Construction \& Property Solutions

LONDON OXFORD AIRPORT

Gateway Project

Outline Foul \& Surface Water Drainage Strategy

Construction \& Property Solutions

Date: 31 January 2023
Confidentiality: Public
Subject: Outline Foul \& Surface Water Drainage Strategy
Project: LOA Gateway - Kidlington

Project No. 2256

1. Introduction

1.1. This note has been prepared to provide an overview of how the foul and surface water drainage for the new LOA Gateway development at London Oxford Airport, Langford Lane, Kidlington, OX5 1RA is to be addressed in order to achieve the objectives of providing a sustainable drainage solution, taking account of the requirements of The Sustainable Drainage System (SuDS) Policy.
1.2. A number of key objectives have been identified in researching the Policies for Development in Cherwell; as set out in the Final adopted Local Plan 2011-2031, in particular Policy ESD 7: Sustainable Drainage Systems (SuDS).
1.3. Policy ESD 7 calls for Sustainable Drainage Systems where potential flooding and pollution risks from surface water can be reduced by reducing the volume and rate of water entering the sewerage system and watercourse.
1.4. Taking the requirements as set in the LLFA County Response_22-03441-PREAPP the proposed scheme will adopt the SuDS philosophy and concepts as referenced within the Oxfordshire guidance, which in turn are based upon and derived from the CIRIA SuDS Manual (C753).
1.5. A copy of the LLFA County Response_22-03441-PREAPP and The Cherwell Local Plan 2011 - 2031 are appended to the statement.
1.6. A copy of the Flood Risk Assessment Ref. JSP-JBAU-XX-XX-RP-HM-0001-S3-P01Flood_Risk_Assessment_combined is also appended to this note.

2. Existing Site

2.1. The existing site is a previously developed brownfield site within the demise of London Oxford Airport. Its previous use served as Hangarage for Aircraft, Offices, Flying Training School and car parking.
2.2. The site is bounded by Langford Lane to the South and The Boulevard to the East.
2.3. The site currently drains from the North West towards the South East via an existing surface water drainage network discharging to Thames Water MH Ref. 6905 as indicated on CCL Drg No. 2256-102 - Surface Water Drainage Layout (A1) located in the highway off Langford Lane to the approach to The Boulevard.

3. Foul Water Drainage

3.1. The existing foul drainage will be modified to suit the proposed foul water drainage strategy shown on the accompanying CCL Drg No. 2256-101 - Foul Drainage Layout (A1).
3.2. The foul water discharge from the new development will be fed via a modified on-site gravity pipe system which outfalls to the existing Thames Water system located in The Boulevard. Peak flows are calculated at $10.0 \mathrm{I} / \mathrm{s}$.
3.3. The existing pumped foul water main from Hangar 14, the Volare facility, will be accommodated within the modifications for the new works. The pumped main discharges to an existing manhole to the South West corner of proposed Building C and further discharges from this point to MH Ref. 691A which is the proposed connection point for the new development.

4. Surface Water Drainage

4.1. The National Planning Policy Framework (NPPF) requires that new developments do not increase flood risk by reducing the current flood storage capacity of a site or increase storm water runoff from a site. It is the intention that the design for the development attenuates surfaces water discharge to limit flows equal to those of the existing development inclusive of the effects of climate change. Sustainable Urban Drainage (SuDS) are the most sustainable method of achieving this and may also offer the opportunity for betterment.
4.2. As part of the planning process, the feasibility of integrating various SuDS techniques is being formed by an appraisal of the existing information, namely site surveys, topographical surveys, flood risk assessment and the underlying ground conditions/geology.
4.3. SuDS are the preferred approach to managing rainfall runoff generated from impermeable surfaces and these will be employed as a key sustainable feature of the new development at the LOA Gateway. SuDS can be used to reduce the rate and volume of surface water discharging from developments to the receiving environment (e.g. Natural watercourses and public sewer network), reducing demand on the network, mitigating overwhelming the systems and in turn reducing flood risk.
4.4. A benefit of utilising a SuDS is the removal of pollutants, improving water quality, maintaining recharge to groundwater and providing a natural amenity and green space within a development while enhancing biodiversity.
4.5. There are various SuDS techniques that are available. Two techniques have been identified as suitable for this development and operate on two main principles:

- Infiltration; and
- Attenuation.
4.6. Infiltration SuDS rely on discharging to ground, where suitable ground conditions allow. Infiltration methods include the use of permeable paving under roadways and parking areas, infiltration trenches, soakaways and other techniques that are generally located below ground such as geo cellular systems. Their effectiveness depends on the soakage potential of the underlying geology.
4.7. A borehole prognosis report has been commissioned by Nicholls Licensing and Consulting which determines soakaways are likely to be un-effective for this development due to a low, un-reliable infiltration potential. It is therefore expected that below ground geocellular attenuation will be introduced.
4.8. The proposed surface water drainage strategy is indicated on CCL Drg Nos. 2256-103 Surface Water Drainage Strategy - External Paving (A1) and 2256-102 - Surface Water Drainage Layout (A1).
4.9. Taking cognisance of Appendix G of the County Council's Guidance, which sets out that under the new guidance, for development with a design life to 2060-2115, Oxfordshire County Council (OCC) expects that all developers should design the surface water attenuation on site to accommodate upper end $+40 \%$ climate change allowance.
4.10. This surface water drainage strategy proposes to provide capacity by means of below ground attenuation and to restrict the rate of discharge to the existing Thames Water MH Ref. 6905 to $5 \mathrm{I} / \mathrm{s}$ for up to 1 in 100-year critical storm return providing at least a 40% allowance for climate change. The restricted discharge will be controlled by either a hydrobrake or pumped chamber located within the site boundary at the point before final discharge to MH Ref. 6905.

3 Archers Park, Branbridges Road, East Peckham, Kent TN12 5HP
Registered Office: 3 Archers Park | Branbridges Road | East Peckham | Kent | TN12 5HP

4.11. In conjunction with below ground storm water attenuation, further attenuation volume will be provided in the form of permeable paving under the proposed road and paving areas. These will include a proprietary SuDS paving system comprising concrete block paviours over perforated macadam over a suitable depth of open graded granular fill. To slow the flow of water through the permeable pavements and to maximise the storage potential, attenuation check dams with control pipes / openings can be introduced and be located within the aggregate layers of the pavement / road make-ups.
4.12. Surface water runoff from the roof areas of the proposed development will be collected via a network of vertical downpipes which either discharge to the permeable paving or connection into the attenuated piped system. Flow diffuser chambers can be introduced to avoid erosion of the aggregate layers.

5. Appendices

5.1. LLFA County Response_22-03441-PREAPP

Lead Local Flood Authority

Detailed comments:

The Sustainable Drainage Systems (SuDS) Policy, which came into force on the 6th April 2015 requires the use of sustainable drainage systems to manage runoff on all applications relating to major development. As well as dealing with surface water runoff, they are required to provide water quality, biodiversity and amenity benefits in line with National Guidance. The Sustainable Drainage Systems (SuDS) Policy also implemented changes to the Town and Country Planning (Development Management Procedure) (England) Order 2010 to make the Lead Local Flood Authority (LLFA) a statutory Consultee for Major Applications in relation to surface water drainage. This was implemented in place of the SuDS Approval Bodies (SAB's) proposed in Schedule 3 of the Flood and Water Management Act 2010.

All full and outline planning applications for Major Development must be submitted with a Surface Water Management Strategy. A site-specific Flood Risk Assessment (FRA) is also required for developments of 1 hectare or greater in Flood Zone 1; all developments in Flood Zones 2 and 3 or in an area within Flood Zone 1 notified as having critical drainage problems; and where development or a change of use to a more vulnerable class may be subject to other sources of flooding.

Further information on flood risk in Oxfordshire, which includes access to view the existing fluvial and surface water flood maps, can be found on the Oxfordshire flood tool kit website. The site also includes specific flood risk information for developers and Planners.

The National Planning Policy Framework (NPPF), which was updated in July 2021 provides specific principles on flood risk (Section 14, from page 45). National Planning Practice Guidance (NPPG) provides further advice to ensure new development will come forward in line with the NPPF.

Paragraph 159 states; "Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere."

As stated in Paragraph 160 and 161 of the NPPF, we will expect a sequential approach to be used in areas known to be at risk now or in the future from any form of flooding.

The Non-statutory technical Standards for sustainable drainage systems were produced to provide initial principles to ensure developments provide SuDS in line with the NPPF and NPPG. Oxfordshire County Council have published the "Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire" to assist developers in the design of all surface water drainage systems, and to support Local Planning Authorities in considering drainage proposals for new development in Oxfordshire. The guide sets out the standards that we apply in assessing all surface water drainage proposals to ensure they are in line with National legislation and guidance, as well as local requirements.

The SuDS philosophy and concepts within the Oxfordshire guidance are based upon and derived from the CIRIA SuDS Manual (C753), and we expect all development to come forward in line with these principles.

In line with the above guidance, surface water management must be considered from the beginning of the development planning process and throughout - influencing site layout and design. The proposed drainage solution should not be limited by the proposed site layout and design.

Wherever possible, runoff must be managed at source (i.e. close to where it falls) with residual flows then conveyed downstream to further storage or treatment components, where required. The proposed drainage should mimic the existing drainage regime of the site. Therefore, we will expect existing drainage features on the site to be retained and they should be utilised and enhanced wherever possible.

Although we acknowledge it will be hard to determine all the detail of source control attenuation and conveyance features at an outline stage, we will expect the Surface Water Management Strategy to set parameters for each parcel/phase to ensure these are included when these parcels/phases come forward. Space must be made for shallow conveyance features throughout the site and by also retaining existing drainage features and flood flow routes, this will ensure that the existing drainage regime is maintained, and flood risk can be managed appropriately.

Officer's Name: Nagina Bawar
Officer's Title: Senior LLFA Engineer
Date: 09/12/2022
5.2. The Cherwell Local Plan 2011 - 2031 [extract pages 99 -101]

3 Archers Park, Branbridges Road, East Peckham, Kent TN12 5HP
Registered Office: 3 Archers Park | Branbridges Road | East Peckham | Kent | TN12 5HP

Location	Site Specific FRA Requirement
Wherever applicable	Where a site is in close proximity of the Oxford Canal, the Level 3 FRA should include breach analysis.
Wherever applicable	Flood defended areas will require a FRA to include assessment of risk from catastrophic failure of defences.
Banbury	A detailed level 3 FRA is required for development within the River Cherwell Floodplain to include flood compensation. Groundwater risk to be highlighted at Crouch Hill.
North East Biceser	A level 2 FRA using existing data can be applied.
South East Bicester	A level 3 FRA including hydraulic modelling will be required in the vicinities of these watercourses.
Kidlington	Where EA modelled data is available a level 2 FRA can be completed using existing modelled flood levels. Where no data is available a Level 3 FRA including hydraulic modelling may be required for sites in close proximity to the Rowell Brook or the River Cherwell. A level 2 FRA to include detailed assessment of groundwater flood risk should be included at all sites.
Rural Areas	There are village specific recommendations contained in the SFRA

B.213 Additional recommendations are included in the Level 2 SFRAs for the proposed strategic site allocations.
B.2I4 We will work actively with the Environment Agency, the Local Lead Flood Authority, other operating authorities and stakeholders to ensure that best use is made of their expertise and so that spatial planning supports existing flood risk management policies and plans, River Basin Management Plans and emergency planning.

Policy ESD 7: Sustainable Drainage Systems (SuDS)

B. 215 Policy ESD 7 sets out the Council's approach to Sustainable Drainage Systems (SuDS). Potential flooding and pollution risks from surface water can be reduced by reducing the volume and rate of water entering the sewerage system and watercourses. Managing drainage more sustainably in this way can ensure that developments are better adapted to the predicted impacts of climate change in the South East, which include more intense rainfall events. Policy ESD 7 is supported by the Flood and Water Management Act 2010
which presumes that SuDS will be used for all new developments and redevelopments in order to prevent surface water run-off from increasing flood risk, and sets out that national standards be published to address SuDS design, construction, operation and maintenance issues at a national level.
B.216 SuDS seek to manage surface water as close to its source as possible, mimicking surface water flows arising from the site prior to the proposed development. Typically this approach involves a move away from piped systems to softer engineering solutions. SuDS are considered to be suitable for use in association with developments across the District. Where site specific Flood Risk Assessments are required to be submitted to accompany development proposals these should be used to investigate how SuDS can be used on particular sites and to design appropriate systems.
B.217 In considering SuDS solutions, the need to protect ground water quality must be taken into account, especially where infiltration techniques are proposed. Where possible, multiple benefits including for recreation and wildlife should be delivered. Proposals must include an agreement on the future management, maintenance and replacement of the drainage structures.
B.2 8 All relevant organisations should meet at an early stage to agree on the most appropriate drainage system for the
particular development. These organisations may include the Local Authority, the Sewage Undertaker, Oxfordshire County Council as the LLFA and Highways Authority, and the Environment Agency. Highways SuDS will be adopted by Oxfordshire County Council but must be located on the most appropriate land, requiring consideration of the need to provide access for maintenance purposes, and topographical factors. Non-highway SuDS draining two properties or more will be adopted by the Local Lead Flood Authority (LLFA) after Schedule 3 of the 2010 Act comes into force.
B.219 Advice on SuDS and their various techniques is provided in the Council's Level I SFRA (August 2008). All areas of the District are suitable for SuDS in one form or another but the SFRA contains maps of a range of geological and ground condition data which can be used to identify the general permeability of the underlying ground conditions (bedrock, superficial deposits and soil) and the vulnerability of the groundwater resources (aquifers), to determine which SuDS system might be suitable. However the SFRA's mapping of SuDS opportunity does not provide a detailed and definitive investigation at site specific level, and so further assessment may be required to further investigate SuDS opportunities on individual sites. The Level 2 SFRAs contain additional guidance relating to the use of SuDS on the proposed strategic site allocations.

Policy ESD 7: Sustainable Drainage Systems (SuDS)
All development will be required to use sustainable drainage systems (SuDS) for the management of surface water run-off.

Where site specific Flood Risk Assessments are required in association with development proposals, they should be used to determine how SuDS can be used on particular sites and to design appropriate systems.

In considering SuDS solutions, the need to protect ground water quality must be taken into account, especially where infiltration techniques are proposed. Where possible, SuDS should seek to reduce flood risk, reduce pollution and provide landscape and wildlife benefits. SuDS will require the approval of Oxfordshire County Council as LLFA and SuDS Approval Body, and proposals must include an agreement on the future management, maintenance and replacement of the SuDS features.

Our Core Assets

Policy ESD 8: Water Resources

B. 220 In considering development proposals, the Council will use Policy ESD 8 together with 'Policy ESD 3: Sustainable Construction', 'Policy ESD 6: Sustainable Flood Risk Management' and 'Policy ESD 7: Sustainable Drainage Systems' (SuDS) to reduce the impact of development on the water environment, maintain water quality, ensure adequate water resources and promote sustainability in water use. This will assist in contributing to the objectives of the Water Framework Directive which seeks to protect and enhance the quality of water bodies, and
indicates that development should not result in any deterioration in the status of surface water bodies. Some development can remediate contaminated land which may be having an adverse impact on controlled water and human health. These policies together with Policy ESD 8 are also intended to help deliver the actions contained in the Thames River Basin Management Plan. These actions highlight the importance of development proposals contributing to an improved water environment, through the use of sustainable design and construction techniques for water efficiency, water quality and sustainable flood management, and the incorporation of appropriate green infrastructure and biodiversity improvements.
5.3. Flood Risk Assessment Ref. JSP-JBAU-XX-XX-RP-HM-0001-S3-P01
Flood_Risk_Assessment_combined

London Oxford Airport Science Park - Flood Risk Assessment

Final Report

February 2023

Prepared for:

Civils Contracting Ltd
3 Archers Park
Branbridges Road
EAST PECKHAM
Kent, TN12 5HP
www.jbaconsulting.com

Document Status

Issue date Issued to BIM reference	02 February 2023 Revision
David Toone, Civils Contracting Ltd JSP-JBAU-XX-XX-RP-Z-0001-Flood_Risk_Assessment A1-C01	
Reviewed by by	Timea Faber BSc MSc Assistant Analyst
Authorised by	Peter Rook BSc MSc MCIWEM C.WEM FGS Chartered Senior Analyst
	Marta Lubiejewska-Jones MSc CEng CEnv MCIWEM C.WEM
	Principal Engineer

Carbon Footprint

JBA is committed to championing sustainability and has made The Ten Principles of the UN Global Compact part of its culture and operations. We have a Group-wide objective to be a Net Zero carbon emissions business.
The format of this report is optimised for reading digitally in pdf format; duplex printing in B\&W on 100% post-consumer recycled A4 will result in a carbon footprint of 132 CO2e. This will increase to 168 CO2e if primary-source paper is used. Please consider the environment before printing.

Contract

JBA Project Manager

Address

JBA Project Code

Marta Lubiejewska-Jones MSc CEng CEnv MCIWEM C.WEM

JBA Consulting, The Library, St Philips Courtyard, Church Hill, Coleshill, Warwickshire, B46 3AD

2023s0025

This report describes work commissioned by Civils Contracting Ltd, by an instruction dated 05 January 2023. The Client's representative for the contract was Dave Toone of Civils Contracting Ltd.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of Civils Contracting Ltd and its appointed agents in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Civils Contracting Ltd for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by JBA has not been independently verified by JBA, unless otherwise stated in the Report.

Copyright

© Jeremy Benn Associates Limited 2023

Contents

Executive Summary 4
1 Introduction 6
1.1 Terms of reference 6
1.2 FRA requirements 6
2 Study Area 7
2.1 Existing site 7
2.2 Proposed development 8
2.3 Topography 9
2.4 Geology 10
2.5 Hydrogeology 10
2.6 Watercourses 11
3 Planning Policy and Flood Risk 12
3.1 Planning context 12
3.2 Development sites in flood zones 12
3.3 Sequential and exception tests 13
3.4 NPPF and PPG flood vulnerability and flood zone incompatibility 13
3.5 Climate change allowances 14
3.6 Policy review 16
4 Assessment of Flood Risk 18
4.1 Historic flooding 18
4.2 Fluvial flood risk 19
4.3 Surface water flood risk 20
4.4 Groundwater flood risk 22
4.5 Sewer flood risk 22
4.6 Flooding from artificial sources 23
5 Flood Mitigation Measures 24
5.1 Finished floor levels 24
5.2 Safe access and egress 24
5.3 Surface water drainage 24
6 Conclusions and Recommendations 25
6.1 Conclusions 25
6.2 Recommendations 26
A Proposed development layout I
B Topographic Survey II
C Thames Water sewer records III
List of Figures
Figure 2-1: Site location plan 8
Figure 2-2: LiDAR Digital Terrain Model 9
Figure 2-3: Surrounding watercourses 11
Figure 4-1: EA Recorded Flood Outlines 19
Figure 4-2: Flood Map for Planning 20
Figure 4-3: Risk of flooding from surface water mapping 21
Figure 4-4: Flood hazard map of surface water flooding in a 0.1% AEP event 22
List of Tables
Table 2-1: Summary of site details 7
Table 3-1: Flood Zone classifications 12
Table 3-2: Flood risk vulnerability and flood zone 'incompatibility' 14
Table 3-3: Peak river flow allowances for the Gloucestershire and the Vale Management Catchment 15
Table 3-4: Peak rainfall allowances for the Gloucestershire and the Vale Management Catchment 15

Abbreviations
AEPAnnual Exceedance Probability
BGS.......................British Geological Survey
CFMPCatchment Flood Management Plan
DTMDigital Terrain Model
EAEnvironment Agency
FRA.......................Flood Risk Assessment
LiDAR....................Light Detection And Ranging
NGRNational Grid Reference
NPPF.....................National Planning Policy Framework
OS..........................Ordnance Survey
OS NGR Ordnance Survey National Grid Reference
PPG.......................Planning Policy Guidance
SFRA.....................Strategic Flood Risk Assessment

Executive Summary

Background and site context

JBA Consulting were commissioned by Civils Contracting Ltd in January 2023 to undertake a Flood Risk Assessment (FRA) and prepare a detailed surface water drainage strategy and an outline foul water drainage strategy for the London Oxford Airport Science Park development.

This report contains the FRA only, whereas the drainage strategies are contained in a separate report.

The proposed site is located on the south-east corner of London Oxford Airport. The existing 3.5 ha site was occupied by London Oxford Airport facilities, including seven buildings in commercial use, access roads and parking areas. Some of the existing buildings have already been demolished in preparation for redevelopment.

The proposed development comprises a Science Park, including five modern twostorey commercial units, including laboratories, and associated road and parking infrastructure and landscaping.

The British Geological Survey data indicates that the site is underlain by sedimentary bedrock (such as limestone, bioclastic wackestone and packstone). Overlying sedimentary superficial deposits of sands and gravels are present. Borehole information confirms that the deposits comprise of Great Oolite Group and Inferior Oolite Group.

The closest watercourse to the proposed site is approx. 340m to the east (unnamed ordinary watercourse). Oxford Canal and River Cherwell, main river, are located further to the east. Another ordinary watercourse, Rowel Brook, is located to the west of A44, Woodstock Road.

Flood risk

- The Environment Agency's Flood Map for Planning indicates that the proposed site is within Flood Zone 1, and thus at 'very low' risk of flooding from fluvial sources. Furthermore, there are no indications that the site has flooded in the past from any fluvial sources.
- Groundwater flood risk is widely affecting the north west of Kidlington, however, it is unlikely to significantly affect the proposed site due to encountered low groundwater levels, thus the risk of groundwater flooding has been assessed as 'low'.
- The Environment Agency's Risk of Flooding from Surface Water mapping indicates that only localised surface water flooding affects parts of the site, mainly due to topographical depressions and configuration of the existing
buildings. There are no overland flow routes through the site. The risk of surface water flooding is therefore considered 'low'.
- The site is considered at low risk of flooding from sewers.
- Based on the Environment Agency's 'Risk of Flooding from Reservoirs' dataset the site is not at risk of flooding from reservoirs during either a dry day or wet day scenario.
- The site is not at risk of flooding from the Oxford Canal and any other artificial sources.
- In the unlikely event of a flood, safe and dry access will be available to and from all areas of the proposed site via the entrance and exit route of site.

Recommendations

It is recommended that:

- Finished Floor Levels (FFL) and openings (e.g. air bricks) of the proposed buildings should be set to a minimum of 150 mm above the finished surrounding ground levels. It is recommended that the surface water drainage system of the site and the finished floor levels of the properties should be designed with care regarding the appropriate requirements for exceedance flows and appropriate allowances for freeboard.
- The surface water runoff originating within the redeveloped site is managed using SuDS techniques and the finished floor levels of the buildings should be designed with care regarding the appropriate requirements for exceedance flows and appropriate allowances for freeboard.

1 Introduction

1.1 Terms of reference

JBA Consulting were commissioned by Civils Contracting Ltd in January 2023 to undertake a Flood Risk Assessment (FRA) and prepare a detailed surface water drainage strategy and an outline foul water drainage strategy for a new development London Oxford Airport Science Park.

This report contains the FRA only, whereas the drainage strategies are contained in a separate report.

This FRA provides information on all aspects of flood risk pertaining to the site in accordance with the revised National Planning Policy Framework (NPPF) and associated Planning Practice Guidance (PPG) relating to development and flood risk. It also considers the flood risk mitigation relevant to the nature of the proposed development and the Flood Zone classification of the site.

The flood risk to and from the site has been determined from publicly available information and information provided by the client, such as topographical surveys and site investigations.

1.2 FRA requirements

It is a requirement for development applications to consider the potential risk of flooding from various sources to a proposed development over its lifetime and any possible impacts on flood risk elsewhere as a result of the development.

Where appropriate, the following aspects of flood risk should be addressed and the extent to which the development is designed to deal with flood risk:

- the nature and expected lifetime of the development and the extent to which the development is designed to deal with flood risk;
- the area liable to flooding from various sources;
- the probability of the current and future flood risk;
- the extent and standard of existing flood defences and their effectiveness over time;
- the likely depth of flooding;
- the rates of predicted flows;
- the likelihood to impacts on other areas, properties, and habitats; and
- the effects of climate change.

The level of flood risk to the site has been determined based on open license flood risk datasets provided on the Defra Data Services website by the Environment Agency. This includes the Flood Map for Planning, LIDAR Digital Terrain Model (DTM) and flood history datasets.

2 Study Area

2.1 Existing site

The proposed development is located on the south-east corner of London Oxford Airport, which is located to the north east of Kidlington, OX5 1RA. The existing 3.5ha site was occupied by London Oxford Airport facilities, including seven buildings in commercial use, access roads and parking areas. Some of the existing buildings have already been demolished in preparation for redevelopment.

The site is bounded by airport facilities to the north and west, the Boulevard to the east and Langford Lane to the south.

The site location plan and site details are included in Table 2-1 and Figure 2-1.
Table 2-1: Summary of site details

Site Name	Science Park
Site area	London Oxford Airport
Existing site use	Offices and commercial
OS NGR	SP 47605 14923
County	Oxfordshire
Country	England
Local Planning Authority	Cherwell District Council
Lead Local Flood Authority	Oxfordshire County Council
Sewerage Undertaker	Thames Water

Figure 2-1: Site location plan

2.2 Proposed development

The proposed development is for a Science Park. This includes the re-development of the entrance area to London Oxford Airport, demolition of the existing buildings and construction of five modern two-storey commercial units, including laboratories, and associated road and parking infrastructure and landscaping.

The proposed development layout is shown in Appendix A.

2.3 Topography

A site-specific topographic survey was undertaken by KND Surveys Ltd, this is included as Appendix B. The survey indicates that ground levels fall between 72.97 m above ordnance datum (AOD) and 71.12m AOD. Land is shown to be generally flat and slopes from the northwest to southeast direction.

The Environment Agency's (EA's) 2020 LiDAR DTM dataset has also been used to provide a topographical visualisation of the wider area and is shown in Figure 2-2.

Figure 2-2: LiDAR Digital Terrain Model

2.4 Geology

British Geological Survey (BGS) ${ }^{1}$ data indicates that the site is underlain by sedimentary bedrock (such as limestone, bioclastic wackestone and packstone). Overlying sedimentary superficial deposits of sands and gravels are present. The deposits consist of Great Oolite Group and Inferior Oolite Group.

2.5 Hydrogeology

Hydrogeological information was obtained from the online Magic Maps service². These maps indicate that the site is underlain by a Great Oolite Group and Inferior Oolite Group superficial aquifers. Groundwater levels can vary seasonally within the aquifer (Allen et al., 1997) ${ }^{3}$.

The maps also indicate that the site is underlain by a Cornbrush Formation bedrock aquifer with Soluble Rock Risk which has 'freely draining slightly acid but base-rich soils'.

The site is not located within a Source Protection Zone (SPZ). The site is within a Nitrate Vulnerable Zone which could result in vulnerability of the aquifer to pollutants discharged at the surface.

A site investigation was undertaken by Southern Testing Ltd in March 2017, this confirmed that groundwater levels (recorded in February 2017) is approximately 6-10 meters below ground level as the ground level is approx. 70.8-73.5mAOD. This is consistent with historic records from the BGS which struck groundwater at $70-73 \mathrm{~m}$ AOD and indicated resting water levels at approx. 60-67mAOD4.The resting water level was measured in March 1941 and was at 60.2 mAOD .

[^0]
2.6 Watercourses

Environment Agency mapping has been used to identify the locations of watercourses within and around the development site.

The nearest main river is an unnamed watercourse and its tributary some 340m east of the site. It runs parallel to the Oxford Canal, that lies approximately 570 m east to the proposed site. The River Cherwell is a main river located approximately 1.2 km away from the site.

There is also Rowel Brook, an ordinary watercourse, to the west of Woodstock Road.

Figure 2-3: Surrounding watercourses

3 Planning Policy and Flood Risk

3.1 Planning context

The NPPF was introduced by the Department for Communities and Local Government in March 2012. The NPPF was revised a number of times since, with the latest update made in July 2021. The revised NPPF considers flood risk to developments using a sequential characterisation of all sources of flood risk, based on planning zones and the EA Flood Map. The revised NPPF is supported by the PPG, originally published in March 2014, and last updated in August 2022, which gives additional information on the assessment of flood risk. The main study requirement is to identify the flood zones and vulnerability classification relevant to the proposed development, based on an assessment of current and future conditions.

3.2 Development sites in flood zones

The EA states that the flood risk is a function of:

- "The likelihood of a particular flood happening, best expressed as a chance or probability over a period of one year. For example, 'There is a 1 in 100 chance of flooding in any given year in this location'.
- "The impact or consequences that will result if the flood occurs."

The EA has developed a Flood Map which shows the risk of flooding in England for different return period events, assuming no flood defences. This map provides the basis for the assessment of flood risk and development suitability under the NPPF. This map is divided into flood zones which indicate the probability of flooding that land in each zone has, as outlined in Table 3-1.

Table 3-1: Flood Zone classifications

Flood Zone	Definition
Zone 1: Low Probability	Land assessed as having a less than 1 in 1000 annual probability of river or sea flooding in any year (<0.1\% AEP).
Zone 2: Medium Probability	Land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1\%- 0.1% AEP) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding ($0.5 \%-0.1 \%$ AEP) in any year.
Zone 3a: High Probability	Land assessed as having a 1 in 100 or greater probability of river flooding ($>1 \%$ AEP) or a 1 in 200 or greater annual probability of flooding from the sea $(>0.5 \%$ AEP) in any year.

Flood Zone

Zone 3b: Functional Floodplain

Abstract

Definition This zone comprises land where water from rivers or the sea has to flow or be stored in times of flood. The identification of functional floodplain should take account of local circumstances and not be defined solely on rigid probability parameters. Functional floodplain will normally comprise: - land having a 3.3% or greater annual probability of flooding, with any existing flood risk management infrastructure operating effectively; or - land that is designed to flood (such as a flood attenuation scheme), even if it would only flood in more extreme events (such as 0.1% annual probability of flooding). Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency.

3.3 Sequential and exception tests

The NPPF requires that the Sequential and Exception Tests be applied when choosing the location of new development and the layout of the development site. The Sequential Test aims to promote development in low flood risk areas (Flood Zone 1). The Exception Test is used where no suitable development areas can be found in lowrisk zones.

The Sequential Test should be applied to identify suitable sites which are at low risk from all sources of flooding, avoiding medium and high-risk areas where possible. If no suitable areas can be identified in low-risk areas, then sites with the lowest flood risk should be considered next. If development is necessary within a medium or highrisk zone, an exception test may be required to demonstrate the need for the development in that location and plans to mitigate the flood risk. The requirement for the application of the Exception Test is outlined in Section 3.4 below.

3.4 NPPF and PPG flood vulnerability and flood zone incompatibility

Table 3-1 shows how Flood Zones are defined (as based on Table 1 of the PPG). Annex 3 of the NPPF shows the classification of flood risk vulnerability in relation to a proposed development type. Table 3-2 (reproduced from Table 2 of the PPG) shows the compatibility of these flood zones and vulnerability classifications.

The proposed development will consist of a Science Park (commercial) which is classified as 'less vulnerable' under the NPPF. This classification of development is
considered compatible with Flood Zone 1, and application of the Exception Test is not required, as shown in Table 3-2.

Table 3-2: Flood risk vulnerability and flood zone 'incompatibility'

Flood Zone	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Zone 2	\checkmark	Exception Test Required	\checkmark	\checkmark	\checkmark
Zone 3a	Exception Test Required	X	Exception Test Required	\checkmark	\checkmark
Zone 3b	Exception Test Required	X	X	X	\checkmark
Notes: \checkmark Exception X Develop	Test is not req ent should not	ired e permitted.			

3.5 Climate change allowances

The NPPF and supporting PPG on Flood Risk and Coastal Change explain when and how flood risk assessments should be used. This includes demonstrating how flood risk will be managed now and over the development's lifetime, taking climate change into account.

On 19 February 2016, the EA released new guidance on climate change allowances to support the NPPF. The guidance was last updated on 27 May 2022. The climate changes allowances are predictions of anticipated changes for the following:

- peak river flow allowances for each river basin district;
- peak rainfall intensity;
- sea level rise; and
- offshore wind speed and extreme wave height.

3.5.1 Peak river flows

The guidance provides advice on which peak river flow allowances, based on river basins, should be used for FRAs for sites in all Flood Zones.

As the proposed development is for a commercial use, the lifetime of the development is considered to be a minimum of 75 years and therefore the central climate change
allowance for the 2080s epoch (2070-2115) has been considered using the DEFRA Climate Change Allowances ${ }^{5}$.

In the Gloucestershire and the Vale Management Catchment, this equates to an allowance of 26% as shown in Table 3-3 for this particular site. The 1 in 100-year event plus climate change is also known as the design flood. It should be noted that consideration of peak river flows will not be required at this site as the site is not at risk of fluvial flooding.

Table 3-3: Peak river flow allowances for the Gloucestershire and the Vale Management Catchment

Allowance	Total anticipated for the 2020s $(2015-2039)$	Total potential change anticipated for the 2050s (2040- $2069)$	Total potential change anticipated for the 2080s (2070- $2115)$
Central	11%	11%	26%
Higher central	17%	19%	41%
Upper end	33%	43%	84%

3.5.2 Peak rainfall intensities

Peak rainfall intensity allowances must also be considered and are applicable to surface water drainage design or surface water modelling studies. The lifetime of the proposed development is considered to be 75 years and therefore the central and upper end climate change allowances for the 2070s epoch (2061-2125) has been considered.

In the Gloucestershire and the Vale Management Catchment, this equates an allowance of 40%, as shown in Table 3-4 for peak rainfall intensity in the 1 in 100-year event.

Table 3-4: Peak rainfall allowances for the Gloucestershire and the Vale Management Catchment

Allowance 1% AEP	Total potential change anticipated for the 2050s $(2040-2060)$	Total potential change anticipated for the 2070s $(2061-2125)$
Central	20%	40%
Upper end	25%	40%

[^1]
3.6 Policy review

3.6.1 Local Plan

The Cherwell Local Plan ${ }^{6}$ guides planning and development across Cherwell District.
The proposed development is located on previously developed land within the Green Belt and supports the aims of the Local Plan which intends to secure the growth potential from the presence of London-Oxford Airport and accommodate high value employment uses on the site. Policy ESD6 of the Local Plan discusses sustainable flood risk management and states:

- "Site specific flood risk assessments will be required to accompany development proposals for development proposals of 1 hectare or more located in flood zone 1.
- Flood risk assessments should assess all sources of flood risk and demonstrate that there will be no increase in surface water discharge rates or volumes during storm events up to and including the 1 in 100 year storm event with an allowance for climate change (the design storm event).
- Flood risk assessments should demonstrate that developments will not flood from surface water up to and including the design storm event or any surface water flooding beyond the 1 in 30 year storm event, up to and including the design storm event will be safely contained on site".

3.6.2 Oxfordshire County Council Strategic Flood Risk Assessment

A Strategic Flood Risk Assessment (SFRA) is undertaken by the Local Planning Authority to help manage the current and future flood risks from surface water, ground water and ordinary watercourses. The current Level 1 Strategic Flood Risk Assessment ${ }^{7}$ was published in May 2017.

The SFRA states that river flooding in Oxfordshire is significant. Historic flood events were reported which occurred throughout the whole county but affected Oxfordshire severely. Therefore, recommendations were made to improve the severity of flooding events in the county. The proposed site is located further away from any rivers, reservoirs or watercourses, therefore the risk of flooding is very low. Although, surface water flooding from rainfall events can impact the area.

The SFRA identifies the Oxford Canal and River Cherwell as being the main source of flooding in the Kidlington region and the Oxford Canal could pose a risk of flooding

[^2]and the northwest of Kidlington is known to be widely affected by groundwater flooding, although this is unlikely to impact London Oxford Airport.

3.6.3 Oxfordshire County Council Local Flood Risk Management Strategy

Oxfordshire County Council fulfils the role of the Lead Local Flood Authority (LLFA) and published a Local Flood Risk Management Strategy ${ }^{8}$. The strategy has been developed in partnership with the City and District Councils, the Environment Agency and Thames Water. The Oxfordshire County Council has responsibility to 'develop, maintain, apply and monitor' a flood risk management strategy. The LFRMS does not identify specific issues for the site.

3.6.4 Thames Catchment Flood Management Plan

The Thames Catchment Flood Management Plan was prepared by the Environment Agency in December 2009^{9} and has been reviewed as part of this study. The CFMP highlights that the EA aim to work with natural processes and manage the probabilities and consequences of flooding. In most years, surface water flooding occurs after heavy storms.

The site falls within Policy 6 of the CFMP, this policy is defined as an area of low to moderate flood risk where the EA will take action to store water and manage run-off to reduce flood risk and to mitigate the impacts of climate change. The EA aims to work with LPAs to set policies that lead to long-term adaptation of urban areas and identify locations where the use of water catchments can benefit communities by reduction in flood risk and environmental benefits.

3.6.5 Thames River Basin Management Plans

The Thames River Basin District Management Plans, published in December 2009, highlights the importance of a sustainable water use which can later benefit the wildlife and local communities. The site falls under the Thames River Basin District which is one of the driest in the UK with annual rainfall levels ${ }^{10}$. The RBMP identifies that maintaining and improving the quality of groundwater is a high priority. The aim is to ensure that the watercourses achieve a 'good status'.

[^3]
4 Assessment of Flood Risk

4.1 Historic flooding

The Environment Agency's Recorded Flood Outlines dataset has been reviewed for the site.

Figure 4-1 indicates that the site has not flooded historically from fluvial sources.

Figure 4-1: EA Recorded Flood Outlines

4.2 Fluvial flood risk

4.2.1 Flood Map for Planning

The EA Flood Map for Planning has been reviewed to assess risk of flooding from fluvial sources. This indicates that the site is within Flood Zone 1, which is land that have less than 0.1% chance of fluvial flooding annually.

Figure 4-2: Flood Map for Planning
It should be noted that the flood modelling does not extend to the ordinary watercourse to the west of the site. Ground levels at the site and the watercourse have been assessed using the Environment Agency's 1m LIDAR DTM as follows:

- Eastern site boundary $=70.25 \mathrm{mAOD}$
- Right bank of unnamed ordinary watercourse $=63.68 \mathrm{mAOD}$

This indicates that there is difference of 6.57 m between the lowest point of the site and the site is highly unlikely to be at risk of flooding from this watercourse.
Consequently, the site is considered at 'low' risk of flooding from fluvial sources.

4.3 Surface water flood risk

Surface water flooding arises when rain falling on saturated ground flows overland, following the local topography. Overland flow can pose a risk to both the development site and land surrounding the development site. In the former case, overland flow may originate from the site itself or from adjoining land at a higher elevation from which flow migrates onto the development area. In the latter case, existing developments at a lower elevation may be subject to flooding due to overland flow originating from the site and migrating towards lower areas. The layout of the proposed development needs to reflect and, where necessary, mitigate against the risks.

The Risk of Flooding from Surface Water (RoFSW) dataset has been used to determine the potential extents of surface water flooding at the site (Figure 4-3). RoFSW mapping indicates that only small, localised areas of medium and high flood risk are present on site. There are no evident overland flow routes through the site and the ponding areas are largely due to topographical depressions and locations of particular buildings. Based on the topography, surface water also naturally ponds in the low-lying southeast corner of the site (approx. 69mAOD).

Figure 4-3: Risk of flooding from surface water mapping

Flood hazard has been reviewed for the 0.1% AEP event (Figure 4-4). This return period has been used as a proxy for climate change as no climate change modelling of the Risk of Flooding for Surface Water mapping has been made available. The hazard data indicates that most of the site has a low hazard rating (Caution) with only localised areas rated as 'danger for some'. As a result, it is highly unlikely that surface water flooding would pose a significant danger or impede access by emergency vehicles. Consequently, the site is considered to be at a low risk of surface water flooding.

Figure 4-4: Flood hazard map of surface water flooding in a 0.1% AEP event

4.4 Groundwater flood risk

Groundwater flooding occurs when the water table rises above ground level, particularly after prolonged rainfall events. This is most likely to occur in low-lying areas that are underlain by permeable bedrock and superficial geologies. Unlike other forms of flooding, groundwater flooding does not pose a significant risk to life but can cause serious damage to property.

The site is underlain by superficial deposits comprised of sands and gravels which are considered relatively permeable, however site investigation work and historic records indicate that groundwater levels are estimated to be approximately $6-10 \mathrm{~m}$ below ground level and recorded during February when groundwater levels would likely be high. As a result, the risk of groundwater flooding at the site is considered to be low.

4.5 Sewer flood risk

Sewer flooding can occur when drainage systems become overwhelmed by heavy rainfall or when pipes become blocked. The site is served by private surface and foul water drainage systems, which discharge to the local public sewers based on Thames

Water sewer records (Appendix C). This is currently being confirmed by on-site drainage investigation.

No information on sewer flooding events was found in the SFRA near the proposed site, and this information is often not made publicly available by water companies. Nevertheless, the road levels where the sewers can be located are at a lower elevation than the site. Consequently, the risk of sewer flooding is assessed as 'low'. It should be noted that existing private drainage systems within the site will be made redundant and replaced with new separate surface and foul water systems designed in line with the current industry standards.

4.6 Flooding from artificial sources

The Environment Agency's 'Risk of Flooding from Reservoirs' dataset has been reviewed, this indicates that the site is not at risk of flooding from reservoirs during either a dry day or wet day scenario.
The Oxford Canal is situated approximately 600 m east of the site. Ground levels at the site and the right bank of the Oxford Canal have been assessed using the Environment Agency's 1m LIDAR DTM as follows:

- Eastern site boundary $=70.25 \mathrm{mAOD}$
- Right bank of Oxford Canal $=66.33 \mathrm{mAOD}$

This indicates that there is a difference of 3.92 m between the lowest site level and the top of the right bank of the Oxford Canal and in the unlikely event the canal was to flood, this would not affect the site. If it was to be breach, flows would be discharged to the south, along the path of the existing main river and away from the site.

5 Flood Mitigation Measures

Overall, the site is at low risk of flooding from all considered sources and it is highly unlikely that the development would result in any adverse off-site impacts.
Nevertheless, the following recommendations have been made as part of this FRA.

5.1 Finished floor levels

The proposed site is not at risk of fluvial flooding, however, it is suggested that the floor levels are raised to avoid any surface water or groundwater flooding should they occur.

In line with part H of Building Regulations, the finished floor levels (FFL) and openings (e.g. air bricks) of the proposed buildings should be set to a minimum of 150 mm above the surrounding finished ground levels. This is to prevent flooding from flowing or ponding storm water near doorways and other ingress routes such as vents and air bricks.

5.2 Safe access and egress

The proposed site is located within Flood Zone 1 and safe access and egress will be achievable for all sources of flooding and during all events up to and including the 0.1% AEP surface water flood event.

In the unlikely event of a flood, safe and dry access will be available to and from all areas of the proposed site via the entrance and exit route of site.

5.3 Surface water drainage

It is recommended that the surface water runoff originating within the redeveloped site is managed using SuDS techniques and that exceedance flow routing is considered.

A drainage strategy has been prepared as part of the commission and is included in a separate report.

6 Conclusions and Recommendations

6.1 Conclusions

- JBA Consulting were commissioned by Civils Contracting Ltd in January 2023 to undertake a Flood Risk Assessment (FRA) and prepare a detailed surface water drainage strategy and an outline foul water drainage strategy for the London Oxford Airport Science Park development. This report contains the FRA only, whereas the drainage strategies are contained in a separate report.
- The proposed site is located on the south-east corner of London Oxford Airport. The existing 3.5 ha site was occupied by London Oxford Airport facilities, including seven buildings in commercial use, access roads and parking areas. Some of the existing buildings have already been demolished in preparation for redevelopment.
- The proposed development comprises a Science Park, including five modern two-storey commercial units, including laboratories, and associated road and parking infrastructure and landscaping.
- The British Geological Survey data indicates that the site is underlain by sedimentary bedrock (such as limestone, bioclastic wackestone and packstone). Overlying sedimentary superficial deposits of sands and gravels are present. Borehole information confirms that the deposits comprise of Great Oolite Group and Inferior Oolite Group.
- The closest watercourse to the proposed site is approx. 340m to the east (unnamed ordinary watercourse). Oxford Canal and River Cherwell, main river, are located further to the east. Another ordinary watercourse, Rowel Brook, is located to the west of A44, Woodstock Road.
- The Environment Agency's Flood Map for Planning indicates that the proposed site is within Flood Zone 1, thus at 'very low' risk of flooding from fluvial sources. Furthermore, there are no indications that the site has flooded in the past from any fluvial sources.
- The closest watercourse to the proposed site is approx. 340m away (unnamed ordinary watercourse). Flooding from this watercourse would not affect the proposed site due to difference of approximately 6.50 m between the lowest point of the site and the watercourse bank levels.
- Groundwater flood risk is widely affecting the north west of Kidlington, however, it is unlikely to significantly affect the proposed site due to encountered low groundwater levels, thus the risk of groundwater flooding has been assessed as 'low'.
- The Environment Agency's Risk of Flooding from Surface Water mapping indicates that only localised surface water flooding affects parts of the site,
mainly due to topographical depressions and configuration of the existing buildings. There are no overland flow routes through the site and the hazard to people is mostly low. The risk of surface water flooding is therefore considered 'low'.
- The site is considered at low risk of flooding from sewers.
- Based on the Environment Agency's 'Risk of Flooding from Reservoirs' dataset the site is not at risk of flooding from reservoirs during either a dry day or wet day scenario.
- Ground levels at the site and the right bank of the Oxford Canal have been assessed using the Environment Agency's 1m LIDAR DTM. This indicates that there is a difference of approximately 3.90 m between the lowest site level and the top of the right bank of the Oxford Canal and in the unlikely event the canal was to flood, this would not affect the site.
- In the unlikely event of a flood, safe and dry access will be available to and from all areas of the proposed site via the entrance and exit route of site.

6.2 Recommendations

It is recommended that:

- Finished Floor Levels (FFL) and openings (e.g. air bricks) of the proposed buildings should be set to a minimum of 150 mm above the finished surrounding ground levels. It is recommended that the surface water drainage system of the site and the finished floor levels of the properties should be designed with care regarding the appropriate requirements for exceedance flows and appropriate allowances for freeboard.
- The surface water runoff originating within the redeveloped site is managed using SuDS techniques and the finished floor levels of the buildings should be designed with care regarding the appropriate requirements for exceedance flows and appropriate allowances for freeboard.

A Proposed development layout

B Topographic survey

C Thames Water sewer records

Asset location search

Yes Engineering Group Limited
The Moat House, 133 The Moat House
STAFFORD
ST16 2EZ

Search address supplied	London Oxford Airport Langford Lane Kidlington Oxford Oxfordshire OX5 1RA

Your reference
Our reference

1703902
ALS/ALS/24/2018_3789993

8 May 2018

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due
diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets,
including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be
provided where the data is available.

Thames Water Utilities Ltd
Property Searches, PO Box 3189, Slough SL1 4WW
DX 151280 Slough 13
searches@thameswater.co.uk
www.thameswater-propertysearches.co.uk

Search address supplied: London Oxford Airport, Langford Lane, Kidlington, Oxford, Oxfordshire, OX5 1RA

Dear Sir / Madam
An Asset Location Search is recommended when undertaking a site development.It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers \& the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 08450709148 , or use the address below:

Thames Water Utilities Ltd
Property Searches
PO Box 3189
Slough
SL1 4WW
Email: searches@thameswater.co.uk
Web: www.thameswater-propertysearches.co.uk

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:
SP4715SE
SP4714NW
SP4715SW
SP4714NE
Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

Asset location search

```
SP4715SE
SP4714NW
SP4715SW
SP4714NE
```

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10 m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 08003169800 . The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Asset location search

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 08459200800 . Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB
Tel: 08000093921
Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB
Tel: 08000093921
Email: developer.services@thameswater.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
7004	68.08	66.2
7001	n/a	n/a
8001	67.3	64.81
6003	n/a	n/a
6004	70.21	67.47
6005	69.81	66.76
7002	69.2	66.16
7101	68.61	65.91
8101	68.5	65.35
511E	n/a	n/a
6102	70.3	68.24
511D	n/a	n/a
6101	70.23	67.55
7102	69.6	66.86
8102	68.9	66.46
721A	n/a	n/a
721C	n/a	n/a
721D	n/a	n/a
721E	n/a	n/a
621A	n/a	n/a
721B	n/a	n/a
6002	n/a	n/a
6001	n/a	66.5
7003	68.08	n/a
511B	n/a	n/a
521C	n/a	n/a
521D	n/a	n/a
521E	n/a	n/a
511A	n/a	69.59
511C	n/a	n/a
5101	70.84	n8.5
521A	n/a	
5001	70.81	
521B	n/a	
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not		
shown but their presence should be anticipated. No iliability of any kind whatsoever is accepted by Thames water for any error or omission. The actual position		
of mains and services must be verified and established on site before any works are undertaken.		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
3801	n/a	n/a
4802	n/a	n/a
4801	n/a	n/a
3502	n/a	n/a
3501	n/a	n/a
3503	n/a	n/a
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranted. Service epeses are not shown but their presence should be anticipated. No liabiily of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.
Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
411A	n/a	n/a
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their resence should beanticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and estabbished on site before any works are undertaken.		

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8911	n/a	n/a
8909	n/a	n/a
9901	n/a	n/a
991A	n/a	n/a
991G	n/a	n/a
991F	n/a	n/a
991E	n/a	n/a
991C	n/a	n/a
991D	n/a	n/a
7911	n/a	n/a
7803	n/a	n/a
7702	n/a	n/a
7701	n/a	n/a
7912	n/a	n/a
7802	n/a	n/a
7908	n/a	n/a
8901	n/a	n/a
8902	n/a	65.35
8906	67	63.92
891B	n/a	n/a
8002	66.6	64.27
8903	n/a	n/a
5801	n/a	n/a
6802	n/a	n/a
6904	n/a	n/a
691A	n/a	n/a
6801	n/a	n/a
6903	n/a	n/a
6905	n/a	n/a
6901	n/a	n/a
691B	n/a	n/a
6902	n/a	n/a
6803	n/a	n/a
7910	n/a	n/a
7905	n/a	n/a
7906	n/a	n/a
7901	n/a	n/a
7801	n/a	n/a
7903	n/a	n/a
7902	n/a	n/a
7804	n/a	n/a
781G	n/a	n/a
7904	n/a	n/a
8503	n/a	n/a
8502	n/a	n/a
8501	n/a	n/a
8601	n/a	n/a
7601	n/a	n/a
7703	n/a	n/a

Thames
 Water
 ALS Sewer Map Key

Public Sewer Types (Operated \& Maintained by Thames Water)
--- Foul: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.
-- - Surface Water: A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses.

- Combined: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.
- $-\mathrm{O}=$ - Trunk Surface Water

P P Vent Pipe
$\downarrow \quad$ Proposed Thames Surface Water Sewer

1 - Gallery
$-=\Lambda-=$ Surface Water Rising Main
\qquad Combined Rising Main

Proposed Th
Rising Main

Vacuum

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve

】 Dam Chase

- Fitting
Σ Meter
© Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example A hydrobrake limits the flow passing downstream.

Control Valve	
需	Ancillary

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- Outfall

I- Undefined End
/ Inlet
6) The text appearing alongside a sewer line indicates the internal diameter of
6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole unsure about any text or symbology present on the plan, please contact a member of Property Insight on 08450709148.

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.
2) All measurements on the plans are metric
3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
5) 'na' or '0' on a manhole level indicates that data is unavailable.

Other Symbols

Symbols used on maps which do not fall under other general categories
A / Public/Private Pumping Station

Invert Level
Summit

Areas

Lines denoting areas of underground surveys, etc.

\square Agreement

Operational Site
$7 /$ Tunne
\square Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)
Comblen Sewer Sulverted Watercourse

Asset Location Search Water Map - ALSIALSI24/2018 3789993

ALS Water Map Key

Water Pipes (Operated \& Maintained by Thames Water)
\qquad istribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.
\qquad Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
\qquad Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.
\qquad Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
\qquad Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.

Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildingsshown on the map provided

ProposedMain: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main

Valves

General PurposeValve
Air Valve
Pressure ControlValve
Customer Valve

Hydrants

- Single Hydrant

Meters

- - Meter

End Items

Symbol indicating what happens at the end of a water main.
\square Blank Flange
\square Capped End
\bigcirc Emptying Pit
-() Undefined End
— Manifold
-(0) Customer Supply
() Fire Supply

Operational Sites

(1)	Booster Station
0	Other
0	Other (Proposed)
\triangle	Pumping Station
\triangle	Service Reservoi
\oplus	Shaft Inspection
\bigcirc	TreatmentWorks
\bigcirc	Unknown
凤	Water Tower

Other Symbols

\square Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)
\qquad Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
5. In case of dispute TWUL`s terms and conditions shall apply.
6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 08003169800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 01213451000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 08450709148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703	By calling your bank and quoting:	Made payable to 'Thames Water Utilities Itd'
	Sort code 60-00-01	Account number	Write your Thames Water
	A remittance advice must be sent to:	90478703 Sort code 60-00-01	account number on the back.
	Thames Water Utilities	and your invoice number	Send to:
	Ltd., PO Box 3189,		Thames Water Utilities
	Slough SL1 4WW.		Ltd., PO Box 3189,
	or email		Slough SL1 4WW
	ps.billing@thameswater. co.uk		or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England \& Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who rely on the information included in property search reports undertaken by subscribers on residential and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to $£ 5,000$ to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme
Milford House
43-55 Milford Street
Salisbury
Wiltshire SP1 2BP
Tel: 01722333306
Fax: 01722332296
Email: admin@tpos.co.uk
You can get more information about the PCCB from www.propertycodes.org.uk
PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

JBA

consulting

Offices at

Bristol
Coleshill
Doncaster
Dublin
Edinburgh
Exeter
Glasgow
Haywards Heath
Leeds
Limerick
Newcastle upon Tyne
Newport
Peterborough
Portsmouth
Saltaire
Skipton
Tadcaster
Thirsk
Wallingford
Warrington

Registered Office 1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD
United Kingdom
+44(0)1756 799919 info@jbaconsulting.com www.jbaconsulting.com Follow us: in

Jeremy Benn
Associates Limited
Registered in England 3246693

JBA Group Ltd is
certified to:
ISO 9001:2015
ISO 14001:2015
ISO 27001:2013
ISO 45001:2018

COVENANT

[^0]: 1 BGS Geology of Britain viewer: www.bgs.ac.uk/map-viewers/geology-of-britain-viewer/
 2 DEFRA Magic Maps https://magic.defra.gov.uk/magicmap.aspx
 3 Allen, DJ., Brewerton, LJ., Coleby, LM., Gibbs, BR., Lewis, MA., MacDonald, AM., Wagstaff, SJ., and Williams, AT (1997) The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34. Environment Agency R\&D Publication 8

 4 Local Flood Risk Management Strategy
 www2.oxfordshire.gov.uk/cms/sites/default/files/folders/documents/environmentandplanning/flooding/OxfordshireFloodRiskManagementStrateg y.pdf

[^1]: 5 DEFRA Climate Change Allowances environment.data.gov.uk/hydrology/climate-change-allowances/rainfall?mgmtcatid=3038

[^2]: 6 Final Adopted Local Plan 2011-2031 (incorporating re-adopted Policy Bicester 13)
 https://www.cherwell.gov.uk/downloads/download/45/adopted-cherwell-local-plan-2011-2031-part-1-incorporating-policy-bicester-13-re-
 adopted-on-19-december-2016
 7 Cherwell and West Oxfordshire Level 1 Strategic Flood Risk Assessment www.westoxon.gov.uk/media/vlspjzlm/strategic-flood-riskassessment.pdf

[^3]: 8 Local Flood Risk Management Strategy
 www2.oxfordshire.gov.uk/cms/sites/default/files/folders/documents/environmentandplanning/flooding/OxfordshireFloodRiskManagementStrateg y.pdf

 9 Thames Catchment Flood Management Plan December 2009
 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/293903/Thames_Catchment_Flood_Manage ment_Plan.pdf

 10 Thames Catchment Flood Management Plan December 2009
 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/293903/Thames_Catchment_Flood_Manage ment_Plan.pdf

