

Lince Lane, Kirtlington

Reference: 402 - Rev - V1

Sep-22 www.rida-reports.co.uk

arge@rida-reports.co.uk

Section	
1	Introduction
2.0	Site Characteristics
3.0	Discharge Arrangement
4.0	Peak Runoff
5.0	Proposed Sustainable Drainage
6.0	Maintenance and Management Plan
	Appendices
А	Distribution Existing and Proposed Areas
В	Site Investigation results
С	Drainage Calculations
D	Drainage System General Arrangement

079 721 44579

Produced by: ARD

Oxford Innospace, Old Music Hall, 106-108 Cowley Road, Oxford, OX4 1JE England and Wales number 10590566

Rev 1

Purpose of this report

1.1 The purpose of this statement is to accompany the technical drawings and details showing the proposed Surface Water drainage system as part of the planning application for this development.

2

Site Characteristics

2.1 The site background is clearly identified through answers to the questions in table 1 below.

Table 1: Site Characteristics . See appendix B for support documentation

TOPIC	QUESTION	ANSWER
Protected species or habitat	Is the site near to designated sites and priority habitats?	No
Flood Plain	Is the site located in the flood plain?	No
Soils and Geology	Soil permeability? - See appendix B for results	Yes
Space constraints	Space for SuDS components?	Yes
	Sited on a flat site?	Yes
Topography	Sited on a steep slope (5-15%)	No
	Sited on a very steep slope (>15%)	No
Groundwater	Is the site at groundwater flood risk?	No
Contaminated land	Are there contaminated soils on site?	No
Source Protection Zone	Is the site within a SPZ 3?	No
Runoff characteristics	Is the development in a high risk flooding area?	No

Existing and Proposed Site

2.2 The distribution of catchment areas for existing and proposed site is as per table 2 below. See appendix A for details

Table 2 : Existing and Proposed catchment areas in hectares

Description		Existing Site	Proposed Site
Impermeable Area	S	0.000	0.122
Permeable Areas	Connected to Drainage	0.000	0.000
	Self Draining Areas	0.000	0.187
Areas Draining Away from drainage System		0.913	0.604
	Total Development Area	0.913	0.913

Area Distribution Per property and reference models

P1	P2	Р3	P4	P5	P6	P7	P8
0.016	0.016	0.016	0.018	0.009	0.009	0.019	0.019

Model 1 refers to Properties P1, P2, P3, P4, P7, P8 and has an area of 0.019ha + 10% Model 2 refers to Properties P5, P6 and has an area of : 0.009ha + 10%

Evaluation of Discharge Point

- 3.1 The SuDS design takes into account Building Regulations Section H3 and the National Planning Practice Guidance. The aim is to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:
 - 1. into the ground (infiltration);
 - 2. to a surface water body;
 - 3. to a surface water sewer, highway drain, or another drainage system;
 - 4. to a combined sewer.
- 3.2 The discharge point has been evaluated following the NPPG and Building regulations. The findings are in table 3 below.

Table 3: Drainage Hierarchy evaluation

Superficial geology classification	The British Geological Society records show that the superficial deposits are Hanborough Gravel Member - Sand and Gravel.
Bedrock geology classification	The British Geological Society records of the site show that it is located within the Peterborough Member - Mudstone.
Landis Top Soil Infiltration	The SOILSCAPE's records of the site show that it is located within an area of freely draining soils.
Groundwater	The British Geological Survey's flood risk susceptibility maps show that the development has limited susceptibility to ground water flooding. The risk from groundwater flood to the site is considered very low.
Is infiltration feasible?	Soakaway tests were undertaken for the site. The lowest infiltration rate for this site is 0.000008m/s or 0.0288m/hr. This infiltration is possible at shallow depth only as the water table is 1.9m bgl
Is a discharge to a watercourse possible?	There is a watercourse in proximity to the site. Connection is possible. However infiltration is feasible at shallow depths.
Is a discharge to a surface water sewer possible?	There are no surface water sewers in the proximity to the site.
Is a discharge to a combined sewer possible?	There are no combined sewers in the proximity to the site.

Existing and Proposed Peak Run-off Calculations

4.1 The current site is a Greenfield. The peak runoff rate for the existing site was calculated as per table 4 and discharge rates as per table 5.

Table 4: Peak run-off rate calculation method for existing site

Method Used	Calculation Method
X	Report124 Flood Estimation for Small Catchments method has been used to estimate the site peak flow rates
	This is a brownfield site, runoff rates are calculated in accordance with best practice simulation modelling and using the modified rational method
	This is a brownfield site where the pre-development drainage isn't known. The runoff rates are calculated using the Greenfield model with soil type 5

4.2 The runoff flow produced by the development will be controlled as per table5.

Table 5: Runoff discharge rate control

Run-off flows

4.3 The size of the SuDS has been calculated for all events up to the 1 in 100 including an allowance for climate change of 40%. As per tables above, it is proposed to infiltrate all the flows. See table 6 for values and appendix C for calculations.

Table 6: Peak discharge rates for SuDS

Return Period Event		Discharge Rate (I/s)		Infiltration Rate
	Existing Greenfield	Existing Brownfield	Proposed	(m/hr)
Qbar	0.10	N/A	N/A	0.0288
1 in 1	0.10	N/A	0.0	0.0288
1 in 2	0.10	N/A	0.0	0.0288
1 in 30	0.30	N/A	0.0	0.0288
1 in 30 + CC	N/A	N/A	0.0	0.0288
1 in 100	0.40	N/A	0.0	0.0288
1 in 100 + CC	N/A	N/A	0.0	0.0288

Proposed Sustainable Drainage System

5.1 The following sustainable drainage systems have been used for this site. The drainage design uses these drainage system through out the site. See table 7 for details.

Table 7: Proposed Drainage System

SuDS Proposed	Feasible	Proposed
Use of green roofs	No	No
Store rainwater for later use	No	No
Use infiltration techniques, for instance soakaways, permeable surfaces	Yes	Yes
Attenuate rainwater in ponds or open water features for gradual release	No	No
Attenuate rainwater by storing in tanks or sealed water features for gradual release	No	No
Discharge Point Proposed		
Discharge rainwater direct to a watercourse	Yes	No
Discharge rainwater to a surface water sewer/drain	No	No
Discharge rainwater to the combined sewer	No	No

- 5.2 The location and details of the SuDS can be seen drainage layouts in appendixD. Calculations are in appendix C.
- 5.3 The drainage calculations demonstrate:

- No flooding occurs for the 1 in 30 storm events.

- Any flooding for the 1 in 100 year + 40% climate change event can be safely contained on site
- 5.4 The proposed drainage strategy presents one possible solution to demonstrate that the development can be sustainably drained, to comply with the requirements of the NPPF. Other solutions may be feasible and may prove to be better suited to the site. These will become apparent during the detailed design stage. The strategy above should not therefore be interpreted as the definitive scheme solution.

Management of Exceedance Flows

5.5 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP + CC(1 in 100 years). However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded. Surface water will flow to the lowest points within the site located to the front of the property. The flood risk to the buildings would therefore remain low. See appendix D.

Maintenance and Management plan responsibility

6.1 The SuDS will be maintained by The Owner the property

Maintenance and Management plan for proposed SuDS

6.2 The maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined above. The maintenance for SuDS structures are as follow:

Operation and maintenance requirements for soakaways				
Maintenance schedule	Required action	Typical frequency		
Regular maintenance	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually		
	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)		
	Trimming any roots that may be causing blockages	Annually (or as required)		
Occasional maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections		
Demodial actions	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required		
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway)	As required		
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually		
	Check soakaway to ensure emptying is occurring	Annually		

Maintenance and Management Plan

6

Operation and maintenance requirements for pervious pavements					
Maintenance schedule	Required action	Typical frequency			
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment			
	Stabilise and mow contributing and adjacent areas	As required			
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements			
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required			
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required			
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)			
	Initial inspection	Monthly for three months after installation			
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months			
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually			
	Monitor inspection chambers	Annually			

Appendix A

EXISTING SITE 1:500

PROPOSED SITE 1:500

Appendix B

GEOINDEX ONSHORE

SITE GEOLOGY

GEOLOGY - BEDROCK - PETERBOROUGH MEMBER - MUDSTONE

GEOLOGY - SUPERFICIAL DEPOSITS - HANBOROUGH GRAVEL MEMBER - SAND AND GRAVEL

SITE HYDROGEOLOGY

Renew Main River Map

SITE FLOOD RISK

Extent of flooding

High risk means a chance of flooding greater than 3.3% (1:30) Medium risk means a chance of flooding of btw 1% (1:100) and 3.3% Low risk means a chance of flooding of btw 0.1% (1:1000) and 1% Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding

MAGIC RESULTS

	Tackley AND ⁹⁵ We stock
<i>[</i> 7	
Ref:5P49731945	(c) Crown Copyright and database rights 2022. Ordnance Survey 100022861.

Site Check Results		×
Site Check Report Repo You selected the loca The following features h	generated on Tue Aug 16 2022 on: Centroid Grid Ref: SP49731949 ve been found in your search area:	
Aquifer Designation N	ap (Bedrock) (England)	
Туроlоду	Secondary B	
Туроlоду	Unproductive	
Aquifer Designation N	ap (Superficial Drift) (England)	
Туроlоду	Secondary A	
Source Protection Zon No Features found	es merged (England)	
4	~	
	OK Cancel Export to CSV Print	

SOILSCAPES MAP

GROUND WATER FLOOD RISK

Flood map for planning

Your reference **OX5 3HH**

Location (easting/northing) 449754/219485

Created **16 Aug 2022 13:24**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2021 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

SSSI Impact Risk Zones - to assess planning applications for likely impacts on SSSIs/SACs/SPAs & Ramsar sites (England)

1. DOES PLANNING PROPOSAL FALL INTO ONE OR MORI THE CATEGORIES BELOW? All Planning Applications	E OF 2. IF YES, CHECK THE CORRESPONDING DESCRIPTION(S) BELOW. LPA SHOULD CONSULT NATURAL ENGLAND ON LIKELY RISKS FROM THE FOLLOWING:
	Airports, belinade and other aviation proposale
Wind & Solar Energy	Alipoits, helipaus and other aviation proposals.
Minerals, Oil & Gas	Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP) extensions variations to conditions atc. Oil & gas exploration/extraction
Rural Non Residential	
Residential	
Rural Residential	
Air Pollution	Livestock & poultry units with floorspace > $500m^2$ slurry lagoons & digestate stores > $750m^2$ manure
	stores > 3500t.
Combustion	General combustion processes >50MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion.
Waste	
Composting	
Discharges	
Water Supply	
Notes 1	
Notes 2	
GUIDANCE - How to use the Impact Risk Zones	/Metadata_for_magic/SSSI IRZ User Guidance MAGIC.pdf
Nitrate Vulnerable Zones 2017 Designations (England)	
Nitrato Vulnorable Zono ID	470
Nitrate Vulnerable Zone ID	4/2 Charwell (Day to Themae) and Weadaster Dreak NV/7
Nitrate vuinerable Zone Name	Cherwell (Ray to Thames) and Woodeaton Brook NVZ
Type of Nitrate vulnerable zone	Sunace water
Status of NVZ since 2013 designations	Existing
Unique Reference number	S472
Aquifer Designation Map (Bedrock) (England)	
Туроlоду	Unproductive
Aquifer Designation Map (Superficial Drift) (England)	
Туроlоду	Secondary A
Soilscape (England)	
Reference	7
Name	FREELY DRAINING SLIGHTLY ACID BUT BASE-RICH SOILS
Main Surface Texture Class	LOAMY
Natural Drainage Type	FREELY DRAINING
Natural Eertility	HIGH
Characteristic Semi-natural Habitats	BASE-RICH PASTURES AND DECIDUOUS WOODI ANDS
Main Land Cover	ARABI E AND GRASSI AND
Hyperlink	/Metadata for magic/soilscape_summary.pdf
Areas of Outstanding Natural Beauty (England)	
Limestone Pavement Orders (England) No Features found	
Local Nature Reserves (England) - points No Features found	
Local Nature Reserves (England) No Features found	

Moorland Line (England) No Features found

National Nature Reserves (England) - points No Features found

National Nature Reserves (England) No Features found National Parks (England) No Features found

Ramsar Sites (England) - points No Features found

Ramsar Sites (England) No Features found

Proposed Ramsar Sites (England) - points No Features found

Proposed Ramsar Sites (England) No Features found

Sites of Special Scientific Interest Units (England) - points No Features found

Sites of Special Scientific Interest Units (England) No Features found

Sites of Special Scientific Interest (England) - points No Features found

Sites of Special Scientific Interest (England) No Features found

Special Areas of Conservation (England) - points No Features found

Special Areas of Conservation (England) No Features found

Possible Special Areas of Conservation (England) - points No Features found

Possible Special Areas of Conservation (England) No Features found

Special Protection Areas (England) - points No Features found

Special Protection Areas (England) No Features found

Potential Special Protection Areas (England) - points No Features found

Potential Special Protection Areas (England) No Features found

Biosphere Reserves (England) - points No Features found

Biosphere Reserves (England) No Features found

Less Favoured Areas (England) No Features found

Wild Bird General Licence Protected Sites Condition Zone (England) No Features found

Source Protection Zones merged (England) No Features found The **Brown**field Consultancy

Woodstock Memorial Road Fenny Compton. CV47 2XU

Your Ref:

Our Ref: BC624 L.001 / JT

Dan Moore Manorwood Homes 4 Wroslyn Road Freeland Oxfordshire OX29 8HU

22nd July 2022

Dear Dan

LINCE LANE, KIRTLINGTON Results of Infiltration Testing

The Brownfield Consultancy was commissioned by Manorwood Homes to undertake trial pit soakaway (infiltration) testing in accordance with BRE 365 at the above site. The fieldwork was undertaken on 18th July 2022. The site comprises of an irregular shaped field with its long axis north – south, located south of Kirtlington. A residential development is proposed for the plot comprising of seven dwellings with garages and driveways. A Location Plan and proposals are presented in Appendix A.

1. FIELDWORK

Soakaway tests were undertaken within four trial pits denoted SA1 – SA4 to depths of 1.00m to 1.50m. One further pit denoted TP1 was excavated to 1.90m to confirm ground conditions. The locations of the trial pits are denoted on the Exploratory Hole Location Plan in Appendix A.

The pits were excavated by a backhoe excavator, their dimensions carefully measured and then flooded using a mobile water bowser. The time taken for the water to drain was then measured.

2. GROUND CONDITIONS

Reference to the online BGS Mapping Index indicates that the site is underlain by superficial deposits of Hanborough Gravel Member (sand and gravel) overlying the Peterborough Member (Clay and Mudstone). The investigation confirmed the anticipated geology of Hanborough Gravel; the Peterborough Member was not reached.

A summary of the strata encountered during the investigation is described in the following sections but for full details reference should be made to the exploratory hole logs presented in Appendix B.

Topsoil

Topsoil ranging in depth from 0.20-0.30m was encountered in all pits and comprised dark brown SAND with varying quantities of gravel.

The Brownfield Consultancy Woodstock Memorial Road Fenny Compton. CV47 2XU

Hanborough Gravel

The Hanborough Gravel was encountered to the base of each pit and comprised brown SAND with varying quantities of quartzite, limestone and ironstone gravel. In some pits it was described as 'locally clayey'.

Groundwater

A 'Very Slow' ingress of groundwater was encountered in TP1 at 1.90m. After 4 hours the level was recorded at 1.80m. Soils were described as 'damp' in TP1 at a depth of 1.20-1.30m.

3. INFILTRATION

3No. successful repeat tests were accomplished in all pits. The following soil infiltration rates (f) are calculated:-

- SA1 $f = 3.8 \times 10^{-5} \text{ m/sec}, 3.0 \times 10^{-5} \text{ m/sec}, 4.6 \times 10^{-5} \text{ m/sec}$
- SA2 $f = 1.3 \times 10^{-5} \text{ m/sec}, 8.0 \times 10^{-6} \text{ m/sec}, 8.9 \times 10^{-6} \text{ m/sec}$
- SA3 $f = 1.2 \times 10^{-5} \text{ m/sec}, 1.1 \times 10^{-5} \text{ m/sec}, 8.3 \times 10^{-6} \text{ m/sec}$
- SA4 $f = 2.6 \times 10^{-5} \text{ m/sec}, 1.6 \times 10^{-5} \text{ m/sec}, 1.4 \times 10^{-5} \text{ m/sec}$

The soakaway spreadsheets are presented in Appendix C.

4. **RECOMMENDATIONS**

It is clear from the results that infiltration in the Hanborough Gravel is a viable means of surface water disposal. Groundwater was encountered at 1.90m and this needs to be further investigated and monitored. The adoption of a 1m 'freeboard' is often necessary which, on the evidence so far, would suggest that all soakways need to be constructed at a maximum depth of 0.90m. We would recommend that at a future date, soakaway tests are conducted at depths of 0.30-0.90m also.

We trust the above is satisfactory for your purposes. Should you have any queries please do not hesitate to contact me.

Yours sincerely

Alevado

Jim Twaddle cGeol Director

Appendix AExploratory Hole Location PlanAppendix BExploratory Hole LogsAppendix CSoakaway Test Calculations

APPENDIX A

Exploratory Hole Location Plan

Site Location Plan

LINCE LANE, KIRKLINGTON EXPLORATORY HOLE LOCATION PLAN

APPENDIX B

Exploratory Hole Logs

Project					TR	IAL PIT No
Lince Lane	Kirtlington				11	
Job No	Date	Ground Level (m)	Co-Ordinates ()			SA1
BC624	18-07-22					
Contractor					Sheet	
The Brownfi	eld Consultancy Ltd					1 of 1
		STRATA		SAN	ЛРІ F	S & TESTS
		5110111		Depth	No	Remarks/Tests
Depth No $0.00-0.20$	Grass over dark brown slig medium occasionally coars (GRAVEL)	DESCRIPTI htly gravelly SAND. Grave e quartzite, limestone and r	ON el is angular to subrounded fine and are ironstone. (HANBOROUGH			
0.20-0.85	Brown slightly gravelly SA occasionally coarse quartzi (HANBOROUGH GRAV)	ND. Gravel is angular to so ite, limestone and rare irons EL)	abrounded fine and medium tone. Sand is fine to coarse.			
0.85-1.30	Brown and yellow brown l subrounded fine and mediu Sand is fine to coarse.(HA)	ocally clayey SAND with o im occasionally coarse quar NBOROUGH GRAVEL)	ccasional gravel of angular to tzite, limestone and rare ironstone.			
1.30	Pit terminated at target dep	oth. No obvious groundwate	r.			
Shoring/Support:					G	ENERAL
Stability: Stable.	₽		N ↓ +	S	R Dakawa ackfille	EMARKS y test undertaken d with arisings.
D C	B 0.4		Å			
All dimensions in mer Scale 1:25	tres Client Manorwo	ood Homes Meth Plant	od/ Used Backhoe excavator.	L	ogged H	^{3y} JT

Project	2001	000						т	DIAL DIT No
Lin	aa L a	no Virt	lington					11	CIAL PIT NO
Joh No			Date	Ground Leve	el (m)	Co-Ordinates ()		-	SA2
JOU NO	621		18 07 22			co-ordinates ()			
Contractor	.024		18-07-22					Shee	t
The	Brov	vnfield	Consultancy I	tđ				bliee	1 of 1
	DIO						C 4 1		
				SIRAIA			SA		S & TESTS
Depth 0.00-0.20	No	Gra Gra GR	ss over dark brow lium occasionally AVEL)	DF n slightly gravelly SAI coarse quartzite, limes	ESCRIPTION ND. Gravel is stone and rare	angular to subrounded fine ar ironstone. (HANBOROUGH	nd		Remarks/Tests
0.20-1.05		Bro occ (HA	wn slightly gravel asionally coarse q NBOROUGH G) - 1.05 Locally cl	lly SAND. Gravel is ar uartzite, limestone and RAVEL) ayey.	ngular to subre l rare ironston	ounded fine and medium e. Sand is fine to coarse.			
1.05		Pit	erminated at targe	et depth. No obvious g	roundwater.				
Shoring/S Stability:	Suppo Stabl	rt: le.						C R	ENERAL EMARKS
	— 1	.9 ——				N ≜	SE	oakawa Backfille	ay test undertaker ed with arisings.
D	(<u>а</u> С	B 0.4			Ť			
All dimens	sions ir ile 1:25	metres	Client Man	orwood Homes	Method/ Plant Us	ed Backhoe excavator	I	ogged	By JT

- <u>11011e. 0703</u> 2	2001000							
Project		[Z]					TR	IAL PIT NO
Lince Job No	e Lane, I	Lirtlington Date	Ground Level (r	\mathbf{n} Co	Ordinates ()			SA3
BC6	524	18-07-22			Forumates ()			
Contractor	127	10-07-22	,				Sheet	
The	Brownfi	eld Consultancy L	td					1 of 1
			STRATA			SAN	IPLE	S & TESTS
						Depth	No	Remarks/Tes
Depth 1 0.00-0.30	No $\frac{\sqrt{1/2}}{\sqrt{1/2}}$	Grass over dark brown medium occasionally	DESC n slightly gravelly SAND. coarse quartzite and limes	RIPTION Gravel is ang stone. (HANB	ular to subrounded fine and OROUGH GRAVEL)			
0.30-1.00		Brown slightly gravel occasionally coarse qu (HANBOROUGH GH 0.80 - 1.00 Locally cla	ly SAND. Gravel is angul uartzite, limestone and rar RAVEL) ayey, gravelly.	ar to subround e ironstone. Sa	led fine and medium and is fine to coarse.			
Shoring/Su Stability: S	upport: Stable. 2 — A	B 0.4			N 4 4	SG B3	G RI pakawa ackfille	ENERAL EMARKS y test undertake d with arisings.
All dimension Scale	C ons in met e 1:25	res Client Mano	prwood Homes	Method/ Plant Used	Backhoe excavator.		ogged E	^{3y} JT

Phone: 078 Proiect	528810)86						TR	IAL PIT No
I in	ce I ai	ne Kii	rtlington					IN	ALTI NO
Job No		ic, ixii	Date	Ground Level (m	i) Co	-Ordinates ()			SA4
BC	624		18-07-22		,	0			
Contractor	.021		10 07 22					Sheet	
The	e Brov	vnfield	l Consultancy Ltd						1 of 1
				STRATA			SAN	1PLE	S & TESTS
	<u> </u>						Depth	No	Remarks/Test
Depth 0.00-0.30	No	$\frac{l_{z}}{\frac{\lambda l}{l_{z}}}$ Gr	ass over dark brown s edium occasionally co	DESCI lightly gravelly SAND. arse quartzite and limes	RIPTION Gravel is ang tone. (HANB	ular to subrounded fine and OROUGH GRAVEL)			
0.30-1.10		Br ocu (H	own SAND with occa casionally coarse quar ANBOROUGH GRA	isional gravel of angular tzite, limestone and rare VEL)	to subrounde i ironstone. Sa	d fine and medium nd is fine to coarse.			
1.10-1.50		Br	own fine to coarse SA	ND.(HANBOROUGH	GRAVEL)		-		
	· · · · · · · · · · · · · · · · · · ·				,				
1.50		Pit	t terminated at target d	lepth. No obvious groun	dwater.		-		
Shoring/S Stability:	Suppor Stabl	rt: e. 2 A	B ↓ B ↓			N	Sc Ba	G RI pakawa ackfille	ENERAL EMARKS y test undertaker d with arisings.
All dimen	sions in ale 1:25	metres	Client Manory	wood Homes	Method/ Plant Used	Backhoe excavator.		ogged E	^{3y} JT

Phone: 078	528810	086				JU			5
Project								TR	IAL PIT No
Lin	ce La	ne, Kirt	lington						TD1
Job No		1	Date	Ground Level (n	n) Co	-Ordinates ()			161
BC	2624		18-07-22						
Contractor								Sheet	
The	e Brov	wnfield	Consultancy Ltd						1 of 1
				STRATA			SAN	APLE	S & TESTS
							Depth	No	Remarks/Tests
Depth 0.00-0.30	No	$\begin{array}{c c} & & \\ \hline \\ \hline$	ss over dark brown gr asionally coarse quartz	DESC avelly SAND. Gravel zite, limestone and rar	RIPTION is angular to s e ironstone. (H	ubrounded fine and medium IANBOROUGH GRAVEL)			
0.30-1.90		Image: constraint of the second se	wn slightly gravelly S isionally coarse quart: NBOROUGH GRAV - 1.90 Gravelly. erminated at target de y slow groundwater ir	AND. Gravel is angul <i>i</i> te, limestone and rar (EL) pth. agress at 1.90m; level :	ar to subround e ironstone. Sa at 1.80m after	4 hours.			
Shoring/S Stability:	Suppo	rt: le. A				N + +	В	GI RI ackfilled	ENERAL EMARKS d with arisings.
All dimen	sions ir ale 1:25	n metres	Client Manorw	ood Homes	Method/ Plant Used	Backhoe excavator.		ogged B	JT

APPENDIX C

Soakaway Calculation Sheets

Appendix C

GREENFIELD

Rainf 5 15 30	Fall Methodology F FSR Region E M5-60 (mm) 2 Ratio-R 0 Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x	SR ngland and Wale 0.000 .400 .750 .840 lormal	n Settings Drain Down Time (r Additional Storage (m Check Discharge Ra 1 year 2 year 30 year 100 year Check Discharge Vol	mins) 240 $3^{3}/ha$) 20.0 te(s) (1/s) 0.1 (1/s) 0.1 (1/s) 0.3 (1/s) 0.4
Rainf 5 15 30	Fall Methodology F FSR Region E M5-60 (mm) 2 Ratio-R 0 Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x	SR ngland and Wale 0.000 .400 .750 .840 Iormal	Drain Down Time (r Additional Storage (m Check Discharge Ra 1 year 2 year 30 year 100 year Check Discharge Vo	mins) 240 ³ /ha) 20.0 ate(s) √ ^c (l/s) 0.1 ^c (l/s) 0.1 ^c (l/s) 0.3 ^c (l/s) 0.4
15 30	FSR Region E M5-60 (mm) 2 Ratio-R 0 Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x	ngland and Wale 0.000 .400 .750 .840 Iormal	es Additional Storage (m Check Discharge Ra 1 year 2 year 30 year 100 year Check Discharge Vo	a^{3} /ha) 20.0 ate(s) r(1/s) 0.1 r(1/s) 0.1 r(1/s) 0.3 r(1/s) 0.4
15 30	M5-60 (mm) 2 Ratio-R 0 Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x	0.000 .400 .750 .840 Iormal	Check Discharge Ra 1 year 2 year 30 year 100 year Check Discharge Vo	ate(s) \checkmark r (l/s) 0.1 r (l/s) 0.1 r (l/s) 0.3 r (l/s) 0.4
15 30	Ratio-R 0 Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x 60 120 18	.400 .750 .840 Iormal	1 year 2 year 30 year 100 year Check Discharge Vo	r (l/s) 0.1 r (l/s) 0.1 r (l/s) 0.3 r (l/s) 0.4
15 30	Summer CV 0 Winter CV 0 Analysis Speed N Skip Steady State x 60 120 18	.750 .840 Iormal	2 year 30 year 100 year Check Discharge Vo	r (l/s) 0.1 r (l/s) 0.3 r (l/s) 0.4
15 30	Winter CV 0 Analysis Speed N Skip Steady State x 60 120 18	.840 Iormal	30 year 100 year Check Discharge Vo	r (I/s) 0.3 r (I/s) 0.4
15 30	5kip Steady State x	iormai	Check Discharge Vo	(1/5) 0.4
15 30	60 120 18		Check Discharge Vol	lumo v
15 30	60 120 18			lume x
15 50	120 120 10	Storm Du	Irations	20 960 1440
		0 240 .	480 000 72	20 300 1440
	Return Period Cli	mate Change	Additional Area Additiona	l Flow
	1	0	0	0
	2	0	0	0
	30	0	0	0
	30	40	0	0
	100	0	0	0
	100	40	0	0
	<u>P</u>	re-development	<u>: Discharge Rate</u>	
	Site Ma	keup Greenfie	ld Growth Factor 30 ye	ear 2.40
	Greenfield Me	thod IH124	Growth Factor 100 ye	ar 3.19
Ро	sitively Drained Area	ı (ha) 0.913	Betterment (%) 0
	SAAR	mm) 639	QB	lar 0.1
	Soil I	ndex 1	Q 1 year (l,	/s) 0.1
		SPR 0.10	Q 2 year (l,	/s) 0.1
	Crowth Factor 1	gion 6	Q 30 year (I,	(s) 0.3
	Growth Factor 2	year 0.85	Q 100 year (i)	(5) 0.4

CAUSEWAY 😜				Net Arg 21/	work: Stor e Rivera 09/2022	m Netw	vork			
			Des	ign Settiı	ngs					
Rainfall Methodol Return Period (ye Additional Flow FSR Reg M5-60 (n Rati	ogy FSR ars) 2 (%) 0 gion Engla nm) 20.00 io-R 0.400 CV 0.750 ins) 6.00	and and W DO D	/ales	Maximu Er	m Time of Maxir Mi Minimum Prefe Include nforce best	Concen num Rai nimum Con Backdr rred Co Interme t practic	tration (mi infall (mm/ Velocity (m nnection Ty op Height ver Depth ediate Grou e design ru	ins) 30 /hr) 50 n/s) 1. ype Le (m) 0. (m) 1. und √ iles √).00).0 00 vel Inver 200 200	ts
			<u>Circu</u>	lar Link 1	<u>Type</u>					
	S Ba	hape Ci arrels 1	rcular	Auto In	icrement (Follow Gro	mm) 7 ound >	75 <			
			Available 10	Diamete 0 15	ers (mm) 50					
				<u>Nodes</u>						
Nam	e Area (ha)	T of E (mins)	Cove Level	r Dian (m	neter Ea: im) (sting I m)	Northing (m)	Depth (m)		
House Soakav Dumm	0.021 way W	6.00	(m) 101.00 101.00 101.00	00 00 00	450 -0 10 450 19).063).351).921	0.531 0.272 0.430	0.600 0.700 0.800		
				<u>Links</u>						
NameUSDNodeNo1.000HouseSoaka1.001SoakawayDum	e S Len ade (n away 10.0 my 10.0	gth ks (n) 200 200	mm) / n 0.600 0.600	US IL (m) 100.400 100.300	DS IL (m) 100.300 100.200	Fall (m) 0.100 0.100	Slope (1:X) 100.0 100.0	Dia (mm) 100 100	T of C (mins) 6.22 6.43	Rain (mm/hr) 50.0 50.0
Name	Vel Ca (m/s) (l/	p Flow s) (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocit (m/s)	у	
1.000 1.001	0.769 6 0.769 6	.0 2.8 .0 2.8	0.500 0.600	0.600 0.700	0.021 0.021	0.0 0.0	48 48	0.75 0.75	6 6	
			<u>Simul</u>	ation Set	<u>tings</u>					
Rainfall I	Vethodolo FSR Regio M5-60 (mr Ratio Summer C Winter C	gy FSR on Engla n) 20.00 -R 0.400 CV 0.750 CV 0.840))0)))	/ales	Drain D Additiona Check Check D	Analy Skip Ste Down Tir al Storag Discharg Discharg	rsis Speed ady State me (mins) ge (m ³ /ha) ge Rate(s) e Volume	Norma x 240 20.0 x x	al	

					Storm	n Duratio	ns				
15	30	60	120	180	240	360	480	600	720	960	1440

CAUSEWAY 🛟			Network: Storm N Arge Rivera 21/09/2022	letwork	Page 2	
9	Return Period Clin	nate Change	Additional Area	Additional Flo	W	
	1	0	0		0	
	2	0	0		0	
	30	0	0		0	
	30	40	0		0	
	100	0	0		0	
	100	40	0		0	
	Nod	e Soakaway Or	<u>ıline Pump Contro</u>	<u>l</u>		
1	Flap Valve x	Invert Lev	vel (m) 100.300	Switch on	depth (m)	1.500
Downst Replaces Downst	ream Link 1.001 ream Link √	Design Dep Design Flo	oth (m) 1.500 ow (l/s) 0.1	Switch off	depth (m)	0.010
	De	pth Flow	Depth Flow			
	(1	m) (I/s)	(m) (l/s)			
	0.	001 0.000	1.500 0.000			
	<u>Node Soa</u>	akaway Depth/	Area Storage Strue	<u>cture</u>		
Base Inf Coefficien Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.02880	Safety Fac Poros	tor 2.0 sity 0.95 Tin	Invert L ne to half empt	.evel (m) ty (mins)	100.300
Depth (m) 0.000	Area Inf Area (m ²) (m ²)	Depth Are (m) (m ² 0.400 55	a Inf Area E ²) (m ²)	Depth Area (m) (m²) 0 401 0 0	Inf Area (m ²)	
0.000	55.6 0.0	<u>Rair</u>	nfall		0.0	
Event	Peak	Average	Even	t	Peak	Average
	Intensity	Intensity		-	Intensity	Intensity
	(mm/hr)	(mm/hr)			, (mm/hr)	, (mm/hr)
1 year 15 minute su	mmer 109.521	30.991	2 year 15 minut	e summer	141.566	40.058
1 year 15 minute wi	nter 76.857	30.991	2 year 15 minut	e winter	00.245	
1 year 30 minute su	mmer 71.439	20 215			99.345	40.058
1 year 30 minute wi		20.213	2 year 30 minut	e summer	99.345 91.753	40.058 25.963
	nter 50.133	20.215	2 year 30 minut 2 year 30 minut	e summer e winter	99.345 91.753 64.388	40.058 25.963 25.963
, 1 year 60 minute su	nter 50.133 mmer 48.435	20.215 20.215 12.800	2 year 30 minut 2 year 30 minut 2 year 60 minut	e summer e winter e summer	99.345 91.753 64.388 61.301	40.058 25.963 25.963 16.200
1 year 60 minute sui 1 year 60 minute wi	nter 50.133 mmer 48.435 nter 32.179	20.215 20.215 12.800 12.800	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut	e summer e winter e summer e winter	99.345 91.753 64.388 61.301 40.727	40.058 25.963 25.963 16.200 16.200
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053	20.213 20.215 20.215 12.800 12.800 3 7.942	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minut	e summer e winter e summer e winter te summer	99.345 91.753 64.388 61.301 40.727 37.449	40.058 25.963 25.963 16.200 16.200 9.897
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute w	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 <i>v</i> inter 19.966	20.215 20.215 12.800 12.800 3 7.942 7.942	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu	e summer e winter e summer e winter te summer te winter	99.345 91.753 64.388 61.301 40.727 37.449 24.880	40.058 25.963 25.963 16.200 16.200 9.897 9.897
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute w 1 year 120 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 <i>v</i> inter 19.966 ummer 23.233	20.215 20.215 12.800 12.800 7.942 5 7.942 5 5.979	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu	e summer e winter e summer e winter te summer te winter te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672	40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute w 1 year 120 minute si 1 year 180 minute w	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102	20.215 20.215 12.800 12.800 7.942 7.942 5.979 5.979	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu	e summer e winter e summer e winter te summer te winter te summer te winter	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637	40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475	20.215 20.215 12.800 12.800 7.942 5.979 5.979 4.882	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636	40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su 1 year 180 minute su 1 year 240 minute su 1 year 240 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su 1 year 180 minute su 1 year 240 minute su 1 year 240 minute su 1 year 360 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882 4.882 3.646	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 360 minu	e summer e winter e summer e winter te summer te winter te summer te summer te summer te summer te winter te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si 1 year 360 minute si 1 year 360 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882 4.882 3.646 3.646	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 360 minu 2 year 360 minu	e summer e winter e summer e winter te summer te winter te summer te summer te winter te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 360 minute si 1 year 480 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882 3.646 3.646 5.2.956	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 360 minu 2 year 480 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 360 minute si 1 year 480 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 7.431	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882 3.646 3.646 5.2.956 2.956	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su 1 year 240 minute su 1 year 240 minute su 1 year 360 minute su 1 year 480 minute su 1 year 480 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 7.431 ummer 9.183	20.215 20.215 12.800 12.800 7.942 5.979 5.979 4.882 4.882 3.646 3.646 5.2.956 2.956 2.511	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu 2 year 600 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 4.435 3.581 3.581 3.033
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su 1 year 240 minute su 1 year 240 minute su 1 year 360 minute su 1 year 360 minute su 1 year 480 minute su 1 year 600 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 14.169 vinter 9.210 ummer 11.185 vinter 7.431 ummer 9.182 vinter 6.274	20.215 20.215 12.800 12.800 7.942 5.979 5.979 4.882 4.882 4.882 3.646 3.646 2.956 2.956 2.956 2.511 2.511	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 360 minu 2 year 360 minu 2 year 480 minu 2 year 600 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te winter te summer te summer te winter	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7 576	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.581 3.033 3.033
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 480 minute si 1 year 480 minute si 1 year 480 minute si 1 year 600 minute si 1 year 600 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 7.431 ummer 9.182 vinter 6.274 ummer 8.203	20.215 20.215 12.800 12.800 7.942 5.979 5.979 5.979 4.882 4.882 4.882 3.646 3.646 2.956 2.956 2.956 2.511 4.2.511 2.199	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.033 3.033 2.647
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 480 minute si 1 year 480 minute si 1 year 480 minute si 1 year 600 minute si 1 year 600 minute si 1 year 720 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 9.210 ummer 11.254 vinter 6.274 ummer 8.203 vinter 5.513	20.215 20.215 12.800 12.800 12.800 7.942 5.979 5.979 4.882 3.646 2.956 2.956 2.511 2.511 2.511 2.199 2.199	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minut 2 year 120 minu 2 year 180 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer te winter	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.629	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.033 3.033 2.647 2.647
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 480 minute si 1 year 480 minute si 1 year 480 minute si 1 year 600 minute si 1 year 600 minute si 1 year 720 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 7.431 ummer 9.182 vinter 6.274 ummer 8.203 vinter 5.513 ummer 5.513	20.215 20.215 12.800 12.800 12.800 7.942 5.979 5.979 4.882 3.646 2.956 2.956 2.511 2.511 2.199 2.199 3.720	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu 2 year 720 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.112	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.581 3.033 3.033 2.647 2.647 2.126
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 360 minute si 1 year 480 minute si 1 year 480 minute si 1 year 600 minute si 1 year 720 minute si 1 year 720 minute si 1 year 720 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 11.185 vinter 6.274 ummer 8.203 vinter 5.513 ummer 6.768 vinter 6.768	20.215 20.215 12.800 12.800 7.942 5.979 5.979 4.882 4.882 4.882 3.646 3.646 2.956 2.956 2.511 2.511 2.199 2.199 1.782	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minut 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 480 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu 2 year 720 minu 2 year 960 minu	e summer e winter e summer e winter te summer te winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113 5.274	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.581 3.033 3.033 2.647 2.647 2.136 2.136
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute su 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su 1 year 240 minute su 1 year 240 minute su 1 year 360 minute su 1 year 360 minute su 1 year 480 minute su 1 year 600 minute su 1 year 600 minute su 1 year 720 minute su 1 year 960 minute su 1 year 960 minute su	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 14.169 vinter 9.210 ummer 9.182 vinter 6.274 ummer 9.182 vinter 5.513 ummer 5.513 ummer 6.768 vinter 4.483 vinter 4.483	20.215 20.215 12.800 12.800 7.942 5.979 5.979 4.882 4.882 3.646 3.646 2.956 2.956 2.511 2.511 2.199 2.199 3.1.782 1.782	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 360 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu 2 year 720 minu 2 year 960 minu	e summer e winter e summer e winter te summer te summer te winter te summer te winter te summer te winter te summer te winter te summer te summer te summer te summer te summer te summer te summer te summer te summer te summer	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113 5.374	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 4.435 4.435 3.581 3.581 3.033 3.033 2.647 2.647 2.136 2.136
1 year 60 minute su 1 year 60 minute wi 1 year 120 minute si 1 year 120 minute si 1 year 180 minute si 1 year 180 minute si 1 year 240 minute si 1 year 240 minute si 1 year 360 minute si 1 year 360 minute si 1 year 480 minute si 1 year 480 minute si 1 year 600 minute si 1 year 600 minute si 1 year 720 minute si 1 year 960 minute si 1 year 960 minute si 1 year 960 minute si	nter 50.133 mmer 48.435 nter 32.179 ummer 30.053 vinter 19.966 ummer 23.233 vinter 15.102 ummer 18.475 vinter 12.274 ummer 14.169 vinter 9.210 ummer 14.169 vinter 9.210 ummer 11.185 vinter 6.274 ummer 9.182 vinter 5.513 ummer 5.513 ummer 6.768 vinter 4.949 vinter 4.949	20.215 20.215 12.800 12.800 12.800 7.942 5.979 5.979 4.882 3.646 2.956 2.956 2.511 2.511 2.199 3.1782 1.326	2 year 30 minut 2 year 30 minut 2 year 60 minut 2 year 60 minut 2 year 120 minu 2 year 120 minu 2 year 120 minu 2 year 180 minu 2 year 240 minu 2 year 240 minu 2 year 360 minu 2 year 360 minu 2 year 480 minu 2 year 600 minu 2 year 720 minu 2 year 960 minu 2 year 1440 minu	e summer e winter e summer e winter te summer te winter	99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113 5.374 5.891	40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 4.435 4.435 3.581 3.581 3.581 3.033 3.033 2.647 2.647 2.136 2.136 1.579

<u>Rainfall</u>

Event	Peak	Average	Event	Peak	Average
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 15 minute summer	268 706	76.035	100 year 15 minute summer	348 738	98 681
30 year 15 minute winter	188.566	76.035	100 year 15 minute winter	244.728	98.681
30 year 30 minute summer	174.929	49,499	100 year 30 minute summer	228.965	64,789
30 year 30 minute winter	122.757	49,499	100 year 30 minute winter	160.677	64,789
30 year 60 minute summer	116.589	30.811	100 year 60 minute summer	153,288	40.510
30 year 60 minute winter	77 459	30 811	100 year 60 minute winter	101 841	40 510
30 year 120 minute summer	70 438	18 615	100 year 120 minute summer	92 562	24 461
30 year 120 minute winter	46 797	18 615	100 year 120 minute winter	61 496	24 461
30 year 180 minute summer	53,298	13.715	100 year 180 minute summer	69.806	17.964
30 year 180 minute winter	34 645	13 715	100 year 180 minute winter	45 376	17 964
30 year 240 minute summer	41.604	10.995	100 year 240 minute summer	54,269	14.342
30 year 240 minute winter	27.641	10.995	100 year 240 minute winter	36.055	14.342
30 year 360 minute summer	31.221	8.034	100 year 360 minute summer	40.484	10.418
30 year 360 minute winter	20.295	8.034	100 year 360 minute winter	26.315	10.418
30 year 480 minute summer	24 324	6 428	100 year 480 minute summer	31 414	8 302
30 year 480 minute winter	16,160	6.428	100 year 480 minute winter	20.871	8.302
30 year 600 minute summer	19.756	5.404	100 year 600 minute summer	25.431	6.956
30 year 600 minute winter	13.498	5.404	100 year 600 minute winter	17.376	6.956
30 year 720 minute summer	17,490	4.687	100 year 720 minute summer	22.452	6.017
30 year 720 minute winter	11.754	4.687	100 year 720 minute winter	15.089	6.017
30 year 960 minute summer	14.215	3.743	100 year 960 minute summer	18.166	4.784
30 year 960 minute winter	9.416	3.743	100 year 960 minute winter	12.033	4,784
30 year 1440 minute summer	10.161	2.723	100 year 1440 minute summer	12.896	3.456
30 year 1440 minute winter	6.829	2.723	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 15 minute summer	376.189	106.449	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 15 minute winter	263.992	106.449	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 30 minute summer	244.900	69.298	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 30 minute winter	171.860	69.298	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 180 minute summer	97.729	25.149
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 180 minute winter	63.526	25.149
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 240 minute summer	75.977	20.078
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 240 minute winter	50.477	20.078
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 360 minute winter	28.413	11.248	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 480 minute summer	34.053	8.999	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 480 minute winter	22.624	8.999	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 720 minute summer	31.433	8.424
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 720 minute winter	21.125	8.424
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 960 minute summer	25.432	6.697
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 960 minute winter	16.847	6.697
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 1440 minute summer	18.055	4.839
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 1440 minute winter	12.134	4.839

600 minute winter Soakaway Infiltration

File: Lince Lane M1.pfd Network: Storm Network Arge Rivera 21/09/2022

Page 4

Results for 1	year Critical Storm Duration.	Lowest mass balance: 99.01%
	-	

	Node Eve	ent	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15	minute w	inter	House	10	100.452	0.052	2.7	0.0446	0.0000	ОК	
600) minute v	vinter	Soakaway	840	100.391	0.091	0.3	4.7341	0.0000	ОК	
15	minute su	mmer	Dummy	1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Ev (Upstream	ent Depth)	US Node	Link	l	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Ca	ip Linl Vol (r	k n³)	Discharge Vol (m ³)
15 minute	winter	House	1.000	So	akaway	2.7	1.302	0.45	0.02	35	
600 minute	e winter	Soakaw	ay Pump	Du	ımmy	0.0					0.0

0.0

Flow+ v10.1 Copyright © 1988-2022 Causeway Technologies Ltd

File: Lince Lane M1.pfd
Network: Storm Network
Arge Rivera
21/09/2022

Results for 2	year Critical Storm Duration.	Lowest mass balance: 99.01%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winte	er House	10	100.460	0.060	3.5	0.0511	0.0000	ОК	
600 minute wint	ter Soakav	vay 630	100.413	0.113	0.4	5.8811	0.0000	SURCH	ARGED
15 minute sumn	ner Dumm	y 1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m	city Flow /s)	v/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	3.	5 1.	359	0.583	0.0287	
600 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
600 minute winter	Soakaway	Infiltration		0.	0				

Results for 30	year Critical Storm Duration.	Lowest mass balance: 99.01%
-		

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
1440 minute win	ter House	1590	100.530	0.130	0.3	0.1120	0.0000	SURCH	ARGED
1440 minute win	ter Soakaw	ay 1680	100.530	0.230	0.3	12.0175	0.0000	SURCH	ARGED
15 minute summ	er Dummy	/ 1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velo (m	ocity Flov /s)	v/Cap	Link Vol (m³)	Discharge Vol (m³)
1440 minute winter	House	1.000	Soakaway	0.	.3 0.	.506	0.050	0.0782	
1440 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
1440 minute winter	Soakaway	Infiltration		0.	0				

Results for 30	year +40% CC Critical S	Storm Duration.	Lowest mass	balance: 99.01%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winter	House	11	100.644	0.244	9.3	0.2094	0.0000	SURCH	ARGED
1440 minute win	ter Soakaw	/ay 1440	100.611	0.311	0.5	16.2564	0.0000	SURCH	ARGED
15 minute summ	er Dumm	y 1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velc (m	ocity Flov /s)	w/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	8.	9 1	.500	1.482	0.0696	
1440 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
1440 minute winter	Soakaway	Infiltration		0.	0				

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
15 minute winter	House	11	100.605	0.205	8.6	0.1762	0.0000	SURCH	ARGED
1440 minute win	ter Soakaw	ay 1560	100.591	0.291	0.4	15.1967	0.0000	SURCH	ARGED
15 minute summ	er Dummy	/ 1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velo (m	ocity Flow /s)	w/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	House	1.000	Soakaway	8.	3 1.	495	1.374	0.0659	
1440 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
1440 minute winter	Soakaway	Infiltration		0.	0				

Results for 100	year +40% CC Critical Storm Durat	ion. Lowest mass balance: 99.01%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
15 minute winter	House	12	100.812	0.412	12.0	0.3535	0.0000	FLOOD	RISK
1440 minute win	ter Soakaw	ay 1470	100.686	0.385	0.6	20.1421	0.0000	SURCH	ARGED
15 minute summ	er Dummy	/ 1	100.200	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m	ocity Flov /s)	w/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	House	1.000	Soakaway	11.	51.	.633	1.905	0.0782	
1440 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
1440 minute winter	Soakaway	Infiltration		0.	0				

CAUSEWAY 😜	RIDA Repor	ts	Arg	: Lince Lan work: Stor e Rivera 09/2022	e M2.pfd m Netwo	ork	Page 1		
		<u>[</u>	Design Settii	ngs					
Rainfall Methodolo Return Period (yea Additional Flow (FSR Regi M5-60 (m Ratio	ogy FSR irs) 2 (%) 0 ion England m) 20.000 o-R 0.400 CV 0.750 ns) 6.00	d and Wales	Maximu Er	m Time of Maxin Minimum Prefe Include nforce best	Concent num Rair nimum V Con Backdro rred Cov Intermed	ration (mi afall (mm/ elocity (m nection Ty p Height er Depth diate Grou design ru	(ns) 30 (hr) 50 n/s) 1. ype Le (m) 0. (m) 1. und √ iles √	0.00 0.0 00 vel Inver 200 200	ts
		<u>Ci</u>	rcular Link 1	<u>[ype</u>					
	Sha Barr	ipe Circular els 1	Auto Ir	icrement (i Follow Gro	mm) 75 ound x	5			
		Availa	ble Diamete 100 15	ers (mm) 50					
			<u>Nodes</u>						
Name	e Area (ha)	T of E Co (mins) Le	ver Dian vel (m	neter Eas im) (sting N m)	orthing (m)	Depth (m)		
House Soakaw Dummy	0.010 vay /	6.00 101 101 101	.000 .000 .000	450 -0 10 450 19	.063 .351 .921	0.531 0.272 0.430	0.500 0.600 0.700		
			<u>Links</u>						
Name US DS Node Nod 1.000 House Soaka 1.001 Soakaway Dumn	5 Lengt de (m) way 10.00 ny 10.00	h ks (mm) / n 0 0.600 0 0.600	US IL (m) 100.500 100.400	DS IL (m) 100.400 100.300	Fall (m) 0.100 0.100	Slope (1:X) 100.0 100.0	Dia (mm) 100 100	T of C (mins) 6.22 6.43	Rain (mm/hr) 50.0 50.0
Name (Vel Cap (m/s) (l/s)	Flow US (I/s) Dep (m	5 DS th Depth) (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocit (m/s)	y	
1.000 (1.001 (0.769 6.0 0.769 6.0	1.4 0.40 1.4 0.50	00 0.500 00 0.600	0.010 0.010	0.0 0.0	32 32	0.62 0.62	1 1	
		Sin	nulation Set	<u>tings</u>					
Rainfall M	1ethodology FSR Region M5-60 (mm) Ratio-R Summer CV Winter CV	FSR England and 20.000 0.400 0.750 0.840	d Wales	Drain D Additiona Check D Check D	Analys Skip Stea Down Tim Il Storage Discharge Discharge	is Speed dy State e (mins) e (m³/ha) e Rate(s) Volume	Norma x 240 20.0 x x	al	

					Storm	Duratio	ns				
15	30	60	120	180	240	360	480	600	720	960	1440

CAUSEWAY 🚱			Network: Storm N Arge Rivera 21/09/2022	Vetwork	1080 2	
R	eturn Period Clin	nate Change	Additional Area	Additional Flo	w	
	1	0	(~ /))		0	
	2	0	0		0	
	30	0	0		0	
	30	40	0		0	
	100	0	0		0	
	100	40	0		0	
	Nod	e Soakaway On	nline Pump Contro	<u>l</u>		
F	lap Valve x	Invert Lev	vel (m) 100.400	Switch on	depth (m)	1.500
Downstr Replaces Downstr	eam Link 1.001 eam Link √	Design Dep Design Flo	th (m) 1.500 w (l/s) 0.1	Switch off	depth (m)	0.010
	De	oth Flow	Depth Flow			
	(m) (I/s)	(m) (l/s)			
	0.	001 0.000	1.500 0.000			
	<u>Node So</u>	akaway Depth/	Area Storage Strue	<u>cture</u>		
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 t (m/hr) 0.02880	Safety Fac Poros	tor 2.0 sity 0.95 Tim	Invert L ne to half empt	evel (m) y (mins)	100.400
Dauth		Danah Ana			1	
Depth	Area Int Area	Depth Are	a InfArea L	Jepth Area	Int Area	
()	(2) (2)	1 1 1 2	N (2)	· · · · ·	1 21	
(m) 0.000	(m ²) (m ²) 30.0 0.0	(m) (m ² 0.400 30.0	²) (m ²) 0 0.0 0	(m) (m ²) 0.401 0.0	(m²) 0.0	
(m) 0.000	(m²) (m²) 30.0 0.0	(m) (m² 0.400 30.0 Rain	2) (m²) 0 0.0 (nfall	(m) (m ²) 0.401 0.0	(m²) 0.0	
(m) 0.000 Event	(m²) (m²) 30.0 0.0 Peak	(m) (m² 0.400 30. <u>Rain</u> Average	2) (m²) 0 0.0 (<u>nfall</u> Even	(m) (m ²) 0.401 0.0	(m²) 0.0 Peak	Average
(m) 0.000 Event	(m²) (m²) 30.0 0.0 Peak Intensity	(m) (m ² 0.400 30.0 <u>Rain</u> Average / Intensity	2) (m²) 0 0.0 0 <u>nfall</u> Even	(m) (m ²) 0.401 0.0 t	(m²) 0.0 Peak Intensity	Average Intensity
(m) 0.000 Event	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr)	(m) (m ² 0.400 30.0 <u>Rain</u> Average / Intensity) (mm/hr)	²) (m²) 0 0.0 0 <u>nfall</u> Even	(m) (m ²) 0.401 0.0 t	(m²) 0.0 Peak Intensity (mm/hr)	Average Intensity (mm/hr)
(m) 0.000 Event 1 year 15 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521	(m) (m ² 0.400 30.4 <u>Rain</u> Average (Intensity) (mm/hr) 1 30.991	2) (m²) 0 0.0 0 <u>nfall</u> Even 2 year 15 minute	(m) (m²) 0.401 0.0 t t	(m²) 0.0 Peak Intensity (mm/hr) 141.566	Average Intensity (mm/hr) 40.058
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute wir	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857	(m) (m ² 0.400 30.4 <u>Rain</u> Average (Intensity) (mm/hr) 1 30.991 7 30.991	2) (m²) 0 0.0 0 <u>nfall</u> 2 year 15 minute 2 year 15 minute	(m) (m²) 0.401 0.0 It e summer e winter	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345	Average Intensity (mm/hr) 40.058 40.058
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute wir 1 year 30 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439	(m) (m ² 0.400 30.1 <u>Rain</u> Average (Intensity) (mm/hr) 1 30.991 7 30.991 9 20.215	2) (m ²) 0 0.0 0 <u>ifall</u> 2 year 15 minute 2 year 15 minute 2 year 30 minute	(m) (m²) 0.401 0.0 t e summer e winter e summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753	Average Intensity (mm/hr) 40.058 40.058 25.963
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute wir 1 year 30 minute sun 1 year 30 minute wir	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133	(m) (m ² 0.400 30.1 <u>Rain</u> Average (Intensity) (mm/hr) 30.991 7 30.991 9 20.215 3 20.215	t) (m²) 0 0.0 0 nfall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e summer e winter	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute wir 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.435	(m) (m ² 0.400 30.4 <u>Rain</u> Average Intensity (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 5 12.800	e) (m²) 0 0.0 0 <u>offall</u> 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e winter e summer e summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute wir 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute wir	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nmer 71.432 nmer 71.433 nmer 48.435 nmer 48.435 nmer 32.179	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 5 12.800 9 12.800	t) (m²) 0 0.0 0 nfall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 60 minute	(m) (m ²) 0.401 0.0 It e summer e winter e summer e summer e summer e summer e summer e summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute su	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 ummer 30.053	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 5 12.800 3 12.800 3 7.942	e) (m²) 0 0.0 0 offall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute	(m) (m ²) 0.401 0.0 t t e summer e summer e summer e summer e summer e winter te summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute su 1 year 120 minute su	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 mmer 71.439 mmer 71.439 mmer 48.435 mmer 48.435 mmer 48.435 mmer 32.179 inter 30.053 inter 19.966	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215	e) (m²) 0 0.0 0 offall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e summer e summer e winter te summer ite summer ite summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute su 1 year 120 minute su 1 year 180 minute su	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nmer 71.439 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 inter 30.053 inter 19.966 immer 23.233	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215	e) (m²) 0 0.0 0 offall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 180 minute	(m) (m ²) 0.401 0.0 t t e summer e summer e summer e summer e summer te summer ite summer ite summer ite summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.435 nter 32.179 inter 30.053 inter 19.966 immer 23.233 inter 15.102	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215	e) (m²) 0 0.0 0 Ifall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 60 minute 2 year 60 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 180 minute	(m) (m ²) 0.401 0.0 ht e summer e winter e summer e winter e summer e winter ite summer ite summer ite summer ite summer ite summer ite summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 inter 19.966 immer 23.233 inter 15.102 immer 18.475	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 20.215 30.991 20.215 320,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,215 300,	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 180 minute 2 year 240 minute	(m) (m ²) 0.401 0.0 ht e summer e winter e summer e winter te summer te summer ite summer ite summer ite summer ite summer ite summer ite summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun 1 year 240 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.435 nter 32.179 inter 19.966 immer 23.233 inter 15.102 immer 18.475 inter 12.274	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 300.215 300.215 300.215 300.215 300.215 300.215 300	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 180 minute 2 year 240 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e winter te summer te summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982 5.982
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 360 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 mmer 71.439 mmer 71.439 mmer 48.435 mmer 48.435 inter 32.179 inter 19.966 immer 23.233 inter 15.102 immer 18.475 inter 12.274 immer 14.169	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 2 20.215	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 240 minute 2 year 240 minute 2 year 360 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter te summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 9.897 7.378 7.378 5.982 5.982 4.435
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 240 minute sun 1 year 360 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 mmer 71.439 mmer 71.439 mmer 71.439 mmer 30.053 inter 19.966 immer 18.475 inter 12.274 immer 14.169 inter 9.210	(m) (m ² 0.400 30.1 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 2 20.215	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 20 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter te summer te summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982 5.982 5.982 4.435 4.435
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 360 minute sun 1 year 360 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 inter 76.857 nmer 71.439 inter 50.133 nmer 48.435 inter 32.179 immer 30.053 inter 19.966 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 11.185	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute 2 year 240 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute 2 year 360 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter te summer te summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 360 minute sun 1 year 360 minute sun 1 year 480 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 inter 30.053 inter 19.966 immer 23.233 inter 15.102 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 11.185 inter 7.431	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 360 minute 2 year 480 minute 2 year 480 minute	(m) (m ²) 0.401 0.0 ht e summer e winter e summer e winter te summer te summer tte summer tte summer tte winter tte summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 360 minute sun 1 year 360 minute sun 1 year 480 minute sun 1 year 480 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.435 nter 32.179 inter 19.966 immer 13.233 inter 15.102 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 11.185 inter 7.431 immer 9.182	(m) (m ² 0.400 30.4 Rain Average Intensity (mm/hr) 30.991 30.991 20.215 20.215 20.215 20.215 20.215 3 20.215 3 20.979 3 5.979 3 3.646 3 3.646 3 2.956 2 2.956 2 2.511	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 20 minute 2 year 20 minute 2 year 30 minute 2 year 20 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 240 minute 2 year 360 minute 2 year 480 minute 2 year 480 minute 2 year 480 minute 2 year 600 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e winter te summer te winter tte summer tte winter tte summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.581 3.033
(m) 0.000 Event 1 year 15 minute sum 1 year 15 minute sum 1 year 30 minute sum 1 year 30 minute sum 1 year 60 minute sum 1 year 60 minute sum 1 year 120 minute sum 1 year 120 minute sum 1 year 180 minute sum 1 year 180 minute sum 1 year 240 minute sum 1 year 360 minute sum 1 year 480 minute sum 1 year 480 minute sum	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 mmer 71.439 mmer 71.439 mmer 71.439 mmer 48.435 mmer 48.435 inter 32.179 inter 19.966 immer 23.233 inter 19.966 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 11.185 inter 7.431 immer 9.182 inter 9.182 inter 9.182 inter 9.214	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 320.25 30.25 30.25 30.2	*) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute 2 year 180 minute 2 year 240 minute 2 year 360 minute 2 year 480 minute 2 year 480 minute 2 year 600 minute 2 year 600 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e winter te summer te winter tte summer tte summer tte winter tte summer tte winter tte summer tte winter tte summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 3.581 3.581 3.581 3.033 3.033
(m) 0.000 Event 1 year 15 minute sum 1 year 15 minute sum 1 year 30 minute sum 1 year 30 minute sum 1 year 30 minute sum 1 year 60 minute sum 1 year 60 minute sum 1 year 120 minute sum 1 year 120 minute sum 1 year 180 minute sum 1 year 240 minute sum 1 year 240 minute sum 1 year 360 minute sum 1 year 360 minute sum 1 year 480 minute sum 1 year 480 minute sum 1 year 600 minute sum	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 mmer 109.521 mmer 71.439 mmer 71.439 mmer 48.435 mmer 48.435 inter 32.179 immer 30.053 inter 19.966 immer 13.233 inter 15.102 immer 18.475 inter 9.210 immer 14.169 inter 9.210 immer 9.182 inter 6.274 immer 8.203	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 30.991 20.215 3 20.215 3 20.215 2 20.211 2 20.211 2 20.211 2 20.211 2 20.211 2 20.211 2 20.211 2 20.211 2 20.215 2 20.211 2 20.215 2 20.211 2 20.215 2 20.215	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 180 minute 2 year 240 minute 2 year 360 minute 2 year 480 minute 2 year 480 minute 2 year 600 minute 2 year 700 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter te summer te winter tte summer tte winter	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 7.378 5.982 5.982 4.435 3.581 3.581 3.581 3.033 3.033 2.647
(m) 0.000 Event 1 year 15 minute sum 1 year 15 minute sum 1 year 30 minute sum 1 year 30 minute sum 1 year 30 minute sum 1 year 60 minute sum 1 year 60 minute sum 1 year 120 minute sum 1 year 120 minute sum 1 year 180 minute sum 1 year 240 minute sum 1 year 240 minute sum 1 year 360 minute sum 1 year 360 minute sum 1 year 480 minute sum 1 year 480 minute sum 1 year 600 minute sum 1 year 600 minute sum	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) mmer 109.521 inter 76.857 nmer 71.439 inter 50.133 nmer 48.435 inter 32.179 immer 30.053 inter 19.966 immer 23.233 inter 15.102 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 14.169 inter 9.182 inter 6.274 immer 8.203 inter 5.513	(m) (m ² 0.400 30.4 Rain Average (Intensity) (mm/hr) 30.991 20.215 3 20.215 3 2.956 2 2.511 4 2.511 3 2.199 3 2.199	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 180 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute 2 year 480 minute 2 year 600 minute 2 year 700 minute 2 year 720 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter e summer te summer te summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 3.581 3.581 3.581 3.033 3.033 2.647 2.647
(m) 0.000 Event 1 year 15 minute sun 1 year 15 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 30 minute sun 1 year 60 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 120 minute sun 1 year 180 minute sun 1 year 240 minute sun 1 year 240 minute sun 1 year 360 minute sun 1 year 360 minute sun 1 year 480 minute sun 1 year 480 minute sun 1 year 600 minute sun 1 year 600 minute sun 1 year 720 minute sun	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 inter 19.966 immer 23.233 inter 19.966 immer 18.475 inter 12.274 immer 14.169 inter 9.210 immer 14.169 inter 9.210 immer 48.203 inter 5.513 immer 5.513 immer 6.768	(m) (m ² 0.400 30.4 Rain Average / Intensity) (mm/hr) 30.991 20.215 3 20.215 3 2.979 3 3.646 3 3.647 3 3.646 3 3.647 3 3.747 3 3.7	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 360 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute 2 year 600 minute 2 year 720 minute 2 year 720 minute 2 year 720 minute 2 year 720 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter e winter te summer te winter tte summer tte winter tte summer tte summer tte winter tte summer tte winter tte summer tte winter tte summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 3.581 3.033 3.033 2.647 2.647 2.136
(m) 0.000 Event	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 inter 32.179 inter 32.179 inter 19.966 immer 30.053 inter 19.966 inter 19.966 inter 12.274 immer 14.169 inter 9.210 immer 14.169 inter 9.210 immer 14.169 inter 9.210 immer 11.185 inter 9.182 inter 5.513 immer 6.768 inter 5.513 immer 6.768 inter 4.483	(m) (m ² 0.400 30.4 Rain Average / Intensity (mm/hr) 30.991 20.215 3 20.215 3 2.979 3 3.646 3 3.647 3 3.778 3 3.7782 3 3.7782	e) (m²) 0 0.0 offall Even 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 120 minute 2 year 240 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute 2 year 240 minute 2 year 360 minute 2 year 720 minute 2 year 600 minute 2 year 720 minute 2 year 720 minute 2 year 960 minute 2 year 960 minute	(m) (m ²) 0.401 0.0 t t e summer e winter e summer e winter te summer te winter tte summer tte summer	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113 5.374	Average Intensity (mm/hr) 40.058 40.058 25.963 16.200 16.200 9.897 9.897 7.378 7.378 7.378 5.982 4.435 3.581 3.581 3.581 3.033 3.033 2.647 2.647 2.136 2.136
(m) 0.000 Event	(m²) (m²) 30.0 0.0 Peak Intensity (mm/hr) nmer 109.521 nmer 71.439 nter 76.857 nmer 71.439 nter 50.133 nmer 48.439 nter 32.179 immer 30.053 inter 19.966 immer 23.233 inter 19.966 immer 18.479 inter 12.274 immer 14.169 inter 9.210 immer 14.169 inter 9.210 immer 14.169 inter 9.210 immer 11.185 inter 5.513 immer 6.274 immer 6.274 immer 6.274 immer 6.268 inter 4.483 summer 4.949	(m) (m ² 0.400 30.4 Rain Average Intensity (mm/hr) 30.991 30.99	e) (m²) 0 0.0 offall 2 year 15 minute 2 year 15 minute 2 year 15 minute 2 year 30 minute 2 year 30 minute 2 year 60 minute 2 year 120 minute 2 year 120 minute 2 year 20 minute 2 year 120 minute 2 year 180 minute 2 year 180 minute 2 year 180 minute 2 year 180 minute 2 year 240 minute 2 year 360 minute 2 year 240 minute 2 year 240 minute 2 year 360 minute 2 year 360 minute 2 year 480 minute 2 year 720 minute 2 year 720 minute 2 year 960 minute 2 year 960 minute 2 year 1440 minute	(m) (m ²) 0.401 0.0 t e summer e winter e summer e winter te summer te winter tte summer tte winter	(m²) 0.0 Peak Intensity (mm/hr) 141.566 99.345 91.753 64.388 61.301 40.727 37.449 24.880 28.672 18.637 22.636 15.039 17.235 11.203 13.550 9.003 11.088 7.576 9.878 6.639 8.113 5.374 5.891	Average Intensity (mm/hr) 40.058 40.058 25.963 25.963 16.200 16.200 9.897 9.897 7.378 7.378 5.982 5.982 4.435 4.435 3.581 3.033 3.033 2.647 2.647 2.136 2.136 1.579

<u>Rainfall</u>

Event	Peak	Average	Event	Peak	Average
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 15 minute summer	268 706	76.035	100 year 15 minute summer	348 738	98 681
30 year 15 minute winter	188.566	76.035	100 year 15 minute winter	244.728	98.681
30 year 30 minute summer	174.929	49,499	100 year 30 minute summer	228.965	64,789
30 year 30 minute winter	122.757	49,499	100 year 30 minute winter	160.677	64,789
30 year 60 minute summer	116.589	30.811	100 year 60 minute summer	153,288	40.510
30 year 60 minute winter	77 459	30 811	100 year 60 minute winter	101 841	40 510
30 year 120 minute summer	70 438	18 615	100 year 120 minute summer	92 562	24 461
30 year 120 minute winter	46 797	18 615	100 year 120 minute winter	61 496	24 461
30 year 180 minute summer	53,298	13.715	100 year 180 minute summer	69.806	17.964
30 year 180 minute winter	34 645	13 715	100 year 180 minute winter	45 376	17 964
30 year 240 minute summer	41.604	10.995	100 year 240 minute summer	54,269	14.342
30 year 240 minute winter	27.641	10.995	100 year 240 minute winter	36.055	14.342
30 year 360 minute summer	31.221	8.034	100 year 360 minute summer	40.484	10.418
30 year 360 minute winter	20.295	8.034	100 year 360 minute winter	26.315	10.418
30 year 480 minute summer	24 324	6 428	100 year 480 minute summer	31 414	8 302
30 year 480 minute winter	16,160	6.428	100 year 480 minute winter	20.871	8.302
30 year 600 minute summer	19.756	5.404	100 year 600 minute summer	25.431	6.956
30 year 600 minute winter	13.498	5.404	100 year 600 minute winter	17.376	6.956
30 year 720 minute summer	17,490	4.687	100 year 720 minute summer	22.452	6.017
30 year 720 minute winter	11.754	4.687	100 year 720 minute winter	15.089	6.017
30 year 960 minute summer	14.215	3.743	100 year 960 minute summer	18.166	4.784
30 year 960 minute winter	9.416	3.743	100 year 960 minute winter	12.033	4,784
30 year 1440 minute summer	10.161	2.723	100 year 1440 minute summer	12.896	3.456
30 year 1440 minute winter	6.829	2.723	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 15 minute summer	376.189	106.449	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 15 minute winter	263.992	106.449	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 30 minute summer	244.900	69.298	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 30 minute winter	171.860	69.298	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 60 minute summer	163.225	43.136	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 180 minute summer	97.729	25.149
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 180 minute winter	63.526	25.149
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 240 minute summer	75.977	20.078
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 240 minute winter	50.477	20.078
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 360 minute winter	28.413	11.248	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 480 minute summer	34.053	8.999	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 480 minute winter	22.624	8.999	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 720 minute summer	31.433	8.424
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 720 minute winter	21.125	8.424
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 960 minute summer	25.432	6.697
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 960 minute winter	16.847	6.697
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 1440 minute summer	18.055	4.839
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 1440 minute winter	12.134	4.839

Infiltration

1440 minute winter Soakaway

0.0

	Results for	1 year Crit	tical Sto	rm Durati	letwork: S Arge Rivera 1/09/2022	torm Netv 2 st mass ba	work	78%		
Node Eve	nt	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Statu	IS
15 minute wir	nter H	ouse	10	100.535	0.035	1.3	0.0197	0.0000	ОК	
1440 minute	winter S	oakaway	1410	100.475	0.075	0.1	2.1310	0.0000	ОК	
15 minute sur	nmer D	ummy	1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link		DS	Outflow	Velocity	Flow/Ca	ip Lin	k I	Discharge
(Upstream Depth)	Node			Node	(I/s)	(m/s)		Vol (m³)	Vol (m ³)
15 minute winter	House	1.000	So	akaway	1.3	1.036	0.21	0.0	147	
1440 minute winter	Soakaway	/ Pump	Du	ımmy	0.0					0.0

0.0

|--|

Node Ev	ent	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Stat	us
15 minute w	inter	House	10	100.540	0.040	1.7	0.0223	0.0000	ОК	
1440 minute	winter	Soakaway	1440	100.487	0.087	0.1	2.4855	0.0000	ОК	
15 minute su	ummer	Dummy	1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event	US	Link		DS	Outflow	Velocity	Flow/Ca	p Lin	k	Discharge
stream Depth)	Node	9		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
ninute winter	House	1.000	So	akaway	1.7	1.079	0.28	4 0.02	L81	

0.0

0.0

(Upstream Depth)NodeNode15 minute winterHouse1.000Soakawa1440 minute winterSoakawayPumpDummy1440 minute winterSoakawayInfiltration

|--|

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	itus
600 minute wint	er House	840	100.566	0.066	0.3	0.0368	0.0000	ОК	
600 minute wint	er Soakav	vay 825	100.565	0.165	0.3	4.7138	0.0000	SURCH	ARGED
15 minute sumn	ner Dumm	y 1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m,	city Flow /s)	/Cap	Link Vol (m³)	Discharge Vol (m ³)
600 minute winter	House	1.000	Soakaway	0.	3 0.	513	0.050	0.0664	
600 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
600 minute winter	Soakaway	Infiltration		0.	0				

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 98.78%

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
960 minute wint	ter House	915	100.657	0.157	0.3	0.0877	0.0000	SURCH	IARGED
960 minute wint	ter Soakav	vay 1095	100.657	0.257	0.3	7.3110	0.0000	SURCH	IARGED
15 minute sumn	ner Dumm	y 1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m,	city Flow /s)	/Cap	Link Vol (m³)	Discharge Vol (m ³)
960 minute winter	House	1.000	Soakaway	0.	30.	513	0.050	0.0782	
960 minute winter	Soakaway	Pump	Dummy	0.	0				0.0
960 minute winter	Soakaway	Infiltration		0.	0				

|--|

Node Event	US Node	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
720 minute wint 720 minute wint	er House er Soakaw	705 vay 885	100.620 100.620	0.120 0.220	0.4 0.4	0.0672 6.2676	0.0000 0.0000	SURCH SURCH	IARGED IARGED
15 minute summ	ner Dumm	y 1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	w Velo (m,	city Flow /s)	/Cap	Link Vol (m³)	Discharge Vol (m ³)
720 minute winter 720 minute winter	House Soakaway	1.000 Pump	Soakaway Dummy	0. 0.	40. 0	513	0.066	0.0782	0.0
720 minute winter	Soakaway	Infiltration		0.	0				

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.78%

Node Event	U: No	S Peak de (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
1440 minute wi	nter Hous	e 1530	100.755	0.254	0.3	0.1423	0.0000	FLOOI	O RISK
1440 minute wi	nter Soaka	away 1350	100.754	0.354	0.3	10.0932	0.0000	FLOOI	O RISK
15 minute sumr	ner Dumr	my 1	100.300	0.000	0.0	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	v Veloc (m/	tity Flow) s)	/Cap V	Link ′ol (m³)	Discharge Vol (m ³)
1440 minute winter	House	1.000	Soakaway	0.3	3 0.4	158 C).048	0.0782	
1440 minute winter	Soakaway	Pump	Dummy	0.0)				0.0
1440 minute winter	Soakaway	Infiltration		0.0)				

Appendix D

Scale 1:500

KEY

 Proposed Surface Water Sewer Pipe Exceedance Flows

> Permeable Paving 80mm Block Paving 50mm Grids 450mm Type 3

Silt Trap

Soakaway

Permeable Paving

8251 - External Rainwater Pipe Connection Detail

-Refer to GA all levels,

pipe location & material

Pipe Bedding Detail Type S

Pipe Bedding Detail Type Z

PLAN VIEW

NOTES:

1. The vertical angle between the connecting pipe and the horizontal should be greater than 0° and not more than 60°. 2. Where the connection is being made to a sewer with a nominal internal diameter of 300 mm or less, connections should be made using 45° angle, or 90° angle, curved square junctions. 3. Connections made with junction fittings should be made by cutting the existing pipe, inserting the junction fitting and jointing with flexible repair couplings or slip couplers.

Lateral Connection to private sewer

NOTES:

1. Permeable modular storage cell with 95% minimum void ratio. Maximum load 20 tonnes/m².

2. Installation of units as per supplier recommendations.

3. Ground may heave due to clay content in the as dug material. Contractor to level ground where required. 4. The area of the infiltration unit and the minimum total storage volume should be as per approved by the local planning authority documents.

Cellular Infiltration System - Landscape Area

Silt Trap Plastic

External Rodding Eye Detail

Permeable Surface Against Building

