

Hayfield Homes

Berry Hill Road, Adderbury

Flood Risk Assessment - Addendum

August 2022

Revision Schedule

Berry Hill Road, Adderbury Flood Risk Assessment - Addendum 22021_FRA-A

Rev	Date	Details	Prepared by	Reviewed by	Approved by
00	08/03/2022	Draft	Scott Marshall BSc (Hons), MCIWEM	David Allbright Associate Director	Steve Foxall Managing Director
01	23/03/2022	Final	Scott Marshall BSc (Hons), MCIWEM	David Allbright Associate Director	Steve Foxall Managing Director
02	31/08/2022	-	Scott Marshall BSc (Hons), MCIWEM	David Allbright Associate Director	Steve Foxall Managing Director

Banners Gate Ltd

Cavendish House 10-11 Birmingham Street Halesowen West Midlands B63 3HN

Tel: 0121 687 1500 Fax: 0121 687 1501

Table of Contents

1	INTRODUCTION	2
1.1	Background Information	2
1.2	Summary of 2017 Flood Risk Assessment	3
1.3	Summary of 2019 Drainage Strategy	3
2	FLOOD RISK	5
2.1	River (fluvial) Flooding	5
2.2	Surface Water (pluvial) Flooding	5
2.3	Reservoir Flooding	6
2.4	Flood Risk from other Sources	6
3	DEVELOPMENT PROPOSALS	7
3.1	Layout	7
4	SURFACE WATER DRAINAGE	8
4.1	Introduction	8
4.2	Surface Water Strategy	9
4.3	Urban Creep Allowance	9
4.4	Preliminary Drainage Layout & Details	9
4.5	Water Quality	10
4.6	Maintenance & Management	10
5	FOUL WATER DRAINAGE	11
5.1	Introduction	11
5.2	Third-party Permissions	11
6	CONCLUSIONS & RECOMMENDATIONS	
	Appendix I Supporting Information	

Supporting Information
Calculations
Drawings

1 INTRODUCTION

1.1 Background Information

1.1.1 Banners Gate was commissioned, in February 2022, by Hayfield Homes to prepare an Addendum to a Flood Risk Assessment¹ undertaken in support of an Outline Planning application² for land to the north of Berry Hill Road in Adderbury, Oxfordshire.

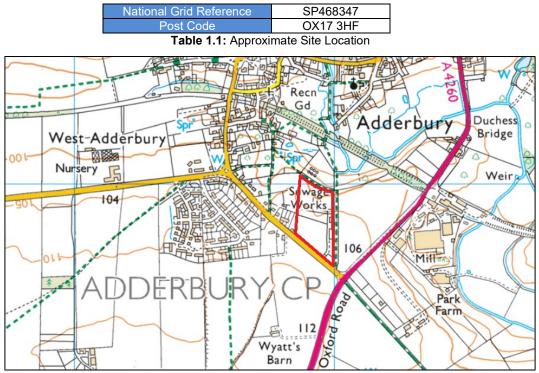


Figure 1.1: Site Location

- 1.1.2 The proposed development was granted Outline Planning Permission, on Appeal³, for up to 40 dwellings in September 2021.
- 1.1.3 This revision 01 Addendum has been prepared to support a Reserved Matters application.
- 1.1.4 A subsequent revision will be used to support a Discharge of Conditions application for the following conditions in due course:
 - (11) No development shall commence until have [sic] been submitted to and approved in writing by the local planning authority a detailed scheme for the surface water and foul sewage drainage of the development. The surface water drainage scheme as approved shall be carried out prior to the commencement of any building works on the site. The approved foul sewage drainage scheme shall be implemented prior to the first occupation of each building to which the scheme relates. The drainage works shall be laid out and constructed in accordance with the current edition of the Water UK Sewers for Adoption Design and Construction Guide for Developers.
 - (12) No development shall commence until there shall have been submitted to and approved in writing by the local planning authority full details of the construction of the surface water mitigation proposals, including any balancing pond if required, and implementation schedule. The works shall be carried out as approved and retained thereafter.

¹ Betts Hydro Consulting Engineers Report Reference: HYD250_Berry.Hill. Road Revision 1.1 dated 05 October 2017

² Cherwell District Council Application Reference Number: 19/00963/OUT

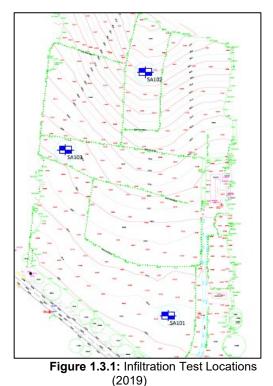
³ Appeal Reference: APP/C3105/W/20/3255419

1.2 Summary of 2017 Flood Risk Assessment

- 1.2.1 The Betts Hydro Consulting Engineers Flood Risk Assessment, prepared for Hollins Strategic Land, concluded the 4-hectare Site is located wholly within Food Zone 1 and is at a low risk of flooding from all sources.
- 1.2.2 Greenfield runoff rates, for a reduced developable area of 1.97-hectares, were summarised in a Table with supporting calculations provided within an Appendix.

Return Period	Greenfield Runoff (l/s)
Q1	0.6
Qbar	0.7
Q30	1.7
Q100	2.4

Table 1.2: Greenfield Runoff Rates (2017 FRA)


- 1.2.3 Notably, the calculations specified a soil index of 0.15 suggesting the site is underlain by welldraining soils. Indeed, desktop studies indicated freely draining soils and so the use of infiltration techniques was promoted as the primary method of surface water disposal, although in the absence of site-specific testing an alternative solution⁴ was also described for robustness.
- 1.2.4 Consideration was given to the inclusion of "domestic soakaways and an appropriate highways infiltration system".
- 1.2.5 Foul water flows were to be directed to the 375mm diameter public foul water sewer to the east of the Site.

1.3 Summary of 2019 Drainage Strategy

- 1.3.1 Ironside Farrar produced a Drainage Strategy⁵ for Hollins Strategic Land in November 2019 to provide additional information sought by Oxfordshire County Council as the Lead Local Flood Authority.
- 1.3.2 Infiltration testing, in accordance with BRE Digest 365, was carried out at the three locations shown in Figure 1.3.1.
- 1.3.3 The trial pits were excavated to depths of between 1.5m and 2.1m below ground level in September 2019. Topsoil was underlain by very sandy clay with increasing gravel content by depth in SA101 and SA103.
- 1.3.4 Test results indicated poor drainage conditions in the north (SA102) and good drainage conditions in the south (SA101 and SA103).

Location	Infiltration Rate (m/s)	BRE 365 Compliant
SA101	1.30x10 ⁻⁴	Yes
SA102	2.76x10 ⁻⁶	No
SA103	1.48x10 ⁻⁴	Yes

Table 1.3: Lowest Infiltration Rate (2019)

⁴ Discharge to the off-site Sor Brook at 5l/s.

⁵ Report Reference: 30394/SRG

- 1.3.5 The following primary SuDS elements were proposed:
 - Individual soakaways to each property.
 - Permeable surfacing to each property.
 - Adopted site access roads to be provided with permeable surfacing.
- 1.3.6 Additionally, it was proposed that the highway corridor would fall towards a series of swales, to intercept any overland flows, connected to an infiltration basin located to the north of the developable area.

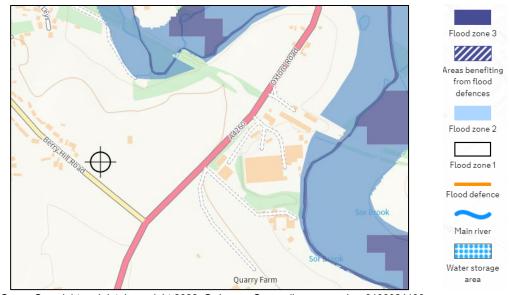


Figure 1.3.2: Ironside Farrar Preliminary Drainage Layout (Drawing No: 30394/102)

2 FLOOD RISK

2.1 River (fluvial) Flooding

2.1.1 The Environment Agency's Flood Map for Planning (Rivers and Sea) is shown in the following figure. The map shows the Site to be situated entirely within Flood Zone 1.

© Crown Copyright and database right 2022. Ordnance Survey licence number 0100024198. **Figure 2.1:** Environment Agency Flood Map for Planning (Rivers and Sea)

2.2 Surface Water (pluvial) Flooding

2.2.1 The 'Flood Risk from Surface Water' map, shown in the following figure, shows the Site to be at very low risk of surface water flooding.

© Crown Copyright and database right 2022. Ordnance Survey licence number 0100024198. **Figure 2.2:** Flood Risk from Surface Water Map

2.3 Reservoir Flooding

2.3.1 The 'Flood Risk from Reservoirs' map, shown in the following figure, shows the Site is not at risk of Reservoir flooding.

Maximum extent of flooding from reservoirs:

when river levels are normal 🥢 when there is also flooding from rivers 🕁 Location you selected

© Crown Copyright and database right 2022. Ordnance Survey licence number 0100024198. Figure 2.3: Flood Risk from Reservoirs Map

2.4 Flood Risk from other Sources

Source	Flood Risk			
	Very Low	Low	Medium	High
Groundwater	Х			
Sea (tidal & coastal)	Х			
Sewer	Х			
Table 0 4: Elevel Diale frame attain Occurrence				

Table 2.4: Flood Risk from other Sources

3 DEVELOPMENT PROPOSALS

3.1 Layout

3.1.1 A development of 40 dwellings is proposed as illustrated on the drawing extract⁶ below.

Figure 3.1: Proposed Layout

Land Use	Area (hectares)
Permeable	0.5
Pervious Paving	0.3
Impermeable	0.8
Developable	1.6
Undeveloped (inc. SuDS)	2.4

Table 3.1: Proposed Land Use

⁶ Pagasus Design Site Layout Drawing Number: P21-2984 01 [Appendix III]

4 SURFACE WATER DRAINAGE

4.1 Introduction

4.1.1 The Lead Local Flood Authority raised no objections against the Outline Planning application, but recommended the following conditions:

<u>SuDS</u>

No development shall take place until a detailed design and associated management and maintenance plan of surface water drainage for the site using sustainable drainage methods has been submitted to and approved in writing by the Local Planning Authority.

The approved drainage system shall be implemented in accordance with the approved detailed design prior to the use of the building commencing.

The detailed design must address:

Provision of evidence that green space on site has been used to its full potential to incorporate SuDS.

Provision of evidence demonstrating safe ingress/egress.

Provision of evidence demonstrating exceedance events and where surface water flows will be routed or held temporarily on site.

Detail of any phasing plan including how surface water will be managed during construction Detailed Design and subsequent construction to be in line with Drainage Strategy document reference 30394/SRG dated November 2019.

Completion and Maintenance of Sustainable Drainage

Shown on Approved Plans.

No building or use hereby permitted shall be occupied or the use commenced until the sustainable drainage scheme for this site has been completed in accordance with the submitted details. The sustainable drainage scheme shall be managed and maintained thereafter in accordance with the agreed management and maintenance plan.

Outline Design Infiltration Condition

The development hereby permitted shall not commence until full Detailed Design details of the proposal, implementation, maintenance and management of a surface water drainage scheme have been submitted to and approved in writing by the local planning authority. Those details shall include:

a) Information about the design storm period and intensity (1 in 30 & 1 in 100 (+40% allowance for climate change), discharge rates and volumes (both pre and post development), temporary storage facilities, means of access for maintenance, the methods employed to delay and control surface water discharged from the site, and the measures taken to prevent flooding and pollution of the receiving groundwater and/or surface waters;

b) Any works required off-site to ensure adequate discharge of surface water without causing flooding or pollution (which should include refurbishment of existing culverts and headwalls or removal of unused culverts where relevant);

c) Flood water exceedance routes, both on and off site;

d) A timetable for implementation;

e) Site investigation and test results to confirm infiltrations rates; and

f) A management and maintenance plan, in perpetuity, for the lifetime of the development which shall include the arrangements for adoption by an appropriate public body or statutory undertaker, management and maintenance by a Residents' Management Company or any other arrangements to secure the operation of the surface water drainage scheme throughout its lifetime.

Detailed Comments

Full Detailed Design to be submitted, including completed OCC Flows and Volumes Pro-Forma to enable audit of the submitted calculation files.

4.2 Surface Water Strategy

- 4.2.1 Generally, the surface water strategy remains in accordance with that described within the Ironside Farrar Drainage Strategy (2019), although the proposed eastern swale has been omitted due to a planning requirement to create an undeveloped buffer along the western boundary.
- 4.2.1 Additional infiltration testing, in accordance with BRE Digest 365, was carried out at three locations 'SA201 SA203' as shown in Figure 4.2, in April 2022⁷.
- 4.2.2 Trial pits were excavated to between 2.2-2.5m below ground; it is anticipated the tests were appropriately conducted within the underlying bedrock.

Location	Infiltration Rate (m/s)
SA201	1.2x10⁻⁵
SA202	2.3x10 ⁻⁴
SA203	4.9x10 ⁻⁴

 Table 4.2: Lowest Infiltration Rate (2022)

4.2.3 It is recommended any further testing targets and penetrates the bedrock by at least 1m.

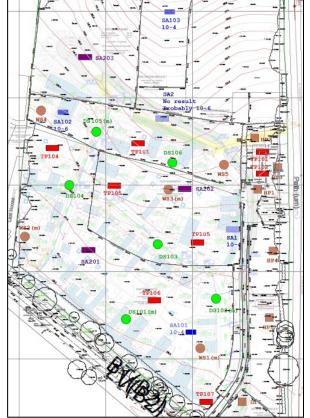


Figure 4.2: Infiltration Test Locations (2022)

[Appendix III]

[Appendix II]

4.3 Urban Creep Allowance

4.3.1 In accordance with the requirements of the 'Local Standards and guidance for Surface Water Drainage on Major Development in Oxfordshire' a 10% urban creep allowance is to be applied. It is recommended this is applied to impermeable areas within the property curtilage only.

4.4 Preliminary Drainage Layout & Details

- 4.4.1 The following drainage information is included within the referenced Appendix to support the Reserved Matters application:
 - Drainage Strategy Plan

0

0

0

- Drainage Calculations
 - Greenfield Runoff Calculations
 - Storm Network 1 (highway drainage)
 - Results (2-year, 30-year, 100 year + 40% climate change)
 Soakaway 20 Typical Plot Soakaways (plots 1-21)
 - Results (2-year, 10-year, 100 year + 40% climate change)
 Soakaway 31 Typical Plot Soakaways (plots 22-31)
 - Results (2-year, 10-year, 100 year + 40% climate change)
 - Soakaway 33 Typical Plot Soakaways (plots 32-40)
 - Results (2-year, 10-year, 100 year + 40% climate change)
 Porous Paving Typical Example
 - Results (2-year, 10-year, 100 year + 40% climate change)

⁷ JNP Group Project No: M43979

4.5 Water Quality

- 4.5.1 In accordance with Table 26.2 of CIRIA Report C753 'The SuDS Manual' the pollution hazard level for the proposed development is 'Low' and therefore a simple index approach has been applied to ensure minimum water quality requirements are achieved.
- 4.5.2 The pollution hazard indices for the proposed development are summarised in the following table.

Land Use	Total Suspended Solids	Metals	Hydrocarbons	
Roofs	0.2	0.2	0.05	
Driveways/road	0.5	0.4	0.4	

Table 4.5.1: Pollution Hazard Indices (CIRIA Report C753 Table 26.2)

4.5.3 The indicative SuDS mitigation indices for discharges to groundwater for the features proposed are summarised in the following table.

Component	Total Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Basin	0.6	0.5	0.6

 Table 4.5.2: Indicative SuDS Mitigation Indices for Discharges to Groundwater (CIRIA Report C753 Table 26.4)

4.6 Maintenance & Management

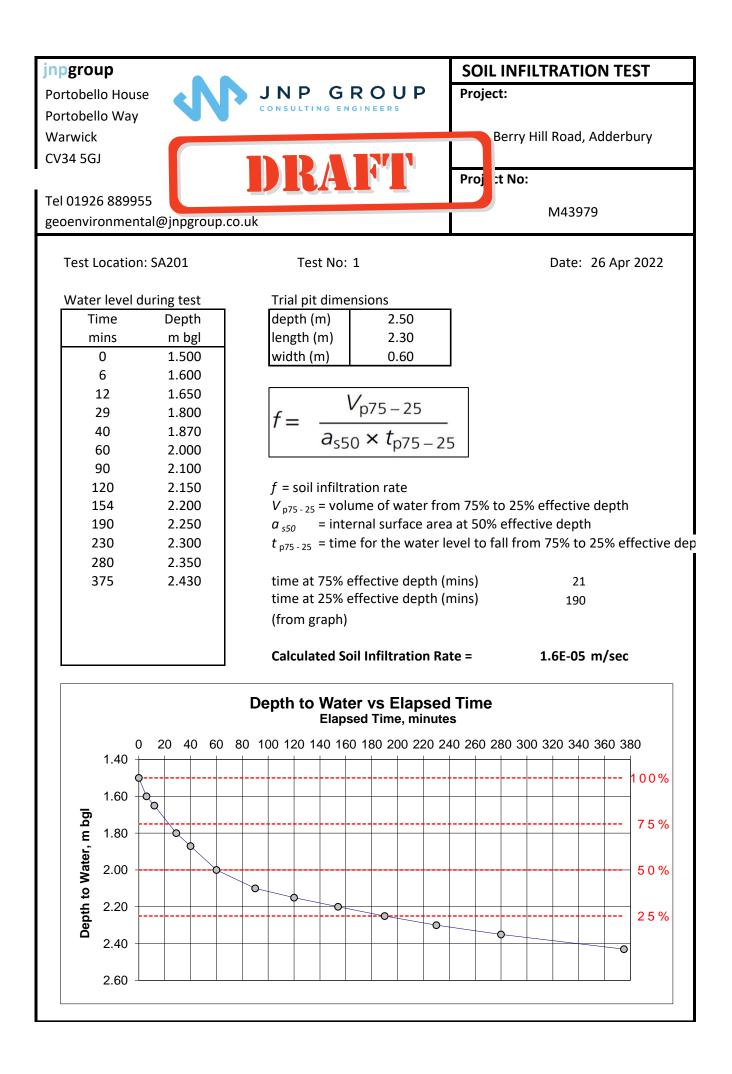
4.6.1 A Private Management Company is to be appointed, by the developer, to manage and maintain the drainage networks, except for the road drainage which is expected to be adopted by the Highway Authority.

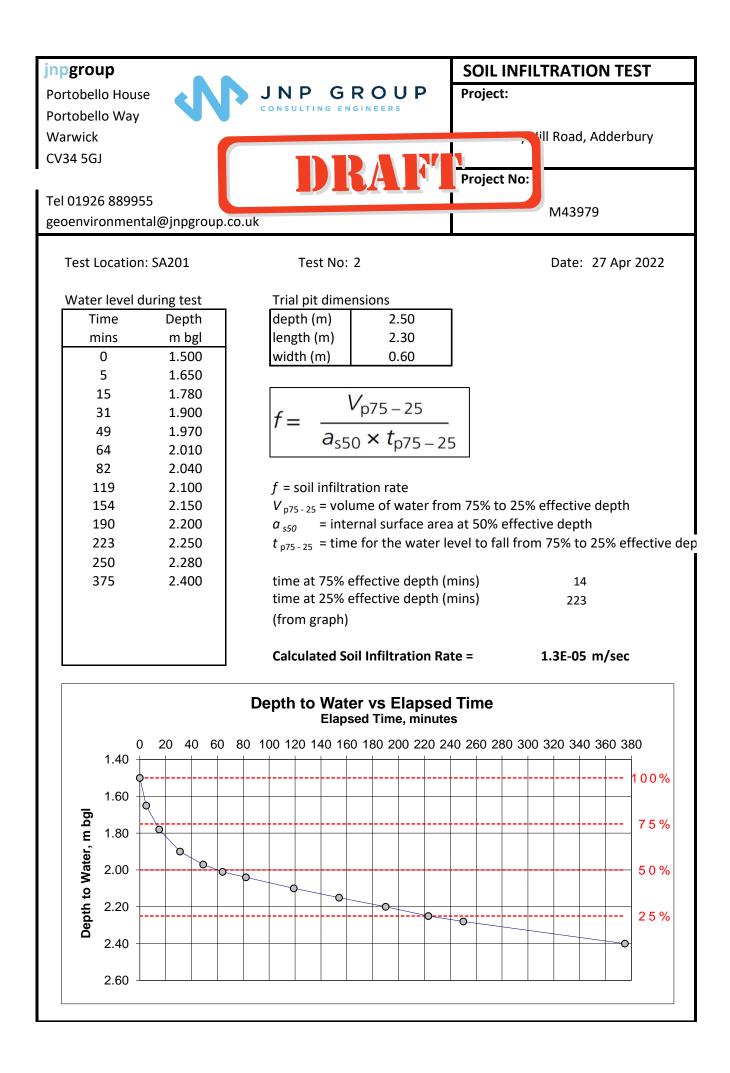
5 FOUL WATER DRAINAGE

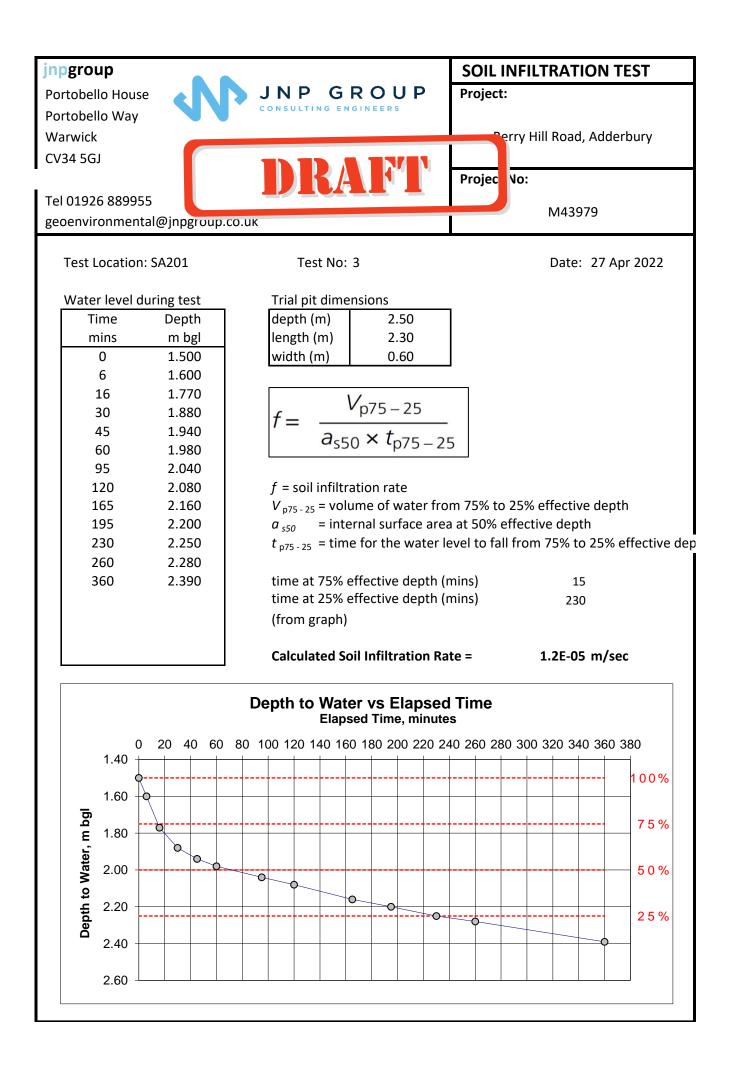
5.1 Introduction

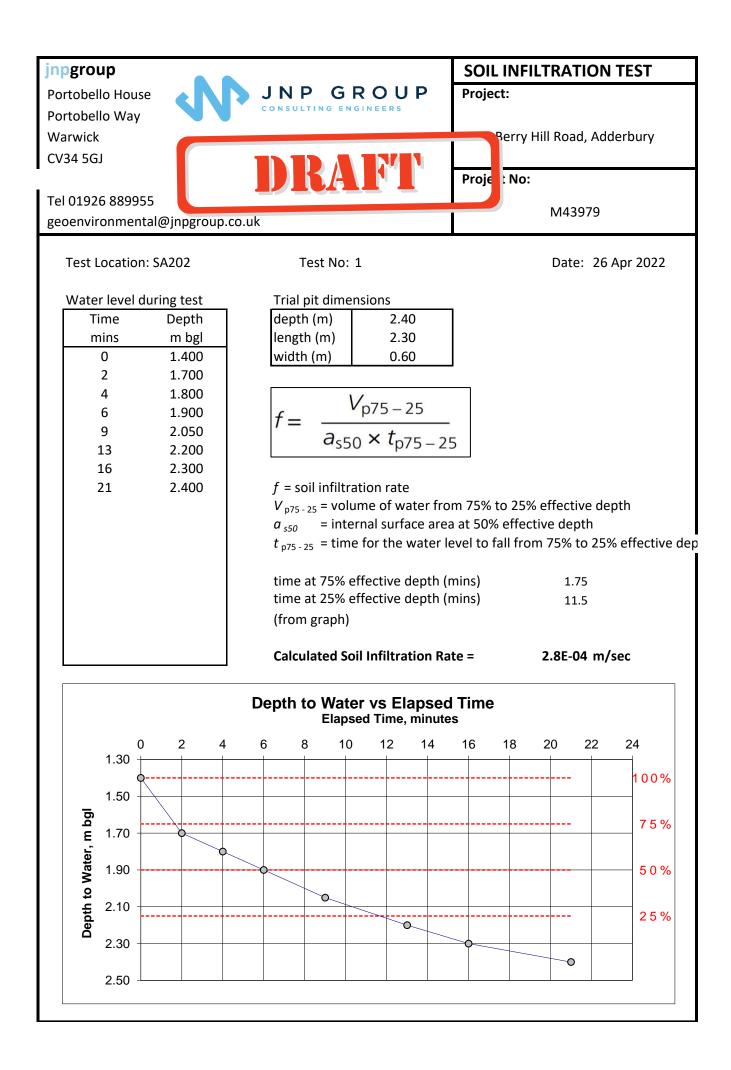
5.1.1 Thames Water raised no objections against the Outline Planning application.

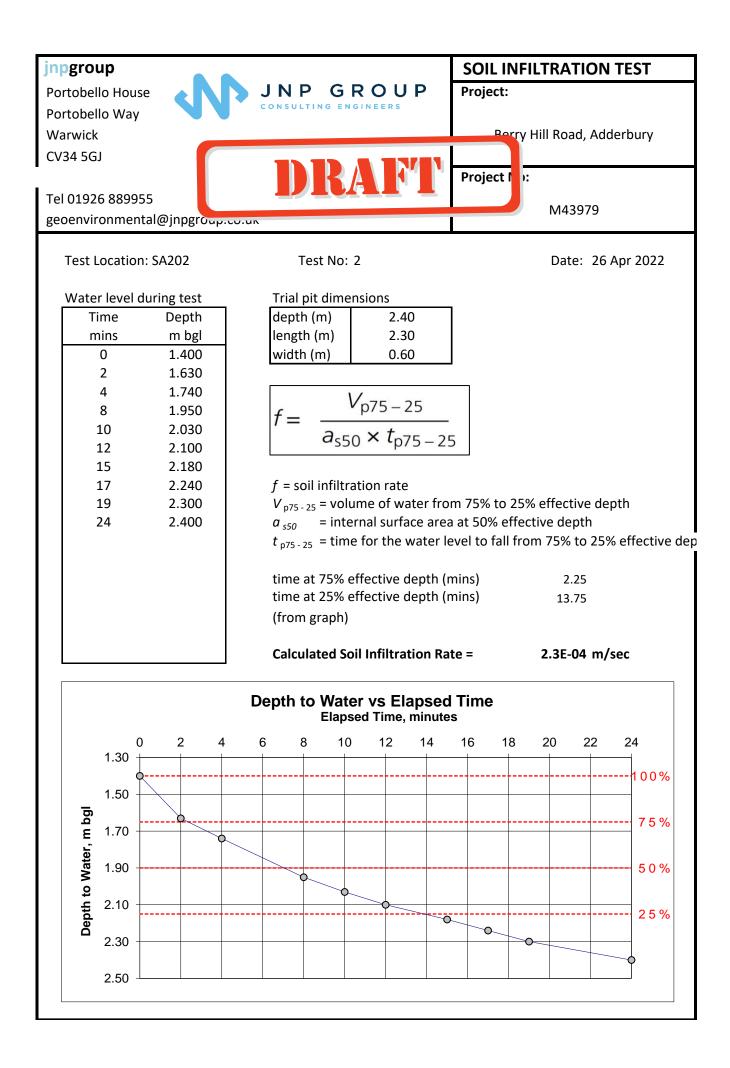
5.2 Third-party Permissions


- 5.2.1 The public sewerage is located on third-party land.
- 5.2.2 It is recommended that discussions are held with the relevant landowner(s) to establish if they would grant the necessary rights to construct a foul water sewer within their land by private negotiation.
- 5.2.3 Alternatively, a foul sewer could be requisitioned under Section 98 of the Water Industry Act.

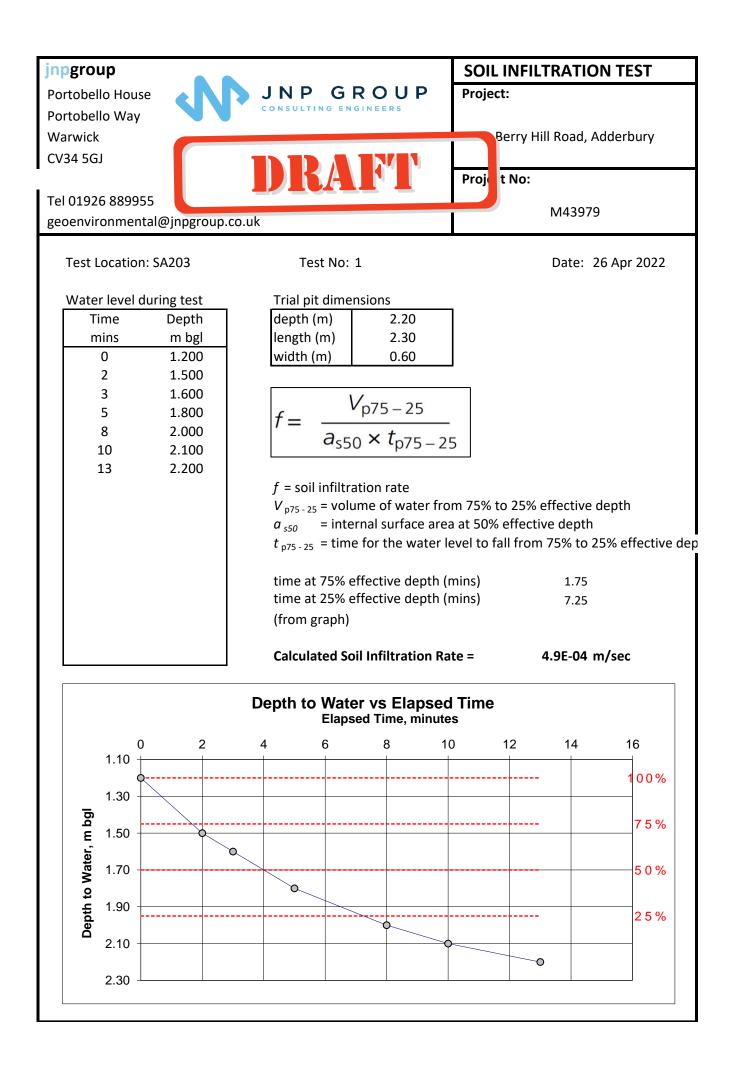

6 CONCLUSIONS & RECOMMENDATIONS

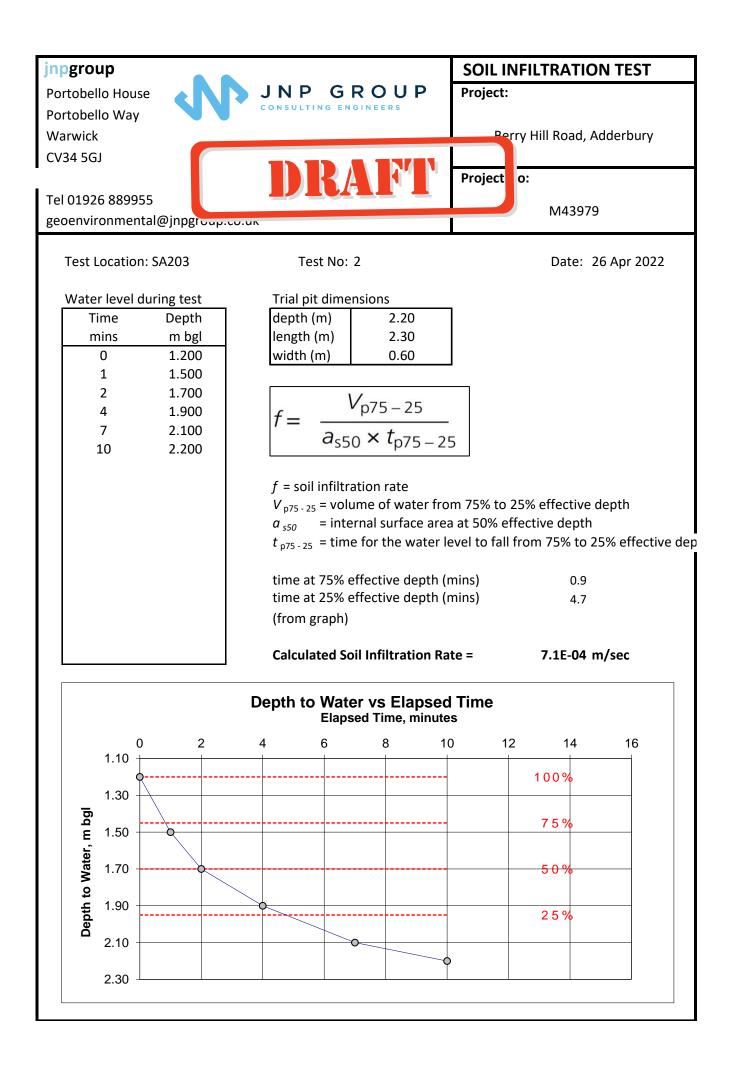

- Discussions should be held with the third-party landowner(s) to the east to establish if they would grant the necessary rights to construct foul water drainage within their land. If so, the topographical survey should be extended as appropriate, ensuring that cover and invert levels of the manholes immediately upstream and downstream of the proposed point of connection are confirmed.
- 2. If third-party negotiations fail, a sewer requisition application should be made to Thames Water at the appropriate time.
- 3. The following information should be prepared to support a future discharge of conditions application:
 - Oxfordshire County Council SuDS Flows and Volumes LLFA Technical Assessment Pro-forma.
 - Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire - Appendix D: Information required for Full Applications

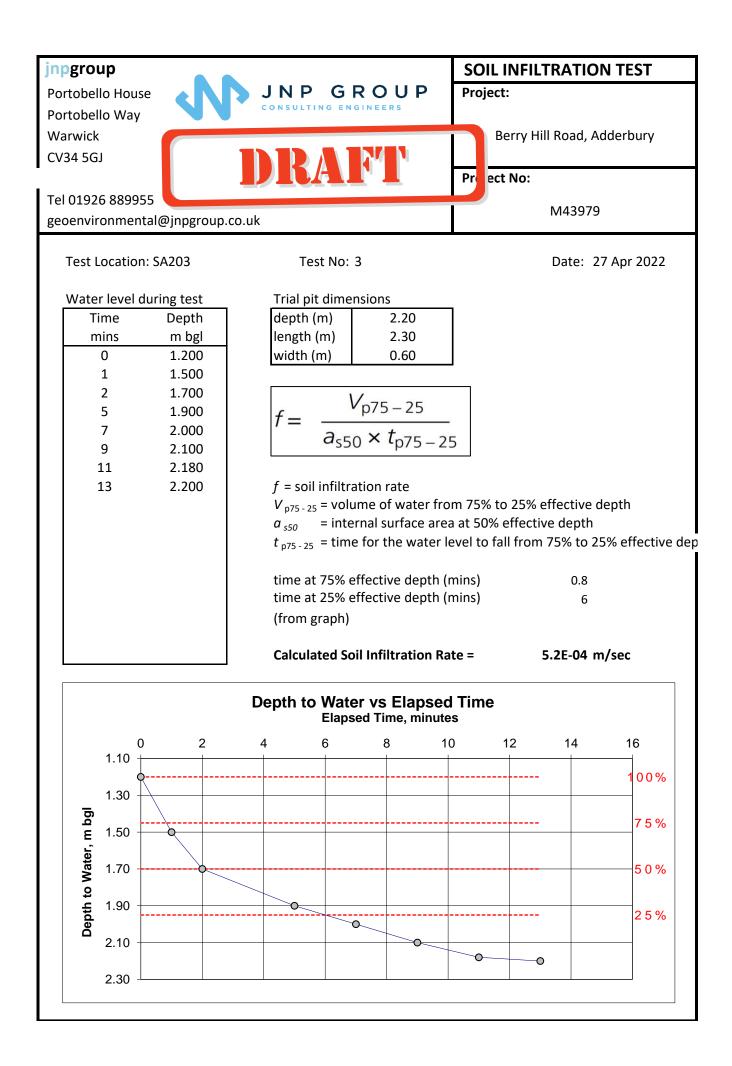



APPENDIX I – SUPPORTING INFORMATION









SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

This form identifies the information required by Oxfordshire County Council LLFA to enable technical assessment of flows and volumes determined as part of drainage I SuDS calculations.

Note : * means delete as appropriate; Numbers in brackets refer to accompanying notes.

SITE DETAILS

1.1	Planning application reference		
1.2	Site name		
1.3	Total application site area (1	m ² •	.•ha
1.4	Is the site located in a CDA or LFRZ	Y/N	
1.5	Is the site located in a SPZ	Y/N	

VOLUME AND FLOW DESIGN INPUTS

2.1	Site area which is positively drained by SuDS (?
2.2	Impermeable area drained pre development (³
2.3	Impermeable area drained post development (31
2.4	Additional impermeable area (2.3 minus 2.2)
2.5	Predevelopment use (4 Greenfield / Brownfield / Mixed*
2.6	Method of discharge (⁵ Infiltration / waterbody / storm sewer/ combined sewer*
2.7	Infiltration rate (where applicable)m/hr
2.8	Influencing factors on infiltration
2.9	Depth to highest known ground water tablemAOD
2.10	Coefficient of runoff (Cv) (6
2.11	Justification for Cv used
2.12	$FEH\ rainfall data\ used \qquad (Note that\ FSR\ is\ no\ longer\ the\ preferred\ rainfall\ calculation\ method) \qquad Y/N$
2.13	Will storage be subject to surcharge by elevated water levels in watercourse/ sewer $Y\!/N$
2.14	Invert level at outlet (invert level of final flow control)mAOD
2.15	Design level used for surcharge water level at point of discharge ($^{14}\mathrm{l}$

SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

CALCULATION OUTPUTS

Sections 3 and 4 refer to site where storage is provided by attenuation and I or partial infiltration. Where all flows are infiltrated to ground omit Sections 3-5 and complete Section 6.

3.0	Defining rate of runoff from the sit	e	
3.2	Max.dischargefor1in1yearrainfall	I/s/ha,	I/s for the site
3.2	Max.discharge for Qmed rainfall	I/s/ha,	I/s for the site
3.3	Max.dischargefor1in30yearrainfall	I/s/ha,	I/s for the site
3.4	Max. discharge for 1 in 100 year rain	ıfallI/s/ha,	I/s for the site
3.5	Max.dischargefor1in100yearplus40	%CCI/s/I	na,I/s for the site
4.0	Attenuation storage to manage pe	ak runoff rates from t	he site
4.1	Storage - 1 in 1 year	m ³ m ³ /m ² (of developed impermeable area)
4.2	Storage -1in 30 year (7		
4.3	Storage -1in 100 year (8)	m ³ m3/m2	
4.4	Storage - 1 in 100 year plus 40%CC $_{(9)}$	m3m3/m	2
5.0	Controlling volume of runoff from	the site	
5.1	Pre development runoff volume(b	m ³ f	or the site
5.2	Post development runoff volume (unmitig	gated) (b	r the site
5.3	Volume to be controlled/does not leave	/e site (5.2-5.1)	m ³ for the site
5.4	Volume control provided by Interception losses(11)		m3
	Rain harvesting(12) Infiltration (even at very low rates) Separate area designated as long term s	torage(¹³)	m3 m3 m3
5.5	Infiltration (even at very low rates)		m3
5.5 6.0	Infiltration (even at very low rates) Separate area designated as long term s	or 5.4)	m3 m3
	Infiltration (even at very low rates) Separate area designated as long term so Total volume control (sum of inputs f	or 5.4) on only)	m3 m3

Revision1.4-IssuedJuly2019

SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

Notes

- 1. All area with the proposed application site boundary to be included.
- The site area which is positively drained includes all green areas which drain to the SuDS system and area of surface SuDS features. It excludes large open green spaces which do not drain to the SuDS system.
- 3. Impermeable area should be measured pre and post development. Impermeable surfaces includes, roofs, pavements, driveways and paths where runoff is conveyed to the drainage system.
- 4. Predevelopment use may impact on the allowable discharge rate. The LLFA will seek for reduction in flow rates to GF status in all instances. The design statement and drawings explain/ demonstrate how flows will be managed from the site.
- 5. Runoff may be discharge via one or a number of means.
- 6. Sewers for Adoption 6th Edition recommends a Cv of 100% when designing drainage for impermeable area (assumes no loss of runoff from impermeable surfaces) and 0% for permeable areas. Where lower Cv's are used the application should justify the selection of Cv.
- 7. Storage for the 1 in 30 year must be fully contained within the SuDS components. Note that standing water within SuDS components such as ponds, basins and swales is not classified as flooding. Storage should be calculated for the critical duration rainfall event.
- 8. Runoff generated from rainfall events up to the 1 in 100 year will not be allowed to leave the site in an uncontrolled way. Temporary flooding of specified areas to shallow depths (150-300mm) may be permitted in agreement with the LLFA.
- 9. Climate change is specified as 40% increase to rainfall intensity, unless otherwise agreed with the LLFA / EA.
- 10. To be determined using the 100 year return period 6 hour duration rainfall event.
- 11. Where Source Control is provided Interception losses will occur. An allowance of <u>5mm rainfall depth</u> can be subtracted from the net inflow to the storage calculation where interception losses are demonstrated. The Applicant should demonstrate use of subcatchments and source control techniques.
- 12. Please refer to Rain harvesting BS for guidance on available storage.
- 13. Flow diverted to Long term storage areas should be infiltrated to the ground, or where this is not possible, discharged to the receiving water at slow flow rates (maximum 21/s/ha). LT storage would not be allowed to empty directly back into attenuation storage and would be expected to drain away over 5-10 days. Typically LT storage may be provided on multi-functional open space or sacrificial car parking areas.
- 14. Careful consideration should be used for calculations where flow control/storage is likely to be influenced by surcharged sewer or peak levels within a watercourse. Storm sewers are designed for pipe full capacity for 1 in 1 to 1 in 5 year return period. Beyond this, the pipe network will usually be in conditions of surcharge. Where information cannot be gathered from Thames Water, engineering judgement should be used to evaluate potential impact (using sensitivity analysis for example).
- 15. In controlling the volume of runoff the total volume from mitigation measures should be greater than or equal to the additional volume generated.

Design and Credit to: McCloy Consulting Ltd

APPENDIX D: INFORMATION REQUIRED FOR FULL APPLICATIONS

The following information should be provided for every drainage strategy submitted to the LLFA for consideration as part of any **Full application**.

Detail required for Full Applications	Provided?
Non-technical summary	
Non-technical summary of the proposed drainage strategy.	
Description of the type of development	
Description of the type of development proposed and where it will be located. Include whether it is	
new development, an extension to existing development or change of use etc. State the area of the	
development site itself, how much of the site is currently hard standing, the proposed area to be	
hard standing post-development, and any proposed areas of public open space.	
Nets that is relative a grant school of important blacks and should include a 400/ allowance for	
Note that in calculations proposed values of impermeable area should include a 10% allowance for	
Urban Creep, as taken from CIRIA C753 (version 6) paragraph 24.7.2.	
Location plan	
Location plan at an appropriate scale should be provided with the application, showing site outline	
and other adjacent land under the applicant's control.	
Topography plan	
Topographical survey of the site, including cross-sections of any adjacent watercourses for	
appropriate distance upstream and downstream of discharge point if appropriate.	
Layout Plan	
Proposed layout of the development, clearly identifying areas of impermeable surfacing, public open	
space, natural features such as watercourses, and allocated areas for surface water storage.	
Ground Investigation	
which should account for:	
The presence of constraints that must be considered prior to planning infiltration SuDS;	
The drainage potential of the ground;	
 Potential for ground instability when water is infiltrated; and 	
 Potential for deterioration in groundwater quality as a result of infiltration. 	
Assessment of all existing flooding risks to the site	
An assessment should be made of the risk to the site from all sources of flooding:	
• Surface water – the Environment Agency's Surface Water flood map can be used to assess	
the level of surface water flood risk to the site. If this map is disputed or considered inaccurate,	
the developer would need to model the expected flows across the site and use the results to	
determine the level of risk to the site.	
• Groundwater – typically a geotechnical report is required to cover this.	
• Canals - normally a letter from the Canal and River Trust stating that there is no risk, otherwise	
modelling of potential overtopping or breach.	
• Reservoirs the Environment Agency inundation maps can be used to determine local level	
of risk. If the mapped inundation extent is disputed, the Environment Agency may require	
further modelling by developer.	
 Sewer – typically a letter or model report from the Water Company. 	
• Fluvial (main river or ordinary watercourse) - the Environment Agency have published	
flood mapping for watercourses with a catchment greater than 3km ² . They can be contacted	
to obtain models or data associated with this mapping. The Environment Agency will advise	

	Provided?
on whether flood risk associated with Main River has been assessed appropriately. If only approximate modelling is available for an ordinary watercourse and it is felt to be inaccurate or is disputed, the developer will be required to model such flooding accurately to ensure their development is safe. In some small catchments, the Environment Agency's Surface Water flood map may be considered as a suitable proxy where there is no fluvial floodplain mapping.	
Explanation of how each of these flood risks will be fully mitigated	
 This could require detailed modelling of some sources where significant risk is shown on high level datasets. It might mean applying the sequential approach by avoiding building on one part of the site where there is known flooding. Examples of mitigation measures (note: this list in not exhaustive): Setting minimum floor levels of the development; 	
 Utilising the sequential approach by locating more sensitive development out of the floodplain that affects the site; 	
 Works to improve/divert infrastructure to eliminate risk; Proposals to route flood flows through a development so they do not adversely affect the development; 	
 Avoiding the use of below-ground development or basements adjacent to areas of flood risk unless they are designed for flood storage; Setting residential development 150mm above the adjacent ground level. 	
direction of flow, invert and cover levels, gradients diameters and dimensions that are referenced in Micro Drainage (or similar) reports. The methods of flow control must be detailed, as should non-conventional elements such as ponds, swales, permeable paving etc.	
Full explanation of the forms of SuDS used on the site Including reasons for the use of these features, what flood mitigation, water quality, environmental and social benefits they might achieve. If no SuDS methods are proposed then justification and	
evidence will need to be provided as to why they are not appropriate for the site. Modelling of the proposed SuDS system for the site, showing the behaviour of the site for the main	
 Typical operation of the system for low rainfall and first-flush events, with indication of how treatment of surface water will be achieved. 	
 No above ground flooding for any conventional element of the system for the 3.3% (1in30) event. 	
 No flooding from the system to property or critical/sensitive infrastructure for the 1% (1in100) plus climate change event. 	
Explanation of how the drainage discharge hierarchy has been followed, providing evidence why any are inappropriate:	
Firstly, to infiltration/soakaway	
 Secondly, to a watercourse or highway ditch (with permission) Thirdly, to a surface water sewer or highway drain (with permission) Lastly, to a combined sewer (with permission) 	

Detail required for Full Applications	Provided?
 If discharge is to an ordinary watercourse, evidence will need to be provided to ensure that the system can accept the proposed flows to an acceptable downstream point without increasing risk to others. If the watercourse is not within the boundary of the site, evidence will be required that the developer has a right to cross 3rd party land. The drainage calculations will need to include an analysis of the effects on the drainage system if the outfall is likely to be surcharged during flooding events. 	
 If discharge is to a surface water or combined sewer, or highways ditch or drain, letter of confirmation from the Water Company or responsible body will be required, stating their required discharge maximum rates and confirmation that there is adequate capacity in the existing system. This information is generally provided by going through the relevant water company's "Pre-Planning Service". This is a formal process that all developers are expected to go through to inform their planning applications. There is normally an associated cost for this service and a minimum timescale of 15 working days to obtain a response. The advice is then usually valid for a one year period. This process will provide assurance that there are no capacity issues with third party assets, as we as the LLFA are not able to make this type of assumption on behalf of a Water and Sewerage provider. Thames Water: https://my.thameswater.co.uk/developers/pre-planning-serviceaspx Severn Trent Water: https://www.stwater.co.uk/developers/application-forms-and-guidance-notes/ (> application forms > Development enquiry application form) 	
Calculations of current runoff from site Calculated runoff rates for the existing site for the following rainfall events: QBAR, 3.3% (1in30), 1% (1in100) and, 1% (1in100) plus climate change. A range of rainfall events should be assessed and the critical duration rainfall event selected for each case. For greenfield sites, the methodology in the EA/Defra document "Preliminary Rainfall Runoff Management for Development (W5- 074/A/TR1)" should be used as the basis for calculations. For brownfield sites, clearly state the existing impermeable area and determine the capacity of any existing drainage system.	
Calculations of proposed discharge from site All hydraulic calculations must be produced using approved software and should model the full drainage system. Provide a supporting explanation of methodology. Please note that it is not considered appropriate to use the Modified Rational Method for design calculations other than initial design estimates (i.e. at Outline planning) or for very simple sites (i.e. Minor developments).	
Clearly state the proposed impermeable area of the development and how this compares to the existing site. In all calculations, proposed values of impermeable area should include a 10% allowance for Urban Creep, as taken from CIRIA C753 (version 6) paragraph 24.7.2.	
Use the calculation of current runoff to decide discharge rates on the following basis:	
 Greenfield sites should discharge at a maximum of the equivalent rate so that the site behaves like the original greenfield across the range of events. 	
• Brownfield sites are strongly encouraged to discharge at the greenfield rate wherever possible. As a minimum, brownfield sites should reduce the discharge by 40% to account for the impacts of climate change.	
 Developers have the option to limit discharge for all events to the QBAR flow rate; or install a complex discharge control which reflects the original discharge or run-off rates from the site across the range of storm events. E.g. QBAR, 3.3% (1in30), 1% (1in100), 1% (1in100) plus climate change and provide Long Term Storage for all runoff volume greater than the greenfield volume (as set out in 'Calculation of Storage Volume' below). Using complex 	

Detail required for Full Applications	Provided
controls is more expensive but reduces the amount of attenuation storage required on the site and is probably worth doing on larger sites.	
 It is understood that some guidance recommends minimum discharge rates of 5 l/s, to minimise use of small orifice openings that could be at risk of blockages. However, appropriate consideration of filtration features to remove suspended matter and suitable maintenance regimes should minimise this risk and therefore the minimum limit of 5l/s does not apply in Oxfordshire. 	
• Due to the additional datasets that have been added to the Flood Estimation Handbook (FEH) since design rainfall events were developed originally in the Flood Studies Report (FSR) (NERC, 1975), rainfall depths obtained using FEH show significant differences from those obtained from FSR in some parts of the country. Within Oxfordshire, rainfall depths are often greater using more up to date FEH datasets than those using FSR, therefore for various storm events, greater run-off is produced, and additional attenuation is likely to be required. As FEH rainfall data is more up to date, calculations should use FEH data for surface water drainage design, except where the critical storm duration is less than 60 minutes, as it is recognised that FEH data is less robust for short duration storms. If FEH rainfall data is not used as described above, then sensitivity testing to assess the implications of FEH2013 rainfall must be provided. This should demonstrate that the development proposals remain safe and do not increase flood risk to third parties.	
 Based on the existing and proposed discharge cases calculated as above, the applicant should now have detailed calculations of storage volume required on site for the 1% (1in100) plus climate change case. 	
 When running calculations, the LLFA expect Cv values should be set to 0.95 for roofed areas and 0.9 for paved areas. Default software values should not be used for storage estimate calculations. It is the designer's responsibility to justify why Cv values of less than 0.9 are deemed appropriate 	
Calculations of storage volume All hydraulic calculations must be produced using approved software. Calculations of storage volume hat will be required on site for the 1% (1in100) plus climate change case, bearing in mind the controlled discharge rate. Where appropriate this should specify the volumes of both attenuation storage and Long-Term storage. See also note above about use of FEH rainfall data. Plans should be provided clearly identifying where this storage will be provided, and the water level within each element for the design storm events. Storage elements should be designed to empty sufficiently within 24 hours to be able to accommodate 80% of the 10% (1in10) storm runoff.	
nfiltration design Where any discharge to ground by infiltration is proposed, details of the infiltration system will be required. Full infiltration testing results are required along with a summary of the infiltration rate taken for each infiltration element. Infiltration elements should be designed to half empty within 24 hours to be able to accommodate further rainfall events.	
Residual Risk As well as the consideration of the modelled events above, there should be a qualitative examination of what would happen if any part of the system fails, demonstrate that flood water will have flow routes hrough the site without endangering property and where possible maintaining emergency access/egress routes.	
Landscaping Proposals, where relevant, for integrating the drainage system into the landscape or required publicly accessible open space and providing habitat and social enhancement.	

Designing for exceedance	
For events with a return-period in excess of 3.3% (1in30), surface flooding of open spaces such as	
landscaped areas or car parks is acceptable for short periods, but the layout and landscaping of the	
site should aim to route water away from any vulnerable property, and avoid creating hazards to	

Detail required for Full Applications	Provided?
access and egress routes (further guidance in CIRIA publication C635 Designing for exceedance in	
urban drainage - good practice). No flooding of property should occur as a result of a 1% (1in100)	
storm event (including an appropriate allowance for climate change). In principle, a well-designed	
surface water drainage system should ensure that there is little or no residual risk of property flooding	
occurring during events well in excess of the return-period for which the sewer system itself is	
designed. This is called designing for exceedance. The CIRIA publication `Designing for exceedance	
in urban drainage-good practice' can be accessed via the following link:	
http://www.ciria.com/suds/ciria_publications.htm. If the drainage system has been designed to allow	
flooding on site is during the 1% (1in100) storm event (including an appropriate allowance for climate	
change), provide a plan clearly identifying where this flooding will occur.	
Any flooding of the site should be assessed to ascertain if is safe for the sites users. The depth and	
rate of flow of the flood water should be compared to Table 4 of "Supplementary Note on Flood Hazard	
Ratings and Thresholds for Development Planning and Control Purpose" May 2008	
www.sciencesearch.defra.gov.uk/Document.aspx?Document=FD2321_7400_PR.pdf.	
Hydraulic calculations of the full drainage system	
All hydraulic calculations must be produced using approved software. All elements of the drainage	
system should be included in the model, with an explanation provided for any assumptions made in	
the modelling. 'Source control' modelling is not appropriate for a Full planning application. The model	
results should be provided for critical storm durations of each element of the system and should	
demonstrate that all the criteria above are met and that there is no surcharging of the system for the	
QBAR rainfall, no flooding of the surface of the site for the 3.3% (1in30) rainfall, and flooding only in	
safe areas for the 1% (1in100) plus climate change.	
See also note above about use of FEH rainfall data.	
Explanation of who will maintain and fund the maintenance	
of the proposed system over the lifetime of the development and evidence that access will be	
physically possible to carry out that maintenance, without entering others land. Ideally, SuDS features	
should be located within public space and a maintenance manual be produced to pass to	
the future maintainer. Full details will be required at Discharge of Conditions.	
the future maintainer. I dir details will be required at Discharge of Conditions.	
SuDS As Built and Maintenance Details	
Drive to first assumption, a record of the installed CuDC and site wide drainant scheme shall be	
Prior to first occupation, a record of the installed SuDS and site wide drainage scheme shall be submitted to and approved in writing by the Local Planning Authority for deposit with the Lead Local	
Flood Authority Asset Register. The details shall include:	
(a) As built plans in both .pdf, CAD and .shp file format;	
(b) Photographs to document each key stage of the drainage system when installed on site;	
(c) Photographs to document the completed installation of the drainage structures on site;	
(d) The name and contact details of any appointed management company information.	
	1

Phasing

Explanation of how the site will adequately consider flood risk at all stages of the development. Avoiding interim developed phases that are unprotected. Phases can only progress if adequate flood mitigation measures are in place for that particular phase. This should avoid one small phase of the site being allowed to discharge at the calculated rate for a larger part of the entire development. Adequate flood risk measures for each individual phase should be able to stand alone, (until the entire site is completed), without themselves being at flood risk and without increasing flood risk for other parties.

APPENDIX II – CALCULATIONS

Banners Gate Ltd					Page 1
Cavendish House	(22021)				
10-11 Birmingham Street	Berry H	ill R	oad		
Halesowen W.Midlands B63 3HN	Adderbu	ry			Micro
Date	Designe	d by	SM		
File	Checked	by			Drainage
XP Solutions	Source	Source Control 2020.1.3			
<u>ReFH2</u>	2 Rural Run	off Pe	eak Flows		
	Inp	ut			
Return Period (Years)			100	Area (ha) 1.000	
FEH Rainfall Version	446000 004000		2013	SAAR (mm) 649	
Site Location GB - Data Type	446938 234809	SP 46	938 34809 Point	BFIHOST 0.841 FARL 0.000	
Season			Winter	SPRHOST 0.000	
	gland/Wales/N	lorther		RBEXT (2000) 0.0000	
	Resu	lts			
R	eturn Period	Rural	Urban		
	(Years)	(l/s)	(l/s)		
	User	2.1	2.1		
	Q1	0.6	0.6		
	Q2				
	Q5				
	Q10				
	Q30				
	Q50 075				
	Q75 Q100				
	Q200				
	Q1000				
	Q1000	5.5	5.9		

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN		Storm Network 1 ayley	Page 1 22021 - Adderbury Surface Water Highway Network		
		<u>Design S</u>	Settings			
	Rainfall Methodology	FEH-13	Minimum Velocity (m/	s) 1.00		
	Return Period (years)	30	Connection Typ	e Level Soffits		
	Additional Flow (%)	0	Minimum Backdrop Height (r	n) 1.800		
	ČÝ	0.840	Preferred Cover Depth (r	n) 1.200		
	Time of Entry (mins)	4.00	Include Intermediate Grour	nd √		
	Maximum Time of Concentration (mins)	30.00	Enforce best practice design rule	es √		
	Maximum Rainfall (mm/hr)	500.0				

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Depth (m)
			(m)		
HD02	0.013	4.00	108.443	1350	1.443
HD04	0.065	4.00	108.246	1350	1.446
HD06	0.021	4.00	107.803	1350	1.453
HD08	0.046	4.00	107.689	1350	1.539
HD10	0.051	4.00	107.338	1350	1.538
HD12	0.024	4.00	106.788	1350	1.538
HD14	0.023	4.00	108.213	1350	1.463
HD16	0.037	4.00	107.608	1350	1.458
HD18	0.025	4.00	106.644	1350	1.594
HD20	0.015	4.00	105.893	1350	1.543
HD22	0.027	4.00	105.372	1350	1.522
HD24	0.084	4.00	103.966	1350	1.516
BASIN			103.200	100	0.900

Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN							01 - 2022. Network 1		22	Page 2 22021 - Adderbury Surface Water Highway Network			
Links													
	Name	US Node	DS Node	Length (m)	US IL (m)	DS IL (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)			
	1.000	HD02	HD04	17.256	107.000	106.800	86.3	225	. 4.15	139.9			
	1.001	HD04	HD06	44.675	106.800	106.350			4.85	139.9			
	1.002	HD06	HD08	11.370	106.350	106.225			4.96	139.9			
	1.003	HD08	HD10	34.804	106.150	105.800			5.40	136.0			
	1.004 1.005	HD10 HD12	HD12 HD18	53.659 21.123	105.800 105.250	105.250 105.050			5.91 6.26	131.0 127.9			
	2.000	HD12	HD16	20.232	105.250	105.050			4.15	139.9			
	2.000	HD14	HD18	32.073	106.150	105.125			4.38	139.9			
	1.006	HD18	HD20	19.381	105.050	104.350			6.35	127.1			
	1.007	HD20	HD22	10.260	104.350	103.850			6.40	126.7			
	1.008	HD22	HD24	28.485	103.850	102.450			6.51	125.7			
	1.009	HD24	BASIN	15.121	102.450	102.300) 100.8	300	6.55	125.4			
			Nam	e Vel (m/s)	Cap (I/s)	Flow (I/s)	Σ Area (ha)	Σ Add Inflow					
							. ,	(I/s)					
			1.000		56.0	5.5	0.013	0.0					
			1.00		52.2	33.1	0.078	0.0					
			1.002		54.5	42.0	0.099	0.0					
			1.003 1.004		111.4 112.5	59.9 77.9	0.145 0.196	0.0 0.0					
			1.00		108.1	85.4	0.190	0.0					
			2.000		89.9	9.8	0.023	0.0					
			2.00		93.3	25.5	0.060	0.0					
			1.000		212.0	117.7	0.305	0.0					
			1.007		246.4	123.1	0.320	0.0					
			1.008		247.4	132.4	0.347	0.0					
			1.009	9 1.566	110.7	164.1	0.431	0.0					

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN	File: NETWORK 01 - 2022.08.24.PFD Network: Storm Network 1 Oliver Bayley 24/08/2022	Page 3 22021 - Adderbury Surface Water Highway Network
		Simulation Settings	
	Rainfall Methodology FEH-13 Summer CV 0.840 Winter CV 0.750 Drai	Skip Steady State x Check D	l Storage (m³/ha) 0.0 Discharge Rate(s) x Discharge Volume x
	15 30 60 120 180	Storm Durations240360480600720	0 960 1440
Return Period Clin (years) 2 30	5	ional FlowReturn PeriodClimate Character(Q %)(years)(CC %)01000100	
	Node BA	SIN Depth/Area Storage Structure	
	Base Inf Coefficient (m/hr) 1.76400 Side Inf Coefficient (m/hr) 1.76400	Safety Factor10.0InvertPorosity1.00Time to half emp	Level (m) 102.000 oty (mins) 159
	Depth Area (m) (m²) 0.000 148.5	Inf Area Depth Area Inf Area (m²) (m) (m²) (m²) 148.5 1.200 511.1 511.1	
		1988-2022 Causeway Software Solutions Lin	

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN	ət		File: NETW Network: S Oliver Bayl 24/08/2022	torm Net		3.24.PFD		4 1 - Adderbury ace Water Highway Network
	<u>Results fo</u>	or 2 year (Critical St	orm Durati	on. Lowe	est mass	balance:	<u>99.83%</u>	
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
	15 minute summer	HD02	10	107.031	0.031	2.3	0.0443	• •	ОК
	15 minute summer	HD04	10	106.878	0.078	13.6	0.1112		OK
	15 minute summer	HD06	10	106.442	0.092	17.1	0.1317		OK
	15 minute summer	HD08	10	106.247	0.097	24.7	0.1382		OK
	15 minute summer	HD10	10	105.910	0.110	33.4	0.1579	0.0000	ОК
	15 minute summer	HD12	11	105.378	0.128	36.3	0.1825	0.0000	ОК
	15 minute summer	HD14	10	106.782	0.032	4.0	0.0462	0.0000	ОК
	15 minute summer	HD16	10	106.201	0.051	10.4	0.0735	0.0000	OK
	15 minute summer	HD18	11	105.154	0.104	49.5	0.1487	0.0000	OK
	15 minute summer	HD20	11	104.454	0.104	52.1	0.1482	0.0000	OK
	15 minute summer	HD22	11	103.947	0.097	56.3	0.1384	0.0000	OK
	15 minute summer	HD24	11	102.641	0.191	68.6	0.2727	0.0000	OK
	120 minute summer	BASIN	82	102.167	-0.133	31.6	29.0103	0.0000	OK
	Link Event	US	Link	DS	Outflo	w Vel	ocity Fl	ow/Cap	Link
	(Upstream Depth)	Node		Node	(I/s)		ı/s)		Vol (m³)
	15 minute summer	HD02	1.000	HD04).312	0.041	0.1330
	15 minute summer	HD04	1.001	HD06	13		.990	0.260	0.6120
	15 minute summer	HD06	1.002	HD08	16		.157	0.307	0.1647
	15 minute summer	HD08	1.003	HD10	24		.137	0.219	0.7494
	15 minute summer	HD10	1.004	HD12	32		.262	0.287	1.3842
	15 minute summer	HD12	1.005	HD18	36		.459	0.338	0.5299
	15 minute summer	HD14	2.000	HD16).797	0.044	0.1040
	15 minute summer	HD16	2.001	HD18	10		.541	0.111	0.2152
	15 minute summer	HD18	1.006	HD20	50		2.313	0.236	0.4187
	15 minute summer	HD20	1.007	HD22	52		2.547	0.213	0.2112
	15 minute summer	HD22	1.008	HD24	56		.696	0.228	0.9517
	15 minute summer	HD24	1.009	BASIN			.567	0.626	0.6677
	120 minute summer	BASIN	Infiltratio	n	9	.1			

BANNERS GATE	Banners Gate Limi 10-11 Birmingham Halesowen B63 3HN			Netw Oliv		orm Netwo)22.08.24.P rk 1	2	Page 5 22021 - Adderbury Surface Water Highway Network
	<u>Resu</u>	Its for 30	<u>/ear Cr</u>	itical Storm	<u>Duratio</u>	<u>n. Lowest</u>	t mass bala	nce: 99.8	<u>33%</u>
	Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
	15 minute summer	HD02	10	• • •			0.0690	0.0000	OK
	15 minute summer	HD04	10				0.1920	0.0000	OK
	15 minute summer	HD06	10				0.2426	0.0000	OK
	15 minute summer	HD08	10) 106.319	0.169		0.2415	0.0000	ОК
	15 minute summer	HD10	10) 105.999	0.199	85.1	0.2843	0.0000	ОК
	15 minute summer	HD12	11	105.483	0.233	93.8	0.3340	0.0000	ОК
	15 minute summer	HD14	10	106.801	0.051	10.1	0.0726	0.0000	ОК
	15 minute summer	HD16	ç	106.232	0.082	26.4	0.1174	0.0000	ОК
	15 minute summer	HD18	10) 105.234	0.184	127.4	0.2627	0.0000	ОК
	15 minute summer	HD20	11	104.536	0.186	132.3	0.2657	0.0000	ОК
	15 minute summer	HD22	11	104.033	0.183	143.0	0.2613	0.0000	ОК
	15 minute summer	HD24	11	103.136	0.686	176.4	0.9820	0.0000	SURCHARGED
	60 minute summer	BASIN	57	102.407	0.107	111.6	85.5470	0.0000	OK
	Link Event	u U	S	Link	DS	Outflow	Velocity	Flow/Ca	ap Link
	(Upstream De	pth) No	de		Node	(I/s)	(m/s)		Vol (m³)
	15 minute sum				HD04	5.7	0.378	0.10	
	15 minute sum				HD06	34.4	1.207	0.65	
	15 minute sum				HD08	42.9	1.430	0.78	
	15 minute sum				HD10	62.7	1.387	0.56	
	15 minute sum				HD12	83.2	1.542	0.73	
	15 minute sum				HD18	93.4	1.792	0.86	
	15 minute sum	mer HD	14 2		HD16	10.1	1.040	0.11	
	15 minute sum				HD18	26.4	1.893	0.28	
	15 minute sum	mer HD	18 1	.006	HD20	126.9	2.793	0.59	99 0.8811
	· · ·		~ ~ /	~ ~ -					

HD22

HD24

BASIN

15 minute summer

15 minute summer

15 minute summer

60 minute summer

HD20

HD22

HD24

BASIN

1.007

1.008

1.009

Infiltration

133.2

144.6

177.5

12.8

3.023

2.256

2.521

0.541

0.584

1.604

0.4651

1.6423

1.0540

BANNERS GATE	Banners Gate Limi 10-11 Birmingham Halesowen B63 3HN			Netw Olive		m Netwo	22.08.24.PF ′k 1	2	age 6 2021 - Adderbury urface Water Highway Network
	Results for	<u>100 year</u>	<u>+40% C</u>	C Critical S	Storm Du	ration. Lo	owest mass	balance:	<u>: 99.83%</u>
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
	15 minute summer	HD02	<u> </u>	107.612	0.612	12.9	0.8760	0.0000	SURCHARGED
	15 minute summer	HD04	11	107.624	0.824	59.2	1.1785	0.0000	SURCHARGED
	15 minute summer	HD06	11	107.272	0.922	63.6	1.3191	0.0000	SURCHARGED
	15 minute summer	HD08	11	107.105	0.955	99.0	1.3666	0.0000	SURCHARGED
	15 minute summer	HD10	11	106.890	1.090	131.3	1.5595	0.0000	SURCHARGED
	15 minute summer	HD12	11	106.292	1.042	127.1	1.4912	0.0000	SURCHARGED
	15 minute summer	HD14	10	106.819	0.069	18.3	0.0981	0.0000	OK
	15 minute summer	HD16	11	106.269	0.119	47.7	0.1700	0.0000	OK
	15 minute summer	HD18	11	105.952	0.902	187.3	1.2908	0.0000	SURCHARGED
	15 minute summer	HD20	11	105.306	0.956	190.4	1.3680	0.0000	SURCHARGED
	15 minute summer	HD22	11	104.853	1.003	198.5	1.4350	0.0000	SURCHARGED
	15 minute summer	HD24	11	103.710	1.260	252.6	1.8034	0.0000	FLOOD RISK
	120 minute summer	BASIN	98	102.688	0.388	131.8	173.7317	0.0000	OK
	Link Event (Upstream De)		JS ode	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Ca	ıp Link Vol (m³)

LINK Event	03	LINK	D2	Outriow	velocity	гюw/сар	LINK	
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	
15 minute summer	HD02	1.000	HD04	14.8	0.398	0.265	0.6863	
15 minute summer	HD04	1.001	HD06	46.9	1.278	0.900	1.7768	
15 minute summer	HD06	1.002	HD08	62.6	1.574	1.147	0.4522	
15 minute summer	HD08	1.003	HD10	90.8	1.387	0.815	2.4509	
15 minute summer	HD10	1.004	HD12	108.7	1.544	0.966	3.7786	
15 minute summer	HD12	1.005	HD18	122.8	1.873	1.136	1.4875	
15 minute summer	HD14	2.000	HD16	18.3	1.222	0.204	0.3140	
15 minute summer	HD16	2.001	HD18	45.9	1.973	0.492	0.9785	
15 minute summer	HD18	1.006	HD20	178.5	2.756	0.842	1.3648	
15 minute summer	HD20	1.007	HD22	185.7	3.065	0.754	0.7225	
15 minute summer	HD22	1.008	HD24	201.4	2.860	0.814	2.0059	
15 minute summer	HD24	1.009	BASIN	253.0	3.594	2.287	1.0540	
120 minute summer	BASIN	Infiltration		17.1				

	anners Gate Lii 0-11 Birminghai lalesowen 663 3HN			WAY - PLOT 20.pfd orm Network y	Page 1 22021 - Adderbury Indicative Soakaway Design Plot 33 - SA103 - 2 Year & 10 Year
			<u>Design Sett</u>	ings	
		Rainfall Methodolog Return Period (years Additional Flow (% C Time of Entry (mins of Concentration (mins kimum Rainfall (mm/h	s) 10 b) 0 V 1.000 s) 4.00 s) 30.00	Minimum Velocity (Connection Minimum Backdrop Heigh Preferred Cover Depth Include Intermediate Gro Enforce best practice design i	Type Level Soffits t (m) 1.800 n (m) 1.200 ound √
			<u>Links</u>		
Name 1.000 1.002 1.003	Node Nod	e (m) n 12.000 0.0 12.000 0.0	(m) 600 107.300 1 600 107.150 1 600 106.950 1 7 US DS Depth Depth (m) (m) 6 0.350 0.500	(m) (m) (1:X) (i 107.150 0.150 80.0 107.000 0.150 80.0 106.850 0.100 80.0 Σ Area Σ Add Pro h (ha) Inflow Depth 0 0.004 0.0 33	(m/s) 3 0.705
	1.003	1.125 19.9 5.2	2 0.650 0.750	0 0.013 0.0 52	2 0.944
			<u>Manhole Sch</u>	<u>edule</u>	
Node	e Easting (m)	•	•	Dia Connections L nm)	₋ink IL Dia (m) (mm)
RE	446967.787			300	.000 107.300 100
	FI	ow v9.0 Copyright ©	1988-2022 Cause	eway Software Solutions Lir	nited

BANNERS GATE	10-1 Hale	ners Gate Lim 1 Birmingham esowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N yley	- PLOT 20.pf letwork	d	220 Ind	ge 2)21 - Adder icative Soa it 33 - SA10	kaway [Design ar & 10 Year
				Ν	<u>lanhole S</u>	Schedule	2					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ons	Link	IL (m)	Dia (mm)	
	IC	446975.932	234849.976	107.750	0.600	525		1	1.000	107.150	100	
	СР	446957.628	234848.872	107.750	0.800	525		0	1.002 1.002	107.150 107.000	100 100	
								0	1.003	106.950	150	
	SA 20	446953.398	234845.328	107.750	0.900	100	\bigcirc ¹	1	1.003	106.850	150	
				<u>S</u>	imulation	Setting	<u>s</u>					
	Rainfa	all Methodology Summer CV Winter CV	FEH-13 1.000 1.000	Ski	Analysis S ip Steady wn Time (i	State	Detailed x 1440	Chec	k Discha	age (m³/ha) rge Rate(s) rge Volume	0.0 x x	
	15	30 60	120		Storm Du 240	irations 360	480 600	0 .	720	960 1	440	
Return Period C (years) 2	limate C (CC)	-	tional Area (A %) 0	Additional (Q %)			n Period Cl ears) 10	limate (CC	Change %) 0	Addition (A %		Additional Flow (Q %)
		Flo	w v9.0 Copyri	ght © 1988	-2022 Ca	useway	Software Sol	utions	Limited			

+	RS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN	t	File: SOAKAWAY - PL Network: Storm Netwo Oliver Bayley 18/02/2022		Page 3 22021 - Adde Indicative Sc Plot 33 - SA1	erbury bakaway Design 03 - 2 Year & 10 Year
			<u>Node SA 20 I</u>	_ined Soakaway Storage	e Structure		
		Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.46800 0.46800 T 2.0 0.30	Invert Level (m) ime to half empty (mins) Ring Diameter (m) Pit Width (m)	106.250 40 1.500 2.400	Pit Length (m) Depth (m) Inf Depth (m) Number Required	2.400 1.200 1
		Flow v9.0	Copyright © 19	88-2022 Causeway Soft	ware Solutions	s Limited	

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN		File: SOAI Network: \$ Oliver Bay 18/02/2022	Storm Ne /ley 2	twork	·	2202 Indi Plot	Page 4 22021 - Adderbury Indicative Soakaway Design Plot 33 - SA103 - 2 Year & 10 Year			
	<u>Results fo</u>	r 2 year (Critical St	orm Durati	on. Low	<u>est mas</u>	s balance	<u>: 100.00%</u>	1		
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status		
	15 minute summer	RE	ì 10	107.323	0.023	0.8	0.0016	0.0000	OK		
	15 minute summer	IC	10	107.184	0.034	1.6	0.0073	0.0000	OK		
	15 minute summer	CP	10	106.988	0.038	2.6	0.0082	0.0000	OK		
	30 minute summer	SA 20	25	106.504	-0.346	2.2	0.7537	0.0000	OK		
	Link Event	US	Link	DS	Outflo	w Ve	ocity Fl	ow/Cap	Link		
	(Upstream Depth)	Node		Node	(I/s)	()	n/s)	•	Vol (m³)		
	15 minute summer	RE	1.000	IC	• •	•	0.441	0.118	0.0221		
	15 minute summer	IC	1.002	CP	1	.6	0.691	0.231	0.0272		
	15 minute summer	CP	1.003	SA 20	2	.5	0.754	0.128	0.0269		
	30 minute summer	SA 20	Infiltratio	on	0	.5					

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN <u>Results for</u>			File: SOAI Network: 3 Oliver Bay 18/02/2022	Storm Ne /ley 2	etwork	·	Indi Plot	21 - Adderbury cative Soakaway Design : 33 - SA103 - 2 Year & 10 Year
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
	15 minute summer	RE	10	107.333	0.033	1.6	0.0023	0.0000	ОК
	15 minute summer	IC	10	107.200	0.050	3.2	0.0108	0.0000	
	15 minute summer	CP	10	107.005	0.055	5.2	0.0119	0.0000	OK
	30 minute summer	SA 20	26	106.835	-0.015	4.3	1.7341	0.0000	ОК
	Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		ocity Flo n/s)	ow/Cap	Link Vol (m³)
	15 minute summer	RE	1.000	IC	• •	•	0.525	0.236	0.0370
	15 minute summer	IC	1.002	CP			0.829	0.467	0.0457
	15 minute summer 30 minute summer	CP SA 20	1.003 Infiltratio	SA 20	5		0.910	0.258	0.0451

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen TE B63 3HN						File: SOAKAWAY - PLOT 20.pfd Network: Storm Network Oliver Bayley 18/02/2022						Page 1 22021 - Adderbury Indicative Soakaway Design Plot 20 - SA103 - 100 Year + 40% CC			
						<u>Desig</u>	<u>gn Sett</u>	<u>ings</u>								
	Maxim	um Time Ma	Returr Add Time of Conce	n Perioc itional F of Entr entratio	nodology d (years) Flow (%) CV ry (mins) n (mins) (mm/hr)	FEH-13 10 0 1.000 4.00 30.00 500.0			inimum Prefe Include	Co Backdi erred Co e Interme	nnecti op He ver De ediate	ity (m/s) on Type sight (m) epth (m) Ground gn rules	Level So 1.800 1.200 √	offits		
							<u>Links</u>									
Nai 1.0 1.0 1.0	Not 00 RE 02 IC		le (1 12 12	ngth m) .000 .000 .000 Cap (I/s) 6.8 6.8 19.9	ks (mm) / n 0.600 0.600 0.600 Flow (I/s) 1.6 3.2 5.2	(m 107.3 107.1) 300 1 150 1	n () () () 50 0. 00 0.		y De (m	Dia (mm) 100 100 150 Pro epth V 1m) 33 48 52	4.22 4.61	Rain (mm/hr) 109.8 109.8 109.8		
						<u>Manho</u>	ole Sch	edule	2							
		Easting (m)		rthing (m)	CL (m)	Dep (m	ı) (n	Dia nm)	Co	nnectio	ons	Link	IL (m)	Dia (mm)		
R	⊑ 44	6967.787	2348	860.263	107.75	0 0.4	50	300		×.	0	1.000	107.300	100		
		F	low v9.0) Соруі	right © 19	88-2022	Cause	eway	Softwa	are Solu	utions	Limited	d			

BANNERS GATE	10-1 Hale	ners Gate Lim 1 Birmingham esowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N lyley	- PLOT 20 letwork	.pfd	Page 2 22021 - Adderbury Indicative Soakaway Design Plot 20 - SA103 - 100 Year + 40% CC			
				Δ	<u>/lanhole :</u>	Schedule	2					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conne	ctions	Link	IL (m)	Dia (mm)	
	IC	446975.932	234849.976	107.750	0.600	525		1	1.000	107.150	100	
								0	1.002	107.150	100	
	CP	446957.628	234848.872	107.750	0.800	525		1	1.002	107.000	100	
							0 ²	0	1.003	106.950	150	
	SA 20	446953.398	234845.328	107.750	0.900	100	Q1	1	1.003	106.850	150	
				<u>S</u>	imulatior	<u>n Setting</u>	<u>s</u>					
	Rainfal	ll Methodology Summer CV Winter CV	FEH-13 1.000 1.000		analysis S p Steady vn Time (State x	Detailed (1440	Check	Dischar	ge (m³/ha) ge Rate(s) ge Volume	20.0 x x	
	15	30 60	120		Storm D 240	u rations 360	480	600	720	960	1440	
		Re	turn Period (years)	Climate C (CC)	%)	Addition (A	%)	Additiona (Q %	6)			
			100		40		0		0			
		Flo	w v9.0 Copyri	ght © 1988	-2022 Ca	useway	Software S	Solutions	Limited			

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN		File: SOAKAWAY - PL Network: Storm Netwo Oliver Bayley 18/02/2022		Page 3 22021 - Adderbury Indicative Soakaway Design Plot 20 - SA103 - 100 Year + 40% Co				
		<u>Node SA 20 L</u>	ined Soakaway Storage	<u>e Structure</u>					
	Side Inf Coefficient (m/hr)		Invert Level (m) me to half empty (mins)	106.250 40	Pit Length (m) Depth (m)	2.400			
		2.0 0.30	Ring Diameter (m) Pit Width (m)	1.500 2.400	Inf Depth (m) Number Required	1.200 1			
	Flow v9.0 (Copyright © 198	8-2022 Causeway Soft	ware Solutions	Limited				

BANNERS GATE	Banners Gate Limite 10-11 Birmingham S Halesowen B63 3HN	treet		Netw Olive 18/02	vork: Ste er Bayle 2/2022	-	ork	2 Ir P	Page 4 2021 - Adderbury ndicative Soakawa Plot 20 - SA103 - 10	
	<u>Results for </u>	<u>100 year -</u>	<u>⊦40% CC</u>	Critical S	<u>Storm D</u>	ouration. L	<u>owest mas</u>	<u>s balance:</u>	<u>: 99.40%</u>	
	Node Event	US Node	Peak (mins)	Level (m)	Dept (m)		v Node Vol (m ³)	Flood (m³)	Status	
	60 minute summer	RE	` 47	107.530			0.0571	0.0000	FLOOD RISK	
	60 minute summer	IC	47	107.530	0.37	79 4.8	0.1328	0.0000	FLOOD RISK	
	60 minute summer	CP	48	107.527	0.57	77 7.8	0.1968	0.0000	FLOOD RISK	
	60 minute summer	SA 20	48	107.527	0.67	77 6.3	3.7000	0.0000	OK	
	Link Event	US	5 I	_ink	DS	Outflow	Velocity	Flow/Cap	b Link	
	(Upstream Dep	th) No	de		Node	(I/s)	(m/s) ์	•	Vol (m³)	
	60 minute sumn	,			IC	2.4	0.582	0.351		
	60 minute sumn	ner IC	1.0	02	СР	4.8	0.890	0.715	5 0.0939	
	60 minute sumn 60 minute sumn	_	1.0 20 Infi		SA 20	6.3 1.1	0.913	0.316		

BANNERS GATE							File: SOAKAWAY - PLOT 31.pfd Network: Storm Network Oliver Bayley 18/02/2022						Page 1 22021 - Adderbury Indicative Soakaway Design Plot 31 - SA1 - 2 Year & 10 Year			
						<u>Desi</u>	<u>gn Set</u>	<u>tings</u>								
	Maxim		Returr Add	n Perioc itional F of Entr entratio	· · ·	FEH-1 10 0 1.000 4.00 30.00 500.0	3	P	num l refer lude	Backdro red Cov Interme	nection op Heig ver Dep diate G	n Type ght (m) oth (m) Ground	1.00 Level So 1.800 1.200 √ √	offits		
							<u>Links</u>									
1.0 1.0 1.0	Imme U No No 000 RE 001 IC 002 IC 003 CP	de No IC (01 IC (02 CP	de (1 01 12 02 12 12	ngth m) .000 .000 .000 .800	ks (mm) / n 0.600 0.600 0.600 0.600	(m) 105.4 105.3 105.	1) 450 300 100	DS IL (m) 105.300 105.150 104.950 104.900	Fa (n 0.1 0.1 0.1 0.0	n) (* 50 50 50	l ope 1:X) 80.0 80.0 80.0 96.0	Dia (mm) 100 100 150 150	T of C (mins) 4.22 4.43 4.61 4.09	Rain (mm/hr) 109.8 109.8 109.8 109.8		
		Name 1.000 1.001 1.002 1.003	Vel (m/s) 0.861 0.861 1.125 1.026	Cap (I/s) 6.8 6.8 19.9 18.1	1.6 3.2 4.8	US Depth (m) 0.300 0.450 0.600 0.700	DS Dept (m) 0.45 0.60 0.70 0.75	h (ha 0 0.0 0 0.0 0 0.0) 04 08 12	Σ Add Inflow (I/s) 0.0 0.0 0.0 0.0	4	th Ve	Pro elocity (m/s) 0.705 0.846 0.927 0.992			

BANNERS GATE	10-1 Hale	ners Gate Lim 1 Birmingham sowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N yley	- PLOT 31.pfd etwork	220 Inc		bury kaway Design · 2 Year & 10 Year
				Ν	<u>/lanhole S</u>	Schedule				
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
	RE	446967.787	234860.263	105.850	0.400	300	Q			
							° 0	1.000	105.450	100
	IC 01	446975.932	234849.976	105.850	0.550	525		1.000	105.300	100
							° [∠] 0	1.001	105.300	100
	IC 02	446966.238	234841.923	105.850	0.750	525			105.150	100
							0	1.002	105.100	150
	СР	446957.628	234848.872	105.800	0.850	525	1		104.950	150
							0 ² - 1 0	1.003	104.950	150
	SA 31	446953.398	234845.328	105.800	0.900	100			104.900	150
				<u>S</u>	imulation	Settings	2			
	Rainfa	II Methodology Summer CV			Analysis S ip Steady				age (m³/ha) rge Rate(s)	0.0 x
		Winter CV		Drain Dov					rge Volume	
	15	30 60	120		Storm Du 240		480 600	720	960 1	440
			w v9.0 Copyri							

BANNERS GA	Halesowen	te Limited ngham Street	Net Oliv	e: SOAKAWAY - PL twork: Storm Netw ver Bayley 02/2022	-	Indicat	3 - Adderbury tive Soakaway E I - SA1 - 2 Year 8	
Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flo (Q %)	(years)) (CC	Change A ;%)	dditional Area (A %)	Additional Flow (Q %)
2	0	0		0	10	0	0	0
		No	de SA 31 Lined	Soakaway Storage	<u>e Structure</u>			
	Base Inf Coeffi Side Inf Coeffi Sa		100 Time to	Invert Level (m) o half empty (mins) Ring Diameter (m) Pit Width (m)	103.800 43 1.500 2.400	Pit Length Depth Inf Depth Number Requ	h (m) h (m) 1.700	
		Flow v9.0 Copy	right © 1988-20	022 Causeway Soft	ware Solutions	Limited		

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN <u>Results for</u>			File: SOAK Network: S Oliver Bay 18/02/2022 orm Duratio	itorm Ne ley	twork		nce:	Indic Plot	e 4 1 - Adderbury ative Soakaway Design 31 - SA1 - 2 Year & 10 Year
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflov (I/s)		ode (m³)	Flood (m³)	Status
	15 minute summer	RE	` 1Ó	105.473	0.023	0.8		0016	0.0000	OK
	15 minute summer	IC 01	10	105.334	0.034	1.0	6 0.0	0073	0.0000	OK
	15 minute summer	IC 02	10	105.135	0.035	2.4	4 0.0	0075	0.0000	OK
	15 minute summer	CP	10	105.002	0.052	4.0	0.	0112	0.0000	OK
	120 minute summer	SA 31	76	104.226	-0.674	1.8	3 1.2	2617	0.0000	OK
	Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		elocity (m/s)	Flo	w/Cap	Link Vol (m³)
	15 minute summer	RE	1.000	IC 01		.8	0.441		0.118	0.0221
	15 minute summer	IC 01	1.001	IC 02		.6	0.691		0.231	0.0272
	15 minute summer	IC 02	1.002	CP		.3	0.559		0.118	0.0507
	15 minute summer	CP	1.003	SA 31		.0	0.783		0.220	0.0244
	120 minute summer	SA 31	Infiltratio			.7				

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN <u>Results for</u>		Critical S	File: SOAI Network: S Oliver Bay 18/02/2022	Storm Ne /ley 2	twork		2202 Indi Plot	Page 5 22021 - Adderbury Indicative Soakaway Design Plot 31 - SA1 - 2 Year & 10 Year		
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status		
	15 minute summer	RE	` 1Ó	105.483	0.033	1.6	0.0023	0.0000	OK		
	15 minute summer	IC 01	10	105.350	0.050	3.2	0.0108	0.0000	OK		
	15 minute summer	IC 02	10	105.150	0.050	4.8	0.0107	0.0000	OK		
	15 minute summer	CP	10	105.027	0.077	7.9	0.0166	0.0000	OK		
	30 minute summer	SA 31	27	104.744	-0.156	6.7	2.7985	0.0000	OK		
	Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		locity Flo m/s)	ow/Cap	Link Vol (m³)		
	15 minute summer	RE	1.000	IC 01	· · ·	•	0.525	0.236	0.0370		
	15 minute summer	IC 01	1.001	IC 02			0.829	0.467	0.0457		
	15 minute summer	IC 02	1.002	CP			0.671	0.238	0.0849		
	15 minute summer	CP	1.003	SA 31		.9	0.928	0.433	0.0406		
	30 minute summer	SA 31	Infiltratio			.0					

BANNERS GATE		Birmin owen	e Limite gham S			Netwo	ork: St r Bayle	WAY - P orm Netw y		31.pfd		220 100	Page 1 22021 - Adderbury Indicative Soakaway Design Plot 31 - SA1 - 100 Year + CC			
						<u>Desi</u>	<u>gn Set</u>	<u>tings</u>								
	Maxiı	mum Ti	Re 7 Tene of C	ainfall Metl eturn Perio Additional ïme of Ent oncentratio ım Rainfal	d (years) Flow (%) CV ry (mins) on (mins)	FEH-13 10 1.000 4.00 30.00 500.0		Pi	um B eferre ude In	Coni ackdro ed Cove itermed	élocity nection p Heigh er Dept liate Gr design	Type nt (m) h (m) round	1.00 Level So 1.800 1.200 √ √	offits		
							<u>Links</u>									
1.0 1.0 1.0	000 R 001 IC	E 01 02	DS Node C 01 C 02 CP SA 31	Length (m) 12.000 12.000 12.000 4.800	ks (mm) / n 0.600 0.600 0.600 0.600	(m 105.4 105.3 105.7	1) 450 300 100	DS IL (m) 105.300 105.150 104.950 104.900	Fal (m) 0.15 0.15 0.15 0.05) (1 60 8 60 8 60 8	5000 :X) 30.0 30.0 30.0 30.0 30.0 30.0	Dia (mm) 100 100 150 150	T of C (mins) 4.22 4.43 4.61 4.09	Rain (mm/hr) 109.8 109.8 109.8 109.8		
		Nam 1.00 1.00 1.00 1.00	(m. 0 0.8 1 0.8 2 1.1	's) (I/s) 61 6.8 61 6.8 25 19.9	1.6 3.2 4.8	US Depth (m) 0.300 0.450 0.600 0.700	DS Deptil (m) 0.450 0.600 0.700 0.750	0 0.00 0 0.00 0 0.01	10 14 18 2	Add nflow (I/s) 0.0 0.0 0.0 0.0	Pro Depti (mm) 33 44 50 69	h Ve) (3 8 0	Pro elocity (m/s) 0.705 0.846 0.927 0.992			

BANNERS GATE	10-1 Hale	ners Gate Lim 1 Birmingham sowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N yley	- PLOT 31.pfd letwork		Page 2 22021 - Adderbury Indicative Soakaway Design Plot 31 - SA1 - 100 Year + CC			
				Ν	<u>Ianhole S</u>	Schedule	2					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Lin	ık	IL (m)	Dia (mm)	
	RE	446967.787	234860.263	105.850	0.400	300	Q					
							³ 0	1.00	00	105.450	100	
	IC 01	446975.932	234849.976	105.850	0.550	525		1.00		105.300	100	
							o ² O	1.00	01	105.300	100	
	IC 02	446966.238	234841.923	105.850	0.750	525		1.00		105.150	100	
							0	1.00	02	105.100	150	
	СР	446957.628	234848.872	105.800	0.850	525	1	1.0		104.950	150	
							° 2 1 0	1.00	03	104.950	150	
	SA 31	446953.398	234845.328	105.800	0.900	100		1.00	03	104.900	150	
				<u>S</u>	imulation	Setting	<u>s</u>					
	Rainfal	l Methodology Summer CV Winter CV	FEH-13 1.000 1.000		nalysis Sp p Steady S vn Time (n	State x	Check	k Disc	harge	e (m³/ha) e Rate(s) e Volume	20.0 x x	
	15	30 60	120		Storm Du 240 3	irations 360	480 600	720	g	960 1	440	
		Flo	w v9.0 Copyri	ght © 1988	-2022 Ca	useway	Software Solutions	Limit	ted			

_ # 1	anners Gate Limited 0-11 Birmingham Stree alesowen 63 3HN	t				Page 3 22021 - Adderbury Indicative Soakaway Design Plot 31 - SA1 - 100 Year + CC		
	Return F (year		e Change C %) 40	Additional A (A %)	r ea Add 0	litional Fl (Q %)	wc 0	
		Node SA 31	Lined Soak	away Storage	e Structure	2		
	e Inf Coefficient (m/hr) le Inf Coefficient (m/hr) Safety Factor Porosity	0.50400 0.50400 2.0 0.30	ime to half Ring l	rert Level (m) empty (mins) Diameter (m) Pit Width (m)	103.800 43 1.500 2.400		Pit Length (m) Depth (m) Inf Depth (m) ber Required	2.400 1.700 1

BANNERS GATE	Banners Gate Limite 10-11 Birmingham S Halesowen B63 3HN <u>Results for 1</u>	treet	0% CC (Netwo Olive 18/02	ork: Stor r Bayley /2022		rk	2 	Page 4 22021 - Adderbury ndicative Soakaway Design Plot 31 - SA1 - 100 Year + CC : 100.00%
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	l Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
	60 minute summer	RE	49	105.779	0.329		• •	0.0000	FLOOD RISK
	60 minute summer	IC 01	49	105.779	0.479			0.0000	
	60 minute summer	IC 02	48	105.777	0.677	7.1	0.2187	0.0000	FLOOD RISK
	60 minute summer	CP	48	105.777	0.827	' 11.2	0.3349	0.0000	FLOOD RISK
	60 minute summer	SA 31	48	105.776	0.876	9.5	5.5365	0.0000	OK
	Link Event (Upstream Dep	US th) Nod			DS (lode	Dutflow (I/s)	Velocity (m/s)	Flow/Ca	p Link Vol (m³)
	60 minute summ	,	1.00		C 01	2.4	0.568	0.35	
	60 minute summ				C 02	4.7	0.904	0.69	
	60 minute summ	ner IC 02	2 1.00		P	6.6	0.704	0.33	0 0.2113
	60 minute sumn 60 minute sumn	-	1.00 1 Infilt	3 S ration	SA 31	9.5 1.5	0.969	0.52	7 0.0845

BANNERS GATE	10-11	sowen	ngha	nited n Stree	et		Netw Olive		AWAY torm N ey			ofd	22 In		erbury oakaway Des 103 - 2 Year 8	
							<u>Desi</u>	<u>gn Se</u>	<u>ttings</u>							
	Max	imum T		Return Addi Time of Conce	n Perioo itional f of Entr entratio	nodology d (years) Flow (%) CV ry (mins) on (mins) (mm/hr)	FEH-17 10 1.000 4.00 30.00 500.0	3	I	nimur Pref nclud	0 n Back erred (e Inter	m Veloc Connecti drop He Cover De mediate tice desi	on Type eight (m) epth (m) Ground	e Level So) 1.800) 1.200 I √	offits	
								<u>Links</u>	<u>5</u>							
1.0 1.0 1.0	N 000 F 001 I 002 I	US Node RE C 01 C 02 CP	DS Nod IC 02 IC 02 CP SA 3	e (1 1 12 2 12 12	ngth m) .000 .000 .000 .800	ks (mm) / n 0.600 0.600 0.600 0.600	(m 105.1 105. 104.9	1) 250 100 900	DS IL (m) 105.10 104.95 104.75 104.70	0 C 0 C 0 C	Fall (m) 0.150 0.150 0.150 0.050	Slope (1:X) 80.0 80.0 96.0	Dia (mm) 100 100 150 150	 4.22 4.43 4.61 	Rain (mm/hr) 109.8 109.8 109.8 109.8	
		Na 1.0 1.0 1.0 1.0	01 02	Vel (m/s) 0.861 0.861 1.125 1.026	Cap (I/s) 6.8 6.8 19.9 18.1	1.6 3.2 4.8	US Depth (m) 0.300 0.450 0.600 0.700	DS Dept (m) 0.45 0.60 0.70 0.75	th () 50 C 00 C	Area ha) .004 .008 .012 .020	(ow De	Pro pth V 33 48 50 69	Pro /elocity (m/s) 0.705 0.846 0.927 0.992		

BANNERS GATE	10-1	ners Gate Lim 1 Birmingham sowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N yley	- PLOT 33.pfd etwork	22 Inc		bury kaway Design 3 - 2 Year & 10 Year
				Δ	<u>/lanhole S</u>	Schedule	<u>.</u>			
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
I	RE	446967.787	234860.263	105.650	0.400	300				
							° 0	1.000	105.250	100
Ī	IC 01	446975.932	234849.976	105.650	0.550	525			105.100	100
							° ² 0	1.001	105.100	100
Ī	IC 02	446966.238	234841.923	105.650	0.750	525			104.950	100
							0	1.002	104.900	150
ē	CP	446957.628	234848.872	105.600	0.850	525	1		104.750	150
							⁰ ² را ا	1.003	104.750	150
Ī	SA 31	446953.398	234845.328	105.600	0.900	100			104.700	150
				<u>S</u>	imulation	Setting	<u>5</u>			
	Rainfa	II Methodology Summer CV	1.000	Sk	Analysis S ip Steady	State >	k Che	ck Discha	age (m³/ha) irge Rate(s)	0.0 x
		Winter CV	1.000	Drain Do	wn Time (mins) ´	1440 Che	ck Discha	rge Volume	Х
	15	30 60	120		Storm D u 240	urations 360	480 600	720	960 1	440
		Floy	w v9.0 Copyri	ght © 1988	-2022 Ca	useway S	Software Solution	s Limited		

BANNERS GA		Banners Ga 10-11 Birmi Halesowen B63 3HN	ingham Stree	et							Soakaway	Design ar & 10 Year	
Return Period (years)		ate Change CC %)	Additiona (A %)		Addition (Q		Return Per (years)		mate Chang (CC %)		tional Area (A %)	Additional I (Q %)	Flow
2		0		0		0		10		0	0		0
				<u>Nod</u>	<u>e SA 31 L</u>	ined Soak	away Storage	Structure	<u>e</u>				
			ficient (m/hr) ficient (m/hr)	0.5328 0.5328			ert Level (m) empty (mins)	103.600 41	Pit	Length (n Depth (n			
	U		afety Factor Porosity	2.0 0.30		Ring D	Diameter (m) Pit Width (m)	1.500 2.400		f Depth (n er Require	n) 1.700		
			Flow v9.0) Copyr	ight © 198	38-2022 Ca	useway Softw	ware Solu	tions Limite	əd			

BANNERS GATE	Halesowen B63 3HN	10-11 Birmingham Street Halesowen B63 3HN <u>Results for 2 year Critical</u>					33.pfd ss balar	nce: 1	Page 4 22021 - Adderbury Indicative Soakaway Design Plot 33 - SA103 - 2 Year & 10 Year 100.00%			
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	v Noc Vol (i		Flood (m³)	Status		
	15 minute summer	RE	10	105.273	0.023	0.8	0.00)16	0.0000	OK		
	15 minute summer	IC 01	10	105.134	0.034	1.6	0.00)73	0.0000	OK		
	15 minute summer	IC 02	10	104.935	0.035	2.4	0.00)75	0.0000	OK		
	15 minute summer	CP	10	104.802	0.052	4.0	0.0	112	0.0000	OK		
	30 minute summer	SA 31	25	104.011	-0.689	3.4	1.21	80	0.0000	OK		
	Link Event (Upstream Depth)	US Node	Link	DS Node			elocity	Flow	/Cap	Link Vol (m³)		
	15 minute summer	RE	1.000	IC 01	· · ·	.8	m/s) 0.441	().118	0.0221		
	15 minute summer	IC 01	1.000	IC 01		.o .6	0.691).231	0.0221		
	15 minute summer	IC 01	1.001	CP		.0 .3	0.559).231	0.0507		
	15 minute summer	CP	1.002	SA 31		.0	0.559).220	0.0244		
	30 minute summer	SA 31	Infiltratio			.0 .7	0.703	ſ	0.220	0.0244		

BANNERS GATE	Halesowen B63 3HN	10-11 Birmingham Street Halesowen B63 3HN <u>Results for 10 year Critical</u>					File: SOAKAWAY - PLOT 33.pfd Network: Storm Network Oliver Bayley 18/02/2022 Storm Duration. Lowest mass balance: 1						
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status				
	15 minute summer	RE	` 1Ó	105.283	0.033	1.6		0.0000	ОК				
	15 minute summer	IC 01	10	105.150	0.050	3.2	0.0108	0.0000	OK				
	15 minute summer	IC 02	10	104.950	0.050	4.8	0.0107	0.0000	OK				
	15 minute summer	CP	10	104.827	0.077	7.9	0.0166	0.0000	OK				
	30 minute summer	SA 31	27	104.529	-0.171	6.7	2.7532	0.0000	OK				
	Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)		locity Flo n/s)	w/Cap	Link Vol (m³)				
	15 minute summer	RE	1.000	IC 01	• •	•	0.525	0.236	0.0370				
	15 minute summer	IC 01	1.001	IC 02			0.829	0.467	0.0457				
	15 minute summer	IC 02	1.002	CP			0.671	0.238	0.0849				
	15 minute summer	CP	1.003	SA 31			0.928	0.433	0.0406				
	30 minute summer	SA 31	Infiltratio		1		-		-				

BANNERS GATE		Birming owen	Limited Jham Stre	et		Netwo Olive		AWAY - P orm Netv sy		.pfd	2 II	Page 1 2021 - Add ndicative S Plot 33 - SA	oakaway D	esign ear + 40% CC
						<u>Desi</u>	<u>gn Set</u>	<u>tings</u>						
	Maxi		Retu Ad	rn Period ditional I e of Enti centratic	· · ·	FEH-13 10 0 1.000 4.00 30.00 500.0		Pi	um Bac eferred ude Inte	Connec kdrop H Cover E rmediate	city (m/s tion Type eight (m Depth (m e Ground sign rules	é Level Se) 1.800) 1.200 d √	offits	
							<u>Links</u>							
1.0 1.0 1.0	N 000 R 001 IC	E 01 02 0	lode C 01 1 C 02 1 CP 1	ength (m) 2.000 2.000 2.000 4.800	ks (mm) / n 0.600 0.600 0.600 0.600	(m 105.1 105.1 104.9	1) 250 ^{-/} 100 ^{-/} 900 ^{-/}	DS IL (m) 105.100 104.950 104.750 104.700	Fall (m) 0.150 0.150 0.150 0.050	Slope (1:X) 80.0 80.0 80.0 96.0	(mm) 100 100 150) (mins) 0 4.22 0 4.43 0 4.61	Rain (mm/hr) 109.8 109.8 109.8 109.8	
		Nam 1.000 1.002 1.003	(m/s) 0 0.861 0 0.861 2 1.125	6.8 6.8 19.9	1.6 3.2 4.8	US Depth (m) 0.300 0.450 0.600 0.700	DS Deptl (m) 0.450 0.600 0.700 0.750	0 0.00 0 0.00 0 0.01) Inf (1/)4)8 2	low D	Pro epth 33 48 50 69	Pro Velocity (m/s) 0.705 0.846 0.927 0.992		

BANNERS GATE	10-1 Hale	ners Gate Lim 1 Birmingham sowen 3HN			File: SOA Network: Oliver Ba 18/02/202	Storm N yley	- PLOT 33.pfd letwork		220 Ind		bury akaway Desig 13 - 100 Year	
				N	<u>lanhole S</u>	Schedule						
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	; L	ink	IL (m)	Dia (mm)	
F	RE	446967.787	234860.263	105.650	0.400	300	Q					
							<u>о</u>	0 1.	000	105.250	100	
Ī	IC 01	446975.932	234849.976	105.650	0.550	525	1		000	105.100	100	
							0 ²	0 1.	001	105.100	100	
Ī	IC 02	446966.238	234841.923	105.650	0.750	525	° 5 5 1		001	104.950	100	
								0 1.	002	104.900	150	
Ō	СР	446957.628	234848.872	105.600	0.850	525			002	104.750	150	
							0 1	0 1.	003	104.750	150	
	SA 31	446953.398	234845.328	105.600	0.900	100	() ¹		003	104.700	150	
				S	imulation	Setting	<u>s</u>					
	Rainfal	l Methodology Summer CV Winter CV	FEH-13 1.000 1.000		nalysis Sj o Steady S vn Time (r	State x	Cł	neck Dis	schar	ge (m³/ha) ge Rate(s) ge Volume	20.0 x x	
	15	30 60	120		Storm Du 240	irations 360	480 600	720		960 1	1440	
		Floy	w v9.0 Copyri	ght © 1988	-2022 Ca	useway \$	Software Solution	ons Lin	nited			

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Stree Halesowen B63 3HN	it	File: SOAKAWAY - Network: Storm Ne Oliver Bayley 18/02/2022		Indicative So	Page 3 22021 - Adderbury Indicative Soakaway Design Plot 33 - SA103 - 100 Year + 40% CC		
	Return F (yea	rs) (Co 100	e Change Additiona C %) (A % 40 Lined Soakaway Stor	6) (Q % 0				
	Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.53280	Invert Level (r ïme to half empty (min Ring Diameter (r Pit Width (r	m) 103.600 us) 41 m) 1.500	Pit Length (m) Depth (m) Inf Depth (m) Number Required	2.400 1.700 1		

BANNERS GATE	Banners Gate Limite 10-11 Birmingham S Halesowen B63 3HN <u>Results for 1</u>	street	0% CC (Netw Olive 18/02	ork: Sto r Bayley 2/2022		rk			
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	n Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
	60 minute summer	RE	49	105.555			• •	• •	FLOOD RISK	
	60 minute summer	IC 01	48	105.555				0.0000		
	60 minute summer	IC 02	48	105.554						
	60 minute summer	CP	48	105.554	0.804	11.2	0.3255	0.0000	FLOOD RISK	
	60 minute summer	SA 31	48	105.553	0.853	9.5	5.4951	0.0000	OK	
	Link Event			nk		Outflow	Velocity	Flow/Ca		
	(Upstream Dep	,			Node	(I/s)	(m/s)	0.05	Vol (m ³)	
	60 minute sumn		1.00		C 01	2.4	0.573	0.35		
	60 minute sumn				C 02	4.7	0.904	0.69		
	60 minute sumn			-	CP	6.6	0.704	0.33		
	60 minute sumn	-	1.00		SA 31	9.5	0.969	0.52	.7 0.0845	
	60 minute sumn	ner SA 3	1 Infiltr	ration		1.6				

_ ##	Banners Ga 10-11 Birmir Halesowen B63 3HN			N O	ile: PORO etwork: St liver Bayle 8/02/2022	orm Netw	G - PLOTS vork	22-31.p	2202 Indic	1 - Adderk ative Pavi	oury ng Design OROUS PAVING
				<u>[</u>	<u>Design Set</u>	<u>tings</u>					
	Maximum T	Retu Ac Tim Time of Cor	nfall Method urn Period (y dditional Flo ne of Entry (ncentration (n Rainfall (m	vears) 10 w (%) 0 CV 1.0 mins) 4.0 mins) 30.	000 00 .00 0.0	Pr Inclu Enforce b	Minimum ^v Cor um Backdro eferred Cov ude Interme est practice	nection op Heigh ver Deptl diate Gr	Type It (m) h (m) ound	1.00 Level Soffi 1.800 1.200 √	ts
					<u>Links</u>						
Name 1.003	Node	DS Node PP 22-31	Length I (m) 8.000	ks (mm) / n 0.600	US IL (m) 105.400	DS IL (m) 105.300	Fall (m) 0.100	Slope (1:X) 80.0	Dia (mm) 100	T of C (mins) 4.09	Rain (mm/hr) 109.8
	Na i 1.0 ¹	(m/s)) (I/s)	Flow US (I/s) Dep (m 2.0 0.5	oth Dept) (m)	. ,	Inflow (I/s)	Pro Depth (mm) 37) (m		
				<u>Ma</u>	anhole Scl	<u>hedule</u>					
No		sting m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connecti	ons	Link	IL (m)	Dia (mm)
CP	4469	57.628 2	234848.872	106.000	0.600	525	o K	0	1.003	105.400	100
PP 2	2-31 4469	53.398 2	234845.328	105.950	0.650	100	()'	1		105.300	100
		Flow vs	9.0 Copyrig	ht © 1988-2	2022 Caus	eway Sof	tware Solu	tions Li	mited		

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN	File: POROUS PAVING - PLOTS 22-31.p Network: Storm Network Oliver Bayley 18/02/2022	LOTS 22-31.p Page 2 22021 - Adderbury Indicative Paving Design Plots 22-31 - POROUS PAVING			
		Simulation Settings				
		Skip Steady State x Check Dis	Storage (m³/ha) 0.0 scharge Rate(s) x scharge Volume x			
	15 30 60 120 180	Storm Durations240360480600720	960 1440			
Return Period Clir (years) 2 10	nate Change Additional Area Addition (CC %) (A %) (Q %) 0 0 0 0		nge Additional Area Additional Flow (A %) (Q %) 40 0 0			
		2-31 Carpark Storage Structure				
	Base Inf Coefficient (m/hr) 0.50400 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Porosity 0.30	Invert Level (m) 105.300 Time to half empty (mins) 13	Slope (1:X) 20.0 Depth (m) f Depth (m) 0.540			
	Flow v9.0 Copyright © 198	38-2022 Causeway Software Solutions Lim	ited			

##	Banners Gate Limited 10-11 Birmingham Street	File: POROUS PAVING - PLOTS 22-31.p Network: Storm Network	22021 - Adderbury
	Halesowen	Oliver Bayley	Indicative Paving Design
BANNERS GATE	B63 3HN	18/02/2022	Plots 22-31 - POROUS PAVING

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
30 minute summer	CP	` 2Í	105.540	0.140	0.9	0.0303	0.0000	SURCHARGED
30 minute summer	PP 22-31	21	105.540	0.240	5.6	1.3349	0.0000	OK
Link Event (Upstream Dept	US h) Node	Lir		DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Ca	ıp Link Vol (m³)
30 minute summ	-	1.003		P 22-31	0.5	0.073	0.06	0.0626
30 minute summ	er PP 22-3	31 Infiltra	ation		2.6			

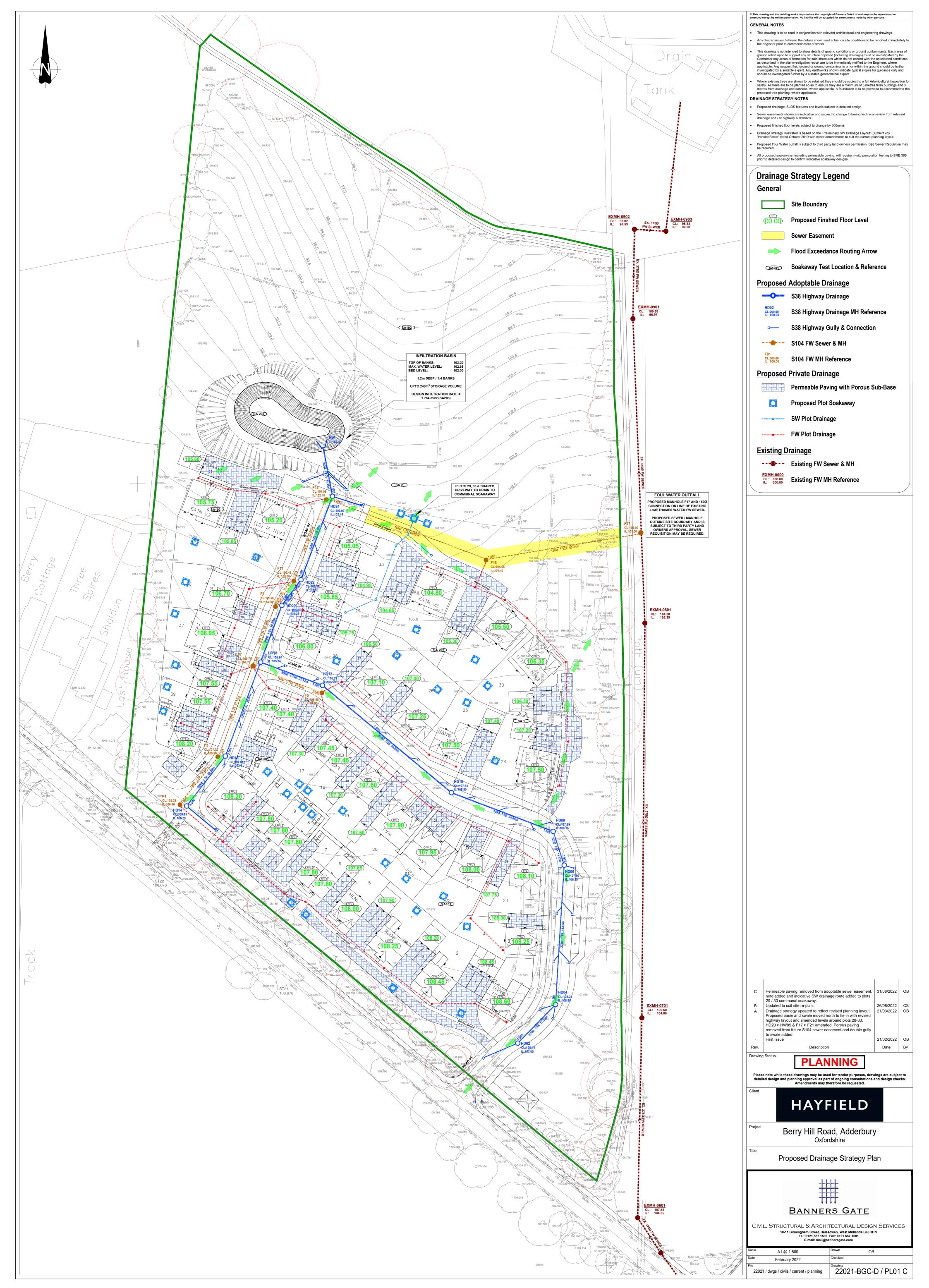
BANNERS GATE	Banners Gate Limited	File: POROUS PAVING - PLOTS 22-31.p	Page 4					
	10-11 Birmingham Street	Network: Storm Network	22021 - Adderbury					
	Halesowen	Oliver Bayley	Indicative Paving Design					
	B63 3HN	18/02/2022	Plots 22-31 - POROUS PAVING					
Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%								

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
30 minute summer 30 minute summer	CP PP 22-31	22 22	105.674 105.674	0.274 0.373	1.7 11.4	0.0592 3.2177	0.0000 0.0000	SURCHARGED OK
Link Event (Upstream Deptil 30 minute summe	er CP	1.00	3 PF	DS Node P 22-31	Outflow (I/s) 1.1	Velocity (m/s) 0.142	Flow/C a	Vol (m³)
30 minute summe	er PP 22-3	31 Infilt	ration		4.0			

BANNERS GATE	Banners Gate Limited 10-11 Birmingham Street Halesowen B63 3HN			DROUS PAVING - k: Storm Networl Bayley 022	22021	Page 5 22021 - Adderbury Indicative Paving Design Plots 22-31 - POROUS PAVING		
	<u>Results for /</u> Node Event	100 year +40% C		rm Duration. Lov	 lance: 100. Flood	<u>.00%</u> Status		

Node Event	US Node	Peak (mins)	Level L (m)	eptn (m)	Inflow (I/s)	Node Vol (m ³)	F1000 (m ³)	Status
30 minute summer	CP	23 1	05.947 (0.547	4.1	0.1181	0.0000	FLOOD RISK
30 minute summer	PP 22-31	23 1	05.945	0.645	27.7	9.5392	0.0000	OK
Link Event	US	Link	DS	0	utflow	Velocity	Flow/Cap	b Link
(Upstream Depth) Node		Nod	е	(I/s)	(m/s)		Vol (m³)
30 minute summe	r CP	1.003	PP 22-	-31	3.1	0.397	0.459	0.0626
30 minute summe	r PP 22-31	Infiltratio	on		6.9			


APPENDIX III – DRAWINGS



PLANNING I DESIGN I ENVIRONMENT I ECONOMICS | WWW.PEGASUSGROUP.CO.UK | TEAM/DRAWN BY: CU/ET | APPROVED BY P.M: ET | DATE: 31/08/22 | SCALE: 1:500 @A1 | DRWG: P21-2984_01 REV: V | CLIENT: HAYFIED HOMES |

