000 (S4UL)	None
aliphatic C21-C35	12	<7-11	5000 (S4UL)	None
aromatic C5-C7	12	<0.1	70 (S4UL)	None
aromatic C7-C8	12	<0.1	130 (S4UL)	None
aromatic C8-C10	12	<0.1	34 (S4UL)	None
aromatic C10-C12	12	<0.2-0.3	74 (S4UL)	None
aromatic C12-C16	12	<4	140 (S4UL)	None
aromatic C16-C21	12	<7-20	260 (S4UL)	None
aromatic C21-C35	12	<7-97	1100 (S4UL)	None
benzene	12	<0.005	0.08 (S4UL)	None
toluene	12	<0.005	130 (S4UL)	None
ethylbenzene	12	<0.005	47 (S4UL)	None
o-xylene	12	<0.005	60 (S4UL)	None
m-xylene	12	<0.005	56 (S4UL)	None
p-xylene	12	<0.005	56 (S4UL)	None
methyl tert butyl ether	12	<0.005	-	None

Notes to table:

S4UL:

GAC:

Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management Ltd reproduced with permission publication number S4UL3102. All rights reserved.

Ltd reproduced with permission publication number S4UL3102. All rights reserved. Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential scenario with consumption of homegrown produce (1% SOM).

Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality

C4SL: Category 4 Screening Levels published by CL:AIRE (C4SLs); 'residential without home grown produce land use' (at 1% SOM)

Exceedances were limited to a very minor elevated concentrations of benzo(a)pyrene within sample Ph9-S4 with a concentration of 2.22 mg/kg compared to the criteria of 2.2 mg/kg, and dibenzo(ah)anthracene with concentrations of 0.28 mg/kg (criteria of 0.24 mg/kg) with both Ph9-S4 and Ph9-S11.

PAH ratio analysis was completed on the exceeded samples to determine the source of the elevated PAHs, a copy of the plot is attached to this report. Source identification confirms a coal signature, no anthropogenic material such as ash or clinker were observed within Ph9-S4 whilst fragments of tarmac were recorded within Ph9-S11. Source identification indicates a likely low bio-availability due to the sequestration of PAHs within a carbon or vitrified matrix, with B(a)P concentrations below the DEFRA C4SL criteria of 5 mg/kg for garden soils. The minor PAH exceedances are unlikely to represent an unacceptable risk to human health.

Conclusions

Topsoil cover was present across the site (with exception of entry S29) extending to depths of 0.2 and 0.3m bgl. Minor exceedances of site topsoil were initially recorded for both arsenic and beryllium within sample Ph9-S9A, however further statistical analysis confirmed the exceedances are not

representative of the dataset and when removed the UCL (0.95) did not result in any exceedances. It is concluded that the topsoil is suitable for recovery and reuse within the development.

The 0.4m of soils present beneath the topsoil layer were a brown clay with frequent limestone gravel (possible weathered bedrock) and rare inclusions of brick and tarmac, tarmac fragments were limited to entries S7 and S11. It is anticipated that the clay layer may have been placed in part during construction of the baseball pitch where soils from the wider Heyford area may have been placed.

Concentrations of determinants were below the assessment criteria except with 3 minor exceedances for the PAHs benzo(a)pyrene (no 1) and dibenzo(ah)anthracene (no 2) in entries S4 and S11. Further assessment has confirmed a coal signature, possibly associated with minor tarmac inclusions and concluded that the identified sources are likely to be below significant in terms of solubility and bioavailability due to the sequestration within coal / tarmac.

SGP considers that the risk associated to future site occupants to concentrations to be negligible and that the site soils (topsoil and subsoil) are suitable for retention in future garden areas. The recommended remedial measures (i.e. engineered cover system) may be revised to be consistent with those applied to other similar areas i.e. no specific requirement for cover soils.

Recommendations

It is recommended that in the absence of a revised Strategy being produced and issued for the Phase 9 area that this report be submitted to CDC for approval, however further justification to the deviation from the submitted Strategy may be required.

Assessment of risks associated with occasional exceedances and conclusions regarding suitability for retention at shallow depths should be provided to CDC for approval.

Yours sincerely for: Smith Grant LLP

D Wayland BSc MSc MCIWEM

Attached:

Drawing D01 App A: Entry Logs & Photo Record App B: Lab Certificate: 18-7823 & 18-14613 App C: PAH Ratio Plot & Arsenic and Beryllium CLR7 Statistics

DRAWING

APPENDIX A

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEEF	R: DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban	Regen Ltd.	DATE: 1st	Мау	Ph9-S1
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DES	SCRIPTION OF ST	RATA	LEGEND
0.2	Ph0-S1A	Heyford Suite	0	_ Dark brown CLAY	topsoil with rootlef	S	
	FII9-STA	Hauford Suita	0.2	MADE GROUND: gravel (relict gas p	Dark brown CLAY pipe at base)	with coarse	
0.6		Heylord Suite		_			
	FII9-31D			Base at 0.6m bgl			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
				_			
SI E	MITH GRAD	GROUND WATER: No groundwater encounte	ered				
	LLP	REMARKS:					
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL1	Road, PID <0.1 ppm				D: small disturb B: bulk disturbe	ed sample
	rel: 01978822367 Fax: 019788247182	2		OGGED BY		PP: pocket pen	etrometer
email:	consult@smithgrar	nt.co.uk 1:250		DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJEC Heyfo	ाः rd Dorchester	ENGIN	EER:	DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVAT Track	red BY: ced 360	CLIEN Urt	⊤: ban R	egen Ltd.	DATE: 1st I	Мау	Ph9-S2
DEPTH (m)	SAMPLES		Lab testing	DEPTH (m)	(III)	DESCRIPTIO	N OF STI	RATA	LEGEND
0.3			Heyford Suite	0		Dark brown CLAY topsoil w	ith rootlet	5	
0.0	Ph9-S2A		Heyford Suite	0.3		Dark brown to red CLAY wit angular limestone	th frequer	t gravel of	
0.7	Ph9-S2B					Base at 0.7m bol			
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
					_				
			Γ						
SI E	MITH GRAD	V T ıl	GROUND WATER: No groundwater encounte	red					
	L L P		REMARKS:						
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL14	Road, 46DL	PID <0.1 ppm					D: small disturb B: bulk disturbe	ed sample d sample
F	Fer: 01978822367 Fax: 019788247182	2 Jk	SCALE:		LOG	GED BY:		PP: pocket pen FIGURE NO.	etrometer 1
email: o	consult@smithgrar	nt.co.uk	1:250			DW			1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	^{R:} DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbar	n Regen Ltd.	DATE: 1st I	Мау	Ph9-S3
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIC	ON OF ST	RATA	LEGEND
0.2	Dha S3A	Heyford Suite	0	_ Dark brown CLAY topsoil w	ith rootlet	S	
	FII9-00A	Heyford Suite	0.2	Dark brown CLAY with freq	uent grav	el of angular	
0.6	DF0 82D			_			- <u> </u>
	F119-33B			Base at 0.6m bgl			
				-			
			-				
				_			
				_			
				_			
				_			
				_			
				-			
				-			
				_			
				_			
				_			
				_			
				_			
				-			
				_			
				-			
			-				
				_			
				_			
				_			
]			
SI E	MITH GRAD Invironmente	No groundwater encounte	ered				
	L L P	REMARKS:					
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL14	Road, HGDL Sidewalls stable PID <0.1 ppm				D: small disturb	ed sample
1	Tel: 01978822367 Fax: 019788247182	2				B: bulk disturbe PP: pocket pen-	d sample etrometer
w email:	ww.smithgrant.co.u consult@smithgran	ik SCALE: 1:250	L	OGGED BY: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	^{R:} DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbar	n Regen Ltd.	DATE: 1st I	Мау	Ph9-S4
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIC	ON OF ST	RATA	LEGEND
0.2	Dha SAA	Heyford Suite	0	_ Dark brown CLAY topsoil w	ith rootlet	S	
	F119-34A	Llouford Suite	0.2	 Dark brown CLAY with freq limestone 	uent grav	el of angular	
0.6		Heylord Suite		_			- <u> </u>
	Pn9-S4B			Base at 0.6m bgl			
				_			
			_				
				_			
				_			
				_			
				_			
				_			
				-			
				-			
				-			
				_			
			_	_			
				_			
				_			
				_			
				-			
				-			
			-	-			
				-			
				-			
				_			
				-			
	MITH GRAD	GROUND WATER:	L]
	Consultancy	No groundwater encounte	ered				
	LLP	REMARKS:					
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL1	Road, H6DL				D: small disturb	ed sample
,	Tel: 01978822367 Fax: 019788247182	2				B: bulk disturbe PP: pocket pen-	d sample etrometer
w email:	ww.smithgrant.co.u consult@smithgrar	ik SCALE: 1:co.uk 1:250	L	OGGED BY: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	^{R:} DW		JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbar	n Regen Ltd		DATE: 1st I	Мау	Ph9-S5
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)		DESCRIPTIC	ON OF STI	RATA	LEGEND
		Heyford Suite	0	Dark I	orown CLAY topsoil w	ith rootlets	5	
0.3	Ph9-S5A	Heuford Suite	0.3	Dark I	prown CLAY with freq one and rare brick fra	uent grave gments	el of angular	
0.7	Ph9-S5B							
				– Base	at 0.7 m bgi			
			_	-				
				_				
				_				
				_				
			-	_				
				-				
				-				
				-				
			-	_				
				_				
				_				
				_				
			-	_				
				-				
				_				
				_				
				_				
SI E	MITH GRAD Invironmente Consultance	No groundwater encounter	ered					
		REMARKS: Sidewalls stable						
Statio Ruat	on House, Station F oon, Wrexham LL1 Tel: 01978822367	Road, PID <0.1 ppm 46DL					D: small disturb B: bulk disturbe	ed sample d sample
w email:	Fax: 019788247182 ww.smithgrant.co.u consult@smithgran	2 Ik SCALE: It.co.uk 1:250	L	OGGED BY:	DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEEF	R:	DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban	n Re	gen Ltd.	DATE: 1st I	Мау	Ph9-S6
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)		DESCRIPTIO	N OF STI	RATA	LEGEND
0.2	Ph0-S64	Heyford Suite	0	_	Dark brown CLAY topsoil w	ith rootlets	5	
	1 113-004	Hevford Suite	0.2	_	Dark brown CLAY with frequencies the second	uent grave gments	el of angular	
0.6	Ph9-S6B			-				
	1 113-000			-	Base at 0.6m bgl			
				_				
				_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			_					
				_				
				_				
				-				
	ATTH GRAS	GROUND WATER:						
	nvironmento	No groundwater encounte	ered					
	L L P	REMARKS:						
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL1	Road, 46DL					D: small disturb	ed sample
F	Tel: 01978822367 Fax: 019788247182	2	I				B: bulk disturbe PP: pocket pen	d sample etrometer
w email:	ww.smithgrant.co.u consult@smithgrar	ık SCALE: It.co.uk 1:250	L	.OGG	GED BY: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	r: DV	N	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbar	n Regei	n Ltd.	DATE: 1st I	Мау	Ph9-S7
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)		DESCRIPTIO	N OF STI	RATA	LEGEND
0.2	Ph9-S7A	Heyford Suite	0	_ D	ark brown CLAY topsoil wi	th rootlets	5	
		Hevford Suite	0.2	– D	ark brown CLAY with freque mestone and rare brick and	uent grave I tarmac f	el of angular ragments	
0.6	Ph9-S7B			_				
				B	ase at 0.6m bgl			
				_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
				_				
SI E	MITH GRAD	I CROUND WATER:	ered					
	LLP	REMARKS:						
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL14	Acad, PID <0.1 ppm					D: small disturbe B: bulk disturber	ed sample I sample
I	Tel: 01978822367 Fax: 019788247182		<u> </u>	00055			PP: pocket pene	etrometer
email:	consult@smithgran	it.co.uk 1:250		JUGGED	DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	R: DW		JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbai	n Regen I	.td.	DATE: 1st I	Мау	Ph9-S8
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)		DESCRIPTIO	N OF ST	RATA	LEGEND
0.2	Dh0 S8A	Heyford Suite	0	_ Dar	k brown CLAY topsoil w	ith rootlets	S	
	FII9-SOA	Hevford Suite	0.2	Dar lime	k brown CLAY with freq estone	uent grave	el of angular	
0.6	Dh0-S8B			_				
	1 113-000			Bas	e at 0.6m bgl			
				_				
				_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			_	_				
				_				
				_				
				_				
				_				
			-	_				
				_				
				_				
				_				
				_				
	MITH GRAT	GROUND WATER:						
E	Consultancy	No groundwater encounte	red					
	LLP	REMARKS:						
Statio Ruat	Smith Grant LLP on House, Station F oon, Wrexham LL14	Road, HGDL					D: small disturb	ed sample
F	Tel: 01978822367 Fax: 019788247182	2					B: bulk disturbe PP: pocket pen	etrometer
w email:	ww.smithgrant.co.u consult@smithgrar	IK SCALE: It.co.uk 1:250	L	OGGED B	Y: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJEC [®]	ाः rd Dorchester	ENGIN	EER:	DW	JOB NO.	R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVAT Track	red BY: ced 360	CLIEN Uri	T: Dan R	egen Ltd.	DATE: 1st I	Мау	Ph9-S9
DEPTH (m)	SAMPLES		Lab testing	DEPTH	(111)	DESCRIPTIO	N OF STI	RATA	LEGEND
			Heyford Suite	0		Light brown CLAYbecoming gravel of angular limestone	j darker w	ith frequent	
0.6					_				
0.0	Ph9-S9A				_	Base at 0.6m bgl			
					_				
					_				
					_				
					_				
					_				
					-				
					_				
					_				
					_				
					-				
					_				
					_				
					_				
					_				
SI E	MITH GRAD Invironmento Consultancy	V r ıl	GROUND WATER: No groundwater encounter	red					
	LLP Smith Grant I I P		REMARKS: Sidewalls stable						
Statio Ruat	Tel: 01978822367	Road, 46DL	PID <0.1 ppm					D: small disturb B: bulk disturbe PP: pocket pop	ed sample d sample etrometer
F w email: d	Fax: 019788247182 ww.smithgrant.co.u consult@smithgran	2 ik it.co.uk	SCALE: 1:250		LOG	GED BY: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	^{R:} DW	JOB NO.	R1742b	TRIAL PIT NO.	
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban	Regen Ltd.	DATE: 1st I	Мау	Ph9-S1(
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIC	N OF STI	RATA	LEGEND	
			0	Dark brown CLAY topsoil w	ith rootlets	S		
		Heyford Suite	0.3	Dark brown CLAY with freq limestone	uent grave	el of angular		
0.7	Ph9-S10A			Base at 0.7m bgl				
			_	_				
				-				
				-				
				-				
			_	-				
				-				
				-				
			_	-				
				-				
				-				
				-				
			_	-				
				-				
				-				
				-				
S I E	MITH GRAD nvironmento Consultancy	GROUND WATER: No groundwater encounte	red					
Static Ruab	LLP Smith Grant LLP on House, Station F oon, Wrexham LL14	REMARKS: Sidewalls stable PID <0.1 ppm				D: small disturb	ed sample	
F	Tel: 01978822367 Fax: 019788247182	2				B: bulk disturbe PP: pocket pene	d sample etrometer	
w email: c	ww.smithgrant.co.u consult@smithgran	k SCALE: t.co.uk 1:250	L	OGGED BY: DW		FIGURE NO.	1	
SHEET:	LOCATION:	PROJECT: Heyford Dorch	ester	ENGINEER:	DW	JOB NO.	R1742b	TRIAL PIT NO.
--------------------	--	------------------------------	-----------------------	--------------------	---	------------------------	---	------------------------------------
1 of 1	See Plan	EXCAVATED BY: Tracked 360		CLIENT: Urban I	Regen Ltd.	DATE: 1st I	Мау	Ph9-S11
DEPTH (m)	SAMPLES	Lal	b testing	DEPTH (m)	DESCRIPTIO	DESCRIPTION OF STRATA		
				0 -	Dark brown CLAY topsoil w	ith rootlets	5	
		Heyt	ford Suite	0.3	Light brown CLAY with coa and rare brick and tarmac fi	rse gravel ragments	of limestone	
0.7	Ph9-S11A				Base at 0.7m bgl			
				-	-			
				-	-			
				-	-			
				-	-			
				-	-			
					-			
				-	-			
				-	-			
				-	-			
				-	-			
					-			
				-	-			
				-	-			
				-	_			
					-			
				-	-			
				-	-			
				-	-			
				-	-			
SI	MITH GRAL	GROUN	ND WATER:		I			
	nvironmento Consultancy		roundwater encountere	ed				
	LLP Smith Grant LLP	Sidewa	alls stable					
Static Ruat	Tel: 01978822367	léDL	kh				D: small disturbe B: bulk disturbed PP: pocket pene	ed sample I sample etrometer
F w email: d	-ax: 019788247182 ww.smithgrant.co.u consult@smithgran	k SCALE: t.co.uk	1:250	LO	GGED BY: DW		FIGURE NO.	1

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEE	R: DW	R1742b	TRIAL PIT NO.	
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urbai	n Regen Ltd.	DATE: 1st I	Лау	Ph9-S12
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	N OF ST	RATA	LEGEND
			0	Dark brown CLAY topsoil w	ith rootlets	5	
		Heyford Suite	0.3	Light brown CLAY with coar and rare brick fragments	se gravel	of limestone	
0.7	Ph9-S12A			Base at 0.7m bgl			
			_	_			
				-			
				_			
				_			
			-				
				_			
				-			
				-			
			_	_			
				_			
				-			
				_			
			-				
				-			
				_			
				-			
SMITH GRANT Environmental Consultance							
	LLP	REMARKS: Sidewalls stable					
Static Ruab	omith Grant LLP on House, Station F oon, Wrexham LL14 Tel: 01978822367	Road, PID <0.1 ppm HGDL				D: small disturb B: bulk disturber	ed sample d sample
F w email: d	Fax: 019788247182 ww.smithgrant.co.u consult@smithgran	2 ik SCALE: t.co.uk 1:250	L	.OGGED BY: DW		FF. pocket pene	1

Andy Walker Urban Regen

APPENDIX B

Smith Grant LLP Station House

Station Road

Ruabon Wrexham LL14 6DL

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Dan Wayland
Date :	7th June, 2018
Your reference :	R1742B
Our reference :	Test Report 18/7823 Batch 1
Location :	Heyford (Dorchester)
Date samples received :	22nd May, 2018
Status :	Final report
Issue :	1

Twenty samples were received for analysis on 22nd May, 2018 of which twenty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Phil Sommerton BSc Project Manager

Client Name:						
Reference:						
Location:						
Contact:						
JE Job No.:						

Smith Grant LLP R1742B Heyford (Dorchester) Dan Wayland 18/7823

Report : Solid

J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A	PH9-S5B			
Denth	0 00-0 20	0 20-0 60	0 00-0 30	0 30-0 70	0 00-0 20	0 20-0 60	0 00-0 20	0 20-0 60	0 00-0 30	0 30-0 70			
COC No (mino	0.00 0.20	0.20 0.00	0.00 0.00	0.00 0.70	0.00 0.20	0.20 0.00	0.00 0.20	0.20 0.00	0.00 0.00	0.00 0.70	Please se abbrevi	e attached n ations and a	otes for all pronyms
COC NO7 misc													
Containers	ΛÌ	VJ	VJ	VJ	٧J	٧J	٧J	ΛÌ	٧J	ΛÌ			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	LOD/LOR	Units	No.
Antimony	2	2	2	2	2	2	3	3	2	2	<1	mg/kg	TM30/PM15
Arsenic #M	15.9	17.1	16.2	19.1	21.6	16.5	17.4	18.1	19.3	25.1	<0.5	mg/kg	TM30/PM15
Barium #M	68	68	62	49	59	51	61	69	63	95	<1	mg/kg	TM30/PM15
Beryllium	1.1	1.2	1.3	1.3	1.1	1.0	1.1	1.0	1.1	1.0	<0.5	mg/kg	TM30/PM15
Cadmium ^{#M}	0.1	0.1	<0.1	<0.1	0.2	0.2	0.1	<0.1	0.1	0.1	<0.1	mg/kg	TM30/PM15
Chromium ^{#M}	42.2	43.2	42.5	47.0	38.8	34.9	38.6	39.8	43.5	45.1	<0.5	mg/kg	TM30/PM15
Cobalt ^{#M}	8.5	9.3	9.4	9.3	8.2	6.5	8.3	9.4	8.0	6.8	<0.5	mg/kg	TM30/PM15
Copper #M	15	14	10	11	10	9	12	27	11	18	<1	mg/kg	TM30/PM15
Lead #M	21	24	17	11	38	42	36	35	35	32	<5	mg/kg	TM30/PM15
Mercury #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum ^{#M}	1.9	1.9	1.8	1.9	1.5	1.6	1.9	2.0	1.8	2.1	<0.1	mg/kg	TM30/PM15
Nickel #M	24.2	23.0	26.3	27.2	22.4	16.3	22.5	22.3	22.0	18.3	<0.7	mg/kg	TM30/PM15
Selenium ^{#M}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Vanadium	55	57	54	55	54	50	55	57	54	69	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	1.2	1.2	1.1	0.7	0.9	1.1	1.6	1.4	1.8	1.1	<0.1	mg/kg	TM74/PM32
Zinc ^{#M}	64	68	64	52	78	63	71	59	67	122	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #M	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.05	<0.03	0.07	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.23	<0.05	0.23	<0.05	mg/kg	TM4/PM8
Fluorene **	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.12	<0.04	0.15	<0.04	mg/kg	TM4/PM8
Phenanthrene ***	0.11	< 0.03	< 0.03	< 0.03	0.12	0.70	0.06	2.24	0.07	2.93	< 0.03	mg/kg	TM4/PM8
Anthracene *	<0.04	<0.04	<0.04	<0.04	0.06	0.22	<0.04	0.87	<0.04	0.69	<0.04	mg/kg	TM4/PM8
Fluoranthene ****	0.42	0.11	0.09	< 0.03	0.51	1.56	0.21	6.08	0.22	3.88	< 0.03	mg/kg	TM4/PM8
Pyrene "	0.37	0.11	0.09	<0.03	0.50	1.34	0.20	4.91	0.20	3.14	< 0.03	mg/kg	TM4/PM8
Benzo(a)anthracene	0.21	0.08	0.08	<0.06	0.30	0.63	0.12	2.15	0.13	1.31	<0.06	mg/kg	TM4/PM8
Chrysene	0.21	0.07	0.00	<0.02	0.51	1.00	0.12	2.10	0.13	1.40	<0.02	mg/kg	
Benzo(a)pyropo #	0.43	0.14	0.11	<0.07	0.07	0.70	0.25	3.03 2.22	0.20	1.54	<0.07	mg/kg	
Indono(123cd)pyrono #M	0.23	0.06	<0.00	<0.04	0.39	0.70	0.14	1 / 9	0.13	1.04	<0.04	mg/kg	
Dibenzo(ab)anthracene #	<0.13	<0.00	<0.04	<0.04	0.06	0.43	<0.10	0.28	<0.12	0.19	<0.04	ma/ka	TM4/PM8
Benzo(ahi)nervlene [#]	0.17	0.06	<0.04	<0.04	0.28	0.47	0.09	1.33	0.10	1.04	<0.04	ma/ka	TM4/PM8
PAH 16 Total	2.3	0.7	<0.6	<0.6	3.5	8.2	1.3	28.0	1.4	20.7	<0.6	ma/ka	TM4/PM8
Benzo(b)fluoranthene	0.31	0.10	0.08	<0.05	0.48	0.91	0.18	2.76	0.19	2.07	<0.05	ma/ka	TM4/PM8
Benzo(k)fluoranthene	0.12	0.04	0.03	<0.02	0.19	0.35	0.07	1.07	0.07	0.81	< 0.02	ma/ka	TM4/PM8
PAH Surrogate % Recovery	89	91	90	89	89	90	84	90	91	88	<0	%	TM4/PM8
- ,													

Client Name:						
Reference:						
Location:						
Contact:						
JE Job No.:						

Smith Grant LLP R1742B Heyford (Dorchester) Dan Wayland 18/7823

Report : Solid

J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A	PH9-S5B			
Depth	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	Please se abbrevi	e attached n	otes for all
COC No / misc											abbievi		Jonymo
Containers	٧J	٧J	٧J	٧J	νJ	νJ	٧J	٧J	٧J	٧J			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 #M	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 ***	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 ***	<7	<7	<7	<7	<7	<7	<7	<7	<7	</th <th><7</th> <th>mg/kg</th> <th>TM5/PM8/PM16</th>	<7	mg/kg	TM5/PM8/PM16
>C21-C33	<10	<10	<19	<19	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics	10	415	10	410	415	415	410	410	415	415	410	ilig/kg	
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	78	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	<19	<19	<19	<19	<19	<19	<19	<19	78	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38	<38	<38	<38	<38	<38	78	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene *	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene "	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
0-Xylene	-0	-5	-0	-0	-0	-0	-0	-0	-0	-0	-0	ug/kg	
Natural Moisture Content	10.7	12.6	11.2	12.4	10.2	10.8	10.6	12.5	12.1	13.2	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Organic Matter	1.8	1.9	1.5	0.6	1.5	1.2	2.6	1.4	2.4	1.2	<0.2	%	TM21/PM24
Electrical Conductivity @25C (5:1 ext)	204	192	203	157	203	176	236	175	234	191	<100	uS/cm	TM76/PM58
pH ^{#M}	8.18	8.25	8.12	8.31	8.25	8.24	8.10	8.46	8.06	8.38	<0.01	pH units	TM73/PM11
Sample Type	Clayey Loam	Clayey Loam	Loam	Clay	Clayey Loam	Clay	Clayey Loam	Clay	Clayey Loam	Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation, carbon	stones, vegetation	vegetation, stones	vegetation, stones	vegetation, stones	stones	stones, vegetation	loam, stones, vegetation	vegetation, stones	sones, vegeation		None	PM13/PM0

Client Name:						
Reference:						
Location:						
Contact:						
JE Job No.:						

Smith Grant LLP R1742B Heyford (Dorchester) Dan Wayland 18/7823

Report : Solid

J E Sample No.	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-36	37-38	39-40			
Sample ID	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A	PH9-S11A	PH9-S12A			
Depth	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.60	0.30-0.70	0.30-0.70	0.30-0.70			
COC No / miss											Please se abbrevi	e attached ne ations and ac	otes for all cronyms
COC NO7 misc													
Containers	٧J	٧J	٧J	VJ	VJ	VJ	VJ	VJ	VJ	νJ			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	LOD/LOR	Units	No.
Antimony	3	3	3	2	2	2	5	2	1	2	<1	ma/ka	TM30/PM15
Arsenic ^{#M}	23.0	22.4	21.1	14.3	15.2	15.1	52.1	15.5	17.3	15.1	<0.5	ma/ka	TM30/PM15
Barium ^{#M}	68	119	65	81	60	52	107	61	51	67	<1	mg/kg	TM30/PM15
Beryllium	1.2	1.2	1.4	1.4	0.9	1.0	3.0	1.4	0.9	1.0	<0.5	mg/kg	TM30/PM15
Cadmium #M	0.1	0.2	0.1	0.2	0.2	<0.1	<0.1	0.1	0.1	0.2	<0.1	mg/kg	TM30/PM15
Chromium #M	45.3	40.3	43.1	34.8	36.9	34.7	82.2	45.5	32.3	33.7	<0.5	mg/kg	TM30/PM15
Cobalt ^{#M}	9.7	12.5	8.8	6.9	7.6	7.4	13.6	10.6	6.3	7.1	<0.5	mg/kg	TM30/PM15
Copper #M	11	12	29	57	12	11	13	18	11	14	<1	mg/kg	TM30/PM15
Lead ^{#M}	42	59	88	40	22	17	84	21	23	23	<5	mg/kg	TM30/PM15
Mercury ^{#M}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum #M	2.0	1.9	2.3	2.6	1.8	1.7	1.9	1.2	1.5	1.4	<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	26.3	31.6	24.0	21.7	18.3	18.1	51.5	23.1	16.5	16.9	<0.7	mg/kg	TM30/PM15
Selenium ^{#™}	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	mg/kg	TM30/PM15
Vanadium	61	57	60	42	52	53	119	62	47	47	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	1.7	1.1	1.7	1.3	1.8	1.2	2.9	3.4	0.9	1.2	<0.1	mg/kg	TM20/PM15
ZINC	75	00	120	204	07	01	174	07	04	07	~5	iiig/kg	110130/F10113
PAH MS													
Naphthalene ^{#M}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	0.08	<0.03	<0.03	<0.03	<0.03	0.08	0.07	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	0.09	0.06	<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene ^{#M}	0.07	0.22	0.24	1.09	0.07	<0.03	0.26	0.06	0.79	0.66	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	0.08	0.09	0.43	<0.04	<0.04	0.09	<0.04	0.34	0.22	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	0.24	0.92	0.95	3.47	0.28	<0.03	0.61	0.18	3.11	1.64	<0.03	mg/kg	TM4/PM8
Pyrene #	0.22	0.84	0.87	3.15	0.26	<0.03	0.50	0.18	2.88	1.42	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.15	0.47	0.47	1.61	0.15	<0.06	0.28	0.12	1.42	1.03	<0.06	mg/kg	TM4/PM8
Chrysene ""	0.15	0.46	0.46	1.64	0.17	<0.02	0.28	0.11	1.55	1.01	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluorantnene	0.34	0.63	0.59	2.03	0.39	<0.07	0.55	0.20	2.00	0.98	<0.07	mg/kg	
Indeno(123cd)pyrene #M	0.10	0.03	0.39	1.60	0.21	<0.04	0.29	0.13	1.55	0.90	<0.04	mg/kg	TM4/PM8
Dibenzo(ab)anthracene #	<0.04	0.09	0.09	0.27	<0.04	<0.04	<0.04	<0.04	0.28	0.14	<0.04	ma/ka	TM4/PM8
Benzo(ghi)pervlene #	0.11	0.40	0.40	1.36	0.18	<0.04	0.19	0.10	1.51	0.69	<0.04	mg/kg	TM4/PM8
PAH 16 Total	1.6	5.7	5.7	20.4	1.9	<0.6	3.3	1.3	19.2	10.6	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.24	0.81	0.78	2.52	0.28	<0.05	0.40	0.19	2.58	1.37	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.10	0.31	0.31	0.98	0.11	<0.02	0.15	0.07	1.00	0.53	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	91	91	96	90	90	84	90	89	101	<0	%	TM4/PM8
											1		

Client Name: Reference: Location: Contact: JE Job No.: Smith Grant LLP R1742B Heyford (Dorchester) Dan Wayland 18/7823

Report : Solid

J E Sample No.	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-36	37-38	39-40			
Sample ID	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A	PH9-S11A	PH9-S12A			
Denth	0 00-0 20	0 20-0 60	0 00-0 20	0 20-0 60	0.00-0.20	0 20-0 60	0.00-0.60	0.30-0.70	0.30-0.70	0.30-0.70			
COC No (mino	0.00 0.20	0.20 0.00	0.00 0.20	0.20 0.00	0.00 0.20	0.20 0.00	0.00 0.00	0.00 0.10	0.00 0.70	0.00 0.10	Please se abbrevi	e attached no ations and ac	otes for all cronyms
COC NO/ MISC													
Containers	Λl	Λì	Λì	Λl	Λì	Λ٦	Λì	Λì	Λì	Λl			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Mathad
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	LOD/LOR	Units	No.
Aliphatics													
>C5-C6 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 #M	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 #M	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 ^{#M}	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics													
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 ***	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12"	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16"	<4	<4	<4	<4 20	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM0/PM10
>EC10-EC21	<7	17	<7	20	<7	<7	<7	<7	9	70	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 [#]	<19	<19	<19	111	<19	<19	<19	<19	106	70	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	111	<38	<38	<38	<38	106	70	<38	ma/ka	TM5/TM38/PM8/PM12/PM16
										-		5-5	
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	58	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	12.4	11.9	12.0	10.9	10.1	12.8	21.7	22.1	10.7	10.6	<0.1	%	PM4/PM0
												-	
Hexavalent Chromium *	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	1M38/PM20
Orașeia Mattar	25	47	2.0	1.0	2.2	10	2.0	0.7	10	4.7	-0.0	0/	TM04/DM04
	2.5	1.7	3.0	1.0	3.3	1.2	3.0	2.1	1.5	1.7	<0.2	70	1 11/2 1/1911/24
Electrical Conductivity @25C (5:1 ext)	244	214	238	166	252	191	248	247	123	197	<100	uS/cm	TM76/PM58
nH#M	8 10	8 23	7.98	8 30	7 74	8 29	7 77	7.53	8.26	8 47	<0.01	nH units	TM73/PM11
Sample Type	Clayey Loam	Clayey Loam	Loam	Clayey Loam	Loam	Clayey Loam	Clayey Loam	Clav	Clayey Loam	Clayey Loam	-0.01	None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0				
Other Items	vegetation, stones	stones, vegetation	stones, vegetation	stones, vegetation	vegetation, stones, carbon	stones	stones, vegetation	loam, stones	stones, vegetation, brick fragment	stones, vegetation		None	PM13/PM0

Client Name:	Smith Grant LLP
Reference:	R1742B
Location:	Heyford (Dorchester)
Contact:	Dan Wayland

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 18/7823	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/7823

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

JE Job No: 18/7823

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes

Method Code Appendix

JE Job No: 18/7823

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM58	Dried and ground solid samples are extracted with water in a 5:1 water to solid ratio, the samples are shaken on an orbital shaker.			AD	Yes

Chemistry to deliver results Chemistry to deliver results Chemitest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemitest.co.uk

Report No.:	18-14613-1		
Initial Date of Issue:	31-May-2018		
Client	Smith Grant LLP		
Client Address:	Station House, Station Road Ruabon Wrexham LL14 6DL		
Contact(s):	Dan Wayland		
Project	R17426 Heyford Park (Dorchester)		
Quotation No.:		Date Received:	24-May-2018
Order No.:		Date Instructed:	24-May-2018
No. of Samples:	20		
Turnaround (Wkdays):	5	Results Due:	31-May-2018
Date Approved:	31-May-2018		
Approved By:			
Details:	Glynn Harvey, Laboratory Manager		

Results - Soil

Client: Smith Grant LLP	Chemtest Job No.:		18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613		
Quotation No.:	Chemtest Sample ID.			ple ID.:	627756	627757	627758	627759	627760	627761	627762	627763	627764
		Clie	ent Sam	ple ID.:	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A
			Sampl	e Type:	SOIL								
	Top Depth (m):				0.0	0.2	0.0	0.3	0.0	0.2	0.0	0.2	0.0
	Bottom Depth (m)				0.2	0.6	0.3	0.7	0.2	0.6	0.2	0.6	0.3
	Asbestos Lab:				COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Ashastas Identification		2102	%	0.001	No Asbestos								
Aspesios identification	U	2192			Detected								

Results - Soil

Client: Smith Grant LLP	Chemtest Job No.:		18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613		
Quotation No.:	Chemtest Sample ID.				627765	627766	627767	627768	627769	627770	627771	627772	627773
		Clie	ent Sam	ple ID.:	PH9-S5B	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A
			Sampl	e Type:	SOIL								
	Top Depth (m):				0.3	0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.3
	Bottom Depth (m):				0.7	0.2	0.6	0.2	0.6	0.2	0.6	0.6	0.7
	Asbestos Lab:				COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Ashastas Identification		2102	0/2	0.001	No Asbestos								
Aspesios identification	U	2192	70		Detected								

Client: Smith Grant LLP		Che	mtest Jo	18-14613	18-14613	
Quotation No.:	(Chemte	est Sam	627774	627775	
		Clie	ent Sam	ple ID.:	PH9-S11A	PH9-S12A
			Sample	e Type:	SOIL	SOIL
			Тор Dep	oth (m):	0.3	0.3
		Bot	tom Dep	0.7	0.7	
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units			
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U 2192 % 0.00				No Asbestos Detected	No Asbestos Detected

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk

APPENDIX C

Smith Grant LLP, 2010

06.08.18

DW

Date:

Author

R1742b

Heyford

Beryllium

Ref

Site

Substance:

Contaminated Land Assessment - Statistical Spreadsheet

1. Data review bell-shaped histograms indicate a normal-type distribution

2. Check for statistical outliers

Grubbs Test - assumes that data other than outlier(s) are normally distributed

3. Assessment of normal distribution

t statistic = -10.290

t	statistic is less than critical value	null hypothesis can be		
	ι	upper confidence limit (UCL 0.95) =	1.25 mg/kg	
			Ref: R1742b Site: Heyford	Date: 06.08.18 Author: DW
Smith Grant LLP, 2010			Substance: Beryllium	

critical value = -1.895

Job name	Upper Heyford (Dorchester)
Job no.	R1742b
Date:	18.07.18
Author:	DW
Laboratory:	Exova Jones
Lab. Reference:	18-7823

PAH concentrations

TAITCONCENTRATIONS																		
sample identity	Ph9-S4	Ph9-S11																
phenanthrene	2.24	0.79																
anthracene	0.87	0.34																
fluoranthene	6.08	3.11																
pyrene	4.91	2.88																
benz(a)anthracene	2.15	1.42																
chrysene	2.15	1.55																

PAH units mg/kg

PAH ratios											
phe/ant	2.575	2.324									
flu/pyr	1.238	1.080									
baa/chr	1.000	0.916									

APPENDIX E

PAH Ratio Cross-Plot

Job name	Heyford: Dorchester Phase 9
Job no.	R1742b
Date:	05.12.22
Author:	SM
Laboratory:	Eurofins Chemtest
Lab. Reference:	21-11315 & 22-40691

PAH concentrations

sample identity	PH9-SS26	PH9-SS28	PH9-SS37	Ph9-S53	Ph9-S55	Ph9-S56	Ph9-S57	Ph9-S59	Ph9-S61	Ph9-S62	Ph9-S63	Ph9-S71	Ph9-S73				
phenanthrene	2.0	1.4	3.6	9.6	9.2	14	3.8	1.3	1.4	1.1	8.6	1.9	5.4				
anthracene	0.77	0.45	1.2	4.4	3.3	4.7	1.2	0.41	0.45	0.73	3.5	0.69	2.1				
fluoranthene	6.9	6.5	11	36	20	26	7	3.7	3.4	14	26	3.9	12				
pyrene	7.0	6.7	11	38	19	24	7	3.7	3.7	18	28	3.7	11				
benz(a)anthracene	3.0	3.3	4.3	21	9.2	11	3.3	2.2	2.1	9.8	14	2	5.9				
chrysene	3.0	3.6	4.0	24	10	8.3	3.2	2.3	2.4	12	15	2.5	7.4				

PAH units mg/kg

PAH ratios

phe/ant	2.597	3.111	3.000	2.182	2.788	2.979	3.167	3.171	3.111	1.507	2.457	2.754	2.571				
flu/pyr	0.986	0.970	1.000	0.947	1.053	1.083	1.000	1.000	0.919	0.778	0.929	1.054	1.091				
baa/chr	1.000	0.917	1.075	0.875	0.920	1.325	1.031	0.957	0.875	0.817	0.933	0.800	0.797				

