LAND OFF CAMP ROAD, UPPER HEYFORD

ODYSSEY DEVELOPING JOURNEYS

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY ADDENDUM 1

Project Name	: Land off Camp Road, Upper Heyford
Job No	: 22-192
Note Title	: Flood Risk Assessment and Drainage Strategy Addendum 1
Author	: HM
Checked	: GG
Approved	: GG
Date	: September 2023

1.0 INTRODUCTION

1.1 Background

1.1.1 Odyssey was commissioned by David Wilson Homes Southern to undertake a Flood Risk Assessment (FRA), incorporating a surface water and foul drainage strategy, to be submitted in association with a residential planning application at Land off Camp Road in Upper Heyford, Oxfordshire.

1.1.2 The proposed drainage strategy was submitted to Cherwell District Council in October 2022 as part of planning application 22/03063/F.

1.1.3 Following the submission of the drainage proposals, comments were received from Oxfordshire County Council (OCC) in its capacity as Lead Local Flood Authority (LLFA) in November 2022. A copy of the OCC comments is provided in **Appendix A**.

1.1.4 This addendum, which should be read in conjunction with the submitted FRA and drainage strategy report (reference 22-192-01A), provides a response to the OCC comments and takes into account the changes to the site layout since the initial submission.

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY ADDENDUM 1

2.0 RESPONSE TO OXFORDSHIRE COUNTY COUNCIL COMMENTS

2.1.1 OCC provided the following comments (*in bold italics*) in November 2022. Odyssey's response directly follows each comment.

"As part of a full application drawings are expected to be detailed. Provide invert and cover levels of all SuDS/drainage infrastructure. Include pipe gradients and pipe numbering which should read in line with the calculations."

2.1.2 The detailed drainage strategy drawing along with the preliminary site levels strategy are presented in **Appendix B**, alongside the associated detailed network calculations.

"Infiltration has been conducted mainly in the northern part of the site, infiltration should be conducted to cover the extent of the site. In areas where infiltration is feasible, infiltration techniques has not been used."

2.1.3 Infiltration testing was undertaken across both the northern and southern parts of the site. Infiltration testing was carried out in the northern part of the site by Omnia in December 2021. Of the four trial pits, two tests were unsuccessful. Soakage rates within the remaining two trial pits were recorded at 1.30×10^{-5} metres per second (m/s) within the west of the site, and 3.62×10^{-6} m/s towards the east of the site. Groundwater was recorded at 1.60 metres below ground level (m bgl) and 1.80m bgl within the soakage testing trial pits, and levels were also recorded at 0.90m bgl further to the east of the site.

2.1.4 Infiltration testing was carried out in the southern part of the site by T&P Regeneration in January 2019. The soakage rates recorded varied between 2.41 x 10^{-4} m/s towards the east of the site, and 2.84 x 10^{-6} m/s towards the centre of the site. Groundwater was encountered between 1.40m bgl and 1.80m bgl, with levels found to rise by 0.20m during the investigations.

2.1.5 To achieve the 1m required clearance between the base of a soakaway and the highest recorded groundwater level, the infiltrating SuDS features would need to be shallow. It is proposed to incorporate infiltrating permeable paving within driveways located to the north-west of the site. The depth of the granular subbase would be 0.2m to ensure the 1m clearance is achieved. The permeable paving would only drain the individual driveway areas. The poorest infiltration rate within the west of the site $(1.30 \times 10^{-5} \text{m/s})$ has been used within the drainage calculations. Infiltration would not be feasible towards the east of the site owing to the shallower groundwater levels.

2.1.6 Extracts from the Omnia and T&P Regeneration site investigations are provided in **Appendix C**.

"Provide ownership details and permission to discharge surface water at the existing ditch/watercourse."

2.1.7 The proposed point of connection into the existing ditch/watercourse is located within the public highway. The works would be undertaken under a S278 agreement with the highway authority.

"Provide surface water catchment plan, demonstrating the extent of the impermeable area and stating the area. Also state the area with 10% urban creep."

2.1.8 A catchment plan drawing is presented in **Appendix D**, which sets out the impermeable areas as well as the incorporation of urban creep.

"Provide surface water flood exceedance plan, demonstrating with flood arrows and proposed levels that all surface water will be kept away from structures and within the site boundary."

2.1.9 The exceedance flow route drawing indicates surface water would be routed within the proposed highways, and away from the new dwellings. The exceedance flow route drawing is presented in **Appendix E**. The finished floor levels (FFLs) of dwellings would be a minimum of 150 millimetres (mm) above the surrounding ground levels.

"SuDS construction details drawing to be provided."

2.1.10 A drawing showing the standard SuDS details is presented in Appendix F.

APPENDIX A

Oxfordshire County Council Comments

OXFORDSHIRE COUNTY COUNCIL'S RESPONSE TO CONSULTATION ON THE FOLLOWING DEVELOPMENT PROPOSAL

District: Cherwell Application no: 22/03063/F

Proposal: Erection of 126 dwellings with access from Camp Road, provision of public open space and associated infrastructure **Location:** Land East Of Larsen Road, Heyford Park

Response Date: 23rd November 2022

This report sets out the officer views of Oxfordshire County Council (OCC) on the above proposal. These are set out by individual service area/technical discipline and include details of any planning conditions or Informatives that should be attached in the event that permission is granted and any obligations to be secured by way of a S106 agreement. Where considered appropriate, an overarching strategic commentary is also included. If the local County Council member has provided comments on the application these are provided as a separate attachment.

Assessment Criteria Proposal overview and mix /population generation

OCC's response is based on a development as set out in the table below. The development is taken from the application form.

Residential	
1-bed dwellings	10
2-bed dwellings	25
3-bed dwellings	54
4-bed & larger dwellings	37

Based on the completion and occupation of the development as stated above it is estimated that the proposal will generate the population stated below:

Average Population	332.78
Nursery children (number of 2- and 3-year olds entitled to funded	
places)	9.03
Primary pupils	41.41
Secondary pupils including Sixth Form pupils	32.75
Special School pupils	0.84
65+ year olds	34.41

General Information and Advice

Recommendations for approval contrary to OCC objection:

If within this response an OCC officer has raised an objection but the Local Planning Authority are still minded to recommend approval, OCC would be grateful for notification (via planningconsultations@oxfordshire.gov.uk) as to why material consideration outweigh OCC's objections, and to be given an opportunity to make further representations.

Outline applications and contributions

The anticipated number and type of dwellings and/or the floor space may be set by the developer at the time of application which is used to assess necessary mitigation. If not stated in the application, a policy compliant mix will be used. The number and type of dwellings used when assessing S106 planning obligations is set out on the first page of this response.

In the case of outline applications, once the unit mix/floor space is confirmed by reserved matters approval/discharge of condition a matrix (if appropriate) will be applied to establish any increase in contributions payable. A further increase in contributions may result if there is a reserved matters approval changing the unit mix/floor space.

Where a S106/Planning Obligation is required:

- **Index Linked** in order to maintain the real value of S106 contributions, contributions will be index linked. Base values and the index to be applied are set out in the Schedules to this response.
- Administration and Monitoring Fee TBC
 - This is an estimate of the amount required to cover the monitoring and administration associated with the S106 agreement. The final amount will be based on the OCC's scale of fees and will adjusted to take account of the number of obligations and the complexity of the S106 agreement.
- OCC Legal Fees The applicant will be required to pay OCC's legal fees in relation to legal agreements. Please note the fees apply whether a S106 agreement is completed or not.

Security of payment for deferred contributions - Applicants should be aware that an approved bond will be required to secure a payment where a S106 contribution is to be paid post implementation and

- the contribution amounts to 25% or more (including anticipated indexation) of the cost of the project it is towards and that project cost £7.5m or more
- the developer is direct delivering an item of infrastructure costing £7.5m or more
- where aggregate contributions towards bus services exceeds £1m (including anticipated indexation).

A bond will also be required where a developer is direct delivering an item of infrastructure.

The County Infrastructure Funding Team can provide the full policy and advice, on request.

Lead Local Flood Authority

Recommendation:

Objection

<u>Key issues:</u>

- Detailed drainage drawing required.
- Extensive infiltration testing required.
- Provide ownership details of existing ditch/watercourse.
- Surface water catchment plan to be provided.
- Surface water flood exceedance plan to be provided.
- SuDS construction details drawing to be provided.

Detailed comments:

As part of a full application drawings are expected to be detailed. Provide invert and cover levels of all SuDS/drainage infrastructure. Include pipe gradients and pipe numbering which should read in line with the calculations.

Infiltration has been conducted mainly in the northern part of the site, infiltration should be conducted to cover the extent of the site. In areas where infiltration is feasible, infiltration techniques has not been used.

Provide ownership details and permission to discharge surface water at the existing ditch/watercourse.

Provide surface water catchment plan, demonstrating the extent of the impermeable area and stating the area. Also state the area with 10% urban creep.

Provide surface water flood exceedance plan, demonstrating with flood arrows and proposed levels that all surface water will be kept away from structures and within the site boundary.

SuDS construction details drawing to be provided.

Officer's Name: Kabier Salam Officer's Title: LLFA Engineer Date: 14/11/2022

Education Schedule

Recommendation:

No objection subject to:

• **S106 Contributions** as summarised in the tables below and justified in this Schedule.

Contribution	Amount £	Price base	Index	Towards (details)
Primary and	£968,750	327	BCIS	Primary education
nursery			All-In	capacity serving the
education			TPI	development
Primary	£90,967	Nov-20	RPIX	Contribution towards
School Land				primary school land
Contribution				
Secondary	£447,660	327	BCIS	Secondary education
education			All-In	capacity serving the
			TPI	development
SEN	£71,793	327	BCIS	SEN capacity serving the
			All-In	development
			TPI	-
Total	£ 1,579,170			

The total development proposed and underway within the Heyford Park masterplan area, including the developments outside this application, have been assessed to estimate the total pupil generation which is expected for each age range.

Part of this provision is already delivered through the existing Heyford Park School and, for early years education, the Old Station Nursery. The balance of provision required has been calculated and the cost equalised across the different developments on a pro rata basis.

S106 obligations and their compliance with Regulation 122(2) Community Infrastructure Levy Regulations 2010 (as amended):

£968,750 Primary and Nursery School Contribution indexed from TPI = 327 Justification:

Comparing current nursery and primary capacity at Heyford Park with the total generation expected from all masterplan parcels shows a deficit of provision equating to 103 nursery places and 300 primary places.

This scale of provision requires a new school. A new 1.5 form entry primary school will provide 75 nursery places and 315 primary places.

The cost has been calculated pro-rata, taking into account the current surplus places at Heyford Park School.

Calculation:

Estimated cost of a new 1.5 form entry primary school = \pounds 9,668,000 (TPI = 327)

Total pupil generation expected from new/future applications: 499 (some of whom will benefit from surplus places previously provided at the existing school)

Cost per pupil (based on 499 pupils) = £9,668,000 / 499 = £19,375

Number of primary and nursery pupils expected to be generated	50
Estimated cost of a new 1.5 form entry primary school	£19,375
Pupils * cost =	£ 968,750

£90,967 Primary School Land Cost Contribution

This development should contribute in a fair and proportionate manner to the land required for the primary school.

Oxfordshire County Council's standard land requirement for a 1.5 FE primary school is 2.22 ha, and standard education land value per ha = \pounds 409,761 (Nov-20). The total school land value is \pounds 909,669 (\pounds 409,761 x 2.22).

This application is expected to generate 50 nursery and primary pupils. This equates to 10% of the expected pupil generation from current and expected future applications.

10% of £909,669 is £90,967.

£447,660 Secondary School Contribution indexed from TPI = 327

Justification:

Comparing current secondary and sixth form capacity at Heyford Park with the total generation expected from all parcels shows a deficit of provision equating to 192

secondary places. There is no deficit in sixth form places, and therefore no sixth form contribution is required.

The cost has been calculated pro-rata across all proposed developments, taking into account the current surplus places at Heyford Park School.

Calculation:

Cost per place of expanding a secondary school: £25,992 (TPI=327)

Additional number of places required to meet the needs of all parcels of Heyford Park: 192

Total cost of expansion for 192 places = 192 * £25,992 = £4,990,485

Total pupil generation expected from new/future applications: 301 (some of whom will benefit from surplus places previously provided at the existing school)

Cost per pupil (based on 301 pupils) = £4,990,485/ 301 = £16,580

Secondary pupil generation from this development: 27

Secondary contribution required from this development = 27 * £16,580 = £447,660

£71,793 Special School Contribution indexed from TPI = 327

Justification:

Government guidance is that local authorities should secure developer contributions for expansion to special education provision commensurate with the need arising from the development.

Approximately half of pupils with Education Needs & Disabilities (SEND) are educated in mainstream schools, in some cases supported by specialist resource bases, and approximately half attend special schools, some of which are run by the local authority and some of which are independent. Based on current pupil data, approximately 0.9% of primary pupil attend special school, 2.1% of secondary pupils and 1.5% of sixth form pupils. These percentages are deducted from the mainstream pupil contributions referred to above, and generate the number of pupils expected to require education at a special school.

The county council's Special Educational Needs & Disability Sufficiency of Places Strategy is available at <u>https://www.oxfordshire.gov.uk/residents/schools/our-work-schools/planning-enough-sc</u> <u>hool-places</u> and sets out how Oxfordshire already needs more special school places. This is being achieved through a mixture of new schools and expansions of existing schools.

The proposed development is expected to further increase demand for places at SEN schools in the area, and a contribution towards expansion of SEN school capacity is therefore sought based on the percentage of the pupil generation who would be expected to require places at a special school, based on pupil census data.

Calculation:

Number of pupils requiring education at a special school expected to be generated	0.8
Estimated per pupil cost of special school expansion, as advised by Government guidance	£89,741
Pupils * cost =	£71,793

The above contributions are based on a policy compliant unit mix of:

10 x 1 bed dwellings 25 x 2 bed dwellings 54 x 3 bed dwellings 37x 4 bed dwellings

It is noted that the application is outline and therefore the above level of contributions would be subject to amendment, should the final unit mix result in an increase in pupil generation.

Officer's Name: Louise Heavey Officer's Title: Access to Learning Information Analyst Date: 11/11/2022

Infrastructure Funding

Recommendation:

No objection subject to S106 contributions

Legal agreement required to secure:

No objection subject to:

• S106 Contributions as summarised in the tables below and justified in this Schedule.

Contribution	Amount	Price base	Index	Towards (details)
Library	£14,669	327		Funding of Bicester
				library

S106 obligations and their compliance with Regulation 122(2) Community Infrastructure Levy Regulations 2010 (as amended):

£14,669 Library Contribution to be indexed linked from TPI – 327 using the BCIS index

Towards: Repaying the cost of forward funding the new Bicester library

Justification: A new library has been provided in the Franklins Yard development in Bicester. Part of the cost of the project was forward funded in advance of contributions being received from development. A contribution is required from this development toward repaying the cost of forward funding the delivery of Bicester library.

Calculation:

There is £487,205 still to be secured from the total £1.2 M capital cost of the project at a BCIS TPI -327 price base.

Population forecasts show a population increase of 20,257 to 2026 for the Bicester Library Service catchment area.

Current contribution requirement is \pounds 487,205 ÷ by 20,257 = \pounds 24.05

The development proposal would also generate the need to increase the core book stock held by the local library by 2 volumes per additional resident. The price per volume is $\pounds 10.00 = \pounds 20$ per person.

The full requirement for the provision of library infrastructure and supplementary core book stock in respect of this application is: \pounds 44.05 x 333 (the forecast number of new residents) = \pounds 14,669

Officer's Name: Richard Oliver Officer's Title: Infrastructure Funding Negotiator Date: 11/11/2022

Archaeology

Recommendation:

An archaeological evaluation has been undertaken on this site, to ground truth the results of a geophysical survey. The results of these investigations have been submitted with this application, and show that no archaeological remains survive on this site, and therefore there are no archaeological constraints to this development.

Key issues:

Legal agreement required to secure:

Conditions:

Informatives:

Detailed comments:

Officer's Name: Victoria Green Officer's Title: Planning Archaeologist Date: 04/11/2022

Minerals & Waste

Recommendation:

No Objection

Key issues:

Legal agreement required to secure:

Conditions:

Informatives:

Detailed comments:

Thank you for consulting the Minerals and Waste Policy Team on the above application.

The application site falls within the Mineral Consultation Area for a Mineral Safeguarding Area, therefore Policy M8 of the Oxfordshire Minerals and Waste Local Plan Part 1: Core Strategy should be considered.

Policy M8 states that development that would prevent of otherwise hinder the possible future working of the mineral would not be permitted unless it can be shown that:

- The site has been allocated for development in an adopted local plan or neighbourhood plan; or
- The need for the development outweighs the economic and sustainability considerations relating to the mineral resource; or
- The mineral will be extracted prior to the development taking place.

However, the application site does not actually fall within the Crushed Rock Safeguarding Area which lies to the east of the site.

In addition, the application site lies within an area of land between the already developed area at Upper Heyford Airfield (to the north and west) and Camp Road (to the south). As a result, it is not considered that the development would cause any additional sterilisation of the mineral safeguarding area to the east of the application site. It is therefore considered that the proposed site would not be contrary to Policy M8, and no objection is raised to this planning application on Mineral Policy grounds.

Officer's Name: Charlotte Simms

Officer's Title: Minerals and Waste Local Plan Principal Officer **Date:** 14/11/2022

Waste Management

Recommendation:

No objection subject to S106 contributions

Legal agreement required to secure:

No objection subject to:

• S106 Contributions as summarised in the tables below and justified in this Schedule.

Contribution	Amount	Price base	Index	Towards (details)
Household	£11,839	327	BCIS	Expansion and efficiency
Waste			All-In TPI	of Household Waste
Recycling				Recycling Centres
Centres				(HWRC)

S106 obligations and their compliance with Regulation 122(2) Community Infrastructure Levy Regulations 2010 (as amended):

£11,839 Household Waste Recycling Centre Contribution indexed from Index Value 327 using BCIS All-in Tender Price Index

Towards:

The expansion and efficiency of Household Waste Recycling Centre (HWRC) capacity.

Justification:

1. Oxfordshire County Council, as a Waste Disposal Authority, is required under the Environmental Protection Act 1990 (Section 51) to arrange:

"for places to be provided at which persons resident in its area may deposit their household waste and for the disposal of waste so deposited";

and that

"(a) each place is situated either within the area of the authority or so as to be reasonably accessible to persons resident in its area;

(b) each place is available for the deposit of waste at all reasonable times (including at least one period on the Saturday or following day of each week except a week in which the Saturday is 25th December or 1st January);

(c) each place is available for the deposit of waste free of charge by persons resident in the area;".

- 2. Such places are known as Household Waste Recycling Centres (HWRCs) and Oxfordshire County Council provides seven HWRCs throughout the County. This network of sites is no longer fit for purpose and is over capacity.
- 3. Site capacity is assessed by comparing the number of visitors on site at any one time (as measured by traffic monitoring) to the available space. This analysis shows that all sites are currently 'over capacity' (meaning residents need to queue before they are able to deposit materials) at peak times, and many sites are nearing capacity during off peak times. The proposed development will provide 126 dwellings. If each household makes four trips per annum the development would impact on the already over capacity HWRCs by an additional 504 HWRC visits per year.
- 4. Congestion on site can reduce recycling as residents who have already queued to enter are less willing to take the time necessary to sort materials into the correct bin. Reduced recycling leads to higher costs and an adverse impact on the environment. As all sites are currently over capacity, population growth linked to new housing developments will increase the pressure on the sites.
- 5. The Waste Regulations (England and Wales) 2011 require that waste is dealt with according to the waste hierarchy. The County Council provides a large number of appropriate containers and storage areas at HWRCs to maximise the amount of waste reused or recycled that is delivered by local residents. However, to manage the waste appropriately this requires more space and infrastructure meaning the pressures of new developments are increasingly felt. Combined with the complex and varied nature of materials delivered to site it will become increasingly difficult over time to comply with the EU Waste Framework Directive 2008, enacted through the Waste Regulations (England and Wales) 2011 (as amended), maintain performance and a good level of service especially at busy and peak times.

Calculation:

Space at HWRC required per dwelling (m ²)	0.18	Current land available 41,000m ² , needs to increase by 28% to cope with current capacity issues. Space for reuse requires an additional 7%. Therefore, total land required for current dwellings (300,090) is 55,350 m ² , or 0.18m ² per dwelling
Infrastructure cost per m ²	£275	Kidlington build cost/m ² indexed to 327 BCIS
Land cost per m ²	£247	Senior Estates Surveyor valuation
Total land and infrastructure cost /m ²	£522	
Cost/dwelling	£93.96	
No of dwellings in the	126	
development		
Total contributions requested	£11,839	

Detailed comments:

Oxfordshire councils have ambitious targets to reduce the amount of waste generated and increase the amount recycled as demonstrated in our Joint Municipal Waste Management Strategy 2018-2023. Enabling residents of new dwellings to fully participate in district council waste and recycling collections is vital to allow Oxfordshire's high recycling rates to be maintained and reduce the amount of non-recyclable waste generated.

Given the pressing urgency of climate change and the need to embed the principles of the circular economy into all areas of our society, we encourage the applicant to consider including community spaces that help reduce waste and build community cohesion through assets such as community fridges, space for the sharing economy (library of things), refill stations, space for local food growing etc.

The bin storage areas must be able to accommodate the correct number of mixed recycling, refuse and food recycling bins; be safe and easy to use for residents and waste collection crews and the proposed bin collection points must meet the requirements of the waste collection authority. A number of the proposed bin collection points appear to be within the footprint of allocated parking spaces rather than as a dedicated bin collection point.

The development will increase domestic waste arisings and the demand for all waste management services including Household Waste Recycling Centres (HWRCs).

Conditions:

In the event that permission is to be given, the following conditions should be attached:

N/A

Officer's Name: Mark Watson Officer's Title: Waste Strategy Projects Officer Date: 4 November 2022

APPENDIX B

Drainage Strategy Drawing, Levels Strategy and Calculations

Odyssey Markides LLP						Page 1
Tuscany House						
White Hart Lane Oxfordshire						
Basingstoke RG21 4AF Permeable Driveways						Micro
Date 13/01/2023 17:13		Designed	l by NA			
File 22-192 Permeable Drive	w	Checked	by GG			Dialitada
Innovyze		Source C	ontrol	2020.1		
<u>Summary of Resu</u>	<u>lts fo</u>	<u>r 100 y</u> e	ear Retu	<u>irn Perio</u>	<u>d (+40%)</u>	
	alf Dwa	in Time i	E2 minut			
ri I	all Dra.	In Time :	55 minut	es.		
Storm	Мах	Max	Max	Max	Status	
Event	Level	L Depth 1	Infiltrat	ion Volume		
	(m)	(m)	(1/s)	(m³)		
15 min Summe:	119.65	54 0.154		0.2 0.7	O K	
30 min Summe:	119.67	73 0.173		0.2 0.9	O K	
60 min Summe:	119.68	33 0.183		0.2 1.1	O K	
120 min Summe:	- 110 EC	0.101 0.101		0.3 1.1 0.2 1.0	O K	
240 min Summe	- 119.67 - 119.67	76 0.176		0.2 1.0	0 K	
360 min Summer	119.66	54 0.164		0.2 0.8	0 K	
480 min Summe:	119.65	52 0.152		0.2 0.7	ОК	
600 min Summe:	119.64	12 0.142		0.2 0.6	ОК	
720 min Summe:	119.63	32 0.132		0.2 0.6	O K	
960 min Summe:	119.61	L7 0.117		0.2 0.4	O K	
1440 min Summe:	119.59	94 0.094		0.1 0.3	O K	
2160 min Summe:	119.57	72 0.072		0.1 0.2	ОК	
2880 min Summe:	119.55 110.57	0.059		0.1 0.1	OK	
4320 min Summe	- 119.54 - 119.54	12 0.047			0 K	
7200 min Summe	119.53	38 0.038		0.0 0.0	O K	
8640 min Summe	119.53	35 0.035		0.0 0.0	ОК	
10080 min Summe:	119.53	34 0.034		0.0 0.0	O K	
15 min Winte:	119.66	56 0.166		0.2 0.9	O K	
Ste	orm	Rain	Flooded	Time-Peak		
EV	ant	(mm/nr)	(m ³)	(mins)		
			, /			
15 mi	n Summe	r 141.063	0.0	17		
30 mi	n Summe	r 92.024	0.0	30		
00 III. 120 mi	n Summe	r 34.241	0.0	40 80		
180 mi	n Summe	r 25.301	0.0	116		
240 mi	n Summe	r 20.346	0.0	148		
360 mi	n Summe	r 14.859	0.0	214		
480 mi	n Summe	r 11.812	0.0	276		
600 mi	n Summe	r 9.853	0.0	338		
720 mi	n Summe	r 8.478	0.0	398		
960 mi 1440 mi	n Summe	r 6.664 r 1.717	0.0	520		
1440 M1 2160 mi	n Summe	⊥ 4.1⊥1 r 3.329	0.0	1108		
2880 mi	n Summe	r 2.605	0.0	1468		
4320 mi	n Summe	r 1.857	0.0	2180		
5760 mi	n Summe	r 1.472	0.0	2920		
7200 mi	n Summe	r 1.239	0.0	3648		
8640 mi	n Summe	r 1.082	0.0	4400		
10080 mi	n Summe	r 0.969	0.0	5120		
	n winte	r 141.003	0.0	1/		
	©1982	2-2020 I	nnovyze			
L						

Odyssey Markides LLP						Page 2
Tuscany House						
White Hart Lane	Oxf	fordsh	ire			
Basingstoke RG21 4AF	Per	rmeabl	e Drivew	vays		Micco
Date 13/01/2023 17:13	Des	signed	by NA			
File 22-192 Permeable Drivew	Che	ecked	by GG			Diamage
Innovyze	Sou	urce C	ontrol 2	2020.1		
Summary of Results :	for i	100 ye	ar Retui	rn Period	d (+40%)	
Storm Ma		Max	Max	Max	Status	
Event Lev	n) 1)	Deptn 1 (m)	.nriitrati (1/s)	.on volume (m ³)		
	-,	(,	(=, =,	()		
30 min Winter 119.	686 (0.186	0	1.1	ΟK	
60 min Winter 119. 120 min Winter 119	696 0	0.196	0	1.3 1.2	OK	
180 min Winter 119	688 (0.190	0	1.2	0 K	
240 min Winter 119.	680 (0.180	0	1.0	0 K	
360 min Winter 119.	663 (0.163	0	0.2 0.8	ОК	
480 min Winter 119.	647 (0.147	0	0.2 0.7	ΟK	
600 min Winter 119.	633 (0.133	0	0.2 0.6	0 K	
720 min Winter 119.	621 (0.121	0	0.2 0.5	O K	
960 min Winter 119.	602 (0.102	0	0.1 0.3	O K	
1440 min Winter 119.	5/7 (U.U77	0	0.2	O K	
2160 min Winter 119. 2880 min Winter 119	577 1	0.056	0		OK	
4320 min Winter 119.	540 (0.040	0		0 K	
5760 min Winter 119.	535 (0.035	0	0.0 0.0	ОК	
7200 min Winter 119.	532 (0.032	0	0.0 0.0	O K	
8640 min Winter 119.	530 (0.030	0	0.0 0.0	O K	
10080 min Winter 119.	528 (0.028	0	0.0 0.0	0 K	
Storm		Rain	Flooded !	Time-Peak		
Event	((mm/hr)	Volume	(mins)		
			(m³)			
30 min Win	ter	92.024	0.0	30		
60 min Win	ter	57.070	0.0	50		
120 min Win	ter	34.241	0.0	88		
180 min Win	ter	25.301	0.0	124		
240 min Win	ter	20.346	0.0	158		
360 min Win	ter	14.859	0.0	226		
480 min Win	ter	11.812	0.0	290		
600 min Win 720 min ™in	ler ter	9.853 8 479	0.0	352 //10		
960 min Win	ter	6.664	0.0	530		
1440 min Win	ter	4.717	0.0	766		
2160 min Win	ter	3.329	0.0	1120		
2880 min Win	ter	2.605	0.0	1472		
4320 min Win	ter	1.857	0.0	2204		
5760 min Win	ter	1.472	0.0	2904		
/200 Min Win 8640 min Win	ter	1 082	0.0	3370 4400		
	ter	0.969	0.0	5088		
10080 min Win						
10080 min Win	COL					
10080 min Win	001					
10080 min Win						
10080 min Win						
10080 min Win						
10080 min Win						
00080 min Win 00080 colo	182-2	2020 II	nnovyze			

Odugaou Markidag IID			
Judyssey Markides LLP			rage 3
Tuscany House	Land at Upper Heyford		
White Hart Lane	Oxfordshire		
Basingstoke RG21 4AF	Permeable Driveways		Mirro
Date 13/01/2023 17:13	Designed by NA		Dcainago
File 22-192 Permeable Drivew	Checked by GG		Diamage
Innovyze	Source Control 2020.1		
Ra	<u>infall Details</u>		
Deinfell Mede			
Return Period (years	=⊥ 3)	100	
FEH Bainfall Versio	on	2013	
Site Locatio	on GB 451902 225728 SP 51902	25728	
Data Typ	be	Point	
Summer Storn	ns	Yes	
Winter Storm	ns	Yes	
Cv (Summer	c)	0.750	
Cv (Winter	c)	0.840	
Shortest Storm (mins	5)	15	
Longest Storm (mins	5)	10080	
Climate Change	8	+40	
Tin	ne Area Diagram		
Tota	al Area (ha) 0.004		
Ti	me (mins) Area		
Fr	om: To: (ha)		
	0 1 0 001		
	0 4 0.004		

©1982-2020 Innovyze

Odyssey Markides LLP		Page 4
Tuscany House	Land at Upper Heyford	
White Hart Lane	Oxfordshire	
Basingstoke RG21 4AF	Permeable Driveways	Mirro
Date 13/01/2023 17:13	Designed by NA	
File 22-192 Permeable Drivew	Checked by GG	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 120.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.04680	Width (m)	3.0
Membrane Percolation (mm/hr)	1000	Length (m)	13.0
Max Percolation (l/s)	10.8	Slope (1:X)	70.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	119.500	Membrane Depth (m)	0

Odyssey Markides	Page 1											
Tuscany House												
White Hart Lane												
Basingstoke RG21 4AF												
Date 18/08/2023 17:01	Designed by windesPC3											
File 2023-08-18 SW Network MDX	Checked by											
YP Solutions	Network 2020 1 3											
	Network 2020.1.3											
STORM SEWER DESIGN b	by the Modified Rational Method											
Design	<u>Criteria for Storm</u>											
Pipe Sizes STAN	ANDARD Manhole Sizes STANDARD											
FEI	EH Rainfall Model											
Return Perio	od (years) 100											
Site	e Location GB 451902 225728 SP 51902 25728											
Data Type Point												
Maximum Rainfall (mm/hr) 50												
Maximum Time of Concentration (mins) 30												
Foul Sewage Volumetric Buno	e (1/S/na) 0.000											
	PIMP (%) 100											
PIMP (%) 10 Add Flow / Climate Change (%)												
Minimum Backdrop H	Height (m) 0.200											
Maximum Backdrop H Min Design Depth for Optimis	Height (m) 1.500											
Min Vel for Auto Design o	only (m/s) 1.00											
Min Slope for Optimisat	tion (1:X) 500											
Designe	ed with Level Soffits											
<u>Time Area Diagram for</u>	s Storm at outfall S (pipe S1.003)											
Time	Area Time Area											
(mins)) (ha) (mins) (ha)											
0-4	4 0.077 4-8 0.042											
Total Area (Contributing (ha) = 0.119											
Total Pip	ipe Volume (m³) = 8.207											
<u>Time Area Diagrar</u>	um at outfall S (pipe S3.029)											
Time Area Time	Area Time Area Time Area											
	(\mathbf{na}) (mins) (na) (mins) (na)											
	Contributing (b) = 1.923											
	concludating (na) - 1.925											
Total Pip	pe Volume (m³) = 99.493											
Network Design Table for Storm												
« - Indicates pipe capacity < flow												
	« indicates pipe capacity < iiow											
<u></u>	82-2020 Innouuze											

Odvssev Markides		Page 2										
Tuscany House												
White Hart Lane												
Basingstoke RG21 41F												
Date 18/08/2023 17:01	Designed by windes PC?	MICIO										
Filo 2023-08-18 SW Notwork MDY	Checked by Windesres	Drainage										
VD Colutions	Notwork 2020 1 2	L										
XP Solutions	Network 2020.1.3											
Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (mm) Design												
Netwo	ork Results Table											
PN Rain T.C. US/ILΣI.Are (mm/hr) (mins) (m) (ha)	a Σ Base Foul Add Flow Vel Cap Flow (l/s) (l/s) (l/s) (m/s) (l/s	Flow) (l/s)										
 	32-2020 Innovvze											
0190	2 2020 IIIIOVYZE											

Odyssey	/ Marki	ldes								Pag	e 3	
Tuscany	/ House	è										
White H	lart La	ane										
Basings	stoke	RG21	4AF							Mi		
Date 18	3/08/20)23 17	7:01		De	signed by	winde	esPC3				
File 2023-08-18 SW Network.MDX Checked by												
XP SolutionsNetwork 2020.1.3												
				Networl	k Desi	.gn Table :	for St	<u>lorm</u>				
PN	PN Length Fall Slope I.Area T.E. Base k HYD DIA Section											
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design	
S1.000	16.998	0.500	34.0	0.066	5.00	0.0	0.600	0	150	Pipe/Conduit	a	
S1.001	9.914	0.466	21.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- 6	
G2 000	20 401	0 606	10 0	0 0 0 1	E 0.0	0.0	0 600		225	Dine (Conduct		
52.000	20.491	0.696	40.9	0.021	5.00	0.0	0.600	0	223	Pipe/Conduit	· 🗂	
S1.002	9.446	0.013	726.6	0.026	0.00	0.0	0.600	0	750	Pipe/Conduit	a	
S1.003	55.502	0.602	92.2	0.006	0.00	0.0	0.600	0	225	Pipe/Conduit	- 6	
a2 000	40 170	0 007	105 0	0 007	F 0.0	0.0	0 600		225	Din (Gerebeit	•	
S3.000	40.1/9	0.297	135.3	0.027	5.00	0.0	0.600	0	225	Pipe/Conduit	÷ ط	
53.001	J.329	0.007	19.0	0.091	0.00	0.0	0.000	0	313	ETDE/CONDUTC	· 😈	
S4.000	10.606	0.390	27.2	0.037	5.00	0.0	0.600	0	150	Pipe/Conduit	.	
s3.002	7.031	0.141	49.9	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit		

ď	Pipe/Conduit	375	0	0.600	0.0	0.00	0.000	49.9	0.141	7.031	S3.002
ě	Pipe/Conduit	375	0	0.600	0.0	0.00	0.009	57.2	0.997	57.049	S3.003
ď,	Pipe/Conduit	375	0	0.600	0.0	0.00	0.184	99.7	0.101	10.068	S3.004
- d	Pipe/Conduit	375	0	0.600	0.0	0.00	0.022	159.7	0.049	7.824	S3.005
- Ē	Pipe/Conduit	375	0	0.600	0.0	0.00	0.054	209.1	0.098	20.495	S3.006
- Ē	Pipe/Conduit	375	0	0.600	0.0	0.00	0.063	313.7	0.083	26.034	S3.007
÷.	Pipe/Conduit	375	0	0.600	0.0	0.00	0.032	136.2	0.127	17.298	S3.008
-											
ð	Pipe/Conduit	225	0	0.600	0.0	5.00	0.032	36.8	1.410	51.878	S5.000

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ	I.Area (ha)	Σ E Flow	Base (1/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	50.00	5.16	116.960		0.066		0.0	0.0	0.0	1.73	30.6	8.9
S1.001	50.00	5.22	116.385		0.066		0.0	0.0	0.0	2.85	113.3	8.9
S2.000	50.00	5.23	116.615		0.021		0.0	0.0	0.0	2.05	81.5	2.8
S1.002	50.00	5.38	115.394		0.113		0.0	0.0	0.0	1.03	455.2	15.3
S1.003	50.00	6.06	115.381		0.119		0.0	0.0	0.0	1.36	54.2	16.1
S3.000	50.00	5.60	118.624		0.027		0.0	0.0	0.0	1.12	44.6	3.7
S3.001	50.00	5.64	118.177		0.118		0.0	0.0	0.0	2.03	224.6	16.0
S4.000	50.00	5.09	118.800		0.037		0.0	0.0	0.0	1.94	34.3	5.0
S3.002	50.00	5.69	118.110		0.155		0.0	0.0	0.0	2.57	284.0	21.0
S3.003	50.00	6.08	117.969		0.164		0.0	0.0	0.0	2.40	265.0	22.2
S3.004	50.00	6.17	116.972		0.348		0.0	0.0	0.0	1.81	200.4	47.1
S3.005	50.00	6.27	116.871		0.370		0.0	0.0	0.0	1.43	158.1	50.1
S3.006	50.00	6.54	116.822		0.424		0.0	0.0	0.0	1.25	138.0	57.4
S3.007	50.00	6.97	116.724		0.487		0.0	0.0	0.0	1.02	112.4	65.9
S3.008	50.00	7.15	116.641		0.519		0.0	0.0	0.0	1.55	171.3	70.3
S5.000	50.00	5.40	118.150		0.032		0.0	0.0	0.0	2.16	86.0	4.3
				©1	982-20	020 I	innovy	ze				

Odyssey	/ Marki	ldes								1	Page	4	
Tuscany	/ House	3											
White H	lart La	ane											
Basings	stoke	RG21	4AF								Mic		
Date 18	3/08/20)23 17	7:01		De	signed by	winde	esPC3					
File 20)23-08-	-18 SV	V Netw	ork.MD	X Ch	ecked by					Uld	IIIdye	
XP Solı	itions				Ne	twork 2020	0.1.3						
Network Design Table for Storm													
DN Length Fall Slope I Area T F Base & HVD DIA Section Time Auto													
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section 1	Гуре	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design	
S3.009	4.368	0.014	312.0	0.123	0.00	0.0	0.600	0	375	Pipe/Cond	duit	e de la companya de l	
S3.010	25.993	0.083	313.2	0.000	0.00	0.0	0.600	0	3/5	Pipe/Cond	duit	ď	
S3.011	21.000	0.068	318.5	0.044	0.00	0.0	0.600	0	3/3	Pipe/Cond	auit	, and a second sec	
SS.012	14.0/3	0.048	216 6	0.000	0.00	0.0	0.600	0	275	Pipe/Cond	auit	, di	
S3.013 S3.014	11 727	0.021	316 9	0.000	0.00	0.0	0.000	0	375	Pipe/Cond	Julit	0	
\$3.015	6 866	0.037	312 1	0.000	0.00	0.0	0.000	0	375	Pipe/Cond	duit		
\$3.016	7.552	0.022	313.0	0.006	0.00	0.0	0.600	0	375	Pipe/Conc	duit		
s3.017	31.153	0.241	129.3	0.027	0.00	0.0	0.600	0	375	Pipe/Cond	duit		
										± .		•	
S6.000	34.892	0.872	40.0	0.036	5.00	0.0	0.600	0	225	Pipe/Cond	duit	a	
S6.001	9.387	0.276	34.0	0.049	0.00	0.0	0.600	0	225	Pipe/Cond	duit	Ť	
s7.000	17.745	1.124	15.8	0.089	5.00	0.0	0.600	0	150	Pipe/Cond	duit	0	
SE 002	16 261	0 465	25 0	0 0 0 0	0 00	0 0	0 600	~	225	Dina/Con	4	•	
S6.002	0 506	0.405	11 6	0.008	0.00	0.0	0.600	0	225	Pipe/Cond	Julit	U	
30.003	9.590	0.050	11.0	0.013	0.00	0.0	0.000	0	223	ripe/cond	JUIL	T.	
S3.018	34.331	0.089	385.7	0.006	0.00	0.0	0.600	0	450	Pipe/Cond	duit	æ	
S3.019	27.417	0.079	347.1	0.050	0.00	0.0	0.600	0	450	Pipe/Cond	duit	ě	
												-	
				Ne	etwork	Results 1	able						
DN	Pai	р П	c i	19/TT. 5	TAre	Σ Bage	Foul	Add	Flow	Vel Ca	an i	Flow	

PN	Rain	T.C.	US/IL	Σ	I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)		(ha)	Flow	(l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
~~ ~~~	F0 00	7 00	116 514		0 674		0 0	0 0	0.0	1 00	110 7	01 0
53.009	50.00	1.22	116.514		0.6/4		0.0	0.0	0.0	1.02	112./	91.3
S3.010	50.00	7.65	116.500		0.674		0.0	0.0	0.0	1.02	112.5	91.3
S3.011	50.00	8.01	116.417		0.718		0.0	0.0	0.0	1.01	111.5	97.2
S3.012	50.00	8.25	116.349		0.718		0.0	0.0	0.0	1.02	112.5	97.2
S3.013	50.00	8.36	116.301		0.718		0.0	0.0	0.0	1.01	111.9	97.2
S3.014	50.00	8.55	116.280		0.718		0.0	0.0	0.0	1.01	111.8	97.2
S3.015	50.00	8.66	116.243		0.752		0.0	0.0	0.0	1.02	112.7	101.8
S3.016	50.00	8.79	116.221		0.758		0.0	0.0	0.0	1.02	112.5	102.6
S3.017	50.00	9.11	116.197		0.785		0.0	0.0	0.0	1.59	175.8	106.3
S6.000	50.00	5.28	118.549		0.036		0.0	0.0	0.0	2.07	82.5	4.9
S6.001	50.00	5.35	117.677		0.085		0.0	0.0	0.0	2.25	89.5	11.5
s7.000	50.00	5.12	118.600		0.089		0.0	0.0	0.0	2.55	45.0	12.1
S6.002	50.00	5.47	117.401		0.182		0.0	0.0	0.0	2.22	88.3	24.6
S6.003	50.00	5.51	116.936		0.195		0.0	0.0	0.0	3.87	153.8	26.4
S3.018	50.00	9.67	115.881		0.986		0.0	0.0	0.0	1.03	163.7	133.5
S3.019	50.00	10.09	115.792		1.036		0.0	0.0	0.0	1.09	172.7	140.3
				_⊜1	002-21	120 T	nnorr					
				\odot	- シロムーム!	JZU I	. 1 I I I O V Y	2 U				

Odyssey Markides		Page 5
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamacje
XP Solutions	Network 2020.1.3	
<u>Network D</u>	esign Table for Storm	
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m	.E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm)	n Type Auto Design

e	Pipe/Conduit	225	0	0.600	0.0	5.00	0.159	114.5	0.277	31.722	S8.000
ď	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	4.3	1.345	5.773	S8.001
8	Pipe/Conduit	525	0	0.600	0.0	0.00	0.025	812.9	0.021	17.071	S3.020
ē	Pipe/Conduit	525	0	0.600	0.0	0.00	0.025	1334.7	0.009	12.012	S3.021
ē	Pipe/Conduit	525	0	0.600	0.0	0.00	0.045	1373.8	0.009	12.364	S3.022
ē	Pipe/Conduit	525	0	0.600	0.0	0.00	0.000	209.4	0.038	7.957	S3.023
.	Pipe/Conduit	525	0	0.600	0.0	5.00	0.078	42.5	0.189	8.027	S9.000
ெ	Pipe/Conduit	525	0	0.600	0.0	0.00	0.000	218.4	0.171	37.343	S3.024
.	Pipe/Conduit	525	0	0.600	0.0	5.00	0.097	504.8	0.010	5.048	S10.000
8	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	165.2	0.042	6.940	S3.025
ē	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	165.9	0.043	7.134	S3.026
.	Pipe/Conduit	150	0	0.600	0.0	5.00	0.071	49.3	0.368	18.145	S11.000
Ē.	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	86.4	0.197	17.016	S11.001
- Ē	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	78.7	0.157	12.358	S11.002
- Ē	Pipe/Conduit	225	0	0.600	0.0	0.00	0.000	333.1	0.203	67.621	S11.003
_											

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ	I.Area (ha)	Σ E Flow	ase (1/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S8.000	50.00	5.43	117.560		0.159		0.0	0.0	0.0	1.22	48.5	21.5
S8.001	50.00	5.45	117.283		0.159		0.0	0.0	0.0	6.36	252.8	21.5
S3.020	50.00	10.46	115.638		1.220		0.0	0.0	0.0	0.78	168.3	165.2
S3.021	50.00	10.79	115.617		1.245		0.0	0.0	0.0	0.60	130.8«	168.6
S3.022	50.00	11.13	115.608		1.290		0.0	0.0	0.0	0.60	128.9«	174.7
S3.023	50.00	11.22	115.599		1.290		0.0	0.0	0.0	1.54	334.3	174.7
S9.000	50.00	5.04	115.750		0.078		0.0	0.0	0.0	3.44	745.6	10.6
S3.024	50.00	11.63	115.561		1.368		0.0	0.0	0.0	1.51	327.2	185.2
S10.000	50.00	5.08	115.400		0.097		0.0	0.0	0.0	0.99	214.3	13.1
S3.025	50.00	11.74	115.390		1.465		0.0	0.0	0.0	1.01	40.3«	198.4
S3.026	50.00	11.86	115.348		1.465		0.0	0.0	0.0	1.01	40.2«	198.4
S11.000	50.00	5.21	116.440		0.071		0.0	0.0	0.0	1.44	25.4	9.6
S11.001	50.00	5.41	115.997		0.071		0.0	0.0	0.0	1.41	56.0	9.6
S11.002	50.00	5.55	115.800		0.071		0.0	0.0	0.0	1.48	58.7	9.6
S11.003	50.00	7.14	115.643		0.071		0.0	0.0	0.0	0.71	28.3	9.6
				©1	982-20	JZO I	nnovy	ze				

Odyssey Markides										Pag	je 6	
Tuscany	House											
White H	art La	ne										
Basingstoke RG21 4AF											М	
Date 18/08/2023 17:01						signe	d by	winde	sPC3			
File 20	Che	ecked	by					alliage				
XP Solu	tions				Net	twork	2020	.1.3				
			1	letwork	Desi	<u>gn Ta</u>	able f	for St	orm			
PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Typ	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
s12.000	30.023	0.882	34.0	0.031	5.00		0.0	0.600	0	150	Pipe/Condui	t 🔒
S11.004	23.693	0.142	167.0	0.144	0.00		0.0	0.600	0	225	Pipe/Condui	t 🗛
S11.005	49.341	0.187	263.9	0.000	0.00		0.0	0.600	0	300	Pipe/Condui	.t 💣
c12 000	01 771	0 040	511 2	0 1 4 9	5 00		0 0	0 600	-	225	Dino (Condui	+ •
s13.000	21.248	0.040	214.6	0.148	0.00		0.0	0.600	0	225	Pipe/Condui	.u 😈 .t 🔐
											1 ·	•
S11.006	17.090	0.072	237.4	0.000	0.00		0.0	0.600	0	300	Pipe/Condui	t 💣
S11.007	29.735	0.125	237.9	0.000	0.00		0.0	0.600	0	300	Pipe/Condui	t 💣
s3.027	47.617	0.105	453.5	0.000	0.00		0.0	0.600	0	525	Pipe/Condui	t 🔒
S3.028	7.284	0.150	48.6	0.000	0.00		0.0	0.600	0	525	Pipe/Condui	.t 💣
014 000	15 260	0 100	150 7	0 064	5 00		0 0	0 600	<i>c</i>	150	Dino (Condui	+
S14.000	2 671	0.102	150.7	0.004	0.00		0.0	0.600	0	150	Pipe/Condui	.u 😈 " + 🕰
514.001	2.0/1	0.010	100.0	0.000	0.00		0.0	0.000	0	10	TTPE/CONDUI	🛑
S3.029	7.205	0.105	68.6	0.000	0.00		0.0	0.600	0	525	Pipe/Condui	.t 🔒

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S12.000	50.00	5.29	116.397	0.031	0.0	0.0	0.0	1.73	30.6	4.2
S11.004 S11.005	50.00 50.00	7.53 8.38	115.440 115.223	0.246 0.246	0.0	0.0	0.0	1.01 0.96	40.1 68.1	33.3 33.3
S13.000 S13.001	50.00 50.00	5.66 6.05	115.250 115.210	0.148 0.148	0.0	0.0	0.0	0.55 0.89	22.0 35.3	20.0 20.0
S11.006 S11.007	50.00 50.00	8.66 9.15	115.036 114.964	0.394 0.394	0.0	0.0	0.0	1.02 1.02	71.8 71.7	53.4 53.4
S3.027 S3.028	50.00 50.00	12.62 12.66	114.764 114.659	1.859 1.859	0.0	0.0	0.0	1.05 3.22	226.3« 697.1	251.7 251.7
S14.000 S14.001	50.00 50.00	5.31 5.37	115.079 114.977	0.064 0.064	0.0	0.0	0.0	0.82 0.82	14.4 14.5	8.7 8.7
S3.029	50.00	12.70	114.584	1.923	0.0	0.0	0.0	2.71	586.0	260.4

Odyssey Markides		Page 7
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SPP7	118.260	1.300	Open Manhole	1200	S1.000	116.960	150				
S2	117.810	1.425	Open Manhole	1200	S1.001	116.385	225	s1.000	116.460	150	
S3	118.040	1.425	Open Manhole	1200	s2.000	116.615	225				
S4	117.344	1.950	Open Manhole	1800	S1.002	115.394	750	S1.001	115.919	225	
								S2.000	115.919	225	
S5	117.180	1.799	Open Manhole	1800	S1.003	115.381	225	S1.002	115.381	750	
S	115.800	1.021	Open Manhole	0		OUTFALL		S1.003	114.779	225	
S6	120.124	1.500	Open Manhole	1200	S3.000	118.624	225				
S7	119.827	1.650	Open Manhole	1350	S3.001	118.177	375	s3.000	118.327	225	
SPP1	119.800	1.000	Open Manhole	1200	S4.000	118.800	150				
S9	119.772	1.662	Open Manhole	1350	S3.002	118.110	375	S3.001	118.110	375	
								S4.000	118.410	150	75
S10	119.653	1.684	Open Manhole	1350	S3.003	117.969	375	S3.002	117.969	375	
S11	118.622	1.650	Open Manhole	1350	S3.004	116.972	375	S3.003	116.972	375	
S12	118.535	1.664	Open Manhole	1350	S3.005	116.871	375	S3.004	116.871	375	
S13	118.496	1.674	Open Manhole	1350	S3.006	116.822	375	\$3.005	116.822	375	
S14	118.553	1.829	Open Manhole	1350	S3.007	116.724	375	S3.006	116.724	375	
S15	118.744	2.103	Open Manhole	1350	S3.008	116.641	375	S3.007	116.641	375	
S16	119.575	1.425	Open Manhole	1200	S5.000	118.150	225				
S17	118.752	2.238	Open Manhole	1350	S3.009	116.514	375	S3.008	116.514	375	
								S5.000	116.740	225	76
S18	118.689	2.189	Open Manhole	1350	S3.010	116.500	375	S3.009	116.500	375	
S19	118.392	1.975	Open Manhole	1350	S3.011	116.417	375	S3.010	116.417	375	
SCS1	118.600	2.251	Open Manhole	1350	S3.012	116.349	375	S3.011	116.349	375	
S21	118.242	1.941	Open Manhole	1350	S3.013	116.301	375	S3.012	116.301	375	
S22	118.369	2.089	Open Manhole	1350	S3.014	116.280	375	s3.013	116.280	375	
S23	118.309	2.066	Open Manhole	1350	\$3.015	116.243	375	S3.014	116.243	375	
S24	118.348	2.126	Open Manhole	1350	\$3.016	116.221	375	\$3.015	116.221	375	
S25	118.483	2.286	Open Manhole	1350	\$3.017	116.197	375	\$3.016	116.197	375	
S26	119.974	1.425	Open Manhole	1200	S6.000	118.549	225		110 (00	0.05	
SZ/	119.625	1.948	Open Manhole	1200	56.001	11/.6//	225	56.000	11/.6//	225	
SPP5	119.600	1.000	Open Manhole	1200	\$7.000	118.600	150	ac 001	117 401	0.05	
529	119.551	2.150	Open Mannole	1200	56.002	11/.401	225	56.001	117.401	225	
620	110 261	2 125	Onon Marhal-	1000	ac 000	116 026	005	57.000	116 026		
530	110 165	2.425	open Manhole	1200	50.003	115 001	225	50.002	115 050	225	
531	113.102	3.284	open Mannole	1350	53.018	112.881	450	53.UL/	116 100	3/5	
								100.003	110.100	223	
				©1982-2	020 In	novyze					

Odyssey Markides		Page 8
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Mirro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	·

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter) (mm)	Bacl (I
S32	118.870	3.078	Open Manhole	1350	s3.019	115.792	450	S3.018	115.792	2 450	
SPP6	118.640	1.080	Open Manhole	1200	S8.000	117.560	225				
S34	118.708	1.425	Open Manhole	1200	S8.001	117.283	225	S8.000	117.28	3 225	
S35	118.571	2.933	Open Manhole	1500	S3.020	115.638	525	S3.019	115.71	3 450	
								S8.001	115.93	3 225	
S36	117.975	2.358	Open Manhole	1500	S3.021	115.617	525	S3.020	115.61	7 525	
SCS2	118.288	2.680	Open Manhole	1500	S3.022	115.608	525	S3.021	115.60	3 525	
S38	117.859	2.260	Open Manhole	1500	S3.023	115.599	525	S3.022	115.59	9 525	
SCS4	117.600	1.850	Open Manhole	1500	S9.000	115.750	525				
SFC4	117.600	2.039	Open Manhole	1500	S3.024	115.561	525	S3.023	115.56	1 525	
								S9.000	115.56	1 525	
SCS3	116.500	1.100	Open Manhole	1500	S10.000	115.400	525				
SFC	116.490	1.100	Open Manhole	1500	S3.025	115.390	225	S3.024	115.390) 525	
								S10.000	115.390) 525	
S39	116.200	0.852	Open Manhole	1200	S3.026	115.348	225	S3.025	115.34	3 225	
SPP2	117.540	1.100	Open Manhole	1200	S11.000	116.440	150				
S41	117.122	1.125	Open Manhole	1200	S11.001	115.997	225	S11.000	116.07	2 150	
SSWALE 1	116.900	1.100	Open Manhole	1200	S11.002	115.800	225	S11.001	115.800) 225	
S43	116.900	1.257	Open Manhole	1200	S11.003	115.643	225	S11.002	115.64	3 225	
S44	117.747	1.350	Open Manhole	1200	S12.000	116.397	150				
SPP3	116.590	1.150	Open Manhole	1200	S11.004	115.440	225	S11.003	115.44) 225	
								S12.000	115.51	5 150	
S46	116.550	1.327	Open Manhole	1200	S11.005	115.223	300	S11.004	115.29	3 225	
SCS5	117.200	1.950	Open Manhole	1200	S13.000	115.250	225				
S48	116.300	1.090	Open Manhole	1200	S13.001	115.210	225	S13.000	115.21) 225	
S49	116.200	1.164	Open Manhole	1200	S11.006	115.036	300	S11.005	115.03	5 300	
								S13.001	115.11	1 225	
S50	116.100	1.136	Open Manhole	1200	S11.007	114.964	300	S11.006	114.96	4 300	
S51	116.200	1.436	Open Manhole	1500	S3.027	114.764	525	S3.026	115.30	5 225	
								S11.007	114.83	9 300	
S52	116.200	1.541	Open Manhole	1500	S3.028	114.659	525	S3.027	114.65	9 525	
SPP8	116.200	1.121	Open Manhole	1200	S14.000	115.079	150				
S54	116.200	1.223	Open Manhole	1200	S14.001	114.977	150	S14.000	114.97	7 150	
S55	116.200	1.691	Open Manhole	1500	S3.029	114.584	525	S3.028	114.50	9 525	
								S14.001	114.95	9 150	
S	115.800	1.321	Open Manhole	0		OUTFALL		S3.029	114.47	9 525	

Manhole Schedules for Storm

©1982-2020 Innovyze
Odyssey Markides	Page 9	
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SPP7	451876.206	225725.558	451876.206	225725.558	Required	•
S2	451893.057	225723.328	451893.057	225723.328	Required	
S3	451907.193	225750.025	451907.193	225750.025	Required	•
S4	451902.863	225721.866	451902.863	225721.866	Required	
S5	451901.887	225712.470	451901.887	225712.470	Required	
S	451956.816	225704.522			No Entry	•
S6	451898.265	225913.075	451898.265	225913.075	Required	1
S7	451903.496	225952.912	451903.496	225952.912	Required	6
SPP1	451898.236	225965.097	451898.236	225965.097	Required	
S9	451905.836	225957.699	451905.836	225957.699	Required	$\langle \rangle$
S10	451912.328	225960.397	451912.328	225960.397	Required	
S11	451969.376	225960.792	451969.376	225960.792	Required	
S12	451978.367	225956.262	451978.367	225956.262	Required	
S13	451980.623	225948.770	451980.623	225948.770	Required	ľ.
S14	451980.778	225928.276	451980.778	225928.276	Required	ļ

Odyssey Markides		Page 10
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Mirro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Layout (North)	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
4	Required	225902.585	451976.566	225902.585	451976.566	S15
•	Required	225892.629	451921.117	225892.629	451921.117	S16
	Required	225885.763	451972.538	225885.763	451972.538	S17
	Required	225881.412	451972.150	225881.412	451972.150	S18
	Required	225855.938	451966.984	225855.938	451966.984	S19
•	Required	225859.489	451945.619	225859.489	451945.619	SCS1
	Required	225854.320	451959.565	225854.320	451959.565	S21
	Required	225853.287	451966.132	225853.287	451966.132	S22
	Required	225841.702	451964.309	225841.702	451964.309	S23
	Required	225836.739	451959.565	225836.739	451959.565	S24
	Required	225836.755	451952.013	225836.755	451952.013	S25
•	Required	225887.233	451894.867	225887.233	451894.867	S26
	Required	225852.598	451890.639	225852.598	451890.639	S27
	Required	225840.199	451878.420	225840.199	451878.420	SPP5
$\mathbf{X}^{(i)}$	Required	225844.631	451895.603	225844.631	451895.603	S29

Odyssey Markides		Page 11
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Mirro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S30	451911.552	225841.462	451911.552	225841.462	Required	
S31	451921.018	225839.890	451921.018	225839.890	Required	
S32	451915.980	225805.930	451915.980	225805.930	Required	
SPP6	451874.736	225782.795	451874.736	225782.795	Required	
S34	451906.292	225779.557	451906.292	225779.557	Required	
S35	451912.015	225778.801	451912.015	225778.801	Required	
S36	451928.884	225776.181	451928.884	225776.181	Required	
SCS2	451930.791	225788.040	451930.791	225788.040	Required	•
S38	451931.751	225775.713	451931.751	225775.713	Required	1
SCS4	451937.896	225766.592	451937.896	225766.592	Required	
SFC4	451939.605	225774.435	451939.605	225774.435	Required	
SCS3	451977.226	225773.836	451977.226	225773.836	Required	Í
SFC	451976.526	225768.836	451976.526	225768.836	Required	I.
S39	451983.348	225767.565	451983.348	225767.565	Required	
SPP2	451995.630	225965.465	451995.630	225965.465	Required	T •

Odyssey Markides	Page 12	
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S41	452013.665	225963.458	452013.665	225963.458	Required	
SSWALE 1	452014.948	225946.491	452014.948	225946.491	Required	
S43	452025.260	225939.680	452025.260	225939.680	Required	Sec.
S44	451995.371	225877.500	451995.371	225877.500	Required	
SPP3	452024.897	225872.060	452024.897	225872.060	Required	
S46	452019.679	225848.948	452019.679	225848.948	Required	4
SCS5	451987.456	225824.250	451987.456	225824.250	Required	•
S48	452009.180	225822.805	452009.180	225822.805	Required	
S49	452003.559	225802.315	452003.559	225802.315	Required	1
S50	451995.989	225786.993	451995.989	225786.993	Required	4
S51	451982.532	225760.477	451982.532	225760.477	Required	, j
S52	451960.141	225718.454	451960.141	225718.454	Required	4
SPP8	451940.289	225715.451	451940.289	225715.451	Required	•
S54	451955.547	225713.616	451955.547	225713.616	Required	
S55	451957.410	225711.702	451957.410	225711.702	Required	
						1

Odyssey Mark	ides					Page 13
Tuscany Hous	e					
White Hart L	ane					
Basingstoke	RG21 4AF					Micco
Date 18/08/2	023 17:01		Designed by	windesPC3		
File 2023-08	-18 SW Netwo	ork.MDX	Checked by			Drainage
XP Solutions			Network 202	0.1.3		
		Manhole	Schedules fo	or Storm		
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
	s 451956.816	225704.522	2		No Entry	1
						•
		©198	32-2020 Innov	vyze		
L				-		

Odyssey Markides		Page 14
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000 S1.001	0	150 225	SPP7 S2	118.260 117.810	116.960 116.385	1.150 1.200	Open Manhole Open Manhole	1200 1200
S2.000	0	225	S3	118.040	116.615	1.200	Open Manhole	1200
S1.002 S1.003	0 0	750 225	S4 S5	117.344 117.180	115.394 115.381	1.200 1.574	Open Manhole Open Manhole	1800 1800
S3.000 S3.001	0	225 375	S6 S7	120.124 119.827	118.624 118.177	1.275 1.275	Open Manhole Open Manhole	1200 1350
S4.000	0	150	SPP1	119.800	118.800	0.850	Open Manhole	1200
S3.002	0	375	S9	119.772	118.110	1.287	Open Manhole	1350
S3.003	0	375	S10	119.653	117.969	1.309	Open Manhole	1350
S3.004	0	375	S11	118.622	116.972	1.275	Open Manhole	1350
S3.005	0	375	S12	118.535	116.871	1.289	Open Manhole	1350
S3.006	0	375	S13	118.496	116.822	1.299	Open Manhole	1350
S3.007	0	375	S14	118.553	116.724	1.454	Open Manhole	1350
S3.008	0	375	S15	118.744	116.641	1.728	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	16.998	34.0	s2	117.810	116.460	1.200	Open Manhole	1200
S1.001	9.914	21.3	S4	117.344	115.919	1.200	Open Manhole	1800
S2.000	28.491	40.9	S4	117.344	115.919	1.200	Open Manhole	1800
S1.002	9.446	726.6	s5	117.180	115.381	1.049	Open Manhole	1800
S1.003	55.502	92.2	S	115.800	114.779	0.796	Open Manhole	0
S3.000	40.179	135.3	S7	119.827	118.327	1.275	Open Manhole	1350
S3.001	5.329	79.5	S9	119.772	118.110	1.287	Open Manhole	1350
S4.000	10.606	27.2	S9	119.772	118.410	1.212	Open Manhole	1350
S3.002	7.031	49.9	S10	119.653	117.969	1.309	Open Manhole	1350
S3.003	57.049	57.2	S11	118.622	116.972	1.275	Open Manhole	1350
S3.004	10.068	99.7	S12	118.535	116.871	1.289	Open Manhole	1350
S3.005	7.824	159.7	S13	118.496	116.822	1.299	Open Manhole	1350
S3.006	20.495	209.1	S14	118.553	116.724	1.454	Open Manhole	1350
S3.007	26.034	313.7	S15	118.744	116.641	1.728	Open Manhole	1350
S3.008	17.298	136.2	S17	118.752	116.514	1.863	Open Manhole	1350
				@1000	2020 -			
				©1987-	-ZUZU I	nnovyze		

Odyssey Markic	des							Page 15
Tuscany House								
White Hart Lar	ne							
Basingstoke H	RG21	4AF						Micco
Date 18/08/202	23 1	7:01			Designe	d bv wi	ndesPC3	
File 2023-08-1	18 SI	W Net	work	MDX	Checked	bv		Urainad
VP Solutions	20 0	n nee		•••••	Notwork	2020 1	3	
AP SOLUCIONS					Network	2020.1		
			PI	PELINE	SCHEDUL	ES for	Storm	
				<u>Ups</u>	stream M	anhole		
PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	МН	MH DIAM., L*W
5	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
\$5.000	0	225	S16	119.575	118.150	1.200	Open Manhole	1200
53 009	0	375	S17	118 752	116 514	1 863	Open Manhole	1350
s3.010	0	375	S18	118.689	116.500	1.814	Open Manhole	1350
s3.011	0	375	S19	118.392	116.417	1.600	Open Manhole	1350
s3.012	0	375	SCS1	118.600	116.349	1.876	Open Manhole	1350
S3.013	0	375	S21	118.242	116.301	1.566	Open Manhole	1350
S3.014	0	375	S22	118.369	116.280	1.714	Open Manhole	1350
\$3.015	0	375	s23	118.309	116.243	1.691	Open Manhole	1350
\$3.016	0	375	s24	118.348	116.221	1.751	Open Manhole	1350
\$3.017	0	375	S25	118.483	116,197	1.911	Open Manhole	1350
							-1	
\$6.000	0	225	S26	119.974	118.549	1,200	Open Manhole	1200
\$6.001	0	225	s27	119.625	117.677	1.723	Open Manhole	1200
							-1	
S7.000	0	150	SPP5	119.600	118.600	0.850	Open Manhole	1200
							-1	
S6.002	0	225	S29	119.551	117.401	1.925	Open Manhole	1200
S6.003	0	225	S30	119.361	116.936	2.200	Open Manhole	1200
S3.018	0	450	S31	119.165	115.881	2.834	Open Manhole	1350
				<u>Dowr</u>	nstream	Manhole	2	
		a 1		a -				
PN Le	ength	SLope	e MH	C.Leve	I.Level	D.Dept	n MH	MH DIAM., L*W
	(m)	(1:X)) Name	e (m)	(m)	(m)	Connection	i (mm)
S5.000 51	.878	36.8	8 S1'	7 118.75	2 116.740	1.78	7 Open Manhol	.e 1350
S3.009 4	.368	312.0) S18	8 118.68	9 116.500	1.81	4 Open Manhol	.e 1350
S3.010 25	.993	313.2	2 S19	9 118.39	2 116.417	1.60	0 Open Manhol	.e 1350
s3.011 21	.658	318.	5 SCS	1 118.60	0 116.349	1.87	6 Open Manhol	.e 1350
S3.012 14	.873	313.0) S21	1 118.24	2 116.301	1.56	6 Open Manhol	.e 1350
S3.013 6	.648	316.0	6 S2.3	2 118.36	9 116.280	1.71	4 Open Manhol	.e 1350
s3.014 11	.727	316.0	9 52	3 118.30	9 116.24	1.69	1 Open Manhol	e 1350
				2.20				
S3.015 6	.866	312.1	l S24	4 118.34	8 116.221	. 1.75	1 Open Manhol	.e 1350

©1982-2020 Innovyze

2.200 Open Manhole

2.834 Open Manhole

2.628 Open Manhole

S3.017 31.153 129.3 S31 119.165 115.956 2.834 Open Manhole

S6.00034.89240.0S27119.625117.6771.723OpenManholeS6.0019.38734.0S29119.551117.4011.925OpenManhole

S7.000 17.745 15.8 S29 119.551 117.476 1.925 Open Manhole

\$6.00216.26135.0\$30119.361116.936\$6.0039.59611.6\$31119.165116.106

S3.018 34.331 385.7 S32 118.870 115.792

1350

1200 1200

1200

1200

1350

1350

Odyssey Marki	des								Page 16
Tuscany House									
White Hart La	ne								
Basingstoke	RG21	4AF							Micco
Date 18/08/2023 17:01 Designed by windesPC3									
File 2023-08-18 SW Network.MDX Checked by								Digingda	
XP Solutions Network 2020.1.3									
			PI	PELINE	SCHEDUI	ES for	Storm		
				<u>Ups</u>	stream M	<u>lanhole</u>			
PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM.	, L*W
	Sect	(nun)	Name	(m)	(m)	(m)	Connection	(1111))
S3.019	0	450	S32	118.870	115.792	2.628	Open Manhole		1350
C.0.00		225	CDDC	110 640	117 560	0 0 5 5	Onen Manhala		1200
58.000	0	220	SPPO	110.040	117 202	1 200	Open Manhole		1200
58.001	0	225	534	110./00	11/.205	1.200	open Mannoie		1200
\$3.020	0	525	S35	118.571	115.638	2.408	Open Manhole		1500
S3.021	0	525	S36	117.975	115.617	1.833	Open Manhole		1500
S3.022	0	525	SCS2	118.288	115.608	2.155	Open Manhole		1500
\$3.023	0	525	S38	117.859	115.599	1.735	Open Manhole		1500
20.000		505	0004	117 000	115 750	1 205			1 - 0 0
\$9.000	0	525	SCS4	11/.600	115./50	1.325	Open Manhole		1500
S3.024	0	525	SFC4	117.600	115.561	1.514	Open Manhole		1500
S10.000	0	525	SCS3	116.500	115.400	0.575	Open Manhole		1500
\$3.025	0	225	SFC	116.490	115.390	0.875	Open Manhole		1500
S3.026	0	225	S39	116.200	115.348	0.627	Open Manhole		1200
011 000		1 5 0	0000	110 540	110 440	0 050			1000
S11.000	0	150	SPP2	117 100	115.440	0.950	Open Manhole		1200
511.001	0	225	S41	11/.122	112.99/	0.900	upen Mannole		TTON

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S3.019	27.417	347.1	S35	118.571	115.713	2.408	Open Manhole	1500
S8.000	31.722	114.5	S34	118.708	117.283	1.200	Open Manhole	1200
S8.001	5.773	4.3	S35	118.571	115.938	2.408	Open Manhole	e 1500
S3.020	17.071	812.9	S36	117.975	115.617	1.833	Open Manhole	1500
S3.021	12.012	1334.7	SCS2	118.288	115.608	2.155	Open Manhole	1500
S3.022	12.364	1373.8	S38	117.859	115.599	1.735	Open Manhole	1500
S3.023	7.957	209.4	SFC4	117.600	115.561	1.514	Open Manhole	e 1500
S9.000	8.027	42.5	SFC4	117.600	115.561	1.514	Open Manhole	e 1500
S3.024	37.343	218.4	SFC	116.490	115.390	0.575	Open Manhole	e 1500
S10.000	5.048	504.8	SFC	116.490	115.390	0.575	Open Manhole	e 1500
S3.025	6.940	165.2	S39	116.200	115.348	0.627	Open Manhole	1200
\$3.026	7.134	165.9	S51	116.200	115.305	0.670	Open Manhole	e 1500
S11.000	18.145	49.3	S41	117.122	116.072	0.900	Open Manhole	1200
S11.001	17.016	86.4	SSWALE 1	116.900	115.800	0.875	Open Manhole	1200
			©	1982-20	20 Innc	ovyze		

Odyssey Markides		Page 17
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	Conr	MH nection	MH	DIAM., L*W (mm)
S11.002	0	225	SSWALE 1	116.900	115.800	0.875	Open	Manhole		1200
S11.003	0	225	S43	116.900	115.643	1.032	Open	Manhole		1200
S12.000	0	150	S44	117.747	116.397	1.200	Open	Manhole		1200
S11.004	0	225	SPP3	116.590	115.440	0.925	Open	Manhole		1200
S11.005	0	300	S46	116.550	115.223	1.027	Open	Manhole		1200
S13.000	0	225	SCS5	117.200	115.250	1.725	Open	Manhole		1200
S13.001	0	225	S48	116.300	115.210	0.865	Open	Manhole		1200
S11.006	0	300	S49	116.200	115.036	0.864	Open	Manhole		1200
S11.007	0	300	S50	116.100	114.964	0.836	Open	Manhole		1200
S3.027	0	525	S51	116.200	114.764	0.911	Open	Manhole		1500
S3.028	0	525	S52	116.200	114.659	1.016	Open	Manhole		1500
S14.000	0	150	SPP8	116.200	115.079	0.971	Open	Manhole		1200
S14.001	0	150	S54	116.200	114.977	1.073	Open	Manhole		1200
S3.029	0	525	S55	116.200	114.584	1.091	Open	Manhole		1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S11.002	12.358	78.7	S43	116.900	115.643	1.032	Open Manhole	1200
S11.003	67.621	333.1	SPP3	116.590	115.440	0.925	Open Manhole	1200
S12.000	30.023	34.0	SPP3	116.590	115.515	0.925	Open Manhole	1200
S11.004	23.693	167.0	S46	116.550	115.298	1.027	Open Manhole	1200
S11.005	49.341	263.9	S49	116.200	115.036	0.864	Open Manhole	1200
S13.000	21.771	544.3	S48	116.300	115.210	0.865	Open Manhole	1200
S13.001	21.248	214.6	S49	116.200	115.111	0.864	Open Manhole	1200
S11.006	17.090	237.4	S50	116.100	114.964	0.836	Open Manhole	1200
S11.007	29.735	237.9	S51	116.200	114.839	1.061	Open Manhole	1500
S3.027	47.617	453.5	S52	116.200	114.659	1.016	Open Manhole	1500
S3.028	7.284	48.6	S55	116.200	114.509	1.166	Open Manhole	1500
S14.000	15.369	150.7	S54	116.200	114.977	1.073	Open Manhole	1200
S14.001	2.671	150.0	S55	116.200	114.959	1.091	Open Manhole	1500
S3.029	7.205	68.6	S	115.800	114.479	0.796	Open Manhole	0
				©1982-	2020 Ir	nnovyze		

Odyssey Markides		Page 18
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Area Summary for Storm

Pipe	e PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Numbe	er Type	Name	(%)	Area (ha)	Area (ha)	(ha)	
1.00	- 00	_	100	0.066	0.066	0.066	
1.00	01 -	-	100	0.000	0.000	0.000	
2.00	- 00	-	100	0.021	0.021	0.021	
1.00)2 -	-	100	0.026	0.026	0.026	
1.00	03 -	-	100	0.006	0.006	0.006	
3.00	- 00	_	100	0.027	0.027	0.027	
3.00	01 -	-	100	0.091	0.091	0.091	
4.00	- 00	-	100	0.037	0.037	0.037	
3.00)2 -	-	100	0.000	0.000	0.000	
3.00	03 -	-	100	0.009	0.009	0.009	
3.00)4 –	-	100	0.184	0.184	0.184	
3.00	05 -	-	100	0.022	0.022	0.022	
3.00)6 –	-	100	0.054	0.054	0.054	
3.00)7 –	-	100	0.063	0.063	0.063	
3.00	- 80	_	100	0.032	0.032	0.032	
5.00	- 00	_	100	0.032	0.032	0.032	
3.00)9 -	_	100	0.123	0.123	0.123	
3.03	10 -	_	100	0.000	0.000	0.000	
3.03	11 -	_	100	0.044	0.044	0.044	
3.0	12 -	_	100	0.000	0.000	0.000	
3.0	1.3 -	_	100	0.000	0.000	0.000	
3.0	14 –	_	100	0.000	0.000	0.000	
3.0	15 -	_	100	0.034	0.034	0.034	
3.0	16 -	_	100	0.006	0.006	0.006	
3 01	17 -	_	100	0 027	0 027	0 027	
6.00		_	100	0.036	0 036	0.036	
6.00)1 –	_	100	0 049	0 049	0.049	
7 00)0 –	_	100	0 089	0 089	0.089	
6.00	12 -	_	100	0 008	0 008	0.008	
6.00)3 –	_	100	0 013	0 013	0 013	
3.07	18 -	_	100	0.015	0.015	0.015	
3 01	19 -	_	100	0.050	0.050	0.050	
8.00	- 10 -	_	100	0 159	0 159	0.000	
8.00)1 –	_	100	0 000	0 000	0 000	
3.03	20 -	_	100	0.025	0.025	0.000	
3.02	21 _	_	100	0.025	0.025	0.025	
3.02	22 -	_	100	0.025	0.025	0.025	
3.02	22 _	_	100	0.045	0.045	0.045	
9.02		_	100	0.000	0.000	0.000	
3.00	24 -		100	0.078	0.078	0.078	
10 00	24		100	0.000	0.000	0.000	
10.00)0 –	-	100	0.097	0.097	0.097	
3.02	20 -	-	100	0.000	0.000	0.000	
3.02	20 -	-	100	0.000	0.000	0.000	
11.00	JU -	-	100	0.071	0.071	0.071	
11.00)T -	-	100	0.000	0.000	0.000	
11.00	J∠ -	-	100	0.000	0.000	0.000	
12.00	- 20	-	100	0.000	0.000	0.000	
12.00	- 00	-	100	0.031	0.031	U.U31	
11.00	J4 -	-	100	0.144	0.144	U.144	
11.00	- 60	-	100	0.000	0.000	0.000	
13.00	- 00	_	TUU	0.148	∪.148	0.148	
		©1	1982-	2020 Inn	ovyze		

Odyssey Markides	Page 19
Tuscany House	
White Hart Lane	
Basingstoke RG21 4AF	Mirro
Date 18/08/2023 17:01	Designed by windesPC3
File 2023-08-18 SW Network.MDX	Checked by
XP Solutions	Network 2020.1.3
_	
Area	<u>Summary for Storm</u>
Pipe PIMP PIMP PI	MP Gross Imp. Pipe Total
Number Type Name (S	%) Area (ha) Area (ha) (ha)
12.001 1	0.000 0.000
13.001 - 1	
11.007 1	0.000 0.000 0.000
3.027 1	.00 0.000 0.000 0.000
3.028 1	.00 0.000 0.000 0.000
14.000 1	00 0.064 0.064 0.064
14.001 1	
5.029 1	Total Total Total
	2.042 2.042 2.042
<u>Free</u> Flowing	Outfall Details for Storm
Outfall Outfall C	. Level I. Level Min D,L W
Pipe Number Name	(m) (m) I. Level (mm) (mm)
	(m)
S1.003 S	115.800 114.779 0.000 0 0
	Outfall Details for Ctorm
<u>Free Flowing</u>	Outfall Details for Storm
<u>Free Flowing</u> Outfall Outfall C	Outfall Details for Storm
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name	Outfall Details for Storm : Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S	Outfall Details for Storm E. Level I. Level Min D,L W (m) (m) (m) (m) (m) (m) 115.800 114.479 0.000 0
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 0.000 0 0
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u>	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 Dn Criteria for Storm
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u>	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 Dn Criteria for Storm
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 MADD Factor + 10ml/ba Storman 2.000
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins)	Outfall Details for Storm Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m ³ /ha Storage 2.000 Descript Coefficient 0.800
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Areal Reduction Factor 7 Hot Start (mins) Hot Start Level (mm)	Outfall Details for Storm Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 Dn Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m ³ /ha Storage 2.000 0 Inlet Coefficcient 0.800 0 Flow per Person per Day (1/per/day) 0.000
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Areal Reduction Factor 7 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 115.800 114.479 0.000 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficcient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor T Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) (m) 115.800 114.479 0.000 0 On Criteria for Storm 0.000 0 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 0.000 Output Interval (mins)
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 115.800 114.479 0.000 0 0n Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograg Number of Online Contr	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 115.800 114.479 0.000 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogra Number of Offline Contr	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) I. Level (mm) (mm) 115.800 114.479 0.000 0 On Criteria for Storm 0.000 0 0 0.750 Additional Flow - % of Total Flow 0.000 0.000 0.000 MADD Factor * 10m³/ha Storage 2.000 0 0 Inlet Coefficient 0.800 0 0 Flow per Person per Day (1/per/day) 0.000 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs<0 Number of Storage Structures 13 0 0s<0 Number of Time/Area Diagrams 0 0s<0 Number of Real Time Controls 0
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograp Number of Offline Contr	Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) I. Level (mm) (mm) 115.800 114.479 0.000 0 On Criteria for Storm 0.000 0 0 0.750 Additional Flow - % of Total Flow 0.000 0 0 0.750 Additional Flow - % of Total Flow 0.000 0.000 0 0.750 Additional Flow - % of Total Flow 0.000 0 0 0.750 Additional Flow - % of Total Flow 0.000 0 0 0.750 Additional Flow - % of Total Flow 0.000 0 0 0 Inlet Coefficient 0.800 0 0 0 0 Flow per Person per Day (1/per/day) 0.000 0 0 0.500 Run Time (mins) 1 phs 0 Number of Storage Structures 13 1 0 0 Number of Time/Area Diagrams 0 0 0 0 0 0 Number of Real Time Controls 0 0
<u>Free Flowing</u> Outfall Outfall C Pipe Number Name S3.029 S <u>Simulatic</u> Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograz Number of Online Contr Number of Offline Contr	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) I. Level (mm) (mm) 115.800 114.479 0.000 0 On Criteria for Storm On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (l/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs<0 Number of Storage Structures 13 0 0.13 0 Number of Real Time Controls 0 ic Rainfall Details Output 0
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 7 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogra Number of Online Contr Number of Offline Contr Synthet	Outfall Details for Storm C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 0.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (l/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor T Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograp Number of Offline Contr Synthet Rainfall Mode	Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 115.800 114.479 0.000 0 0n Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 1 ols 14 Number of Time/Area Diagrams 0 0 ols 0 Number of Real Time Controls 0 1 ic Rainfall Details FEH el FEH
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor T Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograp Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years) FEH Rainfall Versid	Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) (m) 115.800 114.479 0.000 0 0.750 Additional Flow - % of Total Flow 0.000 0.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs<0
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 2 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrograp Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years FEH Rainfall Versic Site Locatic	Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0 ic Rainfall Details el FEH s) 100 on GB 451902 225728 SP 51902 25728
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulatic Volumetric Runoff Coeff (Areal Reduction Factor 3 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogram Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years FEH Rainfall Versic Site Locatic Data Typ	Outfall Details for Storm S. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 0.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0 ic Rainfall Details el FEH s) 100 on 2013 on GB 451902 225728 SP 51902 25728 pe Point
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulation Volumetric Runoff Coeff (Areal Reduction Factor S Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogram Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years) FEH Rainfall Version Site Location Data Type Summer Store	Outfall Details for Storm S. Level I. Level Min D.L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0 ic Rainfall Details el FEH s) 100 on 2013 on GB 451902 225728 SP 51902 25728 pe Point ms Yes
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulation Volumetric Runoff Coeff (Areal Reduction Factor 3 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) () Foul Sewage per hectare (1/s) () Number of Input Hydrogram Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years) FEH Rainfall Versice Site Location Data Type	Outfall Details for Storm E. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0 ic Rainfall Details el FEH s) 100 on 2013 on GB 451902 225728 SP 51902 25728 pe Point ms Yes
Free Flowing Outfall Outfall C Pipe Number Name S3.029 S Simulation Volumetric Runoff Coeff (Areal Reduction Factor T Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogram Number of Offline Contr Number of Offline Contr Rainfall Mode Return Period (years) FEH Rainfall Version Site Location Data Typ Summer Storr	Outfall Details for Storm E. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 115.800 114.479 0.000 0 0 On Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60 0.000 Output Interval (mins) 1 phs 0 Number of Storage Structures 13 ols 14 Number of Time/Area Diagrams 0 ols 0 Number of Real Time Controls 0 ic Rainfall Details el FEH s) 100 on GB 451902 225728 SP 51902 25728 pe Point ms Yes

Odyssey Markides		Page 20
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

<u>Synthetic Rainfall Details</u>

	Winter	Storms	Yes
	Cv (Summer)	0.750
	Cv (Winter)	0.840
Storm	Duration	(mins)	30

Odyssey Markides					Pa	ge 21
Tuscany House]
White Hart Lane						
Basingstoke RG2	1 4AF				N/	icco
Date 18/08/2023	17:01	Designed	by winde	sPC3		iciu
File 2023-08-18	SW Network MDX	Checked b		0100		rainage
XP Solutions		Network	2020 1 3			
XI SOLUCIONS		Network	2020.1.3			
	<u>Online</u>	Controls	for Storm	<u>n</u>		
Orif:	ice Manhole: S2,	DS/PN: S	1.001, Vo	lume (m³):	1.9	
Diameter (m) 0.015 Discharge	Coefficien	: 0.600 Inv	vert Level (m) 116.38	5
<u>Hydro-Brake</u>	® Optimum Manhol	le: S5, DS	S/PN: S1.0)03, Volum	e (m³):	8.0
	Ilni t	Reference	MD-SHE-007	9-3000-1250-	3000	
	Desig	n Head (m)		1	.250	
	Design	Flow (l/s)			3.0	
		Flush-Flo™	Mini	Calcul	ated	
	7	Objective	Minimise	upstream sto	rage	
	Sump	Available		5u1	Yes	
	Dia	meter (mm)			79	
	Invert	Level (m)		115	.381	
Minin	num Outlet Pipe Dia	meter (mm)			100	
Suc	ggested Manhole Dia	meter (mm)			1200	
	Control Po	ints 1	Head (m) Fl	.ow (l/s)		
	Design Point (Ca	alculated)	1.250	3.0		
	I	Kick-Flo®	0.702	2.3		
	Mean Flow over H	lead Range	-	2.6		
The hydrological Hydro-Brake® Optim Hydro-Brake Optim invalidated	calculations have b num as specified. um® be utilised the	een based o Should anot n these sto	n the Head, her type o: rage routin	/Discharge r f control de ng calculati	elationsh vice othe ons will :	ip for the r than a be
Depth (m) Flow (l/s) Depth (m) Flow	v (l/s) Dep	th (m) Flow	r (l/s) Dept	h (m) Flo	w (l/s)
0.100	2.2 1.200	2.9	3.000	4.5	7.000	6.7
0.200	2.7 1.400	3.2	3.500	4.8	7.500	6.9
0.300	2.9 1.600	3.4	4.000	5.1	8.000	7.1
0.400	2.9 1.800	3.5	4.500	5.4	8.500	7.3
0.500	2.6 2.200	3.9	5.500	6.0	9.500	7.5
0.800	2.4 2.400	4.1	6.000	6.2		
1.000	2.7 2.600	4.2	6.500	6.5		
Orif	ice Manhole: S9,	DS/PN: S	3.002, Vo	lume (m³):	3.0	
Diameter (m) 0.080 Discharge	Coefficien	t 0.600 Inv	vert Level (m) 118.11	D
Orific	ce Manhole: SCS1	, DS/PN:	s3.012, V	olume (m³)	: 5.5	
Diameter (m) 0.018 Discharge	Coefficien	t 0.600 Inv	vert Level (m) 116.34	9
	©1 0.0	22_2020 T∽	0.0171720			
	@190	11 UZUZ ⁻ ZU	movyze			

Odyssey Markides		Page 22
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micco
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	DIGILIQUE
XP Solutions	Network 2020.1.3	
Orifice Manhole: S29,	DS/PN: S6.002, Volume (m ³): 3.0	
Diameter (m) 0.058 Discharge	Coefficient 0.600 Invert Level (m) 117	.401
Orifice Manhole: S34,	DS/PN: S8.001, Volume (m ³): 2.8	
Diameter (m) 0.020 Discharge	Coefficient 0.600 Invert Level (m) 117	.283
Orifice Manhole: SCS2	, DS/PN: S3.022, Volume (m ³): 7.0	<u>)</u>
Diameter (m) 0.050 Discharge	Coefficient 0.600 Invert Level (m) 115	.608
Orifice Manhole: SFC4	, DS/PN: S3.024, Volume (m³): 6.4	<u>l</u>
Diameter (m) 0.030 Discharge	Coefficient 0.600 Invert Level (m) 115	.561
Orifice Manhole: SFC,	DS/PN: S3.025, Volume (m ³): 10.5	5
Diameter (m) 0.060 Discharge	Coefficient 0.600 Invert Level (m) 115	.390
Orifice Manhole: S41,	DS/PN: S11.001, Volume (m ³): 1.6	5
Diameter (m) 0.037 Discharge	Coefficient 0.600 Invert Level (m) 116	.072
Orifice Manhole: SSWALE	1, DS/PN: S11.002, Volume (m ³):	<u>1.9</u>
Diameter (m) 0.020 Discharge	Coefficient 0.600 Invert Level (m) 115	.800
Orifice Manhole: SPP3,	DS/PN: S11.004, Volume (m ³): 4.	<u>5</u>
Diameter (m) 0.025 Discharge	Coefficient 0.600 Invert Level (m) 115	.440
Orifice Manhole: S48,	DS/PN: S13.001, Volume (m ³): 2.1	-
Diameter (m) 0.010 Discharge	Coefficient 0.600 Invert Level (m) 115	.210
Orifice Manhole: S54,	DS/PN: S14.001, Volume (m ³): 1.6	5
Diameter (m) 0.010 Discharge	Coefficient 0.600 Invert Level (m) 114	.977

Odyssey Markides		Page 23
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	Drainage
File 2023-08-18 SW Network.MDX	Checked by	Brainacje
XP Solutions	Network 2020.1.3	
Storage	Structures for Storm	
<u>Porous Car Park</u>	Manhole: SPP7, DS/PN: S1.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	9.5
Membrane Percolation (mm/hr) 1000 Length (m)	31.5
Max Percolation	(1/s) 83.1 Slope (1:X)	45.0
Po	rosity 0.30 Evaporation (mm/day)	3
Invert Lev	el (m) 116.960 Cap Volume Depth (m)	0.800
<u>Porous Car Park</u>	Manhole: SPP1, DS/PN: S4.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	10.6
Membrane Percolation (mm/hr) 1000 Length (m)	14.4
Max Percolation	(1/s) 42.4 Slope (1:X)	200.0
Safety	Factor 2.0 Depression Storage (mm)	5
Invert Lev	el (m) 118.800 Cap Volume Depth (m)	0.700
<u>Cellular Storage</u>	Mannole: SCSI, DS/PN: S3.012	
Inver Infiltration Coefficient Infiltration Coefficient	t Level (m) 116.425 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.99 Side (m/hr) 0.00000	5
Depth (m) Area (m ²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area	(m²)
0.000 480.0	480.0 1.601 0.0 6	11.5
1.600 480.0	611.5	
<u>Porous Car Park</u>	Manhole: SPP5, DS/PN: S7.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	17.8
Membrane Percolation (mm/hr) 1000 Length (m)	15.8
Max Percolation	(1/s) 78.1 Slope (1:X)	65.0
Po	rosity 0.30 Evaporation (mm/day)	3
Invert Lev	el (m) 118.600 Cap Volume Depth (m)	0.700
Porous Car Park	Manhole: SPP6, DS/PN: S8.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	15.7
Membrane Percolation (mm/hr) 1000 Length (m)	45.2
Max Percolation	(1/s) 197.1 Slope (1:X)	82.0
Safety	Factor 2.0 Depression Storage (mm)	5 3
Invert Lev	el (m) 117.560 Cap Volume Depth (m)	0.800
	· · · · · · · ·	
©198	32-2020 Innovyze	

Odyssey Markides		Page 24
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micco
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Digiliga
XP Solutions	Network 2020.1.3	
<u>Cellular Storage</u>	Manhole: SCS2, DS/PN: S3.022	
Inver	t Level (m) 115.608 Safety Factor 2.0	
Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficient	Side (m/nr) 0.00000	
Depth (m) Area (m²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Area (m²)	m²)
0.000 220.0	220.0 1.601 0.0 20	0 0
	220.0 1.601 0.0 301 309.0	9.0
1.000 220.0		
<u>Cellular Storage</u>	Manhole: SCS4, DS/PN: S9.000	
Inver	t Level (m) 115.750 Safety Factor 2.0	
Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficient	Side (m/nr) 0.00000	
Depth (m) Area (m ²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Area (m	m²)
0.000 85.0	0.0 1.201 0.0	0.0
1.200 85.0	0:0	
Cellular Storage N	Manhole: SCS3, DS/PN: S10.000	
Inver	t Level (m) 115.400 Safety Factor 2.0	
Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficient	Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Area (m	m²)
0.000 100.0		0 0
		0.0
0.100 120.0		
<u>Porous Car Park M</u>	Lanhole: SPP2, DS/PN: S11.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	10.6
Membrane Percolation (n	nm/hr) 1000 Length (m)	26.9
Max Percolation	(1/s) 79.2 Slope (1:X)	30.0
Por	rosity 0.30 Evaporation (mm/day)	3
Invert Leve	el (m) 116.440 Cap Volume Depth (m)	0.800
Dry Swale Manhol	e: SSWALE 1, DS/PN: S11.002	
Warning:- Volume should always be in	ncluded unless the upstream pipe is bein and/or as a carrier	ng used for
storage	and, or as a caller	
Infiltration Coefficient Base (m/hr)) 0.00000 Trench Width (m) 2.5
Infiltration Coefficient Side (m/hr)) 0.00000 Trench Length (m) 22.0
Safety Factor	r 2.0 Trench Infiltration Side (m/h	r) 0.00000
Porosity Invert Level (m)	Y I.UU 'I'rench Porosi') 115 800 Side Slope (1.)	LY U.30 X) 3.0
Trench Height (m)) 0.700 Slope (1:	x) 135.0
	2	

Odyssey Markides		Page 25
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micco
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamada
XP Solutions	Network 2020.1.3	
Dry Swale Manhol	.e: SSWALE 1, DS/PN: S11.002	
Cap Volume Depth Cap Infiltration Depth	(m) 0.000 Include Swale Volume Yes (m) 0.000	
<u>Porous Car Park M</u>	Manhole: SPP3, DS/PN: S11.004	
Infiltration Coefficient Base Membrane Percolation (r Max Percolation Safety 1 Po: Invert Leve	(m/hr) 0.00000 Width (m) nm/hr) 1000 Length (m) (1/s) 199.3 Slope (1:X) Factor 2.0 Depression Storage (mm) rosity 0.30 Evaporation (mm/day) el (m) 115.440 Cap Volume Depth (m)	9.2 78.0 270.0 5 3 0.850
<u>Cellular Storage I</u>	Manhole: SCS5, DS/PN: S13.000	
Inver Infiltration Coefficient Infiltration Coefficient	t Level (m) 115.250 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area (^{m²})
0.000 131.0 1.200 131.0	0.0 0.0 1.201 0.0	0.0
<u>Porous Car Park M</u>	Manhole: SPP8, DS/PN: S14.000	
Infiltration Coefficient Base Membrane Percolation (r Max Percolation Safety 1 Po: Invert Leve	(m/hr) 0.00000 Width (m) nm/hr) 1000 Length (m) (1/s) 80.5 Slope (1:X) Factor 2.0 Depression Storage (mm) rosity 0.30 Evaporation (mm/day) el (m) 115.079 Cap Volume Depth (m)	10.9 26.6 57.0 5 3 0.900
©198	2-2020 Innovyze	

Odyssey Markides	Page 26
Tuscany House	
White Hart Lane	
Basingstoke RG21 4AF	Micro
Date 18/08/2023 17:01	Designed by windesPC3
File 2023-08-18 SW Network.MDX	Checked by
XP Solutions	Network 2020.1.3
Summary of Critical Resul	ts by Maximum Level (Rank 1) for Storm
	inulation Chitania
Areal Reduction Factor	1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins)	0 MADD Factor * 10m ³ /ha Storage 2.000
Hot Start Level (mm)	0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) Foul Sewage per bectare (1/s)	0.500 Flow per Person per Day (1/per/day) 0.000
Four Sewage per neccare (1/3)	0.000
Number of Input Hydrogr	aphs 0 Number of Storage Structures 13
Number of Online Cont	rols 14 Number of Time/Area Diagrams 0
Number of Offline Cont.	TOTS O NUMBER OF REAL TIME CONTROLS U
Synth	etic Rainfall Details
Rainfall Mod	FEH
FEH Rainfall Versi	on 2013 on CR 451902 225728 SP 51902 25728
Data Ty	pe Point
Cv (Summe	r) 0.750
Cv (Winte	0.840
Margin for Flood Risk War	ming (mm) 300 0
Analysis	Timestep 2.5 Second Increment (Extended)
D	TS Status ON
D	VD Status ON
Inert	la Status ON
Profile(s)	Summer and Winter
Duration(s) (mins)	720, 960, 1440, 2160, 2880, 4320, 5760,
	7200, 8640, 10080
Return Period(s) (years)	100
Climate Change (%)	40
WARNING: Half Drain Time has no	t been calculated as the structure is too full.
US/MH Return Clir	mate First (X) First (Y) First (Z) Overflow
PN Name Storm Period Cha	nge Surcharge Flood Overflow Act.
S1.000 SPP7 360 Winter 100 -	+40% 100/15 Summer
S1.001 S2 360 Winter 100 -	+40% 100/15 Summer
S2.000 S3 60 Winter 100	+40% 100/15 Winter
S1.002 S4 60 Winter 100 -	+40% 100/15 Summer 100/30 Winter
S3.000 S6 15 Winter 100 -	+40% 100/15 Summer
S3.001 S7 15 Winter 100	+40% 100/15 Summer 100/15 Summer
S4.000 SPP1 30 Winter 100 -	+40% 100/15 Summer
S3.002 S9 15 Winter 100 -	+40% 100/15 Summer 100/15 Winter
S3.003 S10 15 Summer 100 -	+40% 100/15 Summer +40% 100/15 Summer 100/15 Summer
S3.005 S12 15 Winter 100 -	+40% 100/15 Summer 100/15 Summer
©19	082-2020 Innovyze

Odyssey Markides		Page 27
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Mirro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
S1.000	SPP7	117.706	0.596	0.000	0.04			1.0	SURCHARGED
S1.001	S2	117.703	1.093	0.000	0.01			0.5	FLOOD RISK
S2.000	S3	117.189	0.349	0.000	0.09			6.9	SURCHARGED
S1.002	S4	117.182	1.038	0.000	0.04			9.9	FLOOD RISK
S1.003	S5	117.181	1.575	1.304	0.07			3.5	FLOOD
S3.000	S6	119.885	1.036	0.000	0.35			14.8	FLOOD RISK
S3.001	S7	119.828	1.276	0.942	0.55			59.2	FLOOD
S4.000	SPP1	119.454	0.504	0.000	0.42		25	12.8	SURCHARGED
S3.002	S9	119.772	1.287	0.263	0.10			15.2	FLOOD
S3.003	S10	118.646	0.302	0.000	0.10			25.4	SURCHARGED
S3.004	S11	118.624	1.277	1.620	0.80			99.4	FLOOD
S3.005	S12	118.536	1.290	1.372	0.92			98.8	FLOOD

 US/MH
 Level

 PN
 Name
 Exceeded

 \$1.000
 SPP7

 \$1.001
 S2

 \$2.000
 S3

 \$1.002
 S4

 \$1.003
 S5

 \$3.000
 S6

 \$3.001
 S7

 \$4.000
 SPP1

 \$3.002
 S9

 \$3.003
 S10

 \$3.004
 S11

 \$3.005
 S12

Odyssey Markides		Page 28
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamade
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH		Return	Climate	First	(X)	First	(Y)	First (Z)
PN	Name	Storm	Period	Change	Surch	arge	Floo	od	Overflow
S3.006	S13	15 Wir	ter 100	+40%	100/15	Summer	100/15	Winter	
S3.007	S14	15 Wir	iter 100	+40%	100/15	Summer			
S3.008	S15	15 Wir	ter 100	+40%	100/15	Summer			
S5.000	S16	15 Wir	ter 100	+40%					
S3.009	S17	15 Win	ter 100	+40%	100/15	Summer			
S3.010	S18	10080 Wir	ter 100	+40%	100/15	Summer			
S3.011	S19	10080 Wir	ter 100	+40%	100/15	Summer			
S3.012	SCS1	10080 Wir	ter 100	+40%	100/15	Summer			
S3.013	S21	2880 Wir	ter 100	+40%	100/240	Winter			
S3.014	S22	2880 Wir	ter 100	+40%	100/180	Winter			
S3.015	S23	2880 Wir	ter 100	+40%	100/180	Winter			
S3.016	S24	2880 Wir	ter 100	+40%	100/180	Winter			
S3.017	S25	2880 Wir	ter 100	+40%	100/180	Winter			
S6.000	S26	15 Wir	ter 100	+40%	100/15	Summer			
S6.001	S27	15 Wir	ter 100	+40%	100/15	Summer	100/15	Summer	
S7.000	SPP5	60 Wir	ter 100	+40%	100/15	Summer			
S6.002	S29	15 Sum	mer 100	+40%	100/15	Summer	100/15	Winter	
S6.003	S30	2880 Wir	ter 100	+40%					
S3.018	S31	2880 Wir	ter 100	+40%	100/120	Summer			
S3.019	S32	2880 Wir	ter 100	+40%	100/60	Summer			
S8.000	SPP6	600 Wir	ter 100	+40%	100/15	Summer			
S8.001	S34	600 Wir	iter 100	+40%	100/15	Summer			
S3.020	S35	2880 Wir	iter 100	+40%	100/60	Summer			
S3.021	S36	2880 Wir	iter 100	+40%	100/60	Summer			
S3.022	SCS2	2880 Wir	iter 100	+40%	100/60	Summer			
S3.023	S38	2880 Wir	iter 100	+40%	100/60	Winter			
S9.000	SCS4	2880 Wir	iter 100	+40%	100/120	Winter			
S3.024	SFC4	2880 Wir	ter 100	+40%	100/60	Winter			
S10.000	SCS3	240 Wir	ter 100	+40%					
S3.025	SFC	240 Wir	ter 100	+40%	100/30	Summer			
S3.026	S39	240 Wir	ter 100	+40%					
S11.000	SPP2	120 Wir	ter 100	+40%	100/15	Summer			
S11.001	S41	120 Wir	ter 100	+40%	100/15	Summer			
S11.002	SSWALE 1	600 Wir	ter 100	+40%	100/15	Summer			
S11.003	S43	1440 Wir	ter 100	+40%	100/60	Summer			
S12.000	S44	15 Wir	ter 100	+40%					
S11.004	SPP3	1440 Wir	ter 100	+40%	100/15	Summer			
S11.005	S46	1440 Wir	ter 100	+40%					
S13.000	SCS5	2880 Wir	ter 100	+40%	100/15	Summer			
S13.001	S48	5760 Wir	ter 100	+40%	100/15	Summer	100/480	Winter	
S11.006	S49	1440 Wir	ter 100	+40%					
S11.007	S50	1440 Wir	ter 100	+40%					
S3.027	S51	360 Wir	ter 100	+40%					
S3.028	S52	360 Wir	ter 100	+40%					
S14.000	SPP8	960 Wir	iter 100	+40%	100/15	Summer			
S14.001	S54	960 Wir	ter 100	+40%	100/15	Summer			
S3.029	S55	360 Wir	iter 100	+40%					
			©1982	-2020 I	Innovyze	9			

Odyssey Markides		Page 29
Tuscany House		
White Hart Lane		
Basingstoke RG21 4AF		Micro
Date 18/08/2023 17:01	Designed by windesPC3	
File 2023-08-18 SW Network.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	IIS /MH	Overflow	Water	Surcharged	Flooded	Flow /	Overflow	Half Drain	Pipe
PN	Name	Act.	(m)	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)
\$3,006	S13		118,497	1.300	1.255	1.06			123.5
\$3.007	S14		118.440	1.341	0.000	1.51			147.9
\$3.008	s15		118.278	1.262	0.000	1.15			160.9
\$5.000	S16		118.226	-0.149	0.000	0.24			19.9
s3.009	s17		118.103	1.214	0.000	3.02			237.5
S3.010	S18		117.875	1.000	0.000	0.04			3.8
S3.011	S19		117.875	1.083	0.000	0.04			4.0
S3.012	SCS1		117.874	1.150	0.000	0.01		8921	0.8
S3.013	S21		117.107	0.431	0.000	0.01			0.7
S3.014	S22		117.107	0.451	0.000	0.01			0.7
S3.015	S23		117.107	0.488	0.000	0.01			1.0
S3.016	S24		117.107	0.510	0.000	0.01			1.1
S3.017	S25		117.106	0.534	0.000	0.01			1.5
S6.000	S26		119.709	0.935	0.000	0.29			22.3
S6.001	S27		119.627	1.725	1.621	0.51			37.6
S7.000	SPP5		119.290	0.540	0.000	0.21		53	8.9
S6.002	S29		119.546	1.920	0.000	0.13			10.2
S6.003	S30		117.107	-0.054	0.000	0.02			3.0
S3.018	S31		117.106	0.775	0.000	0.03			4.5
S3.019	S32		117.106	0.864	0.000	0.03			5.1
S8.000	SPP6		118.305	0.520	0.000	0.09			4.2
S8.001	S34		118.452	0.944	0.000	0.01			0.9
S3.020	S35		117.106	0.943	0.000	0.07			6.1
S3.021	S36		117.106	0.964	0.000	0.07			6.4
S3.022	SCS2		117.106	0.973	0.000	0.02			2.3
S3.023	S38		116.929	0.805	0.000	0.01			2.3
S9.000	SCS4		116.929	0.654	0.000	0.00			0.6
S3.024	SFC4		116.929	0.843	0.000	0.01			2.2
S10.000	SCS3		115.753	-0.172	0.000	0.02			3.3
S3.025	SFC		115.753	0.138	0.000	0.11			3.4
S3.026	S39		115.398	-0.175	0.000	0.11			3.4
S11.000	SPP2		117.121	0.531	0.000	0.12		119	2.8
S11.001	S41		117.110	0.888	0.000	0.05			2.6
S11.002	SSWALE 1		116.777	0.752	0.000	0.01			0.7
S11.003	S43		116.195	0.327	0.000	0.02			0.6
S12.000	S44		116.488	-0.059	0.000	0.66			19.5
S11.004	SPP3		116.193	0.528	0.000	0.03			1.1
S11.005	S46		115.248	-0.275	0.000	0.02			1.1
SI3.000	SCS5		116.270	0.795	0.000	0.22			4.1
SI3.001	S48		116.300	0.865	0.172	0.01			0.2
SII.006	S49		115.066	-0.270	0.000	0.02			1.3
511.007	S50		114.993	-0.271	0.000	0.02			1.3
53.027	551		114.010	-0.471	0.000	0.02			4.0
SJ.U28 S1/ 000	502 0000		115 920	-0.48/	0.000	0.02			4.0 0 /
014.000	SFF8		115 020	0.399	0.000	0.03			0.4
C3 000	504 055		11/ 632	0./UZ	0.000	0.02			0.Z
53.029	500		114.032	-0.4//	0.000	0.02			4.0
			©1	982-2020	Innovyz	е			

Odyssey Markides				Page 30						
Tuscany House										
White Hart Lane										
Basingstoke RG21 4AF				Micco						
Date 18/08/2023 17:01	Desi	gned by w	indesPC3							
File 2023-08-18 SW Network.MD	X Chec	ked by		Digitight						
XP Solutions	Netw	ork 2020.	1.3							
Summary of Critical Results by Maximum Level (Rank 1) for Storm										
	-									
			- 1							
PN	Name	Status	Level							
	Tranic	blabab	Inoccucu							
\$3.006	S13	FLOOD	1							
S3.007	S14	FLOOD RISK								
53.008	S15 S16	SURCHARGED								
S3.000	S10	SURCHARGED								
\$3.010	S18	SURCHARGED								
\$3.011	S19	SURCHARGED								
\$3.012	SCS1	SURCHARGED								
\$3.013	S21	SURCHARGED								
\$3.014	S22	SURCHARGED								
\$3.015	S23	SURCHARGED								
S3.016	SZ4	SURCHARGED								
S5.017	52J 526	FLOOD BISK								
s6.001	S20	FLOOD	4							
\$7.000	SPP5	SURCHARGED								
S6.002	S29	FLOOD RISK								
S6.003	S30	OK								
\$3.018	S31	SURCHARGED								
\$3.019	S32	SURCHARGED								
S8.000	SPP6	SURCHARGED								
S3.020	535	SURCHARGED								
s3.021	S36	SURCHARGED								
\$3.022	SCS2	SURCHARGED								
\$3.023	S38	SURCHARGED								
\$9.000	SCS4	SURCHARGED								
\$3.024	SFC4	SURCHARGED								
S10.000	SCS3	OK								
S3.025	539	OK								
s11.000	SPP2	SURCHARGED								
\$11.001	S41	FLOOD RISK								
S11.002	SSWALE 1	FLOOD RISK								
S11.003	S43	SURCHARGED								
\$12.000	S44	OK								
S11.004	SPP3	SURCHARGED								
SII.005 913 000	540 5795	SURCHARGED								
s13.000	S48	FLOOD	15							
S11.006	S49	OK								
S11.007	S50	OK								
\$3.027	S51	OK								
\$3.028	S52	OK								
S14.000	SPP8	SURCHARGED								
S14.001	SD4 255	SURCHARGED								
55.029	500	OK								
	1982-20	20 Innovv	2.e							
Ľ		y								

APPENDIX C

Infiltration Testing Extracts

Camp Road, Upper Heyford

Desk Study and Ground Investigation Report

Report for:

Pye Homes Ltd.

Date: 8th March 2019

T&P Ref: 2019Mar_CAM2362_DSGI

T & P Regeneration Ltd Unit 4, Brunel Lock Development Smeaton Road Bristol BS1 6SE Tel: 0117 927 7756

Document Issuance

Client	Pye Hor	Pye Homes Ltd.		
Project	Camp R	Camp Road, Upper Heyford.		
Issue	001			
Date:	8 th March 2019			
PREPARED BY		CHECKED BY	APPROVED BY	
John Flannery		Helen Matheson/ James Dodd	Mike Nicholas	

Document Revision Record

lssue Number	Date	Revision Details	Revised by	Checked by	Approved by

The information and advice contained within this report is provided by T&P Regeneration Ltd for sole use and reliance by its Client in performance of T&P Regeneration Ltd's duties under its contract with the Client. Any advice, opinions or recommendations within this report should be read and relied upon only in the context of the report as a whole. The advice within the reports is based upon the information made available to T&P Regeneration Ltd within the financial and timeframe constraints imposed. The report is based on UK standards, codes and common practice current at time of writing. When considering this report regard should be given to the terms and conditions of T&P Regeneration Ltd's contract with the Client under which the report was prepared. The copyright of this report is held by T&P Regeneration Ltd. Should the Client wish to release this report to a Third Party for that party's reliance, T&P Regeneration Ltd assumes no duties, liabilities or obligations to the Third Party and that the Third Party does not acquire any rights whatsoever against T&P Regeneration Ltd (iii) T&P Regeneration Ltd accepts no responsibility for any loss incurred by the Client through the Client's release of the report to the Third Party. Following final issue of this report, T&P Regeneration Ltd he client on any matters such as changes in legislation or codes of practice that may affect the advice contained within the report.

Project Information This Desk Study and Ground Investigation report has been prepared by T&P Regeneration **Project details** Ltd (T&P) on behalf of Pye Homes for the site located off Camp Road, Upper Heyford postcode OX25 5LX / NGR: 451940, 225830. The site occupies an area of 3.14 hectares (ha) and is currently used for agricultural purposes. The site is generally level with an elevation of between 115 and 120 metres Above Site description and Ordnance Datum (mAOD). Two tarmacked access routes were noted to be present. The current land use western access is understood to form the boundary of the site and leads to a large residential house, while the southern access route leads to adjacent agricultural land. The proposed development comprises the construction of up to 77N° residential dwellings Development with private gardens and areas of shared landscaping are proposed. Site Setting Superficial deposits are not indicated to be present beneath the site. The site is indicated to be entirely underlain by Mid-Jurassic Period limestone of the White Limestone Formation. The White Limestone Formation is classified as a Principal Aquifer. There are no licensed groundwater, or surface water abstractions within 500m of the site. The site is not located within a Source Protection Zone. Environmental setting The nearest surface water feature is a stream located adjacent to the western site boundary. At the time of the ground investigation the stream was noted to be flowing from north to south. The site is in a Flood Zone 1 with a low probability of flooding. However, as the site is over 1 hectare, a Flood Risk Assessment will be required. The site is not located within an environmentally sensitive area. The site is located in area of low risk with respect to unexploded ordnance. However, the map does identify the airfield located to the north as a potential target of the Luftwaffe. In the context of the post WWII development of the surrounding area and anticipated underlying UXO limestone geology that is likely to restrict deep penetration of munitions, it is considered that the risk is relatively low. However, vigilance for UXO should be maintained during groundworks. From the time of the earliest maps in the late 1800's, the site is shown to be undeveloped agricultural land with a track running north to south adjacent to the western site boundary. No significant changes are noted across the site up to the present day. The surrounding area to the south-west and south was dominated by agricultural land from the time of the earliest maps, with 2Nº quarry features located approximately 130m southeast and 170m west of the site boundary. The 1955 map identifies the land to the north as 'Airfield' and by 1966, the airfield with runways and infrastructure is shown to have been constructed to the north and north-west Site history at a distance of between 500m to 1000m of the site boundary. The quarry to the west is no longer identified. By 1975 expansion of the airfield is shown to have continued. A caravan park is also shown to have been developed to the south of Camp Road, with 'tanks' identified located approximately 30m from the south-eastern corner of the site. A substation is also shown to have been constructed by 1975 located approximately 50m south west from the site boundary. The quarry located south-east of the site is no longer identified from 1975. No other significant changes are noted other than the tanks identified within the caravan being recorded as 'sewage works' on the 2018 mapping. Potential for shrink-swell behaviour of residual weathered clays of the White Limestone Formation; and, Geohazards Attack of buried concrete by aggressive ground conditions (sulphate rich soils). • On-site: Made ground associated with unrecorded development/ activities. Agricultural pest/weed control associated with former agricultural practices. Areas of potential Off-site: concern - ground Potentially infilled former surface workings located 130m south-east and 170m west of contamination • the site which may generate hazardous ground gases. Sewage works/ treatment tanks located 30m south of the site. ٠

Electrical substation located 50m south west of the site.

EXECUTIVE SUMMARY

	Phase 2 Ground Investigation				
T&P ground investigation	 An intrusive ground investigation was undertaken between 23rd and 24th January 2019 which comprised: Excavation of 15N° trial pits to a maximum depth of 2.1 metres below ground level (mbgl); and, Infiltration testing within 6N° trial pits. 				
Ground conditions	 Made ground was not encountered during the investigation. Topsoil was encountered in all exploratory locations with a typical thickness ranging between 0.20 and 0.50m. In general, the topsoil was found to comprise brown gravelly clay. Within the majority of trail pits, gravel was encountered immediately beneath the topsoil. The gravel was found to comprise limestone with varying amounts of clay, sand and gravel. Beneath the gravel at depths ranging from 0.60 to 1.55mbgl, a firm to stiff and stiff gravelly clay was encountered within most of the pits. At depths ranging from 1.50 to 2.10mbgl, a competent limestone layer was encountered that prevented further excavation. No visible or olfactory evidence of significant contamination was encountered during the ground investigation. 				
Groundwater	Groundwater was encountered within 4N° trial pits during the ground investigation, all of which were excavated in close proximity to the eastern site boundary. Typical depths to groundwater strikes ranged from 1.60 to 1.80m, with all strikes noted to rise by approximately 200mm after 20 minutes.				
	Principal Findings and Conclusions				
Human health	All soil concentrations in topsoil and natural soils were recorded below adopted screening levels for residential use with vegetable uptake.				
Controlled waters	With consideration of the desk study and ground investigation findings which did not identify any significant on-site sources of contamination, the risk to Controlled Waters is considered to be low.				
Gas protection	Radon protection measures are not considered necessary for the proposed development. Based upon the timescales since the possible infilling of the quarries may have occurred, it is considered ground gas emissions emanating from putrescible material (if present) will have peaked some time ago and gas generating potential of any infill material (if present) would now be significantly reduced. Should these features have been infilled, they are considered unlikely to be capped. Together with the underlying granular natural ground any low level gas emissions will likely vent near to the source and unlikely migrate significant distances. Therefore, it is considered that the site has a low ground gas generating potential and that risks to future residents associated with on- or off-site ground gases are low. No ground gas				
	protection measures are deemed necessary within future development.				
Plant growth and buried potable supply pipework	not considered to pose a significant risk to the existing and proposed flora. Made ground was not encountered during the investigation and no significantly elevated concentrations of benzo(a)pyrene (BaP) were identified in topsoil or natural soil results. Therefore, it is considered that standard PE pipework will be suitable for the buried potable water supply network on site				
Waste	The topsoil and natural soils are likely to be classified as non-hazardous waste. Based on the chemical data the soils are likely to be considered as inert. However, Waste Acceptance Criteria (WAC) testing may be required by the receiving site.				
Infiltration testing	Based upon the test results and site observations it is considered that traditional soakaways are likely to offer a viable solution for surface water discharge across the majority of the site. However, the finalised surface water management scheme should consider shallow groundwater encountered along the eastern site boundary that would likely to inundate traditional soakaway infrastructure reducing its effectiveness. Allowances elsewhere on-site, such as increased storage/ soakaway infrastructure may need to be made to manage surface waters from the eastern site area.				

Engineering design	reflected in the geotechnical testing and as such, are unlikely to exhibit significant volume change potential and, as such, will not be susceptible to the influence of trees. However, at greater depths, the cohesive soils found below approximately 1.00mbgl have been found to range between low to high volume change potential. Based on the above and taking into account the NHBC guidance it is considered that traditional shallow strip foundations placed at a minimum depth of 1.0mbgl within the gravel or firm and stiff clay may be designed for an allowable bearing capacity of 100 kPa for acceptable settlement. Should higher bearing capacities be required foundations placed with the weathered limestone bedrock encountered at 1.60 – 2.10mbgl may be designed for an allowable bearing capacity of 225kPa. It is considered likely that groundwater ingress into excavations in close proximity to the eastern boundary below 1.6m depth, will be relatively rapid and may not be adequately dealt with via sump pumping. Should rapid ingress be encountered the advice of specialist dewatering contractors may be sought if the groundwater is not dealt with via traditional methods such as sump pumping. The completed in situ vehicle mounted CBR test results recorded across the site range from 0.3% - 2.1%. Based on the test results a conservative design CBR value of <1% is recommended at this point. However, due to the coarse granular nature of the soils encountered on-site, in situ CBRs using the normal plunger are not considered likely to
	present to true reflection of the underlying bearing ratios and are likely to have underestimated it and further plate load tests are recommended to provide a more robust evaluation of this road design aspect.
	for buried structures is likely to be DS1-AC-1.
	Considerations and Recommendations for Further Work
Considerations	 Due to the gravel content within the shallow soils low CBR values have been recorded by the on-site testing on-site.

CONTENTS

1	INTRODUCTION	. 1
1.1 1.2 1.3	CONTRACT DETAILS PROPOSED DEVELOPMENT OBJECTIVES	1 1 1
1.4	SCOPE OF WORKS	1
1.5		י ר
2		. Z
2.1 2.2	SITE LOCATION SITE DESCRIPTION	2
3	ENVIRONMENTAL SETTING	. 4
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	INTRODUCTION GROUND CONDITIONS HYDROGEOLOGY HYDROLOGY AND SURFACE WATER QUALITY GROUNDWATER AND SURFACE WATER ABSTRACTIONS GROUNDWATER AND SURFACE WATER DISCHARGES POLLUTION INCIDENTS FLOOD RISK RADON ENVIRONMENTAL DESIGNATIONS UNEXPLODED ORDNANCE INDUSTRIAL TRADES/PROCESSES CONTAMINATED LAND	44555566666666
3.14 3.15	COMAH AND HAZARDOUS SUBSTANCES	7 7
4	SITE HISTORY	. 8
4.1	SUMMARY	8
5	PRELIMINARY CONCEPTUAL SITE MODEL	. 9
5.1 5.2 5.3 5.4 5.5 5.6	BACKGROUND POTENTIAL CONTAMINATION SOURCES POTENTIAL RECEPTORS EXPOSURE AND MIGRATION PATHWAYS PRELIMINARY QUALITATIVE RISK ASSESSMENT SUMMARY OF GEOHAZARDS	9 9 10 11 17
6	SCOPE OF WORK	18
6.1 6.2 6.3 6.4 6.5	SUMMARY OF FIELDWORK EXPLORATORY LOCATIONS AND ACCESS RESTRICTIONS TRIAL PITS IN SITU CBR TESTING INFILTRATION TESTING	18 18 18 18 19
7	SUMMARY OF GROUND CONDITIONS	20
7.1 7.2	RECORDED GROUND CONDITIONS CONTRACT CONTRACTACT CONTRACT	20 20
8	SUMMARY OF LABORATORY ANALYSES	22
8.1 8.2	GEOTECHNICAL TESTING CHEMICAL TESTING – SOIL	22 22
9	HUMAN HEALTH RISK ASSESSMENT	23
9.1 9.2 9.3	INTRODUCTION DETERMINATION OF AVERAGING AREAS/ZONES SCREENING ASSESSMENT	23 23 23
10	CONTROLLED WATERS RISK ASSESSMENT	24

10.1 10.2	Overview of Hydrogeological Setting Risk Evaluation	24 24
11	GAS/VAPOUR RISK ASSESSMENT	25
11.1 11.2	OVERVIEW OF CONCEPTUAL MODEL DISCUSSION AND RISK EVALUATION	25 25
12	PLANT GROWTH AND POTABLE SUPPLY PIPEWORK RISK ASSESSMENT	26
12.1 12.2	PHYTOTOXIC RISK ESTIMATION POTABLE WATER SUPPLY PIPEWORK RISK ESTIMATION	26 26
13	REFINED CONCEPTUAL SITE MODEL	28
13.1 13.2 13.3	Overview Sources Risk Evaluation	28 28 28
14	WASTE CLASSIFICATION	31
14.1 14.2 14.3 14.4 14.5 14.6	LANDFILL ACCEPTANCE CRITERIA LIST OF WASTE (LOW) CODE SOIL CLASSIFICATION WASTE ACCEPTANCE CRITERIA LANDFILL TAX DISCUSSION	31 31 32 32 32
15	INFILTRATION TESTING	33
15.1 15.2 15.3	SUMMARY OF FIELD TESTING Soil Infiltration Rate Calculations Discussion	33 33 34
16	COMMENTS ON ENGINEERING DESIGN	35
16.1 16.2 16.3 16.4	GENERAL SUMMARY OF GEOTECHNICAL PARAMETERS CONSTRUCTION CONSIDERATIONS PRELIMINARY FOUNDATION RECOMMENDATIONS	35 35 36 38
17	CONSIDERATIONS AND RECOMMENDATIONS	39
17.1 17.2	CONSIDERATIONS RECOMMENDATIONS	39 39

APPENDICES

- A DRAWINGS
- B PHOTOGRAPHS
- C HISTORICAL MAPS
- D EXPLORATORY LOGS
- E GEOTECHNICAL RESULTS
- F CHEMICAL RESULTS
- G HAZWASTE REPORT
- H INFILTRATION RESULTS

1 INTRODUCTION

1.1 Contract Details

Following instruction from Pye Homes Ltd – 'the client', this report presents the results of a Desk Study and Ground Investigation undertaken for a proposed residential development at Camp Road, Upper Heyford - 'the site'.

1.2 Proposed Development

Information presented to T&P Regeneration Ltd (T&P) indicates that the proposed development is intended to comprise the construction of 77N° traditional one and two storey residential dwellings with associated areas of communal and private soft landscaping with hard landscaped access and parking. A development layout plan is included in Appendix A although it is understood this may be subject to change following completion of master planning.

1.3 Objectives

The purpose of the assessment is to establish the environmental and geotechnical conditions of the site to support a future planning application.

This report also considers the likely foundation options appropriate to the proposed development, along with requirements for any related ground improvement works and/or remediation considered necessary to mitigate potentially unacceptable risks resulting from current and/or or historical land uses.

1.4 Scope of Works

The scope of works to fulfil the purpose of the assessment has included the following:

- Site walkover;
- Review of site specific environmental database information, where available, and publicly available information;
- Development of a preliminary site conceptual model and environmental risk assessment;
- Intrusive ground investigation comprising trial pitting;
- Collection of soil samples for chemical and geotechnical laboratory analysis;
- Assessment of chemical and geotechnical test results;
- Refinement of conceptual site model and update to environmental risk assessment; and,
- Presentation of geotechnical information to assist with foundation design.

1.5 Report Limitations

The recommendations, interpretations and conclusions of this report are based on the historical and current site conditions reported by database and mapping sources as supplemented with information gathered during on-site visits. No responsibility can be accepted for the accuracy of third party information including reference data contained within site specific database reports. Due to the inherent variability of the ground conditions between exploratory hole positions interpretations are accurate only for the date of the investigation works.

2 SITE INFORMATION

2.1 Site Location

Site location information is summarised in Table 2.1. A Site Location Plan is presented within Appendix A.

Table 2.1 Site Location Informatio

Information	Description
Full postal address	Land off Camp Road, Upper Heyford OX25 5LX
National Grid Reference (NGR)	451940, 225830

2.2 Site Description

A site walkover was undertaken by T&P on 21st January 2019. A summary of pertinent site information gathered during the survey is provided in Table 2.2. A selection of photographs is provided within Appendix B.

Information	Description			
Site description including current site use and dimensions/area (ha)	The site occupies an approximate area of 3.14 hectares (ha). The site was found to comprise a featureless agricultural field. Two tarmacked access routes were noted to be present. The western access is understood to form the boundary of the site and leads to a large residential house, while the southern access route leads to adjacent agricultural land.			
	North	Agricultural land (paddocks) is present adjacent to the northern site boundary.		
Surrounding land	South	The site is bounded by Camp Road, beyond which a residential development is present.		
	East	The site is bounded by agricultural land to the east.		
	West	A residential estate is located to the west of the site.		
Site access	The site is accessed via an entrance located in the south-western corner off the adjacent Camp Road, which runs parallel to the southern boundary.			
Ground cover (%)	 The site ground cover comprises: Soft landscaping (grass/planting) (90%) Hard landscaping – tarmac access routes (10%) 			
Site elevation and topography	The site elevation ranges between 115 and 120 metres Above Ordnance Datum (mAOD). The site is generally level with a gentle slope down towards the south-eastern corner.			
	North	Wooden post and rail fencing approximately 1.6m high in good condition.		
	South	Mature hedgerow approximately 2m.		
Site boundaries	East	Mature hedgerow with occasional semi mature trees noted to be present.		
	West	A tarmacked access route for a large residential house located approximately 175m north of the northern site boundary. Beyond the access route a mature hedgerow/ tree line was noted to be present.		
Services	Underground and overhead utilities are not indicated to be present within the site boundary.			
Other significant on- site features	• A field drain was noted to be present running along the eastern boundary. Water was noted to be flowing within this feature from north to south at the time of the site walkover.			

Table 2.2 Summary of Site Information

A Site Features Plan is presented within Appendix A showing pertinent on- and off-site features identified during the survey. Features assessed as requiring further consideration are discussed later in this report.

3 ENVIRONMENTAL SETTING

3.1 Introduction

Pertinent environmental information has been gathered with reference to the available environmental database report and public sources of information, including the BGS online resources, Environment Agency databases and MAGIC website.

Features identified in this section during the review of available desk study information which are deemed to require further consideration within this report are identified as Areas of Potential Concern (APCs) as discussed further within Section 5. Highlighted APCs are summarised on the APC plan included within Appendix A.

3.2 Ground Conditions

3.2.1 Published geology

The solid and drift geology of the site is illustrated within the environmental database report, the British Geological Survey (BGS) on-line mapping database and the BGS map of the district, Sheet 218.

Superficial deposits are not indicated to be present beneath the site.

The site is indicated to be entirely underlain by Mid-Jurassic Period limestone of the White Limestone Formation, which is understood to comprise a variety of limestone types and is likely to weather to gravel at the near surface. The White Limestone formation is also noted to contain marls, mudstone and clay.

3.2.2 Mining Records and Natural Geological Hazards

Information regarding on- and off-site mining records included within the environmental database report which is considered relevant to this assessment is summarised in Table 3.1.

Mining Type	On-site	Off-site
Brine affected areas (CBSCB Compensation District)	None reported	None reported
Coal mining affected areas	None reported	None reported
Non coal mining affected areas	None reported	None reported
Man-made mining cavities area	None reported	None reported
Natural cavities	None reported	None reported
BGS Recorded Mineral Sites	None reported	2N° within 250m of the site.

Table 3.1 Summary of Mining Records

The BGS mineral sites are located at distances of 126m and 173m to the south east and west respectively and relate to opencast extraction of limestone. Due to their proximity to the site, these features will be considered further in the following sections.

Information regarding other geological hazards and associated hazard ratings included within the environmental database report is summarised in Table 3.2.

Table 3.2 Summary of Geological Hazard Risk Assessment

Geological hazard	On-site hazard rating
Collapsible rocks	Very low
Compressible ground stability	No hazard
Ground dissolution stability	Very low
Landslide ground stability	Very low
Running sand ground stability	No hazard
Shrinking or swelling clay ground stability	No hazard

Geological hazards requiring further consideration (moderate hazard rating or above) are discussed later in this report.

3.2.3 Potential Infilled Ground

Features identified which may have the potential to have been historically infilled, and thus may represent a risk to the site via lateral gas/groundwater contamination migration have been highlighted as APCs as shown on the plan included within Appendix A.

3.2.4 Background Geochemical Data

The site does not lie in an area where naturally occurring elevated concentrations of metalliferous elements are expected to be present.

3.3 Hydrogeology

The Environment Agency classifies the White Limestone Formation as a Principal Aquifer. The site is not within or near a groundwater Source Protection Zone (SPZ).

Groundwater vulnerability is classified by the Environment Agency as high.

3.4 Hydrology and Surface Water Quality

The nearest surface water feature is a stream located adjacent to the western site boundary. At the time of the ground investigation the stream was noted to be flowing from north to south. No data on the quality of this feature is given within the database report.

The water course is shown to emerge from an 'issues' associated with culverted surface water features within the airfield to the north. From the issues the stream is noted to feed ponds within the field adjacent to the north which then flows into the stream along the eastern boundary. The stream ultimately discharges into Gallos Brook approximately 4km to the south of the site.

3.5 Groundwater and Surface Water Abstractions

There are no records of licenced surface water or groundwater abstractions within 500m of the site.

3.6 Groundwater and Surface Water Discharges

There is 1N° record of a licensed discharge consent within 250m of the site. The licence is recorded approximately 178m to the north associated with 'sewage discharges – final/treated effluent' to surface water (Leys Farm Ditch). Due to distance from the site, nature of the discharge and absence of plausible pathway to the site, no further consideration is deemed to be required.

3.7 Pollution Incidents

There are 2N° recorded pollution incidents within 250m radius of the site which occurred between 1991 and 1997. The incidents are recorded at distances of 24m south and 64m west of the site boundary and noted to be 'Category 3 - minor incidents' associated with oils/chemicals. No further details are available.

Given the low impact recorded and the time that has elapsed since the incidents occurred, no further assessment is considered to be required.

3.8 Flood Risk

Whilst the site lies within a Flood Risk Zone 1 where the risk of flooding is very low, a flood risk assessment will be required to support a future planning application as the proposed development area is over 1 hectare.

With respect to groundwater flooding, the site is classified as being within an area with 'potential for groundwater flooding to occur at surface'. In consideration of the nature of the proposed development, site topography, underlying geology and hydrogeological regime, it is considered that the risk of groundwater flooding is low.

3.9 Radon

The site is located in an area where between 1% and 3% of homes surveyed are above the action level. Guidance document BR211¹ provides guidance on building design measures to protect against ingress of radon gas. In consideration of recommendations of this document, no radon protection measures will be required for new development.

3.10 Environmental Designations

No designated environmentally sensitive areas are recorded within a 250m radius of the site.

3.11 Unexploded Ordnance

Based on a review of regional unexploded bomb/ordnance (UXO) risk areas published by Zetica, an independent database authority, the site is shown to be within an area classified as being at low risk of unexploded bombs. However, the map does identify the airfield located to the north as a potential target of the Luftwaffe. In consideration of the post WWII development of the surrounding area and anticipated underlying limestone geology that is likely to restrict deep penetration of munitions, it is considered that the risk is relatively low. However, vigilance for UXO should be maintained during groundworks.

3.12 Industrial Trades/Processes

Current industrial trades/processes identified in the environmental database report have been reviewed. Those requiring further consideration have been highlighted on the APC plan included within Appendix A and are discussed further within Section 5.2.

3.13 Contaminated Land

There are no sites which have been determined under Section 78R of the Environmental Protection Act 1990 as 'contaminated land' within 500m of the site.

¹ BR211: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects), 2015 Edition. This guidance is endorsed by the Building Regulations 2010, Part C (as amended).

3.14 Landfills and Waste Management Facilities

No historical or active landfill sites or other waste management facilities are recorded within a 250m radius of the site.

3.15 COMAH and Hazardous Substances

There are no records of Control of Major Accident Hazards (COMAH) sites or other hazardous substance consents within 250m of the site.

4 SITE HISTORY

4.1 Summary

The history of the site has been considered through a study of available Town Plans, County Series Plans and Ordnance Survey maps included within the environmental database report. Maps for the periods during and following the two World Wars: 1914-1918 and 1939-1945 are generally unavailable. A copy of the large-scale map series is provided in Appendix C.

A summary of the site history is provided below.

- From the time of the earliest maps in the late 1800's, the site is shown to be undeveloped agricultural with a track running north to south adjacent to the western site boundary. No significant changes are noted across the site up to the present day.
- The surrounding area to the south-west and south was dominated by agricultural land from the time of the earliest maps. However, 2N° quarry features were shown located approximately 130m south-east and 170m west of the site boundary. By 1922 the quarry to the south-east has increased in size.
- The 1955 map identifies the land to the north as 'Airfield' but does not record any buildings or infrastructure. By 1966, the airfield with runways and infrastructure is shown to have been constructed to the north and north-west at a distance of between 500m to 1000m of the site boundary. An area of residential development is shown to have been constructed approximately 25m from the western boundary. The quarry to the west is no longer identified. By 1975 expansion of the airfield is shown to have continued and additional residential housing is shown adjacent to the western site boundary. A caravan park is also shown to have been developed to the south of Camp Road, with 'tanks' identified within the caravan park located approximately 30m from the south-eastern corner of the site. A substation is also shown to have been constructed by 1975 located approximately 50m south west from the site boundary. The quarry located south-east of the site is no longer identified from 1975. No other significant changes are noted other than the tanks identified within the caravan being recorded as 'sewage works' on the 2018 mapping.

On- and off-site historical features identified which are considered pertinent to this environmental assessment are summarised within the APC plan included in Appendix A and are discussed further in Section 5.2.

PRELIMINARY CONCEPTUAL SITE MODEL 5

5.1 Background

A risk assessment has been carried out under the governing terms set by Part 2A of the Environmental Protection Act 1990, statutory guidance entitled 'Contaminated Land Statutory Guidance (April 2012)' and in accordance with UK's risk assessment framework².

The conceptual site model for the site has been developed with consideration of national guidance³ which provides a framework for risk estimation and evaluation of plausible sourcepathway-receptor linkages identified in the context of a proposed residential development.

5.2 Potential Contamination Sources

Potential on- and off-site sources of contamination have been identified in consideration of the review of desk based information, as outlined in Sections 2 and 3, in the context of on- and offsite current/historical activities. Potential contaminant sources or APCs identified within a 250m radius of the site are presented in the APC plan in Appendix A and summarised in Table 5.1.

Areas of potential concern (APC Nº)		Source/hazard description	Source contaminants		
On-site 1		Made ground associated with unrecorded development/ activities.			
3001003/1020103	2	Agricultural pest/weed control associated with former agricultural practices.			
	3	Potentially infilled former surface workings located 130m south-east and 170m west of the site which may generate hazardous ground gases.	Metals, hydrocarbons, asbestos, pesticides and herbicides, CO ₂ , CH ₄ , vapours and		
Off-site sources/hazards	4	Sewage works/ treatment tanks located 30m south of the site.	radon.		
	5	Electrical substation located 50m south west of the site.			
Notes:			·		
PAHs – polycyclic aromatic hydrocarbons.					
OCP/OPP – organochlorine pesticides / organophosphorous pesticides.					
CH₄ – methane.					
CO ₂ – carbon dioxide					

Table 5.1 Summary of Potential Contamination Sources

 UU_2

5.3 Potential Receptors

With regard to the current site setting and future proposed development, the following receptors have been identified:

- Future residents.
- Future maintenance workers (including intrusive workers).
- Off-site residents/workers.

² CLR 11. Model Procedures for the Management of Contaminated Land. Defra & Environment Agency. 2004. ³ Annex 4 - Guidance for the Safe Development of Housing on land Affected by Contamination R&D66. NHBC. 2008

- Groundwater The underlying White Limestone Formation is classified as a Principal Aquifer. The site is not recorded to lie within a SPZ and no potable water or groundwater abstraction points are recorded within a 500m radius. With reference to national guidance⁴, the sensitivity of groundwater as a potential receptor to contaminant impact beneath the site is considered to be Moderate (M1).
- Surface water the nearest surface water feature to the site is a stream located along the eastern site boundary. No licensed abstractions are recorded within 500m. With reference to the same national guidance, the sensitivity of surface water as a potential receptor to contaminant impact beneath the site is considered to be Moderate (M2).
- Potable water supply pipework and buried concrete associated with the proposed development Underground services associated with the proposed development may be affected by the chemical characteristics of the soil through direct chemical attack.
- Existing/future flora and fauna The proposed development is shown to include private and communal areas of soft landscaping which will present viable flora receptors via plant root uptake.

The following receptors have been discounted from further consideration:

- Construction workers it is considered that risks during the construction works will be managed appropriately to mitigate short term risks through measures such as use of Personal Protective Equipment (PPE), hygiene practices and other on-site controls as outlined in their Construction Phase Health and Safety Plan and method statements/risk assessments.
- Current site users in the context of the proposed development for the site, future residents represent a more sensitive receptor than current site users, and as such, consideration of potential risks to future residents will be suitably protective of current site users. As such, current site users will not be considered separately.

5.4 Exposure and Migration Pathways

With consideration of the site setting and proposed development, the following exposure pathways are considered to be potentially active:

- Direct contact with contaminated soils/water;
- Dust migration with inhalation;
- Oral ingestion including vegetable uptake;
- Indoor/outdoor vapour/gas inhalation (including gas explosion risk);
- Permeation into drinking water supplies;
- Leaching/dissolution with vertical migration to groundwater;
- Leaching/dissolution with lateral migration of dissolved phase contamination in groundwater to surface water;
- Soil erosion/overland flow to surface water;
- Direct contact (buildings/property); and,
- Uptake by flora.

With consideration of the site setting and proposed development, the following exposure pathways are not considered likely to be active and as such have been discounted from further consideration:

• Migration via service trenches – absence of reported on-site services.

⁴ Annex 2 - Guidance for the Safe Development of Housing on land Affected by Contamination R&D66. NHBC. 2008

5.5 Preliminary Qualitative Risk Assessment

Table 5.2 highlights the source-pathway-receptor relationships or "contaminant linkages" that may potentially be active in consideration of both the site's current use and proposed future use. Those contaminant linkages assessed as low or very low risk at this stage will not be considered further.

Table 5.2 Summary of Source-Pathway-Receptor Relationships

APC N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk*	Comment
		Oral ingestion	Future residents and maintenance workers	Medium	Low likelihood	Moderate/ Low Risk	-
		Vegetable uptake	Future residents	Medium	Low likelihood	Moderate/ Low Risk	-
		Dermal contact	Future residents and maintenance workers	Medium	Low likelihood	Moderate /Low Risk	-
		Dust migration/inhalation	Future residents, maintenance workers and off-site residents/workers	Medium	Low likelihood	Moderate /Low Risk	-
	<u>On-site</u> di Made ground di associated with wi unrecorded development/ activities. wi	Gas / vapour inhalation/explosion	Future residents and maintenance workers	Medium	Low likelihood	Moderate /Low Risk	-
		Permeation into drinking water supplies	Future residents	Medium	Low likelihood	Moderate /Low Risk	-
1		Leaching/dissolution with vertical migration to groundwater	Groundwater	Medium	Low likelihood	Moderate/ Low Risk	-
		Leaching/dissolution with vertical migration to groundwater, and lateral migration in groundwater	Surface water	Medium	Low likelihood	Moderate/ Low Risk	-
		Overland flow	Surface water	Medium	Low likelihood	Moderate/ Low Risk	-
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater and subsequent volatilisation	Future residents, maintenance workers and off-site residents/workers	Medium	Low likelihood	Moderate/ Low Risk	-
		Direct contact	Buildings	Medium	Low likelihood	Moderate/ Low Risk	-

APC N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk*	Comment
		Uptake via root system	On-site flora	Medium	Low likelihood	Moderate/ Low Risk	-
		Oral ingestion	Future residents and maintenance workers	Medium	Unlikely	Low Risk	Pesticide and herbicide chemicals have a low environmental persistence.
		Vegetable uptake	Future residents	Medium	Unlikely	Low Risk	
		Dermal contact	Future residents, maintenance workers and fauna	Medium	Unlikely	Low Risk	Due to the absence of recorded buildings and structures on-site, the
2 Agi 2 2 former		Dust migration/inhalation	Future residents, maintenance workers and off-site residents/workers	Medium	Unlikely	Low Risk	storage and associated leaks and spillages of chemicals on-site is considered unlikely.
	<u>On-site</u> Agricultural pest/weed control associated with former agricultural practices.	Leaching/dissolution with vertical migration to groundwater	Groundwater	Medium	Unlikely	Low Risk	
		Leaching/dissolution with vertical migration to groundwater, and lateral migration in groundwater	Surface water	Medium	Unlikely	Low Risk	
		Overland flow	Surface water	Medium	Unlikely	Low Risk	
		Migration via service trenches	Surface water	Medium	Unlikely	Low Risk	
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater and subsequent volatilisation	Future residents, maintenance workers and off-site residents/workers	Medium	Unlikely	Low Risk	
		Direct contact	Buildings	Medium	Unlikely	Low Risk]
		Uptake via root system	On-site flora	Mild	Unlikely	Very Low Risk	

APC N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk*	Comment
		Dust migration	Future residents	Mild	Low likelihood	Low Risk	Given the ground cover, potential for dust generation is low.
3 Off-site Potentially infilled former surface workings	Lateral migration and gas / vapour inhalation	Future residents	Medium	Unlikely	Low Risk	Due to age since possible infilling, redevelopment (western quarry) and localised extent of features, a potentially significant gas risk is considered unlikely.	
	Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent vegetable uptake/direct contact/ soil ingestion	Future residents	Medium	Unlikely	Low Risk	Surface water flow was observed to be in a southerly direction. Based upon the site and topography of the surrounding area, groundwater flow is considered likely to be	
	Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent volatilisation and inhalation	Future residents and maintenance workers	Medium	Unlikely	Low Risk	In a southerly direction away from the site. Furthermore, due to the age of the features, and subsequent redevelopment (quarry to the west)which has occurred, the presence of a significant source	
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with permeation into drinking water supplies	Future residents	Medium	Unlikely	Low Risk	is considered unlikely.

APC N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk*	Comment
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent vegetable uptake/direct contact/ soil ingestion	Future residents	Medium	Unlikely	Low Risk	Surface water flow was observed to be in a southerly direction. Based upon the site and topography of the surrounding area, groundwater flow is considered likely to be in a southerly direction away from the site. As such, the probability for contaminants to migrate beneath the site is considered to be unlikely.
4	Off site Sewage works/ treatment tanks located 30m south of the south eastern site area.	Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent volatilisation and inhalation	Future residents and maintenance workers	Medium	Unlikely	Low Risk	
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with permeation into drinking water supplies	Future residents	Medium	Unlikely	Low Risk	
5	<u>Off site</u> Electrical substation located 50m south west of the site	Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent vegetable uptake/direct contact/ soil ingestion	Future residents	Medium	Unlikely	Low Risk	Based upon the site and topography of the surrounding area, groundwater flow is considered likely to be in a southerly direction away from the site. As such, the probability for
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with subsequent volatilisation and inhalation	Future residents and maintenance workers	Medium	Unlikely	Low Risk	contaminants to migrate beneath the site is considered to be unlikely.

APC N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk*	Comment
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater with permeation into drinking water supplies	Future residents	Medium	Unlikely	Low Risk	

*Where multiple receptors exist the risk classification is based on most sensitive receptor for conservatism.

5.6 Summary of Geohazards

Based on information presented within Section 3 and the anticipated geology beneath the site, the following geohazards have been identified which require further consideration:

- Potential for shrink-swell behaviour of residual weathered clays of the White Limestone Formation; and,
- Attack of buried concrete by aggressive ground conditions (sulphate rich soils).

6 SCOPE OF WORK

6.1 Summary of Fieldwork

An intrusive ground investigation was undertaken by T&P across the site between 23rd and 24th January 2019, comprising the following:

- Excavation of 15N° trial pits;
- Infiltration testing within 6N° trial pits;
- In situ vehicle mounted California Bearing Ratio (CBR) tests in 5Nº locations;
- Logging of ground conditions in accordance with BS5930⁵; and,
- Soil sampling.

An exploratory hole location plan is presented within Appendix A and the exploratory hole logs are presented as Appendix D.

6.2 Exploratory Locations and Access Restrictions

A summary of exploratory locations with supporting rationale is provided in Table 6.1.

Exploratory location(s)	Rationale/justification
TP101 – TP115	General coverage
TP101, TP103, TP104, TP106, TP111 & TP112	Infiltration testing

6.3 Trial Pits

T&P supervised the excavation of $15N^{\circ}$ trial pits (TP101 – TP115) using a wheeled JCB 3CX backhoe excavator. The trial pits were terminated at depths ranging between 1.50 and 2.10 metres below ground level (mbgl) due to refusal on limestone.

6.4 In situ CBR Testing

T&P supervised the completion of 5N° vehicle mounted California Bearing Ratio (CBR) tests using the plunger method in accordance with BS1377⁶ to assist with carriageway design. A summary of geolocation and elevation data is presented in Table 6.2 which is based on inferences from available topographic survey.

 Table 6.2 Summary of CBR Test Coordinates and Elevations

Location	Easting (m)	Northing (m)	Elevation (mAOD)*	Depth of test (mAOD)
CBR01	451977	225887	118.00	0.40m (117.60)
CBR02	451925	225864	119.08	0.40m (118.68)
CBR03	451920	225833	118.85	0.35m (118.50)

⁵ BS5930. Code of Practice for Ground Investigations. 2015.

⁶ BS1377-Part 9: 1990. Methods of Tests for Soils for Civil Engineering Purposes – Part 9. In Situ Tests.

Location	Easting (m)	Northing (m)	Elevation (mAOD)*	Depth of test (mAOD)
CBR04	451911	225780	118.2	0.35m (117.85)
CBR05	451902	225726	117.2	0.40m (116.80)

*metres Above Ordnance Datum (mAOD) inferred from topographical survey.

6.5 Infiltration Testing

T&P supervised infiltration testing within 6N° trial pits (TP101, TP103, TP104, TP106, TP111 and TP112) at approximate invert level of proposed drainage.

7 SUMMARY OF GROUND CONDITIONS

7.1 Recorded Ground Conditions

The geological sequence encountered during the ground investigation is summarised in Table 7.1 and described further in the following sub-sections. Ground conditions were found to broadly correspond with published geological information. Exploratory logs are included in Appendix D.

Top depth range (mbgl)	Base depth range (mbgl)	Exploratory holes	Area of site	General description/comments
Ground level	0.20-0.50	All holes	General	Firm gravelly CLAY. (TOPSOIL)
0.20-0.80	1.20-1.60	TP101 - TP107, TP109- TP115	General	Sandy clayey GRAVEL. Gravel is angular to subangular in to coarse of Limestone. (WHITE LIMESTONE FORMATION)
0.60-1.55	0.80-2.10	TP102- TP110, TP113 &TP115	General	Firm to stiff, stiff gravelly CLAY. Gravel is subangular fine to coarse of limestone. (WHITE LIMESTONE FORMATION)

Table 7.1 Summary of Ground Conditions

7.1.1 Made ground

Made ground was not encountered during the investigation.

7.1.2 Topsoil

Topsoil was encountered in all exploratory locations with a typical thickness ranging between 0.20 and 0.50m. In general, the topsoil was found to comprise brown gravelly clay. Given the agricultural setting of the site, this is likely to have been reworked through ploughing and/or crop cultivation.

7.1.3 Bedrock Geology – White Limestone Formation

Within the majority of trail pits, gravel was encountered immediately beneath the topsoil. The gravel was found to comprise limestone with varying amounts of clay, sand and gravel. Beneath the gravel at depths ranging from 0.60 to 1.55mbgl, a firm to stiff and stiff gravelly clay was encountered within most of the pits. The only exception to the above was TP106 where gravelly clay was encountered overlying the gravel.

At depths ranging from 1.50 to 2.10mbgl, a competent limestone layer was encountered that prevented further excavation.

7.1.4 Evidence of Contamination

No significant visible or olfactory evidence of any contamination was noted during the ground investigation.

7.1.5 Below Ground Structures and Obstructions

No below ground structures or obstructions were encountered during the ground investigation.

7.2 Groundwater

Groundwater was encountered within 4N° trial pits during the ground investigation, all of which were excavated in close proximity to the eastern site boundary. Typical depths to groundwater strikes ranged from 1.60 to 1.80m, with all strikes noted to rise by approximately 200mm after 20 minutes.

In consideration of the observed groundwater strikes together with the underlying natural ground conditions, groundwater encountered within the pits is likely to be an area of shallow groundwater in hydraulic continuity with the adjacent water course.

8 SUMMARY OF LABORATORY ANALYSES

8.1 Geotechnical Testing

The geotechnical testing deemed necessary to adequately characterise the site from a geotechnical perspective in the context of the proposed development is summarised in Table 8.1.

Samples from the investigation were forwarded to South West Geotechnical Ltd, a UKAS accredited laboratory. Complete results are provided in Appendix E.

Table 8.1 Summary of Geotechnical Testing

Test	Notes	Quantity
Moisture content	-	10 soils
Atterberg limits	-	10 soils
Geochemical analysis BRE SD1 Suite	pH, 2:1 water soluble	8 soils

8.2 Chemical Testing – Soil

The soil testing deemed necessary to adequately characterise the site from a contamination perspective in the context of the conceptual site model and proposed development is summarised in Table 8.2.

Samples from the investigation were forwarded to The Environmental Laboratory Ltd, a UKAS and MCERTS accredited laboratory. Complete chemical results are provided in Appendix F.

Table 8.2 Summary of Chemical Testing

Test type	Quantity
Soils	
Arsenic, Boron, Cadmium, Chromium, Lead, Mercury, Nickel, Copper, Zinc, Selenium, Phenols and US EPA 16 Polycyclic Aromatic Hydrocarbons.	12 soils

9 HUMAN HEALTH RISK ASSESSMENT

9.1 Introduction

A human health generic quantitative risk assessment (GQRA) has been undertaken in accordance with the UK regulatory framework and current guidance on assessment of risks presented by land affected by contamination⁷.

9.2 Determination of Averaging Areas/Zones

For the purposes of investigation and assessment a site can be divided into zones based on historical uses or proposed end use. These zones can be further divided into averaging areas, which can be used to assess different soil types or different potential exposure pathways etc. for the purposes of risk evaluation. Each averaging area can be considered independently for human health exposure assessment.

Based upon the proposed end use of the site and the findings of the ground investigation it is proposed that a single zone with one averaging area is appropriate for the site as follows:

• Site wide – topsoil/natural soils.

9.3 Screening Assessment

For each zone/averaging area, the analytical data has been evaluated directly against adopted screening levels⁸ for a 'residential with consumption of home-grown produce' end use.

A review of soil data has not identified any elevated soil contaminant concentrations with respect to adopted human health screening levels for a 'residential with homegrown produce' end use.

In consideration of the outcome of the generic quantitative risk assessment, it is concluded that there are no unacceptable risks presented to human health associated with on-site soils via direct contact/ingestion/inhalation pathways. Potential risks associated with ground gas/vapours and permeation via drinking water supplies are considered later in Sections 10 and 11.2.

⁷ Environmental Protection Act 1990. Contaminated Land Statutory Guidance (April 2012). CLR11 – Model procedures for the management of land contamination. DEFRA/Environment Agency. 2004.

⁸ The LQM/CIEH S4ULs for Human Health Risk Assessment. 2015. SP1010 – Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. CL:AIRE. 2013.

10 CONTROLLED WATERS RISK ASSESSMENT

10.1 Overview of Hydrogeological Setting

The underlying White Limestone Formation is designated as a Principal Aquifer. The site is not recorded to lie within an SPZ and nor are there any licensed abstraction recorded within a 500m radius.

The nearest surface water feature to the site is a stream located along the eastern site boundary. At the time of the ground investigation this feature was noted to be flow from north to south.

The water course is shown to emerge from an 'issues' associated with culverted surface water features within the airfield to the north. From the 'issues' the stream is noted to feed ponds within the field adjacent to the north which then flows into the stream along the eastern boundary. The stream ultimately discharges into Gallos Brook approximately 4km to the south of the site

On the basis of the above, the sensitive Controlled Waters receptors relating to the site are considered to be:

- Groundwater in White Limestone Formation (Principal Aquifer); and,
- Stream adjacent to eastern boundary.

10.2 Risk Evaluation

The desk study did not identify the presence of potentially significant on-site contamination sources which may present a potentially significant risk to Controlled Waters. This was supported by the ground investigation during which no significant visible or olfactory evidence of contamination was recorded. These observations are reflected in the available chemical test results for topsoil and natural soils, which indicate relatively low contaminant concentrations across the site.

Based on the available information, it is considered that the risk posed to controlled waters is very low and no further assessment is considered necessary.

11 GAS/VAPOUR RISK ASSESSMENT

11.1 Overview of Conceptual Model

Through the development of the preliminary conceptual model potential, the following sources of ground gas/vapour have been identified:

• Off-site potentially infilled former surface working approximately located 130m south-east and 170m west of the site.

In consideration of the ground investigation findings, no additional potential sources of ground gas have been identified on-site.

11.2 Discussion and Risk Evaluation

As indicated above, the desk study identified the presence of two historical quarry features located 130m south-east and 170m west of the site boundary. The western quarry was mapped up to 1966 when this area was developed for residential use. The south-eastern quarry remains identified in historical mapping up to 1966, and it is possible this feature may have been subsequently infilled. No other significant features have been identified during the investigation.

Based upon the timescales since the possible infilling may have occurred, it is considered ground gas emissions emanating from putrescible material (if present) will have peaked some time ago and gas generating potential of any infill material (if present) would now be significantly reduced.

Should these features have been infilled, they are considered unlikely to be capped. Together with the underlying granular natural ground any low level gas emissions will likely vent near to the source and unlikely migrate significant distances.

Therefore, it is considered that the site has a low ground gas generating potential and that risks to future residents associated with ground gases are low. No ground gas protection measures are deemed necessary within future development.

In addition, the site is in a low risk radon area. Therefore, radon protection measures are not considered necessary for any new development.

12 PLANT GROWTH AND POTABLE SUPPLY PIPEWORK RISK ASSESSMENT

12.1 Phytotoxic Risk Estimation

When considering phytotoxic risks, contaminants selected are those listed within Annex 3 of 'Guidance for the Safe Development of Housing on Land Affected by Contamination. R&D66: 2008 Volume 2' as being 'phytotoxic'.

Where available, assessment values have been chosen based on the criteria within (in priority order) SGV Documents, ICRCL 59/83 phytotoxic threshold levels, Dutch RIVM Serious Risk Concentrations (SRC) for ecological receptors (amended for a UK soil of 10% clay and 2% soil organic matter) and US EPA Soil Screening Levels for plants.

A summary of soil concentrations compared with adopted screening levels is provided in Table 12.1.

Determinant	Adopted screening level (mg/kg)	Min (mg/kg)	Max (mg/kg)	N° of exceedances	Calculated 95 th UCL (mg/kg)
Selenium	10	<1.0	<1.0	0 of 12	-
Boron	3	<0.5	1.2	0 of 12	-
Copper	130	7.7	19	0 of 12	-
Nickel	70	14.2	31.8	0 of 12	-
Zinc	300	19.7	84.6	0 of 12	-
Cadmium	8	<0.5	0.6	0 of 12	-
Chromium	154	20.6	44.1	0 of 12	-
Mercury	28	<0.5	<0.5	0 of 12	-

 Table 12.1 Summary of Phytotoxic Soil Screening – Topsoil and Natural Ground

As indicated by Table 12.1, concentrations for all the determinants were found to be below the adopted screening levels in all soil samples. As such, natural soils are not considered to pose a significant risk to the existing and proposed flora.

12.2 Potable Water Supply Pipework Risk Estimation

Water industry guidance⁹ states that only organic contaminants pose a potential risk to plastic pipe materials. The UKWIR report provides threshold values for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The results are summarised in Table 12.2 with exceedances against are highlighted in **bold**.

Table 12.2 Summary of Soil Screening Against UKWIR Criteria

Determinant	Pipe mater Assessme (mg	rial Generic ent Criteria J/kg)	Min (mg/kg)	Max (mg/kg)	
	PE	PVC			
Extended VOC suite ²	0.5	0.125	<0.1	<0.1	
BTEX + MTBE ¹	0.1	0.03	-	-	

⁹ Guidance for the selection of water supply pipes to be used in brownfield sites (UK Water Industry Research Limited (UKWIR) - Ref: 10/WM/03/21) - 2010

Determinant	Pipe mater Assessme (mg	ial Generic nt Criteria /kg)	Min (mg/kg)	Max (mg/kg)
	PE	PVC		
SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 - C_{10})	2	1.4	-	-
Phenols ¹	2	0.4	-	-
Cresols and chlorinated phenols ^{1 3}	2	0.04	-	-
Mineral oil C ₁₁ -C ₂₀ ¹	10	Suitable	-	-
Mineral oil $C_{21} - C_{40}$ ¹	500	Suitable	-	-
Corrosive (conductivity, redox and pH)	Suitable	Suitable	-	-
Specific suite identified as relevant following	site investigatio	n		
Ethers ¹	0.5	1	-	-
Nitrobenzene ¹	0.5	0.4	-	-
Ketones ¹	0.5	0.02	-	-
Aldehydes ¹	0.5	0.02	-	-
Amines ¹	Not suitable	Suitable	_	-

1. Determinant not tested.

2. Based upon recorded BaP concentrations.

3. Total Monohydric Phenols – Limit of Detection (LOD) is 5.0mg/kg. All speciated phenols are below LOD of 1.0mg/kg.

Given that no visual or olfactory evidence of hydrocarbon or solvent based contamination was encountered on-site during the ground investigation, and the greenfield history of the site, most of the determinants of concern in relation to water supply pipework were not tested.

No significantly elevated concentrations of benzo(a)pyrene (BaP) were identified in topsoil or natural soil results. Therefore, it is considered that standard PE or PVC pipework will be suitable for the buried potable water supply network on site. It is advised that statutory water provider is consulted to confirm agreement with this assessment.

13 REFINED CONCEPTUAL SITE MODEL

13.1 Overview

Following completion of the ground investigation, collection and interrogation of site data with consideration of the outcome of generic quantitative risk assessment discussed in preceding sections of this report, the conceptual site model has been revised.

13.2 Sources

Further to completion of ground investigation, the sources identified within the preliminary conceptual model to require further consideration include:

• On-site made ground associated with unrecorded development/ activities.

No further potential sources of contamination were identified during the subsequent ground investigation works.

13.3 Risk Evaluation

Those SPRs identified within Table 5.2 as presenting a moderate/low or moderate risk have been further interrogated in accordance with UK national guidance and regulatory framework¹⁰ following completion of ground investigation and risk assessment. Table 13.1 presents the revised SPRs with associated classification of risk as appropriate following re-evaluation of risks.

¹⁰ Annex 4 - Guidance for the Safe Development of Housing on land Affected by Contamination R&D66: 2008. CLR11. Model Procedures for the Management of Land Contamination. Defra & EA. 2004.

Table 13.1 Revised Source-Pathway-Receptor Relationships

Area of potential concern N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk classification*	Comment
		Oral ingestion	Future residents and maintenance workers	Medium	Unlikely	Low Risk	Made ground not
		Vegetable uptake	Future residents	Medium	Unlikely	Low Risk	encountered during
		Dermal contact	Future residents, maintenance workers and fauna	Medium	Unlikely	Low Risk	No elevated soil concentrations identified when
	Dust migration/inhalation	Future residents, maintenance workers and off-site residents/workers	Medium	Unlikely	Low Risk	compared with adopted screening levels.	
	1 <u>On-site</u> Made ground associated with unrecorded development/ activities.	Gas / vapour inhalation/explosion	Future residents and maintenance workers	Medium	Unlikely	Low Risk	No made ground encountered on- site.
1		Permeation into drinking water supplies	Future residents	Medium	Unlikely	Low Risk	
	Leaching/dissolution with vertical migration to groundwater	Groundwater	Medium	Unlikely	Low Risk	No significant made ground encountered on-site. No elevated soil concentrations identified when	
	Leaching/dissolution with vertical migration to groundwater, and lateral migration in groundwater	Medium	Unlikely	Low Risk	compared with adopted screening levels with respect to the sensitive receptors.		
		Overland flow	Surface water	Medium	Unlikely	Low Risk	

Area of potential concern N°	Source	Pathway (s)	Receptor	Consequence	Probability	Risk classification*	Comment
		Leaching/dissolution with vertical migration to groundwater, lateral migration in groundwater and subsequent volatilisation	Future residents, maintenance workers and off-site residents/workers	Medium	Unlikely	Low Risk	
		Direct contact	Buildings	Medium	Unlikely	Low Risk	
		Uptake via root system	On-site flora	Mild	Unlikely	Very Low Risk	

*Where multiple receptors exist the risk classification is based on most sensitive receptor for conservatism.

14 WASTE CLASSIFICATION

14.1 Landfill Acceptance Criteria

When waste is intended for disposal at a suitably licensed landfill site it is necessary for the producer (i.e. the developer or consultant on their behalf) to identify, among other general information, the following:

- The List of Waste (LoW) code for the waste.
- The relevant hazardous property (HP1 to HP15).
- The landfill class where the waste may be accepted.
- Waste Acceptance Criteria (WAC) testing results.

Relevant information on the above can be found in WM3¹¹.

14.2 List of Waste (LoW) code

Based on the available chemical results for the soils, it is anticipated that the most suitable LoW codes for the site will be:

- 17 05 03 (soils and stones containing hazardous substances).
- **17 05 04** (soils and stones other than those mentioned in 17 05 03).

14.3 Soil Classification

For the determination of whether the soils revealed on the site are hazardous, the chemical analysis results obtained have been assessed using the HazWaste program. A copy of the HazWaste report is included in Appendix J. The results are summarised in Table 14.1.

Exploratory Location	Sample Depth (mbgl)	Soil type	Soil classification
TP101	0.00-0.20	Topsoil	Non Hazardous
TP101	0.20-0.60	Natural ground	Non Hazardous
TP102	0.00-0.40	Topsoil	Non Hazardous
TP102	0.40-0.60	Natural ground	Non Hazardous
TP103	0.00-0.30	Topsoil	Non Hazardous
TP104	0.00-0.30	Topsoil	Non Hazardous
TP105	0.00-0.40	Topsoil	Non Hazardous
TP105	0.40-0.60	Natural ground	Non Hazardous
TP107	0.00-0.25	Topsoil	Non Hazardous
TP112	0.00-0.30	Topsoil	Non Hazardous
TP112	0.30-0.60	Natural ground	Non Hazardous
TP113	0.00-0.35	Topsoil	Non Hazardous

¹¹ EA 'Guidance on the classification and assessment of waste (1st Edition 2015) - Technical Guidance WM3'

14.4 Waste Acceptance Criteria

Following the implementation of the Landfill Regulations 2002, the use of Waste Acceptance Criteria (WAC) testing for waste classification was introduced on 16th July 2005.

WAC testing is intended to supplement the waste identification and classification methods above, and is often required by landfills to assist in the determination of whether a waste can reliably be classified as 'inert' or 'stable non-reactive' depending on whether it is non-hazardous or hazardous.

14.5 Landfill Tax

Following the termination of the landfill tax exemption scheme by the government in November 2008 any material leaving site that is classed as non-hazardous or hazardous waste will be liable to the landfill tax levy, which is currently set at £88.95/tonne $(2018/2019)^{12}$ unless it can be proven to be inactive waste through WAC testing.

14.6 Discussion

Based on the HazWaste assessment the topsoil and natural is classified as non-hazardous waste. The chemical data indicates the soil will likely be treated as inert, avoiding the higher rate of landfill tax. However, this is not guaranteed and will need to be confirmed through discussions with the receiving tip/waste soils treatment facility who may require WAC testing.

¹² Details on landfill tax rates can be found at: <u>https://www.gov.uk/government/publications/landfill-tax-increase-in-rates/landfill-tax-</u> increase-in-rates

15 INFILTRATION TESTING

15.1 Summary of Field Testing

Infiltration testing was undertaken within 6N° trial pits (TP101, TP103, TP104, TP106, TP111 and TP112) at approximate assumed deep soakaway formation level (i.e. 2m below existing levels) to assess the viability of using traditional soakaway drainage within the proposed redevelopment. Graphical representations of the data are contained within Appendix K.

The trial pits were positioned as per the exploratory hole location plan contained within Appendix A. Infiltration tests were not completed in areas of the site where made ground was encountered.

The infiltration testing and subsequent calculation of soil infiltration rates were carried out in general accordance with the methodologies detailed within BRE 365¹³.

Ideally, to fully comply with the BRE methodology, soakaway tests should be repeated a minimum of three times. However, due slow infiltration rates encountered, it was not possible to complete 3N° repeat tests TP104 and TP112. Therefore, the results for these tests should be considered as preliminary only for final drainage design consideration.

15.2 Soil Infiltration Rate Calculations

The infiltration rates (F) have been calculated in accordance with BRE Digest DG-365 (2016). A summary of the results of the infiltration tests and calculated infiltration rates is provided in Table 15.1.

Exploratory Location	Date	Total Measured water level change (m)	Time Period (mins)	Calculated infiltration rate (m/s)
TP101 (T1)	23/1/19	0.47	180	2.77x10 ⁻⁵
TP101 (T2)	23/1/19	0.44	180	2.12x10 ⁻⁵
TP101 (T3)	24/1/19	0.55	180	2.53x10 ⁻⁵
TP103 (T1)	23/1/19	0.44	25	1.03x10 ⁻⁴
TP103 (T2)	23/1/19	0.63	90	5.35x10 ⁻⁵
TP103 (T3)	23/1/19	0.58	90	3.76x10 ⁻⁵
TP104 (T1)	23/1/19	0.23	300	3.56x10⁻ ⁶
TP104 (T2)	24/1/19	0.20	300	2.84x10 ⁻⁶
TP106 (T1)	23/1/19	0.65	10	4.12x10 ⁻⁴
TP106 (T2)	23/1/19	0.61	13	2.41x10 ⁻⁴
TP106 (T3)	23/1/19	0.62	11	3.15x10 ⁻⁴
TP111 (T1)	23/1/19	0.57	120	3.34x10 ⁻⁵
TP111 (T2)	23/1/19	0.52	150	2.71x10 ⁻⁵
TP111 (T3)	24/1/19	0.54	90	4.31x10 ⁻⁵
TP112 (T1)	23/1/19	0.17	300	3.75x10 ⁻⁶
TP112 (T2)	24/1/19	0.23	300	4.10x10 ⁻⁶

Table 15.1 Summary of Calculated Infiltration Rates

¹³ Soakaway Design BRE Digest DG-365 (2016).

15.3 Discussion

The calculated infiltration rates indicate the majority soils beneath the site have relatively good infiltration characteristics which is reflective of the gravel/ weathered limestone encountered associated with the White Limestone Formation.

Within two locations, TP104 and TP112, slower rates of infiltration were recorded. The inferred infiltration rates are a magnitude higher than the complete tests but have indicated that both pits would discharge 50% volume within a 24 hour period. It should also be noted that infiltration testing was not undertaken in close proximity to the eastern boundary due to shallow groundwater being encountered with in the excavated pits which will limit the potential use of traditional soakaways in this area.

Based upon the test results and site observations it is considered that traditional soakaways are likely to offer a viable solution for surface water discharge across the majority of the site.

However, the finalised surface water management scheme should consider shallow groundwater encountered along the eastern site boundary that would be likely to inundate traditional soakaway infrastructure reducing its effectiveness and creating a scenario of direct discharge into controlled waters which is unlikely to be permitted. Allowances elsewhere on-site, such as increased storage/ soakaway infrastructure may need to be made to manage surface waters from the eastern site area.

16 COMMENTS ON ENGINEERING DESIGN

16.1 General

Eurocode 7 (Section 2)¹⁴ advocates the use of geotechnical categorisation of the proposed structures to establish the design requirements. Information presented to T&P indicates that the proposed development is to comprise $77N^{\circ}$ traditional one and two storey residential dwellings with associated areas of communal and private soft landscaping and hard landscaped access and parking. It has been assumed that the dwellings will be of masonry construction with line loads of between 50-70kN/m.

In consideration of the available information on the development proposals, for the purposes of this investigation the proposed structures have been classified as follows:

• Geotechnical category 1: Small and relatively simple buildings (houses) with strip or piled foundations, roads, pavements, car parks, retaining walls below 2m, small excavations for drainage works, with the proposed housing development considered to be within this category.

16.2 Summary of Geotechnical Parameters

Stratum thicknesses and geotechnical parameters for the strata encountered in the investigation are summarised in the following sections. The level of confidence in the derived parameters is provided in Table 16.1.

Table 16.1 Confidence Levels

Кеу	Description
value	High level of confidence - based on information from investigation.
value	Medium level of confidence - based on published data.
value	Low level of confidence – more data required if parameter to be used in design.

16.2.1 White Limestone Formation

The design thicknesses and geotechnical parameters for use in the White Limestone Formation are described in Table 16.2.

Table 16.2 Summary of G	eotechnical Parameters	- White Limestone Formation
-------------------------	------------------------	-----------------------------

Parameter	Units	Min	Max	Design	Comments
Top Depth	mbgl	0.20	0.50	-	-
Base Depth	mbgl	>1.60	>2.10	>2.10	-
Thickness	m	>1.40	>1.90	-	-
Moisture Content	%	5.9	33	-	-
Liquid Limit	%	24	76	-	-
Plastic Limit	%	14	18	-	-
Plasticity Index	-	10	58	58	-
% passing 425µm sieve	%	14	98	-	-

¹⁴ BS EN 1997 – Part 2. Geotechnical Design.

Parameter	Units	Min	Max	Design	Comments
Modified Plasticity Index	-	1	45	>40	Based on the NHBC guidance (2018), results are indicative of soils of a high volume change potential
рН	-	7.4	7.6	-	
Water soluble sulphate (SO ₄)	mg/l	<0.01	0.06	0.06	(Ref = BRE Special Digest 1).

16.3 Construction Considerations

16.3.1 Subsurface Concrete

Based on the pH values, water soluble sulphate concentrations recorded by the chemical and geotechnical laboratory analysis, a DS1-AC1 design mix concrete should be suitable for buried structures placed within the shallow soils when compared against the BRE¹⁵ assessment levels.

16.3.2 Floor Slabs

The results of the investigation indicate that the shallow soils on site are essentially non-plastic. However due to the variable granular and cohesive content of the soils and wide variation in soil plasticity at greater depth it is advised high volume change potential is assumed at this stage. As such, proprietary suspended ground floor slabs should be designed with a minimum 300mm void based upon NHBC guidance.

16.3.3 Building Near Trees

The cohesive soils found below approximately 1.00m have been found to range between low to high volume change potential. Based upon the potential high volume change potential and in accordance with NHBC guidelines the minimum founding depth of traditional foundations would be 1.00mbgl. At this stage due to the high volume change potential provision should be made for the use of void formers where shallow strip foundations are to be placed at a depth greater than 1.50mbgl. Furthermore, the impact of any new planting associated with future potential development of the site should take into account the volume change potential of the soils.

Due to the high volume change potential of the soils, foundations will be highly susceptible to the influence of trees. It is recommended the findings of this report are considered in conjunction with an arboricultural survey and the recommendations given by the NHBC regarding the over deepening of foundations in the vicinity of trees.

However, overdeepening of foundations is likely to be limited due to the presence of weathered bedrock encountered between 1.60m to 2.10m beneath the site which is considered to be non-plastic and, as such, mitigates against the necessity for further over deepening of foundations due to the influence of trees.

16.3.4 Deep Excavations

Superficial deposits were generally found to be stable during the intrusive ground investigation. Man entry into any excavations should be avoided where possible. However, if entry into excavations is required, the excavation sides should be adequately shored and supported or battered back to a safe angle in accordance with appropriate temporary works design.

¹⁵ BRE Special Digest 1:2005 – Third edition – Concrete in aggressive ground.

16.3.5 Groundwater

Groundwater was not encountered within the majority of the exploratory holes during the ground investigation. Groundwater was however encountered during the ground investigation at depths ranging between 1.6 and 1.8 mbgl, in close proximity to the eastern site boundary.

It is considered that this is likely to be representative of shallow laterally discontinuous groundwater associated with the stream/ field drain. Groundwater inflow into excavations was noted to be rapid and rose during a 20 minute monitoring period potentially indicating the water is under positive hydrostatic pressure.

As such, it is considered likely that groundwater ingress into excavations in close proximity to the eastern boundary below 1.6m depth, will be relatively rapid and may not be adequately dealt with via sump pumping. Should rapid ingress be encountered the advice of specialist dewatering contractors may be sought if the groundwater is not dealt with via traditional methods such as sump pumping.

16.3.6 Buried Utilities

Utility service plans do not indicate the presence of existing underground services beneath the site.

16.3.7 Earthworks and Material Handling

Currently it is anticipated that site levels will remain relatively neutral. As such, it is likely that reuse of existing soils will be relatively limited as part of redevelopment proposals. Should earthworks be required, an earthworks specification will be necessary to ensure the appropriate management and reuse of the existing soils.

In the event that on-site re-use of soils is planned, a Materials Management Plan (MMP) may be required, in line with the CL:AIRE Definition of Waste Code of Practice.

16.3.8 Road Construction

In total 5N° vehicle mounted CBR tests (CBR01 – CBR05) were undertaken along the proposed roadways across the site. However, due to the granular nature of the shallow soils, three of the tests were not completed in accordance with the guidance given in BS1377. The results of the CBR tests are shown in Appendix E. Table 16.3 below summarises the findings of the CBR testing.

Location	Depth of test (mAOD)	Design CBR value	Soil description
CBR01	0.40m (117.60)	2.1%	Soft orangish brown friable CLAY.
CBR02	0.40m (118.68)	4.2%*	Orangish brown clayey GRAVEL with angular tabular cobbles of limestone.
CBR03	0.35m (118.50)	2.2%*	Orangish brown clayey GRAVEL with angular tabular cobbles of limestone.
CBR04	0.35m (117.85)	_*	Orangish brown clayey GRAVEL with angular tabular cobbles of limestone.
CBR05	0.40m (116.80)	0.3%	Soft orangish brown slightly sandy CLAY.

Table 16.3 Summary of CBR testing

*Test was suspended due to vehicle lifting prior to 2.5mm or 5.0mm penetration and values should be considered preliminary.

The completed *in situ* vehicle mounted CBR test results recorded across the site range from 0.3% - 2.1%. Based on the test results a conservative design CBR value of <1% is

recommended at this point. However, due to the coarse granular nature of the soils encountered on site, plunger CBRs are not considered likely to present to true reflection of the underlying soil strengths and are likely to underestimate it. As such, it is considered likely that more representative CBR results could be derived from further *in situ* plate load tests.

It should be noted however that where revealed the clay soils are moisture sensitive and will be prone to deterioration to give lower CBR values if left exposed during periods of wet weather. In such circumstances the use of geotextile at the base of construction may be prudent to reduce the potential loss of granular sub-base if placed during periods of inclement weather.

16.4 Preliminary Foundation Recommendations

The proposed development is to comprise 77N° traditional two storey residential dwellings of masonry construction with assumed line loads of between 50-70kN/m.

The ground conditions across the site were broadly constant, with clayey gravel encountered below the topsoil to depths ranging from 1.20 to 1.60m and underlain by gravelly clay. At depths varying from 1.60 to 2.10m competent limestone strata was encountered that prevented further excavation.

The Atterberg testing and subsequent volume change calculation has indicated the shallow soils to be essentially non-plastic. However, the cohesive soils found beneath from approximately 1.00m have been found to range between low to high volume change potential.

Based on the above and taking into account the NHBC guidance it is considered that traditional shallow strip foundations placed at a minimum depth of 1.0mbgl within the gravel or firm and stiff clay may be designed for an allowable bearing capacity of 100kPa for acceptable settlement.

Should higher bearing capacities be required foundations placed with the weathered limestone bedrock encountered at 1.60 - 2.10mbgl may be designed for an allowable bearing capacity of 225kPa. Additionally, the weathered bedrock is considered to be non-plastic and, as such, mitigates against the necessity for further over deepening of foundations due to the influence of trees.

Should foundations span between the gravel or limestone and clay mesh reinforcement should be utilised in foundations to minimise the possibility of differential settlement.

17 CONSIDERATIONS AND RECOMMENDATIONS

17.1 Considerations

The following uncertainties/data gaps have been identified which may require further consideration:

• Due to the gravel content within the shallow soils low CBR values have been recorded by the on-site testing on-site.

17.2 Recommendations

17.2.1 Engineering

• Supplementary *insitu* plate load testing is recommended at formation level to provide carriage way design parameters.

17.2.2 General

- Discussions should be held with local landfill/soil waste treatment facilities to agree material classification/pre-treatment required for any soils to be disposed off-site as a result of proposed construction works.
- Although no areas of made ground were encountered during the investigation vigilance should be employed by the groundworks contractor during works. In the event that significant made ground is encountered, advice from a specialist geoenvironmental consultancy should be sought.
- Ground workers should be vigilant for potential UXO and seek immediate professional advice if anything suspicious is encountered during groundworks.
- A site-specific health and safety plan should be prepared to inform on risks posed from the previous site use and mitigations for ground workers developing the site e.g. requirements for appropriate PPE, hygiene practices, environmental monitoring and requirements for mitigation measures during construction works.
- A copy of this report should be provided to the relevant regulatory authorities to confirm that they are in agreement with the report findings.

Appendix A – Drawings

Amendment

Drawn by

AW

Rev

Base Map Company: -T&P Regeneration Dwg Title: -N/a Dwg No: - N/a Date: -11/01/19

Checked Drawn

- Trial Pit Locations (TP101 TP115)
- Infiltration Test Pits (TP101, TP103 TP104, TP106, TP111)
- CBR Locations (CBR01 CBR05)
- Site Boundary

-

■,**Í**P114

- Trial Pit Locations (TP101 - TP115)
- Field Drain
- Access Tracks
- Site Boundary

Appendix B – Photographs

APPENDIX - SITE PHOTOGRAPHS

Appendix C – Historical Maps

Historical Mapping Legends

Ordnance	Survey County Series 1:10,560	Ordnance Survey Plan 1:10,000	1:10,000 Raster Mapping
Grav Pit	vel Sand Other Pit Pits	مرین کر Chalk Pit, Clay Pit کر Gravel Pit در Chalk Pit, Clay Pit در Chalk Pit	Gravel Pit Gravel Pit Gravel Pit
C Qua	rry Shingle Orchard	Sand Pit Oisused Pit	Rock (scattered)
په ^م ه ^م ه ^م ه ² [*] م ² [*] ⁴ ⁴ ⁴ [*] ⁴ ⁴ ⁴ ⁴ ⁴ [*] ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ [*] ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	ers	Refuse or Lake, Loch	ີ້ໍ້ໍີ Boulders Boulders (scattered)
4 2 5 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and the second s	Dunes 200 Boulders	Shingle Mud Mud
Mixed Woo	d Deciduous Brushwood	$ \begin{array}{cccc} & & & \\ & & & &$	Sand Sand Sand Pit
			Slopes reaction Top of cliff
Fir	Furze Rough Pasture	ஒ் ் Orchard ெ தொல் \Y்ஸ் Coppice ரிரி Bracken ஸ்ப்ப்ச் Heath பட்டா, Rough ரி Grassland	General detail — — — — Underground detail — — — Overhead detail — — — — Narrow gauge railway
++++→ Ai flo	rrow denotes <u>a</u> Trigonometrical ow of water Station	ــــــــــــــــــــــــــــــــــــ	railway railway
r ∔ • Si	ite of Antiquities 🔹 🔹 Bench Mark	Direction of Flow of Water Building	Civil, parish or County boundary (England only) Civil, parish or community boundary
• Pr Si • 285 S	ump, Guide Post, Well, Spring, ignal Post Boundary Post urface Level	Glasshouse Sand	District, Unitary, Metropolitan, Constituency London Borough boundary boundary
Sketched	Instrumental Contour	Pylon —— □ — — Electricity Transmission Pole Line	Area of wooded vegetation Area of vegetation Area of vegetatio
Main Roads	Fenced Minor Roads	Cutting Embankment Standard Gauge	Coniferous Coni
	Sunken Road Raised Road	Road ''''''' Road Level Foot Single Track	★ trees (scattered) ★ tree Coppice or Osiers
And the second s	Road over Railway over Railway River	Under Over Crossing Bridge Siding, Tramway or Mineral Line	متله Rough متله Grassland میلاه ۱۹۹۲ Heath
	Railway over Level Crossing	—— —— Geographical County	∩o_ Crub →⊻∠ Marsh, Salt →⊻∠ Marsh or Reeds
	Road over Road over River or Canal Stream	Administrative County, County Borough or County of City Municipal Borough Urban or Bural District	Water feature Flow arrows
	Road over Stream	Burgh or District Council Borough, Burgh or County Constituency Shown only when not coincident with other boundaries	MHW(S) Mean high water (springs) Mean low water (springs)
	County Boundary (Geographical)	Civil Parish — — — — Civil Parish Shown alternately when coincidence of boundaries occurs	Telephone line (where shown)
	County & Civil Parish Boundary	BP, BS Boundary Post or Stone Pol Sta Police Station	← Bench mark Triangulation
	County Borough Boundary (England)	Ch Church PO Post Office CH Club House PC Public Convenience	Point feature Pylon, flare stack
Co. Boro. Bdy.	County Burgh Boundary (Scotland)	FE Sta Fire Engine Stadon PH Public House FB Foot Bridge SB Signal Box Fn Fountain Spr Spring	or Mile Stone)
y	Rural District Boundary	GP Guide Post TCB Telephone Call Box MP Mile Post TCP Telephone Call Post	· ↓• Site of (antiquity) Glasshouse
	Civil Parish Boundary	MS Mile Stone W Well	General Building Important Building

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Oxfordshire	1:10,560	1884 - 1885	2
Oxfordshire	1:10,560	1900	3
Oxfordshire	1:10,560	1923	4
Historical Aerial Photography	1:10,560	1947	5
Ordnance Survey Plan	1:10,000	1955	6
Ordnance Survey Plan	1:10,000	1966	7
Ordnance Survey Plan	1:10,000	1982	8
Ordnance Survey Plan	1:10,000	1993	9
10K Raster Mapping	1:10,000	1999	10
10K Raster Mapping	1:10,000	2006	11
VectorMap Local	1:10,000	2018	12

Historical Map - Slice A

Order Details

Order Number: 191471348_1_1 Customer Ref: CAM2362 National Grid Reference: 451940, 225830 Slice: Α Site Area (Ha): Search Buffer (m): 3.14 1000

Site Details

Camp road, Upper Heyford, BICESTER, OX25 5TA

Tel: Fax: Web:

Historical Aerial Photography Published 1947 Source map scale - 1:10,560

The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 2010.

Map Name(s) and Date(s)

Historical Aerial Photography - Slice A

Order Details

Order Number:	191471348_1_1
Customer Ref:	CAM2362
National Grid Reference:	451940, 225830
Slice:	A
Site Area (Ha):	3.14
Search Buffer (m):	1000

Site Details

Camp road, Upper Heyford, BICESTER, OX25 5TA

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

10k Raster Mapping Published 1999

Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

- SP52NW 1 1:10,000 SP52SW I 1999 11:10,000 I
- 1

Historical Map - Slice A

Order Details

Order Number:	191471348_1_1
Customer Ref:	CAM2362
National Grid Reference:	451940, 225830
Slice:	Α
Site Area (Ha):	3.14
Search Buffer (m):	1000

Site Details

Camp road, Upper Heyford, BICESTER, OX25 5TA

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

10k Raster Mapping Published 2006

Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

- SP52NW 1 2006 1:10,000 SP52SW I 2006 11:10,000 I
- 1

Historical Map - Slice A

Order Details

Order Number:	191471348_1_1
Customer Ref:	CAM2362
National Grid Reference:	451940, 225830
Slice:	A
Site Area (Ha):	3.14
Search Buffer (m):	1000

Site Details

Camp road, Upper Heyford, BICESTER, OX25 5TA

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

VectorMap Local

Published 2018 Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river estuary areas).

Map Name(s) and Date(s)

SP52NW I 2018 Variable SP52SW I 2018 Variable

Historical Map - Slice A

Customer Ref:CAM2362National Grid Reference:451940, 225830Slice:ASite Area (Ha):3.14Search Buffer (m):1000

Site Details

Camp road, Upper Heyford, BICESTER, OX25 5TA

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Appendix D – Exploratory Logs

Contract Name:											Trial Pi	it ID:		
T&P			Cam	p Roac	l, Uppe	r Heyfor	d	Pye	e Home	es	TP101			
	Regen		Contract Number	n: Da	ate Starte	d:	Logged By:	Checked By:		Status:		1910	1	
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	JF	JD		FINAL	Sheet	1 of 1		
Trial	Pit I o	nd	Easting:	No	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:			
mai		9	451990		225	901	119.58mOD	JCB 30	CX	08/03/2019		1:25		
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone	S	Stability:	Stable				
	Samples &	In Situ Tes	ting				Strat	Strata Details				Water	Backfill	
Depth	Sample ID	Т	est Result	(mAOD)	Depth (m) (Thickness)	Legend		Strata Desc		. Tator	Baolan			
0.00 - 0.20	ES1						Firm brown gravelly	CLAY. Gravel is su	ubangula	r fine to coarse of	Ļ			
0.20 - 0.60	ES2			119.38	0.20		(TOPSOIL)							
						- <u>-</u> .	Orangish brown sligh subangular fine to co	ntly clayey GRAVE parse of limestone	=L. Grav	el is angular to	Ē			
						- <u>-</u>	(WHITE LIMESTONE	E FORMATION)			Ē			
- 0.50 - 0.70	D3				(0.60)						-			
						- <u>-</u>					F			
				118 78	0.80					-				
					0.00		Yellowish brown (call subangular fine to co	careous) sandy G oarse of limestone	RAVEL.	Gravel is angular to	-			
-1.00 - 1.20	D4						(WHITE LIMESTONE	E FORMATION)			- 1			
					(0.70)						Ę			
							Below 1.20m: Low cobb	ble content. Cobbles are	e angular ta	bular of limestone.	ŀ			
											Ē			
				118.08	1.50			End of Total DY	h at 1 50		<u> </u>			
								End of That Pit	Lat 1.50m	I	F			
											E			
											-			
											5			
											2			
											-			
											Ē			
											ŀ			
											-			
											Ē			
											Ę			
											F			
-											- 3			
											ŀ			
											F			
											E			
-											-			
											F			
											E			
											ŀ			
											Ē,			
											4			
											F			
											Ē			
											ţ			
ł											F			
											Ē			
											ŀ			
											F			
-											- 5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Und	disturbed O	pen-Drive W = Wa	ter <u>G =</u> Gas	ES = I	Environmental Soil E	N = Envir	onmental	Water	
Remarks:							Dim	ensions:						
Groundwater	not encou	untered.						Length: 2.40m		Orientat	ion: °			
								Width: 0.60m		◀				
										Groundwater Details				
							Dep	th encountered (m)		Remark	<s< td=""><td></td><td></td></s<>			
							т	&P Regeneration TF	P Template	e Issue Number: 1	Issue	Date: Jun	e 2016	

			Contract Name:				Client:	Client:			Trial Pit ID:		
T&P			Cam	p Roac	d, Uppe	r Heyfor	b	Pye Hom	es			_	
	Regen		Contract Number	: Da	ate Starte	ed:	Logged By:	Checked By:	Status:		TP102	2	
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	JF	JD	FINAL	Sheet	1 of 1		
Tuint	D:+ I -		Easting:	N	orthing:		Ground Level:	Plant Used:	Print Date:	Scale:			
Irial	PIT LO	g	452009		225	902	117.08mOD	JCB 3CX	08/03/2019		1:25		
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone	Stability	: Stable				
	Samples &	In Situ Tes	ting				Strata D	Details					
Depth	Sample ID	Т	est Result	Level	Depth (m)	Legend		Strata Description			Water	Backfill	
0.00 - 0.40	FS1			(mAOD)	(Thickness)		Firm brown gravelly CI	AY Gravel is subangul	ar fine to coarse of	L			
	201						limestone.	z olarol lo cazaliga		[
					(0.40)		(TOPSOIL)			E			
										È.			
0.40 - 0.60	ES2			116.68	0.40		Yellowish brown (calca	reous) sandy GRAVEL.	Gravel is angular to	-			
							subangular fine to coar	se of limestone.		-			
								ORMATION)		F			
0.00 4.00	52				(0.00)					F			
0.60 - 1.00	03				(0.60)					E			
_										E1			
										- '			
1 20 - 1 40	D4			115 88	1 20					_			
1.20 1.10	51			110.00	1.20		Firm to stiff yellowish b coarse of limestone	rown gravelly CLAY. Gr	avel is subangular fine to)			
							(WHITE LIMESTONE F	FORMATION)		Ę			
-					(0.50)	· · · · ·				Ļ			
						· · · · · · ·				F	\square		
				115.38	1.70	<u>· · · · ·</u>		End of Trial Dit at 1 70r	n	-			
										F			
										E			
_										2			
										L			
										E.			
										Ę			
										È.			
										-			
										-			
										F			
										F			
										F _			
										[
										E			
										Ł			
										Ł			
-										L			
										Ę			
										Ļ			
										Ę			
										Ę			
-										- 4			
										F			
[E			
ł										E			
										E			
ŀ										F			
										Ł			
l										ŀ			
										Ę			
										ŀ			
-										- 5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Un	u disturbed Or	pen-Drive W = Water	G = Gas ES =	Environmental Soil EV	l / = Envir	onmental	Water	
Remarks:							Dimen	sions:					
Groundwater	encountei	red at 1.60	Om rising to 1.40m	۱.			Le	ength: 2.20m	Orientati	on [.] °			
							V	vidtn: 0.60m					
							Depth	encountered (m)	Groundwater Details Remark	s			
								1.60	Rapid ingr	ess			
							T&P	Regeneration TP Templat	e Issue Number: 1	Issue	Date: Jun	e 2016	

Contract Name:							Clier	nt:				Trial Pi	t ID:	
T&P			Cam	p Road	d, Uppe	r Heyford	k k		Pye	Home	es			
	Regen	1	Contract Number	:: D	ate Starte	ed:	Logged By:		Checked By:		Status:	1	TP10	3
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	JF		JD		FINAL	Sheet	1 of 1	
Trial	DitLo		Easting:	N	orthing:		Ground Level:		Plant Used:		Print Date:	Scale:		
IIIai	TILLO	'Y	451964		225	876	118.40mC	D	JCB 3C	X	08/03/2019		1:25	
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone		S	tability:	Stable			
:	Samples &	In Situ Tes	ting				5	Strata De	etails				Water	Backfill
Depth	Sample ID	Т	est Result	Level (mAOD)	Depth (m) (Thickness)	Legend			Strata Descr	iption			Water	Dackin
0.00 - 0.30	ES1						Firm brown grave	elly CLA	AY. Gravel is su	bangula	r fine to coarse of	-		
					(0.30)		(TOPSOIL)					-		
0.30 - 0.60	ES2			118.10	0.30		Orangish brown	sandy (GRAVEL Grave	el is and	ular to subangular fine	-		
							to coarse of limes	stone.		or io ung		Ē		
-							(WHITE LIMEST	ONE F	ORMATION)			-		
					(0.60)							-		
												E		
0.90 - 1.10	D3			117.50	0.90					aval ia a	ubangular fina ta agarag	_		
-							of limestone.	own gra	ivelly CLAT. Gr	avenss	ubangular line to coarse	'		
							(WHITE LIMEST	ONE F	ORMATION)			-		
					(0.65)							-		
						· · · · · ·						-		
-						· · · · · ·						E		
				116.85	1.55				End of Trial Pit	at 1.55m	1	+		()X////X//
												Ē		
												ŀ		
												Ē		
-												- 2		
												-		
												Ē		
												-		
-												-		
												-		
												E		
												ŀ		
-												- 3		
												E		
												ļ.		
												F		
												E		
												ŀ		
												F		
												E		
												F .		
												- 4		
												ŀ		
												ŀ		
ŀ												Ē		
-												F		
												F		
ŀ												Ē		
												ŀ		
-												- 5		
Somela K-···	D - D: '	k Dicture - '	D = 0 D'	turbod	<u> </u>	dioturbad		Mete-	0-0	<u> </u>	Environmental Call	/	opmert-1	Notor
Remarks:	b = Bul	n Disturded	o = Smaii Dis	auned	u ≓ un	uisiulbed O		Dimens	G = Gas	_3 = E			onnental	valei
Groundwater	not encou	untered.						Len	ngth: 2.50m		Orienteti	۰ ° מר		
								10.0	idth: 0.60m					
							-	vv	idui. 0.001/1		Groundwater Details			
								Depth e	ncountered (m)		Remarks	6		
	<u></u>				<u> </u>	<u></u>		T&P I	Regeneration TP	Template	s Issue Number: 1	Issue	<u>Date: Ju</u> n	e 2016

		<u> </u>	Contract Name:				Client:	Client:				Trial Pit ID:		
T&P			Cam	p Road	d, Uppe	r Heyfor	d	Руе	Home	es		TD40	4	
,	Regen		Contract Number	r: D	ate Starte	ed:	Logged By:	Checked By:		Status:		1910	4	
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	JF	JD		FINAL	Sheet	1 of 1		
Trial	Pitlo	na	Easting:	N	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:			
mai	TICEO	9	451926		225	808	118.41mOD	JCB 3C	Х	08/03/2019		1:25		
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone	St	ability:	Stable				
	Samples &	In Situ Tes	ting	Laval		1	Strata	Strata Details					Backfill	
Depth	Sample ID	Т	est Result	(mAOD)	Depth (m) (Thickness)	Legend		Strata Descri	ption			Trato.	Baolan	
0.00 - 0.30	ES1						Firm brown gravelly (CLAY. Gravel is sul	bangula	r fine to coarse of	-			
					(0.30)		(TOPSOIL)				-			
0.30 - 0.60	ES2			118.11	0.30		Orangish brown and	vellowish brown sl	iahtlv cl	avev GRAVEL. Gravel is				
							subangular fine to co	barse of limestone.	.g,	-,-, -,	-			
					(0.50)		(WHITE LIMESTONE	= FORMATION)			-			
											-			
				117.61	0.80						_			
							angular to subangula	ar fine to coarse of	m cobbi limestoi	e content. Gravel is ne. Cobbles are angular	-			
-					(0.50)		tabular of limestone.				-1			
					(0.00)						-			
4 20 4 50	52			447 44	4.00						-			
1.30 - 1.50	D3			117.11	1.30	××	Firm yellowish brown	silty CLAY with oc	casiona	al thin beds of	-			
-						××	(WHITE LIMESTONE	E FORMATION)			-			
					(0.60)	××					-			
						××					-			
				116 51	1.00	<u>×</u> _×					-			
_				110.51	1.90			End of Trial Pit a	at 1.90m	1	-2			
											-			
											-			
											-			
											-			
											-			
											-			
											-			
											-			
-											- 3			
											Ē			
											-			
											-			
-											-			
											-			
											-			
											-			
_											- 4			
											-			
											-			
											-			
											-			
											-			
											-			
											-			
											-			
-											- 5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	sturbed	U = Un	disturbed O	pen-Drive W = Wat	ter G = Gas	ES = E	Environmental Soil EW	/ = Enviro	onmental	Water	
Remarks: Groundwater	not encor	Intered					Dim	ensions:						
Croanawald		antored.						Length: 2.40m		Orientatio	on: °			
								Width: 0.60m						
							Dep	th encountered (m)	(Groundwater Details Remarks	 }			
									. .			.	00.1-	
							T	&P Regeneration TP	remplate	e Issue Number: 1	Issue	Date: Jun	e 2016	

		<u> </u>	Contract Name:	ntract Name: C					Client:			Trial Pit ID:		
T&P			Cam	p Road	d, Uppe	r Heyfor	t k		Pye Hom	es			5	
,	Regen		Contract Number	r: Da	ate Starte	ed:	Logged By:	Che	ecked By:	Status:		IP10	5	
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	JF		JD	FINAL	Sheet	1 of 1		
Trial	PitIo	a	Easting:	N	orthing:		Ground Level:	Pla	int Used:	Print Date:	Scale:			
	20	9	451961		225	0/2/	115.30mOD		JCB 3CX	08/03/2019		1:25		
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone		Stability	: Stable				
	Samples &	In Situ Tes	sting	Level	Denth (m)		Stra	ata Details	S			Water	Backfill	
Depth	Sample ID	Т	est Result	(mAOD)	(Thickness)	Legend			Strata Description					
0.00 - 0.40	ES1						Firm brown gravelly limestone.	CLAY. (Gravel is subangul	ar fine to coarse of	-			
					(0.40)		(TOPSOIL)				-			
											E			
0.40 - 0.60	ES2			114.90	0.40		Orangish brown and	d yellowi	ish brown slightly o	layey GRAVEL. Gravel	is -			
					(0,40)	· · · · · · · · · · · · · · · · · · ·	subangular fine to c	oarse of	f limestone. MATION)		-			
					(0.40)						E			
0.80 - 1.00	D3			114.50	0.80					Orașulia an autor ta				
							subangular fine to c	oarse of	s) sandy GRAVEL f limestone.	Gravel is angular to	-			
_							(WHITE LIMESTON	IE FORI	MATION)		- 1			
					(0.70)						-			
											-			
											Ē			
- 1.50 - 1.70	D4			113.80	1.50									
						××	(WHITE LIMESTON	h brown	i mottled grey silty MATION)	CLAY.	-			
				113 55	1 75	××			-		-			
				110.00	1.75			End	d of Trial Pit at 1.75	n	E.			
											÷.			
-											- 2			
											ŀ			
											-			
											F			
-											F			
											-			
											-			
											Ē			
-											- 3			
											-			
											Ē			
											E.			
-											-			
											Ē			
											-			
											-			
-											- 4			
											Ē			
											F			
											F			
											E			
											F			
											F			
											E			
											F			
-											- 5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	sturbed	U = Un	disturbed O	pen-Drive W = Wa	ater	G = Gas ES =	Environmental Soil E	W = Envir	onmental	Water	
Remarks:	ono 1	rod -1 4 =1	Em riginar 1- 1-00				Dim	nension	IS:					
Groundwater	encounte	rea at 1.7	om rising to 1.60n	1				Length	: 2.20m	Orientat	ion: °			
								Width	: 0.60m	┫				
										Groundwater Details				
							Dej	ptn encou 1.7	unterea (m) 75	Remark Rapid ing	ks ress			
								T&P Reg	eneration TP Templa	te Issue Number: 1	Issue	Date: Jun	e 2016	

Contract Name:						Client:	Client:				Trial Pit ID:		
T&P			Cam	p Road	d, Uppe	r Heyfor	d long - I Di	Py	e Home	es Statua	-	TP10	6
MAAN tondoo	Regen	on co uk	Contract Number	. Da	ate Starte 23/01	u: /2019	JF	Unескей Ву:		Status: FINAL	0.	1.10	~
www.tandpro		on.co.uk	Easting:	- N	orthing:	/2010	Ground Level:	Plant Used:		Print Date:	Sheet Scale:	1 of 1	
Irial	Pit Lo	g	451936		225	5750	116.80mOE	JCB 30	CX	08/03/2019		1:25	
Weather: Cl	ear			Te	erminatio	on: Refus	al on limestone	S	Stability:	Stable			
D 11	Samples &	In Situ Tes	ting	Level	Depth (m)		Str	ata Details				Water	Backfill
Depth	ES1	10	est Result	(mAOD)	(Thickness)	Legend	Firm brown gravelly	v CLAY Gravel is si	ubangula	r fine to coarse of			
	20.				(0.30)		limestone.	, 02	abangula		-		
0.30 - 0.60	ES2			116.50	0.30						_		
					(0.30)		subangular fine to	coarse of limestone	EL. Grave	ei is angular to	-		
	D3			116 20	0.60		(WHITE LIMESTOR	NE FORMATION)			-		
0.00 - 0.00	00			110.20	0.00	××	Firm yellowish brow (WHITE LIMESTOR	vn silty CLAY. NE FORMATION)			-		
0.80 - 1.00	D4			116.00	0.80	××	Yellowish brown an	d grey (calcareous) sandy s	lightly clayey GRAVEL.			
_						·	Gravel is subangula (WHITE LIMESTO	ar fine to coarse of NE FORMATION)	limestone	9.	-1		
						 					-		
					(0.80)						E		
							Below 1.40m: Low co	bble content. Cobbles are	e angular tal	pular of limestone.	-		
-							201011 1.1011. 2011 00		o ungunur tur		-		
				115.20	1.60	·		End of Trial Pit	t at 1.60m		-		
											E		
											-		
-											- 2		
-											-		
											È		
-											-		
											-		
											-		
											E		
-											- 3		
											-		
											-		
											-		
											-		
											-		
											-		
-											- 4		
											-		
											-		
											-		
-											-		
											-		
											-		
-											- 5		
Sample Key	P - D!	k Disturbad	D - Small D:-	turbod	11 - 11-	disturbed		later 0 - 0 -	E0 - 7	Invironmental Sail		opmontal	Water
Remarks:	o - Bul	r Distufbed	o – Smail Dis	auned	0 - UN	uisiuliped ()	pen-Drive w = W	mensions:	E9 = E			Jannental	vvalel
Groundwater	not encou	intered.						Length: 2.10m	[Orientati	on: °		
								Width: 0.60m		◀			
								epth encountered (m)	(Groundwater Details	s		
										Keindik	-		
								T&P Regeneration	Diamelata	leque Number 1	leeuc	Date: lus	a 2016
								i di incycheration le	rempiate	ISSUE NUTIDEL I	issue	ມລເຣ. JUN	V 2010

T 0 0			Contract Name:				Client:	Client:			Trial Pit ID:			
T&P			Cam	p Road	l, Upper	r Heyfor	d	Pye	Home	es Status:				
MARK tonde	Regen	on co uk	Contract Number	": Da 2	ate Starte 23/01	d: /2019	Logged By: JF	Checked By: .ID		Status: FINAI				
	egeneration	on.co.uk	Easting:	- No	orthing:	/2010	Ground Level:	Plant Used:		Print Date:	Sheet Scale:	1 of 1		
Irial	Pit Lo	g	451868		225	782	118.87mOD	JCB 3C	X	08/03/2019		1:25		
Weather: Cle	ear			Te	erminatic	on: Refus	al on limestone	Si	tability:	Stable				
	Samples &	In Situ Tes	ting	Level	Depth (m)		Strata	a Details				Water	Backfill	
Depth	Sample ID	Т	est Result	(mAOD)	(Thickness)	Legend	Firm brown gravelly (Strata Descr	iption	ar fine to coarse of				
0.00 - 0.23	LOT						limestone.	OLAT. ORAVEI IS SU	banguia		-			
0.25 - 0.60	ES2			118.62	0.25		(TOPSOIL) Orangish brown sligh	tly clayey GRAVE	L. Grav	el is angular to				
							subangular fine to co (WHITE LIMESTONE	arse of limestone. E FORMATION)		U U	-			
-								,			-			
											-			
					(1.05)	· · · · ·					-			
											-			
-											⊢ 1 -			
											-			
1.30 - 1.50	D3			117.57	1.30	×_×_×	Firm to stiff yellowish	brown silty CLAY	with oc	casional thin beds of				
-						××	(WHITE LIMESTONE	E FORMATION)			-			
					(0.75)	××					-			
					(0.75)	××					-			
						××					-			
-				116.82	2.05	××		End of Trial Dit	at 0.05m	-	2			
								End of That Pita	at 2.05m	1	-			
											-			
											-			
-											-			
											-			
											Ē			
-											- 3			
											Ē			
											-			
											-			
-											-			
											-			
											Ē			
											ŀ			
-											- 4			
											ŀ			
l											-			
											- -			
											-			
											Ē			
											-			
-											- 5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Uno	disturbed O	pen-Drive W = Wat	ter G = Gas	ES = I	Environmental Soil E	W = Envir	onmental	Water	
Remarks:							Dim	ensions:						
Groundwater	not encou	untered.						Length: 2.10m		Orientat	ion: °			
								Width: 0.60m		▲ ——				
							Dep	th encountered (m)		Groundwater Details Remar	ks			
							T	&P Regeneration TP	Template	e Issue Number: 1	Issue	Date: Jun	e 2016	

Contract Name:							Client:	Client:				Trial Pit ID:			
T&P			Cam	p Road	l, Uppe	r Heyfor	b	Pye	Home	es		TD40			
	Regen		Contract Number	n: Da	ate Starte	d:	Logged By:	Checked By:		Status:	1	IP10	8		
www.tandpre	egenerati	on.co.uk	CAM2362	2	23/01	/2019	JF	JD		FINAL	Sheet	1 of 1			
Trial	Ditlo	n a	Easting:	N	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:				
mai	TILLO	'9	451869		225	731	118.25mOD	JCB 3C	Х	08/03/2019		1:25			
Weather: Cle	ear			Te	erminatio	on: Refus	al on limestone	St	tability:	Stable					
	Samples 8	In Situ Tes	sting		1	г г	Strata	Details				Water	Backfill		
Depth	Sample ID	т	est Result	Level (mAOD)	Depth (m) (Thickness)	Legend		Strata Descri	iption			vvalei	Dackill		
0.00 - 0.50	ES1						Firm brown gravelly C	LAY. Gravel is sul	bangula	r fine to coarse of	-				
							(WHITE LIMESTONE	FORMATION)			-				
					(0.50)						-				
											-				
- 0.50 - 0.60	ES2			117.75	0.50	·_·_	Frm to stiff yellowish b	rown mottled ora	ngish br	own gravelly CLAY.	-				
0.60 - 0.80	D3						Gravel is subangular f	Э.	-						
						· · · · · ·	(Ē						
											-				
-					(1.00)	· · · · · · · ·					- 1				
											Ē				
											-				
						· · · · · ·					-				
-				116 75	1 50										
				110.70	1.00			End of Trial Pit a	at 1.50m	I	-				
											-				
											-				
											-				
-											- 2				
											-				
											-				
											-				
-											-				
											-				
											-				
											-				
-											- 3				
											-				
											-				
											-				
											-				
											E				
											-				
											-				
											Ē				
-											- 4				
											Ē				
											Ē				
											-				
											È				
											Ļ				
											ŀ				
											Ē				
-											- 5				
0					l										
Sample Key: Remarks:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Un	disturbed Op	pen-Drive W = Wate	r G = Gas	ES = E	nvironmental Soil E	vv = Envir	onmental	Water		
Groundwater	not encou	untered.						enath: 2 00m							
								gui. 2.00111		Orientat	tion: °				
								Nidth: 0.60m		◀					
							Depth	encountered (m)	(Foundwater Details Remar	ks				
									_						
							T&	Regeneration TP	Template	Issue Number: 1	Issue	Date: Jun	e 2016		

			Contract Name:					Client:				Trial Pit ID:			
T&P			Cam	p Roac	d, Uppe	r Heyfor	d		Pye	Home	es	4		a	
	Regen		Contract Number	": Da	ate Starte	ed:	Logged B	iy:	Checked By:		Status:		1-10	ש	
www.tandpre	egeneratio	on.co.uk	CAM2362	2	23/01	/2019	0	JF	JD		FINAL	Sheet	1 of 1		
Trial	Pit Lo	g	Easting: 451966		ortning: 225	770	Ground L	evei: 20m0D	Plant Used:	(08/03/2019	Scale:	1.25		
Weather: Cle	ear		101000	Te	erminatio	n. Refus	al on limes	stone	Sta	• abilitv:	Stable				
	Samples &	In Situ Tes	ting					Strata D	etails						
Depth	Sample ID	Т	est Result		Depth (m) (Thickness)	Legend			Strata Descrip	otion			Water	Backfill	
0.00 - 0.45	ES1			(IIIAOD)	(Firm brown	gravelly CL/	AY. Gravel is sub	angula	ar fine to coarse of	-			
							limestone. (TOPSOIL)					-			
					(0.45)		,					-			
0.45 0.60	E82			115 75	0.45							-			
0.45 - 0.60	E92			115.75	0.45		Yellowish b	rown (calcar	eous) sandy GR	AVEL.	Gravel is angular to	-			
							(WHITE LIN	MESTONE F	ORMATION)			-			
												-			
					(0.95)							-			
-1.00 - 1.20	D3				(0.00)							- 1			
												-			
				114.80	1.40	Y	Firm to stiff	vellewish br	own mottlad area	(ailth (
- 1.50 - 1.70	D4					××	(WHITE LIN	VESTONE F	ORMATION)	y siity t	JLAT.	-			
						××						-			
				11/ /0	1.80	××						-			
				114.40	1.00				End of Trial Pit a	t 1.80m	1	-			
-												- 2			
												-			
												-			
												-			
-												È			
												-			
												-			
												-			
-												- 3			
												Ē			
												-			
												-			
-												-			
												-			
												-			
												-			
-												- 4			
												-			
												-			
												-			
-												-			
												ŀ			
												ŀ			
												-			
-												- 5			
Sample Karr	P - D!	k Disturba -	D - Small Di-	turbod	11 = 110	disturbed	nen Drive	\\/ - \\/oto-	6 - 000	E6 - 1		W - E	opmontal	Nator	
Remarks:	Dul – ט		o – Sman Dis	auned	0 – UN	aisiai nea O	pen-Diive	Dimens	sions:	L3 = I			onnental	valCI	
Groundwater	encounte	red at 1.80	0m rising to 1.50m	٦.				Lei	ngth: 2.10m		Orientat	ion [.] °			
								10	/idth: 0 60m		 Image: A state of the state of				
											Groundwater Details				
								Depth e	encountered (m) 1.80		Remar Rapid inc	ks ress			
								T&P	Regeneration TP T	emplate	e Issue Number: 1	Issue	Date: Jun	e 2016	

_		<u> </u>	Contract Name:				Clie	Client:				Trial Pit ID:			
T&P			Cam	p Road	d, Uppe	r Heyfor	d		Руе	Home	es			- I	
	Regen		Contract Number	n Da	ate Starte 23/01	ed: /2019	Logged By:		Checked By:		Status: FINAI		TPTI	J	
www.tandpre		on.co.uk	Easting:	- N(orthing:	/2013	Ground Level:		Plant Used:		Print Date:	Sheet Scale:	1 of 1		
Iria	PIT LO	g	452003		225	825	116.35m0	DC	JCB 3C	X	08/03/2019		1:25		
Weather: Cl	ear			Te	erminatio	on: Refus	al on limestone		Sta	ability:	Stable				
D 11	Samples &	In Situ Tes	sting	Level	Depth (m)			Strata De	etails				Water	Backfill	
Deptn 0.00 - 0.45	ES1	1	est Result	(mAOD)	(Thickness)	Legena	Firm brown gray		Strata Descrip	angula	r fine to coarse of				
0.00 - 0.43	LOT						limestone.			angula		-			
					(0.45)		(TOPSOIL)					-			
												Ē			
0.45 - 0.60	ES2			115.90	0.45		Orangish brown	and yel	lowish brown (ca	alcareo	us) sandy GRAVEL.	+			
							Gravel is subang (WHITE LIMEST	gular fine	e to coarse of lir ORMATION)	nestone	9.	Ē			
												-			
												Ē			
-					(1.10)							- 1			
												Ē			
												È			
												-			
				11/ 80	1 55							-	_		
1.60 - 1.80	D3			114.00	1.55	××	Firm to stiff yello (WHITE LIMEST	wish bro	own mottled ora ORMATION)	ngish b	rown silty CLAY.	-			
				114 55	1.80	××			/			-			
				114.55	1.00				End of Trial Pit a	t 1.80m		-			
-												- 2			
												-			
												-			
												-			
-												-			
												-			
												Ē			
												-			
-												- 3			
												-			
												Ē			
												Ē			
-												È			
												-			
												-			
												Ē			
-												- 4			
												Ē			
												-			
												Ē			
-												-			
												Ē			
												ŀ			
												-			
												5			
Sample Kev:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Un	disturbed O	pen-Drive W =	= Water	G = Gas	ES = F	nvironmental Soil	W = Envin	onmental	Nater	
Remarks:	2 501		2 Gillan Dia		2 010			Dimens	sions:	L					
Groundwater	encounte	red at 1.80	0m rising to 1.60n	٦.			-	Ler	ngth: 1.90m	[Orientat	ion: °			
								W	idth: 0.60m						
							-			(Groundwater Details				
							-	Depth e	ncountered (m) 1.80		Remar Rapid ing	ks ress			
											-				
							-	T&P I	Regeneration TP 1	emplate	Issue Number: 1	Issue	Date: Jun	e 2016	

		<u> </u>	Contract Name:				Client:	Client:				t ID:	D:	
T&P			Cam	p Roa	d, Uppe	r Heyford	1	Pye	e Home	es	-		1	
www.tonde-	Regen		Contract Number	:: D 2	ate Starte 24/01	d: /2019	Logged By: JF	Checked By: .ID		Status: FINAI			'	
Trial	Ditlo		Easting:	- N	lorthing:		Ground Level:	Plant Used:		Print Date:	Sheet Scale:	1 of 1		
IIIa		y	451898		225	858	119.43mOD	JCB 30	X	08/03/2019		1:25		
Weather: O	/ercast	In Situ Too	ting	Т	erminatio	on: Refusa	al on limestone	ta Dataila	Stability:	Stable				
Depth	Sample ID			Level	Depth (m)	Legend	Silai	Strata Deco	ription			Water	Backfill	
0.00 - 0.30	ES1		est Result	(mAOD)	(Thickness)		Firm brown gravelly	CLAY. Gravel is su	ubanqula	r fine to coarse of	L			
	20.				(0.30)		limestone.		Jourigaio		Ē			
0.30 - 0.60	ES2			119.13	0.30		Orangish brown and	l yellowish brown s	lightly cl	ayey GRAVEL. Gravel is	3			
0.50 - 0.70	D3						(WHITE LIMESTON	E FORMATION)	mesto	ie.	-			
											-			
											-			
-					(1.30)						- 1			
											-			
							Below 1.20m: Low cob	ble content. Cobbles are	e angular ta	bular of limestone.				
-							Below 1.40m: Medium	cobble content. Cobbles	are angula	ar tabular of limestone.	- - -			
				117.83	1.60	· · · · · · · · · · · · · · · · · · ·		End of Trial Pit	at 1.60m	1	-			
											-			
											-			
											Ē			
											Ē			
-											-			
•														
											Ē			
-											- 3			
											-			
											Ē			
-											-			
											Ē			
											Ē			
											- 4			
											-			
											-			
-											-			
ł											Ē			
											-			
Sample Kovr	B - D!	k Dieturbed	D - Small Dia	turbed	= 1.10	disturbed Or		ter G=Coo	<u> </u>	Environmental Sail		nmental	Nater	
Remarks:	Dul – ט			auned	0 - 010	nstur neu Op	Dim	iensions:	E3 = E			Simental		
Groundwater	not encou	intered.						Length: 2.00m		Orientatio	on: °			
								Width: 0.60m		◀				
							Den	oth encountered (m)		Groundwater Details Remarks	s			
								()						
							Т	&P Regeneration TP	P Template	e Issue Number: 1	Issue	Date: Jun	e 2016	
											- 545	2. 00/1	#	

		<u> </u>	Contract Name:				Client:	Client:				Trial Pit ID:		
T&P			Cam	p Road	d, Uppe	r Heyfor	d	Pye	Home	es	_	TP11	2	
www.tandpre	Regen egeneratio	on.co.uk	Contract Number CAM2362	r: Di 2	ate Starte 24/01	ed: /2019	Logged By: JF	Checked By: JD		Status: FINAL	Sheet	1 of 1	_	
Trial	Pit I o	na	Easting:	N	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:			
		'9	451894		225	5755	118.20mOD	JCB 3C	X	08/03/2019		1:25		
Weather: Ov	ercast	In Situ Tee	ting		erminatio	on: Refus	al on limestone	S	tability:	Stable				
Denth	Sample ID		est Result	Level	Depth (m)	Legend	Strata	Strata Descr	intion			Water	Backfill	
0.00 - 0.30	ES1			(mAOD)	(Thickness)		Firm brown gravelly C	AY. Gravel is su	bangula	ar fine to coarse of	L			
					(0.30)		limestone. (TOPSOIL)				-			
0.30 - 0.60	ES2			117.90	0.30		Orangish brown slight subangular fine to coa (WHITE LIMESTONE	y clayey GRAVE rse of limestone. FORMATION)	L. Grav	el is angular to				
0.60 - 0.80	D3				(0.70)		(,			-			
				447.00	4.00									
-				117.20	1.00		Yellowish brown (calca subangular fine to coa (WHITE LIMESTONE	areous) sandy GF rse of limestone. FORMATION)	RAVEL.	Gravel is angular to				
1.40 - 1.60	D4				(0.80)						-			
											-			
				116.40	1.80			End of Trial Pit	at 1.80m	1				
-											- 2			
											-			
											-			
											-			
											-			
											-			
-											- 3			
											-			
											-			
											-			
-											-			
											-			
											-			
-											- 4			
											-			
											Ē			
											-			
											-			
											-			
											-			
-											- 5			
Sample Key:	B = Bul	l k Disturbed	D = Small Dis	sturbed	U = Un	disturbed O	pen-Drive W = Wate	r G = Gas	ES = I	Environmental Soil E	W = Envir	onmental '	Water	
Remarks: Groundwater	not encor	intered					Dime	nsions:						
Signitivater								engtn: 2.00m		Orientat	tion: °			
								/viatn: 0.60m		Groundwater Details				
							Depth	encountered (m)		Remar	ks			
							T&	P Regeneration TP	Template	e Issue Number: 1	Issue	Date: Jun	e 2016	

			Contract Name:				Client:	Client:				Trial Pit ID:			
T&P			Cam	p Road	I, Uppe	r Heyfor	d	Pye	e Hom	es	_	TP11	3		
www.tandpre	Regen egeneratio	on.co.uk	Contract Number CAM2362	": Da 2	ate Starte 24/01	ed: /2019	Logged By: JF	Checked By: JD		Status: FINAL	Sheet	1 of 1	5		
Trial	Pit I o	na	Easting:	No	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:				
Weether: Ou	- 10 20	9	451890	T	225	0820	119.15mOL	JCB 3C	X	08/03/2019		1:25			
weather. Ov	Samples &	In Situ Tes	tina	IE	erminauc	n. Reius	sai on iimesione Str	ata Details	lability.	Stable					
Depth	Sample ID	Т	est Result	Level	Depth (m)	Legend		Strata Desci	ription			Water	Backfill		
0.00 - 0.35	ES1			(maod)	(THICKHESS)		Firm brown gravell	y CLAY. Gravel is su	ibangula	ar fine to coarse of	-				
					(0.35)		limestone. (TOPSOIL)				-				
0.35 0.60	ES2			119 90	0.35						-				
0.55 - 0.00	LOZ			110.00	0.55		Orangish brown an Gravel is subangul	id yellowish brown (ar fine to coarse of l	calcareo imeston	ous) sandy GRAVEL. e.	-				
-							(WHITE LIMESTO	NE FORMATION)			-				
											-				
											-				
_					(1.15)						- - 1				
											-				
											-				
-				117.65	1.50	— — —	Stiff vellowish brow	n silty CLAY.							
1.60 - 1.80	D3					××	(WHITE LIMESTO	NE FORMATION)			-				
					(0.60)	××					-				
							Below 1.90m: Becom	nes very stiff.			-				
-				117.05	2 10	<u></u> ^					2				
				117.05	2.10			End of Trial Pit	at 2.10n	ו	-				
											-				
											-				
											-				
											-				
											-				
-											- 3				
											-				
											-				
											-				
-											-				
											-				
											-				
											-				
-											- 4				
											-				
											-				
											-				
											-				
											-				
											-				
-											- 5				
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Un	disturbed O	pen-Drive W = W	Vater G = Gas	ES = I	Environmental Soil EV	V = Envir	onmental	Water		
Remarks:							Dir	mensions:							
Groundwater	not encol	untered.						Length: 1.90m		Orientati	on: °				
								Width: 0.60m		▲					
								epth encountered (m)		Groundwater Details Remark	s				
								T&P Regeneration TP	P Template	e Issue Number: 1	Issue	Date: Jun	e 2016		

700			Contract Name:	_			Client:	Client:				Trial Pit ID:		
T&P			Contract Number	p Road	I, Upper	r Heyford		Pye	Home	es Status:	_	TP11	4	
www.tandpr	Regen egenerativ	on.co.uk	Contract Number CAM2362	. Da 2	ate Starte 24/01	u: /2019	Logged By: JF	Спескей Ву: JD		Status: FINAL	Shoot	1 of 1		
Trial			Easting:	N	orthing:		Ground Level:	Plant Used:		Print Date:	Scale:			
		'Y	451969			840	117.70mOD	JCB 3C	X	08/03/2019		1:25		
Weather: Ov	/ercast	In Situ Tes	ting	le	erminatio	n: Refus	al on limestone	St Details	ability:	Stable				
Depth	Sample ID	T	est Result	Level	Depth (m)	Legend	Olidia	Strata Descri	ption			Water	Backfill	
0.00 - 0.30	ES1			(maod)	(Thickness)		Firm brown gravelly C	LAY. Gravel is sul	bangula	ar fine to coarse of	-			
					(0.30)		limestone. (TOPSOIL)				-			
0.30 - 0.60	ES2			117.40	0.30		Yellowish brown (calca	areous) sandy GF	RAVEL.	Gravel is angular to				
	D3						subangular fine to coa (WHITE LIMESTONE	rse of limestone. FORMATION)		Ū	-			
0.50 - 0.70	03						(,			-			
											-			
											-			
-					(1.50)						- 1			
					(1.50)						-			
											-			
											-			
-											-			
											-			
				115.90	1.80			End of Trial Pit a	at 1.80m	1				
-											- 2			
											-			
											-			
-											-			
											-			
											-			
											-			
-											- 3			
											-			
											-			
-											-			
											-			
											-			
											-			
-											- 4			
											-			
											-			
											-			
-											-			
											-			
											-			
-											5			
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Uno	disturbed Or	pen-Drive W = Wate	r G = Gas	ES = E	Environmental Soil	EW = Envir	onmental	Water	
Remarks:							Dime	nsions:						
Groundwater	not encou	intered.					L	ength: 2.00m		Orienta	ition: °			
								Width: 0.60m		◀				
							Depth	encountered (m)		Groundwater Details Rema	rks			
							T&I	P Regeneration TP	Template	e Issue Number: 1	Issue	Date: Jun	e 2016	

			Contract Name:				Clie	Client:				Trial Pit ID:		
T&P			Cam	p Road	d, Uppe	r Heyfor	d		Руе	Home	es			5
www.tandor	Regen	on co uk	Contract Number	:: D; 2	ate Starte 24/01	d: /2019	Logged By: JF	_	Checked By: JD	_	Status: FINAL	0-	1 11 1	J
Trial	Pit I o		Easting:	- N	orthing:		Ground Level:		Plant Used:		Print Date:	Sheet Scale:	1 of 1	
		9	451949		225	903	118.84m0	טכ	JCB 3C	X	08/03/2019		1:25	
vveather: O	/ercast	In Situ Tes	ting	16	erminatic	on: Refus	al on limestone	Strata D	etails	ability:	Stable			
Depth	Sample ID		est Result	Level	Depth (m)	Legend			Strata Descri	ntion			Water	Backfill
0.00 - 0.20	ES1			(mAOD)	(Thickness)		Firm brown grav	ellv CLA	AY. Gravel is sul	banqula	ar fine to coarse of	L		
					(0.30)		limestone.	, -		5		-		
0.20 - 0.60	ES2			118 54	0.30							-		
				110.04	0.00		Orangish brown subangular fine t	(calcare to coars	eous) sandy GR se of limestone.	AVEL.	Gravel is angular to	-		
-							(WHITE LIMEST	ONE F	ORMATION)			-		
0.60 - 0.80	D3											-		
					(0.80)							-		
												-		
-												- 1		
1.10 - 1.30	D4			117.74	1.10	××	Stiff yellowish br	own mc	ottled grey silty (CLAY.				
						<u>×_×_</u> _	(WHITE LIMEST	ONE F	ORMATION)			ŀ		
					(0.50)	<u>×_×_</u> _						-		
-						<u>×</u> ×						-		
				117.24	1.60	<u>~ ~</u> -			End of Trial Pit a	at 1.60m	1			
				117.24								-		
												-		
-												- 2		
												-		
												-		
												-		
-												-		
												-		
												-		
												-		
_												- 3		
												-		
												-		
												-		
												-		
												-		
												-		
												-		
												÷		
												- 4		
												-		
												Ē		
												-		
l l												Ē		
												-		
												-		
												ŀ		
-												- 5		
Sample Key:	B = Bul	k Disturbed	D = Small Dis	turbed	U = Uno	disturbed O	pen-Drive W =	= Water	G = Gas	ES = E	Environmental Soil	EW = Envir	onmental	Water
Kemarks: Groundwater	not encor	intered					-	Dimens	sions:					
Cicanawale								Ler	ngtn: 2.10m		Orienta	ation: °		
								W	/idth: 0.60m		▲			
							-	Depth e	encountered (m)		Groundwater Details Rema	rks		
							-	-						
							-	TOP	Pogonarati TD	Tomm'-/	loous Number 4	la	Dote: !::	0.2016
								١&٢	regeneration TP	remplate	s issue number: 1	issue	Jule. Jul	C 2010

Appendix E – Geotechnical Results

	Regen			Accora	ance w	ith BS T	3//:195	90 - Pal	119
Pr	oject Name:	Camp Road,	Upper Hayf	ord			Project ID:	CAM2362	
	Client:	Pye Homes					Test Date:	28/02/2019	Э
	Test ID:	CBR01		Depth (m):	0.40	Operator:	СР	Checked	d: JF
(Coordinates:	451977, 225	887		Existin	ng Ground Le	vel (mAOD):		118
Soil Descript	ion:						Weather:	Overcast	
Soft orangisl	n brown friab	le CLAY.				Seat	ing Reading:	0.040	
						Seatin	g Load (kN):	0.98	
						Mass of Su	rcharge (kg):		
Demethan	Dial	Land							
Penetration (mm)	Diai Reading	Load (kN)	0.50	_					
0.00	0.000	0.00	0.00						
0.00	0.000	0.00							
0.23	0.007	0.10	0.45						
0.50	0.000	0.20	0110						
0.75	0.009	0.23						//	_ L
1.00	0.009	0.23	0.40	-				/	
1.20	0.009	0.23							
1.30	0.010	0.25							
1.75	0.010	0.20	0.35			/			
2.00	0.011	0.20							
2.20	0.011	0.20				\square			
2.30	0.012	0.30	0.30		// -				
2.75	0.012	0.30			<u>!</u>				
3.00	0.013	0.32							
3.20	0.013	0.32	$\hat{z}^{0.25}$						
3.50	0.014	0.33	a (k						
4.00	0.015	0.37	oac		1				
4.00	0.015	0.37	- 0.20						
4.20	0.015	0.37			- i				
4.75	0.015	0.37	0.15						
5.00	0.015	0.37	0.15		1				
5.00	0.016	0.07							
5.50	0.010	0.40	0.10						
5.75	0.016	0.40	0.10		1				
6.00	0.016	0.40							
6.00	0.017	0.10	0.05						
6.50	0.017	0.42							
6.75	0.017	0.12			- i				
7.00	0.019	0.12	0.00						
7.00	0.019	0.17	(0.00 1.00	2.00	3.00 4.0	00 5.00	6.00	7.00
7.50	0.019	0.47				Penetratior	n (mm)		
	0.010	0.17							
	Moisture C	Content (%)	Penetrat	ion (mm)	Load	d (kN)	CBF	R (%)	
		00/_	2	.5	0.	.30	2.3	3%	
		_ /0	5	.0	0.	.37	1.9	9%	
					Design	CBR Value	2.1	1%	

Remarks:

Penetration and force readings zeroed after seating load. Particle size below plunger <20mm. Loading applied at a rate of 1.0mm/min.

	Regen					anc			D2 1	.3//.1	33	- F	art.	9
Pr	oject Name:	Camp Road,	Upper H	layfor	d					Project	ID:	CAM23	62	
	Client:	Pye Homes								Test Da	ite:	28/02/2	019	
	Test ID:	CBR02			Depth (m):	0.40		0	perator:	CP		Chec	ked: Jl	F
(Coordinates:	451925, 225	864			I	Existing	g Gro	ound Le	vel (mAO	D):		119.0)8
Soil Descript	tion:									Weath	er:	Overcas	st	
Orangish bro	own clayey G	RAVEL with a	angular t	tabula	r cobbles				Seat	ing Readi	ng:	0.115		
of limestone.	. Gravel is ar	ngular to suba	ingular n	nediu	n to				Seatin	g Load (k	N):	2.81		
coarse of lim	lestone.							Mas	ss of Su	rcharge (k	(g):			
Popotration	Dial	Load												
(mm)	Reading	(kN)		200 -										
0.00	0.000	0.00												
0.00	0.000	0.00												
0.50	0.000	0.10		1.80 -					/					
0.00	0.010	0.57												
1.00	0.021	0.52												
1.00	0.022	0.04		1.60 -				_	_/					<u> </u>
1.50	0.024	0.09							/					
1 75	0.027	0.07							/					
2.00	0.002	0.75		1.40				-						
2.00	0.000	1.06												
2.20	0.045	1 10						/						
2.50	0.043	1.10		1.20 -			- /	·						
3.00	0.052	1.27			-									
3.25	0.007	1.40												
3.50	0.00	1.43	î	1.00 -			/ !							
3.75	0.000	1.02	q (k											
4 00	0.072	1.70	-oa				1							
4 25	0.070	1.00	_	0.80 +										
4 50							1							
4 75				0.60										
5.00				0.00			i							
5 25					Γ									
5.50				0 40			i							
5.75														
6.00														
6.25				0.20 -			1							<u> </u>
6.50														
6.75					/									
7.00				0.00	<u> </u>									<u>↓</u>
7.25				0.0	00 1.00	2.	00	3.00) 4.0	00 5.0 (mm))0	6.00	7.0	00
7.50								Per	ietration	i (mm)				
	Moisture C	Content (%)	Pene	tratio	n (mm)		Load	(kN)		C	BR	R (%)		
				2.5			1.1	0			8.4	1%		
				5.0			0.0	00			0.0)%		
					D	relimi	nary (BP	Value		Δ:	2%	1	
						. cinin			Value		7.2	- /0		

Remarks:

Penetration and force readings zeroed after seating load. Test not in accordance with guidance due to particle size below plunger >20mm. Loading applied at a rate of 1.0mm/min. The test was suspended due to vehicle lifting.

	Regen			ALLUIU	ance w		277.13	90 - Pa	119
Pr	oject Name:	Camp Road,	Upper Hayfe	ord			Project ID:	CAM2362	
	Client:	Pye Homes					Test Date:	28/02/201	9
	Test ID:	CBR03		Depth (m):	0.35	Operator:	CP	Checke	d: JF
(Coordinates:	451920, 225	833		Existir	ng Ground Le	evel (mAOD):	1	18.85
Soil Descript	ion:						Weather:	Heavy Ra	in
Orangish bro	own clayey G	RAVEL with	angular tabu	lar cobbles		Sea	ting Reading:	0.125	
of limestone.	. Gravel is ar	ngular to suba	angular medi	um to		Seatir	ng Load (kN):	3.05	
coarse of lim	lestone.					Mass of Su	rcharge (kg):		
Depatration	Dial	Lood							
(mm)	Reading	(kN)	0 70						
0.00	0.000	0.00	0.10						
0.00	0.000	0.00							
0.20	0.002	0.00							
0.30	0.007	0.10	0.60			\nearrow			
1.00	0.007	0.10	0.00		/				
1.00	0.000	0.20							
1.20	0.009	0.23			- /i				
1.00	0.011	0.20	0.50						
2.00	0.011	0.20	0.50						
2.00	0.010	0.40			/ !				
2.20	0.020	0.59							
2.55	0.025	0.62							
3.00	0.025	0.62	0.40						
3 25	0.020	0.62			- i				
3 50	0.020	0.64	ź						
3.75	0.020	0.01	Y) P		- i				
4.00			6 0.30						
4.25									
4.50									
4.75					/ ¦				
5.00			0.20						
5.25									
5.50									
5.75									
6.00			0.10						
6.25									
6.50					- i				
6.75									
7.00			0.00		2 00	3 00 4	00 5 00	6.00	7.00
7.25			l	1.00	2.00	Penetratio	oo 5.00 n (mm)	0.00	1.00
7.50									
[Moisture C	Content (%)	Penetrat	ion (mm)	Load	d (kN)	CBF	२ (%)	
		%	2	.5	0	.59	4.	5%]
		170	5	.0	0	.00	0.	0%	
					Design	CBR Value	2.	2%	
Remarks:									

Penetration and force readings zeroed after seating load. Test not in accordance with guidance due to particle size below plunger >20mm. Loading applied at a rate of 1.0mm/min. The test was suspended due to vehicle lifting.

	Regen				ALLUIU	anc			Т.	5//.19	90 - P	arts	7
Pi	roject Name:	Camp Road	, Upper	Hayfo	ord					Project ID	CAM236	32	
	Client:	Pye Homes								Test Date	28/02/20	019	
	Test ID:	CBR04			Depth (m):	0.35		Operato	or: (CP	Chec	ked: JF	
	Coordinates:	451911, 225	780				Existin	g Ground	Lev	el (mAOD)		118.2	<u>)</u>
Soil Descrip	tion:									Weather	Slightly	raining	
Orangish bro	own clayey G	RAVEL with	angulai	r tabul	ar cobbles			Se	eatir	ng Reading	0.123		
of limestone	. Gravel is ar	ngular to suba	angular	mediu	um to			Sea	Load (kN)	3.00			
coarse of lift	iestone.							Mass of S	Suro	charge (kg)			
Penetration	Dial	bool											
(mm)	Reading	(kN)		2.00									
0.00	0.000	0.00											
0.00	0.000	0.00											
0.20	0.000	0.00		1.80					_				_
0.30	0.010	0.40				,							
1.00	0.023	0.57											
1.00	0.034	1 22		1.60	+								
1.20	0.030	1.23											
1.00	0.004	1.07											
2.00	0.071	1.7 -		1.40		+-							
2.00													
2.50													
2 75				1.20									_
3.00													
3 25													
3.50			ź	1.00									
3.75			q (k										
4.00			Loa	0.00									
4.25				0.00									
4.50													
4.75				0.60									
5.00				0.00									
5.25													
5.50				0.40									
5.75													
6.00													
6.25				0.20					_				
6.50													
6.75													
7.00				0.00						5.00			
7.25				0	.00 1.00	2.	00	3.00 Bonotrati	4.00) 5.00	6.00	7.0	0
7.50								renetrat	1011	()			
	Moisture C	Content (%)	Pen	netrati	on (mm)		Load	(kN)		СВ	R (%)		
	14	5%		2.	5	0.00		Ī	0.	0.0%			
				5.	0	0.00			0.0%				
						Design CBR Value		0.0%					

Remarks:

Penetration and force readings zeroed after seating load. Test not in accordance with guidance due to particle size below plunger >20mm. Loading applied at a rate of 1.0mm/min. The test was suspended due to vehicle lifting.

	Regen				ACCOLO	ccordance with BS				1377:1990 - Part 9			
Pr	oject Name:	Camp Road,	, Upper l	Hayfoi	rd				Project ID:	CAM2362			
	Client:	Pye Homes							Test Date:	28/02/2019			
	Test ID:	CBR05			Depth (m):	0.40	0	perator:	CP	Checked: JF			
(Coordinates:	451902, 225	726			Exist	ing Gr	ound Le	vel (mAOD):	117.2			
Soil Descript	tion:								Weather:	Slightly raining			
Soft orangis	h brown sligh	ntly sandy CL	AY.					Seati	ng Reading:	0.053			
								Seatin	g Load (kN):	1.30			
							Mas	ss of Sur	charge (kg):				
Penetration	Dial	Load											
(mm)	Reading	(kN)		0.12 -									
0.00	0.000	0.00											
0.25	0.001	0.03											
0.50	0.001	0.03											
0.75	0.001	0.03											
1.00	0.001	0.03		0.10 -									
1.25	0.001	0.03											
1.50	0.001	0.03											
1.75	0.001	0.03											
2.00	0.001	0.03		0.00									
2.25	0.001	0.03		0.08 -									
2.50	0.001	0.03											
2.75	0.001	0.03											
3.00	0.001	0.03											
3.25	0.002	0.06	_	0.06 -									
3.50	0.002	0.06	(kN)										
3.75	0.002	0.06	ad						l l				
4.00	0.002	0.06	Ĕ										
4.25	0.002	0.06							i i				
4.50	0.002	0.06		0.04 -							_		
4.75	0.002	0.06											
5.00	0.002	0.06			┝┍╼╼┾╸								
5.25	0.002	0.06											
5.50	0.002	0.06		0.00									
5.75	0.002	0.06		0.02 -									
0.00	0.002	0.06					•						
6.50	0.003	0.08											
6.75	0.003	0.00											
7.00	0.003	0.00		0.00 -			•						
7.00	0.003	0.08		0.	00 1.00	2.00	3.00) 4.0	0 5.00	6.00 7.00)		
7.50	0.004	0.00					Pei	netration	(mm)				
1.00	0.001	0.11											
	Moisture C	Content (%)	Pen	etratio	on (mm)	Loa	ad (kN)	СВ	R (%)			
		20/		2.5	5		0.03		0.	2%			
	19	9%		5.0)		0.06		0.	3%			
						Desig	ו CBR	Value	0.	3%			

Remarks:

Penetration and force readings zeroed after seating load. Particle size below plunger <20mm. Loading applied at a rate of 1.0mm/min.

SOUTH W	EST GEOTE	Test Report		South West Geotechnical Ltd Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW
Job No:		11025	Date Received:	29/01/19
Job Name:		Camp Road	Date Sent:	08/02/19
Client Nam	e:	T&P Regeneration	Transmittal Number:	T4262
Client Job I	No:	CAM2362	Senders Initials:	DT
Client Add	ress	Unit 4, Brunel Lock Development, Smeaton Rd, Avon, Bristol BS1 6SE	Report Revision No.	1
			Sampled by SWG lab st	NO
Ref.		Test Detail		No. of Tests / Report No.
A1		BS1377: Part 2: 1990: Clause 3 - Moisture Content - UKA	S Accredited	10
A5	1	BS1377: Part 2: 1990: Clause 4 & 5 - Atterberg Limits - UKA	AS Accredited	10
Sam	oling not pe	erformed by South West Geotechnical laboratory staff. R	esults apply to the sam	ples as received.
Approved Nick Worthi David Trowl	Signatorie ngton-Willia bridge (Labo	es: Ims (Laboratory Quality Manager), Dan Ayre (Deputy Quality ratory Manager)	Manager)	
The resul	ts contained be reprod	d within this report only relate to the samples tested. Thuced except in full, without prior written approval of the	nis certificate shall not laboratory.	8260 Accredited to ISO/IEC 17025:2005

(SOUTH WE	ST GEO	DTECHN	ICAL		Summary of Classification	Fest	Results					Unit 3 Broc Howder Ti EX	oklands, n Road, verton, Devon 16 5HW			
Proj	ect No.				Project Name											
11	025				Camp Road											
Client	Job No	D.			Client								8260 Accredited to			
CAN	M2362				T&P Regeneration								ISO/IEC 17025:2005			
		Sa	mple			тс	Passing 425µm	LL	PL	PI	Particle density					
Hole No.	Туре	Тор	Base	Ref	Soil Description	CI.3.2			CI5.3	CI5.4		Rema	arks			
						%	%	%	%	%	Mg/m3					
TP102	D	0.80	1.00	-	Yellow brown and light grey very clayey very sandy GRAVEL	10	39 - Sieved	29	16	13	-					
TP102	D	1.20	1.40	-	Yellowish brown slightly gravelly slightly sandy silty CLAY	14	74 - Sieved	30	17	13	-					
TP103	D	0.90	1.10	-	Yellowish brown slightly gravelly sandy CLAY 15 79 - Sieved 33 13 20 -											
TP105	D	0.80	1.00	-	Yellowish brown slightly gravelly sandy CLAY	17	75 - Sieved	38	15	23	-					
TP105	D	1.50	1.70	-	Light grey and yellowish brown slightly gravelly slightly sandy CLAY	16	66 - Sieved	39	15	24	-					
TP107	D	0.60	0.80	-	Yellowish brown clayey sandy GRAVEL	6	28 - Sieved	30	15	15	-					
TP107	D	1.30	1.50	-	Brown and light brown sandy silty CLAY with occasional shell fragments	33	98 - Sieved	76	18	58	-					
TP111	D	0.50	0.70	-	Yellowish brown sandy clayey GRAVEL	5.9	14 - Sieved	24	14	10	-					
TP115	D	0.60	0.80	-	Light brown sandy clayey GRAVEL	7.3	21 - Sieved	31	17	14	-					
TP115	D	1.10	1.30	-	Yellowish brown slightly gravelly sandy CLAY	16	79 - Sieved	35	14	21	-					
	Prep	aration	Clauses	: Particl	e Density (BS1377:Part 1: 1990: CL7.4.4) Atterberg Limits (BS1377:Part 1: 1990:	: CL7.4.3) Moisture Co	ontent	(BS137	7: Part	1: 1990: C	L7.3.3 & 7.4.2)				
Key Atterbe 4pt cor 1pt - si	erg Lim ne (CL.4 ngle pc	its BS1: 4.3) unle	377-2:19 ess : (CL 4 4)	90 Pa sp	article density BS1377-2:1990 - small pyknometer CL.8.3 - gas jar CL.8.2		Date		A	opprove	ed By	Page No.	1			
4pt cone (CL.4.3) unless : sp - small pyknometer CL.8.3 1pt - single point test (CL.4.4) gj - gas jar CL.8.2 4.2.3 - Natural 11/02/2019 4.2.4 - Sieved David Trowbridge - Laboratory Manager Moisture Content (mc) % KL001R Index State													x Summary			

SOUTH WEST	GEOTECHNICAL	Graphica	al Summary o	f Atterberg	Test Res	sults	Unit 3 Ho	Brooklands owden Road Tiverton Devon EX16 5HW
Pro	ject No.	Project Name						
1	1025	Camp Road						
Clien	t Job No.	Client						
CA	M2362	T&P Regeneration						
90		Casa	agrande Chart			Sample ID	Plasticity Index (%)	Modified Plasticity Index (%)
80						TP102 (D) @ 0.80 - 1.00m	13	5
60				CE		TP102 (D) @ 1.20 - 1.40m	13	10
(%) × 50			- CV			TP103 (D) @ 0.90 - 1.10m	20	16
apul Viti				ME		TP105 (D) @ 0.80 - 1.00m	23	17
Dlastic						TP105 (D) @ 1.50 - 1.70m	24	16
20			MV			TP107 (D) @ 0.60 - 0.80m	15	4
10		MI				TP107 (D) @ 1.30 - 1.50m	58	57
0	N					TP111 (D) @ 0.50 - 0.70m	10	1
0 • TP102 (1	20 0) @ 0.80 - 1.00m	40 60 Liquid Lir • TP102 (D) @ 1.20 - 1.40m	80 nit (%) • TP103 (D) @ 0.90 - 1.1	100 120 0m ●TP105 (D) @ 0.	140 .80 - 1.00m	TP115 (D) @ 0.60 - 0.80m	14	3
 TP105 (I TP115 (I 	D) @ 1.50 - 1.70m D) @ 0.60 - 0.80m	 TP107 (D) @ 0.60 - 0.80m TP115 (D) @ 1.10 - 1.30m 	● TP107 (D) @ 1.30 - 1.5	0m • TP111 (D) @ 0.	50 - 0.70m	TP115 (D) @ 1.10 - 1.30m	21	21
	The	Modified Plasticit	ty Index (l'p) is de	fined as the Plas	sticity Inde	x (Ip) of the	soil	
		multiplied	by the percentag	e of particles les	ss than 425	5µm.		
			le. l'p x % less	than 425um/100	U%			
9 8 7	0	Modified As calculat	Plasticity/Volume	Change Potentia	al Chart rt 4.2 D5		■ TP102 (I 1.00m ◆ TP102 (I 1.40m ▲ TP103 (I 1.10m ● TP105 (I 1.00m	D) @ 0.80 - D) @ 1.20 - D) @ 0.90 - D) @ 0.80 -
6 (%) × 5	0			HIGH VOLUM	1E CHANGE PO	TENTIAL	 TP105 (L 1.70m TP107 (L 0.80m 	D) @ 1.50 - D) @ 0.60 -
icity Inde 5	0			MEDIUM VOI	LUME CHANGE	POTENTIAL	TP107 (0 1.50m TP111 (0	D) @ 1.30 - D) @ 0.50 -
od Plast	0						0.70m TP115 (I 0.80m	D) @ 0.60 -
Modifie	0				IE CHANGE PO	TENTIAL	TP115 (I 1.30m	D) @ 1.10 -
_	0 10	20 30 40	50 60 70 Liquid L	NEGLIGIBLE V 80 90 100 imit (%)	VOLUME CHAN	I <mark>GE POTENTIAL</mark>	140	
KL001a In	dex Graphical	Appro	oved By		Date		82	260
Su	David Trowbridge - Laboratory 11/02/20 Manager 11/02/20						Accredited 17025	to ISO/IEC 5:2005

SOUTH W		Test Report		South West Geotechnical Ltd Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW
Job No:		11025	Date Received:	30/01/10
Job Name		Camp Road	Date Sent:	08/02/19
Client Nan	ne:	T&P Regeneration	Transmittal Number:	T4262A
Client Job	No:	CAM2362	Senders Initials:	MB
			Report Revision No.	1
Client Add	ress	Unit 4, Brunel Lock Development, Smeaton Rd, Avon, Bristol BS1 6SE	Sampled by SWG lab st	aff? No
Ref.		Test Detail		No. of Tests / Report No.
CHEM		External Chemical Testing		19-01474.1
Sam	pling not pe	erformed by South West Geotechnical laboratory staff. F	Results apply to the sam	ples as received.
Approved Nick Worth David Trow	l Signatorie ington-Willia bridge (Labo	es: ams (Laboratory Quality Manager), Dan Ayre (Deputy Quality pratory Manager)	Manager)	
The resul	lts containe be reprod	d within this report only relate to the samples tested. The use of the samples tested of the used except in full, without prior written approval of the	his certificate shall not laboratory.	8260 Accredited to ISO/IEC 17025:2005

Neil Forrow South West Geotechnical Ltd Unit 3 Brooklands Howden Road Tiverton Devon EX16 5HW

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410 russell.jarvis@dets.co.uk

DETS Report No: 19-01474

Site Reference: Camp Road

Project / Job Ref: 11025/T4262A

Order No: None Supplied

Sample Receipt Date: 04/02/2019

Sample Scheduled Date: 04/02/2019

Report Issue Number: 1

Reporting Date: 07/02/2019

Authorised by:

Russen Janvis

Associate Director of Client Services

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

٦

Soil Analysis Certificate						
DETS Report No: 19-01474	Date Sampled	None Supplied				
South West Geotechnical Ltd	Time Sampled	None Supplied				
Site Reference: Camp Road	TP / BH No	TP102	TP102	TP105	TP105	TP107
Project / Job Ref: 11025/T4262A	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.80 - 1.00	1.20 - 1.40	0.80 - 1.00	1.50 - 1.70	0.60 - 0.80
Reporting Date: 07/02/2019	DETS Sample No	387022	387023	387024	387025	387026

Determinand	Unit	RL	Accreditation					
pH	pH Units	N/a	MCERTS	7.6	7.6	7.5	7.6	7.6
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	15	< 10	< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.01	< 0.01	< 0.01	< 0.01

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

Soil Analysis Certificate							
DETS Report No: 19-01474			Date Sampled	None Supplied	None Supplied	None Supplied	
South West Geotechnical Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Camp Road			TP / BH No	TP107	TP115	TP115	
Project / Job Ref: 11025/T4262A		1	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: None Supplied			Depth (m)	1.30 - 1.50	0.60 - 0.80	1.10 - 1.30	
Reporting Date: 07/02/2019		D	ETS Sample No	387027	387028	387029	
Determinand	Unit	RL	Accreditation				
			MOEDTO				

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	7.4	7.4	7.5	
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	57	< 10	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.06	< 0.01	< 0.01	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than $30^{\circ}C$ Subcontracted analysis (S)

Page 5 of 6

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-01474	
South West Geotechnical Ltd	
Site Reference: Camp Road	
Project / Job Ref: 11025/T4262A	
Order No: None Supplied	
Reporting Date: 07/02/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 387022	TP102	None Supplied	0.80 - 1.00	6.6	Brown clayey sand with stones
^ 387023	TP102	None Supplied	1.20 - 1.40	9.8	Beige clayey sand
^ 387024	TP105	None Supplied	0.80 - 1.00	10.4	Brown clayey sand with stones
^ 387025	TP105	None Supplied	1.50 - 1.70	12.3	Brown clayey sand
^ 387026	TP107	None Supplied	0.60 - 0.80	2.7	Brown clayey sand with stones
^ 387027	TP107	None Supplied	1.30 - 1.50	17.1	Brown clayey sand
^ 387028	TP115	None Supplied	0.60 - 0.80	7.6	Brown clayey sand with stones
^ 387029	TP115	None Supplied	1.10 - 1.30	14.4	Brown clayey sand

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

 $^{\wedge}$ no sampling date provided; unable to confirm if samples are within acceptable holding times

Page 6 of 6

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-01474
South West Geotechnical Ltd
site Reference: Camp Road
Project / Job Ref: 11025/T4262A
Order No: None Supplied
Reporting Date: 07/02/2019

Matrix	Analysed	Determinand	Brief Method Description				
	On			NO			
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012			
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001			
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002			
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009			
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenvlcarbazide followed by colorimetry	E016			
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015			
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015			
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015			
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011			
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004			
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022			
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023			
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020			
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004			
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004			
		EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40, C6 to C8 by				
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004			
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009			
			Determination of fraction of organic carbon by oxidising with potassium dichromate followed by				
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010			
Soil	D	Loss on Ignition @ 450oC	furnace	E019			
Soli	D	Magnesium - water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025			
SOII	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002			
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004			
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003			
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009			
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010			
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005			
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008			
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011			
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007			
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021			
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009			
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013			
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009			
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014			
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018			
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024			
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006			
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017			
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011			
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subhate	E010			
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004			
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004			
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001			
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001			

D Dried

AR As Received

Appendix F – Chemical Results

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	19-21513
Issue:	1
Date of Issue:	30/01/2019
Contact:	John Flannery
Customer Details:	T & P Regeneration Ltd (Smeaton Road) Unit 4 Brunel Lock Development Bristol
	BS1 6SE
Quotation No:	Q15-00390
Order No:	5436-CAM2362
Customer Reference:	CAM2362
Date Received:	28/01/2019
Date Approved:	30/01/2019
Details:	CAM2362
Approved by:	

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Report No.: 19-21513

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
163584	TP101 0.00 - 0.20	23/01/2019	28/01/2019	Sandy silty loam	
163585	TP101 0.20 - 0.60	23/01/2019	28/01/2019	Sandy silty loam	
163586	TP102 0.00 - 0.40	23/01/2019	28/01/2019	Silty loam	
163587	TP102 0.40 - 0.60	23/01/2019	28/01/2019	Sandy silty loam	
163588	TP103 0.00 - 0.30	23/01/2019	28/01/2019	Silty loam	
163589	TP103 0.30 - 0.60	23/01/2019	28/01/2019		
163590	TP104 0.00 - 0.30	23/01/2019	28/01/2019	Silty loam	
163591	TP104 0.30 - 0.60	23/01/2019	28/01/2019		
163592	TP105 0.00 - 0.40	23/01/2019	28/01/2019	Sandy silty loam	
163593	TP105 0.40 - 0.60	23/01/2019	28/01/2019	Sandy silty loam	
163594	TP106 0.00 - 0.30	23/01/2019	28/01/2019		
163595	TP106 0.30 - 0.60	23/01/2019	28/01/2019		
163596	TP107 0.00 - 0.25	23/01/2019	28/01/2019	Silty loam	
163597	TP107 0.25 - 0.60	23/01/2019	28/01/2019		
163598	TP108 0.00 - 0.50	23/01/2019	28/01/2019		
163599	TP108 0.50 - 0.60	23/01/2019	28/01/2019		
163600	TP111 0.00 - 0.30	24/01/2019	28/01/2019		
163601	TP111 0.30 - 0.60	24/01/2019	28/01/2019		
163602	TP112 0.00 - 0.30	24/01/2019	28/01/2019	Silty loam	
163603	TP112 0.30 - 0.60	24/01/2019	28/01/2019	Sandy silty loam	
163604	TP113 0.00 - 0.35	24/01/2019	28/01/2019	Sandy silty loam	
163605	TP113 0.35 - 0.60	24/01/2019	28/01/2019		
163606	TP115 0.00 - 0.30	24/01/2019	28/01/2019		
163607	TP115 0.30 - 0.60	24/01/2019	28/01/2019		

Results Summary Report No.: 19-21513

-	163584	163585	163586	163587	163588	163590			
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sample Location					TP102	TP102	TP103	TP104
			0.00 0.40	0.40 0.60	0.00 0.20				
		Sample	Depth (m)	0.00 - 0.20	0.20 - 0.60	0.00 - 0.40	0.40 - 0.60	0.00 - 0.30	0.00 - 0.30
		Sam	pling Date	23/01/2019	23/01/2019	23/01/2019	23/01/2019	23/01/2019	23/01/2019
Determinand	Codes	Units	LOD						
Metals									
Arsenic	М	mg/kg	1	26.3	18.7	17.4	18.1	16.6	19.7
Cadmium	M	mg/kg	0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
Chromium	M	mg/kg	5	44.1	27.7	30.8	36.2	27.6	32.0
Copper	M	mg/kg	5	19.0	13.8	13.3	14.3	10.5	11.3
Lead		mg/kg	5	35.5	17.9	18.1	15.9	20.2	21.0
Niekol		mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
NICKEI Solonium		mg/kg	5 1	31.8	21.9	23.7	28.3	18.6	22.5
Zinc	M	mg/kg	5	< 1.0 84.6	< 1.0 37.8	< 1.0 /0_1	< 1.0 45.3	< 1.0 45.8	< 1.0 49.6
Anione	IVI	шу/ку	5	04.0	57.0	43.1	40.0	40.0	43.0
AIIIOIIS Watar Salubla Sulphata	N 4	~/l	0.02	.0.02	.0.02	.0.02	.0.02	.0.02	+ 0.02
	IVI	g/i	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Inorganics									
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Water Soluble Boron	N	mg/kg	0.5	1.0	0.6	0.6	< 0.5	0.7	0.6
Miscellaneous									
рН	М	pH units	0.1	7.8	8.1	7.6	7.9	7.9	7.9
Total Organic Carbon	N	%	0.01	1.8	0.49	0.42	0.27	1.5	1.2
Phenols									
Phenol	М	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
M,P-Cresol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
O-Cresol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
3,4-Dimethylphenol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
2,3-Dimethylphenol	М	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
2,3,5-trimethylphenol	M	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
Total Monohydric Phenols	N	mg/kg	5	< 5	< 5	< 5	< 5	< 5	< 5
Polyaromatic hydrocarbon	S								
Naphthalene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthono	IVI M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrono	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1
Benzo(a)anthracene	M	ma/ka	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	M	ma/ka	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	M	ma/ka	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	M	ma/ka	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[g,h,i]perylene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total PAH(16)	М	mg/kg	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4

Results Summary Report No.: 19-21513

-	163592	163593	163596	163602	163603	163604			
	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
	TP105	TP105	TP107	TD112	TP112	TP113			
	0.00 0.40	0.40.0.00		0.00 0.00	0.00 0.00	0.00 0.05			
		Sample	Deptn (m)	0.00 - 0.40	0.40 - 0.60	0.00 - 0.25	0.00 - 0.30	0.30 - 0.60	0.00 - 0.35
		Sam	pling Date	23/01/2019	23/01/2019	23/01/2019	24/01/2019	24/01/2019	24/01/2019
Determinand	Codes	Units	LOD						
Metals									
Arsenic	M	mg/kg	1	16.5	11.6	17.3	22.7	12.0	16.5
Cadmium	М	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	M	mg/kg	5	28.8	23.7	27.3	39.1	20.6	25.1
Copper	М	mg/kg	5	10.2	7.7	10.4	14.7	9.6	10.0
Lead	M	mg/kg	5	17.9	12.5	20.6	28.4	11.6	19.5
Mercury	M	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	M	mg/kg	5	19.9	16.4	19.2	26.8	14.2	17.2
Selenium	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	М	mg/kg	5	41.9	42.2	44.2	67.5	19.7	43.7
Anions									
Water Soluble Sulphate	М	g/l	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Inorganics									
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Water Soluble Boron	N	mg/kg	0.5	0.9	0.7	0.7	1.2	< 0.5	0.8
Miscellaneous									
рН	М	pH units	0.1	8.2	8.4	7.9	7.8	8.2	7.9
Total Organic Carbon	N	%	0.01	0.98	0.24	1.1	1.8	0.20	1.5
Phenols									
Phenol	М	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
M,P-Cresol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
O-Cresol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
3,4-Dimethylphenol	N	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
2,3-Dimethylphenol	М	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
2,3,5-trimethylphenol	М	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1
Total Monohydric Phenols	N	mg/kg	5	< 5	< 5	< 5	< 5	< 5	< 5
Polyaromatic hydrocarbon	S								
Naphthalene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	М	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2
Pyrene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2
Benzo(a)anthracene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	IVI N4	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Denzu(a)pyrene		mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pipenzola h ilpondono		mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	N/	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	141	шу/ку	0.4	\ U.4	V.4	V.4	\ U.4	V.4	\ U.4

Method Summary Report No.: 19-21513

Parameter		Analysis Undertaken	Date	Method	Technique
		On	Tested	Number	reoninque
Soil					
Hexavalent chromium	N	As submitted sample	29/01/2019	110	Colorimetry
рН	M	Air dried sample	29/01/2019	113	Electromeric
Aqua regia extractable metals	M	Air dried sample	29/01/2019	118	ICPMS
Phenols in solids	M	As submitted sample	29/01/2019	121	HPLC
PAH (GC-FID)	M	As submitted sample	29/01/2019	133	GC-FID
Water soluble anions	М	Air dried sample	29/01/2019	172	Ion Chromatography
Water soluble boron	N	Air dried sample	29/01/2019	202	Colorimetry
Total organic carbon/Total sulphur	N	Air dried sample	30/01/2019	210	IR

Tests marked N are not UKAS accredited

Report Information

Report No.: 19-21513

Key

U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
	Soil sample results are expressed on an air dried basis (dried at < 30°C)
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the items tested
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Appendix G – HazWaste Report

Waste Classification Report

Job name	
CAM2362	
Description/Comments	
Project	
CAM2362	
Site	
Camp Road, Upper Heyford	
Related Documents	
# Name None	Description
Waste Stream Template	
T&P 2 Standard	
Classified by	

Name: Alessandro Dunne Date: 01 Mar 2019 16:19 GMT Telephone: 0117 927 7756

Company: T&P Regeneration Ltd Unit 4 Brunel Lock Development, Smeaton Road Bristol BS1 6SE

Report

Created by: Alessandro Dunne Created date: 01 Mar 2019 16:19 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	TP101	0.00 - 0.20	Non Hazardous		3
2	TP101[1]	0.20 - 0.60	Non Hazardous		5
3	TP102	0.00 - 0.40	Non Hazardous		7
4	TP102[1]	0.40 - 0.60	Non Hazardous		9
5	TP103	0.00 - 0.30	Non Hazardous		11
6	TP104	0.00 - 0.30	Non Hazardous		13
7	TP105	0.00 - 0.40	Non Hazardous		15
8	TP105[1]	0.40 - 0.60	Non Hazardous		17
9	TP107	0.00 - 0.25	Non Hazardous		19
10	TP112	0.00 - 0.30	Non Hazardous		21
11	TP112[1]	0.30 - 0.60	Non Hazardous		23
12	TP113	0.00 - 0.35	Non Hazardous		25

www.hazwasteonline.com

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	27
Appendix B: Rationale for selection of metal species	28
Appendix C: Version	28

Classification of sample: TP101

Sample details

Sample Name: TP101	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00 - 0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	\$	arsenic { arsenic trioxide }		26.3 mg/kg	1.32	34.725 mg/kg	0.00347 %	\checkmark	
2	*	cadmium { cadmium sulfide }	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
3	4	chromium { chromium(III) oxide }		44.1 mg/kg	1.462	64.455 mg/kg	0.00645 %	~	
4	*	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		19 mg/kg	1.126	21.392 mg/kg	0.00214 %	~	
5	\$	lead { I lead compounds with the exception of those specified elsewhere in this Annex }	1	35.5 mg/kg		35.5 mg/kg	0.00355 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
7	\$	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	_	31.8 mg/kg	1.579	50.228 mg/kg	0.00502 %	~	
8	\$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	*	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]	-	84.6 mg/kg	2.469	208.902 mg/kg	0.0209 %	~	
10	*	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		1 mg/kg	13.43	13.43 mg/kg	0.00134 %	~	
11	8	рН РН	_	7.8 pH		7.8 pH	7.8 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

HazWasteOnline[™] Report created by Alessandro Dunne on 01 Mar 2019

#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthylene		<0.1	mg/kg		<0.1 mg/k	<0.00001 %		<lod< td=""></lod<>
15	0	acenaphthene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
16	0	fluorene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
17	۲	phenanthrene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
18	0	anthracene 204-371-1 120-12-7		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
19	۲	fluoranthene	_	<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
20	0	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
22		chrysene	_	<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
26	8	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
28	0	benzo[ghi]perylene		<0.1	mg/kg		<0.1 mg/k	g <0.00001 %		<lod< td=""></lod<>
	L						Tota	: 0.0435 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

 $\label{eq:CLP:Note 1} CLP: Note 1 \quad Only the metal concentration has been used for classification$

Classification of sample: TP101[1]

Sample details

Sample Name:	LoW Code:	
TP101[1]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20 - 0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Deter CLP index number EC N	minand lumber	CAS Number	CLP Note	User entered da	ta	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		1		18.7 mc	a/ka	1.32	24.69	ma/ka	0.00247 %		
		033-003-00-0 215-481-	4	1327-53-3			55					ľ	
2	4	cadmium {	}		1	<0.5 mc	a/ka	1.285	<0.643	ma/ka	<0.00005 %		<lod< th=""></lod<>
		048-010-00-4 215-147-	8	1306-23-6			55						
3	4	chromium { • chromium(III)	oxide }			27.7 mc	27.7 mg/kg 1	1 462	40 485	ma/ka	0 00405 %	1	
		215-160-	9	1308-38-9	-	27.7 119		1.402	40.400	iiig/itg	0.00400 /0	Ň	
4	æ	copper { dicopper oxide; cop	per (I) oxi	de }		12.0	~///~~	1 1 2 6	15 527	ma/ka	0.00155.0/	,	
4		029-002-00-X 215-270-	7	1317-39-1		13.6 mg	у/ку	1.120	15.537	тід/кд	0.00155 %	\checkmark	
5	4	lead { • lead compounds wi specified elsewhere in this A	ith the exc annex }	eption of those	1	17.9 mg	g/kg		17.9	mg/kg	0.00179 %	√	
	-	082-001-00-6			_								
6	4	mercury { mercury dichloride	e }	2407.04.7		<0.5 mg	g/kg	1.353	<0.677	mg/kg	<0.0000677 %		<lod< td=""></lod<>
		080-010-00-X 231-299-	8	/48/-94-/	-								
7	44		E [1]	42054 49 7 [4]		21.9 mc	a/ka	1.579	34.591	ma/ka	0.00346 %	1	
		234-348-	1 [2]	11113-74-9 [2]			55					ľ	
8	4	selenium { <mark>selenium compot</mark> cadmium sulphoselenide an in this Annex }	unds with t d those sp	he exception of ecified elsewhere		<1 mg	g/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8											
	4	zinc { zinc sulphate }				07.0		0.400	00.000		0.00000.0/		
9		030-006-00-9 231-793- 231-793-	3 [1] 3 [2]	7446-19-7 [1] 7733-02-0 [2]		37.8 mg	у/кд	2.469	93.339	тд/кд	0.00933 %	~	
10	4	boron { [®] boron tribromide/t (combined) }	richloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2	_	0.6 mg	g/kg	13.43	8.058	mg/kg	0.000806 %	~	
11	8	рН				8.1 pH	ł		8.1	pН	8.1 pH		
				РН	-								
12		phenol 604-001-00-2 203-632-	7	108-95-2		<1 mg	g/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene	Б	01 20 2		<0.1 mç	g/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		201-052-00-2 ×02-049-	0	91-20-3									

HazWasteOnline[™] Report created by Alessandro Dunne on 01 Mar 2019

#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthylene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
15	۲	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
16	8	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17	۲	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
18	8	anthracene 204-371-1 120-12-7		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
20	8	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
26	0	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
28		benzo[ghi]perylene		<0.1	mg/kg		<0.1 mg/kg	g <0.00001 %		<lod< td=""></lod<>
			l				Tota	: 0.0241 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

 $\label{eq:CLP:Note 1} CLP: Note 1 \quad Only the metal concentration has been used for classification$

Classification of sample: TP102

Sample details

Sample Name: TP102	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00 - 0.40 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CI P Note		User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }			17.4 mg/kg	1.32	22.974 mg/kg	0.0023 %	~	
2	4	cadmium { cadmium sulfide }	-	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< th=""></lod<>
3	4	chromium { Chromium(III) oxide }			30.8 mg/kg	1.462	45.016 mg/kg	0.0045 %	~	
4	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			13.3 mg/kg	1.126	14.974 mg/kg	0.0015 %	\checkmark	
5	4	lead { I lead compounds with the exception of those specified elsewhere in this Annex }		1	18.1 mg/kg		18.1 mg/kg	0.00181 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< th=""></lod<>
7	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]			23.7 mg/kg	1.579	37.434 mg/kg	0.00374 %	~	
8	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	•		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
	•	034-002-00-8		_						
9	~	030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]			49.1 mg/kg	2.469	121.242 mg/kg	0.0121 %	\checkmark	
10	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2			0.6 mg/kg	13.43	8.058 mg/kg	0.000806 %	~	
11	8	pH PH	_		7.6 pH		7.6 pH	7.6 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

HazWasteOnline[™] Report created by Alessandro Dunne on 01 Mar 2019

#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthylene		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
15	۲	acenaphthene 201-469-6 83-32-9	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %	1	<lod< td=""></lod<>
16	8	fluorene		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %	1	<lod< td=""></lod<>
17	۲	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %	1	<lod< td=""></lod<>
18	0	anthracene 204-371-1 120-12-7		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
20	8	pyrene 204-927-3 129-00-0	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %	1	<lod< td=""></lod<>
23		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %	1	<lod< td=""></lod<>
26	0	indeno[123-cd]pyrene 205-893-2 193-39-5	_	<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 mg/	(g <0.00001 %		<lod< td=""></lod<>
28		benzo[ghi]perylene		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
							Tot	al: 0.0274 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

 $\label{eq:CLP:Note 1} CLP: Note 1 \quad Only the metal concentration has been used for classification$

Classification of sample: TP102[1]

Sample details

Sample Name:	LoW Code:	
TP102[1]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.40 - 0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Numb	er	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		-	18.1 mg/kg	1.32	23.898 mg/kg	0.00239 %	~	
2	4	cadmium { cadmium sulfide }		1	0.6 mg/kg	1.285	0.771 mg/kg	0.00006 %	\checkmark	
3	4	chromium { Chromium(III) oxide }			36.2 mg/kg	1.462	52.908 mg/kg	0.00529 %	~	
4	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			14.3 mg/kg	1.126	16.1 mg/kg	0.00161 %	\checkmark	
5	4	lead { [•] lead compounds with the exception of those specified elsewhere in this Annex }		1	15.9 mg/kg		15.9 mg/kg	0.00159 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		_	<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< th=""></lod<>
7	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1 234-348-1 [2] 11113-74-9 [2			28.3 mg/kg	1.579	44.7 mg/kg	0.00447 %	~	
8	~	selenium { selenium compounds with the exception c cadmium sulphoselenide and those specified elsewh in this Annex }	f ere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
	æ	034-002-00-8								
9		030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]			45.3 mg/kg	2.469	111.859 mg/kg	0.0112 %	\checkmark	
10	~	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2			<0.5 mg/kg	13.43	<6.715 mg/kg	<0.000672 %		<lod< th=""></lod<>
11	8	pH PH			7.9 pH		7.9 pH	7.9 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

HazWasteOnline[™] Report created by Alessandro Dunne on 01 Mar 2019

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	Conc. Not Used
14	Θ	acenaphthylene 205-917-1 208-96-8	_	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
16	۲	fluorene 201-695-5 86-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
17	۵	phenanthrene 201-581-5 85-01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
18	۲	anthracene 204-371-1 120-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
20	8	pyrene 204-927-3 129-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
21		benzo[a]anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
23		benzo[b]fluoranthene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
24		benzo[k]fluoranthene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
26	8	indeno[123-cd]pyrene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
27		dibenz[a,h]anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
28	0	benzo[ghi]perylene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
\vdash	I	205-005-0 131-24-2				Total:	0.0279 %	

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

 $\label{eq:CLP:Note 1} CLP: Note 1 \quad Only the metal concentration has been used for classification$

Classification of sample: TP103

Sample details

Sample Name: TP103	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:	·	from contaminated sites)
0.00 - 0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determi CLP index number EC Nun	nand nber CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound co	nc.	Classification value	MC Applied	Conc. Not Used
1	\$	arsenic { arsenic trioxide }	4007.50.0		16.6	mg/kg	1.32	21.917	mg/kg	0.00219 %	~	
		033-003-00-0 [215-481-4	1327-53-3									
2	4	cadmium { cadmium suifide }	1206 22 6	_ 1	<0.5	mg/kg	1.285	<0.643 r	mg/kg	<0.00005 %		<lod< td=""></lod<>
		048-010-00-4 215-147-8 1306-23-6		-							-	
3	•	chromium { [•] chromium(III) ox	(ide }		27.6	mg/kg	1.462	40.339 r	mg/kg	0.00403 %	\checkmark	
		215-160-9 1308-38-9										
4 🖻	4	copper { dicopper oxide; coppe	er (I) oxide }		10.5	mg/kg	1.126	11.822 i	mg/kg	0.00118 %	\checkmark	
		029-002-00-X 215-270-7	1317-39-1	_								
5	4	lead {	the exception of those nex }	1	20.2	mg/kg		20.2 1	mg/kg	0.00202 %	\checkmark	
		082-001-00-6										
6	4	mercury { mercury dichloride }			< 0.5	mg/kg	1.353	<0.677 ı	mg/kg	<0.0000677 %		<lod< th=""></lod<>
		080-010-00-X 231-299-8	7487-94-7	_							_	
7	4				19.6	malka	1 570	20.270	ma/ka	0 00204 %		
1		028-008-00-X 235-008-5 [234-348-1 [1] 12054-48-7 [1] 2] 11113-74-9 [2]		10.0	шу/ку	1.579	29.379	пу/ку	0.00294 %	V	
8	*	selenium { selenium compound cadmium sulphoselenide and t in this Annex }	ds with the exception of hose specified elsewhere		<1	mg/kg	2.554	<2.554 ı	mg/kg	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8										
	4	zinc { zinc sulphate }			15.0							
9		030-006-00-9 231-793-3 [231-793-3 [1] 7446-19-7 [1] 2] 7733-02-0 [2]		45.8	mg/kg	2.469	113.094 1	mg/kg	0.0113 %	\checkmark	
10	4	boron { • boron tribromide/trichloride/trifluoride (combined) }			0.7 ma/k	mg/kg	13.43	9.401 r	mg/kg	0 00094 %	✓	
			10294-33-4, 10294-34-5, 7637-07-2		- 3-3							
11	0	pH	PH		7.9	рН		7.9	рН	7.9 pH		
10		phenol			.1			.1	~~~~// · ~	.0.0001.9/		
12		604-001-00-2 203-632-7	108-95-2		<1	тg/кg		<1 1	пд/кд	<0.0001 %		<lod< th=""></lod<>
13		naphthalene 601-052-00-2 202-049-5	91-20-3		<0.1	mg/kg		<0.1 1	mg/kg	<0.00001 %		<lod< th=""></lod<>

HazWasteOnline[™] Report created by Alessandro Dunne on 01 Mar 2019

#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthylene 205-917-1 208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	fluorene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	8	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	٥	anthracene 204-371-1 120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	۲	fluoranthene		0.2	mg/kg		0.2	mg/kg	0.00002 %	~	
20	0	pyrene 204-927-3 129-00-0		0.1	mg/kg		0.1	mg/kg	0.00001 %	\checkmark	
21		benzo[a]anthracene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	٥	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	8	benzo[ghi]perylene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	I					l		Total:	0.0253 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

 $\label{eq:CLP:Note 1} CLP: Note 1 \quad Only the metal concentration has been used for classification$

Classification of sample: TP104

Sample details

Sample Name: TP104	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:	·	from contaminated sites)
0.00 - 0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS N	umber	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	\$	arsenic { arsenic trioxide }			19.7 mg/kg	1.32	26.01 mg/kg	0.0026 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	;	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< th=""></lod<>
3	\$	chromium { Chromium(III) oxide }			32 mg/kg	1.462	46.77 mg/kg	0.00468 %	~	
4	*	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			11.3 mg/kg	1.126	12.723 mg/kg	0.00127 %	\checkmark	
5	6	lead { • lead compounds with the exception of th specified elsewhere in this Annex }	nose	1	21 mg/kg		21 mg/kg	0.0021 %	~	
6	*	082-001-00-6 mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	,		<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< th=""></lod<>
7	*	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48- 234-348-1 [2] 11113-74-	7 [1] 9 [2]		22.5 mg/kg	1.579	35.539 mg/kg	0.00355 %	~	
8	4	selenium { selenium compounds with the excepti cadmium sulphoselenide and those specified else in this Annex }	on of ewhere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8								
9	*	030-006-00-9 231-793-3 [1] 7446-19-7 231-793-3 [2] 7733-02-0	[1]		49.6 mg/kg	2.469	122.477 mg/kg	0.0122 %	\checkmark	
10	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33- 10294-34- 7637-07-2	4, 5,		0.6 mg/kg	13.43	8.058 mg/kg	0.000806 %	~	
11	0	pH PH			7.9 pH		7.9 pH	7.9 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand	Vote	User enter	ed data	Conv.	Compound co	onc.	Classification	pplied	Conc. Not
		CLP index number EC Number CAS N				T actor			value	MC A	Useu
14		acenaphthylene		~0.1	ma/ka		<01	ma/ka	<0.00001 %		
14		205-917-1 208-96-8		<0.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
15		acenaphthene		-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
10		201-469-6 83-32-9		\0.1	iiig/kg		<0.1	iiig/itg	<0.00001 /0		LOD
16		fluorene		-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
10		201-695-5 86-73-7		NO.1	шу/ку		<0.1	шу/ку	<0.00001 /0		LOD
17		phenanthrene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
' <i>'</i>		201-581-5 85-01-8		NO.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
18	٥	anthracene		-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
10		204-371-1 120-12-7		NO.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
10		fluoranthene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
13		205-912-4 206-44-0		NO.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
20		pyrene		-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
20		204-927-3 129-00-0		NO.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
21		benzo[a]anthracene		-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
21		601-033-00-9 200-280-6 56-55-3		NO.1	iiig/kg		<0.1	шу/ку	<0.00001 /0		LOD
22		chrysene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
22		601-048-00-0 205-923-4 218-01-9		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
22		benzo[b]fluoranthene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
23		601-034-00-4 205-911-9 205-99-2		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
24		benzo[k]fluoranthene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
24		601-036-00-5 205-916-6 207-08-9		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
25		601-032-00-3 200-028-5 50-32-8		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
26		indeno[123-cd]pyrene		-0.1	ma/ka		-0.1	malka	-0.0001.9/		
20		205-893-2 193-39-5		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
27		dibenz[a,h]anthracene		-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
21		601-041-00-2 200-181-8 53-70-3		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		<lod< td=""></lod<>
20		benzo[ghi]perylene		-0.1	ma/ka		-0.1	malka	<0.00001.%		
20		205-883-8 191-24-2		<0.1	шу/ку		<0.1	тту/ку	CU.UUUUT %		<lod< td=""></lod<>
		· · · · ·						Total:	0.0279 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP105

Sample details

Sample Name: TP105	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00 - 0.40 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Numbe	CI D Moto		User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	arsenic { arsenic trioxide }			16.5 mg/kg	1.32	21.785 mg/kg	0.00218 %	~	
2	4	cadmium { cadmium sulfide }		1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< th=""></lod<>
3	4	chromium { chromium(III) oxide }			28.8 mg/kg	1.462	42.093 mg/kg	0.00421 %	~	
4	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			10.2 mg/kg	1.126	11.484 mg/kg	0.00115 %	~	
5	*	lead { • lead compounds with the exception of those specified elsewhere in this Annex }		1	17.9 mg/kg		17.9 mg/kg	0.00179 %	\checkmark	
6	*	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< th=""></lod<>
7	\$	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]			19.9 mg/kg	1.579	31.432 mg/kg	0.00314 %	~	
8	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewher in this Annex }	e		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
	*	034-002-00-8	_	_						
9	~	030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]			41.9 mg/kg	2.469	103.464 mg/kg	0.0103 %	\checkmark	
10	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2			0.9 mg/kg	13.43	12.087 mg/kg	0.00121 %	~	
11	0	р Н	_		8.2 pH		8.2 pH	8.2 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	Θ	acenaphthylene	5-917-1	208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
15	8	acenaphthene	1-469-6	83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
16	8	fluorene 20	1-695-5	86-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17	8	phenanthrene	01-581-5	85-01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	anthracene	04-371-1	120-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	fluoranthene	05-912-4	206-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20	8	pyrene	04-927-3	129-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene 601-033-00-9 20	0-280-6	56-55-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 20	5-923-4	218-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene 601-034-00-4 20	05-911-9	205-99-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 20	5-916-6	207-08-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benz 601-032-00-3 20	co[def]chrysene	50-32-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	indeno[123-cd]pyrene	e 05-893-2	193-39-5		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 20	e 10-181-8	53-70-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28	8	benzo[ghi]perylene	5-883-8	191-24-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
								Total:	0.0247 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP105[1]

Sample details

Sample Name:	LoW Code:	
TP105[1]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.40 - 0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	1227 52 2		11.6 mg/kg	1.32	15.316 mg/kg	0.00153 %	√	
		cadmium { cadmium sulfide }	1327-53-3							
2		048-010-00-4 215-147-8	1306-23-6	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
	æ	chromium { chromium(III) oxide }	1			4 400	0.1.000 (0.000.10.0/		
3	-	215-160-9	1308-38-9	-	23.7 mg/kg	1.462	34.639 mg/kg	0.00346 %	\checkmark	
	æ	copper { dicopper oxide; copper (I) ox	(ide }		77 4	4 400	0.000 (0.00007.0/		
4	~	029-002-00-X 215-270-7	1317-39-1		7.7 mg/kg	1.126	8.669 mg/kg	0.000867 %	\checkmark	
5	4	lead { <a>lead compounds with the exspecified elsewhere in this Annex }	ception of those	1	12.5 mg/kg		12.5 mg/kg	0.00125 %	\checkmark	
				-						
6	44	080-010-00-X 231-299-8	7487-94-7	-	<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
	A	nickel { nickel dihydroxide }	1 107 01 7							
7	~	028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		16.4 mg/kg	1.579	25.904 mg/kg	0.00259 %	~	
8	4	selenium { selenium compounds with cadmium sulphoselenide and those s in this Annex }	the exception of pecified elsewhere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8								
۵	4	zinc { zinc sulphate }			/2.2 ma/ka	2 /60	104 204 ma/ka	0.0104 %	,	
		030-006-00-9 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		+z.z mg/kg	2.403	104.204 mg/kg	0.0104 /8	Ý	
10	4	boron { boron tribromide/trichloride (combined) }	2/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.7 mg/kg	13.43	9.401 mg/kg	0.00094 %	~	
11	Θ	рН	PH		8.4 pH		8.4 pH	8.4 pH		
12		phenol 604-001-00-2 203-632-7	108-95-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13		naphthalene 601-052-00-2 202-049-5	91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	Conc. Not Used
14	Θ	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
16	۲	fluorene 201-695-5 86-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
17	۵	phenanthrene 201-581-5 85-01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
18	۲	anthracene 204-371-1 120-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
20	8	pyrene 204-927-3 129-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
21		benzo[a]anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
23		benzo[b]fluoranthene	+	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
24		benzo[k]fluoranthene	+	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene	+	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
26	۲	indeno[123-cd]pyrene	+	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
27		dibenz[a,h]anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
28	0	benzo[ghi]perylene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< td=""></lod<>
\vdash	I	205-005-0 191-24-2				Total:	0.0217 %	

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP107

Sample details

Sample Name: TP107	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00 - 0.25 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	C Fa	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	6	arsenic { arsenic trioxide }		17.3 mg/	kg 1	1.32	22.842 mg/kg	0.00228 %	\checkmark	
2	*	cadmium { cadmium sulfide }	_ 1	<0.5 mg/	kg 1	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
3	4	chromium { Chromium(III) oxide }		27.3 mg/	kg 1	1.462	39.9 mg/kg	0.00399 %	~	
4	4	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1		10.4 mg/	kg 1	1.126	11.709 mg/kg	0.00117 %	~	
5	\$	lead { Plead compounds with the exception of those specified elsewhere in this Annex }	1	20.6 mg/	۲g		20.6 mg/kg	0.00206 %	\checkmark	
6	\$	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.5 mg/	kg 1	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
7	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		19.2 mg/	kg 1	1.579	30.326 mg/kg	0.00303 %	~	
8	\$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/	<mark>< g</mark> 2	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	\$	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]	_	44.2 mg/	<mark>(g</mark> 2	2.469	109.143 mg/kg	0.0109 %	~	
10	*	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		0.7 mg/	<g 1<="" td=""><td>13.43</td><td>9.401 mg/kg</td><td>0.00094 %</td><td>~</td><td></td></g>	13.43	9.401 mg/kg	0.00094 %	~	
11	8	pH PH	_	7.9 pH			7.9 pH	7.9 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2		<1 mg/	۲g		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/	<g< td=""><td></td><td><0.1 mg/kg</td><td><0.00001 %</td><td></td><td><lod< td=""></lod<></td></g<>		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IVIC Applied	Conc. Not Used
14	8	acenaphthylene 205-917-1 20	08-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
15	8	acenaphthene 201-469-6 83	3-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	fluorene 201-695-5 86	6-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17	۲	phenanthrene 201-581-5 85	5-01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	anthracene 204-371-1 12	20-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	۲	fluoranthene 205-912-4 20	06-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20	8	pyrene 204-927-3 12	29-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene	6-55-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 2	18-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene	05-99-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 20	07-08-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene	0-32-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26	8	indeno[123-cd]pyrene 205-893-2 [15]	93-39-5		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53	3-70-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28	8	benzo[ghi]perylene	91-24-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		1 L					Total:	0.025 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP112

Sample details

Sample Name: TP112 Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.00 - 0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP					MC	
1	4	arsenic { arsenic trioxide }		22.7 mg/kg	1.32	29.971 mg/kg	0.003 %	\checkmark	
		033-003-00-0 215-481-4 1327-53-3							
2 🖬	4	cadmium { cadmium sulfide }	_ 1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
2	4	chromium { [©] chromium(III) oxide }		20.1 ma/ka	1 462	57.147 ma/ka	0.00571.9/	,	
		215-160-9 1308-38-9	-	59.1 Hig/kg	1.402	57.147 Hig/kg	0.00371 /8	~	
4	2	copper { dicopper oxide; copper (I) oxide }		14.7 mg/kg	1 1 2 6	16 551 ma/ka	0.00166 %		
-		029-002-00-X 215-270-7 1317-39-1		I III III III III III III III III III	1.120	10.001 Hig/kg	0.00100 %	~	
5	4	lead { [•] lead compounds with the exception of those specified elsewhere in this Annex }	1	28.4 mg/kg		28.4 mg/kg	0.00284 %	\checkmark	
		082-001-00-6							
6 🖬	4	mercury { mercury dichloride }		<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7	_						
7	4	nickel { nickel dihydroxide } 028-008-00-X		26.8 mg/kg	1.579	42.331 mg/kg	0.00423 %	\checkmark	
8	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
	Ì	034-002-00-8							
s	2	zinc { <mark>zinc sulphate</mark> }							
9	ĺ	030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		67.5 mg/kg	2.469	166.678 mg/kg	0.0167 %	\checkmark	
10	4	boron { [©] boron tribromide/trichloride/trifluoride (combined) }		1.2 mg/kg	12/2	16 116 mg/kg	0.00161 %	,	
		10294-33-4, 10294-34-5, 7637-07-2		1.2 Hig/kg	13.43	10.110 mg/kg	0.00101 //	V	
11	•	pH		7.8 pH		7.8 pH	7.8 pH		
\vdash		PH	+						
12	i	pnenoi 604-001-00-2 203-632-7 108-95-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		naphthalene		0.4			0.00004.0/		1.00
13	Ī	601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

#		Determinand	P Note	User enter	ed data	Conv. Factor	Compound c	conc.	Classification value	C Applied	Conc. Not Used	
			С							ž		
14	8	acenaphthylene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
		205-917-1 208-96-8	_									
15	۲	acenaphthene	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
_		201-469-6 83-32-9	_									
16	۲	bo1 co5 5 kc 72 7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
		201-095-5 00-75-7	+									
17	۲	201-581-5 85-01-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
-		anthracene										
18		204-371-1 120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
1		fluoranthene										
19		205-912-4 206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
200		pyrene		.0.1	~~~// <i>c</i>		-0.1		-0.00001.0/			
20		204-927-3 129-00-0		<0.1	тід/кд		<0.1	тід/кд	<0.00001 %		<lod< td=""></lod<>	
21		benzo[a]anthracene		<0.1	ma/ka		~0.1	ma/ka	<0.00001 %			
21		601-033-00-9 200-280-6 56-55-3		CO.1	iiig/kg		<0.1	iiig/kg	<0.00001 /0		LOD	
22		chrysene		<01	ma/ka		<01	ma/ka	<0.00001 %			
		601-048-00-0 205-923-4 218-01-9							<0.00001 %			
23		benzo[b]fluoranthene		<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>	
		601-034-00-4 205-911-9 205-99-2										
24		benzo[k]fluoranthene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
		601-036-00-5 205-916-6 207-08-9										
25		benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
		601-032-00-3 200-028-5 50-32-8	_									
26	۲	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
		205-893-2 193-39-5	_									
27				<0.1	mg/kg	J		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash		001-041-00-2 200-181-8 p3-70-3	+							$\left \right $		
28	8	005-883-8 101 24 2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
-	I	200-000-0 101-24-2						Total:	0.0364 %			

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP112[1]

Sample details

Sample Name:	LoW Code:	
TP112[1]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.30 - 0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data		Compound conc.	Classification value	MC Applied	Conc. Not Used
1	\$	arsenic { arsenic trioxide }		12 mg/kg	1.32	15.844 mg/kg	0.00158 %	\checkmark	
2	*	cadmium { cadmium sulfide }	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
3	4	chromium { chromium(III) oxide }		20.6 mg/kg	1.462	30.108 mg/kg	0.00301 %	~	
4	*	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		9.6 mg/kg	1.126	10.809 mg/kg	0.00108 %	\checkmark	
5	*	lead { Icad compounds with the exception of those specified elsewhere in this Annex }	1	11.6 mg/kg		11.6 mg/kg	0.00116 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.5 mg/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
7	\$	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	_	14.2 mg/kg	1.579	22.429 mg/kg	0.00224 %	~	
8	\$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	*	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]	_	19.7 mg/kg	2.469	48.645 mg/kg	0.00486 %	~	
10	6	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-33-4, 10294-34-5, 7637-07-2		<0.5 mg/kg	13.43	<6.715 mg/kg	<0.000672 %		<lod< td=""></lod<>
11	8	рН РН	_	8.2 pH		8.2 pH	8.2 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

#		Determinand CLP index number EC Number CAS Numb	LP Note	User enter	ed data	Conv. Factor	Compound co	onc.	Classification value	1C Applied	Conc. Not Used
14	0	acenaphthylene 205-917-1 208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	2	<lod< th=""></lod<>
15	۵	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	8	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	anthracene 204-371-1 120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	8	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	8	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	9	benzo[ghi]perylene 205-883-8 191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
								Total:	0.0152 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: TP113

Sample details

Sample Name: TP113	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00 - 0.35 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data		Conv. Factor		Classification value	MC Applied	Conc. Not Used
1	\$	arsenic { arsenic trioxide }		16.5 mg	/kg	1.32	21.785 mg/kg	0.00218 %	\checkmark	
2	*	cadmium { cadmium sulfide }	_ 1	<0.5 mg	/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< td=""></lod<>
3	\$	chromium { Chromium(III) oxide }		25.1 mg	ı/kg	1.462	36.685 mg/kg	0.00367 %	\checkmark	
4	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		10 mg	/kg	1.126	11.259 mg/kg	0.00113 %	\checkmark	
5	*	lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	19.5 mg	ı/kg		19.5 mg/kg	0.00195 %	\checkmark	
6	\$	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.5 mg	/kg	1.353	<0.677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
7	\$	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		17.2 mg	/kg	1.579	27.167 mg/kg	0.00272 %	~	
8	\$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg	/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	\$	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]	_	43.7 mg	/kg	2.469	107.908 mg/kg	0.0108 %	~	
10	*	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		0.8 mg	ı/kg	13.43	10.744 mg/kg	0.00107 %	~	
11	8	pH PH	_	7.9 pH			7.9 pH	7.9 pH		
12		phenol 604-001-00-2 203-632-7 108-95-2		<1 mg	/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		naphthalene		<0.1 mg	/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthylene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
15	۲	acenaphthene	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	8	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	۲	phenanthrene 201-581-5 85-01-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	8	anthracene 204-371-1 120-12-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	fluoranthene 205-912-4 206-44-0	_	0.2	mg/kg		0.2	mg/kg	0.00002 %	~	
20	8	pyrene 204-927-3 129-00-0	_	0.2	mg/kg		0.2	mg/kg	0.00002 %	\checkmark	
21		benzo[a]anthracene	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22		chrysene	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[def]chrysene	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	٥	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[ghi]perylene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			I					Total:	0.0242 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

HazWasteOnline[™]

Report created by Alessandro Dunne on 01 Mar 2019

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Repr. 1B H360FD , Skin Sens. 1 H317 , Resp. Sens. 1 H334 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 4 H302 , Acute Tox. 4 H332

[•] lead compounds with the exception of those specified elsewhere in this Annex

CLP index number: 082-001-00-6

Description/Comments: Least-worst case: Lead REACH Consortium considers some lead compounds Carcinogenic category 2B Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06 Aug 2015 Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

[•] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

HazWasteOnline[™]

Report created by Alessandro Dunne on 01 Mar 2019

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

[•] indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}
Worst case species based on risk phrases
cadmium {cadmium sulfide}
Worst case species based on risk phrases
chromium {chromium(III) oxide}
Total Chromium excluding Chromium VI
copper {dicopper oxide; copper (I) oxide}
Most likely common species
lead {lead compounds with the exception of those specified elsewhere in this Annex}
Chromium VI below detection
mercury {mercury dichloride}
Worst case species based on risk phrases
nickel {nickel dihydroxide}
Worst case species based on risk phrases
selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}
Worst case species based on risk phrases
zinc {zinc sulphate}
Chromium VI below detection levels so insufficient to form compound zinc chromate
boron {boron tribromide/trichloride/trifluoride (combined)}
Worst case species based on risk phrases

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2019.44.3788.7742 (13 Feb 2019) HazWasteOnline Database: 2019.44.3788.7742 (13 Feb 2019)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Appendix H – Infiltration Test Results

Project Name: Camp Road Project ID CAM2362 Client: Pye Homes Hole ID: TP101 Test Date: 23-24/01/19 Logged: NC Checked: JF Test 2 Test 3 Length (m) Test 1 2.40 Width (m) Time Depth Time Depth Time Depth 0.60 (mins) (m) (mins) (m) (mins) (m) Soakaway Dimensions: Test 1 - Depth (m) 1.50 0 0.93 0 0.94 0 0.87 Test 2 - Depth (m) 1.50 0.94 1 0.95 1 Test 3 - Depth (m) 1 0.89 1.50 2 2 2 0.97 0.98 0.91 Test 1 Test 2 Test 3 3 0.97 5 0.98 12 0.92 Depth to water at start of test (m) 0.93 0.94 0.87 22 4 0.98 25 1.00 0.95 Depth to water at end of test (m) 1.38 1.42 1.40 0.47 0.44 0.98 60 1.05 60 1.05 Total head drop (m) 0.55 5 0.99 10 120 1.25 120 1.30 Depth to water at 75% level (m) 1.07 1.08 1.03 1.00 180 1.38 180 1.42 Depth to water at 50% level (m) 15 1.22 1.22 1.19 20 1.00 Depth to water at 25% level (m) 1.36 1.36 1.34 1.04 60 90 1.10 Base area of pit (m²) 1.44 1.44 1.44 120 1.30 Computed Internal Surface Area Ap50 (m²) 3.15 3.12 3.33 Effective Storage Volume V_{p75-25} (m³) 1.40 180 0.41 0.40 0.45 Elapsed time at 75% level (mins) 76 69 51 141 Elapsed time at 25% level (mins) 155 171 50% discharge in 24 Hours Yes Yes Yes Soil infiltration rate f (m/s) 2.77E-05 2.12E-05 2.53E-05 Design soil infiltration rate f (m/s) 2.12E-05 Elapsed time (min) 20 40 100 140 200 60 80 120 160 180 0 0.00 0.20 0.40 0.60 Water level (mbgl) 0.80 1.00 1.20 1.40 1.60 Test 1 - 50% effective storage Test 1 Test 2 Test 2 - 50% effective storage - Test 3 Test 3 - 50% effective storage

Remarks:

	Project	: Name:	Camp									Proj	ject	ID	CAN	/1236	62				
		Client:	Pye Ho	omes		-	-														
	ŀ	Hole ID:	TP103			Test Date:	23-24	/01/1	9		L	.ogge	d:	NC			Che	cke	d: J	F	
Tes	st 1	Te	st 2	Tes	st 3								L	eng	ıth (r	n)			2.5	C	
Time	Depth	Time	Depth	Time	Depth									Wid	th (r	n)			0.6	C	
(mins)	(m)	(mins)	(m)	(mins)	(m)		Soakaway Dimensions: Test 1 - I							Dep	oth (r	n)			1.5	5	
0	0.99	0	0.87	0	0.88		Test 2 - I						Dep	oth (r	n)			1.5	5		
1	1.04	1	0.90	1	0.92							Tes	st 3 -	Dep	th (r	n)	1.			55	
2	1.10	2	0.92	2	0.94								-	Te	est 1		Τe	est 2		Ter	st 3
3	1 13	3	0.94	3	0.96		Dept	h to w	ater	at s	tart o	of test	t (m)) 99		0	87		0	88
4	1.10	<u>с</u> Л	0.01	4	0.00		Den	th to y	wate	r at i	and c	of test	t (m)	1	13		1	50		1.	46
5	1.10	5	1.00	5	1 00		Бср		т	otal	head	l dror	(m)		1.40			.00		0	58
10	1.10	10	1.00	10	1.00		Dor	oth to	wote	or at	75%) (III) I (m)	1	12	_	1	.03	_	1	05
10	1.22	10	1.04	10	1.02		Dep		wate	er at	75% E0%		(111) 1 (111)	1	.13	_		.04	_	1.0	00
15	1.27	12	1.07	15	1.08		Dep		wate	erat	50%	ieve	I (m)		.21	_	<u> </u>	.21	_	1.4	22
20	1.33	14	1.09	20	1.13		Dep	oth to	wate	er at	25%	leve	I (m)	1	.41		1	.38		1.	38
25	1.43	20	1.12	40	1.20				_				. 2.			T			_		
		25	1.16	60	1.31				Ba	ase a	area	of pit	(m²)	1	.50		1	.50		1.	50
		30	1.19	90	1.46	Compu	ted Int	ernal	Surf	ace	Area	A _{p50}	(m²)	3	3.24		3	.61		3.	58
		45	1.35			Eff	ective	Stora	ige ∖	/olur	ne V	, p75-25	(m ³)	C).42		0	.51		0.	50
		60	1.40																		
		90	1.50				Elap	sed tii	me a	at 75	% le	vel (n	nins)		3			10		1	2
							Elap	sed tii	me a	at 25	% le	vel (n	nins)		24		[54		7	5
							50%	disc	char	ge in	24 H	ours	`	Yes		Ŋ	′es		Y	es	
								Soil	infil	tratio	on ra	ite f (m/s)	1.0)3E-(04	5.3	5E-0)5	3.76	6E-05
						De	esign	soil iı	nfiltr	ratio	n rat	te f (m/s)				3.7	6E-0)5		
			2																		
							Elapse	ed time	e (mi	n)											
	0	:	20	40	60	0 80		100		12	20	1	40		160			180		2	00
0	.00																				1
0	.20 –																	+			1
0	.40 —															+		+			-
(<mark>]</mark> [] [] []	.60 —															\vdash		+		++-	-
(mb																					
0 ke	.80															\vdash		-		\vdash	-
rle																					
1 ate	.00 🕂													_		\vdash		_			-
5																					
1	20 🗕						╞═┥╺╧	┥━━╸╎			╺┤━┥		┿┥┥							┝╺┿╸	-
						+ +	• +	-+ +	- +	- +	•	+	- -		+ +	- +	-		┥┿	-	
1	.40 🗕		\mathbb{N}		╞┿┿┽		$\downarrow \downarrow \downarrow$				\rightarrow					\square	\rightarrow	_			-
1	60 🔟																				
				Те	est 1					– Te	st 1 -	50% e	effecti	ve st	torag	ge					
Test 2							– Te	st 2 -	50% e	effecti	ve st	torag	ge								
				T	est 3					- Te	st २ -	50%	offecti	Vect	torag	7e					
				- 10						10		55706		*C 31		,- ,-		_			
Domor	koj																				

Project Name: Camp Road Project ID CAM2362 Client: Pye Homes Hole ID: TP104 Test Date: 23-24/01/19 Logged: NC Checked: JF Test 2 Test 3 Length (m) Test 1 2.40 Width (m) Time Depth Time Depth Time Depth 0.50 (mins) (m) (mins) (m) (mins) (m) Soakaway Dimensions: Test 1 - Depth (m) 1.90 0 1.00 0 0.82 Test 2 - Depth (m) 1.85 1.02 1 0.84 Test 3 - Depth (m) 1 2 2 1.04 0.86 Test 1 Test 2 Test 3 3 1.04 3 0.86 Depth to water at start of test (m) 1.00 0.82 1.04 1.23 4 4 0.87 Depth to water at end of test (m) 1.02 1.05 0.23 0.20 5 0.87 Total head drop (m) 5 10 1.06 10 0.90 Depth to water at 75% level (m) 1.23 1.08 1.07 Depth to water at 50% level (m) 1.34 15 15 0.92 1.45 25 1.10 30 0.93 Depth to water at 25% level (m) 1.68 1.59 35 1.11 45 0.94 1.11 60 Base area of pit (m²) 1.20 1.20 60 0.95 1.20 Computed Internal Surface Area Ap50 (m²) 120 120 0.97 3.81 4.19 1.21 Effective Storage Volume V_{p75-25} (m³) 180 180 0.99 0.54 0.62 240 1.22 240 1.01 300 1.23 300 Elapsed time at 75% level (mins) 1.02 270 386 934 Elapsed time at 25% level (mins) 1251 50% discharge in 24 Hours Yes Yes Soil infiltration rate f (m/s) 3.56E-06 2.84E-06 Design soil infiltration rate f (m/s) n/a (not BRE365 compliant) Elapsed time (min) 50 100 150 200 250 300 350 400 0 0.00 0.20 0.40 0.60 Water level (mbgl) 0.80 1.00 1.20 1.40 1.60 Test 1 - 50% effective storage Test 1 Test 2 Test 2 - 50% effective storage - Test 3 — — Test 3 - 50% effective storage **Remarks:**

Project Name: Camp Road Project ID CAM2362 Client: Pye Homes Hole ID: TP106 Test Date: 23-24/01/19 Logged: NC Checked: JF Test 2 Test 3 Length (m) Test 1 2.40 Width (m) Time Depth Time Depth Time Depth 0.48 (mins) (m) (mins) (m) (mins) (m) Soakaway Dimensions: Test 1 - Depth (m) 1.60 0 0.95 0 0.85 0 0.95 Test 2 - Depth (m) 1.60 1.17 1 0.95 1 1.05 Test 3 - Depth (m) 1 1.60 2 2 2 1.23 1.00 1.10 Test 1 Test 2 Test 3 3 1.30 3 1.06 3 1.16 Depth to water at start of test (m) 0.95 0.85 0.95 1.10 4 1.35 4 4 1.21 Depth to water at end of test (m) 1.60 1.46 1.57 1.40 Total head drop (m) 0.61 5 1.15 5 1.26 0.65 0.62 5 1.45 6 6 1.20 6 1.31 Depth to water at 75% level (m) 1.11 1.04 1.11 1.50 7 1.25 7 Depth to water at 50% level (m) 7 1.36 1.28 1.23 1.28 8 1.55 9 1.33 8 1.40 Depth to water at 25% level (m) 1.44 1.41 1.44 1.45 10 1.60 11 1.39 9 13 1.46 10 Base area of pit (m²) 1.52 1.15 1.15 1.15 11 Computed Internal Surface Area Ap50 (m²) 3.02 1.57 3.31 3.02 Effective Storage Volume V_{p75-25} (m³) 0.37 0.43 0.37 Elapsed time at 75% level (mins) 1 3 2 6 12 Elapsed time at 25% level (mins) 9 50% discharge in 24 Hours Yes Yes Yes Soil infiltration rate f (m/s) 4.12E-04 2.41E-04 3.15E-04 Design soil infiltration rate f (m/s) 2.41E-04 Elapsed time (min) 2 20 4 6 8 10 12 14 16 18 0 0.00 0.20 0.40 0.60 (mbgl) 0.80 1.00 1.20 1.40 1.60 1.80 Test 1 - 50% effective storage Test 1 Test 2 Test 2 - 50% effective storage - Test 3 Test 3 - 50% effective storage **Remarks:**

Project Name: Camp Road Project ID CAM2362 Client: Pye Homes Hole ID: TP111 Test Date: 23-24/01/19 Logged: NC Checked: JF Test 2 Test 3 Length (m) Test 1 2.00 Width (m) Time Depth Time Depth Time Depth 0.50 (mins) (m) (mins) (m) (mins) (m) Soakaway Dimensions: Test 1 - Depth (m) 1.50 0 0.80 0 0.90 0 0.85 Test 2 - Depth (m) 1.50 0.80 1 0.91 1 Test 3 - Depth (m) 1 0.85 1.50 2 2 2 0.80 0.91 0.86 Test 1 Test 2 Test 3 3 0.80 3 0.91 3 0.86 Depth to water at start of test (m) 0.80 0.90 0.85 4 0.80 5 0.92 4 0.86 Depth to water at end of test (m) 1.37 1.42 1.39 0.52 0.80 30 1.00 5 0.86 Total head drop (m) 0.57 0.54 5 20 10 0.80 60 1.11 0.98 Depth to water at 75% level (m) 0.98 1.05 1.01 0.93 1.24 40 Depth to water at 50% level (m) 30 90 1.02 1.15 1.20 1.18 45 0.97 120 1.36 60 1.12 Depth to water at 25% level (m) 1.33 1.35 1.34 60 1.04 150 1.42 90 1.39 90 1.24 Base area of pit (m²) 1.00 1.00 1.00 120 1.37 Computed Internal Surface Area Ap50 (m²) 2.75 2.50 2.63 Effective Storage Volume V_{p75-25} (m³) 0.35 0.30 0.33 Elapsed time at 75% level (mins) 46 44 36 Elapsed time at 25% level (mins) 110 118 84 50% discharge in 24 Hours Yes Yes Yes Soil infiltration rate f (m/s) 3.34E-05 2.71E-05 4.31E-05 Design soil infiltration rate f (m/s) 2.71E-05 Elapsed time (min) 20 40 100 140 200 60 80 120 160 180 0 0.00 0.20 0.40 0.60 Water level (mbgl) 0.80 1.00 1.20 1.40 1.60 Test 1 - 50% effective storage Test 1 Test 2 Test 2 - 50% effective storage - Test 3 Test 3 - 50% effective storage

Remarks:

Project Name: Camp Road Project ID CAM2362 Client: Pye Homes Hole ID: TP112 Test Date: 23-24/01/19 Logged: NC Checked: JF Test 2 Test 3 Length (m) Test 1 2.00 Width (m) Time Depth Time Depth Time Depth 0.60 (mins) (m) (mins) (m) (mins) (m) Soakaway Dimensions: Test 1 - Depth (m) 1.60 0 0.90 0 0.84 Test 2 - Depth (m) 1.60 0.90 1 0.84 Test 3 - Depth (m) 1 2 2 0.91 0.85 Test 1 Test 2 Test 3 3 0.91 3 0.85 Depth to water at start of test (m) 0.90 0.84 4 0.92 4 0.86 Depth to water at end of test (m) 1.07 1.07 Total head drop (m) 0.23 0.93 5 0.86 0.17 5 10 0.94 10 0.88 Depth to water at 75% level (m) 1.08 1.03 0.98 20 Depth to water at 50% level (m) 30 0.90 1.25 1.22 60 1.03 30 0.93 Depth to water at 25% level (m) 1.43 1.41 120 1.04 60 0.95 180 1.05 120 Base area of pit (m²) 1.20 1.20 1.01 240 1.06 Computed Internal Surface Area Ap50 (m²) 180 1.04 3.02 3.18 1.07 Effective Storage Volume V_{p75-25} (m³) 300 240 1.06 0.42 0.46 300 1.07 Elapsed time at 75% level (mins) 309 160 Elapsed time at 25% level (mins) 926 743 50% discharge in 24 Hours Yes Yes Soil infiltration rate f (m/s) 3.75E-06 4.10E-06 Design soil infiltration rate f (m/s) n/a (not BRE365 compliant) Elapsed time (min) 50 100 150 200 250 300 350 400 0 0.00 0.20 0.40 Water level (mbgl) 0.60 0.80 1.00 1.20 1.40 Test 1 - 50% effective storage Test 1 Test 2 Test 2 - 50% effective storage - Test 3 — — Test 3 - 50% effective storage **Remarks:**

Phase I - II Geo-Environmental Site Assessment

Land at Letchmere Farm, Camp Road, Upper Heyford, OX25 5LS

Prepared for: Edward Smith Norgate House Tealgate Charnham Park Hungerford Berkshire RG17 0YT

January 2022

Omnia ref: A11754/1.0 Draft

ISO Accredited Certification (UKAS)

Quality Assurance

Project Number: A11754									
January 2022									
	Phase I-II Geo	-Environm	ental As	ssessment					
	Prepared by:	T.Holloway	Date:	21/01/22	Signature:				
Geo-Environmental	Checked by:	J.Cook	Date:	21/01/22	Signature:				
	Authorised by:	A.King	Date:	03/02/22	Signature:				
•	Geotechnical	Ref:							
Geotechnical	Prepared by:	T.Holloway	Date:	21/01/22	Signature:				
	Checked by:	J.Cook	Date:	21/01/22	Signature:				
	Authorised by:	A.King	Date:	03/02/22	Signature:				

North Office Millenium City Park,	Midlands Office 12 High Pavement,	South Office 3-6 The Quarterdeck,
Millenium Road, Preston	Lace Market,	Port Solent, Portsmouth
PR2 5BL	NG1 1HN	PO6 4TP

01772 963 024

0115 7043 492

01489 808088

www.omnia-consulting.co.uk

We are a UK wide, truly joined up and fully collaborative multi-disciplinary engineering and environmental consultancy.

Ecology

Acoustics

Geo-environmental

Air Quality

9 GROUND AND GROUNDWATER CONDITIONS

This section covers both the Phase 1 and Phase 2 areas and summarises the findings of the site investigation summarised in Section 7.

9.1 Summary of Ground Conditions

Geology encountered within the Phase 1 and Phase 2 areas of site generally corresponds with that shown on BGS Mapping and the findings have been outlined below.

9.1.1 Made Ground

Made Ground was encountered in HP101 and HP102, in the Phase 1 area, to a maximum depth of 0.60m bgl. Made Ground was encountered in areas where bonfires had previously been lit had consisted of firm brown slightly sandy CLAY with frequent ash and rare medium sand sized brick fragments. No Made Ground was encountered within the previous T&P report locations TP101-115 (ref: 2019Mar_CAM2362_DSG).

Made Ground was not encountered in the Phase 2 area.

9.1.2 Topsoil

Topsoil was encountered in all intrusive locations across the Phase 1 (WS107-114) and Phase 2 (WS101-106, SA101-104, TP101-104) area, with the exception of HP101 and HP102 to a maximum depth of 0.80m bgl (WS105). It was generally encountered as soft brown slightly sandy (slightly gravelly) CLAY with frequent rootlets. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse limestone.

Topsoil was encountered within all the previous T&P report locations (TP101-115) (ref: 2019Mar_CAM2362_DSG), comprising a firm, gravelly CLAY with a typical thickness of 0.20-0.50m.

9.1.3 Superficial Deposits

Superficial deposits were not encountered in the Phase 1 or Phase 2 areas within the current phase or the previous phases of investigation undertaken by T&P. This confirms published BGS mapping.

9.1.4 Bedrock Geology

9.1.4.1 White Limestone Formation

Bedrock geology attributed to the White Limestone Formation were encountered across the site at depths ranging from 0.30-2.0mbgl, across all intrusive locations. The bedrock generally comprised of brown and light grey subrounded limestone COBBLES with a firm orangish brown slightly sandy slightly gravelly CLAY infill. Gravel is subangular to subrounded fine to coarse limestone. Locally it also consisted of orangeish, yellowish, brownish sandy gravelly CLAY and light yellow slightly sandy clayey subangular to subrounded fine to coarse GRAVEL. Gravel is subangular to subrounded fine to coarse limestone. Clays were locally noted as being friable (WS112).

Bedrock geology was encountered within all the previous T&P report locations (TP101-115) (ref: 2019Mar_CAM2362_DSG) underlying the topsoil comprising a firm to stiff, gravelly CLAY with gravels encountered from 0.60 to 1.55m bgl. Competent limestone bedrock was noted at depths ranging 1.50-2.10m bgl, which prevented further excavation.

A summary of encountered limestone rockhead, where borehole refusals were encountered due to slow or no progression, is summarised in the table below.

Table 9-1 Summary of shallow rock encountered

Phase	Locations	Depth (m bgl)
	Omnia GI	
	WS101	1.80
	WS102	1.80
	WS103	0.45
1	WS104	1.75
	WS105	2.00
	WS106	1.60
	WS107	1.50
	WS108	2.00
	WS109	1.75
	WS110	1.80
	WS111	1.00
	WS112	1.65
	WS113	1.30
	WS114	1.20
2	WS115	1.80
	SA102	1.60
	SA103	1.70
	SA104	1.90
	TP101	1.35
	TP102	1.60
	TP103	1.90
	TP104	1.60
	T&P Regen GI	
	TP101	1.50
	TP102	1.70
	T103	1.55
	TP104	1.90
	TP105	1.75
	TP106	1.60
	TP107	2.05
1	TP108	1.50
	TP109	1.80
	TP110	1.80
	TP111	1.60
	TP112	1.80
	TP113	2.10
	TP114	1.80
	TP115	1.60

9.1.5 Groundwater Conditions

Groundwater was encountered in a number of locations during site investigation and the T&P site investigation, as summarised in Table 9-2.

Location	Depth (m bgl)	Strata	Type of Water Strike								
Phase 1 area (Omnia GI)											
WS107	1.45	Sand	Seepage								
WS108	1.50	Clay	Seepage								
WS109	1.50 rising to 0.90	Limestone	Strike								
WS110	1.75 rising to1.50	Clay	Strike								
WS115	1.75	Limestone	Strike								
Phase 2 area (Omnia GI)											
WS105	1.80 rising to 0.90	Clay	Strike								
WS106	1.10	Clay	Strike								
SA101	1.80 rising to 1.10 after 20 minutes	Clay	Strike								
SA102	1.60	Clay	Seepage								
SA103	1.70	Clay	Seepage								
SA104	1.80	Limestone cobbles	Seepage								
TP103 (SA)	1.80	Clay	Strike								
TP104	1.60 rising to 1.0	Clay	Strike								
TP109	1.20	Clay	Seepage								
Phase 1 area (T&P GI)											
TP102	1.60 rising to 1.40	Gravelly Clay	Strike								
TP105	1.75 rising to 1.60	Silty Clay	Strike								
TP109	1.80 rising to 1.50	Silty Clay	Strike								
TP110	1.80 rising to 1.60	Silty Clay	Strike								

Table 9-2 Summary of Groundwater Conditions

Groundwater was generally encountered in the east of the site in proximity to a stream running down the east boundary of the site. It is therefore considered likely that shallow groundwater in the eastern area of the site is in hydraulic continuity with the surface watercourse. The presence of shallow groundwater may impact drainage design and it is recommended that consultation with a drainage engineer is undertaken.

The influence of ground water is further discussed in Section 12.5.

9.2 Laboratory Classification Analysis

Soil classification testing, including Atterberg Limits, Moisture Content, Particle Size Distribution and pH and Sulphate results are summarised in Table 9-3 – Table 9-7 with analysis certificates presented in Appendix VII and Appendix VIII.

9.2.1 Soil Plasticity

Five (5no.) samples, from the Phase 2 area, taken from cohesive deposits across the site were submitted to the laboratory for laboratory plasticity analysis. The results of this analysis have been summarised in Table 9-3 below.

Table 9-3 Summary of Soil Plasticity

Location	Depth (m bgl)	Geology	Natural Moisture Content (%)	Liquid Limit	Plastic Limit (%)	Plasticity Index (%)	Percentage passing 425µm sieve (%)	Modified Plasticity Index	Plasticity	Volume Change Potential	
Phase 2 area: Omnia Ground Investigation, A11754/1.0											
WS101	1.20- 1.40	Yellowish Brown CLAY	26	64	22	42	100	42	High	High	
WS101	1.50- 1.70	Yellowish brown very sandy CLAY	12	30	16	14	100	14	Low	Low	
WS102	1.50- 1.60	Yellowish brown CLAY	29	74	27	47	100	47	Very High	High	
WS104	0.70- 1.00	Brown slightly gravelly very sandy CLAY	19	32	18	14	92	13	Low	Low	
TP104	0.80- 1.00	Cream colour gravelly sandy very clayey SILT	15	26	14	12	83	10	Low	Low	
		Phase 1 a	rea: T&P G	round	investiga	tion, 2	019Mar_CAM	2362_DSG			
TP102	0.80- 1.00	Yellow brown and light grey very clayey very sandy GRAVEL	10	29	16	13	39	5	Low	Negligible	
TP102	1.20- 1.40	Yellowish brown slightly gravelly slightly sandy silty CLAY	14	30	17	13	74	10	Low	Low	
TP103	0.90- 1.10	Yellowish brown slightly gravelly sandy CLAY	15	33	13	20	79	16	Low	Low	
TP105	0.80- 1.00	Yellowish brown slightly gravelly sandy CLAY	17	38	15	23	75	17	Medium	Low	
TP105	1.50- 1.70	Light grey and yellowish brown slightly gravelly	16	39	15	24	66	16	Medium	Low	

APPENDIX D

Impermeable Catchments Plan

APPENDIX E

Exceedance Flow Route Drawing

APPENDIX F

Standard SuDS Details

