GEOTECHNICAL AND GEO-ENVIRONMENTAL ASSESSMENT

Client: Blue Cedar Homes

Land off Clifton Road, Deddington

Report No. 13436 October 2021 Version 1

SOUTH WEST GEOTECHNICAL LTD

Unit 3 Brooklands, Howden Road, Tiverton, Devon, EX16 5HW T: 01884 252444 F: 01884 253974 E: mail@swgeotech.co.uk

CONTENTS

1	INTR	ODUCTION 1	
	1.1	General 1	
	1.2	Site Description1	
2	DES	K STUDY 2	
	2.1	General2	
	2.2	Geology2	
3	GRO	UND INVESTIGATION 3	
	3.1	Fieldwork	ì
	3.2	Trial Pits	
	3.3	TRL DCP Probes	
4	LAB	ORATORY TESTING 5	j
	4.1	Geotechnical Laboratory Testing5	i
	4.2	Geo-environmental testing5	,
5	GRO	UND CONDITIONS 7	,
	5.1	General7	
	5.2	Cohesive Residual Soil7	
	5.3	Marlstone Rock Formation8	,
	5.4	Dyrham Formation	
	5.5	Groundwater	
	5.6	Geo-environmental considerations	
6	GEO	-ENVIRONMENTAL RISK ASSESSMENT 9)
	6.1	General9	1
	6.2	Environmental Soil Test Results9	
	6.3	Human Health (Soils) Risk Assessment 12	
	6.4	Controlled Waters Risk Assessment 13	
	6.5	Water Pipe Selection	Ì
	6.6	Ground Gas Assessment 14	
	6.7	Off-site Disposal 14	
	6.8	Remediation Requirements15	,

16

23

7 GEOTECHNICAL CONSIDERATIONS

7.1	General	16	
7.2	Foundations	16	
7.3	Floors	17	
7.4	Groundwater and Excavations	17	
7.5	Sulphate Classification	17	
7.6	Roads and Driveways	18	
7.7	General Earthworks Considerations	19	
7.8	Soakaways	19	
REFE	RENCES AND BIBLIOGRAPHY	21	

9 LIMITATIONS

8

TABLES

Table 1: Geotechnical Testing	5
Table 2: Stratum summary	7
Table 3: Environmental Testing Summary	. 11
Table 4: Poly Ethylene Water Pipe Guideline Values	. 14

APPENDICES

- A. Site Location Plan
- B. Exploratory Hole Location Plan
- C. Exploratory Hole Logs and Photos
- D. Geotechnical Laboratory Test Results
- E. Geo-environmental Test and Statistical Assessment Results
- F. Conceptual Model (Landfill Gas)
- G. DCP Probe Plots

Document issue details:

SWG project no.

13436

Client's reference no.

Version no.	Issue date	Issue status	Distribution	
1	October 2021	Final	Blue Cedar Homes	

Executive Summary

South West Geotechnical Ltd (SWG) was instructed by Blue Cedar Homes (the Client) to undertake a geotechnical and geo-environmental assessment to assist with the proposed development of the land off Clifton Road, Deddington, Oxfordshire.

At the time of the investigation, development proposals included the construction of residential properties, with associated gardens and access roads.

This geotechnical and geo-environmental assessment was carried out to determine the ground conditions for foundation and pavement design. In addition, an assessment was required from a geo-environmental perspective to include recommendations for any contamination remediation that may be required.

Desk Study

A Stage One study was undertaken on the site by RSK in 2018 which surmised that contaminant linkages appeared to be absent, the potential for ground gas and lateral migration of gases was low. The report suggests that due to the limited scope a more comprehensive investigation was recommended in order to identify whether any contamination is present.

Ground Conditions

The investigation generally encountered topsoil overlying cohesive soils then granular soils derived from the weathering of the Marlstone Rock Formation. Extremely weak, siltstone of the Dyrham Formation was found at the base of TP03.

Groundwater was not encountered during the investigation.

Geo-environmental

Although naturally occurring arsenic concentrations are elevated above the S4UL values for residential land use with plant uptake, a maximum bio-accessible arsenic concentration of 0.5% was recorded using the BARGE method bio-accessible testing. Using CLEA software a Site Specific Assessment Criteria (SSAC) value of 161 mg/kg has been calculated based on the maximum bio-accessible arsenic concentration. Therefore, all

concentrations are below this value, and so the soils are considered suitable for use, and no further works are necessary in this regard.

Full radon protection measures are required.

No other gas protection measures are required.

Standard potable, water pipes are expected to be suitable.

Should any obviously contaminated soils be encountered during the construction phase of the works, advice should be sought from a suitably experienced Geo-environmental Engineer.

The results of the Waste Acceptance Criteria testing indicate the determinands would suggest the natural soil materials would be classified as inert.

Geotechnical

In order to ensure a consistent bearing stratum as possible, it is recommended that foundations for the proposed units are taken down to the upper levels of the granular materials associated with the Marlstone Rock Formation. These materials were encountered at between 0.8 and 2.0m below ground level. A serviceable limit state (allowable) bearing capacity of 150 kN/m² is considered appropriate for foundation design.

A combination of traditional strip and shallow trench fill foundations will be appropriate with foundation depths largely dependent on proposed reductions in ground level.

Given the volume change potential of the soils, suspended floors will be required.

Concrete should be designed to a Design Sulphate Class of DS-1, and ACEC Class AC-1.

Based on the plasticity of near surface cohesive soils, a CBR value of 3% is expected to be appropriate for pavement design.

13436 Clifton Road, Deddington - GIR

1 INTRODUCTION

1.1 General

South West Geotechnical Ltd (SWG) was instructed by Blue Cedar Homes (the Client) to undertake a geotechnical and geo-environmental assessment to assist with the proposed development of the land off Clifton Road, Deddington, Oxfordshire.

At the time of the investigation, development proposals included the construction of residential properties, with associated gardens and access roads.

This geotechnical and geo-environmental assessment was carried out to determine the ground conditions for foundation and pavement design. In addition, an assessment was required from a geo-environmental perspective to include recommendations for any contamination remediation that may be required.

The investigation comprised a walkover survey, intrusive investigation, geotechnical and geo-environmental laboratory testing and reporting.

1.2 Site Description

The site is situated in south of Clifton Road, Deddington, Oxfordshire, OX15 0TH. It is centred on National Grid Reference 447115, 231706, as shown in the Site Location Plan, Appendix A.

The site is set within a predominantly rural area south of Banbury. The site is an approximately rectangular shaped plot of level open field bordered by Clifton Road to the north, residential properties to the east and west, and further fields to the south. Large (10m+) trees are present along the north and south boundaries and smaller trees and bushes to the west. Access is gained from the north western corner, via Clifton Road.

Ground surface conditions encountered across the site were consistently firm underfoot.

Topographically, the site is level.

2 DESK STUDY

2.1 General

A Stage One study was undertaken on the site by RSK in 2018 which surmised that contaminant linkages appeared to be absent, the potential for ground gas and lateral migration of gases was low. The report suggests that due to the limited scope a more comprehensive investigation was recommended in order to identify whether any contamination is present.

It should be noted that a historic gas works is present 10m north of the site which although disused since the 1920s, may still be a source of contaminants.

2.2 Geology

The British Geological Survey (BGS) map for the area (218 Chipping Norton) indicates the bedrock geology beneath the site comprises the Marlstone Rock Formation. Typically this comprises sandy, shelly and ooidal ferruginous limestone, sandstone and subordinate mudstone.

Beneath the Marlstone Rock Formation, the Dyrham Formation is present. This comprises a weakly cemented, interbedded siltstone and mudstone.

No Superficial (Recent) soils are shown to overlie the bedrock.

No made ground is mapped.

Borehole records available on the British Geological Survey GeoIndex website indicates the Marlstone Rock is approximately 9m thick.

3 GROUND INVESTIGATION

3.1 Fieldwork

An intrusive investigation was carried out on the 18th of August 2021. The exploratory hole location plan, exploratory hole logs, in-situ test data / results and associated photographs are contained in Appendices B and C respectively.

The fieldwork was carried out following the guidelines of BS 5930 (2015): Code of Practice for Ground Investigation; British Standard BS10175 (2011): Investigation of Potentially Contaminated Sites – Code of Practice and BS EN 1997-2:2007 (Eurocode 7) – Geotechnical Design – Part 2: Ground investigation and testing).

The fieldwork consisted of:

- Eight (8 no) Trial Pits
- Six (6 no) TRL DCP Probes

The trial pits were positioned to give good representative coverage of the site from both a geotechnical and geo-environmental perspective.

3.2 Trial Pits

Eight (8 no) trial pits were excavated with a 3 tonne tracked excavator.

The pits are logged from the surface by a qualified SWG Engineering Geologist as work progressed. Representative samples were taken from each stratum, and the pit photographed on completion. A photograph was also taken of the respective spoil heap.

3.3 TRL DCP Probes

Six (6 no) UKAS accredited TRL DCP probes were undertaken around the site. The TRL DCP apparatus is designed for determining soil and material strengths in a continuous profile. The probe uses an 8kg hammer dropping through a height of 575mm and a 60 degree cone with a diameter of 20mm (TRL Project Report PR/INT/277/04). CBR values

were calculated using the formula given in Advice Note 73/06 Revision 1 (2009) Design Guidance for Road Pavement Foundations (Draft HD25).

The individual DCP probe plots are included as Appendix G.

4 LABORATORY TESTING

4.1 Geotechnical Laboratory Testing

All geotechnical testing was carried out in the SWG UKAS accredited laboratory in accordance with BS 1377; 1990, Methods of tests for soils for civil engineering purposes. Table 1 summarises geotechnical testing undertaken. The geotechnical laboratory test results are enclosed as Appendix D.

Table 1: Geotechnical Testing

Test	No. Tests
Moisture Content	5
Atterberg Limits	5

Three soil samples were tested for the BRE SD1 sulphate suite.

4.2 Geo-environmental testing

Five soil samples were tested for the following suite of determinands:

- pH, organic matter, total organic carbon, sulphate (water soluble).
- Metals: Arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, zinc and cyanide
- Speciated Polyaromatic Hydrocarbons (PAH): Acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h) anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene.
- Total Phenols
- Total Petroleum Hydrocarbons (TPH)
- Speciated Total Petroleum Hydrocarbons (TPH), aliphatic >C5-C6, aliphatic >C6-C8, aliphatic >C8-C10, aliphatic >C10-C12, aliphatic >C12-C16, aliphatic >C16-C21, aliphatic >C21-C35, aromatic >C5-C7, aromatic >C7-C8, aromatic >C8-C10, aromatic >C10-C12, aromatic >C12-C16, aromatic >C16-C21, aromatic >C21-C35.
- Benzene, toluene, ethylbenzene, p & m-xylene and o-xylene
- Asbestos Screen

A single soil sample was tested for additional speciated PAH and TPH.

One soil sample was selected for Waste Acceptance Criteria (WAC) analysis.

Due to the presence of elevated arsenic concentrations in the natural soils on site, Bio-Accessibility Research Group of Europe (BARGE) method bio-accessible arsenic testing was undertaken on two samples near surface soils recovered from the site.

5 GROUND CONDITIONS

5.1 General

The investigation generally encountered topsoil overlying cohesive soils then granular soils derived from the weathering of the Marlstone Rock Formation. Extremely weak, siltstone of the Dyrham Formation was found at the base of TP03.

The ground conditions have been summarised in Table 2.

Christian	Depth to base of stratum (m BGL)							
Stratum	TP01	TP02	TP03	TP04	TP05	TP06	TP07	TP08
Topsoil	0.3	0.3	0.3	0.3	0.4	0.2	0.3	0.3
Cohesive Residual Soil	0.8	0.9	0.9	1.0	1.1	1.5	2.0	1.3
Marlstone Rock Formation	>1.9	>1.7	2.3	>2.7	>2.75	>2.1	>3.0	>2.1
Dyrham Formation	-	-	>3.3	-	-	-	-	-
Groundwater	-	-	-	-	-	-	-	-

Table 2: Stratum summary

5.2 Cohesive Residual Soil

Cohesive deposits derived from the weathering of the Marlstone Rock Formation were encountered in all trial pits. These deposits comprised firm consistency orange brown gravelly sandy CLAY with low cobble content. Gravel and cobbles were of ironstone and fossiliferous limestone.

Liquid and Plastic (Atterberg) Limit testing undertaken on the cohesive materials indicate the soils are of high plasticity (CH) and generally low volume change potential in accordance with NHBC (2021).

Based on correlations between plasticity index and friction angle, a friction angle of 25° has been determined for the soils.

5.3 Marlstone Rock Formation

Granular deposits derived from weathering of the Marlstone Rock Formation were encountered in all trial pits extending to depths of 1.7 to 3.0m below ground level. The materials generally comprise orange brown cobbly sandy clayey GRAVEL with low boulder content. Gravel and cobbles of ironstone and fossiliferous limestone with boulders of fossiliferous limestone.

A friction angle of 37° is considered appropriate the Marlstone Rock materials.

5.4 Dyrham Formation

A unit of extremely weak laminated micaceous grey SILTSTONE was encountered below 2.3m below ground level in TP03. These materials have been interpreted as the Dyrham Formation.

5.5 Groundwater

Groundwater was not encountered during the investigation. It is expected to be seasonally perched at the base of the Marlstone Rock Formation, at the contact with the low permeability Dyrham Formation beneath.

5.6 Geo-environmental considerations

No made ground or signs of significant contamination was found during the investigation.

6 GEO-ENVIRONMENTAL RISK ASSESSMENT

6.1 General

In order for land affected by contamination to cause harm, there must be a source of contamination, a receptor that can be harmed and a pathway by which the receptor can be exposed to the contamination. Based on the initial conceptual model an assessment of the risk posed by ground / groundwater contamination to potential receptors has been undertaken.

On the basis of the desk study information and walkover survey, the historic gas works and infilled quarry (gasses) near the site were considered the main theoretical sources of contamination. Chemical testing was undertaken to further assess the initial conceptual model with samples from around proposed garden areas tested.

TP08 was undertaken in the north western corner of the site, closest to the boundary where the former Gas Works was present on the opposite side of Clifton Road until the early 1900s. Samples of soil were collected from near surface and at depth in this pit to determine whether any contaminants associated with the Gas Works were present.

6.2 Environmental Soil Test Results

The results of the environmental laboratory testing, presented as Appendix E, have been summarised in Table 3 and compared to Suitable for Use Level (S4UL) values for residential developments with home grown produce. For organic substances a 1% Soil Organic Matter (SOM) has been used, unless otherwise indicated, which represent the most stringent threshold limit.

LQM/ CIEH S4ULs have been developed by Land Quality Management Ltd jointly with the Chartered Institute of Environmental Health, and provide values for the assessment of potential risks to human health posed by contaminants in soil, and are compliant with UK legislative policy and guidelines. In particular, these include components of TPH and PAH.

The S4ULS have been derived in accordance with UK legislation, national as well as Environment Agency (EA) policy, and using a modified version of the EA CLEA software.

The Department for the Environment, Food & Rural Affairs (DEFRA) has published Category 4 Screening Levels (C4SLs) for six substances including lead. The C4SLs represent the most stringent guidance available for the assessment of lead contamination in soils, and have been used in this report.

Where other guidelines are not available, local guidance, Dutch standards or an in-house screening value is used to provide an initial comparison figure.

Determinants	S4UL/C4SL mg/kg	Source of GAC	Recorded Range mg/kg	Location of Exceedances
Arsenic	37	LQM/ CIEH	78 – 138	All exploratory holes
Cadmium	11	LQM/ CIEH	0.3	
Chromium (III)	910	LQM/ CIEH	144 – 251	
Copper	2400	LQM/ CIEH	14 – 52	
Lead	200	Defra	36 – 56	
Mercury (inorganic)	40	LQM/ CIEH	<1	
Nickel	130	LQM/ CIEH	65 – 97	
Selenium	250	LQM/ CIEH	<3	
Zinc	3700	LQM/ CIEH	170-249	
Cyanide (total)	50	DUTCH	<2	
TPH aliphatic C5-C6	42	LQM/ CIEH	<0.1	
TPH aliphatic C6-C8	100	LQM/ CIEH	<0.05	
TPH aliphatic C8-C10	27	LQM/ CIEH	<2	
TPH aliphatic C10-C12	130	LQM/ CIEH	<2	
TPH aliphatic C12-C16	1100	LQM/ CIEH	<3	
TPH aliphatic C16-C35	65000	LQM/ CIEH	<3	
TPH aromatic C5-C7	70	LQM/ CIEH	<0.01	
TPH aromatic C7-C8	130	LQM/ CIEH	< 0.05	
TPH aromatic C8-C10	34	LQM/ CIEH	<2	
TPH aromatic C10-C12	74	LQM/ CIEH	<2	
TPH aromatic C12-C16	140	LQM/ CIEH	<2	
TPH aromatic C16-C21	260	LQM/ CIEH	<3	
TPH aromatic C21-C35	1100	LQM/ CIEH	<10	
Napthalene	2.3	LQM/ CIEH	<0.1	
Acenapthylene	170	LQM/ CIEH	<0.1	
Acenapthene	210	LQM/ CIEH	<0.1	
Flourene	170	LQM/ CIEH	<0.1	
Phenanthrene	95	LQM/ CIEH	<0.1	
Anthracene	2400	LQM/ CIEH	<0.1	
Flouranthene	280	LQM/ CIEH	< 0.1 - 0.24	
Pyrene	620	LQM/ CIEH	< 0.1 - 0.23	
Benzo(a)anthracene	7.2	LQM/ CIEH	< 0.1 - 0.3	
Chrysene	15	LQM/ CIEH	<0.1	
Benzo(b)flouranthene	2.6	LQM/ CIEH	< 0.1 - 0.24	
Benzo(k)flouranthene	77	LQM/ CIEH	<0.1 - 0.1	
Benzo(a)pyrene	2.4	DefraC4SL	< 0.1 - 0.12	
Indeno(1,2,3-cd)pyrene	27	LQM/ CIEH	<0.1	
Dibenzo(a,h)anthracene	0.24	LQM/ CIEH	<0.1	
Benzo(g,h,i)perylene	320	LQM/ CIEH	<0.1	
Benzene	0.087	LQM/ CIEH	<2	
Toluene	130	LQM/ CIEH	<5	
Ethylbenzene	47	LQM/ CIEH	<2	
p & m xylene	59	LQM/ CIEH	<2	
O xylene	60	LQM/ CIEH	<2	

Table 3: Environmental Testing Summary

Total phenol concentrations were below detectable limits.

No asbestos fibres were identified in any of the samples tested.

On the basis of the above, the topsoil/ natural soils across the site contain concentrations of arsenic in excess of the C4SL values for the proposed end use.

6.3 Human Health (Soils) Risk Assessment

In order for land affected by contamination to cause harm, there must be a source of contamination, a receptor that can be harmed and a pathway by which the receptor can be exposed to the contamination. From the results of the investigation, it is noted the site is not grossly or significantly contaminated. However, elevated levels naturally occurring arsenic represent a source of contamination, future residents of the properties represent the receptor, and exposure to the soils containing the elevated lead levels represent the potential pathway. The results are further discussed in Section 6.3.1.

6.3.1 Arsenic

The arsenic concentrations were above the S4UL value for residential land use with uptake from home grown produce in all trial pits. The arsenic concentrations range between 69 and 138 mg/kg. Statistical T tests undertaken (results included in Appendix E) indicate the US95% value is 119.8 mg/kg.

The S4UL values assume that the total arsenic concentration is 100% bio-accessible (i.e. can be ingested and fully absorbed). This is rarely the case in naturally derived concentrations of metals, confirmed by Middleton et al (2017). To further assess the risk from these elevated values, Bio-Accessibility Research Group of Europe (BARGE) method bio-accessible arsenic testing was undertaken on two samples near surface soils recovered from the site. These tests gave a maximum bio-accessible arsenic concentration of 0.5%.

Using CLEA software a Site Specific Assessment Criteria (SSAC) value of 161 mg/kg has been calculated based on the maximum bio-accessible arsenic concentration. Therefore, all concentrations are below this value, and so the soils are considered suitable for use, and no further works are necessary in this regard.

6.4 Controlled Waters Risk Assessment

The low concentrations of contaminants present, and the lack of sensitive receptors in the vicinity means that there is not considered to be a significant risk to controlled waters.

6.5 Water Pipe Selection

In January 2011, UK Water Industry Research (UKWIR) published "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21; the 'UKWIR Guidance'). Its aim was to ensure that the correct materials are selected for water pipes and components to be used below ground in brownfield sites to protect the quality of drinking water whilst taking into account the service life of the water distribution system. It superseded the Water Regulations Advisory Scheme (WRAS) Information and Guidance Note 9-04-03 "Laying Pipes in Contaminated Land", which has been withdrawn.

The UKWIR Guidance was supplemented in January 2014 by "Contaminative Land Assessment Guidance" published by Water UK, which includes a risk assessment procedure for water pipes. The guidance is to be applied to greenfield and brownfield sites, but "where greenfield sites are not affected by contamination a preliminary risk assessment will suffice".

The 2014 guidance gives some direction about when testing is needed, stating: "*There are normally only three pathways by which contamination may come into contact with water pipes.* These are direct contact with the soil or backfill, an excessive vapour phase or a contaminated groundwater regime. If none of these conditions exist onsite (adopting the source, pathway, receptor concept) then it is likely that extended and/or targeted soil testing will not be required and a simple risk assessment will suffice. For those sites where land may be affected by contamination appropriate testing shall be undertaken on the materials within which the pipes are to be laid, whether that be existing ground materials, remediated materials or imported capping materials."

The desk study did not identify any sources of Volatile Organic Compounds (VOC), Semi-Volatile Organic Compounds (SVOC), Ethers, Nitrobenzene, ketones, aldehydes, amines and therefore, these test groups were not tested for as part of the investigation.

The relevant contaminant concentrations for standard Poly Ethylene water pipe, for the determinands tested as part of this investigation are summarised in Table 4.

Determinand	PE Threshold (mg/kg)	Recorded Range
Total BTEX and MTBE	0.1	<5.0 µg/kg
EC5-EC10 aliphatic and aromatic hydrocarbons	2.0	<2.0 mg/kg
EC10-EC16 aliphatic and aromatic hydrocarbons	10	<3.0 mg/kg
EC16-EC40 aliphatic and aromatic hydrocarbons	500	<10 mg/kg
Phenols	2.0	<2.0

Table 4:	Poly Ethylene	Water Pipe Guideline Values
----------	---------------	-----------------------------

On the basis of the above, standard PE pipe work is considered appropriate for the development.

6.6 Ground Gas Assessment

Full radon protection measures are required for the development.

Whilst there is an infilled quarry located approximately 220m north east of the site, the quarry was backfilled by 1919. The quarry was of modest size (60 x 30m approx.) and is likely to be of limited depth as it would have been used to extract the Marlstone Rock Formation bedrock in the area, which based on historic borehole logs in the area is a maximum of 10m thick. Given the length of time since the landfill was completed (100+) years, the majority of any gas generation will likely be completed by now. Furthermore, distance from the development site means that significant lateral migration of gasses is not expected (i.e. not likely to migrate beneath development site). Instead, gasses would follow the path of least resistance and vent vertically to the atmosphere. On this basis, no further gas protection measures are required.

A conceptual model cross section, showing the low risk of gas migration from the infilled quarry to the development site is included in Appendix F.

6.7 Off-site Disposal

The materials to be excavated are essentially rock and soil associated with the Marlstone

Levels of 'contaminants' recorded in the materials are low.

The results of the WAC testing indicate the determinands would suggest the material would be classified as inert.

Any facility that is chosen to take the material should be supplied with the details of this report and laboratory testing to ensure compliance with their own permit. This report alone does not allow for a receiving facility to make judgement on acceptance.

The above assessment relates to the natural soils derived from the bedrock geology only and does not consider topsoil.

6.8 Remediation Requirements

Although naturally occurring arsenic concentrations are elevated above the S4UL values for residential land use with plant uptake, a maximum bio-accessible arsenic concentration of 0.5% was recorded using the BARGE method bio-accessible testing. Using CLEA software a Site Specific Assessment Criteria (SSAC) value of 164 mg/kg has been calculated based on the maximum bio-accessible arsenic concentration. Therefore, all concentrations are below this value, and so the soils are considered suitable for use, and no further works are necessary in this regard.

Full radon protection measures are required.

No other gas protection measures are required.

Standard potable, water pipes are expected to be suitable.

Should any obviously contaminated soils be encountered during the construction phase of the works, advice should be sought from a suitably experienced Geo-environmental Engineer.

7 GEOTECHNICAL CONSIDERATIONS

7.1 General

At the time of the investigation, development proposals included the construction of residential properties, with associated gardens and access roads.

As discussed in Section 5.1, the results of this investigation has indicated the site is underlain by relatively minor thicknesses of cohesive soils which in turn overlie more granular materials that are essentially the Marlstone Rock Formation.

7.2 Foundations

In order to ensure a consistent bearing stratum as possible, it is recommended that foundations for the proposed units are taken down to the upper levels of the granular materials associated with the Marlstone Rock Formation. These materials were encountered at between 0.8 and 2.0m below ground level. A serviceable limit state (allowable) bearing capacity of 150 kN/m² is considered appropriate for foundation design.

A combination of traditional strip and shallow trench fill foundations will be appropriate with foundation depths largely dependent on proposed reductions in ground level.

Based on the low volume change potential cohesive soils near surface, a minimum foundation depth of 0.75m below final ground level will be required although, all cohesive soils should be fully penetrated to ensure a consistent, granular bearing stratum.

Where foundation depths exceed 1.5m, the inner face of these foundations will require compressible materials as recommended by NHBC.

A standard excavator bucket width of 600mm is likely to will provide adequate width foundations.

Lower loaded internal walls can be supported off 450mm wide foundations. Narrower widths are not recommended for practical setting-out reasons.

Any loose material should be removed prior to pouring of concrete. Should foundations be stepped to account for changes in topography, steps should not be higher than the thickness of the strip foundation and should not exceed 0.5m in height.

All foundation excavation bases should be inspected by a qualified and experienced engineer to ensure consistency.

Settlements of such foundations should be significantly less than the conventional 25mm limit.

7.3 Floors

Given the volume change potential of the near surface cohesive soils, suspended floors will be required. A void will be required beneath the floor with void dimensions as follows;

- 50mm under ground beams, and suspended in-situ concrete floor or,
- 200mm under suspended precast concrete or timber floors.

7.4 Groundwater and Excavations

Generally significant groundwater issues are not expected on the site although, some seasonal groundwater may be present towards the contact between the Marlstone Rock and the lower permeability Dyrham Formation at depth.

Cohesive soils are likely to be stable in the short term. More granular soils, especially wet granular soils are likely to be unstable.

7.5 Sulphate Classification

The three soluble sulphate test results indicate water soluble sulphate concentrations of between <0.01 and 0.05 g/l. The characteristic soluble sulphate value is 0.05 g/l.

pH values of between 7.2 and 7.9 were recorded during the lab testing. The characteristic pH value is 7.2.

13436 Clifton Road, Deddington - GIR

Total potential sulphate concentrations of between 0.09 and 0.12 SO₄% have been calculated following the procedure outlined in C5.1.2 (BRE, 2005). The characteristic total potential sulphate value is 0.12 SO_4 %.

Groundwater should be considered mobile.

Concrete should be designed to a Design Sulphate Class of DS-1, and ACEC Class AC-1 (BRE Digest SD1, 2005).

7.6 Roads and Driveways

The six TRL DCP probes undertaken on the site indicate that high temporary CBR values (>10%) are present beneath the topsoil.

Assuming the access road is to be adopted by the Local Authority, a long term equilibrium California Bearing Ratio (CBR) Value of 3.0%, based on the Plasticity Index of the near surface cohesive soils, should be used for design. Using Design Guidance HD25 (2009) 320mm sub-base and 240mm capping would be required. The design CBR value is considered applicable providing the formation is not allowed to deteriorate prior to placement of capping materials.

For CBR values of 3% or less a separating geotextile is required.

In accordance with NHBC (2020), for a CBR value of 3%, a minimum sub-base thickness of 325mm without a geotextile beneath or 225mm with a geotextile would be required for driveways with use by light vehicles only.

Any organic soils should be removed down to a minimum depth of 300mm, and the formation proof rolled. Any soft spots identified by rolling should be removed and replaced with compacted capping.

The construction materials should be compacted in thin layers following the Specification for Highways Works, Table 6/4. As with all sites underlain by cohesive or silty soils, sound earthworks management by an experienced contractor will be critical to ensure optimum programme achievement and satisfactory construction standards.

7.7 General Earthworks Considerations

As with all sites underlain by cohesive soils, sound earthworks management by an experienced contractor will be critical to ensure optimum programme achievement and satisfactory construction standards. The quality of the bulk earthworks should be controlled by an earthworks filling specification, in accordance with Highways Agency (2016) Series 600 Earthworks, that is based on the findings of this report (i.e. considering the material types and intended purpose).

The presence of free water can soften soils, and trafficking soils in this condition raises pore water pressures and shears the soils to a much lower shear strength than in the undisturbed state. Therefore the following standard measures should be observed by the earthworks contractor:

- Suitable plant and materials for the conditions should always be used (e.g. tracked plant or use of track/ bog mats, geogrids etc. on soft subgrades).
- Working with soils in wet conditions should be avoided. Programmes should avoid the wetter seasonal periods and incorporate an element of down-time for inclement weather.
- Engineering fill should not be worked beyond their practical moisture content limits. Laboratory testing and a visual assessment should be undertaken during the earthworks in order to achieve suitable material performance within the optimum moist content range.
- Prepared subgrades and formations should be blinded as soon as practicable to prevent them from deteriorating.
- Temporary and permanent formations should always be sealed and shaped to shed water.
- Effective land drainage should be installed prior to works commencing and maintained to keep works dry.

7.8 Soakaways

Large scale soakaway testing was undertaken by RSK in 2018. Infiltration rates were good but further drainage design would be required to determine if soakaways were a suitable solution. CIRIA 156 (1996) recommends an infiltration rate of 3 x 10^{-6} m/s as the lower limit

of acceptability for soakaway feasibility. All soakaway tests undertaken during the RSK investigation achieved faster rates than this.

During the 2021 investigation, trial pits were excavated to a maximum depth of 3.3m with no groundwater ingress. The base of any soakaways should be situated no closer than 1.0m above seasonal maximum groundwater levels.

Vivien Field MSc BSc FGS Engineering Geologist Author Ben Ogden CGeol MSc BSc FGS Principal Author

8 REFERENCES AND BIBLIOGRAPHY

Barnes, G. E. (2000). Soil Mechanics, Principles and Practice, 2nd edition. Basingstoke: Palgrave Macmillan.

British Standard BS10175: Investigation of Potentially Contaminated Sites – Code of Practice.

BRE Digest 211 (2007), Radon: Guidance on Protective Measures for New Buildings.

BS 5930 (2015) Code of Practice for site investigations

BS 1377 (1990) Methods of test for soils for civil engineering purposes

BRE Special Digest 1 (2005) - Concrete in Aggressive Ground

CIRIA Report 156, (1996). Bettess, R. Infiltration drainage – Manual of good practice. London: CIRIA

Chartered Institute of Environmental Health (CIEH) & Contaminated Land: Applications in Real Environments (CL:AIRE): Guidance on Comparing Soil Contamination Data with a Critical Concentration, May 2008

DEFRA: Development of Category 4 Screening Levels (C4SLs) for assessment of land affected by contamination – SP1010

Environment Agency (2021): Land Contamination Risk Management. https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm

Environment Agency January 2009: Human health toxicological assessment of contaminants in soil, Science Report – Final SC050021/SR2

Environment Agency January 2009: Updated technical background to the CLEA model, Science Report – SC050021/SR3

13436 Clifton Road, Deddington - GIR

Environment Agency 2015: CLEA Software Version 1.071

Environment Agency September 2009: CLEA Software (Version 1.05) Handbook, Science report: SC050021/SR4

Environment Agency November 2008: Compilation of data for priority organic pollutants for derivation of Soil Guideline Values, Science report: SC050021/SR7

Highways Agency Specification for Highway Works (2016) Series 600 Earthworks

Highways Agency HD 26/01 (2001), Pavement Design

Highways Agency Interim Advice Note 73/06 (2009), Design Guidance for Road Pavement Foundations

D. R. S. Middleton, M. J. Watts, D. J. Beriro, E. M. Hamilton, G. S. Leonardi, T. Fletcher, R. M. Close and D. A. Polya. (2017). Arsenic in residential soil and household dust in Cornwall, south west England: potential human exposure and the influence of historical mining. Royal Society of Chemistry. 19, 517-527.

NHBC Standards (2021)

Simons and Menzies (2000) A Short Course in Foundation Engineering

The LQM/CIEH S4ULs for Human Health Risk Assessment (2015)

9 LIMITATIONS

This report has been prepared by SWG solely for the benefit of Blue Cedar Homes Ltd. It shall not be relied upon or transferred to any third party without the prior written authorisation of SWG.

All information given in this report is based on the ground conditions encountered during the site work, and on the results of laboratory and field tests performed during the investigation. However, there may be conditions at the site which have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes.

It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

British Standards Institute (BSI, 2015) ordinarily recommends that laboratory measurements of strength in cohesive soils be undertaken only on high-quality (Category 'A') undisturbed samples, necessitating the use of wire-line drilling or thin-wall samples tubes. However, given the relatively low geotechnical risk presented and the low probability of being able to recover Category 'A' samples from the anticipated strata, it is considered that the use of such techniques is neither appropriate nor cost-effective.

Appendix A

Site Location Plan

Appendix B

Exploratory Hole Location Plan

Appendix C

Exploratory Hole Logs and Photographs

KEY TO EXPLORATORY HOLE LOGS

SAMPLING

Undisturbed U TW P L CBR BLK WS CS	Driven tube sample (Blow count recorded in results column i.e. U = 20) Pushed thin wall tube sample Pushed piston sample Liner sample CBR mould sample Block sample Window sample Core sample
Disturbed	
D B	Small sample Bulk sample
Other W G ES EW	Water sample Gas sample Soil sample for environmental analysis Water sample for environmental analysis
IN-SITU TESTING	
SPT S or SPT C	Standard Penetration Test, open shoe (S) or solid cone (C)
	As defined in BS 1377 : Part 9 (1990). Standard Penetration Test (SPT): a 50mm split spoon or solid cone sampler is driven 450mm into the base of the borehole using a 63.5 kg hammer with a 760mm drop. The penetration resistance (e.g. 21) is expressed as the N-value, and represents the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm.

The depth on the borehole/ trial pit record is that of the start and end of the test. Where full penetration for the test has not been achieved, the final penetration depth is recorded.

HVP (kPa)	In-situ Hand Vane shear strength: a hand shear vane test (or average of a series), conducted on undisturbed samples or within trial pits.
GIVN (kPa)	Geonor in-situ vane shear strength carried out in base of borehole or self bored hole
VN (kPa) PP (kg/cm²)	Hand Vane shear strength, conducted on disturbed or remoulded samples. Pocket penetrometer test: a pocket Penetrometer reading (or average of a series). If reported in kPa, the value has been converted to an equivalent undrained shear strength.
lk	In situ permeability test
ICBR	In-situ CBR test
IPBT	In-situ plate bearing test
IPST	In-situ plate settlement test

All test results are provided in Results column

DRILLING RECORDS

TCR	Total Core Recovery %
SCR	Solid Core Recovery %
RQD	Rock Quality Designation %
FI	Fracture Spacing mm. Minimum, typical and maximum spacings are recorded

GR002 Version 6 27/07/2018 GR002 Key to exploratory records

GROUNDWATER

Groundwater Strike

Groundwater level after standing time

INSTALLATION

Standpipe/ piezometer

Details of standpipe/piezometer installations are given on the left side of the log. The column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.

SP	Standpipe
SPIE	Standpipe piezometer
PPIE	Pneumatic piezometer
EPIE	Electronic piezometer

NOTES

Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or over water, or boring at a rate much faster than water can make its way into the borehole.

The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.

Remarks on chiselling times can be affected by a variety of factors not always related to the geotechnical properties of the strata. Chiselling records are given at the foot of the log.

The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures.

KEY TO SOIL LEGENDS

GR002 Version 6 27/07/2018 GR002 Key to exploratory records

KEY TO ROCK LEGENDS

	MUD
$\begin{array}{c} \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \times \end{array}$	SILT
• • • • • • • • • • • • • • • • • • • • • • • • • • •	SANI
	LIME
	CHAI
	COA
	BRE
00000	CON
	FINE
	MED
	FINE
+ + + + + + + + + + + + + + + + + + +	MED
+++++	COA

DSTONE

STONE

IDSTONE

STONE

LK

۱L

CCIA

GLOMERATE

GRAINED METAMORPHIC

DIUM/COARSE GRAINED METAMORPHIC

GRAINED IGNEOUS

DIUM GRAINED IGNEOUS

RSE GRAINED IGNEOUS

KEY TO BACKFILL LEGENDS

BENTONITE

ARISINGS

SAND

GRAVEL

REFERENCES

BS 1377 : 1990 : British Standard Methods of test for soils for civil engineering purposes. British Standards Institution. BS 5930 : 1999 : Code of practice for site investigations. British Standards Institution.

GR002 Version 6 27/07/2018 GR002 Key to exploratory records

								TrialPit	No
						Tr	rial Pit Log	TP0 ²	1
SOUTH W	GEOTECHNIC	AL					5	Sheet 1	of 1
Projec	t Land sou	uth of Clift	ton Road	P	Project No.		Co-ords: 447081.00 - 231742.00	Date	
iname	•			1	3436		Level: 123.00	18/08/20 Scale)21
Locati	on: Dedding	on OX15	OTH					1:20	
Client:	Blue Cec	lar Home	s				Depth o	Logge VF	d
Water Strike	Sam Depth	nples & In S	itu Testing Results	Dept (m)	th Level) (m AOD)				
	200	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Topsoil: brown slightly gravelly slightly sandy cla	yey SILT.	_
	0.20						Rare tragments of root slate. Rootlets.		-
	0.20	ES		0.30) 122.70				-
							Firm orange brown gravelly slightly sandy CLAY. cobble content. Gravel and cobbles of ironstone	Low and	-
	0.50	D					tossiliterous limestone.		-
									-
									-
				0.80	0 122.20	• × • • × • • •	Orange brown cobbly sandy clayey GRAVEL. Gr	avel and	-
	1.00 D Cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM)								_ 1 —
						• × • • × • ×			-
						• × • • × • ×			-
						~ × ~ ~ ~ ×			-
						• × • • • • • ×			-
						• × • • × • ×			-
						•×. • • • • • • • • • • • • • • • • • •			-
						• × • • × •			-
	1.90	В		1.90	0 121.10	• • • • • ×	End of Pit at 1.900m		-
									2 —
									-
									-
									-
									-
									-
									-
									-
									3 —
									-
									-
									-
									-
									-
									-
									-
									4 —
Rema	rks: Ground	water not	encountered.	_					
								AG	S
Stabili	ty: Moderat	e.							

								TrialPit I	No
						TP02			
SOUTH W	VEST GEOTECHNICA					•••		Sheet 1 of	of 1
Projec	t Land agu	th of Cliff	an Dood	F	Project No.		Co-ords: 447087.00 - 231716.00	Date	
Name	: Land sou		on Road	1	3436		Level: 123.00	18/08/20	21
Locati	on: Deddingte	on OX15	ОТН				Dimensions 3.10	Scale	
Client	Blue Cod	ar Homo					Depth O	Logge	d
	. Dide Ced						1.70	VF	
Nater	Dopth		Posulte	Dep (m	oth Level	Legend	Stratum Description		
	Deptil	Турс	Results				Topsoil: brown slightly gravelly slightly sandy cla	yey SILT.	
	0.10	ES					Rootlets.		-
									-
				0.3	0 122.70		Firm orange brown gravelly sandy CLAY. Low co	bble	-
	0.50	ES					limestone.	Sillerous	-
	0.50								-
									_
	0.80	D							_
				0.9	0 122.10		Orange brown cobbly sandy clavey GRAVEL G	avel and	-
	1.00	D				**************************************	cobbles of subangular to angular ironstone and fossiliferous limestone (MARI STONE ROCK EN	()	1 —
						**************************************			-
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
						° × ° × °			_
						- × • • × • ×			-
						•ו••ו			-
	1 70	в		17	0 121.30	• X • • X • X • X			-
	1.10				121.00		End of Pit at 1.700m		-
									-
									2 —
									-
									-
									-
									-
									-
									-
									-
									-
									3 —
									-
									-
									_
									-
									-
									-
									-
									-
									4 —
Rema	rks: Groundw	ater not	encountered.	1	I				
									\$
Stabili	ty: Poor.							AU	U

								TrialPit	No				
						Tr	rial Pit Log	TP03					
SOUTH WEST	GEOTECHNICA						9	Sheet 1	of 1				
Project	Land sou	th of Clifto	on Road	Pro	ject No.		Co-ords: 447094.00 - 231709.00	Date					
iname:				134	136		Level: 123.00	18/08/20 Scale	)21				
Location	: Deddingt	on OX15	0TH				(m): P 1:20						
Client:	Blue Ced	ar Homes	3				Depth o	Logge VF	d				
ike ike	Sam	ples & In Sit	tu Testing	Depth	Level	Logond	Stratum Description						
Str &	Depth	Туре	Results	(m)	(m AOD)	Legenu	Stratum Description						
	0.10	ES		0.30	122 70		Topsoil: brown slightly gravelly slightly sandy clay Rootlets.	yey SILT.					
				0.00	122.70		Firm orange brown gravelly sandy CLAY. Low co content. Gravel and cobbles of ironstone and fos limestone	bble siliferous	-				
	0.50	ES					intestorie.		-				
	0.60	D							-				
	0.80								-				
	0.80			0.90	122 10				-				
	1.00	D		0.00	122.10		Orange brown cobbly sandy clayey GRAVEL. Gravel and cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM).						
	1.50	D		2 30	120 70				2				
	2.50 3.00	D					Extremely weak light grey SILISTONE. Laminate micaceous. (DYRHAM FM).	ed and	3 —				
				3.30	119.70	× × × × × × × × × × × × × × × × × × ×	End of Pit at 3 300m						
							End of Fit at 3.300m						
Remarks Stability:	s: Groundv : Moderat	vater not e	encountered.					AG	I IS				

									TrialPit	No	
							Tr	ial Pit Log	TP04		
SOUTH	WEST GEOTECHNICA							5	Sheet 1	of 1	
Proje	ct Land sou	th of Clif	ton Road		Project N	۱o.		Co-ords: 447120.00 - 231717.00	Date	) 021	
	ion, Doddingt				13430			Dimensions 3.00	Scale	921 9	
Local	ion: Deddingt							(m): Dopth	1:20	nd nd	
Client	t: Blue Ced	ar Home	es	1				2.70	VF	u	
Vater strike	Sam	ples & In S	Situ Testing	De (n	pth Le	evel	Legend	Stratum Description			
> 00	Depth	Туре	Results	(	, (,			Topsoil: brown slightly gravelly slightly sandy clay	yey SILT.	_	
	0.20	ES		0.5	30 122	2 70		Rootlets.		-	
	0.40	ES						Firm orange brown gravelly slightly sandy CLAY. cobble content. Gravel and cobbles of ironstone	Low and	-	
	0.50	D						tossiliterous limestone.		-	
	1.00	в		1.0	00 122	2.00					
								Crange brown cobbly sandy crayey GRAVEL. Gr cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FN	avei and 1).		
	1.50	D						Fossil bed.		2	
Bomo	2.60	D	encountered	2.7	70 120	).30		End of Pit at 2.700m		3	
Stabil	tability: Poor.										

								TrialPit No	2
						Tr	rial Pit Log	TP05	
SOUTH WES	<b>GEOTECHNICA</b>	3					5	Sheet 1 of	1
Project	Land sout	h of Clif	ton Road	Pro	oject No.		Co-ords: 447123.00 - 231746.00	Date	
iname:				13	436		Level: 123.00	18/08/2021 Scale	
Locatio	n: Deddingto	on OX15	5 0TH					1:20	
Client:	Blue Ceda	ar Home	es				Depth o 2.75	Logged VF	
ike	Samp	oles & In S	Situ Testing	Depth	Level	Logond	Stratum Description		
Str Str	Depth	Туре	Results	(m)	(m AOD)	Legenu	Stratum Description		
	0.20	ES		0.40	122.60		Firm orange brown gravelly slightly sandy CLAY. cobble content. Gravel and cobbles of ironstone fossiliferous limestone.	Low and	-
	0.70	D						1	- - - - - - 1 —
	1 50			1.10	121.90		Orange brown cobbly sandy clayey GRAVEL. Gr cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM	avel and //	- - - - - - -
	2.00	D						2	- - - - - - - - - - - - - - - - - - -
	2.50	D		2.75	120.25		End of Pit at 2.750m		
								3	3 — - - - - - - - - - - - - - - - - - - -
Remark Stability	_{(S:} Groundw /: Moderate	ater not	encountered.					AGS	]

								TrialPit	No			
						Tr	rial Pit Log	TP06				
SOUTH W	EST GEOTECHNICA							Sheet 1	of 1			
Projec	t Land sou	th of Clift	on Road	P	roject No.		Co-ords: 447110.00 - 231760.00	Date				
iname.				1:	3436		Level: 123.00 Dimensions 3.10	18/08/2021 Scale				
Locatio	on: Deddingte	on OX15	0TH				(m): P	1:20				
Client:	Blue Ced	ar Home	S				2.10	Logge VF	ed			
ater rike	Sam	ples & In Si	tu Testing	Dept	h Level	Leaend	Stratum Description					
S S	Depth	Туре	Results	(m)	(m AOD)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Tancoli, brown climbly, grouply, climbly, condy, do					
	0.20	ES		0.30	) 122.70		Firm orange brown gravelly slightly sandy CLAY.	Low				
	0.50	ES					fossiliferous limestone.	and				
	0.70	D										
	1.00	D							1 — - - - - - - -			
	1.50	В		1.50	) 121.50		Orange brown cobbly sandy clayey GRAVEL. Gr cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM	ravel and				
	2.00	В		2.10	) 120.90	a X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	End of Pit at 2.100m		2			
	- Coundu								3			
Remar Stabilit	emarks: Groundwater not encountered.											

								TrialPit	No
						Tr	rial Pit Log	TP07	
SOUTH WES	<b>GEOTECHNICA</b>							Sheet 1	of 1
Project	Land sout	h of Clif	ton Road	Proj	ject No.		Co-ords: 447101.00 - 231769.00	Date	
Name:				134	36		Level: 123.00	18/08/20 Scale	)21
Locatior	n: Deddingto	on OX15	OTH					1:20	
Client:	Blue Ceda	ar Home	S				Depth o	Logge	d
ke	Samp	oles & In S	itu Testing	Depth	Level	Langer			
Stri	Depth	Туре	Results	(m)	(m AOD)	Legend	Stratum Description		
	0.20	ES		0.30	122.70		Topsoil: brown slightly gravelly slightly sandy cla Rootlets. Firm orange brown gravelly slightly sandy CLAY.	yey SILT.	-
	0.60	ES					cobble content. Gravel and cobbles of ironstone fossiliferous limestone.	and	
	1.00 1.01	ES D							- 1 - - - - -
	1.50	D							
	2.00	D		2.00	121.00		Orange brown cobbly sandy clayey GRAVEL. Gr cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM	ravel and /).	2 —
	3.00	D		3.00	120.00		End of Pit at 3.000m		3 —
									4
Remark Stability	s: Groundw : Moderate	ater not	encountered.					AG	I S

								TrialPit	No	
						Tr	ial Pit Log	TP0	TP08	
SOUTH WES	GEOTECHNICA	3						Sheet 1	of 1	
Project	I and sout	h of Clif	ton Road	Pro	oject No.		Co-ords: 447084.00 - 231773.00	Date		
Name:				13	436		Level: 123.00	18/08/20	18/08/2021	
Location	1: Deddingto	on OX15	5 0TH				(m):	1:20	;	
Client:	Blue Ceda	ar Home	)S				Depth O	Logge	d	
т е	Samp	oles & In S	Situ Testing	Denth			2.10			
Strik	Depth	Туре	Results	(m)	(m AOD)	Legend	Stratum Description			
	0.20 0.50 0.51 1.00 1.30	ES D D ES		0.30	122.70		Topsoil: brown slightly gravelly slightly sandy clar Rare pottery fragments. Rootlets. Firm orange brown gravelly slightly sandy CLAY. cobble content. Gravel and cobbles of ironstone fossiliferous limestone. Orange brown gravelly clayey COBBLES. Grave cobbles of subangular to angular ironstone and fossiliferous limestone. (MARLSTONE ROCK FM	yey SILT. Low and		
	2.00	в		2.10	120.90		End of Pit at 2.100m		2 —	
Pamark	e: Groundw	ater not	encountered						3	
Remark: Stability	s: Groundw							AG	I S	

## SITE OVERVIEW



#### Site entrance



Facing north







Facing east



Facing south



## EXCAVATIONS



**TP01** 



TP01 side





TP01 spoil



Examples of boulders of fossiliferous rock in TP01





TP02



TP02 side





TP02 spoil





TP03



TP03 side, note layer of grey fine material in base





TP03 spoil









TP04 side







TP04 spoil





TP05 side





TP05 spoil





TP06 side





TP06 spoil





TP07 side







TP07 spoil





TP08 side





TP08 spoil



Geotechnical and Geo-environmental Assessment

# Appendix D

## Geotechnical Laboratory Test Results

SOUTH W	EST GEOTEC	Test Report		South West Geotechnical Ltd Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW
Job No:		13436	Date Received:	19/08/21
Job Name:		Land South of Clifton Road, Deddington, OX15 0TH	Date Sent:	03/09/21
<b>Client Nam</b>	ie:	South West Geotechnical Ltd	Transmittal Number:	T6815
<b>Client Job I</b>	No:	-	Senders Initials:	DT
			Report Revision No.	1
Client Add	ress	Unit 3 Brooklands, Howden Road, Tiverton, Devon, EX16 5HW	Sampled by SWG lab st	aff? NO
Ref.		Test Detail		No. of Tests / Report No.
A1		BS EN ISO 17892-1: 2014 - Water Content - UKAS Ad	ccredited	5
A5		BS EN ISO 17892-12: 2018 - Atterberg Limits - UKAS A	Accredited	5
6	ling not a -	warmed by South West Costs baised by anti-		
Samp	Signatories:	e contract of the sector of th	nesults apply to the sam	pies as received.
David Trow	bridge (Labo	ratory Manager)		
Matt Stokes	s (Senior Tec	hnician)		
The resu client. Th	ults contain is certificat	ed within this report only relate to the samples tested, e shall not be reproduced except in full, without prior v laboratory.	as received from the vritten approval of the	Accredited to ISO/IEC 17025:2017

Page 2 of 3

SOUTH WE	ST GEO	DTECHN	Unit 3 E How										oklands, n Road, iverton, Devon 16 5HW	
Proj	ect No.				Project Name									
13	3436				Land South of Clifton Road, Deddington,									
Client	Job No	<b>b</b> .			Client	Client								
	-				South West Geotechnical Ltd								ISO/IEC 17025:2017	
Hole No.	Type	Sa	mple	Pof	Soil Description	wc	Passing 425µm	LL	PL	PI	Particle density	Rema	arks	
	Type	тор	Dase	Rei		%	%	%	%	%	Mg/m3			
TP01	D	0.50			Brown slightly gravelly slightly sandy CLAY	30.3	55 - Sieved	59	31	28	-			
TP02	D	0.80			Brown slightly gravelly slightly sandy CLAY	23.5	94 - Sieved	54	29	25	-			
TP04	D	0.50			Brown slightly gravelly slightly sandy CLAY	24.6	62 - Sieved	53	27	26	-			
TP05	D	0.70			Brown slightly gravelly slightly sandy CLAY	24.1	60 - Sieved	62	30	32	-			
TP08	D	1.00			Brown slightly sandy gravelly CLAY	24.3	47 - Sieved	56	28	28	-			
						-	-	-	-	-	-			
						-	-	-	-	-	-			
						-	-	-	-	-	-			
						-	-	-	-	-	-			
						-	-	-	-	-	-			
			Prep	paration	in accordance with BS1377-1:2016 where applicable. Atterberg 4 point prepara	tion in a	ccordance w	ith BS	EN ISC	0 17892	2-12:2018			
Key Atterbe 4pt - B	erg Lim S EN IS	its 50 1789	2-12:201	8	Water Content (wc) % BS EN ISO 17892-1:2014 Particle density BS1377-2:1990		Date		A	pprove	ed By	Page No.	1	
(30° cone and increasing water contents) unless : 1pt - BS1377-2:1990 (CL.4.4)		er conte	nts) unless : sp - small pyknometer CL.8.3 gj - gas jar CL.8.2		03/09/2021		Matt	Stokes Techni	s - Senior cian	KL001R Inde	x Summary			

SOUTH WEST GEOTECHNICAL	Graphical Summary of	Unit 3 Ho	Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW		
Project No.	Project Name				
13436	Land South of Clifton Road, Deddington	, OX15 0TH			
Client Job No.	Client				
-	South West Geotechnical Ltd				
90	Casagrande Chart		Sample ID	Plasticity Index (%)	Modified Plasticity Index (%)
80			TP01 (D) @ 0.50m	28	15
60		CE	TP02 (D) @ 0.80m	25	24
(%) × 50	CV		TP04 (D) @ 0.50m	26	16
apul 2 40		D/LE	TP05 (D) @ 0.70m	32	19
D 30			TP08 (D) @ 1.00m	28	13
20	MIV		-	-	-
10	MIH		-	-	-
0			-	-	-
0 20	40 60 80 10 Liquid Limit (%)	0 120 140	-	-	-
● TP01 (D) @ 0.50m ● TP0	02 (D) @ 0.80m • TP04 (D) @ 0.50m • TP05 (D) (	⊉ 0.70m ● TP08 (D) @ 1.00m	-	-	-
The	e Modified Plasticity Index (I'p) is defi multiplied by the percentage ie. I'p x % less th	ned as the Plasticity Inde of particles less than 425 an 425um/100%	ex (Ip) of the 5μm.	soil	
90	Modified Plasticity/Volume C As calculated from NHBC Stan	hange Potential Chart dards 2011 Part 4.2 D5		• TP01 (D	) @ 0.50m
80				• TP02 (D	) @ 0.80m
60 - (%) 50		HIGH VOLUME CHANGE PC	DTENTIAL	• TP04 (D	) @ 0.50m
Dasticity -		MEDIUM VOLUME CHANG	E POTENTIAL	● TP05 (D	) @ 0.70m
		LOW VOLUME CHANGE PC	DTENTIAL	● TP08 (D	) @ 1.00m
> 0 0 10	20 30 40 50 60 70 Liquid Lin	NEGLIGIBLE VOLUME CHAI 80 90 100 110 iit (%)	NGE POTENTIAL	140 ×	A S
KI 001a Index Crephical	Approved By	Date		82	60
Summary	David Trowbridge - Laboratory Manager	Accredited to ISO/IEC 17025:2017			



Geotechnical and Geo-environmental Assessment

# Appendix E

## Geo-environmental Laboratory Test and Statistical Assessment Results



David Trowbridge South West Geotechnical Ltd Unit 3 Brooklands Howden Road Tiverton Devon EX16 5HW



**Derwentside Environmental Testing Services Ltd** Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

#### DETS Report No: 21-10401

Site Reference:	Deddington
Proiect / Job Ref:	13436
Order No:	None Supplied
Sample Receipt Date:	24/08/2021
Sample Scheduled Date:	24/08/2021
Report Issue Number:	2
Reporting Date:	08/10/2021

#### Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request. This report supersedes 21-10401, issue no.1. Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.



#### **DETS Ltd** Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410



٦

Soil Analysis Certificate								
DETS Report No: 21-10401		Date Sampled		18/08/21	18/08/21	18/08/21	18/08/21	18/08/21
South West Geotechnical Ltd		Time Sampled		None Supplied				
Site Reference: Deddington		TP / BH No		TP01	TP01	TP03	TP03	TP04
Project / Job Ref: 13436			Additional Refs	None Supplied				
Order No: None Supplied		Depth (m)		0.20	1.00	0.50	0.60	0.40
Reporting Date: 08/10/2021			ETS Sample No	561043	561044	561045	561046	561047
Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		Not Detected		Not Detected
рН	pH Units	N/a	MCERTS	7.5	7.9	7.7	7.7	7.6
Total Cyanide	mg/kg	< 2	NONE	< 2		< 2		< 2
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	564	522	479	414	485
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.06	0.05	0.05	0.04	0.05
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS		53		< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS		0.05		< 0.01	
Total Sulphur	%	< 0.02	NONE		0.04		0.04	
Sulphide	mg/kg	< 5	NONE	< 5		< 5		< 5
Organic Matter (SOM)	%	< 0.1	NONE	3.5		3.3		2.9
TOC (Total Organic Carbon)	%	< 0.1	NONE	2		1.9		1.7
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS		1.1		1.6	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS		0.11		0.16	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		16		6	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		8.2		3.2	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		7		9	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		3.6		4.6	
Arsenic (As)	mg/kg	< 2	MCERTS	105		138		115
W/S Boron	mg/kg	< 1	NONE	1.4		< 1		1.4
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.3		0.3		0.3
Chromium (Cr)	mg/kg	< 2	MCERTS	214		251		235
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS	26		14		14
Lead (Pb)	mg/kg	< 3	MCERTS	56		36		38
W/S Magnesium	mg/l	< 0.1	NONE		1.1		0.9	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1		< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	81		97		89
Selenium (Se)	mg/kg	< 2	MCERTS	< 3		< 3		< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	209		249		190
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2		< 2
EPH (C10 - C40)	mg/kg	< 6	MCERTS	< 6		< 6		< 6

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)



#### DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410



Soil Analysis Certificate								
DETS Report No: 21-10401		Date Sampled		18/08/21	18/08/21	18/08/21	18/08/21	18/08/21
South West Geotechnical Ltd		Time Sampled		None Supplied				
Site Reference: Deddington		TP / BH No		TP06	TP06	TP07	TP08	TP08
Project / Job Ref: 13436		Additional Refs		None Supplied				
Order No: None Supplied		Depth (m)		0.20	0.70	1.00	0.20	1.30
Reporting Date: 08/10/2021		DETS Sample No		561048	561049	561050	561051	561052
Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected			Not Detected	
pH	pH Units	N/a	MCERTS	7.2	7.7		7.6	
Total Cyanide	mg/kg	< 2	NONE	< 2			< 2	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	929	332		736	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.09	0.03		0.07	
W/S Sulphate as $SO_4$ (2:1)	mg/l	< 10	MCERTS		< 10			
W/S Sulphate as $SO_4$ (2:1)	g/l	< 0.01	MCERTS		< 0.01			
Total Sulphur	%	< 0.02	NONE		0.03			
Sulphide	mg/kg	< 5	NONE	< 5			< 5	
Organic Matter (SOM)	%	< 0.1	NONE	3.6			2.8	
TOC (Total Organic Carbon)	%	< 0.1	NONE	2.1			1.6	
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS		1.5			
Ammonium as NH ₄	mg/l	< 0.05	MCERTS		0.15			
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		7			
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		3.4			
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		8			
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		4.2			
Arsenic (As)	mg/kg	< 2	MCERTS	78			93	
W/S Boron	mg/kg	< 1	NONE	1.8			1.3	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.3			0.3	
Chromium (Cr)	mg/kg	< 2	MCERTS	144			171	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	21			42	
Lead (Pb)	mg/kg	< 3	MCERTS	54			52	
W/S Magnesium	mg/l	< 0.1	NONE		0.8			
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1			< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	65			74	
Selenium (Se)	mg/kg	< 2	MCERTS	< 3			< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	170			193	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2			< 2	
EPH (C10 - C40)	mg/kg	< 6	MCERTS	< 6			< 6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)



#### DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410



Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 21-1040	01		Date Sampled	18/08/21	18/08/21	18/08/21	18/08/21	18/08/21
South West Geotechnical Ltd Site Reference: Deddington Project / Job Ref: 13436 Order No: None Supplied		Time Sampled TP / BH No Additional Refs Depth (m)		None Supplied	None Supplied TP03 None Supplied 0.50	None Supplied TP04 None Supplied 0.40	None Supplied TP06 None Supplied 0.20	None Supplied TP08 None Supplied 0.20
				TP01				
				None Supplied				
				0.20				
Reporting Date: 08/10/2021			ETS Sample No	561043	561045	561047	561048	561051
Determinand	Unit	RI	Accreditation					
Naphthalene	ma/ka	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.24
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.23
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.30
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.24
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.12
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6




Soil Analysis Certificate	- Speciated PAHs					
DETS Report No: 21-1040	01		Date Sampled	18/08/21		
South West Geotechnical	Ltd		Time Sampled	None Supplied		
Site Reference: Deddingt	on		TP / BH No	TP08		
Project / Job Ref: 13436			Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	1.30		
Reporting Date: 08/10/2	2021	D	ETS Sample No	561052		
Determinand	Unit	RL	Accreditation			
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6		





Soil Analysis Certificate	- TPH CWG Bande	d						
DETS Report No: 21-104	01		Date Sampled	18/08/21	18/08/21	18/08/21	18/08/21	18/08/21
South West Geotechnical	Ltd		Time Sampled	None Supplied				
Site Reference: Deddingt	on		TP / BH No	TP01	TP03	TP04	TP06	TP08
Project / Job Ref: 13436			Additional Refs	None Supplied				
Order No: None Supplied			Depth (m)	0.20	0.50	0.40	0.20	0.20
Reporting Date: 08/10/2	021	D	ETS Sample No	561043	561045	561047	561048	561051
Dotorminand	Unit	ы	Accreditation					
		<b>KL</b>	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/kg	< 0.03		< 0.05	< 0.03	< 0.03	< 0.03	< 0.05
	mg/kg	< 2	MCERTS	< 2	< 2	< 2	~ 2	< 2
$\frac{1}{2}$	mg/kg	< 3	MCERTS	< 3	< 3	< 3	11	< 2
Aliphatic > C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic > C21 - C34	ma/ka	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	< 42





Soil Analysis Certificate	e - TPH CWG Bande	d				
DETS Report No: 21-104	01		Date Sampled	18/08/21		
South West Geotechnical	Ltd		Time Sampled	None Supplied		
Site Reference: Deddingt	on		TP / BH No	TP08		
Project / Job Ref: 13436			Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	1.30		
Reporting Date: 08/10/2	2021	D	ETS Sample No	561052		
Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		





Soil Analysis Certificate	- BTEX / MTBE							
DETS Report No: 21-1040	)1		Date Sampled	18/08/21	18/08/21	18/08/21	18/08/21	18/08/21
South West Geotechnical	Ltd		Time Sampled	None Supplied				
Site Reference: Deddingt	on		TP / BH No	TP01	TP03	TP04	TP06	TP08
Project / Job Ref: 13436		1	Additional Refs	None Supplied				
Order No: None Supplied			Depth (m)	0.20	0.50	0.40	0.20	0.20
Reporting Date: 08/10/2	021	D	ETS Sample No	561043	561045	561047	561048	561051
Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5





Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 21-1040	)1		Date Sampled	18/08/21		
South West Geotechnical	Ltd		Time Sampled	None Supplied		
Site Reference: Deddingte	on		TP / BH No	TP08		
Project / Job Ref: 13436			Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	1.30		
Reporting Date: 08/10/2	021	D	ETS Sample No	561052		
Determinand	Unit	RL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5		
Ethylbenzene	ug/kg	< 2	MCERTS	< 2		
p & m-xylene	ug/kg	< 2	MCERTS	< 2		
o-xylene	ug/kg	< 2	MCERTS	< 2		
MTBE	ua/ka	< 5	MCERTS	< 5		



DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410



Waste Acceptance Criteria	a Analytical Ce	ertificate - B	S EN 12457	/3					
DETS Report No: 21-10401		Date Sampled	18/08/21				Landfill Wast	te Acceptance	Criteria Limits
South West Geotechnical Ltd	I	Time Sampled	None Supplied						
Site Reference: Deddington		TP / BH No	TP07					Stable Non-	
Project / Job Ref: 13436		Additional Refs	None Supplied				Inert Waste	HAZARDOUS	Hazardous Waste
Order No: None Supplied		Depth (m)	1.00				Landfill	hazardous	Landfill
Reporting Date: 08/10/202	1	DETS Sample No	561050					Landfill	
Determinand	Unit	MDL							
TOC ^{MU}	%	< 0.1	1.8				3%	5%	6%
Loss on Ignition	%	< 0.01	8.69						10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05				6		
Sum of PCBs	mg/kg	< 0.1	< 0.1				1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10				500		
	mg/kg	< 1.7	< 1.7				100		
pH ^{ind}	pH Units	N/a	7.6	-				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1					evaluated	To be evaluated
				0.1		Cumulative	Limit values	for compliance	leaching test
Eluate Analysis			2:1	8:1		10:1	using BS E	N 12457-3 at	L/S 10 l/kg
			mg/l	mg/l		mg/kg	_	(mg/kg)	
Arsenic ^U			< 0.01	< 0.01		< 0.2	0.5	2	25
Barium ^U			< 0.02	< 0.02		< 0.1	20	100	300
Cadmium ^U			< 0.0005	< 0.0005		< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005		< 0.20	0.5	10	70
Copper ^U			< 0.01	< 0.01		< 0.5	2	50	100
Mercury ^U			< 0.0005	< 0.0005		< 0.005	0.01	0.2	2
Molybdenum ^U			< 0.001	< 0.001		< 0.1	0.5	10	30
Nickel ^U			< 0.007	< 0.007		< 0.2	0.4	10	40
Lead ^U			< 0.005	< 0.005		< 0.2	0.5	10	50
Antimony ^U			< 0.005	< 0.005		< 0.05	0.06	0.7	5
Selenium			< 0.005	< 0.005		< 0.05	0.1	0.5	7
Zinc ^U			< 0.005	< 0.005		< 0.2	4	50	200
Chloride			4	5		51	800	15000	25000
Fluoride			0.7	< 0.5		< 1	10	150	500
Sulphate	_		5	3		36	1000	20000	50000
TDS			70	53		546	4000	60000	100000
Phenol Index			< 0.01	< 0.01		< 0.5	1	-	-
			12.6	11		112	500	800	1000
Leach Test Information	1								
Sample Mass (kg)			0.20						
Dry Matter (%)			86.8				1		
Moisture (%)			15.4						
Stage 1							1		
Volume Eluate L2 (litres)			0.32	1	1	1	1		
Filtered Eluate VE1 (litres)			0.17	1			1		
\$ <i>*</i>									
Analytical results are expressed on a	dry weight basis wi	here samples are	assisted-dried at	t less than 30°C.	The Samples De	scriptions page d	escribes if the test	is performed on the	ne dried or as-

received portion Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test





Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 21-10401	
South West Geotechnical Ltd	
Site Reference: Deddington	
Project / Job Ref: 13436	
Order No: None Supplied	
Reporting Date: 08/10/2021	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture	Sample Matrix Description
				Content (%)	
561043	TP01	None Supplied	0.20	17.9	Light brown sandy clay
561044	TP01	None Supplied	1.00	10.7	Light brown sandy clay with stones
561045	TP03	None Supplied	0.50	16.9	Light brown sandy clay with stones
561046	TP03	None Supplied	0.60	15.6	Light brown sandy clay with stones
561047	TP04	None Supplied	0.40	14	Light brown sandy clay
561048	TP06	None Supplied	0.20	21.2	Brown sandy clay with vegetation
561049	TP06	None Supplied	0.70	15.5	Brown sandy clay
561050	TP07	None Supplied	1.00	13.2	Brown sandy clay
561051	TP08	None Supplied	0.20	16.5	Brown sandy clay with stones
561052	TP08	None Supplied	1.30	15.6	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm US}$  Unsuitable Sample  $^{\rm US}$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 21-10401
South West Geotechnical Ltd
Site Reference: Deddington
Project / Job Ref: 13436
Order No: None Supplied
Reporting Date: 08/10/2021

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil		Boron - Water Soluble	Determination of water coluble boron in coil by 2:1 bot water extract followed by ICD-OES	F012
Soil	AR	BTEX	Determination of RTEX by headsnace GC-MS	E012
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E001
Soil	D	Chloride - Water Soluble (2:1)	Determination of coloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 15 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cvanide by distillation followed by colorimetry	E015
Soil	AR	Cvanide - Free	Determination of free cvanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with agua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil			Determination of volatile organic compounds by headspace CC-MS & C2-C10 by CC-ETD	E001
3011	AK	ערה (נס-נס א נ8-נ10)	שביבוחוויומנוטח טו חוזעו טרמו שטווג רט-רס שא חפמטאמנצ טר-אוג ע רט-רזש שא טר-דוש	EUUI

D Dried AR As Received





Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 21-10401
South West Geotechnical Ltd
Site Reference: Deddington
Project / Job Ref: 13436
Order No: None Supplied
Reporting Date: 08/10/2021

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR deter	E110
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by beadspace GC-MS	E104
Water	F	Eluoride	Determination of Eluoride by filtration & analysed by ion chromatography	F109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	F102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E102
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	F302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid liquid extraction with became followed by GI-FID	F104
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	F109
Water	UF	Monohydric Phenol	Determination of menols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105
Wator	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SDE cartridge, collection in dichlorometha	F108
Water	LIE	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid liquid extraction with netroleum ether	F111
Water	LIF	nH	Determination of pH by electrometric measurement	F107
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	F109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	F113
Water	F	Sulphate (as SO4)	Determination of suphate by filtration & analysed by ion chromatography	F109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	F118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TFM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	Total Organic Carbon (TOC)	I ow heat with persulphate addition followed by IR detection	F110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
тос	Soil	BS EN 12457	20.0	%
Loss on Ignition	Soil	BS EN 12457	35.0	%
BTEX	Soil	BS EN 12457	14.0	%
Sum of PCBs	Soil	BS EN 12457	23.0	%
Mineral Oil	Soil	BS EN 12457	9.0	%
Total PAH	Soil	BS EN 12457	11.6	%
рН	Soil	BS EN 12457	0.28	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Arsenic	Leachate	BS EN 12457	18.7	%
Barium	Leachate	BS EN 12457	11.6	%
Cadmium	Leachate	BS EN 12457	20.3	%
Chromium	Leachate	BS EN 12457	18.3	%
Copper	Leachate	BS EN 12457	24.3	%
Mercury	Leachate	BS EN 12457	23.7	%
Molybdenum	Leachate	BS EN 12457	14.7	%
Nickel	Leachate	BS EN 12457	16.1	%
Lead	Leachate	BS EN 12457	15.7	%
Antimony	Leachate	BS EN 12457	17.9	%
Selenium	Leachate	BS EN 12457	22.0	%
Zinc	Leachate	BS EN 12457	17.4	%
Chloride	Leachate	BS EN 12457	15.3	%
Fluoride	Leachate	BS EN 12457	16.4	%
Sulphate	Leachate	BS EN 12457	20.6	%
TDS	Leachate	BS EN 12457	12.0	%
Phenol Index	Leachate	BS EN 12457	14.0	%
DOC	Leachate	BS EN 12457	10.0	%
Clay Content	Soil	BS 3882: 2015	15.0	%
Silt Content	Soil	BS 3882: 2015	14.0	%
Sand Content	Soil	BS 3882: 2015	13.0	%
Loss on Ignition	Soil	BS 3882: 2015	35.0	%
рН	Soil	BS 3882: 2015	0.14	Units
Carbonate	Soil	BS 3882: 2015	16.0	%
Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Zinc	Soil	BS 3882: 2015	14.9	%
Copper	Soil	BS 3882: 2015	16.0	%
Nickel	Soil	BS 3882: 2015	17.7	%
Available Sodium	Soil	BS 3882: 2015	23.0	%
Available Calcium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity	Soil	BS 3882: 2015	10.0	%



Issued:

27-Sep-21

Client DETS South Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone, Kent ME17 2JN

- Our Reference 21-19147
- Client Reference 13436/10922
  - Order No (not supplied)
  - Contract Title Deddington
  - Description 2 Soil samples.
  - Date Received 09-Sep-21
  - Date Started 09-Sep-21
- Date Completed 27-Sep-21

Test Procedures Identified by prefix DETSn (details on request).

*Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By



Adam Fenwick Contracts Manager





### Summary of Chemical Analysis Soil Samples

Our Ref 21-19147 Client Ref 13436/10922 Contract Title Deddington

		Lab N		1901947	1901948
		.Si	ample ID	TP03	TP08
			Depth	0.50	0.20
			Other ID	563066	563067
		Sam	ple Type	SOIL	SOIL
		Samp	ling Date	18/08/2021	18/08/2021
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Metals					
Arsenic Gastric % Bioaccessible (% of Total As)	DETSC 2400*	0	%	0.2	0.4
Arsenic Gastric mg/kg Bioaccessible	DETSC 2400*	0.5	mg/kg	< 0.5	< 0.5
Arsenic Gastro Intestinal % Bioaccessible (% of Total As)	DETSC 2400*	0	%	0.3	0.5
Arsenic Gastro Intestinal mg/kg Bioaccessible	DETSC 2400*	0.5	mg/kg	< 0.5	< 0.5
Arsenic	DETSC 2301#	0.2	mg/kg	120	69



### Information in Support of the Analytical Results

Our Ref 21-19147 Client Ref 13436/10922 Contract Deddington

### **Containers Received & Deviating Samples**

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1901947	TP03 0.50 SOIL	18/08/21	PG		
1901948	TP08 0.20 SOIL	18/08/21	PG		
Key: P-Plastic	: G-Bag				
DETS cannot	be held responsible for the in	tegrity of sam	ples received whereby the laboratory did not undertake the sampling.	In this instance sam	ples received may
be deviating.	Deviating Sample criteria are	based on Brit	tish and International standards and laboratory trials in conjunction wit	h the UKAS note 'Gu	uidance on
Deviating Sar	mples'. All samples received a	re listed abov	e. However, those samples that have additional comments in relation t	o hold time, inappro	opriate containers
etc are devia	ting due to the reasons stated	d. This means	that the analysis is accredited where applicable, but results may be cor	npromised due to sa	ample deviations. If
no sampled o	date (soils) or date+time (wate	ers) has been	supplied then samples are deviating. However, if you are able to supply	a sampled date (ar	nd time for waters)
this will prev	ent samples being reported a	s deviating wi	here specific hold times are not exceeded and where the container sup	plied is suitable.	

### **Soil Analysis Notes**

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

### Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

### **South West Geotechnical Ltd**

Geotechnical & Environmental Consultants - Site Investigation Services Unit 3, Brooklands, Howden Road, Tiverton, EX16 5HW. Tel: 01884 252444 Email: mail@swgeotech.co.uk

Job Name: Clifton Road, Deddington

Job Number: 13436

#### Statistical Assessment - Mean Value Test - Natural Soils

Conta	minant	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Selenium	Zinc	Naphthalene	Fluorene	Dibenzo(a,h) anthracene	Benzo(a) pyrene
Sample	Depth	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP01	0.2	105												
TP03	0.5	138												
TP04	0.4	115												
TP06	0.2	78												
TP08	0.2	93												
TP03	0.5	120												
TP08	0.2	69												
Sample	Count (n)	7	0	0	0	0	0	0	0	0	0	0	0	0
t for 95	oth %'ile	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88
Arithme	tic mean	102.57	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Standa	ard Dev.	24.30	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Maxi	mum	138	0	0	0	0	0	0	0	0	0	0	0	0
US	95%	119.8	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
SGV	/GAC	37	11	910	2400	40	130	200	250	3700	2.5	170	0.24	2.2
Mean Va Pas	alue Test s/Fail	Fail	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

### **South West Geotechnical Ltd**

Geotechnical & Environmental Consultants - Site Investigation Services Unit 3, Brooklands, Howden Road, Tiverton, EX16 5HW. Tel: 01884 252444 Email: mail@swgeotech.co.uk

Job Name: Clifton Road, Deddington

Job Number: 13436

#### Statistical Assessment - Mean Value Test - Natural Soils

Conta	minant	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Selenium	Zinc	Naphthalene	Flourene	Dibenzo(a,h) anthracene	Benzo(a)
Sample	Depth												ununuoono	pyrono
TP01	0.2	2.0211893	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP03	0.5	2.1398791	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP04	0.4	2.0606978	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP06	0.2	1.8920946	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP08	0.2	1.9684829	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP03	0.5	2.0791812	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
TP08	0.2	1.8388491												
		_				-		-	-					
Sam	ple Count (n)	7	0	0	0	0	0	0	0	0	0	0	0	0
	Mean	2.000	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
	Standard Dev.	0.107	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
	Maximum	2.140	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
	Т	1.31	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
	T(critical)	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805
Maximum	Value Test	No Outliers	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!

### **STEP 5: RESULTS**

Find AC

Print Repo

### Ratio of ADE to relevant Health inhal HCV oral HCV Number Chemical (dimensionless) (dimensionless) Arsenic (C4SL adult) 0.97 1.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Criteria Value	Soil	Assessment Crite	eria	SAC Flag
Combined	oral HCV	inhal HCV	Combined	Current SAC used for determining pathway contributions
(dimensionless)	mg kg⁻¹	mg kg⁻¹	mg kg⁻¹	(unitless)
NR	1.67E+02	1.61E+02	NR	Inhal
}				

Back to Guide

orts

Soil Saturation Limit					Pathway C
	direct soil ingestion	sum of consumption of homegrown produce and attached soil	dermal contact (indoor)	dermal contact (outdoor)	inhalation of dust (indoor)
mg kg ⁻¹	%	%	%	%	%
NR	0.00	0.00	0.00	0.00	99.92
	·				 
					 !
	·				
					<u></u>
					}

ontributions (%)					
inhalation of dust (outdoor)	inhalation of vapour (indoor)	inhalation of vapour (outdoor)	oral background	inhalation background	Total
%	%	%	%	%	%
0.08	0.00	0.00	0.00	0.00	100.00
			i 	i 	
i 	i 	i 	i 	i 	
	 		 	 ! !	 ! !
		<b>L</b>	/     	/     	/ / /
		· 	 		
			i 	i 	
 	   	/ / /	¦ 	¦ 	 
		, , , , ,	i 	i 	
 !					 !
}			¦ !	   	·
¦ 	 	   	! /	¦ /	¦ /
		, 	 	 	 
			i 		
·		<b></b> .			
	   	<b>h</b> I I	   	   	   



Geotechnical and Geo-environmental Assessment

# Appendix F

## Conceptual Model (Landfill Gas)







Geotechnical and Geo-environmental Assessment

# Appendix G

## **TRL DCP Plots**



### **Graphical Summary of TRL DCP Results**

Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW



	3	Deter	mination	of the In-Situ CBR o	f Soil using TRL	Project No.	13436			
SOUTH WEST	GEOTECHNICAL	Roa	ds/Pavem	enetrometer Method - ent Foundations Dra	aft HD 25 (2009)	TRL DCP No.	DCP01			
Projec	t Name	Land Sou	th of Clift	on Road, Deddingto	n, OX15 0TH	Top Depth (m)	0			
Soil Des	scription	0				Easting	0			
Client	Job No.	-				Northing	0			
Client	Name	South We	est Geote	chnical Ltd		Date of Test	18/08/21			
Test L	ocation	0				Weather	Sunny			
um)	(%)				CBR VALUE (%)					
Depth	CBR		0.1	1	10	100	1000			
		-								
90	5.4	-								
200	9.1	-	100							
300	18	-								
400	15									
510	16		200							
610	18									
720	12	-	300							
720	12	-								
800	13	-								
		_	400		+ + + + + + + + + + + + + + + + + + +					
		mm)								
		Depth								
			500							
			600							
		-	700							
		-								
- 9										
	(AS		800		· · · · · · · · · · · · · · · · · · ·					
82	260									
Accred	Accredited to		900							
KL020R	TRL DCP	Da	ate	Approved		Remarks				
Page No.	2	05/1	0/21							

A		Durne	etermination	n of the In-Situ CBR of	f Soil using TRL	Project No.	13436						
SOUTH WEST	SEOTECHNICAL	F	Roads/Paven	nent Foundations Dra	ft HD 25 (2009)	TRL DCP No.	DCP02						
Projec	t Name	Land	South of Clif	ton Road, Deddingto	n, OX15 0TH	Top Depth (m)	0						
Soil Des	scription	0				Easting	0						
Client	Job No.	-				Northing	0						
Client	Name	South	West Geote	echnical Ltd		Date of Test	18/08/21						
Test L	ocation	0				Weather	Sunny						
աա) ւ	(%) {				CBR VALUE (%)								
Depth	CBF		0.1	1	10	100	1000						
110													
110	4.4												
230	6.1		100										
340	14												
440	18		200										
545	23												
700	13												
810	14		300										
		_											
			400 -										
			um) n										
			Dept										
			500										
			600										
			700										
-													
	(AS		800										
87	:60												
	Accredited to		900										
	. 525.2017												
KL020R	TRL DCP		Date	Approved		Remarks							
Page No.	3	C	05/10/21										

6	3	Def	termination	of the In-Situ CBR of	f Soil using TRL	Project No.	13436			
SOUTH WEST	SEOTECHNICAL	Ro	oads/Paver	ent Foundations Dra	ft HD 25 (2009)	TRL DCP No.	DCP03			
Projec	t Name	Land S	outh of Clift	ton Road, Deddingto	n, OX15 0TH	Top Depth (m)	0			
Soil Des	scription	0				Easting	0			
Client	Job No.	-				Northing	0			
Client	Name	South V	West Geote	chnical Ltd		Date of Test	t 18/08/21			
Test L	ocation	0				Weather	Sunny			
<u> </u>										
աա) ւ	(%) {				CBR VALUE (%)					
Depth	CBF		0.1	1	10	100	1000			
110	6.7									
110	0.7									
210	15	-	100							
330	17									
440	19		200							
540	21									
690	15									
815	19		300							
		_								
		_								
			400							
		um) c								
		Depth								
			500							
			600							
		_	700							
		-								
	to _									
	<) (AS		800							
87	10NG									
Accrec	Accredited to		900							
	, 723.2017		500 -							
KL020R	TRL DCP		Date	Approved		Remarks				
Page No.	4	05	5/10/21							

6	3	Det	ermination	of the In-Situ CBR o	Project No.	13436	
SOUTH WEST	SEOTECHNICAL	Ro	ads/Paven	nent Foundations Dra	TRL DCP No.	DCP04	
Project Name		Land Sc	outh of Clif	ton Road, Deddingto	Top Depth (m)	0	
Soil Description		0			Easting	0	
Client Job No.		-			Northing	0	
Client Name		South V	Vest Geote	echnical Ltd	Date of Test	18/08/21	
Test Location		0			Weather	Sunny	
<u> </u>							
(mm)					CBR VALUE (%)		
Depth	CBF		0.1	1	10	100	1000
140	2.4						
140	5.4	-					
230	11	-	100				
370	21						
490	15	_	200				
610	29	-					
730	45						
810	26		300				
		-					
		- -	400				
		um) h					
		Deptl					
		_	500				
			600				
			700				
	I	-					
			800			•	
8260							
Accredited to			900				
KL020R	TRL DCP		Date	Approved		Remarks	
Page No.	5	05	/10/21				

6	3	Dete	ermination	of the In-Situ CBR o	Project No.	13436	
SOUTH WEST	SEOTECHNICAL	Roa	ads/Pavem	ent Foundations Dra	TRL DCP No.	DCP05	
Project Name		Land So	outh of Clift	on Road, Deddingto	Top Depth (m)	0	
Soil Description		0			Easting	0	
Client Job No.		-			Northing	0	
Client Name		South W	/est Geote	chnical Ltd	Date of Test	18/08/21	
Test Location		0			Weather	Sunny	
<u> </u>							
աա) ւ	(%) {				CBR VALUE (%)		
Depth	CBF		0.1	1	10	100	1000
115	6.4						
115	6.4	-					
260	8.6	-	100				
360	13	_					
460	10	-	200				
560	13	-					
650	14	-					
760	16	_	300				
800	13						
			100				
		(mr	400				
		pth (n					
		De	500				
		-					
		_					
			600				
		_					
		-	700				
		_					
			800				
8260 Accredited to							
ISO/IEC 1	/025:201/		900				
KL020R	TRL DCP	Date		Approved	Approved Remarks		
Page No.	6	05/	/10/21				

6		Determination of the In-Situ CBR of Soil using TRL Dynamic Cone Penetrometer Method - Design Manual for Roads/Pavement Foundations Draft HD 25 (2009)					Project No.	13436		
SOUTH WEST	GEOTECHNICAL						TRL DCP No.	DCP06		
Projec	t Name	Land South of Clifton Road, Deddington, OX15 0TH					Top Depth (m)	0		
Soil Des	scription	0			Easting	0				
Client .	Job No.	-					Northing	0		
Client Name		South West Geotechnical Ltd					Date of Test	18/08/21		
Test Location		0					Weather	Sunny		
2										
(%) ۲				CBR VALUE (%)						
Dept	B		0.1							
120	8.3									
220	24		50							
200	01									
205	01		100							
385	100		100							
440	104									
			150							
			200							
		um) c	E 250							
		Deptl								
			200							
			300							
			350							
			400							
			450							
Accredited to			500							
	. 525.2017									
KL020R TRL DCP		Date		Approved			Remarks			
Page No. 7		05/10/21								