

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT (GROUND INVESTIGATION) REPORT

PHASE 10 HEYFORD PARK CAMP ROAD OX25 5BS

Report Title: Geo-environmental & Geotechnical Assessment Ground Investigation Report for Phase 10,

Heyford Park, Camp Road, OX25 5BS

Report Status: Final v2.0

P4280J2513/SC Job No:

Date: 16 September 2022

QUALITY CONTROL - PREVIOUS VERSIONS

Version	Date	Issued By
Draft	20 July 2022	SC
Final	18 August 2022	TE

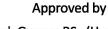
Prepared by: JOMAS ASSOCIATES LTD For: HEYFORD PARK SETTLEMENTS LP (HPSLP)

Reviewed by

Anna Tadayon BSc (Hons), MSc,

MIEnvSc Principal Geo-Environmental Engineer

Prepared by


Shaw Carter BSc (Hons), FGS

Senior Geotechnical Engineer

And

Tom Elbourne BSc (Hons), CGeol CSci FGS, RoGEP - Professional

Senior Geo-envrionmental Engineer

Derek Grange BSc (Hons), MSc, CGeol, FGS, RoGEP - Specialist

Principal Geotechnical Engineer

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

i

CONTENTS

	Page
EX	ECUTIVE SUMMARYIV
1	INTRODUCTION 1
1.1	Terms of Reference
1.2	Proposed Development1
1.3	Objectives1
1.4	Scope of Works2
1.5	Limitations2
2	EXISTING INFORMATION4
2.1	Site Information4
2.2	Summary of Preliminary Risk Assessment4
2.3	Summary of Jomas' Ground Investigation at Phase 9
3	GROUND INVESTIGATION11
3.1	Scope of Works11
3.2	In-situ Geotechnical Testing
3.3	Laboratory Analysis13
4	GROUND CONDITIONS ENCOUNTERED15
4.1	General15
4.2	Ground Conditions
4.3	Groundwater16
4.4	Limitations
4.5	Geotechnical Testing Results19
4.6	Summary of General Derived Properties20
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK21

5.1	Context and Objectives	21
5.2	Analytical Framework – Soils	21
5.3	BRE	22
5.4	Analytical Framework – Groundwater	22
6	GENERIC QUANTITATIVE RISK ASSESSMENT - SOIL DATA	25
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment	25
6.2	Asbestos in Soil	27
6.3	Volatile Organic Compounds	28
6.4	Polychlorinated Biphenyl (PCB) Concentrations	28
6.5	Vapour Risk Assessment from a Soil Source	28
6.6	Summary of Human Health Generic Quantitative Risk Assessment	29
6.7	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth	30
6.8	Screening for Water Pipes Materials	30
6.9	Waste Characterisation	31
7	GENERIC QUANTITATIVE RISK ASSESSMENT – GROUNDWATER DATA	32
7 7.1	GENERIC QUANTITATIVE RISK ASSESSMENT – GROUNDWATER DATA	
		32
7.1	Groundwater sampling	32 32
7.1 7.2	Groundwater sampling Assessment of Groundwater Analytical Data with Respect to Controlled Waters	32 32
7.1 7.2 7.3	Groundwater sampling Assessment of Groundwater Analytical Data with Respect to Controlled Waters	323840
7.1 7.2 7.3 8	Groundwater sampling	323840
7.1 7.2 7.3	Groundwater sampling	32 38 40 40
7.1 7.2 7.3 8 8.1 8.2	Groundwater sampling	32 38 40 41
7.1 7.2 7.3 8 8.1 8.2	Groundwater sampling	32 38 40 41 43

Geotechnical Engineering & Environmental Services across the UK

10.1	General	46
10.2	Proposed Foundations	46
10.3	Sulphates	47
10.4	Ground Floor Slabs	48
10.5	Excavations	48
10.6	Drainage	48
11	REFERENCES	50

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 – SOIL GAS MONITORING RECORDS

APPENDIX 6 – GROUNDWATER SAMPLING RECORDS

APPENDIX 7 – SOIL INFILTRATION TEST RECORDS

EXECUTIVE SUMMARY

	611	I.,,
	Site Address	Phase 10, Heyford Park, Camp Road, OX25 5BS
ails	National Grid	E:450666, N:225979
Det	Site Area	5.1ha (approx.)
Site Details	Proposed Development	The proposed development is to comprise the demolition of existing buildings and removal of existing infrastructure for the redevelopment of the site to provide new residential houses with gardens and areas of public open space/park.
ns	Scope of Works	The assessment incorporated a review of third-party data and production of a scheme of site investigation (Jomas, April 2022) to determine the site's setting to inform a preliminary risk assessment. This was followed by an intrusive investigation to confirm the ground and groundwater conditions and support the development of a geotechnical and geoenvironmental assessment.
Encountered Conditions	Ground Conditions	The ground conditions encountered broadly comprised 0.1-0.6m of topsoil or 0.2-1.9m of Made Ground; underlain by predominantly cohesive deposits of Weathered White Limestone Formation, to depths of up to 3.8m, underlain by Limestone and Mudstone deposits of the White Limestone Formation, to the base of the deepest boreholes (8.0m).
	Groundwater	During the intrusive investigation, groundwater strikes were encountered within JWS3, JBH3, JBH4, JBH7, JTP7, JSTP1 and JSTP2 at depths of between 2.0-3.6m bgl. Groundwater seepages were also noted in JTP10, JTP14 and JTP16 at depths of between 2.0-3.0m bgl. In addition, JSTP2A was abandoned due to influx of perched waster in the Made Ground at 1.5m bgl.
		During return monitoring, groundwater was encountered at depths of between 1.12m to 4.86m bgl. JWS1 and JWS5 were reported as 'dry' to their terminal depths of 1.36m and 1.57m bgl respectively.
Geo-environmental Assessment Summary and Recommendations		Concentrations of PAHs and long chain aromatic hydrocarbons have been reported in the shallow soils in excess of generic assessment criteria for the protection of human health within a residential with home-grown produce end-use scenario. In addition, presence of chrysotile and amosite asbestos fibres have locally been reported.
		Any visual asbestos materials may be removed by hand, with extensive dust control measures required during the soil screening operations for the protection of site workers and nearby residents. It should be noted that asbestos fibres will not be visible to the naked eye.
		Upgraded potable water supply pipe materials are likely to be required. The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider
		Locally elevated aromatic hydrocarbon fractions >C ₁₀ -C ₁₂ and >C ₁₂ -C ₁₆ have been reported in boreholes JBH4, JBH6 and BH10. As per Table 5.1 of CL:AIRE, 2017 these hydrocarbon fractions are reported as having a 'moderate' mobility in groundwater. However, groundwater analysis south-west of the site has revealed there is no significant impact to controlled waters downgradient of site. Therefore, it is considered that the identified hydrocarbon contamination poses a relatively low risk to off-site controlled water receptors. Removal of existing fuel infrastructure will be required to protect the on-site controlled waters receptor (i.e. the underlying Principal Aquifer), and additional groundwater analysis post-remediation may be required to verify successful remediation.
		A potential vapour risk to end users associated with groundwater localised around JBH6 has been identified, though a widespread issue is unlikely to exist. It is recommended that further investigation is conducted in the vicinity of JBH6, likely to comprise a series of trial pits in an

		attempt to identify a currently unknown source that may be present and would explain the elevated groundwater hydrocarbon concentrations in the area.
		If a specific source is identified (such as impacted soils, pipework or a tank) this should be removed and further water sampling post-remediation may be sufficient to demonstrate that an ongoing vapour risk is not present.
		Should no specific source be identified, further assessment of the potential vapour risk should be undertaken, potentially comprising the collection and analysis of vapour samples and derivation of site-specific vapour assessment criteria to assess the chronic risk posed to human health.
		Based on the calculated GSVs, and in consideration of the conceptual site model, the site is classified as Characteristic Situation 1 (CS1) and therefore no formal gas protection measures are considered to be necessary.
	Foundations	Based on the ground and groundwater conditions encountered, traditional strip/trench-fill foundations up to 1m wide may be formed within the underlying Weathered White Limestone Formation at a minimum depth of 0.9m for an allowable bearing capacity of 100kPa. If foundations span different strata, e.g. sand and clay, they should either be deepened to terminate in a single soil stratum, or suitable reinforcement included (to be detailed by the Structural Engineer).
tions	Ground Floor	Given the presence of shrinkable soils with a medium volume change potential, it is recommended that suspended floor slabs are used with an adequate void designed according to NHBC Standards.
Geotechnical Considerations	Slabs	As a guide, initial modelling indicates a requirement for a sub-floor void of at least 250mm for suspended precast concrete or timber floors. The required sub-floor void would reduce to ≥100mm for ground beams and suspended in-situ concrete ground floors.
cal (Sulphates	Buried concrete for foundations should be designed to Class DS-1 (AC-1).
otechni	Excavations	Temporary excavations are unlikely to remain stable and some form of temporary support or battering back to a safe angle and dewatering are likely to be required.
Ge	Excavations	Subject to seasonal variations, surface water/groundwater encountered during site works could likely be dealt with by conventional pumping from a sump used to collate waters.
	Soakaways	Based on the results of in-situ testing, it is considered that conventional soakaways may be suitable for discharging storm water run-off to the ground in the south-east of site where JSPT3 and JSPT4 were completed. However, in other locations it is considered that an alternative form of storm water disposal would be required, such as on-site storage and attenuation of peak storm flow with discharge to the drainage ditch network, possibly at greenfield run-off rate, under an extension of riparian rights
Recommended Further Work		The following works are recommended:
		 Seek approval of the Generic Quantitative Risk Assessment and Soil Gas Assessment from the Local Authority, NHBC and other relevant stakeholders; Further investigation in the vicinity of JBH6, potentially followed by vapour sampling, analysis and assessment; Provision of a Remediation Method Statement (RMS); Additional groundwater analysis post-remediation to confirm risk to controlled waters; Seek confirmation of the water supply pipe requirements by the appropriate service provider.
This	Executive Summa	ry is intended to provide a brief summary of the main findings and conclusions of the investigation

This Executive Summary is intended to provide a brief summary of the main findings and conclusions of the investigation. For detailed information, the reader is referred to the full text.

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Heyford Park Settlements LP (HPSLP) ("The Client") has commissioned Jomas Associates Ltd ('Jomas') to undertake an investigation of the geotechnical and geo-environmental factors pertaining to the proposed development at a site referred to as Phase 10, Heyford Park, Camp Road, OX25 5BS (herein referred to as 'the site'). The site's location is presented in Figure 1.
- 1.1.2 The existing third party and Jomas reports relating to the site and its vicinity are detailed in Table 1.1 below. These include two reports undertaken by Vertase FLI and Hydrock provided to Jomas by the Client, followed by a Scheme of Site Investigation produced by Jomas. A report by Jomas for a neighbouring site referred to as "Phase 9" has also been included.

Table 1.1: Previous Reports

Title	Author	Reference	Date
Contract Completion Report. POL System - Clean and Make Safe, Upper Heyford, Oxfordshire	Vertase F.L.I.	1246DOR	February 2012
Desk Study and Ground Investigation Report Heyford Park - Western Development, Phase 9, 10, 16 and 16A	Hydrock	HPW-HYD-MS-ZZ-RP-G- 0001	February 2017
Supplementary Geo-environmental Assessment Report for Phase 9, Upper Heyford, OX25 5BS	Jomas	P2087J2052b/SC	September 2021
Phase 10, Heyford Park, Camp Road, OX25 5BS Data Review & Proposed Scheme of Site Investigation	Jomas	P4280J2513/SC/SLrev1	April 2022

1.1.3 An intrusive investigation has been undertaken in accordance with Jomas' proposal dated 26 April 2022.

1.2 Proposed Development

- 1.2.1 The proposed development is to comprise the demolition of existing buildings and removal of existing infrastructure for the redevelopment of the site to provide new residential houses with gardens and areas of public open space/parkland.
- 1.2.2 A proposed development plan is shown in Figure 4, Appendix 1.
- 1.2.3 For the purpose of the geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997.

1.3 Objectives

1.3.1 The objectives of Jomas' investigation are as follows:

- To undertake an intrusive investigation, to determine the ground and groundwater conditions as well as to assess the nature and extent of contaminants (if any) potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the
 procedures set out within Part IIA of the Environmental Protection Act 1990, associated
 statutory guidance and current best practice including the EA's Land Contamination Risk
 Management (LCRM); and,
- To determine soil/rock properties to inform the geotechnical assessment for foundations, drainage, excavation stability, pavement design and buried concrete and recommendations for further action (if required).

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site.
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained.
 - Return ground gas/groundwater monitoring.
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions, and recommendations.

1.5 Limitations

- 1.5.1 Jomas has prepared this report for the sole use of Heyford Park Settlements LP (HPSLP), in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas. No other third-party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.5.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas has actual knowledge to the contrary, information obtained from public sources or provided to Jomas by site personnel and other information sources, have been assumed to be correct. Jomas does not assume any liability for the misinterpretation of information or for items not visible, accessible, or present on the subject property at the time of this study.
- 1.5.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.5.4 Any reports provided to Jomas have been reviewed in good faith. Jomas cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.

SECTION 1 INTRODUCTION

- 1.5.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a reassessment of the recommendations made within this report.
- 1.5.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 EXISTING INFORMATION

2.1 Site Information

2.1.1 The site location plan is appended to this report in Figure 1, Appendix 1.

Table 2.1: Site Information

Name/Address of Site	Phase 10, Heyford Park, Camp Road, OX25 5BS.
Approx. National Grid Ref.	450651, 225976
Site Area (Approx.)	4.4ha
Site Occupation	Disused land and infrastructure located in the southern part of the former Upper Heyford air base. The infrastructure at the site includes several above ground fuel storage tanks.
Local Authority	Cherwell District Council

2.2 Summary of Preliminary Risk Assessment

- 2.2.1 As detailed in Table 1.1, copies of two third-party reports previously produced for the site have been provided to Jomas. A detailed review of these reports is provided in the *Data Review & Proposed Scheme of Site Investigation* (Jomas, 2022), though a brief summary is presented below.
- 2.2.2 Reference should be made to the original reports and documents for further details. Where appropriate, this information will be used in the later sections of this report as supplementary information to assist in the evaluation of the ground conditions and aid the identification of geotechnical and geochemical constraints and hazards that could impact the proposed scheme.

Desk Study and Ground Investigation Report (Hydrock, 2017)

- 2.2.3 The earliest historical map (1875) shows the site as open fields. The first indication of the Upper Heyford air base is shown on the 1954 1:10,560 historical map. However, research has indicated that the surrounding land has had a military use from as early as 1916. From 1916-1918 the Upper Heyford air base was used by the Royal Flying Corps, which was merged with the Royal Naval Air Service in 1918 to become the Royal Air Force (RAF), at which point the RAF took over control of the air base. The United States Air Force took over the running of the air base from 1950; the site remained in this use until its closure in 1994.
- 2.2.4 Published geology indicated that the site is directly underlain by the Great Oolite Group, which is classified as a Principal aquifer. The site in not within a groundwater source protection zone, and there are no active potable water abstraction within 2km of the site. A single historical potable abstraction is reported 510m west, dated 1960s.
- 2.2.5 The ground investigation was undertaken by Hydrock in 2016. It covered Phase 10 as well as large areas immediately to south of it known as Phase 9, Phase 16 and Phase 16A. The investigation undertaken in the Phase 10 area comprised 9No. machine dug trial pits up to 2.9m bgl; and 6No. rotary open hole boreholes up to 8.0m bgl.
- 2.2.6 In total, 7No. soil samples were tested for a standard suite of contaminants as part of the investigation. Following statistical analysis, several PAH compounds were identified as having US₉₅ exceeding the GAC. No asbestos was detected.

- 2.2.7 In addition, 5No. groundwater samples were tested for a standard suite of contaminants. Elevated concentrations of heavy metals, PAHs (above EQS) and petroleum hydrocarbons (above DWS) were reported. A number of VOCs and SVOCs were also reported above the laboratory detection limits in the groundwater samples obtained from BH10 and BH12, however, no assessment was made as there were no water quality targets available for these compounds.
- 2.2.8 3No. gas monitoring events were undertaken and a worst case GSV was calculated as <0.07 for both methane and carbon dioxide. However, slightly elevated methane concentrations, up to 1.7% were reported on two visits in monitoring well location BH10 and the site was therefore classified as Characteristic Situation 2.

POL "Clean and Make Safe" Contract Completion Report (Vertase FLI, 2012)

- 2.2.9 The report provides a factual record and confirmation of the "Clean & Make Safe Decommissioning Works" at the site.
- 2.2.10 The works focussed on the system of POL (petrol, oil and lubricants) tanks and pipelines at the former airfield. Jomas' study site (Phase 10) is located in the southern part of the former airfield and includes POL2 and POL21a/b/c (all of which comprise "above ground tanks" set within a raised bund). The locations of these tanks are presented in Figure 2 in Appendix 1. The figure also shows additional above ground tanks in the south-western part of the site, though it is understood that these did not form part of the POL system and were not addressed within the Vertase "Clean and Make Safe" report.
- 2.2.11 The POL tanks were emptied, with waste water disposed of at a waste water treatment plant. All tanks were then entered and cleaned by a specialist tank cleaning contractor.
- 2.2.12 A total of 99 tanks were de-commissioned, the majority were filled with Pulverised Fuel Ash/Ordinary Portland Cement grout. Above ground storage tanks and Type 1 tanks were not filled. [This means POL21 A, B and C on Phase 10 were not filled, though POL2 was filled].
- 2.2.13 The pipelines were also emptied of waste water and filled with foam at pre-existing valve pit locations. In some locations however, the pipe was located and a 600mm section cut out to facilitate removal of contaminated water and subsequent filling with foam.
- 2.2.14 One of these excavation pits (TP 2-2) was located within Phase 10 and north-east of POL2, and during the works, an incident report was filed. It transpires that after the pipe had been emptied, it was fitted with a temporary valve prior to filling with foam. The valve was left open allowing residual contaminated water to seep into the excavation overnight. Water from the base of the pit was vacuumed away for disposal and soil was also scraped from the base of the pit for removal/disposal. 2No. soil samples were then obtained from 0.3m bgl and sent for laboratory testing for TPH. Both samples reported concentrations of <10mg/kg TPH.
- 2.2.15 Whilst no depth of pipework was specified within previous reports, the soil samples obtained from 0.3mbgl were presumably below the pipeline, and as such the pipe network is anticipated to be relatively shallow.

Critical Evaluation of Third-Party Reports

2.2.16 As part of Jomas' report: *Data Review & Proposed Scheme of Site Investigation* (2022), both third-party reports were critically evaluated in order to produce an updated Conceptual Site Model (CSM). This CSM is reproduced in Table 2.2 below.

SECTION 2 EXISTING INFORMATION

2.2.17	It was noted that the ground investigation by Hydrock only covered the southern half of Jomas' study site. Therefore, further investigation was considered necessary to assess the ground conditions including a presence of potential contamination in the northern part of the site.
2.2.18	Hydrock's' exploratory holes TP128-131 and BH10-14 targeted POL21. No other point source was targeted by their investigation, though it was noted in the Hydrock report that above ground storage tanks were present in the south-western part of the site.
2.2.19	The only visual/olfactory evidence of contamination reported by Hydrock was a "slight hydrocarbon odour" and "sheen on the groundwater" reported at 2.7-2.9m bgl in TP109. However, laboratory testing of soil/groundwater was not undertaken from this position.
2.2.20	The most significant hydrocarbon impact in groundwater was detected in groundwater samples from BH05, BH10, BH12, and BH14, and to a lesser extent in BH11. Petroleum hydrocarbons were not detected within a groundwater sample obtained from BH13.
2.2.21	It is understood that Hydrock were not provided with the Vertase report prior to their investigation, and so did not target potential sources that the report identified, principally the fuel pipelines buried throughout the site and the fuel spill noted in excavation 2-2.
2.2.22	Hydrock did not recommend further investigation but it was considered by Jomas that there were several potential sources of contamination that had not yet been investigated.
2.2.23	Despite the fact that GSVs were <0.07, Hydrock concluded that the site be determined CS2 due to elevated methane concentrations reported in BH10. Jomas considered it possible that the source of elevated methane was degrading hydrocarbons identified within groundwater in BH10. It was therefore recommended that additional gas monitoring be undertaken that includes the northern part of the site, to confirm the ground gas regime beneath the site.

Table 2.2: Conceptual Site Model/Preliminary Risk Assessment for the Site (Jomas, April 2022)

Source	Pathway	Receptor	Assessment to date	Further investigation required?	Linkage Number
 Made Ground possibly including metals, metalloids, asbestos, PAH and petroleum hydrocarbons Hydrocarbon fuels and lubricants associated with the fuel storage tanks and former land use. VOCs and SVOCs associated with the former land use. Ethylene glycol – potentially used as a de-icer. Ground gas from nearby backfilled quarries Electricity sub-station Underground POL pipelines POL2 POL21 A, B, C 	 Ingestion Inhalation or contact with potentially contaminated dust and vapours 	 Future site users Construction workers Maintenance workers Neighbouring site users 	Hydrock report concluded that the underlying Made Ground would be unsuitable for use within communal soft landscaped areas. A clean cover system was recommended. Acute and sub chronic risks to construction/maintenance workers are outside the scope of this assessment but would be expected to be managed by appropriate health and safety procedures.	Yes. Further investigation is considered necessary in the northern half of site (not investigated by Hydrock) and to investigate the following features not targeted by Hydrock: • Electricity sub-station • Underground POL pipelines • POL2 • AST in south-west of site • Evidence of hydrocarbon contamination reported in TP109 by Hydrock • Former excavation 2-2 with fuel leak/spill reported by Vertase	1
AST in south-west of site Evidence of hydrocarbon contamination reported in TP109 by Hydrock Former excavation 2-2 with fuel leak/spill reported by Vertase	• Inhalation of vapours	 Future site users Construction workers Maintenance workers Neighbouring site users 	Hydrock undertook 9No. machine excavated trial pits and 6No. boreholes across the site in order to assess the nature and composition of the made ground for the presence of VOCs, TPH and asbestos. The pits were spread evenly across the site and also targeted above ground fuel tank POL21. The only evidence of hydrocarbon contamination was reported in TP109 (odours and sheen on groundwater), however, no soil or groundwater was analysed from this location. A total of 3No. soil samples were scheduled for VOCs and SVOCs. From a review of the laboratory certificates, Jomas have identified that none of these soil samples analysed were found to detect volatile organic compounds in excess of laboratory detections limits. 3No. samples is not considered sufficient given the size of site and number of sources identified. Analytical testing of groundwater samples was undertaken by Hydrock from installations within BH5 and BH10 to BH14. Volatile contaminants were detected in BH10 and BH12 above laboratory detection limits, however, an assessment of the risk posed to human health from vapour from a groundwater source was not undertaken. The most elevated hydrocarbon impact in groundwater was detected in groundwater samples from BH05, BH10, BH12, and BH14, and to a lesser extent in BH11. Petroleum hydrocarbons were not detected within a groundwater sample tested from BH13. Acute and sub chronic risks to construction/maintenance workers are outside the scope of this assessment but would be expected to be managed by appropriate health and safety procedures.	Yes. Further investigation is considered necessary in the northern half of site (not investigated by Hydrock) and to investigate features not targeted by Hydrock: Electricity sub-station Underground POL pipelines POL2 AST in south-west of site Evidence of hydrocarbon contamination reported in TP109 by Hydrock Former excavation 2-2 with fuel leak/spill reported by Vertase Given the site investigation results obtained by Hydrock, it is considered that a potential source of volatile organic contamination is present at the site as detected in groundwater sampled from BH10 and BH12, as well as from the identified potential sources of hydrocarbons listed above. Further assessment is recommended in order to assess the risk to human health receptors within the proposed residential end use scenario.	2
	 Permeation of water pipes and attack on concrete foundations by aggressive soil conditions 	Building structures/services	1No. sample from the Made Ground and 4No. samples from the Great Oolite Group were assessed to determine the properties for concrete in aggressive ground after BRE Special Digest 1, 2005. A Design Sulphate class of DS-1 and an ACEC class of AC-1 were recommended. It was recommended that the relevant water authority be consulted regarding the selection of material was water supply pipes, but that barrier pipework would likely be required.	Yes. Further investigation is considered necessary in the northern half of site (not investigated by Hydrock). Further testing of the Made Ground should also be undertaken across the site as only 1No. sample was previously scheduled and this is considered insufficient to characterise a site >4 hectares.	3

Source	Pathway	Receptor	Assessment to date	Further investigation required?	Linkage Number
	 Accumulation and migration of soil gases 	 Future site users Construction workers Maintenance workers 	Ground gas monitoring of BH5 and BH10 to BH14 has been undertaken by Hydrock on 3 occasions in 2016. Response zones for the boreholes spanned the Great Oolite Group. Hydrock "provisionally classified" the site as Characteristic Situation 2 due to elevated concentrations of methane reported in BH10 on 2 visits. However, it should be noted that the maximum reported GSV throughout all monitoring events was 0.0024, and flow rates across all wells and visits remained at ≤0.1l/hr. Methane concentrations of up to 1.7% reported in BH10 may be a result of degrading hydrocarbons identified within groundwater obtained from BH10. Methane concentrations above 0.1% were not detected in any of the other well locations suggesting that there is a source specific to BH10, rather than a wider ground gas issue. Acute and sub chronic risks to construction/maintenance workers are outside the scope of this assessment but would be expected to be managed by appropriate health and safety procedures.	Yes. Further investigation is considered necessary in the northern half of site (not investigated by Hydrock) and to further assess the source of elevated methane detected in BH10.	4
	Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. Horizontal and vertical migration of contaminants within groundwater.	• Controlled waters - Principal aquifer within the Great Oolite Group and Gallos Brook ~325m south of site.	Hydrock concluded that the groundwater contained elevated concentrations of metals and PAHs (above EQS) and petroleum hydrocarbons (above DWS). VOCs and SVOCs were also reported above the laboratory detection limits in groundwater samples obtained from BH10 and BH12, however, no assessment was made as there were no water quality targets available for these compounds. The most elevated hydrocarbon impact in groundwater was detected in groundwater samples from BH05, BH10, BH12, and BH14, and to a lesser extent in BH11. Petroleum hydrocarbons were not detected within a groundwater sample obtained from BH13. Hydrock considered that the impacted groundwater at the site did not pose a significant risk to the Gallos Brook, as water from the brook was analysed and the only elevated contaminant reported was copper and no copper contamination was identified in soil. It was considered that dilution and dispersion effects would minimise the risk to potential to the closest groundwater receptor (abstraction) >1km from site. It was also considered that, following removal of the tanks and any associated soils and waters from the excavation, the recorded groundwater contamination does not represent a significant risk of pollution to the groundwater below the site.	Yes. Further investigation is considered necessary in to investigate features not targeted by Hydrock: Underground POL pipelines POL2 AST in south-west of site Evidence of hydrocarbon contamination reported in TP109 by Hydrock Former excavation 2-2 with fuel leak/spill reported by Vertase	5

2.3 Summary of Jomas' Ground Investigation at Phase 9

- 2.3.1 As detailed in Table 1.1, a report has previously been produced by Jomas for a site referred to as Phase 9. This is located adjacent to the south-west of the Phase 10 site. A summary of Jomas' investigation is presented below.
- 2.3.2 Reference should be made to the original report for further details. Where appropriate, this information will be used in the later sections of this report as supplementary information to assist in the evaluation of the ground conditions and aid the identification of geotechnical and geochemical constraints and hazards that could impact the proposed scheme.

Background

- 2.3.3 Jomas were provided with several reports and documents relating to the Phase 9 site for review. A detailed summary was provided within Jomas' ground investigation report, however, in summary:
 - The Environment Agency (EA) did not recommend discharge of a contamination land planning condition due to uncertainties relating to groundwater quality and contradictory statements within previous reports.
 - The EA therefore required further groundwater investigation following demolition and tank removal and stated that groundwater remedial works should not be excluded from the remedial strategy.
 - The remediation contractor (Smith Grant) attended site throughout January-May 2021
 in order to undertake various remedial works at the site. This included demolition of the
 boiler house and removal of underground storage tanks and associated infrastructure;
 and removal of contaminated soil 'hotspots' including one referred to as the baseball
 pitch hotpot.
 - Jomas were instructed by the client to install groundwater monitoring wells and undertake groundwater sampling to assess risks to controlled waters following demolition and removal of tanks and hotpsots.

Ground Investigation and Ground Conditions

- 2.3.4 Jomas were provided with a mark-up of proposed borehole locations positioned by Smith Grant Environmental to target the following:
 - JBH1 baseball pitch hotspot
 - JBH2 downgradient of baseball pitch hotspot
 - JBH3 boiler house.
 - JBH4 replacement of Hydrock BH02 which has been destroyed
 - JBH5 down-gradient of recent hotspot around proposed southern pond
- 2.3.5 Jomas' ground investigation was undertaken on the 2nd & 3rd August 2021.
- 2.3.6 All 5No. boreholes were completed up to 10m bgl by rotary open-hole drilling techniques, with groundwater monitoring wells also installed to 10m bgl. Ground conditions comprised a veneer of Made Ground over White Limestone Formation, encountered as limestone and clay.

SECTION 2 EXISTING INFORMATION

2.3.7	No groundwater was encountered during drilling due to the methods used. Return groundwater sampling events were undertaken on the 12^{th} & 24^{th} August 2021 and groundwater levels of between 2.36m and 5.61m bgl were reported in JBH1-5.
	Controlled Waters Risk Assessment
2.3.8	Wells were dipped using an oil/water interface meter. No free phase product was detected.
2.3.9	2No. groundwater sampling events were undertaken by means of low flow methodology on $12^{th}~\&~24^{th}$ August 2021.
2.3.10	In total, 10No. samples were obtained and scheduled for a suite of contaminants including BTEX, MTBE, and TPHCWG.
2.3.11	None of the determinands were detected above laboratory detection limits and therefore the groundwater sampled was not considered to be impacted with petroleum hydrocarbons.

3 GROUND INVESTIGATION

3.1 Scope of Works

- 3.1.1 A ground investigation was undertaken between 17 and 26 May 2022.
- 3.1.2 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, is presented in Table 3.1 below.

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved	Justification
Windowless Sampler Boreholes	5	JWS1 to JWS5	Up to 3.8m bgl	Obtain samples for laboratory chemical and geotechnical testing.
Combined Dynamic Sampling & Rotary Boreholes	9	JBH1 to JBH09	Up to 8m bgl	To allow in-situ geotechnical testing. Features targeted by boreholes are summarised in Table 3.2.
Monitoring Wells	13	JWS1 to JWS3, JWS5, JBH1 to JBH9	Up to 8m bgl	Ground gas and groundwater monitoring wells.
Machine Excavated Trial Pits	20	JTP1 to JTP8, JTP10 to JTP16, JSTP1 to JSTP4 & JSTP2A	Up to 3.0m bgl	Obtain samples for laboratory chemical and geotechnical testing. Facilitate soil infiltration testing (JSTP1 to JSTP4 only)

- 3.1.3 The ground investigation was undertaken in accordance with British Standard BS5930:2015+A1:2020 "Code of practice for ground investigations", British Standard BS10175:2011+A2:2017 "Investigation of potentially contaminated sites code of practice", NHBC Standards, Chapter 4.1 and AGS Guidelines for Good Practice in Site Investigations.
- 3.1.4 Exploratory hole positions are shown on the exploratory hole location plan presented in Figure 3, Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.1.5 Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was left slightly mounded to allow for some settlement.

Table 3.2: Justification of Exploratory Hole Locations

Exploratory Location ID	Location Justification
JBH1	Targeting former decommissioning excavation (2-2) to the northeast of POL2
JBH2	West of POL2
ЈВН3	General coverage in western site area, to assess possible groundwater migration effects

Exploratory Location ID	Location Justification
JBH4	Targeting Valve Pit 1 and ASTs on southern boundary.
JBH5	General coverage in north-eastern site area, to assess possible groundwater migration effects and obtain geotechnical data
ЈВН6	General coverage in south-eastern areas, to assess possible groundwater migration effects, and to target south of Valve Pit 3, and obtain geotechnical data
JBH7	General coverage in south-western site area, to assess possible groundwater migration effects
JBH8	South of POL2 and southwest of POL21 A, B & C.
ЈВН9	General coverage in north-eastern site area, to assess possible groundwater migration effects, and obtain geotechnical data
JWS1	Target large single storey unit in north, and general coverage for geotechnical data
JWS4	Target south of POL2. General coverage for geotechnical data
JTP1	Target the area of above ground compressor tanks.
JTP2	Target the area of large single storey unit.
JTP3	Target pipeline and former offices.
JTP5	Investigate the soils covering POL2
JTP6	Target possible pipeline
JTP7	Target the area of visual/olfactory evidence of contamination reported in former trial pit TP109 (Hydrock, 2017).
JTP8	Target possible pipeline
JTP10	Target Valve Pit 1.
JTP11	Target electricity substation and Valve Pit 3.
JTP12	Targeting Valve Pit 3 and north-east of POL21.
JTP13	Investigate soils covering POL21
JWS2, JWS3, JWS5, JTP4, JTP14, JTP15 & JTP16	General coverage

3.2 In-situ Geotechnical Testing

3.2.1 In-situ geotechnical testing included Standard Penetration Tests. The determined 'N' values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.

3.2.2 The determination of infiltration rates for the underlying ground was undertaken by carrying out tests in general accordance with BRE 365. Copies of the results and calculations are provided in Appendix 7.

3.3 Laboratory Analysis

3.3.1 A programme of laboratory testing, scheduled by Jomas Associates Limited, was carried out on selected samples obtained from the Made Ground and natural strata.

Chemical Testing

Total Organic Carbon

PCBs

- 3.3.2 Chemical testing of soils was undertaken by laboratories of i2 Analytical Limited, which holds UKAS and MCERTS accreditations for a wide range of determinands.
- 3.3.3 The samples were analysed for a range of contaminants as shown in Table 3.3 below:

No. of tests Made Ground / **Test Suite** Natural Topsoil 2 Jomas Suite 3 15 8 0 Jomas Suite 5 **Hydrocarbon Suite** 12 1 0 Asbestos Screen & ID 18

10

1

0

1

Table 3.3: Chemical Tests Scheduled

3.3.4 The determinands contained in the Jomas Suite 3 are as detailed in Table 3.4 below. Jomas Suite 5 contains the same determinands but without the hydrocarbon compounds to avoid overlapping with the extended hydrocarbon testing. The Hydrocarbon Suite includes TPH-CWG, PAHs, phenols, VOCs, BTEX & MTBE.

Table 3.4: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

- 3.3.5 To support the selection of appropriate Tier 1 screening values, 10No. samples were analysed for total organic carbon.
- 3.3.6 The laboratory test results are included in Appendix 3.

Geotechnical Laboratory Testing

- 3.3.7 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of i2 Analytical Ltd. for a series of analyses.
- 3.3.8 This testing was designed to classify the samples; and to obtain parameters (either directly or sufficient to allow relevant correlations to be used) relevant to the technical objectives of the investigation.
- 3.3.9 The following laboratory geotechnical testing was carried out:

Table 3.5 Laboratory Geotechnical Analysis

Methodology	Test Description	Number of tests
BS EN 17892	Moisture Content Determination	20
BS1377:1990	Liquid and Plastic Limit Determination (Atterberg Limits)	20
BS1377:1990	Particle Size Distribution - Sieving	14

- 3.3.10 In addition, 17No. soil samples were analysed for a modified BRE Special Digest 1 suite (acid and water soluble sulphate, total sulphur and pH) to assist with the ACEC classification for buried concrete.
- 3.3.11 The laboratory test results are included in Appendix 4.

4 GROUND CONDITIONS ENCOUNTERED

4.1 General

4.1.1 A summary of the conditions encountered during the physical investigation of the site is presented in the following section.

4.2 Ground Conditions

4.2.1 The ground conditions encountered were broadly consistent with those anticipated, i.e. a thickness of topsoil/ Made Ground overlying deposits of White Limestone Formation, which were highly weathered near surface. The ground conditions are summarised in Table 4.1.

Table 4.1: Ground Conditions Encountered

Table 4.1. Glound Conditions Encountered						
Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)			
Grass over brown clayey gravelly sand with rootlets. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-rounded limestone and occasional flint. (TOPSOIL/SUBSOIL) Encountered in JBH2, JBH5, JBH6, JBH8, JBH9, JTP2, JTP3, JTP6, JTP10, JTP11-JTP13, JTP15, JSTP3 & JSTP4.	0.0	0.1 – 0.6	0.1 – 0.6			
Grass over dark brown slightly gravelly clay/clayey gravelly sand. Gravel consists of fine to coarse angular limestone, asphalt and brick with occasional concrete and flint, and rare glass timber, ceramic. (MADE GROUND) Encountered in JWS1-JWS5, JBH1, JBH3, JBH4, JBH7, JTP1, JTP5, JTP7, JTP8, JTP14, JTP16, STP1, JSTP2 & JSTP2A.	0.0	0.2 - 1.9	0.2 - 1.9			
Firm to very stiff** grey or brown locally silty, sandy gravelly CLAY. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone and occasional flint. (WEATHERED WHITE LIMESTONE FORMATION - Cohesive) Encountered in JBH1 – JBH4, JBH7 – JBH9, JWS1- JWS5, JTP1, JTP7, JTP10, JTP14 - JTP16, JSTP1 & JSTP2	0.2 – 2.6	1.0 ->3.8	0.4 ->3.6			
Medium dense to very dense greyish brown clayey very sandy GRAVEL/clayey gravelly SAND. Gravel consists of fine to coarse angular limestone. Occasional cobbles, consisting of angular limestone. (WEATHERED WHITE LIMESTONE FORMATION - Granular) Encountered in JBH1, JBH5, JBH6, JBH9, JWS1, JWS4, JWS5, JTP1 – JTP4, JTP6, JTP10-JTP13, JTP15, JSTP3.	0.0 – 2.2	0.8 ->2.9	>0.4 - >1.7			
Light brown and grey LIMESTONE becoming bluish grey MUDSTONE. (WHITE LIMESTONE FORMATION) Encountered in JBH1 – JBH9.	1.1 - 3.0	3.9 - >8.0 [base not proven]	1.9 - >6.9 [thickness not proven]			
Bluish grey MUDSTONE	3.9 – 6.7	>8.0	>4.1			

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)
(WHITE LIMESTONE FORMATION)		[base not proven]	[thickness not proven]
Encountered in JBH1, JBH2 & JBH5.			

^{**}Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

- 4.2.2 It should be noted that shallow ground conditions encountered were variable and, in some locations, only cohesive or only granular deposits were encountered, and others, granular deposits were encountered at shallower depth than cohesive soils. Table 4.1 is a general summary of the ground conditions, and the logs provided in Appendix 2 should be reviewed for full details.
- 4.2.3 Made Ground was generally only encountered in the western half of site (west of POL2). The exception being JWS1, JWS5 and JBH1, which reported 0.2-0.6m thickness of Made Ground. The greatest depth of Made Ground (1.9m) was reported in the south-west of site, in JSTP2.
- 4.2.4 Black staining with a slight hydrocarbon odour was reported at 1.2-2.0m bgl in cohesive deposits of Weathered White Limestone Formation in JBH4.
- 4.2.5 Black staining with a hydrocarbon odour was reported at 1.5-1.7m bgl in the in granular deposits of Weathered White Limestone Formation inf JTP10. Groundwater seepage reported at 2.0m bgl within this trial pit did not display visual/olfactory evidence of contamination.
- 4.2.6 Black staining with a slight hydrocarbon odour was reported at 1.4-1.5m bgl in the Made Ground in JSTP1.
- 4.2.7 Black staining was reported in the Made Ground in JSTP2 at 0.9-1.1m bgl, however, no associated odour was noted in this location.
- 4.2.8 No other visual or olfactory evidence of potential contamination was identified within the investigation positions.

4.3 Groundwater

4.3.1 Groundwater strikes are summarised in Tables 4.2 overleaf.

Table 4.2: Groundwater Strikes During Investigation

Exploratory Hole ID	Depth Encountered (mbgl)	Depth After 20mins (mbgl)	Stratum
JWS3	2.7	-	Weathered White Limestone Formation - Cohesive
JBH3	3.4	3.0	White Limestone Formation
JBH4	2.0	2.0	Top of White Limestone Formation
JBH7	3.6	3.0	White Limestone Formation
JTP7	2.7	-	Weathered White Limestone Formation - Cohesive
JTP10	2.0 (seepage)	-	Weathered White Limestone Formation - Granular
JTP14	3.0 (seepage)	-	Weathered White Limestone Formation - Cohesive
JTP16	3.0 (seepage)	-	Weathered White Limestone Formation - Cohesive
JSTP1	2.5	-	Weathered White Limestone Formation - Cohesive
JSTP2A	1.5	-	Made Ground
JSTP2	2.4	-	Weathered White Limestone Formation - Cohesive

4.3.2 The return groundwater monitoring results are presented in Appendix 5 and are summarised in Table 4.3 overleaf.

Table 4.3: Groundwater Monitoring Summary

Exploratory Hole ID	Install details	Depth Encountered (m bgl)	Depth Encountered (m OD)	Depth to Base of Well (m bgl)	Stratum
JWS1		Dry	Dry	1.36	Installed in Weathered White Limestone Formation - Granular
JWS2		1.12 – 1.49	122.57 – 122.20	1.81	Weathered White Limestone Formation -
JWS3		1.36 – 1.74	121.26 – 120.88	3.30	Weathered White Limestone Formation -
JWS5		Dry	Dry	1.57	Installed in Weathered White Limestone Formation - Granular
JBH1		3.61 – 3.72	122.44 – 122.33	7.27	White Limestone Formation
JBH2	Jomas, 2022	1.63 – 1.96	121.66 – 121.33	7.97	White Limestone Formation
JBH3		1.83 – 2.18	121.53 – 121.18	7.27	White Limestone Formation
JBH4		1.52 – 1.83	120.84 – 120.53	7.63	White Limestone Formation
JBH5		3.34 – 4.03	122.16 – 121.47	8.06	White Limestone Formation
ЈВН6		3.70 – 5.02	121.97 – 120.65	8.10	White Limestone Formation
JBH7		2.71 – 3.07	120.52 – 120.16	8.04	White Limestone Formation
JBH8		2.92 – 3.50	121.44 – 120.86	7.44	White Limestone Formation
JBH9		4.45 – 5.77	122.13 – 120.81	7.43	White Limestone Formation
BH05		2.03 – 2.47	-	7.26	Sandy gravelly clay, limestone and clay *
BH10		2.78 – 3.26	-	7.81	Sand/sandstone and Limestone*
BH11	Hydrock, 2016	2.79 – 3.94	-	7.90	Sand/sandstone and Limestone*
BH12		4.12 – 4.87	-	7.92	Sand/sandstone and Limestone*
BH13		3.58 – 5.02	-	7.93	Sand/sandstone and Limestone*
BH14		3.18 – 3.80	-	7.84	Sand/sandstone and Limestone*

*Description taken from Hydrock borehole records

- 4.3.3 It should be noted that changes in groundwater levels can occur for a number of reasons including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a standpipe or piezometer installed within appropriate response zones. Changes in groundwater level can have a direct effect on excavation stability and dewatering requirements, and cohesive soils can soften under rising or high groundwater levels.
- 4.3.4 Based on the monitoring data obtained to date the groundwater flow direction beneath the site appears to be generally to the south-west.

4.4 Limitations

- 4.4.1 During the intrusive ground investigation, a small water supply pipe was struck at 0.9m bgl in JTP4. The client arranged for necessary repair works to be conducted and the trial pit was not progressed any further.
- 4.4.2 JTP5 was terminated at 1.1m bgl, due to suspected presence of buried services.

4.4.3 JTP8 was terminated at 0.8m bgl due to presence of a concrete obstruction. 4.4.4 JSTP2A was initially excavated to 1.7m bgl to allow soil infiltration testing, but groundwater was struck at 1.5m bgl, therefore the pit was abandoned, and a new position chosen (JSTP2). 4.4.5 JWS1 to JWS5 were terminated at depths of between 1.4m and 3.8m bgl due to refusal of the sample barrel in hard natural ground. Similarly, JTP2, JTP3, JTP6, JTP11, JTP12, JTP13, JTP15, JSTP3 & JSTP4 were terminated at depths of between 1.3-1.4m bgl due to hard natural ground causing very slow/difficult progression with the excavator. The possible presence of unidentified natural and/or man-made obstructions elsewhere on 4.4.6 site cannot be discounted. **Geotechnical Testing Results** 4.5 4.5.1 Standard Penetration Tests (SPT) were undertaken in the borehole locations until the drilling equipment refused on hard natural ground at depths of between 1.1m and 3.8m bgl. 4.5.2 SPT 'N' values generally ranged between N=8 and N=28 within the cohesive soils of the Weathered White Limestone Formation. This corresponds with a medium to high strength clay (based on correlations postulated by Stroud & Butler, 1975 and Stroud, 1989). A single N value of N=5 was reported at 1m bgl in WS4, equating to a low strength clay. 4.5.3 Only 3No. SPT's were completed in granular soils of the Weathered White Limestone Formation, these gave 'N' values of N=21, N=49 and N=60. This corresponds with a relative density of medium dense to very dense. 4.5.4 Each borehole location experienced refusal of SPTs on hard natural ground of the White Limestone Formation – i.e. N values of N=>50+. 4.5.5 The results of geotechnical laboratory testing undertaken from the recovered samples of the cohesive and granular deposits of Weathered White Limestone Formation are summarised in

Table 4.4: Summary of Geotechnical Test Results

Parar	neter	Made Ground	Weathered White Limestone Formation (Cohesive)	Weathered White Limestone Formation (Granular)
Moisture Conte	nt (%)	-	2.6 – 29	-
Liquid Limit (%)		-	26 – 51	-
Plastic Limit (%)		-	15 – 23	-
Plasticity Index	(%)	-	10 – 29	-
Modified Plastic	ity Index (%)	-	6.4 – 29	-
Volume Change [NHBC and BRE]		-	Non-shrinkable to Medium	Non-shrinkable
	Gravel (%)		11 – 23	7 – 78
Particle Size Distribution	Sand (%)		20 – 33	10 – 56
Clay/Silt (%)			44 – 69	8 – 37
рН		7.8 – 9.2	7.9 – 8.6	8.0 – 8.6
Water soluble sulphate (g/l)		0.0059 - 0.086	0.003 - 0.110	0.0039 - 0.024

Table 4.4.

Parameter	Made Ground	Weathered White Limestone Formation (Cohesive)	Weathered White Limestone Formation (Granular)
Acid soluble sulphate (%)	0.054 - 0.078	0.034 - 0.074	0.054 - 0.08
Total Sulphur (%)	0.025 - 0.045	0.016 - 0.018	0.021 – 0.035
SPT (N)	12	5 - 28	21 - 60

4.5.6 It should be noted that the engineering characteristics of Made Ground are variable and unpredictable. Therefore, Made Ground has not been assessed further as part of the geotechnical assessment, except where specified otherwise.

4.6 Summary of General Derived Properties

4.6.1 Based on the analysis of the ground investigation data and past experience with similar deposits, the general parameters given in Table 4.5, have been derived for the Weathered White Limestone Formation materials.

Table 4.5: Derived Parameters for Weathered White Limestone Formation materials

Property*	Weathered White Limestone Formation (Cohesive)	Weathered White Limestone Formation (Granular)
Unit Weight ¹⁾	19	20
Drained Friction, ϕ' (°) ^{2)/3)}	23 – 29 ²⁾	35 ³⁾
Drained Cohesion, c' (kPa)	0	-
SPT 'N' Value	5 – 28	21 – 53
Undrained Young's Modulus, E _u (MPa) ⁴⁾	6.0 – 33.6	-
Drained Young's Modulus E' (MPa) 5)/6)	4.5 – 25.2 ⁵⁾	21.0 – 53.0 ⁶⁾
Undrained Shear Strength, c _u (kPa) ⁷⁾	25 – 140	-
Plasticity Index (%)	10 – 29	-
Modified Plasticity Index (%)	6.4 – 29	-
Volume Change Potential [NHBC]	Non-shrinkable to Medium	Non-shrinkable
Modulus of Volume Compressibility, m _v (m²/MN) ⁸⁾	0.071 – 0.4	-

¹⁾ Derived from Figures 1 and 2 of BS8004:2015

²⁾ Calculated from: $\phi' = (42^\circ - 12.5 \log 10 I_p)$ for $5\% \le I_p \le 100\%$ Where, I_p is the soil's plasticity index (BS8004:2015).

 $^{^{3)}}$ Calculated from correlation between N value and Φ (Relation of N-values and Friction Angle by Peck et al)

 $^{^{4)}}$ Calculated from: E_u = 1.2 N MPa, based on the guidance given in CIRIA Report 143.

 $^{^{5)}}$ Calculated from E' = 0.9 N MPa, based on the guidance given in CIRIA Report 143.

⁶⁾ Calculated from: E' = 1.0 N MPa, based on the guidance given in CIRIA Report 143.

⁷⁾ The undrained shear strength (c_u) of the cohesive soils was correlated to the SPT "N" values using Stroud (1974), where c_u = f_1 N and f_1 is factor related to the Plasticity Index (PI) of the clay (a value of f_1 equal to 5.0 for PI \leq 25% and a value of f_1 value equal to 4.5 for PI>25).

⁸⁾ Calculated from: $m_v = 1/f_2 N m^2/MN$, f_2 is a coefficient proposed by Stroud and Butler (1975) and varies with Plasticity Index (PI) as presented in Figure 27 of CIRIA Report 27 or $10/c_u$.

^{*}These reported values are not considered as 'Characteristic Values'.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of chronic risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the ground investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source Pathway Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have compared the soil analytical results to other available GAC, including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Table 5.1: Selected Assessment Criteria – Contaminants in Soils

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

- 5.2.5 It is understood that the site is to be redeveloped to provide residential houses with private gardens and areas of public open space/park. As a result, the site has been assessed with regards to a "Residential with home-grown produce" end use scenario.
- 5.2.6 GAC have been selected with consideration to the Soil Organic Matter (SOM) content of the soil. From the soils analytical results, the values for Total Organic Carbon for the Made Ground ranged between 1.1% and 4.3%, which gives an equivalent SOM range of 1.9% to 7.4%. Therefore, published GAC have been selected as those derived assuming a SOM of 1.0% to provide a conservative assessment.

5.3 BRE

5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Analytical Framework – Groundwater

5.4.1 The requirement to protect groundwater from pollution is outlined in Groundwater protection: Principles and practice (GP3, EA, August 2013, v1.1).

- 5.4.2 Where undertaken, the groundwater quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).
- 5.4.3 The criteria used by Jomas' in the Level 1 assessment of groundwater quality are shown in Table 5.2.

Table 5.2: Selected Assessment Criteria – Contaminants in Water

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Boron, Cadmium, Chromium, Copper, Cyanide, Lead, Mercury, Nickel	EQS/DWS
	Zinc	EQ
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene	DWS
PAHs	Naphthalene	EQS
	Anthracene	EQS
	Benzo(a)pyrene	EQS/DWS
	Fluoranthene	EQS
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C8-C10, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C21-C35	DWS/WHO
Benzene	Benzene	EQS/DWS
Toluene	Toluene	EQS/WHO
Ethylbenzene	Ethylbenzene	WHO
Xylene	Xylene	EQS/WHO

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

SECTION 5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' - Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

6 GENERIC QUANTITATIVE RISK ASSESSMENT – SOIL DATA

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

6.1.1 Laboratory analyses for soils are summarised in Tables 6.1 to 6.4. Raw laboratory data is included in Appendix 3.

Table 6.1: Soil Laboratory Analysis Results - Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested	Screening	g Criteria	Min	Max	Exceedances
Arsenic	mg/kg	25	S4UL	37	5.3	28	0
Cadmium	mg/kg	25	S4UL	11	<0.2	<0.2	0
Chromium	mg/kg	25	S4UL	910	11	61	0
Lead	mg/kg	25	C4SL	200	7.5	100	0
Mercury	mg/kg	25	S4UL	40	<0.3	<0.3	0
Nickel	mg/kg	25	S4UL	180	7.7	49	0
Copper	mg/kg	25	S4UL	2400	10	120	0
Zinc	mg/kg	25	S4UL	3700	20	110	0
Total Cyanide ^A	mg/kg	25	CLEA v 1.06	33	<1.0	1.6	0
Selenium	mg/kg	25	S4UL	250	<1.0	<1.0	0
Boron Water Soluble	mg/kg	25	S4UL	290	<0.2	2.1	0
Phenols	mg/kg	30	S4UL	120	<1.0	<1.0	0

Notes: A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	Exceedances
Naphthalene	mg/kg	30	S4UL	2.3	<0.05	0.55	0
Acenaphthylene	mg/kg	30	S4UL	170	<0.05	18	0
Acenaphthene	mg/kg	30	S4UL	210	<0.05	15	0
Fluorene	mg/kg	30	S4UL	170	<0.05	14	0
Phenanthrene	mg/kg	30	S4UL	95	<0.05	180	1No.: JBH3 at 0.25mbgl
Anthracene	mg/kg	30	S4UL	2400	<0.05	59	0
Fluoranthene	mg/kg	30	S4UL	280	<0.05	370	1No.: JBH3 at 0.25mbgl
Pyrene	mg/kg	30	S4UL	620	<0.05	340	0
Benzo(a)anthracene	mg/kg	30	S4UL	7.2	<0.05	150	2No.:

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	Exceedances
							JBH3 at 0.25mbgl JTP8 at 0.50mbgl
							2No.:
Chrysene	mg/kg	30	S4UL	15	<0.05	120	JBH3 at 0.25mbgl JTP8 at 0.50mbgl
							4No.:
Benzo(b)fluoranthene	mg/kg	30	S4UL	2.6	<0.05	120	JWS1 at 0.10mbgl JBH2 at 0.25mbgl JBH3 at 0.25mbgl JTP8 at 0.50mbgl
Benzo(k)fluoranthene	mg/kg	30	S4UL	77	<0.05	57	0
Benzo(a)pyrene	mg/kg	30	S4UL	2.2	<0.05	100	4No.: JWS1 at 0.10mbgl JBH2 at 0.25mbgl JBH3 at 0.25mbgl JTP8 at 0.50mbgl
Indeno(123-cd)pyrene	mg/kg	30	S4UL	27	<0.05	50	1No.: JBH3 at 0.25mbgl
Dibenzo(ah)anthracene	mg/kg	30	S4UL	0.24	<0.05	14	3No.: JWS1 at 0.10mbgl JBH3 at 0.25mbgl JTP8 at 0.50mbgl
Benzo(ghi)perylene	mg/kg	30	S4UL	320	<0.05	50	0
Total PAH	mg/kg	30	-	-	<0.80	1670	-

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	Exceedances
C ₈ -C ₁₀	mg/kg	16	S4UL	27	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	16	S4UL	74	<2.0	<2.0	0
>C ₁₂ -C ₁₆	mg/kg	16	S4UL	140	<4.0	7.3	0
>C ₁₆ -C ₂₁	mg/kg	16	S4UL	260	<1.0	99	0
>C ₂₁ -C ₃₅	mg/kg	16	S4UL	1100	<10	140	0
Total TPH	mg/kg	16	-	-	<17.1	313	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	Exceedances
>C ₅ -C ₆ Aliphatic	mg/kg	14	S4UL	42	<0.001	<0.001	0
>C ₆ -C ₈ Aliphatic	mg/kg	14	S4UL	100	<0.001	<0.001	0
>C ₈ -C ₁₀ Aliphatic	mg/kg	14	S4UL	27	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aliphatic	mg/kg	14	S4UL	130	<1.0	8.1	0
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	14	S4UL	1100	<2.0	150	0
>C ₁₆ -C ₃₅ Aliphatic	mg/kg	14	S4UL	65000	<16.0	200	0
>C ₅ -C ₇ Aromatic	mg/kg	14	S4UL	70	<0.001	<0.001	0
>C ₇ -C ₈ Aromatic	mg/kg	14	S4UL	130	<0.001	<0.001	0
>C ₈ -C ₁₀ Aromatic	mg/kg	14	S4UL	34	<0.001	<0.001	0
>C ₁₀ -C ₁₂ Aromatic	mg/kg	14	S4UL	74	<1.0	14	0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	14	S4UL	140	<2.0	130	0
>C ₁₆ -C ₂₁ Aromatic	mg/kg	14	S4UL	260	<10	880	2No.: JBH3 at 0.25mbgl JBH4 at 1.50mbgl
>C ₂₁ -C ₃₅ Aromatic	mg/kg	14	S4UL	1100	<10	1300	1No.: JBH4 at 1.50mbgl
Total TPH (Ali/Aro)	mg/kg	14	-	-	<20	2440	-

6.2 Asbestos in Soil

6.2.1 18No. samples were screened in the laboratory for the presence of asbestos. The results of the analysis are summarised below in Table 6.5 below.

Table 6.5: Asbestos Analysis - Summary

Sample	Screening Result	Quantification result (%)	Comments
JTP8 – 0.50m bgl	Detected	<0.001	Loose Fibres - Chrysotile, Amosite
JWS1 – 0.10m bgl	Not Detected	N/A	N/A
JWS2 – 0.10m bgl	Not Detected	N/A	N/A
JWS3 – 0.10m bgl	Not Detected	N/A	N/A
JWS4 – 0.10m bgl	Not Detected	N/A	N/A
JWS5 – 0.10m bgl	Not Detected	N/A	N/A
JBH1 – 0.25m bgl	Not Detected	N/A	N/A
JBH2 – 0.25m bgl	Not Detected	N/A	N/A
JBH3 – 0.25m bgl	Not Detected	N/A	N/A
JBH4 – 0.10m bgl	Not Detected	N/A	N/A

Sample	Screening Result	Quantification result (%)	Comments
JTP1 – 0.25m bgl	Not Detected	N/A	N/A
JTP5 – 0.75m bgl	Not Detected	N/A	N/A
JTP7 – 0.10m bgl	Not Detected	N/A	N/A
JTP7 – 0.75m bgl	Not Detected	N/A	N/A
JTP14 – 0.75m bgl	Not Detected	N/A	N/A
JTP16 – 0.75m bgl	Not Detected	N/A	N/A
JSTP1 – 0.75m bgl	Not Detected	N/A	N/A
JSTP2 – 1.00m bgl	Not Detected	N/A	N/A

- 6.2.2 Asbestos was detected in one sample only, which was taken from exploratory location JTP08 at a depth of 0.5m bgl. The Made Ground at this location was described as containing limestone, brick, asphalt, glass and flint.
- 6.2.3 The result from the asbestos quantification analysis indicated the asbestos concentration of the sample to be <0.001%. This is less 0.1%, at which arisings are considered to be hazardous for the purpose of disposal.

6.3 Volatile Organic Compounds

- 6.3.1 In addition to the suites outlined previously, 13No. samples were tested for the presence of volatile organic compounds including BTEX compounds (benzene, toluene, ethylbenzene, xylene).
- 6.3.2 VOCs were not reported above the laboratory detection limit in any of the samples tested.

6.4 Polychlorinated Biphenyl (PCB) Concentrations

- 6.4.1 In addition to the suites outlined previously, 2No. soil samples obtained from the vicinity of the electrical substation were analysed for the presence of PCBs.
- 6.4.2 No PCBs were reported above the laboratory method detection limit.

6.5 Vapour Risk Assessment from a Soil Source

As outlined in Tables 6.2 and 6.4, a number of polyaromatic hydrocarbons and petroleum hydrocarbon fractions have been found in excess of their generic screening criteria for the protection of human health within a 'residential with home-grown produce' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor. In order to assess potential risks from inhalation of vapour, each organic compound that has been found in excess of its GAC will be assessed in terms of the contribution to total exposure from vapour inhalation inside a structure as reported within the LQM/CIEH S4UL document. Where a significant proportion of the total exposure is reported from vapour inhalation, there could be a potential risk from vapour inhalation.

Table 6.6: Soil Laboratory Analysis Results – Contribution to Total Exposure from Vapour Inhalation (Indoor)

Compound	Contribution of Vapour Inhalation to Total Exposure (%)	Screening Criteria (mg/kg)	Maximum Recorded Value (mg/kg)	Potential Vapour Risk?
Phenanthrene	1.0	95	180	х
Fluoranthene	0.4	280	370	х
Benzo(a)anthracene	0.1	7.2	150	х
Chrysene	<0.1	15	120	Х
Benzo(b)fluoranthene	<0.1	2.6	120	Х
Benzo(a)pyrene	0.0	2.2	100	Х
Indeno(123-cd)pyrene	<0.1	27	50	Х
Dibenzo(ah)anthracene	<0.1	0.24	14	х
>C ₁₆ -C ₂₁ Aromatic	0.2	260	880	Х
>C ₂₁ -C ₃₅ Aromatic	0.0	1100	1300	Х

- 6.5.2 As shown in the table above, all of the potentially volatile organic compounds detected in the soils in excess of generic assessment criteria have a negligible contribution to total exposure via inhalation pathway (less or equal to 1%).
- 6.5.3 Furthermore, of the 13No. soil samples tested for VOCs, none reported concentrations above the laboratory detections limits.
- Therefore, it is considered that the risk to the future site users from the potential inhalation of vapours from the soils is negligible.
- 6.5.5 The elevated concentrations of medium to heavy end aromatic hydrocarbons reported in exploratory location JBH4 at 1.50m bgl are likely to be associated with the black staining and hydrocarbon odour reported in this position at 1.2-2.0m bgl. However, as demonstrated above, the risk associated via vapour inhalation from this source is considered to be negligible.

6.6 Summary of Human Health Generic Quantitative Risk Assessment

- 6.6.1 In summary, locally elevated concentrations of some PAH compounds and TPH fractions have been recorded in the topsoil and Made Ground.
- 6.6.2 The greatest exceedances of PAH were detected in Made Ground samples obtained from exploratory holes JBH3 (0.25m) and JTP8 (0.5m), both located in the south-western part of the site. Fragments of asphalt were reported in the Made Ground in both locations and are the likely sources of elevated PAH reported.
- 6.6.3 The findings are consistent with the Hydrock report (2017) which also reported exceedances of PAH in the Made Ground.
- 6.6.4 The elevated aromatic TPH concentrations recorded in the Made Ground sample obtained from exploratory hole JBH4 (1.5m) is likely to be associated with the contamination (black staining and hydrocarbon odour) reported at 1.2-2.0m bgl in this location. The source of this

impact is likely the adjacent above ground storage tanks and/or associated underground pipework.

- 6.6.5 Elevated aromatic hydrocarbons were also reported in the Made Ground sample obtained from JBH3 (0.25m). Visual/olfactory evidence of organic contamination was not observed in JBH3, nor did the borehole target a specific point source. However, the presence of asphalt fragments (see above) may be the source of the elevated hydrocarbons reported.
- 6.6.6 In addition, asbestos was detected in 1No. Made Ground sample (out of 18No. screened). No asbestos was detected in Hydrock's investigation (out of 7No. samples tested).

6.7 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.7.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS:3882 (2015). This does not constitute a full BS:3882 topsoil test.
- 6.7.2 Table 6.7 shows the soil analytical results compared with the relevant screening values, adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis.

Table 6.7: Soil Laboratory Analysis Results – Phytotoxic Determinands

Determinand	Threshold level (mg/kg)	Min (mg/kg)	Max (mg/kg)	No. Exceeding
Nickel	110	7.7	49	0
Copper	200	10	120	0
Zinc	300	20	110	0

6.7.3 None of the samples exceeded the threshold levels and a significant risk to plant growth has not been identified.

6.8 Screening for Water Pipes Materials

The results of the analysis have been assessed for potential impact upon water supply pipes.

Table 6.8 below summarises the findings of the assessment:

Table 6.8: Screening Guide for Water Pipes

	No. of	Threshold	Value for sit	te data (mg/kg)		
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances	
Total VOCs	13	0.5	<0.056*	<0.056*	0	
BTEX	13	0.1	<0.005*	<0.005*	0	
MTBE	13	0.1	<0.001*	<0.001*	0	
EC5-EC10	30	1	<0.006*	<0.1*	0	
EC10-EC16	30	10	<6.0*	292.1	3No.: JBH3 at 0.25mbgl JBH4 at 1.50mbgl	

	No. of	Threshold	Value for sit	e data (mg/kg)		
Determinand	tests	adopted for PE (mg/kg)	Min	Max	No of Exceedances	
					JBH5 at 0.25mbgl	
					JTP8 at 0.50mbgl	
					3No.:	
EC16-EC40	30	500	<11.0*	2380	JBH3 at 0.25mbgl	
LC10-LC40	30	300		2380	JBH4 at 1.50mbgl	
					JTP8 at 0.50mbgl	
Naphthalene	30	5	<0.05*	0.55	0	
Phenols	30	2	<1.0*	<1.0*	0	

^{*}Laboratory detection limit

- 6.8.3 The above suggests that upgraded pipe work may be required.
- 6.8.4 Alternatively, it may be possible to utilise other protection methods including (but not limited to):
 - diversion of the pipe,
 - · localised remediation
 - embedding the pipe in a sufficient thickness of clean granular material
- The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.

6.9 Waste Characterisation

- 6.9.1 The classification of materials for waste disposal purposes was outside the scope of this report. Should quantities of material require off-site disposal, waste classification will be required to determine whether soils may be treated as hazardous or non-hazardous.
- 6.9.2 Note that Waste Acceptance Criteria (WAC) analysis may then be required by the landfill operator to determine whether materials can be disposed of at either an inert, stable non-reactive hazardous or hazardous landfill.

7 GENERIC QUANTITATIVE RISK ASSESSMENT – GROUNDWATER DATA

7.1 Groundwater sampling

- 7.1.1 2No groundwater sampling visits were conducted at the site; the first from the 15 to 17 June 2022 (round 1), and the second from 27 to 29 July 2022 (round 2).
- 7.1.2 Groundwater samples obtained from the borehole installations within exploratory locations JBH1-JBH9, JWS2-JWS3; and also from wells installed in BH05 and BH10-BH14 by Hydrock in 2016 were submitted for laboratory chemical analysis. JWS1 and JWS5 were not sampled during either visit as both wells were reported as dry to their terminal depths of 1.36m and 1.57m bgl respectively. JWS2 and JWS3 were not sampled during the return visit in July.
- 7.1.3 The samples were obtained by means of low flow methodology. Groundwater sampling records are presented in Appendix 6.

7.2 Assessment of Groundwater Analytical Data with Respect to Controlled Waters

7.2.1 The results of the laboratory testing from round 1 are summarised in Table 7.1 to 7.3, and from round 2 in Tables 7.4 and 7.5, below, and compared to GAC for controlled waters receptors. The analytical laboratory certificates are presented in Appendix 3.

Table 7.1: Groundwater Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide (Round 1)

Determinand	Unit	No. samples tested	Screening Criteria		Min	Max	Exceedances
Auguria	/1	17	10	DWS	<0.15	2.78	0
Arsenic	μg/l	17	50	EQS	<0.15	2.78	0
Co ductions	/1	17	5	DWS	<0.02	<0.02	0
Cadmium	μg/l	17	0.25	EQS	<0.02	<0.02	0
Charamainna	/1	17	50	DWS	<0.2	0.5	0
Chromium	μg/l	17	4.7	EQS	<0.2	0.5	0
1 1	/1	4.7	10	DWS	<0.2	1.8	0
Lead	μg/l	17	1.2*	EQS	<0.2	1.8	JBH1
NC-L-1	/1	17	20	DWS	<0.5	5.1	0
Nickel	μg/l	17	4*	EQS	<0.5	5.1	JWS3
			2000	DWS	0.6	8.1	0
Copper	μg/l	17	1.0*	EQS	0.6	8.1	JBH1, JBH2, JBH3, JBH5, JBH6, JBH7, JBH8, JBH9, JWS2, JWS3, BH05, BH10, BH11, BH12, BH13, BH14
7:	/1	17	5000	DWS	2.1	9.5	0
Zinc	μg/l	17	10.9**	EQS	2.1	9.5	0
Mercury	μg/l	17	1	DWS	<0.05	<0.05	0

Table 7.1: Groundwater Laboratory Analysis Results - Metals, Metalloids, Phenol, Cyanide (Round 1)

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min	Max	Exceedances
			0.07	EQS	<0.05	<0.05	0
Selenium	μg/l	17	10	DWS	<0.6	0.8	0
Davis	/1	4.7	1000	DWS	29	250	0
Boron	μg/l	17	2000	EQS	29	250	0
			50	DWS	<1.0	26	0
Cyanide (Total)	μg/l	17	1	EQS	<1.0	26	JBH7, JBH8, JBH9, BH11
Phenols (Total)	μg/l	17	7.7	EQS	<10	<10	0

^{*} bioavailable concentration

Table 7.2: Groundwater Analysis Results - Polycyclic Aromatic Hydrocarbons (PAHs) (Round 1)

Determinand	Unit	No. samples tested	Screening	Criteria	Min.	Max.	Exceedances
Naphthalene	μg/l	17	2.0	EQS	<0.01	<0.01	0
Acenaphthylene	μg/l	17	-	-	<0.01	0.18	-
Acenaphthene	μg/l	17	-	-	<0.01	0.49	-
Fluorene	μg/l	17	-	-	<0.01	0.70	-
Phenanthrene	μg/l	17	-	-	<0.01	<0.01	-
Anthracene	μg/l	17	0.1	EQS	<0.01	<0.01	0
Fluoranthene	μg/l	17	0.0063	EQS	<0.01	0.83	JWS3
Pyrene	μg/l	17	-	-	<0.01	0.34	-
Benzo(a)anthracene	μg/l	17	-	-	<0.01	<0.01	-
Chrysene	μg/l	17	-	-	<0.01	<0.01	-
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	μg/l	17	0.1	DWS	<0.04	<0.04	0
Ponzo(a) nurana	μg/l	17	0.01	DWS	<0.01	<0.01	0
Benzo(a)pyrene	μg/l	1/	0.00017	EQS	<0.01	<0.01	0
Dibenzo(ah)anthracene	μg/l	17	-	-	<0.01	<0.01	-

Table 7.3: Groundwater Analysis Results-TPHCWG & BTEX - Controlled Waters (Round 1)

Determinand	Unit	No. Samples tested	Screening Criteria		Min.	Max.	Exceedances
Dannana	D //	17	1.0	DWS	<1.0	<1.0	0
Benzene μ	μg/l	17	10	EQS	<1.0	<1.0	0

^{**}bioavailable concentration + ambient background concentration dissolved for Thames Groundwater (2 μg/L)

Determinand	Unit	No. Samples tested	Screenin	g Criteria	Min.	Max.	Exceedances
Toluene	/1	17	74	EQS	<1.0	<1.0	0
roidene	μg/l	17	700	WHO	<1.0	<1.0	0
Ethyl benzene	μg/l	17	300	WHO	<1.0	<1.0	0
Xylenes (total)	ua/l	17	30	EQS	<2.0	<2.0	0
Aylenes (total)	μg/l	17	500	WHO	<2.0	<2.0	0
MTBE	μg/l	17	-	-	<1.0	<1.0	0
>C ₅ -C ₆ Aliphatic	μg/l	17	15000	WHO	<1.0	<1.0	0
>C ₆ -C ₈ Aliphatic	μg/l	17	15000	WHO	<1.0	<1.0	0
>C ₈ -C ₁₀ Aliphatic	μg/l	17	300	WHO	<1.0	<1.0	0
>C ₁₀ -C ₁₂ Aliphatic	μg/l	17	300	WHO	<10	730	JBH6
>C ₁₂ -C ₁₆ Aliphatic	μg/l	17	300	WHO	<10	580	JBH6
>C ₁₆ -C ₂₁ Aliphatic	μg/l	17	-	-	<10	110	-
>C ₂₁ -C ₃₅ Aliphatic	μg/l	17	-	-	<10	530	-
>C ₅ -C ₇ Aromatic	μg/l	17	10	WHO	<1.0	<1.0	0
>C ₇ -C ₈ Aromatic	μg/l	17	700	WHO	<1.0	<1.0	0
>C ₈ -C ₁₀ Aromatic	μg/l	17	300	WHO	<1.0	<1.0	0
>C ₁₀ -C ₁₂ Aromatic	μg/l	17	90	WHO	<10	390	JBH4, JBH6, BH10
>C ₁₂ -C ₁₆ Aromatic	μg/l	17	90	WHO	<10	350	JBH4, JBH6, BH10
>C ₁₆ -C ₂₁ Aromatic	μg/l	17	90	WHO	<10	72	0
>C ₂₁ -C ₃₅ Aromatic	μg/l	17	90	WHO	<10	<10	0

- 7.2.2 In addition to the suite outlined above, the 17No. water samples were also analysed for a suite of volatile organic compounds (VOCS). None of the compounds analysed for were reported above the laboratory method detection limit.
- 7.2.3 Similarly, for the BTEX (Benzene, Toluene, Ethylbenzene and Xylene) compounds, as shown in Table 7.3 above, none of the results were reported above the laboratory limit of detection.

Table 7.4: Groundwater Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs) (Round 2)

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min.	Max.	Exceedances
Naphthalene	μg/l	15	2.0	EQS	<0.01	<0.01	0
Acenaphthylene	μg/l	15	-	-	<0.01	0.28	-
Acenaphthene	μg/l	15	-	-	<0.01	0.5	-
Fluorene	μg/l	15	-	-	<0.01	0.71	-
Phenanthrene	μg/l	15	-	-	<0.01	<0.01	-
Anthracene	μg/l	15	0.1	EQS	<0.01	<0.01	0

Determinand	Unit	No. samples tested	Screening	Criteria	Min.	Max.	Exceedances
Fluoranthene	μg/l	15	0.0063	EQS	<0.01	<0.01	0
Pyrene	μg/l	15	-	-	<0.01	<0.01	-
Benzo(a)anthracene	μg/l	15	-	-	<0.01	<0.01	-
Chrysene	μg/l	15	-	-	<0.01	<0.01	-
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	μg/l	15	0.1	DWS	<0.04	<0.04	0
Benzo(a)pyrene	μg/l	15	0.01	DWS	<0.01	<0.01	0
2525(3)pyrene	μg/l		0.00017	EQS	<0.01	<0.01	0
Dibenzo(ah)anthracene	μg/l	15	-	-	<0.01	<0.01	-

Table 7.5: Groundwater Analysis Results – TPHCWG & BTEX – Controlled Waters (Round 2)

Determinand	Unit	No. Samples tested	Screening Criteria		Min.	Max.	Exceedances
Donzono	/1	15	1.0	DWS	<1.0	<1.0	0
Benzene	μg/l	15	10	EQS	<1.0	<1.0	0
Toluene	ua/l	15	74	EQS	<1.0	<1.0	0
Toluene	μg/l	15	700	WHO	<1.0	<1.0	0
Ethyl benzene	μg/l	15	300	WHO	<1.0	<1.0	0
Vidence (total)	/1	15	30	EQS	<2.0	<2.0	0
Xylenes (total)	μg/l	15	500	WHO	<2.0	<2.0	0
MTBE	μg/l	15	-	-	<1.0	<1.0	0
>C ₅ -C ₆ Aliphatic	μg/l	15	15000	WHO	<1.0	<1.0	0
>C ₆ -C ₈ Aliphatic	μg/l	15	15000	WHO	<1.0	<1.0	0
>C ₈ -C ₁₀ Aliphatic	μg/l	15	300	WHO	<1.0	<1.0	0
>C ₁₀ -C ₁₂ Aliphatic	μg/l	15	300	WHO	<10	<10	0
>C ₁₂ -C ₁₆ Aliphatic	μg/l	15	300	WHO	<10	<10	0
>C ₁₆ -C ₂₁ Aliphatic	μg/l	15	-	-	<10	<10	0
>C ₂₁ -C ₃₅ Aliphatic	μg/l	15	-	-	<10	<10	0
>C ₅ -C ₇ Aromatic	μg/l	15	10	WHO	<1.0	<1.0	0
>C ₇ -C ₈ Aromatic	μg/l	15	700	WHO	<1.0	<1.0	0
>C ₈ -C ₁₀ Aromatic	μg/l	15	300	WHO	<1.0	<1.0	0
>C ₁₀ -C ₁₂ Aromatic	μg/l	15	90	WHO	<10	390	JBH4, JBH6, BH10
>C ₁₂ -C ₁₆ Aromatic	μg/l	15	90	WHO	<10	280	JBH4, JBH6,

							_
Determinand	Unit	No. Samples tested	Screeni	ng Criteria	Min.	Max.	Exceedances
							BH10
>C ₁₆ -C ₂₁ Aromatic	μg/l	15	90	WHO	<10	14	0
>C ₂₁ -C ₃₅ Aromatic	μg/l	15	90	WHO	<10	<10	0
7.2.4	of volat	tion to the suite tile organic com the laboratory m	pounds (VC	CS). None of th			
7.2.5		y, for the BTEX (.5 above, none o					
7.2.6	and mo Quality concen laborat the tota and nic to cont soil hav concen	the first round of the widespread Standards (Editations of these ory. The bioavail al concentration kel have been recolled water recolled water reconstitution in ground of exceedance ite.	exceedance (QS). Howe the metals, rationally able concerned (QS) are ported, the ceptors. Altitified at sign dwater is like	es of copper were, the EQS her than the total trations of the iven this and the enickel and lead nough elevated afficantly elevated tely to the results.	vere reported in values are both all dissolved commetals would both at only relativel distribution are not considered concentration to fa wider are	in excess of lased on the ased on the ased on the ased on the expected to y minor excee lered to pose or, copper con as and therefor a issue, also re	Environmental be bioavailable eported by the be lower than dances of lead significant risk centrations in ore the copper eflected in the
7.2.7	been re soil sou soil sar contain margina site sou	uring the first roo eported in 4No. Irce of cyanide hangles were ≤1.0 detectable con al (1.1-2.8 µg/l). Irce area of cyan re and is not con	groundwate las been ide lmg/kg). In ncentration The exceed lide has bee	er samples obta entified (the con addition, 13No s of cyanide, a ances are not wi en identified and	ined from JBHZ icentrations of . remaining gro and 2No. of the despread acros	7, JBH8, JBH9 total cyanide bundwater sane 3No. excens the site and	and BH11. No reported in all mples did not edances were no specific on-
7.2.8	regards ground	sult of the above to the site impa water and, ther ject to analysis f	acting on co efore, the s	ncentrations of amples collecte	metals, metallo	oids, phenols	and cyanide in
7.2.9	ground concen during t laborat in grou Of thes was no	lly elevated co water sample trations of fluora this visit, as well ory limit of detect ndwater (as per e compounds, or t found to excee	obtained fanthene rep as all 15No ction. The or CL:AIRE, 20 nly naphtha d the labora	rom JWS3, du orted in all the o . samples obtain aly PAHs with sta 17) are naphtha lene has a statut atory detection	uring the first other 16No. groned during the sated "moderate alene, acenaph tory water quali limit, the levels	round of sundwater same second visit, wo or "high" mothylene, and atystandard. A	ampling. The apples obtained were below the obility rankings acenaphthene.

not considered to pose a risk to sensitive receptors.

- 7.2.10 Locally elevated concentrations of aliphatic hydrocarbon fractions >C₁₀-C₁₂ and >C₁₂-C₁₆ were reported in a groundwater sample obtained from borehole JBH6 during the first round of sampling. As per Table 5.1 of CL:AIRE, 2017 these hydrocarbon fractions are reported as having a 'low' to 'very low' mobility in groundwater. Therefore, the risk posed to the controlled waters from these contaminants is considered to be low. In addition, during the second round of sampling (which included JBH6) no aliphatic hydrocarbon fractions were reported above detection limits.
- 7.2.11 Locally elevated concentrations of aromatic hydrocarbons $>C_{10}-C_{12}$ and $>C_{12}-C_{16}$ were reported in the groundwater samples obtained from boreholes JBH4, JBH6 and BH10, during both of the sampling rounds. As per Table 5.1 of CL:AIRE, 2017 these hydrocarbon fractions are considered to have a 'moderate' mobility in groundwater.
- 7.2.12 JBH4 targeted above ground storage tanks, south of Valve Pit 1. Results from the soil analysis revealed elevated concentrations of long chain aromatic hydrocarbons in the same location. Black staining and a hydrocarbon odour were also noted during drilling of this borehole at depths of 1.2m to 2.0m bgl. It is likely that the source of hydrocarbon contamination in this area is the nearby tanks and/or associated underground pipework and hydrocarbon impacted soils.
- 7.2.13 JBH6 targeted an area east of POL2 and south of Valve Pit 3, however, elevated hydrocarbon contaminants were not detected in soils and there was no visual or olfactory evidence of contamination reported during drilling, although a slight hydrocarbon odour was observed during groundwater sampling. The potential source of this contamination is currently unclear and further investigation in this area is recommended to investigate the potential presence of a currently unknown source.
- 7.2.14 According to Hydrock, BH10 targeted POL21. Hydrock reported elevated concentrations of aliphatic hydrocarbons >C₆-C₁₆ within groundwater from BH10, but all aromatic hydrocarbons were reported below the laboratory detection limit of 10 μ g/l.
- 7.2.15 Elevation data and groundwater levels across the site have been studied to determine the likely groundwater flow direction. The data review indicates groundwater flow is generally to the south-west. This is supported by the fact that the River Cherwell, located approximately 1.75km west of the site, flows to the south, and additional minor tributaries (including Gallos Brook) flow south to join it.
- 7.2.16 Groundwater analysis was undertaken at a site referred to as Phase 9 in September 2021 (see Section 2.3). The Phase 9 site is located south-west and therefore down-gradient of the study site (Phase 10). More specifically, the nearest borehole on the Phase 9 site was located approximately 60m south-west of JBH4 on Phase 10. Over two sampling visits in, 10No. groundwater samples were obtained from the Phase 9 site and scheduled for a suite of contaminants including BTEX, MTBE, and TPHCWG. None of the determinands were detected above laboratory detection limits.
- 7.2.17 Therefore, it is considered that the hydrocarbon contamination identified in groundwater on Phase 10 is not significantly impacting groundwater off-site and the risk to controlled waters remain relatively low. The contamination reported is likely a localised issue and significant betterment of the groundwater environment can be achieved through tank removal, pipework removal and impacted soil removal, which will sever any residual potential pollutant linkages to controlled waters. Further groundwater sampling post-remediation may be required to demonstrate that an ongoing risk to controlled waters is not present.

7.3 Assessment of Groundwater Analytical Data with Respect to Vapour Intrusion Pathways

- 7.3.1 In order to further assess potential risks to human health receptors via vapour intrusion pathways, the groundwater results have been compared to generic assessment criteria, published by the Society of Brownfield Risk Assessment (SoBRA) in 2017, relevant to a pollutant linkage via vapour intrusion from a dissolved phase source in groundwater. The site is to be developed to provide residential housing, and therefore, the GAC have been selected for a residential end use.
- 7.3.2 This assessment supplements the assessment of risks via vapour intrusion from soil data provided in Section 6.5, that concluded a negligible risk.
- 7.3.3 The assessment results are presented in Table 7.6. Only contaminants recorded above detection limits, from either one or both of the sampling visits, have been assessed.

Table 7.6 Groundwater Vapour Risk Analysis Results (µg/l)

Determinand	Unit	Screening Criteria	Min.	Max.	No. of Exceedances
Acenaphthylene	μg/l	220,000	<0.01	0.18	0
Acenaphthene	μg/l	170,000	<0.01	0.49	0
Fluorene	μg/l	210,000	<0.01	0.7	0
Fluoranthene	μg/l	Insufficiently volatile	<0.01	0.83	-
Pyrene	μg/l	Insufficiently volatile	<0.01	0.34	-
Aliphatic >C ₁₀ -C ₁₂	μg/l	37	<10	730	JBH6
Aliphatic >C ₁₂ -C ₁₆	μg/l	Insufficiently volatile	<10	580	-
Aliphatic >C ₁₆ -C ₂₁	μg/l	Insufficiently volatile	<10	110	-
Aliphatic >C ₂₁ -C ₃₅	μg/l	Insufficiently volatile	<10	530	-
Aromatic >C ₁₀ -C ₁₂	μg/l	6800	<10	390	0
Aromatic >C ₁₂ -C ₁₆	μg/l	39000	<10	350	0
Aromatic >C ₁₆ -C ₂₁	μg/l	Insufficiently volatile	<10	72	-

- 7.3.4 Out of 32No. total groundwater samples analysed, only the sample from the first round of sampling from JBH6 was reported to have detectable concentrations of aliphatic hydrocarbons C_{10} - C_{12} , with all other samples reporting <10 μ g/l.
- 7.3.5 A widespread vapour risk is therefore considered unlikely to be present across the site but a localised risk around JBH6 cannot be ruled out at this stage.
- 7.3.6 Visual or olfactory evidence of contamination was not observed in the soils during the drilling of JBH6. In addition, the results from the soils analysis indicated only low concentrations of total petroleum hydrocarbon to be present in this location.

SECTION 7 GENERIC QUANTITATIVE RISK ASSESSMENT – GROUNDWATER DATA

- 7.3.7 It is noted that a "slight hydrocarbon smell" was reported from JBH6 during the first round of groundwater sampling (where the elevated concentration of aliphatic C10-C12 was reported) and a "strong hydrocarbon smell" was reported during the second sampling round, from which no elevated concentrations of hydrocarbons was reported.
 7.3.8 Based on the above, it is recommended that further investigation is conducted in the vicinity
- 7.3.8 Based on the above, it is recommended that further investigation is conducted in the vicinity of JBH6, likely to comprise a series of trial pits in an attempt to identify a currently unknown source that may be present, and would explain the elevated groundwater hydrocarbon concentrations in the area. It is recommended that such work is undertaken at the same time as the removal of the known fuel infrastructure across the rest of the site.
- 7.3.9 If a specific source is identified (such as impacted soils, pipework or a tank) this should be removed and further water sampling post-remediation may be sufficient to demonstrate that an ongoing vapour risk is not present.
- 7.3.10 Should no specific source be identified, further assessment of the potential vapour risk should be undertaken, potentially comprising the collection and analysis of vapour samples and derivation of site specific vapour assessment criteria to assess the chronic risk that the above exceedance poses to human health.

8 SOIL GAS RISK ASSESSMENT

8.1 Soil Gas Results

- 8.1.1 3No. return monitoring visits have been undertaken on 8 and 14 June, and 26 July 2022, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 8.1.2 During these visits atmospheric pressure ranged between 989mb and 1007mb. The pressure trends observed were falling and rising.
- 8.1.3 The results from the monitoring undertaken to date are summarised in Table 8.1. The full monitoring records are presented in Appendix 5.

Table 8.1: Summary of Gas Monitoring Data

Hole No.	Install Details	CH₄ (%)	CO₂ (%)	O ₂ (%)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (I/hr)	Depth to water (m bgl)	Well Response Zone as installed (top / bottom) (m bgl)
JWS1		0.0 - 0.2	0.8 - 1.3	19.7 - 20.5	2 – 11	0.1 to 0.3	0.3	Dry	1.0 / 1.4
JWS2		0.0 - 0.2	0.3 – 2.0	18.7 - 21.6	4 – 25	0.0 to 0.2	0.2	1.12 – 1.49	1.0 / 2.0
JWS3		0.0 - 0.2	2.5 - 3.2	18.1 - 20.8	<1 – 2	0.1 to 0.3	0.3	1.36 – 1.74	1.0 / 3.8
JWS5		0.0 - 0.2	0.9 - 1.2	19.2 - 20.7	1 – 75	0.1 to 0.2	0.2	Dry	1.0 / 1.5
JBH1		0.0 - 0.2	0.5 – 1.1	20.3 - 21.6	6 – 10	0.0 to 0.2	0.2	3.61 – 3.72	1.0 / 8.0
JBH2		0.0 - 0.2	0.0	15.7 - 17.4	13 – 65	0.0 to 0.2	0.2	1.63 – 1.96	1.0 / 8.0
JBH3	Jomas, 2022	0.0 - 0.3	4.1 - 5.7	14.0 - 15.9	3 – 166	0.1 to 0.3	0.3	1.83 – 2.18	1.0 / 8.0
JBH4		1.2 – 1.5	1.6 – 9.3	7.8 - 15.5	326 – 565	-0.2 to 0.3	0.3	1.52 – 1.83	1.0 / 8.0
JBH5		0.0 - 0.2	0.1 – 0.3	20.0 - 20.4	2 – 20	0.1 to 0.3	0.3	3.34 – 4.03	1.0 / 8.0
JBH6		0.1 – 0.8	1.0 - 1.2	19.2 - 20.1	84 – 264	0.1 to 0.2	0.2	3.70 – 5.02	1.0 / 8.0
JBH7		0.0 - 0.3	6.8 - 7.9	15.1 - 15.5	<1-4	0.0 to 0.3	0.3	2.71 – 3.07	1.0 / 8.0
JBH8		0.0 - 0.3	1.2 - 1.4	19.0 - 20.5	8 – 24	0.2 to 0.3	0.3	2.92 – 3.50	1.0 / 8.0
JBH9		0.0 - 0.2	1.6 - 1.9	17.9 - 20.3	3 – 32	0.1 to 0.3	0.3	4.45 – 5.77	1.0 / 8.0
BH05		0.0 - 0.2	3.1 – 7.3	14.7 - 19.3	2 – 4	0.0 to 0.3	0.3	2.03 – 2.47	2.0 / 8.0
BH10		0.0 - 0.3	1.9 – 3.8	14.7 - 21.4	12 – 73	0.1 to 0.2	0.2	2.78 – 3.26	2.0 / 8.0
BH11	Hydrock,	0.0 - 0.2	0.6 - 0.8	19.5 - 21.4	6 – 28	0.1 to 0.3	0.3	2.79 – 3.94	2.0 / 8.0
BH12	2016	0.0 - 0.2	0.2 - 2.2	18.6 - 21.4	4 – 33	0.2 to 0.3	0.3	4.12 – 4.87	2.0 / 8.0
BH13	_	0.0 - 0.2	0.5 - 0.9	20.3 - 20.7	4 – 112	0.2 to 0.3	0.3	3.58 – 5.02	2.0 / 8.0
BH14	_	0.0 - 0.2	0.8 – 1.4	18.7 - 18.9	1 – 28	0.2	0.2	3.18 – 3.80	2.0 / 8.0

8.2 Screening of Results

- 8.2.1 As shown in Table 8.1, the maximum methane (CH₄) and carbon dioxide (CO₂) concentrations reported were 1.5% and 9.3% v/v respectively. Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected maximum Volatile Organic Compound (VOC) concentration of 565ppm. A maximum gas flow rate recorded during monitoring was 0.3l/hr.
- 8.2.2 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 8.2.3 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

8.2.4 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 8.2. The Characteristic Situation (CS) is then determined from Table 8.5 of CIRIA C665.

Table 8.2: Summary of Gas Monitoring Data

Gas (v,	/v %)	(l/hr)		tuation (after CIRIA C665)
CO ₂	9.3	0.3	0.0279	1
CH ₄	1.5	0.3	0.0045	1

Jomas' Findings (2022)

- 8.2.5 Based on the calculated GSVs (<0.07l/hr), the site is classified as Characteristic Situation 1 (CS1).
- 8.2.6 BS8485 states that consideration should be given to increasing the classification to CS2 when concentrations of methane are >1.0% or concentrations of carbon dioxide are >5.0%. Elevated methane concentrations of 1.2% to 1.5% were reported in JBH4 only. Occasionally elevated carbon dioxide concentrations, in excess of 5% and up to 7.9%, have been reported within JBH3, JBH4, JBH7 and BH05. However, it should be noted that the concentrations were predominantly low-level exceedances, and they were only detected within 4No out of 17No of the wells monitored. In addition, the flow rates recorded across the entire site were consistently low (≤0.3I/hr). Based on the above, it is considered that the GSVs are appropriate in classifying the site as CS1, and no formal gas protection measures are considered necessary.
- 8.2.7 Furthermore, it is likely that the elevated methane in JBH3 and JBH4 can be attributed to the hydrocarbon impacted soil/groundwater in that location (see Sections 6 & 7). In accordance with CL:AIRE Research Bulletin RB17 (2012), the presence of degrading hydrocarbons in the well can result in presence of methane and carbon dioxide in the well head space.

Summary of Hydrock Findings (2016)

- 8.2.8 Ground gas monitoring was undertaken by Hydrock on 3 occasions in 2016. The monitoring included wells installed in boreholes BH05 and BH10 to BH14. The response zones for the boreholes spanned the Great Oolite Group.
- 8.2.9 Hydrock "provisionally classified" the site as CS2 due to elevated concentrations of methane reported in BH10 on 2 visits. However, it should be noted that the maximum reported GSV throughout all three monitoring events was 0.0024l/hr, and flow rates across all wells and visits remained at ≤0.1l/hr. The methane concentrations of up to 1.7% reported in BH10 may be a result of degrading hydrocarbons identified within groundwater obtained from BH10, as discussed above in paragraphs 8.2.11.
- 8.2.1 British Standard BS 8576:2013 has been used to derive threshold levels for carbon monoxide and volatile organic compounds.
- 8.2.2 Carbon monoxide concentrations recorded during monitoring generally ranged from below the limit of detection to 1ppm, although a maximum concentration of 21ppm was reported in JBH2. The Health and Safety Executive (HSE) has recommended a long-term exposure limit of 30ppm. The concentrations recorded on the site are therefore within acceptable limits and it is not considered that additional protection measures need to be incorporated to protect end users from the recorded carbon monoxide concentrations.
- 8.2.1 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 564ppm in JBH4 and 264ppm in JBH6. A vapour risk from a soil source has not been identified (see Section 6.5). However, a potential vapour risk from groundwater source has been identified in JBH6. Therefore, it is considered that the risks to human health receptors via vapour inhalation pathways require further evaluation. See Section 7.3 for further detail.

Conclusion

- 8.2.2 Based on the calculated GSVs, and in consideration of the conceptual site model, the site is classified as Characteristic Situation 1 (CS1) and no formal gas protection measures are considered necessary.
- 8.2.3 Further investigation of possible vapour risks in the vicinity of JBH6 is recommended. Vapour protection measures may be considered necessary in the vicinity of JBH6 depending on the outcome of that further assessment.

9 GEO-ENVIRONMENTAL ASSESSMENT SUMMARY AND RECOMMENDATIONS

9.1 Land Quality Impact Summary

- 9.1.1 Following the ground investigation, the following is noted:
 - It is understood that the proposed development will comprise demolition of existing buildings and removal of existing infrastructure for the redevelopment of the site to provide new residential houses with gardens and areas of public open space/park.

<u>Soil</u>

- Concentrations of PAHs and long chain aromatic hydrocarbons have been reported in the shallow soils in excess of generic assessment criteria for the protection of human health within a residential with home-grown produce end-use scenario. In addition, presence of chrysotile and amosite asbestos fibres have locally been reported.
- The future buildings and hardstanding will act as a barrier to protect the future site users from contamination present within the shallow soils. However, the site users can become exposed to contamination in the soft landscaping areas of the development including private gardens. It is therefore recommended that the Made Ground in these areas is replaced by a cover layer comprising 600mm of clean imported soil, placed on a geotextile membrane. In communal soft landscaping areas and public open space, the thickness of the capping layer could be reduced to 450mm.
- Any visual asbestos containing materials may be removed by hand, with extensive dust
 control measures required during the soil screening operations for the protection of site
 workers and nearby residents. It should be noted that asbestos fibres will not be visible
 to the naked eye.

Underground obstructions

Based on the records available, several decommissioned above ground storage tanks and
associated pipework are present on site. These will need to be removed during the
development works along with associated hydrocarbon impacted soils (if present). Such
works should be directed, supervised and verified by a suitably qualified environmental
consultant.

Underground services

• Upgraded potable water supply pipes are likely to be required. The water supply pipe requirements should be discussed at an early stage with the relevant Utility provider.

<u>Groundwater</u>

- Locally elevated aromatic hydrocarbon fractions >C₁₀-C₁₂ and >C₁₂-C₁₆ have been reported in boreholes JBH4, JBH6 and BH10. As per Table 5.1 of CL:AIRE, 2017 these hydrocarbon fractions are reported as having a 'moderate' mobility in groundwater.
- However, groundwater analysis undertaken in 2021 on the neighbouring Phase 9 site revealed concentrations of TPHCWG, BTEX and MTBE all below laboratory detection limits. The Phase 9 site is located south-west and down-gradient (in terms of groundwater flow) of the Phase 10 site. Therefore, it is considered that the hydrocarbon contamination

identified in groundwater on Phase 10 is not significantly impacting groundwater off-site and the risk to controlled waters remain relatively low. Significant betterment of the groundwater environment can likely be achieved through tank removal, pipework removal and impacted soil removal, which will sever any residual potential pollutant linkages to controlled waters. Further groundwater analysis post-remediation may be required to demonstrate that an ongoing risk to controlled waters is not present.

- A potential vapour risk to end users associated with groundwater localised around JBH6 has been identified, though a widespread issue is unlikely to exist.
- It is recommended that further investigation is conducted in the vicinity of JBH6, likely to comprise a series of trial pits in an attempt to identify a currently unknown source that may be present and would explain the elevated groundwater hydrocarbon concentrations in the area.
- If a specific source is identified (such as impacted soils, pipework or a tank) this should be removed and further water sampling post-remediation may be sufficient to demonstrate that an ongoing vapour risk is not present.
- Should no specific source be identified, further assessment of the potential vapour risk should be undertaken, potentially comprising the collection and analysis of vapour samples and derivation of site-specific vapour assessment criteria to assess the chronic risk posed to human health.

Ground Gas

- Based on the calculated GSVs, and in consideration of the conceptual site model, the site
 is classified as Characteristic Situation 1 (CS1) and therefore no formal gas protection
 measures are considered to be necessary. This conclusion does not supersede a potential
 requirement for localised vapour protection measures pending further assessment of
 vapour risks.
- 9.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.
- 9.1.3 As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

9.2 Review of Pollutant Linkages Following Ground Investigation

9.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 9.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Table 9.1: Plausible Pollutants Linkages Summary (Pre-Remediation)

Source	Pathway	Receptor	Linkage Number	Relevant Pollutant Linkage?	Comment
 Made Ground possibly including metals, metalloids, asbestos, PAH and petroleum hydrocarbons Hydrocarbon fuels and lubricants associated 					The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
 with the fuel storage tanks and former land use VOCs and SVOCs associated with the former land use. Ethylene glycol – potentially used as a de-icer. Ground gas from nearby backfilled quarries 	 Ingestion Inhalation or contact with potentially contaminated dust 	 Future site users Construction workers Maintenance workers Neighbouring site users 	1	✓	Removal of the existing above ground tanks and associated pipework and other infrastructure, along with petroleum hydrocarbon impacted soils is required under supervision of a suitably qualified geo-environmental engineer, with appropriate verification work works required.
 Electricity sub-station Underground POL pipelines POL2 POL21 A, B, C 		- Neighbouring site users			A provision of cover layer is required in the soft landscaping areas including private gardens to protect the future site users from the contamination present in the shallow soils.
 AST in south-west of site 					A Remediation Strategy Report should be produced.
 Evidence of hydrocarbon contamination reported in TP109 by Hydrock Former excavation 2-2 with fuel leak/spill 					The risk to end users associated with vapour risk inhalation from soils is considered negligible.
reported by Vertase	Inhalation of vapours	 Future site users Construction workers Maintenance workers Neighbouring site users 	2	?	Whilst a widespread vapour risk from groundwater source is considered unlikely, a localised risk around JBH6 cannot be ruled out at this stage. It is recommended that further investigation is conducted in the vicinity of JBH6, comprising further intrusive investigation to look for a currently unknown source and possible vapour sampling and assessment.
	 Permeation of water pipes and attack on concrete foundations by aggressive 	Building structures/services	3	✓	Upgraded potable water supply pipe materials are likely to be required. The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.
	soil conditions				The concrete classification to protect buried concrete is discussed in Section 10.3
	 Accumulation and migration of soil gases 	Future site usersConstruction workersMaintenance workers	4	х	Site has been characterised as CS1 and no gas protection measures are deemed necessary.
	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. Horizontal and vertical migration of contaminants within groundwater 	 Controlled waters - Principal aquifer within the Great Oolite Group and Gallos Brook ~325m south of site. 	5	x	Locally elevated aromatic hydrocarbon fractions $>C_{10}$ - C_{12} and $>C_{12}$ - C_{16} have been reported in boreholes JBH4, JBH6 and BH10. As per Table 5.1 of CL:AIRE, 2017 these hydrocarbon fractions are reported as having a 'moderate' mobility in groundwater. However, groundwater analysis south-west of the site has revealed there is no significant impact to controlled waters down-gradient of site. Therefore, it is considered that the identified hydrocarbon contamination poses a relatively low risk to off-site controlled water receptors. Removal of existing fuel infrastructure will be required to protect the on-site controlled waters receptor (i.e. the underlying Principal Aquifer), and additional groundwater analysis post-remediation may be required to verify successful remediation.

10	GEOTECHNICAL ENGINEERING RECOMMENDATIONS
10.1	General
10.1.1	Subsequent to intrusive investigation of the site and receipt of the laboratory test results, the following geotechnical assessments have been made.
10.2	Proposed Foundations
	<u>General</u>
10.2.1	All topsoil should be stripped from beneath proposed structures ahead of development.
10.2.2	The Made Ground is not considered to provide a suitable bearing stratum due to its variability and the unacceptable risk of total and differential settlement.
10.2.3	All foundations should be deepened beneath these deposits, soft clay, root or desiccated zones, or disturbed ground, and founded within underlying competent strata.
10.2.4	As soils of medium volume change potential are present, heave precautions will be required against the side of foundations and ground beams in accordance with the requirements set out in NHBC Standards Chapter 4.2.
	Conventional Foundations
10.2.5	Based on the ground and groundwater conditions encountered, conventional shallow foundations are likely to be suitable for the proposed development.
10.2.6	It is considered that traditional strip/trench-fill foundations up to 1m wide may be formed within the underlying Weathered White Limestone Formation at a minimum depth of 0.9m for an allowable bearing capacity of 100kPa. Total and differential settlements should be contained within tolerable limits.
10.2.7	This depth, however, does not take into account the depth of Made Ground or the distance to and species of any previous, existing and proposed trees, and foundations may need to be deepened further accordingly, in accordance with NHBC requirements, for soils of medium volume change potential.
10.2.8	Where foundations need to change levels as a result, the foundations should be stepped and reinforced. These steps should be no deeper than half of the width of the foundation and each step should not exceed 0.5m.
10.2.9	If foundations span different strata, e.g. sand and clay, they should either be deepened to terminate in a single soil stratum, or suitable reinforcement included (to be detailed by the Structural Engineer).
10.2.10	Foundations greater than 2.50m deep would require structure-specific design by a structural engineer.

10.2.11 Where any unexpected or soft ground conditions are encountered during the groundworks, works in that area should cease and the advice of a suitably qualified geotechnical engineer sought.

Raft Foundations

- 10.2.12 Alternatively, a raft foundation may be a suitable option.
- 10.2.13 Such a foundation should be formed on a suitable thickness of well-engineered granular subbase, should provide an allowable bearing capacity of 60kN/m².
- Prior to laying the suitable thickness of well-engineered granular sub-base, the formation level should be inspected by a suitably qualified and experienced specialist. Any loose or soft material should be removed to a suitable depth and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced.
- 10.2.15 In order to keep settlements within tolerable limits, the raft foundation should comprise a continuously well reinforced slab beneath the building.
- 10.2.16 In addition, reinforced concrete beams / thickening of the raft may be required beneath the structural walls or beneath lines of columns.
- 10.2.17 Any existing granular sub-base or granular Made Ground could potentially be lifted and reengineered.

10.3 Sulphates

- 10.3.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 10.3.2 In accordance with BRE Special Digest 1, the characteristic values of sulphate used to determine the concrete classification are determined using the methodology summarised in the table below.

Table 10.1: Concrete in the Ground Characteristic Value Determination

No Samples in the dataset	Method for determining the sulphate characteristic value
1 - 4	Highest value
5-9	Mean of the top 2No highest results
10 or greater	Mean of the top 20% highest results

10.3.3 Table 10.2 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Table 10.2: Concrete in the Ground Classes

Stratum	No Samples	pH range	Characteristic WS Sulphate (mg/l)	Characteristic Total Potential Sulphate (mg/l) ¹⁾	Design Sulphate Class	ACEC Class
Made Ground/Topsoil	29	7.4 – 11.0	110	N/A	DS-1	AC-1
White Limestone Formation	14	7.9 – 8.6	69	N/A	DS-1	AC-1

¹⁾ Applies to soils containing more than 0.3% of oxidisable sulphides, calculated in accordance with BRE SD-1

- 10.3.4 Analysis of the results indicates that the underlying soils do not contain appreciable concentrations of oxidisable sulphates and therefore the Design Class is dependent on the water soluble sulphate content and pH only.
- 10.3.5 The concrete structures, including foundations, will need to be designed in accordance with BS EN 1992-1-1:2004+A1:2014. It is recommended that the advice of this publication be taken for the design and specification of all sub-surface concrete.

10.4 Ground Floor Slabs

- 10.4.1 Given the presence of shrinkable soils with a medium volume change potential, it is recommended that suspended floor slabs are used with an adequate void designed according to NHBC Standards.
- As a guide, initial modelling indicates a requirement for a sub-floor void of at least 250mm for suspended precast concrete or timber floors. The required sub-floor void would reduce to ≥100mm for ground beams and suspended in-situ concrete ground floors.

10.5 Excavations

- 10.5.1 Temporary excavations within the Made Ground and granular soils are unlikely to remain stable and some form of temporary support or battering back to a safe angle and dewatering are likely to be required.
- 10.5.2 Temporary excavations within the cohesive soils are likely to remain relatively stable in the short term though some spalling may be anticipated.
- Ground works should always be designed in such a manner to avoid entry into excavations by construction or maintenance personnel. However, in the event that such works cannot be avoided or designed out, they should only be undertaken in accordance with a safe system of work, following an appropriate risk assessment and in accordance with any legislative requirements, e.g. Confined Spaces Regulations.
- 10.5.4 Subject to seasonal variations, surface water/groundwater encountered during site works could likely be dealt with by conventional pumping from a sump used to collate waters.

10.6 Drainage

BRE 365 Soakage Tests

10.6.1 Table 10.3 summarises the soakage rates, which were calculated based on the results of the soakage testing:

Table 10.3 - Summary of BRE 365 Soakage Test Results

Decision	Contoni	Calculated Infiltration Rates (m/s)			
Position	Geology	1st cycle	2 nd Cycle	3 rd Cycle	
JSTP1	Weathered White Limestone Formation - Cohesive	N/D	N/D	-	
JSTP2	Weathered White Limestone Formation - Cohesive	N/D	N/D	-	
JSTP3	Weathered White Limestone Formation - Granular	1.5 x 10 ⁻⁵	8.2 x 10 ⁻⁶	3.3 x 10 ⁻⁶	
JSTP4	Weathered White Limestone Formation - Granular	4.0 x 10 ⁻⁵	4.6 x 10 ⁻⁵	1.1 x 10 ⁻⁵	

N/D: Not determined due to insufficient fall in head and presence of perched groundwater

JSTP1 - Test 1 undertaken on 25/05/2022. Pit collapse in Test 1 at 5 minutes. 3cm fall in head recorded after 24 hours.

Pit deepened by 0.5m for Test 2 undertaken on 26/05/2022. 4cm rise in head recorded after 30 minutes.

 ${\sf JSTP2-Test\ 1\ undertaken\ on\ 25/05/2022.\ 11cm\ fall\ in\ head\ recorded\ after\ 20\ hours.}$

Test 2 undertaken on 26/05/2022. 6cm rise in head recorded after 3 hours.

- During the soakage testing water levels rose within JSTP1 and JSTP2 (2nd cycle only) as a result of groundwater ingress. Consequently, no soakage rates could be determined within these trial pits. Although two cycles were achieved within both these trial pits, there were insufficient reductions in water level to calculate or estimate an infiltration rate.
- 10.6.3 In addition, as previously noted, slow groundwater ingress was also encountered within JSTP1 and JSTP2 at depths of between 2.0m and 3.0m bgl, which may have also influenced on water-level rise or very poor infiltration during the soakage testing.
- 10.6.4 Furthermore, during the soakage testing, it was noted that very poor infiltration was achieved where more clayey soils were encountered in the west of site. JSTP3 and JSTP4 both achieved 3 full drainage cycles and were completed in the south-east of site, in granular soils of the Weathered White Limestone Formation.
- Based on the above results and ground conditions encountered on site, it is considered that conventional soakaways may be suitable for discharging storm water run-off to the ground in the south-east of site where JSPT3 and JSPT4 were completed. However, in other locations it is considered that an alternative form of storm water disposal would be required, such as on-site storage and attenuation of peak storm flow with discharge to the drainage ditch network, possibly at greenfield run-off rate, under an extension of riparian rights.

11 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2015, BRE, Watford

BRE Special Digest 1: Concrete in Aggressive Ground, 2005, BRE, Watford

British Standards Institution (2004) Eurocode 7 – Geotechnical design - Part 1: General rules. BS EN 1997-1. Incorporating Corrigendum No.1. BSI, London

British Standards Institution (2007) Eurocode 7 – Geotechnical design - Part 2: Geotechnical investigation and testing. BS EN 1997-2. BSI, London

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. BSI, London

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. BSI, London

British Standards Institution (2013) BS 8576:2013 Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's), BSI, London

British Standards Institution BS 5930:2015+A1:2020 Code of practice for ground investigations. BSI, London

British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 *Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings* BSI, London

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings, CIRIA, London

Environment Agency (2020) Land contamination risk management (LCRM)

Environment Agency, NHBC & CIEH (2008) Guidance for the safe development of housing on land affected by contamination. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

Ministry of Housing, Communities & Local Government: *National Planning Policy Framework*. February 2019.

NHBC Standards 2022. NHBC, Milton Keynes

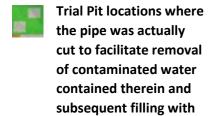
APPENDICES

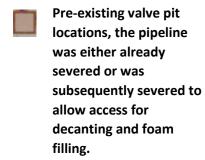
APPENDIX 1 – FIGURES

Geotechnical Engineering & Environmental Services across the UK

PROJECT NAME	Phase 10, Heyford Park, Camp Road, OX25 5HD	CLIENT	Heyford Park Settlements LP (HPSLP)
TITLE	Location Plan	PROJECT NO.	P4280J2513
DATE	March 2022	FIGURE NO.	1

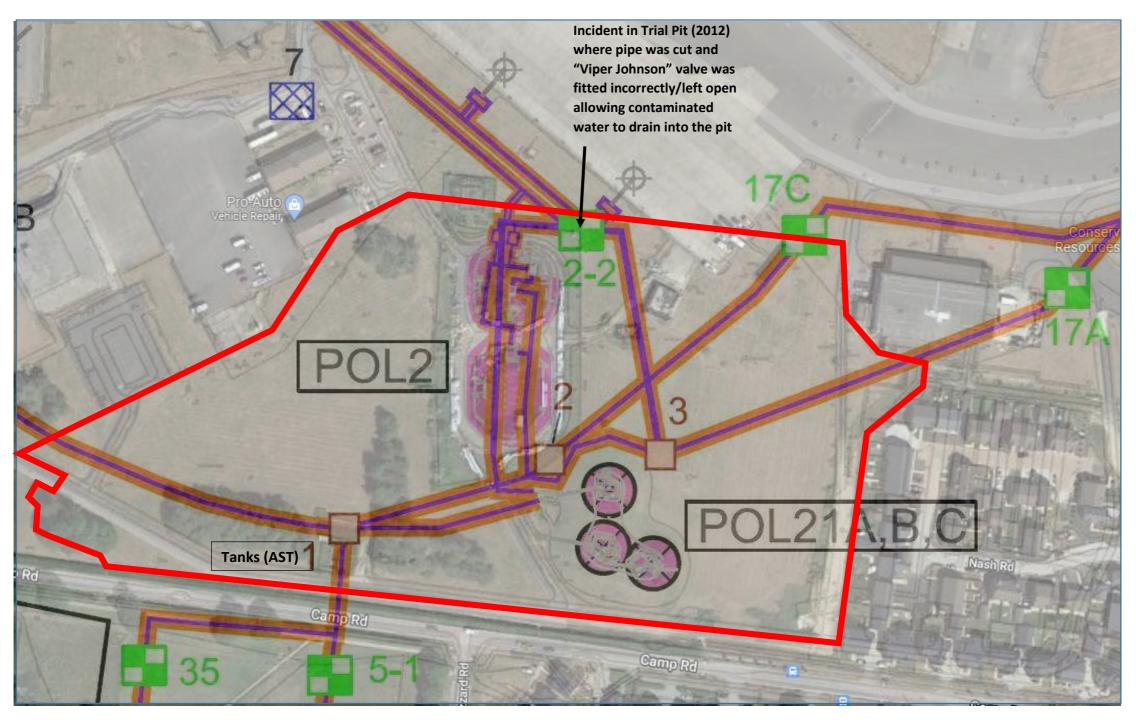
Geotechnical Engineering & Environmental Services across the UK


PROJECT NAME	Phase 10, Heyford Park, Camp Road, OX25 5HD	CLIENT	Heyford Park Settlements LP (HPSLP)
TITLE	Phase 10 site shown with fuel distribution pipelines/tanks overlaid onto satellite image	PROJECT NO.	P4280J2513
DATE	March 2022	FIGURE NO.	2


Phase 10 Site Boundary

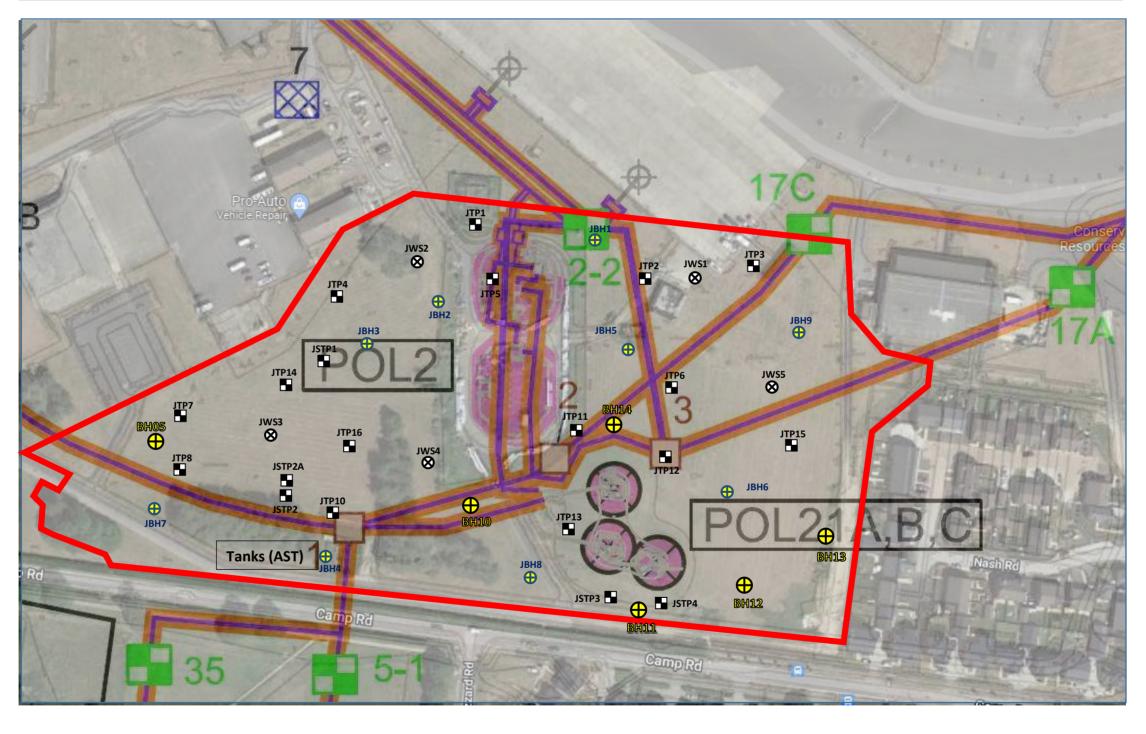
Foam filled pipeline

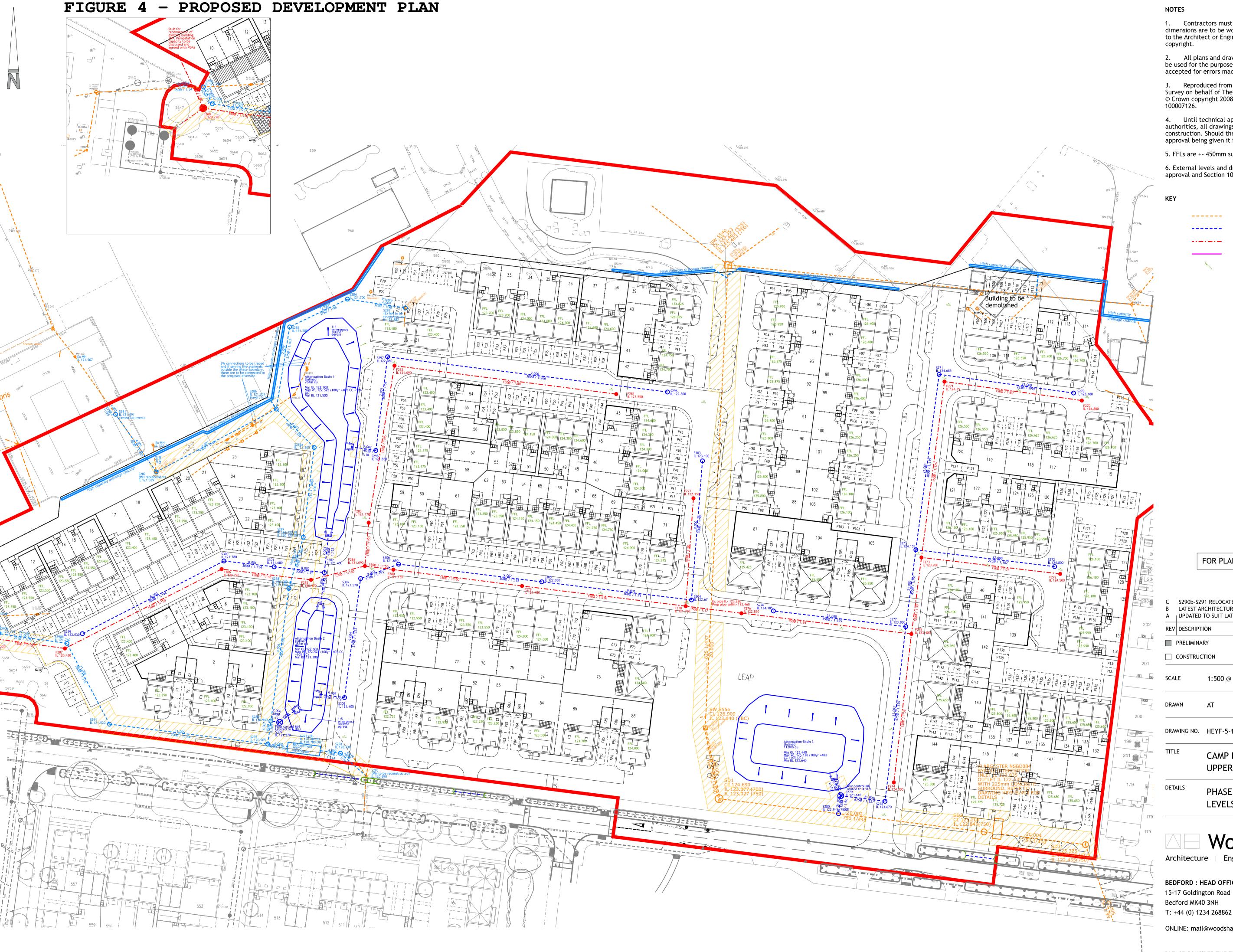
foam



POL21 with Type-1
Tanks (emptied/cleaned but not filled).

POL2 (emptied, cleaned and filled with PFA/OPC grout).





Geotechnical Engineering & Environmental Services across the UK

PROJECT NAME Phase 10, Heyford Park, Camp Road, OX25 5HD		CLIENT	Heyford Park Settlements LP (HPSLP)
TITLE	Completed GI Plan	PROJECT NO.	P4280J2513
DATE	June 2022	FIGURE NO.	3

- Windowless Sampler
 Borehole
- Machine Excavated Trial
- Rotary Borehole
- Existing Borehole
 Installation (Hydrock, 2016)

1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.

2. All plans and drawings are drawn true to stated scales and can be used for the purpose of planning only. Responsibility is not accepted for errors made by others in scaling from this drawing.

3. Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

4. Until technical approval has been obtained from the relevant authorities, all drawings are issued as preliminary and not for construction. Should the Contractor commence site work prior to approval being given it is entirely at his own risk.

5. FFLs are +- 450mm subject to detailed design.

6. External levels and drainage subject to detailed design, Section 38 approval and Section 104 approval.

---- Existing drainage ---- Proposed adoptable surface water sewer ----- Proposed adoptable foul water sewer Notable retaining walls (over 1m high)

Proposed 1:3 banking

FOR PLANNING PURPOSES ONLY

	LATEST AR	1 RELOCATE CHITECTURA TO SUIT LATE	L LAYOUT ADDED		AT AT AT	JF JF JF	27.04.22 26.04.22 25.04.22
ΕV	DESCRIPTI	ON			DRN	CHD	DATE
PRELIMINARY INFORMATION						TENDEI	R
	CONSTRUCTION AS BUILT						
CAL	_E	1:500 @ /	A1	DATE	NO	V 202	1
R۸۱	WN	AT		СНК	JF		
R۸۱	WING NO.	HEYF-5-1	300	REV	С		
ITL	E	CAMP R UPPER	ROAD HEYFORD				
ET/	AILS	PHASE	10				

Woods Hardwick

LEVELS & DRAINAGE STRATEGY

Architecture | Engineering

Planning | Surveying

BEDFORD: HEAD OFFICE 15-17 Goldington Road

BIRMINGHAM Fort Dunlop, Fort Parkway Birmingham B24 9FE T: +44 (0) 121 6297784

ONLINE: mail@woodshardwick.com | woodshardwick.com

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS DRAWING

APPENDIX 2 – EXPLORATORY HOLE RECORDS

			WINDOW/ WIND	OW LESS S	AMPLING BO	REHOLE RECORD
		1A5	Exploratory Hole No:			JW S1
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO		Date Commenced:			20/05/2022
Checked By:	SC		Date Completed:			20/05/2022
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						
1: *Field observation	•	•	•			

- 2: No groundwater reported 3:

	, ;	Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	t 75	75	N	_	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
ES	0.10								0.00 -		0.20		Grass over dark brown silty slightly gravelly clay with rootlets. Gravel consists of fine to coarse, angular asphalt and concrete. (MADE GROUND)	
ES	0.50								0.50 —	6 6	0.20		Stiff* brown mottled light brown very sandy slightly gravelly CLAY. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.00	7	7	9	12	14	18	53	1.00 -	ø • •	1.00			
	For 53mm in												Very dense grey mottled brown SAND and GRAVEL. Sand is fine. Gravel consists of fine to coarse,	
ES	1.20								-		1.40		angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.40 For 58mm in	10	12	15	15	18	10	58	1.50 -		1.10			
									2.00 -					
									3.50 — 4.00 — 4.50 — 5.00 —					

			WINDOW/ WIND	OW LESS S	AMPLING BO	REHOLE RECORD
		1A5	Exploratory Hole No:			JW S2
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO		Date Commenced:			20/05/2022
Checked By:	SC		Date Completed:			20/05/2022
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						
1: No groundwater reported						

- 2: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature
 3:

4:														
		Sampl	e or To	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
ES	0.10	,3	,3	73	73	73	73	IN.	0.00 -		0.20		Grass over dark brown silty slightly gravelly clay with rootlets. Gravel consists of fine to coarse, angular asphalt and concrete. (MADE GROUND)	
ES	0.50								0.50 —	6 6 6	0.60		Grey mottled brown slightly sandy slightly gravelly CLAY. Sand is fine. Gravel consists of fine to coarse, angular flint and limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
ES S	1.00	2	3	3	4	4	4	15	1.00 -		0.60		Stiff to very stiff** light greyish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.60 50 blows for	25		50				50	1.50 -					
									2.50 - 2.50 - 3.00 - 3.50 - 4.00 - 4.50 - 5.00 -		2.00			

			WINDOW/ WINDO	OW LESS S	SAMPLING BO	REHOLE RECORD
		IA5	Exploratory Hole No:			JW S3
Site Address:	Phase 10, Heyford Park, 0	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlements	LP (HPSLP)	Ground Level:			
Logged By:	JRO		Date Commenced:			20/05/2022
Checked By:	SC		Date Completed:			20/05/2022
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:	20/05/2022					
Hole depth:						
Casing depth:						
Level water on strike:	2.7					
Water Level after 20mins:						
Remarks			 <u> </u>			

- 1: *Field observation
 2: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature
 3:

4:		Sampl	e or To	ests							Strata			
Туре	Depth	oupr	0. 1.		Result	t			-	Legend	Depth	Water Strikes	Strata Description	Installation
	(mbgl)	75	75	75	75	75	75	N	0.00		(mbgl)	(mbgl)		
ES	0.10								0.00 —		0.20		Grass over dark brown silty slightly gravelly clay with rootlets. Gravel consists of fine to coarse, angular asphalt and concrete. (MADE GROUND)	
ES	0.50								0.50 —				Stiff* brown mottled light brown sandy gravelly CLAY. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.00	8	8	9	2	2	2	15	1.00 —	6 6	0.90		Firm** dark brown mottled grey sandy gravelly CLAY. Sand is fine. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
ES	1.50								1.50 —		1.80			
S	2.00	2	3	4	4	4	3	15	2.00 —				Firm becoming very stiff** brown mottled grey slightly sandy CLAY. (WEATHERED WHITE LIMESTONE FORMATION)	
D	2.50								2.50 —					
S	3.00	2	2	2	2	5	5	14	3.00 —					
D	3.50								3.50 —					
S	3.80	25		50				50	-		3.80			
	50 blows for	45mn	1						4.00	-				
									4.00 —					

				WINDOW/ WIND	OWLESS	SAMPLING BO	REHOLE RECORD
		1A5		Exploratory Hole No:			JW S4
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)		Ground Level:			
Logged By:	JRO			Date Commenced:			20/05/2022
Checked By:	SC			Date Completed:			20/05/2022
Type and diameter of equipment:	Windowless Sampler			Sheet No:			1 Of 1
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
	, and the second		, and the second				

- 1: *Field observation
- No groundwater reported
 **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

4:		Sampl	e or T	ests							Strata			
	Depth	<u> </u>	0 01 1		Result						Depth	Water	Strata Description	Installation
Туре	(mbgl)	75	75	75	75	75	75	N	-	Legend	(mbgl)	Strikes (mbgl)	Strata Description	Instanation
ES	0.10								0.00 —	39	0.20		Grass over dark brown silty slightly gravelly clay with rootlets. Gravel consists of fine to coarse, angular asphalt and concrete. (MADE GROUND)	
ES	0.50								0.50 —				Stiff* brown mottled light brown silty gravelly CLAY. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.00	1	1	1	1	1	2	5	1.00 —	d	1.00		Soft** brown sandy gravelly CLAY. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
ES	1.50								1.50 —					
S	2.00	3	3	5	5	6	5	21	2.00 —		2.20		Medium dense becoming very dense greyish brown	-
D S	2.50 2.60	18	20	24	27			51	2.50 —				SAND. Sand is fine to coarse. (WEATHERED WHITE LIMESTONE FORMATION)	
	51 blows for	r 150m	m						-					
									3.00 —		2.90			*********
									3.50 —					
									4.00 —					
									4.50 — -					
									5.00 —					

			WINDOW/ WIND	OW LESS S	SAMPLING BO	DREHOLE RECORD
		1A5	Exploratory Hole No:			JW \$5
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO		Date Commenced:			20/05/2022
Checked By:	SC		Date Completed:			20/05/2022
Type and diameter of equipment:	Windowless Sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						
1 *Field observation						

- 1: *Field observation
 2: No groundwater reported
 3:

4		Sampl	e or T	ests							Strata			
Туре	Depth	Jampi	e 01 11		Resul	t				Legend	Depth	Water Strikes	 Strata Description	Installation
Турс	(mbgl)	75	75	75	75	75	75	N		Legenu	(mbgl)	(mbgl)		
ES	0.10								0.00 -	-3	0.20		Grass over dark brown silty slightly gravelly clay with rootlets. Gravel consists of fine to coarse, angular asphalt and concrete. (MADE GROUND)	
ES	0.50								0.50 —				Stiff* brown mottled light brown sandy slightly gravelly CLAY. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.00	4	4	9	12	14	14	49	1.00 -	0 0	1.00		Dense to very dense brownish grey gravelly SAND. Sand is fine to coarse. Gravel consists of fine to	
ES	1.20								-				Sand is fine to coarse. Gravel consists of fine to coarse, angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
S	1.50	12	14	14	15	15	16	60	1.50 -	.4	1.50			
									2.00 -	-				
									2.50 —	-				
									3.00 —					
									-					
									3.50 -	-				
									4.00 -	-				
									4.50 -					
									5.00 —	-				

			RO	TARY BOR	REHOLE RECO	ORD
		1A5	Exploratory Hole No:			JBH1
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO/JN		Date Commenced:			19/05/2022
Checked By:	SC		Date Completed:			19/05/2022
Type and diameter of equipment:	Comacchio 205		Sheet No:			1 Of 2
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						

- 1: No groundwater reported
- Dynamic Sampling from GL-2.0m bgl
 Rotary open-hole drilling with water flush from 2.0-8.0m bgl

		Jampi	e or Te	5313							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
		75	75	75	75	75	75	N	0.00			(III bg1)		
ES	0.25								0.00 -	-	0.60		Grass over dark brown silty silty gravelly clay with rootlets. Gravel consists of fine to coarse angular limestone with rare asphalt and brick. (MADE GROUND)	
ES	0.75								-		5.00		Stiff** brown mottled light greyish brown silty slightly gravelly CLAY. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT	1.00	6	6	4	5	5	5	19	1.00 -					
									1.50 —	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.50			
ES	1.60								-				Grey clayey sandy GRAVEL. Sand is fine to medium. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT	2.00 50 blows for	10 r 145m	15 m	26	24			50	2.00 -		2.00		Light brown LIMESTONE. (WHITE LIMESTONE FORMATION)	
									3.50 — 4.00 — 4.50 —					

				ROTARY BOREHOLE RECORD								
		Exploratory Hole No:		ЈВН1								
Site Address:	Phase 10, Heyford Park,	Project No:		P4280J2513								
Client:	Heyford Park Settlement	s LP (HPSLP)		Ground Level:								
Logged By:	JRO/JN			Date Commenced:		19/05/2022						
Checked By:	SC			Date Completed:		19/05/2022						
Type and diameter of equipment:	Comacchio 205			Sheet No:		2 Of 2						
Water levels recorded during bor	ing, m											
Date:												
Hole depth:												
Casing depth:												
Level water on strike:												
Water Level after 20mins:												
Remarks	Remarks											

- 1: No groundwater reported
- 2: Dynamic Sampling from GL-2.0m bgl
 3: Rotary open-hole drilling with water flush from 2.0-8.0m bgl

4: **Consisten	ıcy estimated	using :	semi-e	mpiric	al corre	elations	ns with	SPT N-	values, Pl	asticity Indices		ed literature		
	Sample or Tests										Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(mbgl)	75	75	75	75	75	75	N	5.00 — 5.50 — 6.50 — 6.00 — 7.00 — 7.50 — 8.00 — 9.50 — 9.50 — 10.00—		6.70 8.00	(mbgl)	Blueish grey MUDSTONE. (WHITE LIMESTONE FORMATION)	

				RC	ROTARY BOREHOLE RECORD					
	(JOI	1/15		Exploratory Hole No:		JBH2				
Site Address:	Phase 10, Heyford Park,	Project No:		P4280J2513						
Client:	Heyford Park Settlement	ts LP (HPSLP)		Ground Level:						
Logged By:	JRO/JN			Date Commenced:		20/05/2022				
Checked By:	SC			Date Completed:		20/05/2022				
Type and diameter of equipment:	Comacchio 205			Sheet No:		1 Of 2				
Water levels recorded during bor	ring, m									
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:										
Remarks										

- 1: No groundwater strike recorded
- Dynamic sampling from GL-2.0m bgl
 Rotary open-hole drilling with water flush from 2.0-8.0m bgl

*Field desc	-	Sampl						<u> </u>			Strata	· ·	s and published literature	
Туре	Depth	Result			_	Legend	Depth	Water Strikes	Strata Description	Installatio				
.,,,,	(mbgl)	75	75	75	75	75	75	N	1		(mbgl)	(mbgl)		
ES	0.25								0.00 -		0.40		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL/SUBSOIL)	
ES	0.75								0.50 -	6			Firm* brown mottled grey silty very gravelly CLAY. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT-C	1.00	3	14	6	4	3	4	17	1.00 -	G	1.00		Stiff** grey mottled orangeish brown sandy slightly gravelly CLAY. Sand is fine. (WEATHERED WHITE	
ES	1.50								1.50 -		2.00		LIMESTONE FORMATION)	
SPT-C	2.00 50 blows for	25		50				50	2.00 -		2.00		LIMESTONE. (WHITE LIMESTONE FORMATION)	
									2.50 - 3.00 - 3.50 -		3.90		Blueish grey MUDSTONE. (WHITE LIMESTONE FORMATION)	
									4.50 -					

		ROTARY BOREHOLE RECORD									
	JOMAS	Exploratory Hole No:	JBH2								
Site Address:	Phase 10, Heyford Park, Camp Road, OX25 5HD	Project No:	P4280J2513								
Client:	Heyford Park Settlements LP (HPSLP)	Ground Level:									
Logged By:	JRO/JN	Date Commenced:	20/05/2022								
Checked By:	SC	Date Completed:	20/05/2022								
Type and diameter of equipment:	Comacchio 205	Sheet No:	2 Of 2								
Water levels recorded during bor	ring, m										
Date:											
Hole depth:											
Casing depth:											
Level water on strike:											
Water Level after 20mins:											
Remarks											
1: No groundwater strike recorded											
2: Dynamic sampling from GL-2.0m	: Dynamic sampling from GL-2.0m bgl										
3: Rotary open-hole drilling with wa	ter flush from 2.0-8.0m bgl										
4: *Field description **Consi	Field description **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature										

4: *Field descr	iption	**Con	sistenc	y estin	nated ι	ısing s	emi-er	npirical	l correlati	ons with SPT N		ticity Indices	and published literature	
		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(mbgi)	75	75	75	75	75	75	N	E 00		(mbgi)	(mbgl)		
									5.00 — 5.50 — 6.00 — 6.50 — 7.00 — 7.50 — 8.00 — 9.50 — 9.50 — 10.00—		8.00		Blueish grey MUDSTONE. (WHITE LIMESTONE FORMATION)	

			RO	TARY BOR	REHOLE RECO	RD		
		MAS		Exploratory Hole No:			JBH3	
Site Address:	Phase 10, Heyford Park	, Camp Road, OX25 5HD		Project No:			P4280J2513	
Client:	Heyford Park Settlemer	nts LP (HPSLP)		Ground Level:				
Logged By:	JRO/JN			Date Commenced:			23/05/2022	
Checked By:	SC			Date Completed:			23/05/2022	
Type and diameter of equipment:	Comacchio 205			Sheet No:			1 Of 2	
Water levels recorded during bor	ing, m							
Date:	23/05/2022							
Hole depth:	8.00							
Casing depth:	3.00							
Level water on strike:	3.4							
Water Level after 20mins	2							

- 1: Dynamic sampling from GL-2.0m bgl
- 2: Rotary open-hole drilling with water flush from 2.0-8.0m bgl

3: **Consister	ncy estimated	using	semi-e	mpirica	al corre	elations	with 9	SPT N-	values, Pl	asticity Indices	and publish	ed literature			
4.		Sampl	e or To	ests							Strata				
Туре	Depth (mbgl)				Result		7.5			Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Instal	llation
		75	75	75	75	75	75	N	0.00 -					-	_
ES	0.25								-	- - - - -	0.40		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone and asphalt. (MADE GROUND) Firm** brown mottled light greyish brown silty		
ES	0.75								0.50 -	6 6 6			gravelly CLAY. Gravel consists of fine coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)		
SPT-C	1.00	2	3	3	4	2	3	12	1.00 -		1.30			<u>-</u> ===	
ES	1.50								1.50 -	9 9			Firm** light brown mottled grey sandy slightly gravelly CLAY. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)		
SPT-C	2.00 50 blows for	5 125m	9	21	29			50	2.00 -	- • <u>•</u>	2.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)		
	JO DIOWS IOI								3.50 - 3.50 - 4.00 - 4.50 -						

		ROTARY BOREHOLE RECORD					
	JOI	1/15		Exploratory Hole No:			JBH3
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513
Client:	Heyford Park Settlement	ts LP (HPSLP)		Ground Level:			
Logged By:	JRO/JN			Date Commenced:			23/05/2022
Checked By:	SC			Date Completed:			23/05/2022
Type and diameter of equipment:	Comacchio 205			Sheet No:			2 Of 2
Water levels recorded during bor	ing, m						
Date:	23/05/2022						
Hole depth:	8.00						
Casing depth:	3.00						
Level water on strike:	3.4						
Water Level after 20mins:	3						
Bom orko			•				

- 1: Dynamic sampling from GL-2.0m bgl
- 2: Rotary open-hole drilling with water flush from 2.0-8.0m bgl
- 3: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
	(29.)	75	75	75	75	75	75	N			(29.)	(mbgl)		
									5.00 —				Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	

			RC	TARY BOR	EHOLE RECORD			
		MAS		Exploratory Hole No:			JBH4	
Site Address:	Phase 10, Heyford Par	k, Camp Road, OX25 5HD		Project No:			P4280J2513	
Client:	Heyford Park Settleme	nts LP (HPSLP)		Ground Level:				
Logged By:	JRO/JN			Date Commenced:			23/05/2022	
Checked By:	SC			Date Completed:			23/05/2022	
Type and diameter of equipment:	Comacchio 205			Sheet No:			1 Of 2	
Water levels recorded during bor	ing, m							
Date:	23/05/2022							
Hole depth:	8.00							
Casing depth:	1.00							
Level water on strike:	2				-			
Water Level after 20mins:	2							

- 1: Dynamic sampling from GL-2.0m bgl
- 2: Rotary open-hole drilling with water flush from 2.0-8.0m bgl
 3: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature
 4:

		Sampl	e or T	ests					-		Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
ES	0.10	73	/3	73	/3	/3	/3	IN	0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)	
									0.50 —				Brown sandy gravelly clay. Sand is fine. Gravel consists of fine to coarse angular brick, limestone and asphalt. (MADE GROUND)	
ES	0.75								-					
SPT	1.00	3	4	4	5	5	7	21	1.00 —	- - - - - - -	1.20		Stiff** brown silty CLAY with black staining. Slight	
ES	1.50								1.50 —	X X X X X X X X X X X X X X X X X X X			hydrocarbon odour. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT	2.00 50 blows for	8 r 250m	6 m	9	12	17	12	50	2.00 —	X X X X	2.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	
	30 blows 10	23011							- -					
									2.50 —					
									3.00 —					
									3.50 —					
									4.00 —					
									-					

5.00

			ROTARY BOREHOLE RECORD				
		1/A5		Exploratory Hole No:			JBH4
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)		Ground Level:			
Logged By:	JRO/JN			Date Commenced:			23/05/2022
Checked By:	SC			Date Completed:			23/05/2022
Type and diameter of equipment:	Comacchio 205			Sheet No:			2 Of 2
Water levels recorded during bor	ing, m						
Date:	23/05/2022						
Hole depth:	8.00						
Casing depth:	1.00						
Level water on strike:	2						
Water Level after 20mins:	2				·		
Remarks	·	·					

- 1: Dynamic sampling from GL-2.0m bgl
- 2: Rotary open-hole drilling with water flush from 2.0-8.0m bgl
 3: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

4:		
Sample or Tests	Strata	

4:										idsticity Indices				
		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	t 75	5 7	5 N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
									5.00 - 5.50 - 6.00 - 7.00 - 7.50 - 8.00 - 9.00 - 9.50 -		8.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	

			RO	REHOLE RECO	ORD	
		1A5	Exploratory Hole No:			JBH5
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO/JN		Date Commenced:			18/05/2022
Checked By:	SC		Date Completed:			18/05/2022
Type and diameter of equipment:	Comacchio 205		Sheet No:			1 Of 2
Water levels recorded during bor	ing, m					
Date:						
Hole depth:						
Casing depth:						
Level water on strike:						
Water Level after 20mins:						
Remarks						

- 1: No groundwater strike recorded
- 2: Dynamic sampling from GL-1.2m bgl 3: Rotary open-hole drilling with water flush from 1.2-8.0m bgl

3: Rotary ope	en-hole drilling	with w	ater fl	ush fro	m 1.2-	8.0m l	bgl							
4:											. .			
	;	Sampl	e or T	ests					-		Strata	Water	_	
Туре	Depth (mbgl)	75	75	75	Result 75	t 75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
ES	0.25								0.00 -		0.10		Grass over brown silty very gravelly sand with rootlets. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-angular limestone. (TOPSOIL) Greyish brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel consists of fine to coarse angular to	
ES	0.75								0.50 -				sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT	1.20 50 blows for	7 295m	9 <mark>um</mark>	10	13	14	13	50	1.00 -		1.20		LIMESTONE. (WHITE LIMESTONE FORMATION)	
									1.50 -					
									2.00 -					
									2.50 -					
									3.00 -					
									3.50 -					
									4.00 -					
									4.50 -					
									5.00 -					
							1		1					1

			RO	TARY BOI	REHOLE RECO	ORD	
		Exploratory Hole No:			JBH5		
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513	
Client:	Heyford Park Settlement	Ground Level:					
Logged By:	JRO/JN		Date Commenced:		18/05/2022		
Checked By:	SC		Date Completed:			18/05/2022	
Type and diameter of equipment:	Comacchio 205		Sheet No:			2 Of 2	
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:			·				
Remarks							

- 1: No groundwater strike recorded
- 2: Dynamic sampling from GL-1.2m bgl 3: Rotary open-hole drilling with water flush from 1.2-8.0m bgl

	n-hole drilling	WILII W	ater fit	usn rro	III 1.Z-	6.UIII D	gı							
4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75		Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
									5.00 — 5.50 — 6.00 — 6.00 — 7.00 — 7.50 — 8.50 — 9.50 — 9.50 — 10.00—	_	8.00		LIMESTONE. (WHITE LIMESTONE FORMATION) Blueish grey MUDSTONE. (WHITE LIMESTONE FORMATION)	

				RO	TARY BOR	REHOLE RECO	ORD			
		1A5		Exploratory Hole No:			JBH6			
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513			
Client:	Heyford Park Settlement	s LP (HPSLP)		Ground Level:						
Logged By:	JRO/JN			Date Commenced:			17/05/2022			
Checked By:	SC			Date Completed:			18/05/2022			
Type and diameter of equipment:	Comacchio 205			Sheet No:			1 Of 2			
Water levels recorded during bor	ing, m									
Date:										
Hole depth:										
Casing depth:										
evel water on strike:										
Water Level after 20mins:										
Remarks										
1 · No groundwater strike recorded	•	•	•	·		.,,	•			

- No groundwater strike recorded
 Field description
 Dynamic sampling from GL-1.1m bgl

		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75		Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installati
ES	0.25	,3	73	73	73	73	73	IN IN	0.00 —	0 0 .	0.10		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)	
									0.50 — - - -				Greyish brown very clayey very gravelly SAND. Sand is fine. Gravel consists of fine to coarse angular to sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
ES SPT	1.00 1.10	11	14	26	18	6		50	1.00 —	.60	1.10		Limestone. (WHITE LIMESTONE FORMATION)	
	50 blows for	160m	m						-					
									1.50 —					
									2.00 —					
									2.50 — - -					
									3.00					
									3.50 —					
									4.00					
									4.50 — - -					
									5.00 —					

		ROTARY BO	REHOLE RECORD							
	CJOMA5	Exploratory Hole No:	ЈВН6							
Site Address:	Phase 10, Heyford Park, Camp Road, OX25 5HD	Project No:	P4280J2513							
Client:	Heyford Park Settlements LP (HPSLP)	Ground Level:								
Logged By:	JRO/JN	Date Commenced:	17/05/2022							
Checked By:	SC	Date Completed:	18/05/2022							
Type and diameter of equipment:	Comacchio 205	Sheet No:	2 Of 2							
Water levels recorded during bo	ring, m									
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:										
Remarks										
1: No groundwater strike recorded										
2: *Field description	2: *Field description									
3: Dynamic sampling from GL-1.1m	bgl									
4: Rotary open-hole drilling with wa	ter flush from 1.1-8.0m bgl									

3: Dynamic sa	mpling from (SL-1.1r	n bgl											
4: Rotary oper					m 1.1-	8.0m b	ogl							
		Sample or Tests									Strata			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
									5.00 —		8.00		Limestone. (WHITE LIMESTONE FORMATION)	

			RO	TARY BOR	REHOLE RECO	RD
		1A5	Exploratory Hole No:			ЈВН7
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)	Ground Level:			
Logged By:	JRO/JN		Date Commenced:			24/05/2022
Checked By:	SC		Date Completed:			24/05/2022
Type and diameter of equipment:	Comacchio 205		Sheet No:			1 Of 2
Water levels recorded during bor	ing, m					
Date:	24/05/2022					
Hole depth:	8.00					
Casing depth:	3.00					·
Level water on strike:	3.6					

Water Level after 20mins: Remarks

- 1: Dynamic sampling from GL-3.0m bgl
- 2: Rotary open-hole drilling with water flush from 3.0-8.0m bgl
 3: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

		Sampl	e or T	ests								Strata			
Туре	Depth (mbgl)	75	75	75	Result	t 75	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
ES	0.10									0.00 -		0.10		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone (MADE GROUND)	
										0.50 -	-			Brown silty gravelly clay. Gravel consists of fine to coarse angular to sub-rounded asphalt, limestone and concrete. (MADE GROUND)	
ES	0.75									-					
SPT	1.00	1	3	2	2	2	2	2	8	1.00 -	X X X	1.00		Firm** brown silty CLAY. (WEATHERED WHITE LIMESTONE FORMATION)	
ES	1.50									1.50 -	* * * * * * * * * * * * * * * * * * *				
SPT	2.00	3	3	3	5	5	5	3	16	2.00 -	-X-X-	2.00		Stiff** brown gravelly CLAY. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
D	2.50									2.50 -					
SPT	3.00	5	9	10	18	22	22		50	3.00 -	ee	3.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	
	50 blows fo	<mark>1</mark> 180m	m							3.50 — 3.50 — 4.00 — 4.50 —				GIEV LIMESTONE. (WHITE LIMESTONE FORMATION)	

			RC	TARY BOR	REHOLE RECO	RD
		1/A5	Exploratory Hole No:			ЈВН7
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD	Project No:			P4280J2513
Client:	Heyford Park Settlement	ts LP (HPSLP)	Ground Level:			
Logged By:	JRO/JN		Date Commenced:			24/05/2022
Checked By:	SC		Date Completed:			24/05/2022
Type and diameter of equipment:	Comacchio 205		Sheet No:			2 Of 2
Water levels recorded during bor	ing, m					
Date:	24/05/2022					
Hole depth:	8.00					
Casing depth:	3.00					
Level water on strike:	3.6					
Water Level after 20mins:	3			·		
Remarks	·					

- 1: Dynamic sampling from GL-3.0m bgl
- 2: Rotary open-hole drilling with water flush from 3.0-8.0m bgl

 3: **Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

	Sample or Tests							Strata						
Type Depth (mbgl)										Legend	Depth (mbgl)	Water Strikes	Strata Description	Installatio
(29.)		75	75	75	75	75	75	N			(29.)	(mbgl)		
									5.00 —				Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	
									_					
									_					
									-					
									5.50 —					
									-	+++++				
									1 [
									_					
									6.00 —					
									-					
									-					
									-	+++++				
									6.50 —					
									-					
									-					
									-					
														
									7.00 —					
									_					
									-					
									-					
									7.50 —					
									_					
									_					::: [].::
									8.00 —	11111	8.00			
									-	-				
									-					
									8.50 —					
									-					
									-	-				
									-					
									9.00 —					
									-					
									-					
									-					
									9.50 —					
				1	1	I	1	1		1			I .	1

10.00-

			RC	TARY BOR	REHOLE RECO	RD
	1A5		Exploratory Hole No:			ЈВН8
Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513
Heyford Park Settlement	s LP (HPSLP)		Ground Level:			
JRO/JN			Date Commenced:			19/05/2022
SC			Date Completed:			20/05/2022
Comacchio 205			Sheet No:			1 Of 2
ing, m						
	Phase 10, Heyford Park, Heyford Park Settlement JRO/JN SC Comacchio 205	SC Comacchio 205	Phase 10, Heyford Park, Camp Road, OX25 5HD Heyford Park Settlements LP (HPSLP) JRO/JN SC Comacchio 205	Phase 10, Heyford Park, Camp Road, OX25 5HD Project No: Heyford Park Settlements LP (HPSLP) Ground Level: JRO/JN Date Commenced: SC Date Completed: Comacchio 205 Sheet No:	Exploratory Hole No: Phase 10, Heyford Park, Camp Road, OX25 5HD Project No: Heyford Park Settlements LP (HPSLP) Ground Level: JRO/JN Date Commenced: SC Date Completed: Comacchio 205 Sheet No:	Phase 10, Heyford Park, Camp Road, OX25 5HD Project No: Heyford Park Settlements LP (HPSLP) Ground Level: JRO/JN Date Commenced: SC Date Completed: Comacchio 205 Sheet No:

- 1: No groundwater strike recorded
- Dynamic sampling from GL-1.5m bgl
 Rotary open-hole drilling with water flush from 1.5-8.0m bgl

CONSISCE		Sampl			ur corre	Jacions	, with a	J1 1 14	Values, 1	lasticity Indices	Strata	ca interature		
		Jampi	e 01 1								Water			
Туре	Depth (mbgl)	75	75	75	Result	75	75	N	-	Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installatio
ES	0.10								0.00 -	· · · · · · · · · · · · · · · · · · ·	0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)	
									0.50 -	6 6	(5.25		Stiff** greyish brown very sandy gravelly CLAY. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)	
SPT	1.00	3	3	2	1	13	12	28	1.00 -	6 6				
ES SPT	1.50	7	8	12	18	14	8	52	1.50 -		1.50		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	
	52 blows fo	270m	m											
									2.00 -					
									3.00 -					
									4.00 -					
									4.50 - 5.00 -					

		ROTARY BO	REHOLE RECORD							
	(JOMAS	Exploratory Hole No:	ЈВН8							
Site Address:	Phase 10, Heyford Park, Camp Road, OX25 5HD	Project No:	P4280J2513							
Client:	Heyford Park Settlements LP (HPSLP)	Ground Level:								
Logged By:	JRO/JN	Date Commenced:	19/05/2022							
Checked By:	SC	Date Completed:	20/05/2022							
Type and diameter of equipment:	Comacchio 205	Sheet No:	2 Of 2							
Water levels recorded during box	ring, m									
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:										
Remarks										
1: No groundwater strike recorded										
2: Dynamic sampling from GL-1.5m	2: Dynamic sampling from GL-1.5m bgl									
3: Rotary open-hole drilling with wa	ter flush from 1.5-8.0m bgl									
4: **Consistency estimated using se	emi-empirical correlations with SPT N-values, Plasticity Indices and	published literature								

4: **Consistency estimated using semi-empirical correlations with SPT Sample or Tests				371 N-	values, Pl	asticity Indices	Strata	eu iiterature						
-	Depth	Jampi	e or 10		Result						Depth	Water Strikes	Strata Description	Installation
Туре	(mbgl)	75	75	75	75	75	75	N		Legend	(mbgl)	(mbgl)		
									5.00 — 5.50 — 6.00 — 6.50 — 7.00 — 7.50 — 8.50 — 9.50 — 9.50 — 10.00—		8.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	

				RC	TARY BO	REHOLE RECO	RD
		Exploratory Hole No:			ЈВН9		
Site Address:	Phase 10, Heyford Park,	Camp Road, OX25 5HD		Project No:			P4280J2513
Client:	Heyford Park Settlement	s LP (HPSLP)		Ground Level:			
Logged By:	JRO/JN			Date Commenced:		17/05/2022	
Checked By:	SC			Date Completed:			17/05/2022
Type and diameter of equipment:	Comacchio 205			Sheet No:			1 Of 2
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							-

- 1: No groundwater strike recorded
- Dynamic sampling from GL-1.8m bgl
 Rotary open-hole drilling with water flush from 1.8-8.0m bgl

		Sampl	e or To	ests							Strata				
Гуре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installati	
		/5	/5	/5	/5	/5	/5	IN	0.00 -		0.10		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)		
ES	0.50								0.50 —				Greyish brown very gravelly SAND. Sand is fine. Gravel consists of fine to coarse angular to sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)		
ES SPT	1.00	2	3	3	2	2	2	9	1.00 -	9	0.80		Firm** yellowish brown sandy gravelly CLAY. Sand is fine. Gravel consists of fine to coarse angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)		
or i	1.20	2	,	3	2	2	2	9	1.50 -		1.50		Firm** white sandy gravelly CLAY. Sand is fine. Gravel consists of fine to coarse angular limestone.		
ES SPT	1.70 1.80	19	6	50				50	-	* x x x	1.80		(WEATHERED WHITE LIMESTONE FORMATION) Grey LIMESTONE. (WHITE LIMESTONE FORMATION)		
	50 blows for	<mark>r</mark> 70mm	h						2.00 — - -						
									2.50 —						
									3.00 -						
									3.50 —						
									4.00 -						
									4.50 -						
									-						

				RO	TARY BOR	REHOLE RECORD	
	(10)	1/A5		Exploratory Hole No:		ЈВН9	
Site Address:	Phase 10, Heyford Park	, Camp Road, OX25 5HD		Project No:		P4280J2513	
Client:	Heyford Park Settlemen	ts LP (HPSLP)		Ground Level:			
Logged By:	JRO/JN	Date Commenced:		17/05/2022			
Checked By:	SC	Date Completed:		17/05/2022			
Type and diameter of equipment:	Comacchio 205			Sheet No:		2 Of 2	
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
1: No groundwater strike recorded							
2: Dynamic sampling from GL-1.8m	n bgl						
3: Rotary open-hole drilling with wa	iter flush from 1.8-8.0m b	gl					

4: **Consistency estimated using semi-empirical correlations with SPT Sample or Tests				ονι IN-'	vaiues, Pi	asticity Indices	Strata	eu iiterature						
	Depth	Sample	e or 10		Result						Depth	Water Strikes	Strata Description	Installation
Туре	(mbgl)	75	75	75	75	75	75	N	-	Legend	(mbgl)	(mbgl)	·	
									5.00 — 5.50 — 6.00 — 6.50 — 7.00 — 7.50 — 8.00 — 9.50 — 9.50 — 10.00—		8.00		Grey LIMESTONE. (WHITE LIMESTONE FORMATION)	

					TRI AL PIT RECORD					
		Exploratory Hole No	:	JTP1						
Site Address:	Phase 10, Heyford	d Park, Camp Road, OX25 5HD)		Project No:		P4280J2513			
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:					
Logged By:	JRO				Date Commenced:		25/05/2022			
Checked By:	SC				Date Completed:		25/05/2022			
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1			
Pit Dimension:	Length:	2.20	Width:	0.60		Depth:	3.00			
Remarks										
1: No groundwater strike recorded										
2.										

3:							
4:		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 -				Brown silty gravelly sand with rootlets. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone and brick. (MADE GROUND)
ES	0.75		1.00 -	- - - - - -			
ES	1.50		1.50 -		1.60		Light brown silty SAND and GRAVEL with cobbles. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone. Cobbles consist of angular limestone.
			2.00 -	.d. 0			(WEATHERED WHITE LIMESTONE FORMATION)
D	2.60		3.00 -	**************************************	3.00		Grey mottled light brown silty sandy CLAY. Sand is fine. (WEATHERED WHITE LIMESTONE FORMATION)
			3.50 -				
			4.00 -				
			5.00 -				

				TRI AL PI T RECORD					
		Exploratory Hole No):	JTP2					
Site Address:	Phase 10, Heyford	d Park, Camp Road, O	X25 5HD		Project No:		P4280J2513		
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		18/05/2022		
Checked By:	SC				Date Completed:		18/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:	1.80		
Remarks									
1: No groundwater strike recorded									
2:									
3:									
4.									

n silty clayey gravel with rootlets to coarse, angular to sub-angul ropsoil. Sand is fine to sists of fine to coarse, angular onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is avel consists of fine to coarse are limestone. (WEATHERED WHITON)
n silty clayey gravel with rootlets to coarse, angular to sub-angul rOPSOIL/SUBSOIL) AVEL with cobbles. Sand is fine to sists of fine to coarse, angular insist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is ravel consists of fine to coarse are limestone. (WEATHERED WHIT
AVEL with cobbles. Sand is fine to ists of fine to coarse, angular onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is fine to coarse are limestone. (WEATHERED WHIT
AVEL with cobbles. Sand is fine to ists of fine to coarse, angular onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is fine to coarse are limestone. (WEATHERED WHIT
ists of fine to coarse, angular onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is avel consists of fine to coarse ar limestone. (WEATHERED WHIT
ists of fine to coarse, angular onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is avel consists of fine to coarse ar limestone. (WEATHERED WHIT
onsist of angular limestone. LIMESTONE FORMATION) ey slightly gravelly SAND. Sand is ravel consists of fine to coarse ar limestone. (WEATHERED WHIT
ey slightly gravelly SAND. Sand i ravel consists of fine to coarse ar limestone. (WEATHERED WHIT
ravel consists of fine to coarse ar limestone. (WEATHERED WHIT
ravel consists of fine to coarse ar limestone. (WEATHERED WHIT
ar limestone. (WEATHERED WHIT
ON)

				TRI AL PIT RECORD					
	(JOMAS							JTP3	
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD	1		Project No:			P4280J2513	
Client:	Heyford Park Settl	ements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:			18/05/2022	
Checked By:	SC				Date Completed:		18/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:	1.90	1	
Remarks									
1: No groundwater srike recorded									
2:									
3:							_		

3:							
4:		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 —				Grass over brown silty very gravelly sand with rootlets. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-angular flint. (TOPSOIL/SUBSOIL)
ES	0.50		0.50 —		0.40		Light brown mottled brown clayey sandy GRAVEL with cobbles. Sand is fine to medium. Gravel consists of fine to coarse, angular limstones. Cobbles consist of angular limstone. (WEATHERED WHITE LIMESTONE FORMATION)
			1.00 —				
ES	1.50		1.50 —		1.00		
			2.00 —	0 0 0 0	1.90		
			2.50 —				
			3.00 —				
			- - -				
			3.50 —				
			4.00 —				
			4.50 —				
			5.00 —				

					TRI AL PIT RECORD				
		DMA5	Exploratory Hole No	:	JTP4				
Site Address:	Phase 10, Heyford	d Park, Camp Road, OX25 5HD)		Project No:		P4280J2513		
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		19/05/2022		
Checked By:	SC				Date Completed:		19/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.10	Width:	0.60	Depth:		0.90		
Remarks									
1: Water supply pipe encountered a	t 0.9m and therefor	e pit terminated.							
2:									

3:

3:							
4:		Sample or Tests			Strata		
		Cample of Tests				Water	
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description
			0.00 —	.xx.			Grass over dark brown very clayey very gravelly sand.
			_	x . x . x .			Grass over dark brown very clayey very gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (WEATHERED WHITE LIMESTONE FORMATION)
ES	0.25		-	××.			LIMESTONE FORMATION)
			-	x . x . x			
ES	0.50		0.50 —	××.			
				x x			
			_	××.			
			-		0.90		
			1.00 —				
			_				
			-				
			-				
			1.50 —				
			-				
			-				
			-	_			
			2.00 —				
			_				
			-	-			
			-				
			2.50 —				
			=				
			-				
			-				
			3.00 —				
			_				
			-				
			2.50				
			3.50 —				
			-				
			-	-			
	[4.00 —	_			
	[4.00 —				
	[-	_			
			-	1			
	[4.50 —]			
			7.30 —	4			
	[-	_			
	[-	1			
	[5.00 —	1			
	[3.00 —				
	[
	[
	1	Sampling Code: II- Undisturbed B - Large Di	aturale a d	D C Di-t		M-t (11*)	

					TRI AL PI T RECORD				
	Exploratory Hole No		JTI	P5					
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD			Project No:		P4280J2513		
Client:	Heyford Park Settle	ements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		25/05/2022		
Checked By:	Checked By: SC						25/05/2022		
Type and diameter of equipment:	Sheet No:		1 Of 1						
Pit Dimension:	Length:	1.90	Width:	0.60		Depth:	1.10		

- 1: No groundwater strike recorded
- 2: Stopped digging at 1.1mbgl due to potential presence of electric services 3:

		Sample or Tests			Strata			
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	
ES	0.10		0.00 -		0.10		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND - topsoil)	
ES	0.75		0.50 -	-			Grey sandy slightly gravelly clay. Sand is fine to medium Gravel consists of coarse angular brick. (MADE GROUND	
			1.00 -		1.10			
			1.50 -					
			2.00 —					
			2.50 -					
			3.00 -					
			3.50 -	_				
			4.00 -	-				
			-	= - - -				
			4.50 -					
			5.00 -					

					TRI AL PIT RECORD				
		OMA5	Exploratory Hole No:		JTP6				
Site Address:	Phase 10, Heyford	d Park, Camp Road, OX25 5HD)		Project No:		P4280J2513		
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		18/05/2022		
Checked By:	SC				Date Completed:		18/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:	1.80		
Remarks									
1: No groundwater strike recorded	: No groundwater strike recorded								
2.									

2:
3.

3: 4:							
4:		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 —				Grass over dark brown silty clayey gravel with rootlets. Gravel consists of fine to coarse, angular to sub-angular flint and limestone. (TOPSOIL/SUBSOIL)
			0.50 —	.0	0.60		Light brownish grey clayey very sandy GRAVEL with
ES	0.75		1.00 —	,d			cobbles. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone. Cobbles consist of angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)
ES	1.50		1.50 —				
			-	99	1.80		
			2.00 —	-			
			2.50 —				
			3.00 —	-			
			3.50 —	-			
			4.00				
			- - 4.50 —				
			-				
			5.00 —				
		Sampling Code: U- Undisturbed B - Larg					

					TRI AL PIT RECORD				
		Exploratory Hole No	:	JTP7					
Site Address:	Phase 10, Heyford	d Park, Camp Road, OX25 5HD)		Project No:		P4280J2513		
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		23/05/2022		
Checked By:	SC				Date Completed:		23/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.00	Width:	0.60		Depth:	3.00		
Remarks									
1: Groundwater reported at 2.7m b	gl								
2:									

2:

3: 4:							
		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.10		0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)
ES	0.75		0.50 —		0.20		Brown clayey gravelly sand with cobbles and boulders. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-angular limestone, brick, asphalt, glass and flint. Cobbles consist of angular brick and limestone. Boulders consists of angular concrete. (MADE GROUND)
			1.00	- - - -			
FC	1.75		1.50 —	3	1.60		Greyish brown mottled light brown sandy gravelly CLAY. Gravel consists of fine to coarse angular to sub-rounded
ES	1.75		2.00 — -				limestone. (WEATHERED WHITE LIMESTONE FORMATION)
D	2.50		2.50 —				
			3.00 —		3.00		
			-	-			
			3.50 — - -	-			
			4.00 —	-			
			-				
			4.50 —				
			5.00 —	-			

	-				TRI AL PI T RECORD				
		DMA5	Exploratory Hole No	:	JTP8				
Site Address:	Phase 10, Heyford	l Park, Camp Road, OX25 5HD)		Project No:		P4280J2513		
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:		23/05/2022		
Checked By:	SC				Date Completed:		23/05/2022		
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1		
Pit Dimension:	Length:	2.00	Width:	0.60		Depth:	0.80		
Remarks									
1: No groundwater strike recorded	: No groundwater strike recorded								
2. Trial Pit terminated at 0.8m hold	on concrete obstruct	ion							

- 2: Trial Pit terminated at 0.8m bgl on concrete obstruction 3:

3:							
4:					21		
		Sample or Tests	-		Strata	Water	
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description
ES	0.10		0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL) Brown clayey gravelly sand with cobbles. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-angular limestone, brick, asphalt, glass and flint. Cobbles consist of angular brick and limestone. (MADE GROUND)
			1.00 — - - - - 1.50 —				
			2.00 —				
			2.50 — — — — — 3.00 —				
			3.50 —				
			4.00 —				
			4.50 —				

						TRI AL P	ITRE	ECORD
		DMA5			Exploratory Hole No):		JTP10
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD)		Project No:			P4280J2513
Client:	Heyford Park Settl	ements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:			23/05/2022
Checked By:	SC				Date Completed:			23/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:			1 Of 1
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:		3.00
Domarke								

- 1: *Field description
- 2: Black stained layer 1.5-1.7 mbgl with slight h/c odour
- 3: Groundwater seepage at 2.0m bgl. No evidence on hydrocarbon impact on water.

		Sample or Tests		Strata				
Туре	Depth (mbgl)	Result	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description		
ES	0.25		0.00			Grass over dark brown clayey gravelly sand. Sand is fin to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL/SUBSOIL)		
			0.50	0.60		Firm* brown mottled greyish brown sandy slightly grav CLAY. Gravel consists of fine to coarse angular to sub-rounded limestone. (WEATHERED WHITE LIMESTOFORMATION)		
ES	1.00		1.00	1.40				
ES	1.50		1.50	1.10		Light brown clayey sandy GRAVEL. Sand is fine to medium. Gravel consists of angular to sub-rounded limestone and flint. Black staining and hydrocarbon odd at 1.5-1.7m bgl. (WEATHERED WHITE LIMESTONE FORMATION)		
			2.00	2.00		Soft* grey mottled light brown sandy slightly gravelly CLAY. (WEATHERED WHITE LIMESTONE FORMATION)		
ES	2.50		2.50					
			3.00	3.00				
			3.50 —					
			4.00 —					
			4.50 — - -					
			5.00 —					

						TRI AL F	T RECORD	
		DMA5			Exploratory Hole No):	JTP11	ı
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25	5HD		Project No:		P4280J2	513
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:		18/05/20	ງ 22
Checked By:	SC				Date Completed:		18/05/20	ົ ນີ22
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1	Ĺ
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:	1.30	
Remarks								
1: No groundwater strike recorded								
2:								
3:	-		-					
4.		-						

3:							
4:		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 —		0.30		Grass over dark brown silty clayey gravel with rootlets. Gravel consists of fine to coarse, angular to sub-angular flint and limestone. (TOPSOIL)
ES	0.50		0.50 —				Orangeish brown clayey sandy GRAVEL with cobbles. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone. Cobbles consist of angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)
			1.00 —	X .	0.70		Orangeish brown silty SAND. Sand is fine to coarse. (WEATHERED WHITE LIMESTONE FORMATION)
ES	1.20		- - -	. * * * _* * .	1.30		
			1.50 —				
			2.00 —				
			2.50 —				
			- -				
			3.00 —				
			3.50 —				
			- - -				
			4.00 —				
			4.50 —				
			5.00 —				

						TRI AL PI	T RECORD
		DMA5			Exploratory Hole No	:	JTP12
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD	1		Project No:		P4280J2513
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:		
Logged By:	JRO				Date Commenced:		18/05/2022
Checked By:	SC				Date Completed:		18/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1
Pit Dimension:	Length:	2.00	Width:	0.60		Depth:	1.40
Remarks							
1: No groundwater strike recorded							
2.							

3:							
4:							
		Sample or Tests	-		Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 —				Grass over dark brown silty clayey gravel with rootlets. Gravel consists of fine to coarse, angular to sub-angular flint and limestone. (TOPSOIL/SUBSOIL)
ES	0.75		0.50 —		0.50		Light brownish grey clayey sandy GRAVEL with cobbles. Sand is fine to coarse. Gravel consists of fine to coarse angular limestone. Cobbles consist of angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)
ES	1.40		1.00 —		1.40		
			1.50 —				
			2.00 —				
			2.50 —				
			3.00 —				
			3.50 —				
			4.00 —	-			
			4.50 —				
			5.00 —				

						TRI AL P	IT RECOR	₹D
		DMA5			Exploratory Hole No	:		JTP13
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD)		Project No:			P4280J2513
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:			25/05/2022
Checked By:	SC				Date Completed:			25/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:			1 Of 1
Pit Dimension:	Length:	1.90	Width:	0.60		Depth:	1.90	
Remarks								
1: No groundwater strike recorded								
2:								
3:								

3:

		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.10		0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fin to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)
ES	0.75		0.50 — - -	6 0			Light brown clayey very sandy GRAVEL. Sand is fine to coarse. Gravel consists of fine to coarse angular limesto (WEATHERED WHITE LIMESTONE FORMATION)
-			1.00 —	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
			1.50 — - - -	6 6	1.90		
			2.00 — - - -				
			2.50 — - - -				
			3.00 —				
			3.50 — — — —				
			4.00 — — — —				
			4.50 — - - - -				
			5.00 —				

						TRI AL P	IT RECO	RD
		ONA5			Exploratory Hole No	ı:		JTP14
Site Address:	Phase 10, Heyfor	d Park, Camp Road, OX25 5HD)		Project No:			P4280J2513
Client:	Heyford Park Set	tlements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:			25/05/2022
Checked By:	SC				Date Completed:			25/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:			1 Of 1
Pit Dimension:	Length:	2.00	Width:	0.60		Depth:	3.00)
Remarks								
1: *Field description								
2: Groundwater coopage at bace of	nit							

- 2: Groundwater seepage at base of pit

3: 4:							
4.		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.10		0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)
ES	0.75		0.50 —		0.20		Brown clayey gravelly sand with cobbles and boulders. Sand is fine to coarse. Gravel consists of fine to coarse angular concrete, timber, brick and limestone. Cobbles and boulders consist of timber. (MADE GROUND)
			1.00	- - - - -			
ES	1.75		1.50 —		1.50		Firm* dark grey mottled brown sandy slightly gravelly CLAY. Sand is coarse. (WEATHERED WHITE LIMESTONE FORMATION)
			2.00 —				
			2.50 — - -				
D	3.00		3.00 -		3.00		
			3.50 —				
			4.00 —	-			
			4.50 —				
			5.00 —				

						TRI AL P	IT RECORD
		DMA5			Exploratory Hole No	:	JTP15
Site Address:	Phase 10, Heyford	d Park, Camp Road, OX25 5HD)		Project No:		P4280J2513
Client:	Heyford Park Sett	lements LP (HPSLP)			Ground Level:		
Logged By:	JRO				Date Commenced:		26/05/2022
Checked By:	SC				Date Completed:		26/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:		1 Of 1
Pit Dimension:	Length:	2.10	Width:	0.60		Depth:	1.80
Remarks							
1: No groundwater strike recorded							
2.							

		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
			0.00 -				Grass over dark brown silty sand and gravel with root Sand is fine to coarse. Gravel consists of fine to coars
							Sand is fine to coarse. Gravel consists of fine to coars angular flint and limestone. (TOPSOIL/SUBSOIL)
ES	0.25		-				
			0.50 -		0.50		
							Light brown slightly clayey gravelly SAND with cobble Sand is fine to medium. Gravel consists of fine to coal
ES	0.75			.d 0			angular limestone. Cobbles consist of angular limeston (WEATHERED WHITE LIMESTONE FORMATION)
			1.00 -	ô · · ô ·			
					1.40		
			1.50 -	-00	1.40		Light brownish grey very sandy gravelly CLAY. Sand is
ES	1.60		1.50	<u></u>			to medium. Gravel consists of fine to coarse angular t sub-rounded limestone. (WEATHERED WHITE LIMEST FORMATION)
				-6-6-	1.80		PORMATION
			2.00 -	-			
				-			
			2.50 -				
			2.30				
				+			
			3.00 -	+			
				-			
			3.50 -				
			3.30				
				1			
			4.00 -				
			4.50 -				
			4.50				
]			
			5.00 -	-			

								TRI AL PI T RECORD				
	Exploratory Hole No:		JTP16									
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD			Project No:			P4280J2513				
Client:	Heyford Park Settl	ements LP (HPSLP)			Ground Level:							
Logged By:	JRO				Date Commenced:		23/05/2022					
Checked By:	SC				Date Completed:		23/05/2022					
Type and diameter of equipment:	Sheet No:		1 Of 1									
Pit Dimension:	•	Depth:	3.00									

- 1: *Field description
- 2: Groundwater seepage at base of pit. 3:

3:							
4:		Sample or Tests			Strata		
Туре	Depth	Result	_	Legend	Depth	Water Strikes	Strata Description
,,,,	(mbgl)				(mbgl)	(mbgl)	
			0.00 —	*********			Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to
FC	0.25		-				sub-rounded limestone. (MADE GROUND)
ES	0.25		-	**********			
			0.50 —				
			-		0.60		Brown clayey gravelly sand with cobbles. Sand is fine to
ES	0.75		-	**********			coarse. Gravel consists of fine to coarse angular to sub-angular limestone, brick, asphalt and flint. Cobbles
			-				consist of angular brick and limestone. (MADE GROUND)
			1.00 —				
			-	***************************************			
			-				
			1.50 —		1.60		
	. ==		_	<u>-</u> e			Light greyish brown sandy gravelly CLAY. Sand is fine to coarse. (WEATHERED WHITE LIMESTONE FORMATION)
ES	1.75		-	<u></u>			,
			2.00 —				
			-				
			-				
			-		2.40		
D	2.50		2.50 —	-99			Firm* grey mottled light brown sandy slightly gravelly CLAY. Sand is fine to coarse. (WEATHERED WHITE
			-				LIMESTONE FORMATION)
			-				
			-	- o	3.00		
			3.00 —				
			-	_			
			3.50 —	_			
			-	1			
			_				
			-				
			4.00 —				
			-	_			
			-				
			4.50 —				
			-	-			
			-	1			
			-	-			
			5.00 —	1			

	-					TRI AL PIT RECORD			
	Exploratory Hole No):	JSTP1						
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD)		Project No:			P4280J2513	
Client:	Heyford Park Settl	ements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:			24/05/2022	
Checked By:	SC				Date Completed:		24/05/2022		
Type and diameter of equipment:	Sheet No:		1 Of 1						
Pit Dimension:	it Dimension: Length: 2.40 Width: 0.60						2.7	0	
Domarke									

- 1: *Field description
- 2: Black staining and slight hydrocarbon odour at 1.4-1.5m bgl.
- 3: BRE365 infiltration testing undertaken. Trial pit deepened to 3.2m bgl for second test

		2.5m bgl Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 -		0.30		Grass over dark brown clayey gravelly sand. Sand is fit to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)
ES	0.75		0.50 -				Brown silty very gravelly clay with cobbles and boulder Gravel consists of fine to coarse angular to sub-rounde brick, concrete, asphalt and limestone. Cobbles and boulders consist of angular concrete. Black staining an slight hydrocarbon odour at 1.4-1.5m bgl. (MADE GROUND)
ES	1.40		1.00 -	- - - - -			
ES	1.40		1.50 -	¥_X_X_	1.50		Firm* dark grey silty sandy CLAY. Sand is coarse. (WEATHERED WHITE LIMESTONE FORMATION)
ES	1.75		2.00 -	* * * * * * * * * * * * * * * * * * *			
			2.50 -	7 X X X	2.70		
			3.00 -				
			3.50 -	-			
			4.00 -				
			4.50 -	_			
			5.00 -	_			

						TRI AL P	IT RECOR	ID
		OHA5			Exploratory Hole No	:		JSTP2A
Site Address:	Phase 10, Heyf	ord Park, Camp Road, OX25 5H	D		Project No:			P4280J2513
Client:	Heyford Park S	ettlements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:			24/05/2022
Checked By:	SC				Date Completed:			24/05/2022
Type and diameter of equipment:	JCB 3CX				Sheet No:			1 Of 1
Pit Dimension:	Length:	2.20	Width:	0.60		Depth:	1.70	
Remarks								
1: Trial pit terminated at 1.7m bgl of	due to influx of wa	ater at 1.5m bgl.						
2:								
3.		-	-					

		Sample or Tests		Strata			
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
			0.00 -		0.30		Grass over dark brown clayey gravelly sand. Sand is fi to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)
			0.50 -		0.30		Brown clayey gravelly sand. Sand is fine to coarse. Gr consists of fine to coarse angular to sub-rounded limestone, concrete, asphalt, brick and ceramic. (MAD GROUND)
			1.50 -	-	1.70		
			2.00 -				
			2.50 -				
			3.00 -				
			4.00 -	-			
			4.50 -				
			5.00 -				

						TRI AL PIT RECORD			
	Exploratory Hole No:			JSTP2					
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD)		Project No:			P4280J2513	
Client:	Heyford Park Settl	ements LP (HPSLP)			Ground Level:				
Logged By:	JRO				Date Commenced:			24/05/2022	
Checked By:	SC				Date Completed:			24/05/2022	
Type and diameter of equipment:	Sheet No:			1 Of 1					
Pit Dimension:	Pit Dimension: Length: 2.30 Width: 0.60							2.30	
Domarke									

- 1: *Field description
- 2: Black staining at 0.9-1.1m bgl. No odour
- 3: BRE365 infiltration testing undertaken. Trial pit deepened to 2.9m bgl for second test

: Groundwat	er reported at				Chunt		
Туре	Depth (mbgl)	Sample or Tests Result		Legend	Strata Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.10		0.00 -		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (MADE GROUND)
ES	0.50		0.50 —		0.20		Brown silty clayey gravelly sand. Sand is coarse. Gravel consists of fine to coarse angular limestone. Black stainin at 0.9-1.1m. (MADE GROUND)
ES	1.00		1.00 —				
			-				
			1.50 -				
ES	2.00		2.00 —	x-X-x-x-x	1.90		Soft* grey mottled light brown silty slightly gravelly CLA (WEATHERED WHITE LIMESTONE FORMATION)
			-	* * * * * *	2.40		
			2.50 -	_			
			3.00 -	_			
			3.50 —	_			
			-	_			
			4.00 -				
			4.50 —	_			
			5.00 —	_			
			5.00				

					TRI AL PI T RECORD				
	Exploratory Hole No:		JSTP3						
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD		Project No:		P4280J2513	3		
Client:	Heyford Park Settl	ements LP (HPSLP)		Ground Level:					
Logged By:	JRO			Date Commenced:		24/05/2022			
Checked By:	SC			Date Completed:		24/05/2022			
Type and diameter of equipment:	Sheet No:		1 Of 1						
Pit Dimension:		Depth:	1.30	•					

- Remarks

 1: No groundwater strike recorded
- Trial pit terminated at 1.3m bgl due to limestone rockhead enountered.
 3:

3: 4:							
		Sample or Tests			Strata		
Туре	Depth (mbgl)	Result		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description
ES	0.25		0.00 -		0.30		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)
ES	0.75		0.50 -		0.30		Brown clayey sandy GRAVEL with cobbles. Sand is fine. Gravel consists of fine to coarse angular to sub-angular limestone. Cobbles consist of angular to sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)
			1.00 -		1.30		
			1.50 -	-			
			2.00 -	-			
			2.50 — - - -	-			
			3.00 -	-			
			3.50 -	-			
			4.00 -	-			
			4.50 -				
			5.00 —				

								RECORD
C JOMAS					Exploratory Hole No:			JSTP4
Site Address:	Phase 10, Heyford	Park, Camp Road, OX25 5HD			Project No:			P4280J2513
Client:	Heyford Park Settle	ements LP (HPSLP)			Ground Level:			
Logged By:	JRO				Date Commenced:			24/05/2022
Checked By:	SC	SC					24/05/2022	
Type and diameter of equipment: JCB 3CX					Sheet No:		1 Of 1	
Pit Dimension: Length: 2.30 Width: 0.80						Depth:		1.30

- 1: No groundwater strike recorded
- 2: Trial pit terminated at 1.4m bgl due to limestone rockhead encountered. 3:

3:							
4:					21		
Туре	Depth	Sample or Tests Result		Legend	Strata Depth	Water Strikes	Strata Description
туре	(mbgl)	nesuit		Legend	(mbgl)	(mbgl)	
ES	0.25		0.00 —		0.20		Grass over dark brown clayey gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded limestone. (TOPSOIL)
	0.23		0.50 —		0.30		Brown clayey sandy GRAVEL with cobbles. Sand is fine. Gravel consists of fine to coarse angular to sub-angular limestone. Cobbles consist of angular to sub-angular limestone. (WEATHERED WHITE LIMESTONE FORMATION)
ES	0.75		-				
			1.00 —				
			1.50 —	0 0 0 0	1.40		
			2.00 —	-			
			-	_			
			2.50 —	-			
			3.00 —	- - -			
			-	-			
			3.50 —	-			
			4.00 —	-			
			-	-			
			4.50 —				
			5.00 —	-			

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Shaw Carter

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-62384

Replaces Analytical Report Number: 22-62384, issue no. 1 Additional analysis undertaken.

Project / Site name: Phase 10 Heyford Park Camp Road

OX25 5HD

Your job number: JJ2513

Your order number: P4280JJ2513 8

Report Issue Number: 2

Samples Analysed: 23 soil samples

Samples received on:

Samples instructed on/ Analysis started on:

01/06/2022

30/05/2022

Analysis completed by: 01/07/2022

Report issued on: 12/07/2022

Signed:

Joanna Wawrzeczko Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

asbestos - 6 months from reporting

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: P4280JJ2513 8

Speciated Total EPA-16 PAHs

Lab Sample Number				2299047	2299048	2299049	2299050	2299051
Sample Reference				JWS1	JWS2	JWS3	JWS4	JWS5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Depth (m)				0.10	0.10	0.10	0.10	0.10
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
		Lin	,					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	30	< 0.1	36	21
Moisture Content	%	0.01	NONE	17	11	14	8.5	14
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
	•			•	•	•	•	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	JMA	JMA	JMA	JMA	JMA
General Inorganics	-1111-2-	NI/A	MCEDIC					7.0
pH - Automated	pH Units	N/A	MCERTS	7.9	7.8	8	8.1	7.9
Fotal Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	930	1200	920	910	1200
Fotal Sulphate as SO4 Nater Soluble SO4 16hr extraction (2:1 Leachate	%	0.005	MCERTS	-	-	-	-	-
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.01	0.011	0.008	0.0059	0.015
Equivalent)	mg/l	1.25	MCERTS	10.4	10.8	8	5.9	14.6
Fotal Sulphur	mg/kg	50	MCERTS	_	_	_	-	_
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	4.3	2.3	-	3.9
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.58	< 0.05	< 0.05	< 0.05	< 0.05
luorene	mg/kg	0.05	MCERTS	0.81	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	8.4	0.63	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	1.5	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	13	2.5	0.4	0.5	< 0.05
Pyrene	mg/kg	0.05	MCERTS	11	2.5	0.38	0.41	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5	0.82	0.21	0.22	< 0.05
Chrysene	mg/kg	0.05	MCERTS	5.1	1.9	0.24	0.2	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	6.1	2.1	0.24	0.23	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.9	1	0.22	0.18	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.6	1.7	< 0.05	< 0.05	< 0.05
indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.8	1.2	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.68	0.18	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.7	1.6	< 0.05	< 0.05	< 0.05
	•							
Total PAH	n	0.0	MCEDIC		1		1	

1.74

1.69

< 0.80

mg/kg

MCERTS

16.1

Lab Sample Number		2299047	2299048	2299049	2299050	2299051		
Sample Reference				JWS1	JWS2	JWS3	JWS4	JWS5
Sample Number				None Supplied				
Depth (m)				0.10	0.10	0.10	0.10	0.10
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	8	ŧ					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	21	15	20	14	16
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	1.3	0.8	< 0.2	2.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	24	30	18	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	120	16	16	10	24
Lead (aqua regia extractable)	mg/kg	1	MCERTS	40	27	25	17	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	16	20	13	16
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	97	67	52	41	52
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg 	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D AL	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg		MCERTS	-		-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
TDU (C10 - C12)	n n	٦.	MCERTO	. 2 2				. 2.2
TPH (C10 - C12) _{EH_CU_ID_TOTAL}	mg/kg	2 4	MCERTS MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16) _{EH_CU_1D_TOTAL}	mg/kg mg/kg	1	MCERTS	7.3	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21) _{EH_CU_1D_TOTAL} TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	20	4.9	< 1.0	< 1.0	< 1.0
(GZI C IO) EH_CU_1D_TOTAL	mg/kg	10	CERTS	120	24	< 10	< 10	< 10
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	_	-
Chloroethane	μg/kg	1	NONE	_	_	-	_	-
Bromomethane	μg/kg	1	ISO 17025	_	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
L				-	-			

Your Order No: P4280JJ2513 8

Lab Sample Number Sample Reference Sample Number Depth (m) Date Sampled Time Taken	<u> </u>			2299047 JWS1 None Supplied	2299048 JWS2 None Supplied	JWS3 None Supplied	2299050 JWS4	2299051 JWS5
Sample Number Depth (m) Date Sampled Time Taken								JWS5
Depth (m) Date Sampled Time Taken				None Supplied	None Supplied	Mone Supplied		
Date Sampled Time Taken					- ''		None Supplied	None Supplied
Time Taken				0.10	0.10	0.10	0.10	0.10
				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		듥	>					
	_	Limit of detection	Accreditation Status					
Analytical Parameter (Soil Analysis)	Units	f de	edit					
(SOII Analysis)	66	tec	atio					
		ğ	ă					
1,1-Dichloroethene	μg/kg	1	NONE	_	_	_	-	_
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	_	_	_	_	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	_	_	-	_	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	_	_	_	_	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	_	-	_	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	_	-	_	-
Trichloromethane	μg/kg	1	MCERTS	-	_	_	_	_
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Your Order No: P4280JJ2513 8

Speciated Total EPA-16 PAHs

			2299052	2299053	2299054	2299055	2299056
						JBH4	JBH4
							None Supplied
							1.50
							25/05/2022
							None Supplied
	<u> </u>						
	₽.	Acc					
<u>_</u>	of d	redi Sta					
द्ध	ete	tus					
	뜮	9					
0/0	_	NONE	20	72	21	27	< 0.1
							13
							1
J			1	1	1	1	1
Tyne	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	_
							N/A
,	· ·		JIM	JIM	JI·IA	JIIA	N/A
pH Units	N/A	MCERTS	8.6	11	8.5	9.2	7.9
							-
		MCERTS					510
		MCERTS	-	-	-	-	0.051
			0.004	0.050	0.044		
g/l	0.00125	MCERTS	0.021	0.052	0.014	0.086	0.11
ma/l	1 25	MCERTS	20.9	51.8	14	85.7	107
			_	_	_	_	1200
							0.118
%	0.1	MCERTS	1.1	-	_	_	-
		<u> </u>	1.1			<u>I</u>	<u>I</u>
mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
		I.		. =	. = . •		
mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05	18	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05	15	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05	14	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	3	180	0.47	< 0.05
mg/kg	0.05	MCERTS	< 0.05	0.73	59	0.18	< 0.05
mg/kg	0.05	MCERTS	0.67	6.3	370	0.97	< 0.05
mg/kg	0.05	MCERTS	0.7	5.7	340	0.86	< 0.05
mg/kg	0.05	MCERTS	0.44	2	150	0.31	< 0.05
mg/kg	0.05	MCERTS	0.28	3.1	120	0.44	< 0.05
mg/kg	0.05	MCERTS	0.37	3	120	0.48	< 0.05
mg/kg	0.05	MCERTS	0.26	1.2	57	0.21	< 0.05
	0.05	MCERTS	0.3	2.6	100	0.44	< 0.05
mg/kg							0.05
mg/kg mg/kg	0.05	MCERTS	0.2	1.3	50	0.25	< 0.05
		MCERTS MCERTS MCERTS	0.2 < 0.05	1.3 < 0.05	50 14	0.25 < 0.05	< 0.05 < 0.05
	mg/kg mg/k g/l mg/l mg/l mg/kg % % % % mg/kg % mg/kg	March Marc	% 0.1 NONE % 0.01 NONE kg 0.001 NONE Type N/A ISO 17025 N/A N/A N/A pH Units N/A MCERTS mg/kg 1 MCERTS mg/kg 50 MCERTS g/l 0.00125 MCERTS mg/kg 50 MCERTS mg/kg 50 MCERTS % 0.005 MCERTS % 0.005 MCERTS mg/kg 0.0 MCERTS mg/kg 0.05 MCERTS mg/kg <td< td=""><td> JBH1 None Supplied 0.25 25/05/2022 None Supplied 0.25 25/05/2022 None Supplied </td><td> JBH1</td><td> JBH1 JBH2 JBH3 None Supplied None Supplied None Supplied O.25 O</td><td> Section Sect</td></td<>	JBH1 None Supplied 0.25 25/05/2022 None Supplied 0.25 25/05/2022 None Supplied	JBH1	JBH1 JBH2 JBH3 None Supplied None Supplied None Supplied O.25 O	Section Sect

4.94

< 0.80

mg/kg

MCERTS

3.52

30.6

1670

b Sample Number				2299052	2299053	2299054	2299055	2299056
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH4
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.10	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	23	11	12	13	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	1.3	0.3	0.7	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	35	11	16	20	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	11	22	14	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	10	21	22	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	8.7	10	13	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	59	29	49	51	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	μg/kg "	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	PICEK 13	< 1.0	-	< 1.0	-	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS 1D TOTAL	mg/kg	0.1	MCERTS		< 0.1	-	< 0.1	-
retroleum Nange Organies (eo ero) HS_ID_TOTAL	9/1.9	0.1	HOLKIO	_	< 0.1	-	< 0.1	-
TPH-CWG - Aliphatic >EC5 - EC6 _{HS 1D AL}	mg/kg	0.001	MCERTS	< 0.001		< 0.001		< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	< 0.001	<u>-</u>	< 0.001	<u>-</u>	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0		< 1.0		4.3
TPH-CWG - Aliphatic > EC12 - EC16 _{EH CU 1D AL}	mg/kg	2	MCERTS	< 2.0	_	12	_	41
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL	mg/kg	8	MCERTS	< 8.0	_	29	_	80
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	_	30	_	120
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	< 10	-	71	-	240
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	14	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	87	-	84
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	560	-	880
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	18	-	780	-	1300
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	24	-	1400	-	2200
TPH (C10 - C12) _{EH_CU_1D_TOTAL}	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH (C12 - C16) _{EH_CU_1D_TOTAL}	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0	-
TPH (C16 - C21) EH_CU_ID_TOTAL	mg/kg	1	MCERTS	-	39	-	8.5	-
TPH (C21 - C40) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	49	-	21	-
VOCs	-	•	-					
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Chloroethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
	-							

Your Order No: P4280JJ2513 8

Lab Sample Number				2299052	2299053	2299054	2299055	2299056
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.25	0.25	0.25	0.10	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken		Limit	Acc	нопе Заррнеа	Нопе Заррпеа	Нопе Заррнеа	Нопе Заррпеа	чоне заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Styrene	μg/kg 	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Tribromomethane	μg/kg 	1	NONE	< 1.0	-	< 1.0	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS ISO 17025	< 1.0	-	< 1.0	-	< 1.0
n-Propylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
2-Chlorotoluene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
4-Chlorotoluene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	< 1.0 < 1.0
	μg/kg μg/kg	1	MCERTS		-		-	
sec-Butylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	< 1.0
1,3-Dichlorobenzene p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0 < 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-		-	
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0 < 1.0	-	< 1.0 < 1.0
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0	 	< 1.0	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025				-	< 1.0
1,2,3° I II CHIOLODENZENE	פיי ופיק		1 1, 023	< 1.0	_	< 1.0		< 1.0

Your Order No: P4280JJ2513 8

Speciated Total EPA-16 PAHs

Lab Sample Number				2299057	2299058	2299059	2299060	2299061
Sample Reference				JBH5	JHB6	JBH8	JWS1	JWS3
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.10	1.20	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	72	< 0.1	19	27	< 0.1
Moisture Content	%	0.01	NONE	3.2	7.6	3.8	9.4	14
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.3	8.2	7.4	8.2	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	630	600	900	560	510
Total Sulphate as SO4 Water Soluble SO4 16hr extraction (2:1 Leachate	%	0.005	MCERTS	-	-	-	0.056	0.051
Equivalent) Water Soluble 504 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.0064	0.0063	0.011	0.006	0.069
Equivalent)	mg/l	1.25	MCERTS	6.4	6.3	10.7	6	69.3
Total Sulphur	mg/kg	50	MCERTS	-	-	-	250	320
Total Sulphur	%	0.005	MCERTS	-	-	-	0.025	0.032
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-	-	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.8	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.41	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	4.1	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.7	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.4	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.79	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.6	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.85	-	-
		0.05	MCERTS	< 0.05	< 0.05	< 0.05	_	-
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1		_

mg/kg

MCERTS

< 0.80

< 0.80

19.8

ab Sample Number				2299057	2299058	2299059	2299060	2299061
Sample Reference				JBH5	JHB6	JBH8	JWS1	JWS3
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.10	1.20	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					8			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.5	28	17	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	1	< 0.2	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	34	20	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	13	12	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	7.5	20	19	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.7	24	13	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	20	54	65	-	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MICERIS	< 1.0	-	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_ID_TOTAL	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	8.1	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	150	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU 1D AL	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	160	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg		MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	4	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	130	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	11	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	150	-	-	-	-
					T.			V
TPH (C10 - C12) _{EH_CU_1D_TOTAL}	mg/kg	2	MCERTS	12	< 2.0	< 2.0	-	-
TPH (C12 - C16) _{EH_CU_1D_TOTAL}	mg/kg	4	MCERTS	280	6.8	< 4.0	-	-
TPH (C16 - C21) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS MCERTS	11	99	10	-	-
TPH (C21 - C40) _{EH_CU_ID_TOTAL}	mg/kg	10	PICEKIS	< 10	140	19	-	-
VOCs	pa/ke	1 1	ISO 17025		ı			1
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chloroethane	μg/kg		NONE	-	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025 NONE	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	INOINE	-	-	-	-	-

Your Order No: P4280JJ2513 8

Lab Sample Number				2299057	2299058	2299059	2299060	2299061
Sample Reference				JBH5	JHB6	JBH8	JWS1	JWS3
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.10	1.20	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
		Lin	,					
	_	Limit of detection	Accreditation Status					
Analytical Parameter	Units	g d	edii					
(Soil Analysis)	ß	tec	us ati					
		i ii	¥					
1,1-Dichloroethene	μg/kg	1	NONE	_	_	_		_
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025			-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS					
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS			-		-
1,1-Dichloroethane	μg/kg	1	MCERTS					-
2,2-Dichloropropane	μg/kg	1	MCERTS		-	-	-	-
Trichloromethane	μg/kg	1	MCERTS		-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS		-	-	-	-
1,1-Dichloropene	μg/kg μg/kg	1	MCERTS					
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE	-	-	-	-	-
		1	MCERTS					
Benzene Tetrachleremethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-		-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	
Trichloroethene		1	MCERTS					-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg			-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg		ISO 17025	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg		NONE	-	-	-	-	-
Tetrachloroethene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dibromoethane	μg/kg		MCERTS	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	NONE	-	-	-	-	-
Tribromomethane	μg/kg	1	MCERTS	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
n-Propylbenzene		1	MCERTS		-		-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
1,3,5-Trimethylbenzene		1	MCERTS	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
sec-Butylbenzene	μg/kg	1		-	-	-	-	-
1,3-Dichlorobenzene	μg/kg		ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1		-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Lab Sample Number				2299062	2299063	2299064	2299065	2299066
Sample Reference				JWS3	JWS4	JWS4	JBH1	JBH2
Sample Number				None Supplied				
Depth (m)				3.50	0.50	2.50	1.60	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	39	30
Moisture Content	%	0.01	NONE	19	8.9	9.9	5.5	3.1
Total mass of sample received	kg	0.001	NONE	0.5	1	0.5	1	1
	•	-			•		•	
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.3	8.3	0.6	8.3	8.2
Total Cyanide	mg/kg	1	MCERTS	- 0.3	- 0.3	8.6	-	- 0.2
Total Sulphate as SO4	mg/kg	50	MCERTS	340	740	540	760	690
Total Sulphate as SO4	%	0.005	MCERTS	0.034	0.074	0.054	0.076	0.069
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.01	0.004	0.0071	0.0051	0.0068
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	10.1	4	7.1	5.1	6.8
Total Sulphur	mg/kg	50	MCERTS	160	290	210	310	290
Total Sulphur	%	0.005	MCERTS	0.016	0.029	0.021	0.031	0.029
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-	-	-	-
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	_	I -	_	l -	_
Acenaphthylene	mg/kg	0.05	MCERTS	-		-	_	-
Acenaphthene	mg/kg	0.05	MCERTS	-	_	-	-	-
Fluorene	mg/kg	0.05	MCERTS	_	_	_	-	-
Phenanthrene	mg/kg	0.05	MCERTS	_	_	_	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Total PAH	-	-	-					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-	-	-

Lab Sample Number				2299062	2299063	2299064	2299065	2299066
Sample Reference				JWS3	JWS4	JWS4	JBH1	JBH2
Sample Number				None Supplied				
Depth (m)				3.50	0.50	2.50	1.60	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids		5						<u> </u>
			MCERTS		1			
Arsenic (aqua regia extractable)	mg/kg	1		-	-	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	-	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MICEKIS	-	-	-	-	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU 1D AR	mg/kg	1	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	-	-	-	-	-
		_	-	=	=	-		=
TPH (C10 - C12) EH_CU_1D_TOTAL	mg/kg	2	MCERTS	-	-	-	-	-
TPH (C12 - C16) EH_CU_ID_TOTAL	mg/kg	4	MCERTS	-	-	-	-	-
TPH (C16 - C21) EH_CU_ID_TOTAL	mg/kg	1	MCERTS	-	-	-	-	-
TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-	-	-	-	-
	-				1			1
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	_	-	-	-
Chloroethane	μg/kg	1	NONE	_	_	_	_	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE		_	-		-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	
menoronauronicalane	פיי ופיק				_		_	_

Your Order No: P4280JJ2513 8

Lah Sample Number	ab Sample Number					2299064	2299065	2299066
Sample Reference				2299062 JWS3	2299063 JWS4	JWS4	JBH1	JBH2
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.50	0.50	2.50	1.60	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tanca		Ε.		топе заррнеа	чоне заррнеа	топе заррнеа	топе заррнеа	топе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	1	1	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg 	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS ISO 17025	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1		-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	130 1/025	-	-	-	-	-

Your Order No: P4280JJ2513 8

Speciated Total EPA-16 PAHs

Lab Sample Number				2299067	2299068	2299069	
Sample Reference				JBH3	JBH4	JBH9	
Sample Number				None Supplied	None Supplied	None Supplied 1.70	
Depth (m)				0.75	0.75		
Date Sampled				25/05/2022	25/05/2022	25/05/2022	
Time Taken				None Supplied	None Supplied	None Supplied	
		Ë					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	0.01	NONE	16	13	9.6	
Total mass of sample received	kg	0.001	NONE	1	1	1	
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-	
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	N/A	
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	8.1	8.6	
Total Cyanide	mg/kg	1	MCERTS	-	-	-	
Total Sulphate as SO4	mg/kg	50	MCERTS	570	540	620	
Total Sulphate as SO4	%	0.005	MCERTS	0.057	0.054	0.062	
Water Soluble SU4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SU4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.025	0.007	0.003	
Equivalent)	mg/l	1.25	MCERTS	24.7	7	3	
Total Sulphur	mg/kg	50	MCERTS	280	260	280	
Total Sulphur	%	0.005	MCERTS	0.028	0.026	0.028	
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-	-	
Total Phenols	•	•					
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-	-	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	_	_	_	
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	-	
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	
Fluorene	mg/kg	0.05	MCERTS	-	-	-	
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	
Anthracene	mg/kg	0.05	MCERTS	-	-	-	
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	
Pyrene	mg/kg	0.05	MCERTS	-	-	-	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	
Chrysene	mg/kg	0.05	MCERTS	-	-	-	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	
Total DALI							
Total PAH			MCEDIC	1	1		

mg/kg

Lab Sample Number				2299067	2299068	2299069
Sample Reference				JBH3	JBH4	JBH9
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.75	0.75	1.70
Date Sampled				25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
	mg/kg	1	MCERTS	_	_	-
Arsenic (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	-
Cadmium (aqua regia extractable)	mg/kg	1.8	MCERTS	-	-	-
Chromium (hexavalent)	mg/kg	1.0	MCERTS	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-
Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-		-
, , ,		1	MCERTS	-		
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	-	-	-
,	mg/kg	1	MCERTS			
Zinc (aqua regia extractable)	mg/kg	1	TICENTS	-	-	-
Management of Comment of						
Monoaromatics & Oxygenates			MCEDIC			
Benzene	μg/kg	1	MCERTS	-	-	-
Toluene	μg/kg 	1	MCERTS	-	-	-
Ethylbenzene	μg/kg 	1	MCERTS	-	-	-
p & m-xylene	μg/kg 	1	MCERTS	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-
MITDE (Markey) Tankiana, Dukul EU- 1	μg/kg	1	MCERTS			_
MTBE (Methyl Tertiary Butyl Ether)	P9/119	-	PICERTS	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_ID_TOTAL	mg/kg	0.1	MCERTS	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_ID_TOTAL				-	-	-
Petroleum Hydrocarbons	mg/kg	0.1	MCERTS	- -	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.1	MCERTS MCERTS	- - -	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg mg/kg	0.1 0.001 0.001	MCERTS MCERTS MCERTS	-	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	- - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	- - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - -	- - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	- - - - - -	- - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8 8	MCERTS	- - - - - -	- - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC10 - EC13 EH_CU_1D_AL TPH-CWG - Aliphatic >EC10 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC30 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC50 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC50 - EC7 HS_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10	MCERTS	- - - - - -	- - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HCU_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HCU_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 10	MCERTS	- - - - - - -	- - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HCU_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HCU_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR	mg/kg	0.001 0.001 0.001 1 2 8 8 10	MCERTS	- - - - - - - -	- - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HCU_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HCU_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HCU_1D_AR	mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS	- - - - - - - -	- - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC50 - EC35 HCU_1D_AL TPH-CWG - Aliphatic > EC50 - EC7 HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC60 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HCU_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	- - - - - - - - - -	- - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 HS_1D_AR TPH-CWG - Aromatic > EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC16 HC_U_1D_AR TPH-CWG - Aromatic > EC16 HC_U_1D_AR TPH-CWG - Aromatic > EC16 HC_U_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS	- - - - - - - - - - -	- - - - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) HC_U_1D_AL TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC16 HC_U_1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC_U_1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC_U_1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC_U_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC10 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HCU_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC6 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HCU_1D_AR TPH-CWG - Aromatic > EC10 - EC21 HCU_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC LD_AL TPH-CWG - Aliphatic > EC10 - EC12 HC LD_AL TPH-CWG - Aliphatic > EC10 - EC12 HC LD_AL TPH-CWG - Aliphatic > EC16 - EC21 HC LD_AL TPH-CWG - Aliphatic > EC16 - EC21 HC LD_AL TPH-CWG - Aliphatic > EC16 - EC35 HC LD_AL TPH-CWG - Aliphatic > EC5 - EC35 HC LD_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC LD_AR TPH-CWG - Aromatic > EC10 - EC12 HC LD_AR TPH-CWG - Aromatic > EC12 - EC16 HC LD_AR TPH-CWG - Aromatic > EC12 - EC16 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC21 HC LD_AR TPH-CWG - Aromatic > EC16 - EC35 HC LD_AR TPH-CWG - Aromatic > EC16 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TPH-CWG - Aromatic > EC56 - EC35 HC LD_AR TP	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC15 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC31 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC51 - EC35 HC_U_1D_AR TPH-CWG - Aromatic \ EC51 - EC35 HC_U_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC U1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC U1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC U1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC U1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC U1D_AL TPH-CWG - Aliphatic > EC16 - EC35 HC U1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC U1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC6 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC12 - EC16 HC U1D_AR TPH-CWG - Aromatic > EC12 - EC16 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC21 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC16 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC U1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS	- - - - - - - - - - - - - - - - - - -		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC15 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC31 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC51 - EC35 HC_U_1D_AR TPH-CWG - Aromatic \ EC51 - EC35 HC_U_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC6 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic (EC5 - EC35) HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC35 HC_U_1D_AR	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10 2	MCERTS			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC6 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC16 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC12 HC_U_1D_TOTAL TPH (C12 - C12) HC_U_1D_TOTAL TPH (C12 - C21) HC_U_1D_TOTAL TPH (C13 - C21) HC_U_1D_TOTAL TPH (C21 - C40) HC_U_1D_TOTAL	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 1 0.001 0.001 1 2 10 10 10 10	MCERTS	- - - - - - - - - - - - - - - - - - -		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HS_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HS_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HS_1D_AL TPH-CWG - Aliphatic > EC5 - EC35 HS_1D_AR TPH-CWG - Aliphatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC15 HS_1D_AR TPH-CWG - Aromatic > EC10 HS_1D_AR TPH-CWG - Aromatic >	mg/kg	0.1 0.001 0.001 1 2 8 8 10 0.001 0.001 1 1 2 10 10 10 10 11 10	MCERTS			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 HS_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 HS_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 HS_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HS_1D_AL TPH-CWG - Aliphatic >EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic >EC6 - EC8 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC12 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC15 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC16 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC35 HS_1D_AR	mg/kg	0.1 0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 10 10 11 11 11	MCERTS	- - - - - - - - - - - - - - - - - - -		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS_1D_TOTAL TPH-CWG - Aliphatic > EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic > EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC10 - EC12 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC16 - EC21 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC21 - EC35 HC_U_1D_AL TPH-CWG - Aliphatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC10 - EC12 HC_U_1D_AR TPH-CWG - Aromatic > EC12 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic (EC5 - EC35) HC_U_1D_AR TPH-CWG - Aromatic > EC21 - EC35 HC_U_1D_AR TPH-CWG - Aromatic > EC10 HC_U_1D_TOTAL TPH (C10 - C12) HC_U_1D_TOTAL TPH (C12 - C40) HC_U_1D_TOTAL TPH (C21 - C40) HC_U_1D_TOTAL TPH (C21 - C40) HC_U_1D_TOTAL	mg/kg	0.1 0.001 0.001 1 2 8 8 10 0.001 0.001 1 1 2 10 10 10 10 11 10	MCERTS	- - - - - - - - - - - - - - - - - - -		

Your Order No: P4280JJ2513 8

Lab Camada Namaban				2200067	2299068	2200000
Lab Sample Number				2299067		2299069
Sample Reference				JBH3	JBH4	JBH9
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.75	0.75	1.70
Date Sampled				25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,1-Dichloroethene	μg/kg	1	NONE	_	_	_
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	_	_	_
Cis-1,2-dichloroethene	μg/kg	1	MCERTS			
,	μg/kg	1	MCERTS		-	
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg	1	MCERTS		-	-
	μg/kg	1	MCERTS		-	-
2,2-Dichloropropane		1	MCERTS			
Trichloromethane	μg/kg	1	MCERTS	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-
1,2-Dichloroethane	μg/kg	1		-	-	-
1,1-Dichloropropene	μg/kg		MCERTS	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	_	_	-
4-Chlorotoluene	μg/kg	1	MCERTS		_	
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	_	_	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025			-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-
	μg/kg	1	MCERTS			
1,2-Dichlorobenzene		1	MCERTS	-	-	-
1,4-Dichlorobenzene	μg/kg	1		-	-	-
Butylbenzene	μg/kg		MCERTS	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-

Analytical Report Number: 22-62384

Project / Site name: Phase 10 Heyford Park Camp Road OX25 5HD

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2299047	JWS1	None Supplied	0.1	Brown loam with vegetation.
2299048	JWS2	None Supplied	0.1	Brown loam with vegetation and stones.
2299049	JWS3	None Supplied	0.1	Brown clay and loam with vegetation.
2299050	JWS4	None Supplied	0.1	Brown loam with vegetation and stones.
2299051	JWS5	None Supplied	0.1	Brown loam with vegetation and stones.
2299052	JBH1	None Supplied	0.25	Brown clay and loam with vegetation and stones.
2299053	JBH2	None Supplied	0.25	Brown gravelly loam with vegetation and stones.
2299054	JBH3	None Supplied	0.25	Brown gravelly loam with vegetation and stones.
2299055	JBH4	None Supplied	0.1	Brown loam with vegetation and stones.
2299056	JBH4	None Supplied	1.5	Brown clay and loam.
2299057	JBH5	None Supplied	0.25	Brown gravelly loam with vegetation and stones.
2299058	JHB6	None Supplied	0.25	Brown clay and loam with gravel and vegetation.
2299059	ЈВН8	None Supplied	0.1	Brown loam with vegetation and stones.
2299060	JWS1	None Supplied	1.2	Brown clay and sand with stones.
2299061	JWS3	None Supplied	1.5	Brown clay and loam with gravel and vegetation.
2299062	JWS3	None Supplied	3.5	Brown clay.
2299063	JWS4	None Supplied	0.5	Brown clay and loam with gravel.
2299064	JWS4	None Supplied	2.5	Brown clay and loam with vegetation.
2299065	JBH1	None Supplied	1.6	Brown clay and loam with stones.
2299066	JBH2	None Supplied	0.75	Brown clay and loam with stones.
2299067	JBH3	None Supplied	0.75	Brown clay and loam with gravel.
2299068	JBH4	None Supplied	0.75	Brown clay and loam with gravel and vegetation.
2299069	JBH9	None Supplied	1.7	Brown clay and sand.

Analytical Report Number: 22-62384

Project / Site name: Phase 10 Heyford Park Camp Road OX25 5HD

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	nalytical Test Name Analytical Method Description Analytical Method Reference				
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Analytical Report Number: 22-62384

Project / Site name: Phase 10 Heyford Park Camp Road OX25 5HD

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Shaw Carter

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park **UB11 1BD**

e: Jomas Associates -

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

30/05/2022

01/06/2022

Analytical Report Number: 22-62381

Replaces Analytical Report Number: 22-62381, issue no. 1 Additional analysis undertaken.

Project / Site name: Phase 10, Heyford Park, Camp Road,

OX25 5HD

Your job number: JJ2513

Your order number: P4280112513.9

Report Issue Number:

Samples Analysed: 22 soil samples Samples received on:

Samples instructed on/

Analysis started on:

Analysis completed by: 01/07/2022

Report issued on: 12/07/2022

Signed:

Joanna Wawrzeczko Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2299007	2299008	2299009	2299010	2299011
Sample Reference				JTP1	JTP3	JTP5	JTP6	JTP7
Sample Number					None Supplied	None Supplied	None Supplied	None Supplied
·				None Supplied 0.25	0.25	0.75	0.25	0.75
Depth (m)							25/05/2022	
Date Sampled				25/05/2022	25/05/2022	25/05/2022		25/05/2022
Time Taken		_	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	31	< 0.1	27	< 0.1
Moisture Content	%	0.01	NONE	17	12	10	8	19
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	GFI	N/A	GFI	N/A	GFI
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	8.2	8.2	8.1	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	940	660	900	650	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013	0.016	0.04	0.0078	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	12.9	15.5	39.6	7.8	-
Total Sulphur	mg/kg	50	MCERTS	-	-	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	3	-	1.2	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (mononyune)	5. 5		I	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.42	0.2	< 0.05	< 0.05	0.82
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.18
Fluoranthene	mg/kg	0.05	MCERTS	1	0.58	< 0.05	< 0.05	1.5
Pyrene	mg/kg	0.05	MCERTS	0.87	0.59	< 0.05	< 0.05	1.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.58	0.37	< 0.05	< 0.05	0.79
Chrysene	mg/kg	0.05	MCERTS	0.58	0.35	< 0.05	< 0.05	0.76
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.66	0.39	< 0.05	< 0.05	0.69
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.31	0.23	< 0.05	< 0.05	0.39
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.61	0.36	< 0.05	< 0.05	0.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.32	0.27	< 0.05	< 0.05	0.35
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.42	0.32	< 0.05	< 0.05	0.42
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.79	3.66	< 0.80	< 0.80	8.03
		<u> </u>	ı	5.75	5.00	` 0.00	1 0.00	0.03

Lab Sample Number				2299007	2299008	2299009	2299010	2299011		
Sample Reference				JTP1	JTP3	JTP5	JTP6	JTP7		
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.25	0.25	0.75	0.25	0.75		
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Time rune:				Hone Supplied	Horic Supplied	топе зарряеа	Horic Supplied	топе заррнеа		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status							
Heavy Metals / Metalloids					<u> </u>					
	mg/kg	1	MCERTS	18	21	5.3	26	-		
			MCERTS					-		
· · · · · · · · · · · · · · · · · · ·		0.2	MCERTS					-		
		1.8	MCERTS					-		
`		1	MCERTS					-		
		1						_		
								_		
, , ,		0.3	MCERTS					-		
, , , ,	mg/kg	1	MCERTS					-		
	mg/kg	1	MCERTS					-		
, , , , , , , , , , , , , , , , , , , ,	mg/kg	1	MCERTS					-		
	1 - 7	I.	ı	33	30	23	V2			
Monoaromatics & Oxygenates										
	ua/ka	1	MCERTS	< 1.0	_	< 1.0	_	< 1.0		
					_			< 1.0		
					_			< 1.0		
,								< 1.0		
	_							< 1.0		
· · ·		1	MCERTS					< 1.0		
Petroleum Range Organics (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	-		
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12 FH CILID AL	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16 FH CILID AL	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21 FH CILID AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10		
Meavy Metals / Metalloids										
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10		
TPH-CWG - Aromatic >EC21 - EC35 EH CU 1D AR	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10		
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10		
TPH (C10 - C12) EH_CU_1D_TOTAL	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-		
TPH (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0	-		
TPH (C16 - C21) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	-	1.4	-	< 1.0	-		
TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-	< 10	-	< 10	-		
VOCs										
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0		
Chloroethane	μg/kg 	1	NONE	< 1.0	-	< 1.0	-	< 1.0		
Bromomethane	μg/kg 	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0		
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0		
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0		

				2299007	2299008	2299009	2299010	2299011
Lab Sample Number Sample Reference				JTP1	JTP3	JTP5	JTP6	JTP7
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.75	0.25	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
		Ε.		топе заррнеа	топе заррнеа	топе зарряеа	топе заррнеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Styrene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Tribromomethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Butylbenzene	μg/kg 	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg 	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg 	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-	< 1.0

Your Order No: P4280JJ2513.9

Lab Sample Number				2299007	2299008	2299009	2299010	2299011
Sample Reference				JTP1	JTP3	JTP5	JTP6	JTP7
Sample Number				None Supplied				
Depth (m)	0.25	0.25	0.75	0.25	0.75			
Date Sampled	25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-

Total PCBs by GC-MS

Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number				2299012	2299013	2299014	2299015	2299016
					JTP10	JTP11		JTP12
Sample Reference				JTP8			JTP11	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.50 25/05/2022	0.25	1.20	0.25
Date Sampled				25/05/2022	.,,	25/05/2022	25/05/2022	25/05/2022
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	28	38	22	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8.9	10	5.7	13	7.9
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Amosite	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	-	-	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	GFI	N/A	N/A	N/A	N/A
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	-	8.1	-	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	1.6	-	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1100	-	820	-	610
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.039	-	0.011	-	0.016
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	38.6	-	10.7	-	16.4
Total Sulphur	mg/kg	50	MCERTS	-	-	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-	-	-	1.9
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
		1	1	1.0	11.0	11.0		11.0
Speciated PAHs	n= n.	0.05	MCEDIC	0.55			1	
Naphthalene	mg/kg	0.05	MCERTS	0.55	< 0.05	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	1.9	< 0.05	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	1.2	< 0.05	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	26	< 0.05	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	6.9	< 0.05	< 0.05	-	< 0.05
Fluoranthene	mg/kg			46	< 0.05	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	39	< 0.05	< 0.05	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS MCERTS	22	< 0.05	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	21	< 0.05	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	29	< 0.05	< 0.05	-	< 0.05
Benzo(x)nyrono	mg/kg	0.05	MCERTS	9.1 25	< 0.05	< 0.05		< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS		< 0.05	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	9.9	< 0.05	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	2.2	< 0.05	< 0.05	-	< 0.05
Benzo(ghi)perylene	ilig/kg	0.03	HICERTS	11	< 0.05	< 0.05	-	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	253	< 0.80	< 0.80	-	< 0.80
		_						

Lab Sample Number		2299012	2299013	2299014	2299015	2299016		
Sample Reference				JTP8	JTP10	JTP11	JTP11	JTP12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.50	0.25	1.20	0.25
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					<u> </u>			<u> </u>
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	-	15	-	23
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	-	0.3	-	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-	2	-	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	-	20	-	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	-	14	-	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	100	-	17	-	28
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	-	14	-	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	-	41	-	61
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
p & m-xylene	μg/kg "	1	MCERTS	< 1.0	< 1.0	-	-	-
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	PICERTS	< 1.0	< 1.0	-	-	-
Petroleum Hydrocarbons	ma/ka	0.1	MCEDIC	1				1
Petroleum Range Organics (C6 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	-	-	< 0.1	-	< 0.1
TRU CINC. Alberto FCF. FCC	ma/ka	0.001	MCERTS	0.001	0.001			
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001 < 0.001	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC0 - EC10 _{HS_1D_AL} TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	< 0.001 < 1.0		-	-
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	< 2.0	< 2.0			-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	18	< 8.0			_
TPH-CWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	65	< 8.0			_
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU_HS_1D_AL	mg/kg	10	MCERTS	84	< 10	-	_	_
7 () 21_00 (10_10_10_10_10_10_10_10_10_10_10_10_10_1		<u> </u>	<u> </u>	0.	1 20			
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	_	-
TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	9.2	< 2.0	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	130	< 10	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU 1D AR	mg/kg	10	MCERTS	320	< 10	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	460	< 10	-	-	-
TPH (C10 - C12) _{EH_CU_1D_TOTAL}	mg/kg	2	MCERTS	-	-	< 2.0	-	< 2.0
TPH (C12 - C16) _{EH_CU_1D_TOTAL}	mg/kg	4	MCERTS	-	-	< 4.0	-	< 4.0
TPH (C16 - C21) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-	-	< 10	-	< 10
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	< 1.0	-	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	< 1.0	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	< 1.0	-	-	-
	-		-	-	-			-

_								
Lab Sample Number				2299012	2299013	2299014	2299015	2299016
Sample Reference				JTP8	JTP10	JTP11	JTP11	JTP12
Sample Number				None Supplied				
Depth (m)				0.50	1.50	0.25	1.20	0.25
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
		Ē						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	9 4	redi					
(Soil Analysis)	ß	ete	tati					
		C t io	읔					
4.511	//		NONE					
1,1-Dichloroethene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1		< 1.0	< 1.0	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg 	1	MCERTS	< 1.0	< 1.0	-	-	-
1,1-Dichloroethane	μg/kg 	1	MCERTS	< 1.0	< 1.0	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,1-Dichloropropene	μg/kg 	1	MCERTS	< 1.0	< 1.0	-	-	-
Trans-1,2-dichloroethene	μg/kg 	1	NONE	< 1.0	< 1.0	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	=
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	ı	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	< 1.0	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Tribromomethane	μg/kg	1	NONE	< 1.0	< 1.0	-	-	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	_	_
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	_	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	< 1.0	_	_	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-		
Butylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
	μg/kg	1	ISO 17025					-
1,2,3-Trichlorobenzene	P9/19		100 17023	< 1.0	< 1.0	-	-	-

Your Order No: P4280JJ2513.9

Lab Sample Number				2299012	2299013	2299014	2299015	2299016
Sample Reference				JTP8	JTP10	JTP11	JTP11	JTP12
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.50	1.50	0.25	1.20	0.25
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	-

0.007

MCERTS

U/S = Unsuitable Sample I/S = Insufficient Sample

Total PCBs by GC-MS

Total PCBs

< 0.007

< 0.007

Lab Sample Number				2299017	2299018	2299019	2299020	2299021
Sample Reference				JTP13	JTP14	JTP15	JTP16	JSTP1
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.75	0.25	0.75	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ε.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	22	-
Moisture Content	%	0.01	NONE	6.6	18	9.7	13	-
Total mass of sample received	kg	0.001	NONE	1	1	1	1	-
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	-	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	GFI	N/A	GFI	GFI
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	8.3	7.9	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	850	630	800	-	-
Total Sulphate as SO4 Water Soluble SO4 16hr extraction (2:1 Leachate	%	0.005	MCERTS	-	-	-	-	-
Equivalent)	g/l	0.00125	MCERTS	0.013	0.014	0.014	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	13.1	13.8	14	-	-
· · · · ·	mg/kg	50	MCERTS	_	_	_	_	_
Total Sulphur Total Sulphur	//////////////////////////////////////	0.005	MCERTS	-	-		-	-
Total Organic Carbon (TOC) - Automated	%	0.003	MCERTS	2.6	-	-	1.4	
Total Organic Carbon (TOC) - Automated	.,			2.0		-	1.4	_
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	_
Total Friends (monority and)	5. 5		I .	V 1.0	V 1.0	V 1.0	< 1.0	l .
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.75	< 0.05	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	2.3	< 0.05	0.5	_
Pyrene	mg/kg	0.05	MCERTS	< 0.05	1.9	< 0.05	0.4	_
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1	< 0.05	< 0.05	_
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.7	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.1	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.56	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.84	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.53	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.71	< 0.05	< 0.05	-
- " "								
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	10.3	< 0.80	0.9	-
· · · · · · · · · · · · · · · · · · ·			-		• • • • • • • • • • • • • • • • • • • •			

Lab Sample Number			2299017	2299018	2299019	2299020	2299021	
Sample Reference				JTP13	JTP14	JTP15	JTP16	JSTP1
Sample Number				None Supplied				
Depth (m)				0.10	0.75	0.25	0.75	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Time Taken	1	_		чоне заррнеа	чоне заррнеа	тчопе заррпеа	топс зарряса	топс заррпса
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	16	17	26	I _	T _
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	1	0.8	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	-	_
Chromium (hexavalent)	mg/kg	1.8	MCERTS	3.1	< 1.8	< 1.8		
` '	mg/kg	1.0	MCERTS	27	29			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS			42		1
Copper (aqua regia extractable)		1	MCERTS	18	19	23	-	-
Lead (aqua regia extractable)	mg/kg			59	43	65	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	19	29	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	51	96	71	-	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Petroleum Range Organics (C6 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	-
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	ı	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	•	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	-	< 10	-	< 10	-
						L		
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	_	< 10	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	16	-	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU_HS_1D_AR	mg/kg	10	MCERTS	-	23	-	< 10	-
,> EI_COTID_ID_AR					_3	<u>l</u>	. 10	
TPH (C10 - C12) _{EH_CU_1D_TOTAL}	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	_
TPH (C12 - C12) EH_CU_1D_TOTAL TPH (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	< 4.0		< 4.0		-
TPH (C12 - C10) EH_CU_1D_TOTAL TPH (C16 - C21) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	-
TPH (C10 - C21) EH_CU_1D_TOTAL TPH (C21 - C40) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	< 1.0	-	< 1.0	-	-
	519			\ 10		<u> </u>		
VOCs			100 4702					1
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Chloroethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-

Lab Sample Number				2299017	2299018	2299019	2299020	2299021
Sample Reference				JTP13	JTP14	JTP15	JTP16	JSTP1
Sample Number				None Supplied				
Depth (m)				0.10	0.75	0.25	0.75	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Time Taken	T		I	топе заррнеа	None Supplied	140Пе Заррпеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Bromodichloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Tribromomethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
		-	•	•	-	•	-	_

Your Order No: P4280JJ2513.9

Lab Sample Number				2299017	2299018	2299019	2299020	2299021
Sample Reference				JTP13	JTP14	JTP15	JTP16	JSTP1
Sample Number				None Supplied				
Depth (m)				0.10	0.75	0.25	0.75	0.75
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-

Total PCBs by GC-MS

Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number			2299022	2299023	2299024	2299025	2299026	
-								
Sample Reference Sample Number				JSTP1	JSTP4	JTP1 None Supplied	JTP2	JTP6
				None Supplied	None Supplied		None Supplied	None Supplied
Depth (m)				1.40	0.25	0.75	0.75	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken	1		_	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	17	22
Moisture Content	%	0.01	NONE	19	14	11	16	10
Total mass of sample received	kg	0.001	NONE	1	1	1	1	1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	7.8	8.1	8.5	8.6
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	850	1200	560	800	780
Total Sulphate as SO4	%	0.005	MCERTS	-	-	0.056	0.08	0.078
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.03	0.017	0.013	0.008	0.0087
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	29.7	17.2	12.9	8	8.7
Total Sulphur	mg/kg	50	MCERTS	-	-	250	350	320
Total Sulphur	%	0.005	MCERTS	-	-	0.025	0.035	0.032
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-	-	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	_	_	_
Total Frictions (monority unc)	315			< 1.0	< 1.0	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	1.3	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	0.25	< 0.05	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	3	0.5	-	-	-
Pyrene	mg/kg	0.05	MCERTS	2.6	0.47	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.58	0.36	-	-	-
Chrysene	mg/kg	0.05	MCERTS	1.2	0.18	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.2	0.4	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.66	0.22	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.88	0.23	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.77	0.24	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1	0.34	-	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	13.3	2.94	_	_	_
Speciated Total EFM-10 FMIS	91.19			13.3	2.9 4	_		•

Lab Sample Number			2299022	2299023	2299024	2299025	2299026	
Sample Reference				JSTP1	JSTP4	JTP1	JTP2	JTP6
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.40	0.25	0.75	0.75	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	23	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	1.4	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	33	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	25	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	37	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	22	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	51	86	-	-	-
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	PICER 13	< 1.0	-	-	-	-
Potroloum Hydrocarbons								
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10) HS 1D TOTAL	mg/kg	0.1	MCERTS	-	.01	_	-	_
retroleum Range Organics (CO - CTO) HS_1D_TOTAL	mg/kg	0.1	HICERTS	-	< 0.1	-	-	-
TRU CARC Alimbetia - FCF FCC	mg/kg	0.001	MCERTS	. 0.001	1			1
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL} TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	MCERTS	< 0.001 < 0.001		-	<u>-</u>	-
TPH-CWG - Aliphatic >ECO - ECO HS_1D_AL TPH-CWG - Aliphatic >ECS - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	_		-	
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0				
TPH-CWG - Aliphatic >EC12 - EC16 _{EH, CU, 1D, AL}	mg/kg	2	MCERTS	< 2.0			-	_
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0				_
TPH-CWG - Aliphatic > EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	_	_	_	_
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	< 10	_	_	-	_
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS 1D AR	mg/kg	0.001	MCERTS	< 0.001	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D AR	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	MCERTS	14	-	-	-	-
TPH (C10 - C12) EH_CU_1D_TOTAL	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPH (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	-	< 4.0	-	-	-
TPH (C16 - C21) _{EH_CU_1D_TOTAL}	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-	< 10	-	-	-
	-							
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Vinyl Chloride	μg/kg 	1	NONE	< 1.0	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	-	-	-

Lah Sample Number	Lab Sample Number					2299024	2299025	2299026
Sample Reference				2299022 JSTP1	2299023 JSTP4	JTP1	JTP2	JTP6
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.40	0.25	0.75	0.75	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken		_		тчопе заррпеа	чоне заррнеа	тчопе зарряса	нопе заррнеа	топе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	1	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	1	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-Xylene	μg/kg 	1	MCERTS	< 1.0	-	-	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tribromomethane	μg/kg	1	NONE	< 1.0	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
Isopropylbenzene	μg/kg		MCERTS	< 1.0	-	-	-	-
Bromobenzene p. Bronylbonzene	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	-	-	-	-
n-Propylbenzene	μg/kg μg/kg	1	MCERTS		-	-	-	-
2-Chlorotoluene 4-Chlorotoluene	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-			-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0				-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	<u> </u>	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0		_	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	<u> </u>	-	<u>-</u>	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	<u> </u>	-	<u>-</u>	_
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	_	-
-,-,				× 1.0	1		I	

Your Order No: P4280JJ2513.9

Lab Sample Number				2299022	2299023	2299024	2299025	2299026
Sample Reference				JSTP1	JSTP4	JTP1	JTP2	JTP6
Sample Number				None Supplied				
Depth (m)				1.40	0.25	0.75	0.75	1.50
Date Sampled				25/05/2022	25/05/2022	25/05/2022	25/05/2022	25/05/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-

Total PCBs by GC-MS

100011 020 27 00 110								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Your Order No: P4280JJ2513.9

Lab Sample Number				2299027	2299028
Sample Reference	JTP12	JTP15			
Sample Number	None Supplied	None Supplie			
Depth (m)	0.75	0.75			
Date Sampled	25/05/2022	25/05/2022			
Time Taken				None Supplied	None Supplie
		Limit of detection	Ac		
Analytical Parameter	⊆	t of	Sta		
(Soil Analysis)	Units	det	creditat Status		
		ectio	Accreditation Status		
Stone Content	%	0.1	NONE	30	35
Moisture Content	%	0.01	NONE	8.1	11
Total mass of sample received	kg	0.001	NONE	1	1
				-	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A
General Inorganics	-1111-2-2-	NI/A	MCEDIC		
pH - Automated	pH Units	N/A 1	MCERTS MCERTS	- 8	8.2
Total Cyanide	mg/kg	50	MCERTS		- 700
Total Sulphate as SO4	mg/kg %	0.005	MCERTS	670	780
Total Sulphate as SO4 Water Soluble SO4 16hr extraction (2:1 Leachate	70	0.005	MCERTS	0.067	0.078
Equivalent)	g/l	0.00125	MCERTS	0.024	0.0039
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	24.2	3.9
Total Sulphur	mg/kg	50	MCERTS	310	350
Total Sulphur	%	0.005	MCERTS	0.031	0.035
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-
Total Organic Carbon (100) Automated					
Total Phenols					
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-
Speciated PAHs					
Speciated PALIS					
Naphthalene	mg/kg	0.05	MCERTS	-	-
	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-
Acenaphthylene					-
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	-	
Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	-	-
Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	-	- - -
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	-	- - -
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	-	- - -
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	- - - -	
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	- - - - -	-
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS		
Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS		
Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS		- - - - - - - - - - - -

MCERTS

mg/kg

Speciated Total EPA-16 PAHs

Your Order No: P4280JJ2513.9

			2299027	2299028				
Sample Reference								
Sample Number								
Depth (m)								
Date Sampled								
Time Taken								
	Ē		, ,					
	럂	Accı						
<u>u</u>	of d	redi Stat						
র	ete	us						
	뜮	9						
	-							
ma/ka	1	MCEDTS						
			-	-				
			-					
			-	-				
			-	-				
				-				
				-				
			-	-				
			-	-				
5, 5			-	-				
			-	-				
ilig/kg	1	PICENTS	-	-				
			-	-				
_			-	-				
			-	-				
μg/kg			-	-				
μg/kg			-	-				
ца/ка	1	MCERTS		_				
1.5, 5			-					
13/3			-					
			-					
mg/kg	0.1	MCERTS	-	-				
			-	-				
	0.1	MCERTS MCERTS	-	-				
mg/kg	0.1	MCERTS	-					
mg/kg	0.1	MCERTS MCERTS	-					
mg/kg mg/kg mg/kg	0.1 0.001 0.001	MCERTS MCERTS MCERTS						
mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS						
mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS	=	-				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	=	-				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		-				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		- - -				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		- - -				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.001 0.001 0.001 1 2 8 8 10	MCERTS		- - - -				
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 0.001 1 2 8 8 10	MCERTS		-				
mg/kg	0.001 0.001 0.001 1 2 8 8 10	MCERTS		-				
mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS		-				
mg/kg	0.001 0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 10 10 10 10	MCERTS	- - - - - - - - - - - - - - -					
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 0.001 0.001 1 1 2 10 10 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 0.001 0.001 1 1 2 10 10 10 10	MCERTS	- - - - - - - - - - - - - - -					
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 0.001 0.001 1 1 2 10 10 10 10	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 0.001 0.001 1 1 2 10 10 10 10 11 11 11	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2 1 1 1 1 1 1 1	MCERTS						
mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 1 2 1 1 0.001 0.001 1 1 2 10 10 10 10 11 11 11	MCERTS						
	mg/kg	mg/kg 1 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 1.8 mg/kg 1	mg/kg 1 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 1.8 MCERTS mg/kg 1 MCERTS	JTP12				

Your Order No: P4280JJ2513.9

Lah Camula Nirmhau				2200027	2200020
Lab Sample Number	2299027 JTP12	2299028 JTP15			
Sample Reference Sample Number		None Supplied			
•	None Supplied 0.75	0.75			
Depth (m) Date Sampled					
Time Taken	25/05/2022	25/05/2022			
Tille Takell		-	1	None Supplied	None Supplied
		Limit of detection	Accreditation Status		
Analytical Parameter	Units	9	cred Sta		
(Soil Analysis)	캾	dete	litat		
		ctic	ig		
		_			
1,1-Dichloroethene	μg/kg	1	NONE	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS MCERTS	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	<u>-</u>	-
Trichloromethane	μg/kg	1	MCERTS	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	<u> </u>	<u>-</u>
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	
Trans-1,2-dichloroethene	μg/kg	1	NONE	<u> </u>	-
Benzene	μg/kg	1	MCERTS	-	_
Tetrachloromethane	μg/kg	1	MCERTS	-	_
1,2-Dichloropropane	μg/kg	1	MCERTS	_	_
Trichloroethene	μg/kg	1	MCERTS		_
Dibromomethane	μg/kg	1	MCERTS	_	-
Bromodichloromethane	μg/kg	1	MCERTS		_
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	_
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	-
Toluene	μg/kg	1	MCERTS	_	_
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	_
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-
Styrene	μg/kg	1	MCERTS	-	-
Tribromomethane	μg/kg	1	NONE	-	-
o-Xylene	μg/kg	1	MCERTS	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-
1,2,4-Trimethylbenzene	μg/kg 	1	ISO 17025	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-
1,4-Dichlorobenzene	μg/kg "	1	MCERTS	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS ISO 17025	-	-
1,2,3-Trichlorobenzene	μg/kg	1	130 1/025	-	-

PCBs by GC-MS

Your Order No: P4280JJ2513.9

Lab Sample Number				2299027	2299028
Sample Reference	JTP12	JTP15			
Sample Number				None Supplied	None Supplied
Depth (m)				0.75	0.75
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
PCB Congener 28	mg/kg	0.001	MCERTS	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-

Total PCBs by GC-MS

•					
Total PCBs	mg/kg	0.007	MCERTS	-	-

 $\label{eq:US} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513.9

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
2299012	JTP8	0.50	140	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2299007	JTP1	None Supplied	0.25	Brown loam with gravel and vegetation.
2299008	JTP3	None Supplied	0.25	Brown loam with vegetation and stones.
2299009	JTP5	None Supplied	0.75	Brown clay and loam with gravel and vegetation.
2299010	JTP6	None Supplied	0.25	Brown clay and loam with vegetation and stones.
2299011	JTP7	None Supplied	0.75	Brown clay and loam with gravel.
2299012	JTP8	None Supplied	0.5	Brown clay and loam with vegetation and stones.
2299013	JTP10	None Supplied	1.5	Brown gravelly sand with stones.
2299014	JTP11	None Supplied	0.25	Brown loam and clay with vegetation and stones.
2299015	JTP11	None Supplied	1.2	Brown sand.
2299016	JTP12	None Supplied	0.25	Brown clay and loam with gravel and vegetation.
2299017	JTP13	None Supplied	0.1	Brown loam with vegetation.
2299018	JTP14	None Supplied	0.75	Brown clay and sand with vegetation and gravel
2299019	JTP15	None Supplied	0.25	Brown clay and loam with gravel and vegetation.
2299020	JTP16	None Supplied	0.75	Brown clay and loam with stones.
2299022	JSTP1	None Supplied	1.4	Brown clay and loam with gravel and vegetation.
2299023	JSTP4	None Supplied	0.25	Brown loam with vegetation.
2299024	JTP1	None Supplied	0.75	Brown clay and sand with gravel.
2299025	JTP2	None Supplied	0.75	Light brown clay and sand with stones.
2299026	JTP6	None Supplied	1.5	Light brown sand with stones.
2299027	JTP12	None Supplied	0.75	Brown sand with gravel and stones.
2299028	JTP15	None Supplied	0.75	Brown clay and sand with gravel and stones.

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name			Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES			L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
--	-----------------------------	------------------	-----------------------	-------------------------

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

Shaw Carter Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park **UB11 1BD**

e: Jomas Associates -

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-62942

Project / Site name: Phase 10h Heyford Park, Camp Road, Samples received on: 30/05/2022

OX25 5HD

Your job number: JJ2513 Samples instructed on/ 07/06/2022

Analysis started on:

P4280JJ2513 9 Your order number: Analysis completed by: 14/06/2022

Report Issue Number: Report issued on: 14/06/2022

Samples Analysed: 2 soil samples

Signed:

Adam Fenwick **Technical Reviewer** For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 9

Lab Sample Number	2302564	2302565			
Sample Reference				JSTP2	JSTP2
Sample Number				None Supplied	None Supplied
Depth (m)				1.00	0.50
Date Sampled				25/05/2022	25/05/2022
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	14
Total mass of sample received	kg	0.001	NONE	0.8	0.8
	T =	21/2	100 17025		

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-
Asbestos Analyst ID	N/A	N/A	N/A	MDB	N/A

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.1	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	790	700
Total Sulphate as SO4	%	0.005	MCERTS	-	0.07
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.071	0.054
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	70.8	53.5
Total Sulphur	mg/kg	50	MCERTS	-	450
Total Sulphur	%	0.005	MCERTS	-	0.045

Total Phenols

Total Phenols (monohydric)	mg/kg 1	MCERTS	< 1.0	-

Speciated PAHs

Speciated 1 A115					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	58	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	20	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	49	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	-

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 9

Lab Sample Number		2302564	2302565		
Sample Reference				JSTP2	JSTP2
Sample Number				None Supplied	None Supplied
Depth (m)				1.00	0.50
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	MCERTS	< 10	-

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	< 10	-

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 9

Lab Sample Number				2302564	2302565
Sample Reference				JSTP2	JSTP2
Sample Number	None Supplied	None Supplied			
Depth (m)				1.00	0.50
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
/OCs					
Chloromethane	μg/kg	1	ISO 17025	< 1.0	_
Chloroethane	μg/kg	1	NONE	< 1.0	_
Bromomethane	μg/kg	1	ISO 17025	< 1.0	_
Vinyl Chloride	μg/kg	1	NONE	< 1.0	_
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	_
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	<u> </u>
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	
	μg/kg μg/kg	1	MCERTS	< 1.0	-
1,1-Dichloroethane		1	MCERTS		-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	
Trichloromethane	μg/kg		MCERTS	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-
1,2-Dichloroethane	μg/kg			< 1.0	-
I,1-Dichloropropene	μg/kg "	1	MCERTS	< 1.0	-
Trans-1,2-dichloroethene	μg/kg 	1	NONE	< 1.0	-
Benzene	μg/kg	1	MCERTS	< 1.0	-
Гetrachloromethane	μg/kg	1	MCERTS	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-
o & m-Xylene	μg/kg	1	MCERTS	< 1.0	_
Styrene	μg/kg	1	MCERTS	< 1.0	_
Tribromomethane	μg/kg	1	NONE	< 1.0	_
p-Xylene	μg/kg	1	MCERTS	< 1.0	_
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	_
Bromobenzene	μg/kg	1	MCERTS	< 1.0	
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-
	μg/kg	1	MCERTS		
1-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-
ert-Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-
•		1		< 1.0	
1,2,4-Trimethylbenzene	μg/kg		ISO 17025	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-
L,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-
o-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-
,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-
1.2.4-Trichlorohonzono	ua/ka	1	MCFRTS	- 10	

μg/kg

1,2,4-Trichlorobenzene

MCERTS

< 1.0

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 9

Lab Sample Number	2302564	2302565			
Sample Reference	JSTP2	JSTP2			
Sample Number				None Supplied	None Supplied
Depth (m)				1.00	0.50
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2302564	JSTP2	None Supplied	1	Brown clay and sand with gravel.
2302565	JSTP2	None Supplied	0.5	Brown clay and sand with gravel.

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name Analytical Method Description Analyti		Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

		List of five Lacionyms and operators
Д	cronym	Descriptions
	HS	Headspace Analysis
	MS	Mass spectrometry
	FID	Flame Ionisation Detector
	GC	Gas Chromatography
	EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
	CU	Clean-up - e.g. by Florisil®, silica gel
	1D	GC - Single coil/column gas chromatography
	2D	GC-GC - Double coil/column gas chromatography
	Total	Aliphatics & Aromatics
	AL	Aliphatics
	AR	Aromatics
	#1	EH_2D_Total but with humics mathematically subtracted
	#2	EH_2D_Total but with fatty acids mathematically subtracted
	_	Operator - understore to separate acronyms (exception for +)
	+	Operator to indicate cumulative e.g. EH+HS Total or EH_CU+HS Total

Sample Deviation Report

Analytical Report Number: 22-62942

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID				Sample Deviation	Test Name		Test Deviation
JSTP2	None Supplied	S	2302564	С	Total cyanide in soil	L080-PL	С

Shaw Carter Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park

UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Project / Site name: Phase 10h Heyford Park, Camp Road,

OX25 5HD

Your job number: JJ2513

Your order number: P4280JJ2513 8

Report Issue Number:

Samples Analysed: 2 soil samples Samples received on: 30/05/2022

Samples instructed on/ 07/06/2022 Analysis started on:

Analysis completed by: 14/06/2022

Report issued on: 14/06/2022

Signed:

Adam Fenwick Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Analytical Report Number: 22-62946

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD Your Order No: P4280JJ2513 8

Lab Sample Number				2302609	2302610
Sample Reference				JTP7	JTP8
Sample Number				None Supplied	None Supplied
Depth (m)				0.10-0.75	0.10
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	22	13
Moisture Content	%	0.01	NONE	9.4	7.6
Total mass of sample received	kg	0.001	NONE	0.8	0.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-
Asbestos Analyst ID	N/A	N/A	N/A	MDB	N/A

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	7.8
Total Sulphate as SO4	mg/kg	50	MCERTS	-	780
Total Sulphate as SO4	%	0.005	MCERTS	-	0.078
water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.008
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	8
Total Sulphur	mg/kg	50	MCERTS	-	400
Total Sulphur	%	0.005	MCERTS	-	0.04
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	3.6	-

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	0.66	-
Anthracene	mg/kg	0.05	MCERTS	0.2	-
Fluoranthene	mg/kg	0.05	MCERTS	1.9	-
Pyrene	mg/kg	0.05	MCERTS	1.7	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	-
Chrysene	mg/kg	0.05	MCERTS	0.93	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.98	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.62	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.99	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.51	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.65	-

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	10.3	-

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-

TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}

TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR

TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR

TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 8

Lab Sample Number	2302609	2302610			
Sample Reference	JTP7	JTP8			
Sample Number				None Supplied	None Supplied
Depth (m)				0.10-0.75	0.10
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons	mg/kg	0.001	MCERTS	2.224	
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aliphatic > EC8 - EC10 HS_1D_AL	mg/kg	1	MCERTS	< 0.001	-
TPH-CWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	< 1.0 < 2.0	-
TPH-CWG - Aliphatic > EC12 - EC16 EH_CU_1D_AL	mg/kg	8	MCERTS	< 2.0 < 8.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_ID_AL	mg/kg	8	MCERTS	< 8.0 < 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU_1D_AL	mg/kg	10	MCERTS		-
TFTI-CWG - Allphatic (ECS - ECSS) EH_CU+HS_1D_AL	9/119	10	HOLINIS	< 10	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	MCERTS	< 0.001	-
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	MCERTS	< 0.001	-
Z.	J. J		MCEDIC	. 5.001	

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

1

10

10

10

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

< 1.0

< 2.0

< 10

36

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD Your Order No: P4280JJ2513 8

Lab Sample Number				2302609	2302610
Sample Reference	JTP7	JTP8			
Sample Number				None Supplied	None Supplied
Depth (m)				0.10-0.75	0.10
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
VOCs					
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-
Chloroethane	μg/kg	1	NONE	< 1.0	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-

Analytical Parameter (Soil Analysis)	Units	f detection	editation Status		
VOCs					
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-
Chloroethane	μg/kg	1	NONE	< 1.0	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-
Benzene	μg/kg	1	MCERTS	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-
Styrene	μg/kg	1	MCERTS	< 1.0	-
Tribromomethane	μg/kg	1	NONE	< 1.0	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-
	•		•		

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD Your Order No: P4280JJ2513 8

Lab Sample Number	2302609	2302610			
Sample Reference	JTP7	JTP8			
Sample Number				None Supplied	None Supplied
Depth (m)				0.10-0.75	0.10
Date Sampled				25/05/2022	25/05/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2302609	JTP7	None Supplied	0.10-0.75	Brown clay and loam with gravel and stones.
2302610	JTP8	None Supplied	0.1	Brown clay and loam with gravel and stones.

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

Project / Site name: Phase 10h Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Shaw Carter Jomas Associates Ltd Lakeside House

1 Furzeground Way Stockley Park **UB11 1BD**

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

20/06/2022

e: Jomas Associates -

Analytical Report Number: 22-65946

Replaces Analytical Report Number: 22-65946, issue no. 1 Client sampling date amended.

Project / Site name: Phase 10, Heyford Park, Camp Road,

OX25

Your job number: JJ2513

P4280JJ2513 12

Your order number:

Report Issue Number:

Samples Analysed: 17 water samples Samples received on: 17/06/2022

Samples instructed on/

Analysis started on:

Analysis completed by: 06/07/2022

Report issued on: 06/07/2022

Signed:

Adam Fenwick **Technical Reviewer**

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Your Order No: P4280JJ2513 12								
Lab Sample Number				2319614	2319615	2319616	2319617	2319618
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	16/06/2022	16/06/2022	16/06/2022	16/06/2022
Time Taken				None Supplied				
		Lin						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	edi Stat					
(Water Analysis)	ផ	etec	is ta					
		tio	9					
		_	ı					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.2	7.2	6.9	7.0	7.3
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	500	500	940	580	470
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	11100	15300	32900	1500	26900
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	19	52	470	420	< 15
Ammoniacai Nidogen as Ni i	1.37			19	32	470	420	< 13
	mgcaco		I	2:-	25.5		40-	0
Hardness - Total	3/I	1	ISO 17025	346	299	666	405	293
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.18	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.45	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.7	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(0/E-: /				3.02	. 3.01	3.02	3.02	3.02
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	1.33	< 0.16
	B				2.24			
Heavy Metals / Metalloids								
Boron (dissolved)	μg/l	10	ISO 17025	29	50	66	76	32
Calcium (dissolved)	mg/l	0.012	ISO 17025	130	110	250	150	110
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3.4	3.2	7.3	5.7	2.5
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.34	0.19	0.47	2.78	< 0.15
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	1.4	2.4	6.5	0.6	5
Lead (dissolved)	μg/l	0.2	ISO 17025	1.8	< 0.2	< 0.2	< 0.2	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.3	1.7	2.3	2.5	2.3
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	3.1	2.3	4.5	5.3	7.2
Enic (dissolved)	1.5/			٦,١	۷.٦	т.Ј	٥.٥	1.2

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Your Order No: P4280JJ2513 12								
Lab Sample Number				2319614	2319615	2319616	2319617	2319618
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	16/06/2022	16/06/2022	16/06/2022	16/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	·	·			
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	40	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	78	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	530	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	650	< 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	210	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	200	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	50	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	460	< 10

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12 Lab Sample Number

Your Order No: P4280JJ2513 12 Lab Sample Number		2319614	2319615	2319616	2319617	2319618		
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	16/06/2022	16/06/2022	16/06/2022	16/06/2022
Time Taken				None Supplied				
		Ē						
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

1001 Older No. F4280332313 12								
Lab Sample Number				2319614	2319615	2319616	2319617	2319618
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	16/06/2022	16/06/2022	16/06/2022	16/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12								
Lab Sample Number				2319619	2319620	2319621	2319622	2319623
Sample Reference				JBH6	JBH7	JBH8	JBH9	JWS2
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
рН	pH Units	N/A	ISO 17025	7.2	7.2	7.7	7.5	7.7
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	480	480	570	660	1300
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	2.8	1.5	26	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	2070	6350	25800	31600	51500
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	52	22	< 15	< 15	200
	moraco							
Hardness - Total	mgCaCO 3/I	1	ISO 17025	312	300	276	364	438
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Total Friends (mononyane)	1.5		<u> </u>	V 10	\ 10	V 10	\ 10	V 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Boron (dissolved)	μg/l	10	ISO 17025	29	53	34	33	250
Calcium (dissolved)	mg/l	0.012	ISO 17025	120	110	110	140	160
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3	3.6	2.8	3.6	12
					-		-	<u>-</u>
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15	0.7	0.19	0.49	0.81
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	3.5	5.3	7.2	3.9	3.5
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.3	1.1	0.7
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.2	1.2	1.9	2.1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	0.8
Zinc (dissolved)	µg/l	0.5	ISO 17025	4.4	3.9	4.6	4.8	8.1
,,								U.2

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Your Order No: P4280JJ2513 12								
Lab Sample Number				2319619	2319620	2319621	2319622	2319623
Sample Reference				JBH6	JBH7	JBH8	JBH9	JWS2
Sample Number Depth (m) Date Sampled				None Supplied				
				None Supplied				
				16/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	730	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	580	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	μg/l	10	NONE	1300	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	390	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	350	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH 1D AR #1 #2 MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	μg/l	10	NONE	750	< 10	< 10	< 10	< 10

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Lab Sample Number	2319619	2319620	2319621	2319622	2319623			
Sample Reference	JBH6	JBH7	JBH8	JBH9	JWS2			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	16/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOC-								
VOCs	ue n		ISO 17025					
Chloromethane	μg/l	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l		ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025 NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE ISO 1702E	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane Cis-1,2-dichloroethene	μg/I μg/I	1	ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Z,Z-Dichioropi opane Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene Styrene	μg/I	1	ISO 17025	< 1.0 < 1.0				
Tribromomethane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
								<u>.</u>

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

10ul Oldel No. P4280332313 12								
Lab Sample Number	2319619	2319620	2319621	2319622	2319623			
Sample Reference	JBH6	JBH7	JBH8	JBH9	JWS2			
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				16/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12								
Lab Sample Number	2319624	2319625	2319626	2319627	2319628			
Sample Reference	JWS3	BH05	BH10	BH11	BH12			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				None Supplied				
Date Sampled				17/06/2022	15/06/2022	15/06/2022	15/06/2022	15/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.3	7.5	7.4	7.8	7.5
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	900	530	600	550	680
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	1.1	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	13500	3120	2850	39200	9550
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	340	< 15	39	< 15	53
-	mgcaco		<u> </u>		<u> </u>		<u> </u>	
Hardness - Total	3/I	1	ISO 17025	442	267	289	292	402
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
(,)			<u>I</u>	1 10	1 10	1 20	1 20	120
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	0.49	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	0.83	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	0.34	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
20.120(g.ii)pary.ene				10101	10101	10101	1 0.02	10101
Total PAH Total FDA-16 DAHs	μg/l	0.16	ISO 17025	1.66	× 0.16	× 0.16	z 0.16	z 0.16
Total EPA-16 PAHs	F31.			1.66	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids	1	<i>4</i> =	T ***				1	
Boron (dissolved)	μg/l	10	ISO 17025	140	39	49	42	42
Calcium (dissolved)	mg/l	0.012	ISO 17025	160	100	110	110	150
Magnesium (dissolved)	mg/l	0.005	ISO 17025	9	2.6	2.9	3.3	4.3
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.78	0.61	0.31	0.59	< 0.15
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	3.2	1.9	5.6	8.1	5.1
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.4	< 0.2	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.2	< 0.2
Nickel (dissolved)	μg/l	0.05	ISO 17025	5.1	2	0.7	0.7	0.7
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
,	μg/l	0.5	ISO 17025					
Zinc (dissolved)	P9/ ·	5.5	3 1, 023	3	2.3	2.8	9.5	2.1

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Your Order No: P4280JJ2513 12								
Lab Sample Number				2319624	2319625	2319626	2319627	2319628
Sample Reference				JWS3	BH05	BH10	BH11	BH12
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				17/06/2022	15/06/2022	15/06/2022	15/06/2022	15/06/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	80	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	110	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	350	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	540	< 10	< 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	140	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	120	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	72	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	340	< 10	< 10

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Lab Sample Number				2319624	2319625	2319626	2319627	2319628
Sample Reference				JWS3	BH05	BH10	BH11	BH12
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				17/06/2022	15/06/2022	15/06/2022	15/06/2022	15/06/2022
Time Taken				None Supplied				
Time Taken	1	-		топе заррнеа	топе Заррнеа	топе заррпеа	попе Заррнеа	топе заррпеа
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
		ection	tion					
VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane 1,2-Dichloropropane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0		
1,1,1,2-Tetrachloroethane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
	μg/I	1	ISO 17025	< 1.0				
Ethylbenzene	μg/I	1	ISO 17025		< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0
p & m-Xylene Styrene	μg/I	1	ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Styrene Tribromomethane	μg/I μg/I	1	ISO 17025					
	μg/I	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	μg/I	1	ISO 17025	< 1.0		< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene Promohonzono	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene n-Propylhenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	_	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l		ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

1001 Older No. F4280332313 12								
Lab Sample Number				2319624	2319625	2319626	2319627	2319628
Sample Reference	JWS3 BH05 BH10		BH10	BH11	BH12			
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				17/06/2022	15/06/2022	15/06/2022	15/06/2022	15/06/2022
Time Taken	en			None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12					
Lab Sample Number				2319629	2319630
Sample Reference				BH13	BH14
Sample Number				None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied
Date Sampled				15/06/2022	15/06/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
General Inorganics					
pH	pH Units	N/A	ISO 17025	7.7	7.5
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	530	570
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	34400	31200
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	< 15	< 15
Hardness - Total	mgcaco 3/I	1	ISO 17025	247	290
Total Bhousis					
Total Phenols Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10
Speciated DAMs	•				
Speciated PAHs	μg/l	0.01	ISO 17025	z 0.01	< 0.01
Naphthalene Acapanhthylana	µg/l	0.01	ISO 17025	< 0.01 < 0.01	< 0.01
Acenaphthylene Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025		
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01
Total PAH					
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16
Heavy Metals / Metalloids			-		_
Boron (dissolved)	μg/l	10	ISO 17025	37	33
Calcium (dissolved)	mg/l	0.012	ISO 17025	95	110
Magnesium (dissolved)	mg/l	0.005	ISO 17025	2.5	2.7
	•				=
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15	< 0.15
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.5
Copper (dissolved)	μg/l	0.5	ISO 17025	2	5.1
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.5	1.2
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.4	2.9
			-		-

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Lab Sample Number				2319629	2319630
Sample Reference				BH13	BH14
Sample Number				None Supplied	None Supplied
Depth (m)	None Supplied	None Supplied			
Date Sampled				15/06/2022	15/06/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		

Monoaromatics & Oxygenates

Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10

TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

Lab Sample Number				2319629	2319630
Sample Reference				BH13	BH14
Sample Number				None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied
Date Sampled				15/06/2022	15/06/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		

VOCs

VOCs					
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0
1.2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0
	μg/l	1	ISO 17025	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
,	μg/l	1	ISO 17025		
,		1	ISO 17025		
		1	ISO 17025		
•		1	ISO 17025		_
1,3-Dichlorobenzene p-Isopropyltoluene 1,2-Dichlorobenzene 1,4-Dichlorobenzene		1 1 1	ISO 17025 ISO 17025 ISO 17025	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Your Order No: P4280JJ2513 12

10ui Oldei No. F4200332313 12					
Lab Sample Number				2319629	2319630
Sample Reference				BH13	BH14
Sample Number				None Supplied	None Supplied
Depth (m)	None Supplied	None Supplied			
Date Sampled				15/06/2022	15/06/2022
Time Taken				None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH05	None Supplied	W	2319625	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH05	None Supplied	W	2319625	bc	bc Ammoniacal Nitrogen as N in water I		С
BH05	None Supplied	W	2319625	bc	Ammonium as NH4 in water	L082-PL	С
BH05	None Supplied	W	2319625	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH05	None Supplied	W	2319625	bc	Volatile organic compounds in water	L073B-PL	b
BH05	None Supplied	W	2319625	bc	pH at 20oC in water (automated)	L099-PL	С
BH10	None Supplied	W	2319626	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH10	None Supplied	W	2319626	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
BH10	None Supplied	W	2319626	bc	Ammonium as NH4 in water	L082-PL	С
BH10	None Supplied	W	2319626	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH10	None Supplied	W	2319626	bc	Volatile organic compounds in water	L073B-PL	b
BH10 BH11	None Supplied None Supplied	W	2319626 2319627	bc bc	pH at 20oC in water (automated) BTEX and MTBE in water (Monoaromatics)	L099-PL L073B-PL	c b
BH11	None Supplied	W	2319627	bc	Ammoniacal Nitrogen as N in water	L073B-PL L082-PL	С
BH11	None Supplied	W	2319627	bc	Ammonium as NH4 in water	L082-PL	С
BH11	None Supplied	W	2319627	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH11	None Supplied	W	2319627	bc	Volatile organic compounds in water	L073B-PL	b
BH11	None Supplied	W	2319627	bc	pH at 20oC in water (automated)	L099-PL	С
BH12	None Supplied	W	2319628	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH12	None Supplied	W	2319628	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
BH12	None Supplied	W	2319628	bc	Ammonium as NH4 in water	L082-PL	С
BH12	None Supplied	W	2319628	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH12	None Supplied	W	2319628	bc	Volatile organic compounds in water	L073B-PL	b
BH12	None Supplied	W	2319628	bc	pH at 20oC in water (automated)	L099-PL	С
BH13	None Supplied	W	2319629	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH13	None Supplied	W	2319629	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
BH13	None Supplied	W	2319629	bc	Ammonium as NH4 in water	L082-PL	С
BH13	None Supplied	W	2319629	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH13	None Supplied	W	2319629	bc	Volatile organic compounds in water	L073B-PL	b
BH13	None Supplied	W	2319629	bc	pH at 20oC in water (automated)	L099-PL	С
BH14	None Supplied	W	2319630	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH14	None Supplied	W	2319630	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
BH14	None Supplied	W	2319630	bc	Ammonium as NH4 in water	L082-PL	С
BH14	None Supplied	W	2319630	bc	Electrical conductivity at 20oC of water	L031-PL	С
BH14	None Supplied	W	2319630	bc	Volatile organic compounds in water	L073B-PL	b
BH14	None Supplied	W	2319630	bc	pH at 20oC in water (automated)	L099-PL	C .
JBH1	None Supplied	W	2319614	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH1	None Supplied	W	2319614	bc	Ammoniacal Nitrogen as N in water	L082-PL	C -
JBH1	None Supplied	W	2319614	bc	Ammonium as NH4 in water	L082-PL	c
JBH1 JBH1	None Supplied None Supplied	W	2319614	bc bc	Electrical conductivity at 20oC of water Volatile organic compounds in water	L031-PL L073B-PL	c b
JBH1	None Supplied	W	2319614	bc	pH at 20oC in water (automated)	L073B-PL L099-PL	C
JBH2	None Supplied	W	2319615	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH2	None Supplied	W	2319615	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH2	None Supplied	W	2319615	bc	Ammonium as NH4 in water	L082-PL	С
JBH2	None Supplied	W	2319615	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH2	None Supplied	W	2319615	bc	Volatile organic compounds in water	L073B-PL	b
JBH2	None Supplied	W	2319615	bc	pH at 20oC in water (automated)	L099-PL	С
JBH3	None Supplied	W	2319616	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH3	None Supplied	W	2319616	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH3	None Supplied	W	2319616	bc	Ammonium as NH4 in water	L082-PL	С
JBH3	None Supplied	W	2319616	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH3	None Supplied	W	2319616	bc	Volatile organic compounds in water	L073B-PL	b
JBH3	None Supplied	W	2319616	bc	pH at 20oC in water (automated)	L099-PL	С
JBH4	None Supplied	W	2319617	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH4	None Supplied	W	2319617	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH4	None Supplied	W	2319617	bc	Ammonium as NH4 in water	L082-PL	С
JBH4	None Supplied	W	2319617	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH4	None Supplied	W	2319617	bc	Volatile organic compounds in water	L073B-PL	b

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH05	None Supplied	W	2319625	bc BTEX and MTBE in water (Monoaromatics) L		L073B-PL	b
JBH4	None Supplied	W	2319617	bc	pH at 20oC in water (automated)	L099-PL	С
JBH5	None Supplied	W	2319618	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH5	None Supplied	W	2319618	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH5	None Supplied	W	2319618	bc	Ammonium as NH4 in water	L082-PL	С
JBH5	None Supplied	W	2319618	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH5	None Supplied	W	2319618	bc	Volatile organic compounds in water	L073B-PL	b
JBH5	None Supplied	W	2319618	bc	pH at 20oC in water (automated)	L099-PL	С
JBH6	None Supplied	W	2319619	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
ЈВН6	None Supplied	W	2319619	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
ЈВН6	None Supplied	W	2319619	bc	Ammonium as NH4 in water	L082-PL	С
ЈВН6	None Supplied	W	2319619	bc	Electrical conductivity at 20oC of water	L031-PL	С
ЈВН6	None Supplied	W	2319619	bc	Volatile organic compounds in water	L073B-PL	b
JBH6	None Supplied	W	2319619	bc	pH at 20oC in water (automated)	L099-PL	С
JBH7	None Supplied	W	2319620	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH7	None Supplied	W	2319620	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH7	None Supplied	W	2319620	bc	Ammonium as NH4 in water	L082-PL	С
JBH7	None Supplied	W	2319620	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH7	None Supplied	W	2319620	bc	bc Volatile organic compounds in water		b
JBH7	None Supplied	W	2319620	bc	pH at 20oC in water (automated)	L099-PL	С
JBH8	None Supplied	W	2319621	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH8	None Supplied	W	2319621	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH8	None Supplied	W	2319621	bc	Ammonium as NH4 in water	L082-PL	С
JBH8	None Supplied	W	2319621	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH8	None Supplied	W	2319621	bc	Volatile organic compounds in water	L073B-PL	b
JBH8	None Supplied	W	2319621	bc	pH at 20oC in water (automated)	L099-PL	С
JBH9	None Supplied	W	2319622	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH9	None Supplied	W	2319622	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JBH9	None Supplied	W	2319622	bc	Ammonium as NH4 in water	L082-PL	С
JBH9	None Supplied	W	2319622	bc	Electrical conductivity at 20oC of water	L031-PL	С
JBH9	None Supplied	W	2319622	bc	Volatile organic compounds in water	L073B-PL	b
JBH9	None Supplied	W	2319622	bc	pH at 20oC in water (automated)	L099-PL	С
JWS2	None Supplied	W	2319623	bc	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JWS2	None Supplied	W	2319623	bc	Ammoniacal Nitrogen as N in water	L082-PL	С
JWS2	None Supplied	W	2319623	bc	Ammonium as NH4 in water	L082-PL	С
JWS2	None Supplied	W	2319623	bc	Electrical conductivity at 20oC of water	L031-PL	С
JWS2	None Supplied	W	2319623	bc	Volatile organic compounds in water	L073B-PL	b
JWS2	None Supplied	W	2319623	bc	pH at 20oC in water (automated)	L099-PL	С
JWS3	None Supplied	W	2319624	bc BTEX and MTBE in water (Monoaromatics)		L073B-PL	b
JWS3	None Supplied	W	2319624	bc Ammoniacal Nitrogen as N in water		L082-PL	С
JWS3	None Supplied	W	2319624	bc	bc Ammonium as NH4 in water		С
JWS3	None Supplied	W	2319624	bc	bc Electrical conductivity at 20oC of water		С
JWS3	None Supplied	W	2319624	bc	Volatile organic compounds in water	L073B-PL	b
JWS3	None Supplied	W	2319624	bc	pH at 20oC in water (automated)	L099-PL	С

Shaw Carter Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park **UB11 1BD**

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 22-74656

Replaces Analytical Report Number: 22-74656, issue no. 1 Client sampling date amended.

Project / Site name: Phase 10, Heyford Park, Camp Road, Samples received on: 29/07/2022

OX25 5HD

Your job number: JJ2513 Samples instructed on/ 29/07/2022

Analysis started on:

P4280JJ2513 15 Your order number: Analysis completed by: 17/08/2022

Report Issue Number: 2 Report issued on: 17/08/2022

Samples Analysed: 15 water samples

Signed:

Joanna Wawrzeczko Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280332513 15

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369591	2369592	2369593	2369594	2369595
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Total Phenols Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
rotal Friends (Honoriyant)	F3/1		-30 1, 023	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.28	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.5	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.71	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	1.49	< 0.16
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369591	2369592	2369593	2369594	2369595
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS 1D AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) _{HS+EH_1D_AL_#1_#2_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TRU CAC Asserbis CF C7	,/I	-	ISO 17025	. 10		. 10	. 10	. 10
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR} TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR} TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	μg/I μg/I	1	ISO 17025	< 1.0 < 1.0				
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR} TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	μg/I	10	NONE	< 1.0	< 1.0	< 1.0	200	< 1.0
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	μg/l	10	NONE	< 10	< 10	< 10	280	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 FH 1D AR #1 #2 MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	480	< 10
	•				•			
VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane Cis-1,2-dichloroethene	μg/I	1	ISO 17025	< 1.0 < 1.0				
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane Trichloroethene	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0				
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene Styrene	μg/I μg/I	1	ISO 17025	< 1.0 < 1.0				
Tribromomethane	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
THE OHIGHERIANE	P9/1		100 1/025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

1041 01401 11011 1200002020								
Lab Sample Number				2369591	2369592	2369593	2369594	2369595
Sample Reference				JBH1	JBH2	JBH3	JBH4	JBH5
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

MTBE (Methyl Tertiary Butyl Ether)

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369596	2369597	2369598	2369599	2369600
Sample Reference				JBH6	JBH7	JBH8	JBH9	BH05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

μg/l

ISO 17025

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369596	2369597	2369598	2369599	2369600
Sample Reference				JBH6	JBH7	JBH8	JBH9	BH05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken	_			None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 _{HS 1D AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH 1D AL #1 #2 MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) _{HS+EH_1D_AL_#1_#2_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	390	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	μg/l	10	NONE	190	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	μg/l	10	NONE NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS} TPH-CWG - Aromatic (C5 - C35) _{HS+EH_1D_AR_#1_#2_MS}	μg/l μg/l	10	NONE	< 10 580	< 10	< 10	< 10	< 10
TFTI-CVVG - ATOMATIC (CS - CSS) HS+EH_ID_AR_#1_#2_MS	P9/1	10	NONE	580	< 10	< 10	< 10	< 10
VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene Benzene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/I	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene Tribrememethane	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	P9/1		150 1/025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Lab Sample Number				2369596	2369597	2369598	2369599	2369600
Sample Reference				JBH6	JBH7	JBH8	JBH9	BH05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369601	2369602	2369603	2369604	2369605
Sample Reference				BH10	BH11	BH12	BH13	BH14
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Total Phenois		10	100 17025					
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Monoaromatics & Oxygenates	•							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Your Order No: P4280JJ2513 15								
Lab Sample Number				2369601	2369602	2369603	2369604	2369605
Sample Reference				BH10	BH11	BH12	BH13	BH14
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		5						
•	//	1	ISO 17025	. 1.0	. 1.0	. 1.0	. 1.0	. 1.0
TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL} TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0 < 1.0				
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL} TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL} #1_#2_MS	µg/l	10	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C10 EH_1D_AL_#1_#2_MS TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C10 - C21 EH_1D_AL_#1_#2_MS TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_#1_#2_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) _{HS+EH_1D_AL_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
H (1.0-		l	V 10	V 10	< 10	V 10	V 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C3 - C7 HS_1D_AR TPH-CWG - Aromatic >C7 - C8 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	96	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	93	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_#1_#2_MS	μg/l	10	NONE	14	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) _{HS+EH_1D_AR_#1_#2_MS}	μg/l	10	NONE	200	< 10	< 10	< 10	< 10
	-							
VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane 1.2-Dichloropropane	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0
Dibromomethane Promodichleromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	_							

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Your Order No: P4280JJ2513 15

Tour Order No: P4280JJ2513 15								
Lab Sample Number				2369601	2369602	2369603	2369604	2369605
Sample Reference				BH10	BH11	BH12	BH13	BH14
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Sample Deviation Report

Analytical Report Number: 22-74656

Project / Site name: Phase 10, Heyford Park, Camp Road, OX25 5HD

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH05	None Supplied	W	2369600	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH05	None Supplied	W	2369600	b	Volatile organic compounds in water	L073B-PL	b
BH10	None Supplied	W	2369601	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH10	None Supplied	W	2369601	b	Volatile organic compounds in water	L073B-PL	b
BH11	None Supplied	W	2369602	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH11	None Supplied	W	2369602	b	Volatile organic compounds in water	L073B-PL	b
BH12	None Supplied	W	2369603	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH12	None Supplied	W	2369603	b	Volatile organic compounds in water	L073B-PL	b
BH13	None Supplied	W	2369604	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH13	None Supplied	W	2369604	b	Volatile organic compounds in water	L073B-PL	b
BH14	None Supplied	W	2369605	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
BH14	None Supplied	W	2369605	b	Volatile organic compounds in water	L073B-PL	b
JBH1	None Supplied	W	2369591	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH1	None Supplied	W	2369591	b	Volatile organic compounds in water	L073B-PL	b
JBH2	None Supplied	W	2369592	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH2	None Supplied	W	2369592	b	Volatile organic compounds in water	L073B-PL	b
JBH3	None Supplied	W	2369593	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH3	None Supplied	W	2369593	b	Volatile organic compounds in water	L073B-PL	b
JBH4	None Supplied	W	2369594	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH4	None Supplied	W	2369594	b	Volatile organic compounds in water	L073B-PL	b
JBH5	None Supplied	W	2369595	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH5	None Supplied	W	2369595	b	Volatile organic compounds in water	L073B-PL	b
JBH6	None Supplied	W	2369596	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH6	None Supplied	W	2369596	b	Volatile organic compounds in water	L073B-PL	b
JBH7	None Supplied	W	2369597	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH7	None Supplied	W	2369597	b	Volatile organic compounds in water	L073B-PL	b
JBH8	None Supplied	W	2369598	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH8	None Supplied	W	2369598	b	Volatile organic compounds in water	L073B-PL	b
JBH9	None Supplied	W	2369599	b	BTEX and MTBE in water (Monoaromatics)	L073B-PL	b
JBH9	None Supplied	W	2369599	b	Volatile organic compounds in water	L073B-PL	b

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

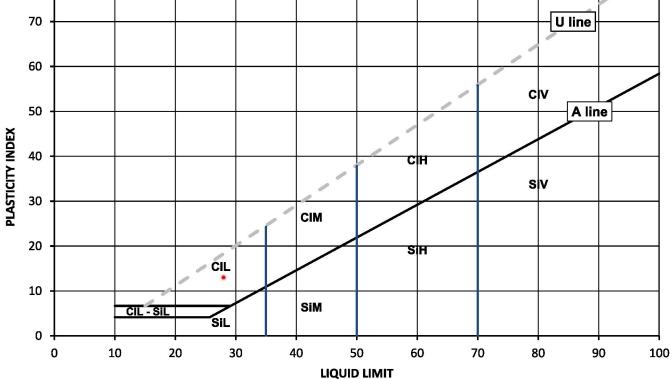
Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2304795 JWS1 Hole No.: Not Given


Sample Reference: Light brown slightly gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

Deput rop [m].	1.00
Depth Base [m]:	Not Given
Sample Type:	D

Donth Top [m]: 1.00

	eived Water ent [W] %	Liquid Lir [WL] %		Plastic [Wp	Plas	ticity Index [lp] %	· ·	% Passing 42 BS Test Sid	
	23	28		15		13		98	
80 -			1						
70 -							111:		
70 -							U line		

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

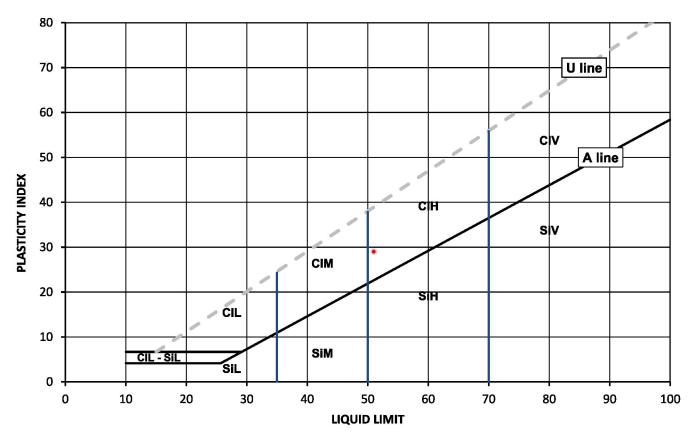
Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2304796 JWS3 Hole No.:


Sample Reference: Not Given Sample Description: Light brown slightly sandy CLAY

Sample Preparation: Tested in natural condition Depth Top [m]: 2.50

Depth Base [m]: Not Given

Sample Type: D

As Received Water Content [W] %	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
	[WL] %	[Wp] %	[lp] %	BS Test Sieve
21	51	22	29	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Page 1 of 1

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

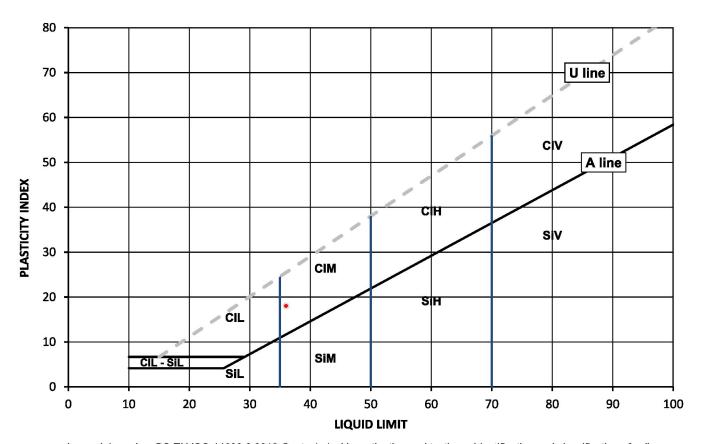
Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2304797 JWS4 Hole No.: Sample Reference: Not Given


Sample Description: Light brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]:	1.50
Depth Base [m]:	Not Given

Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
19	36	18	18	61

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Depth Top [m]: 0.50

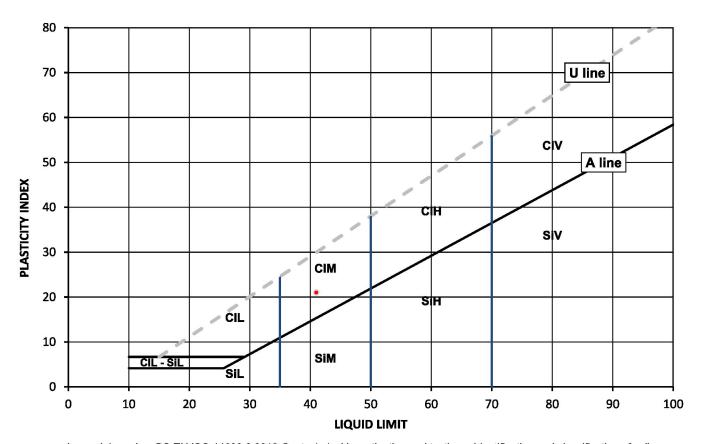
Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2304798 JWS5 Hole No.: Sample Reference: Not Given

Sample Description: **Brown sandy CLAY**

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
16	41	20	21	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Date Reported: 23/06/2022

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

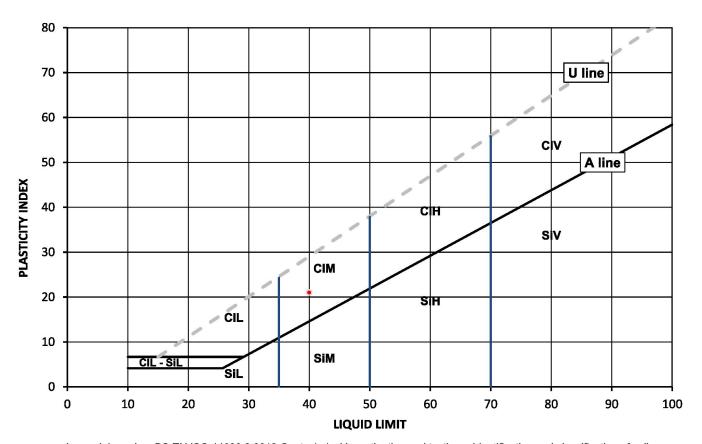
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022

Test Results:

Laboratory Reference: 2304799 JBH1 Hole No.:


Sample Reference: Not Given Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

ate Received:	30/05/2022
Date Tested:	14/06/2022
Sampled By:	Not Given

Depth Top [m]: 0.75 Depth Base [m]: Not Given Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
19	40	19	21	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay Low below 35 L Si Silt М Medium 35 to 50 Н High 50 to 70 Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Depth Top [m]: 1.50

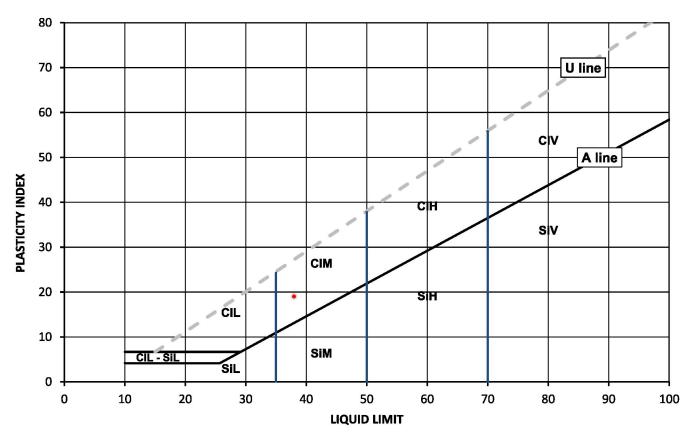
Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2304800 JBH2 Hole No.:

Sample Reference: Not Given Sample Description: Light grey slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm				
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve				
29	38	19	19	96				

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513

Job Number: 22-63317 Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

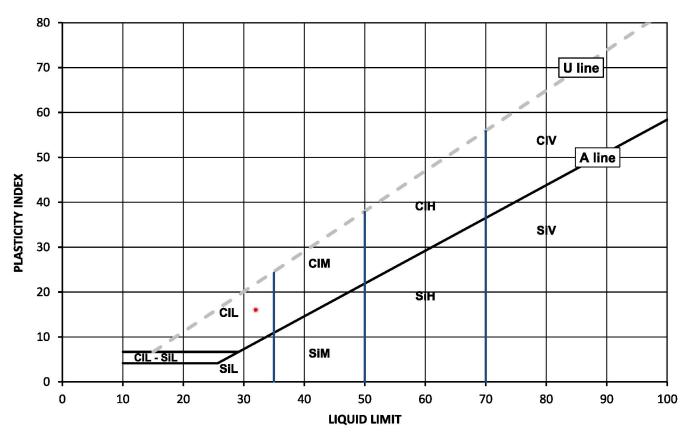
Sampled By: Not Given

Depth Top [m]: 1.50

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2304801 Hole No.: JBH3

Sample Reference: Not Given

Sample Description: Light grey gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm				
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve				
16	32	16	16	64				

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 23/06/2022

Page 1 of 1

_

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

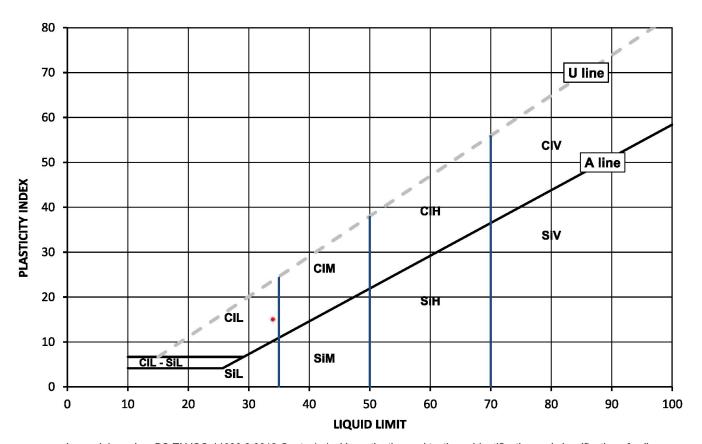
Sampled By: Not Given

Depth Top [m]: 1.50

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2304804 Hole No.: JBH8

Sample Reference: Not Given

Sample Description: Light brown gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm				
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve				
4.8	34	19	15	44				

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

1 of 1 Date Reported: 23/06/2022

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Page 1 of 1

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

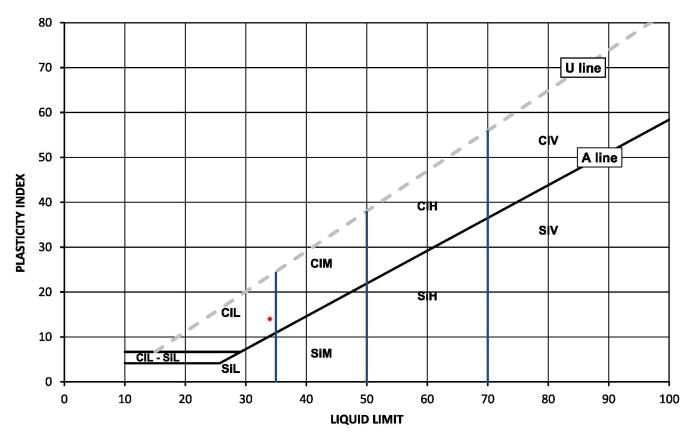
Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022 Sampled By: Not Given

Sampled by. Not Given

Test Results:

Laboratory Reference: 2304805 Hole No.: JBH9


Sample Reference: Not Given
Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]: 1.00 Depth Base [m]: Not Given

Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	34	20	14	79

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 23/06/2022 GF 236.12

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Depth Top [m]: 0.50

Depth Base [m]: 1.50

Sample Type: D

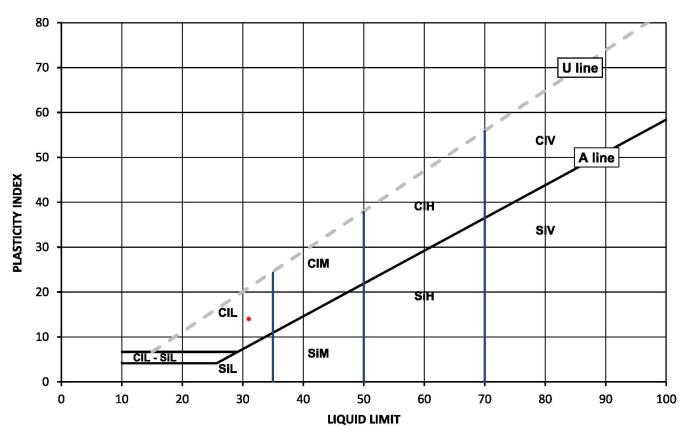
Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 16/06/2022

Sampled By: Not Given

Test Results:

Sample Reference:


Laboratory Reference: 2309417 WS3 Hole No.:

Not Given

Sample Description: Light brown very gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm				
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve				
2.6	31	17	14	46				

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 23/06/2022**

GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317 Date Sampled: 25/05/2022 Date Received: 30/05/2022

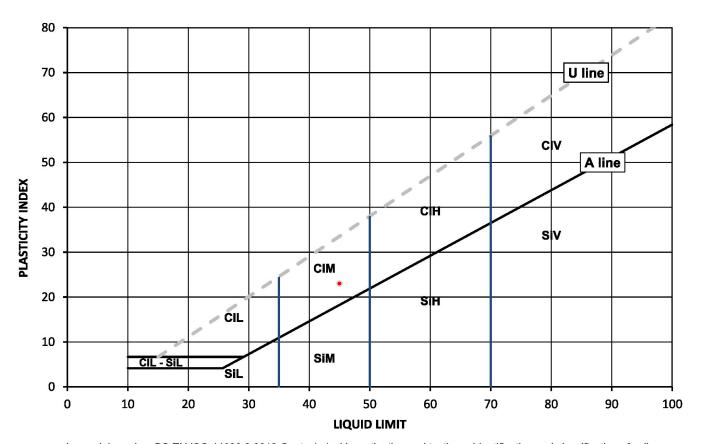
Date Tested: 22/06/2022

Sampled By: Not Given

Depth Top [m]: 0.50

Sample Type: B

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2317245 JWS2 Hole No.: Not Given

Sample Reference: Sample Description: Brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm			
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve			
14	45	22	23	82			

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 23/06/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 236.12

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client:

Contact:

Jomas Associates Ltd

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05 - 25/05/2022

Date Received: 30/05/2022

Date Tested: 14/06 - 22/06/2022

Sampled By: Not Given

Client Address:

Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD

Shaw Carter

Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

Site Address:

			Sample	,				Content 7-2 [W]	tent 892-2		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Coni BS 1377-2 [Water Content BS EN ISO 17892- [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2304799	JBH1	Not Given	0.75	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	19		97	40	19	21					
2304800	JBH2	Not Given	1.50	Not Given	D	Light grey slightly gravelly sandy CLAY	Atterberg 4 Point	29		96	38	19	19					
2304801	JBH3	Not Given	1.50	Not Given	D	Light grey gravelly very sandy CLAY	Atterberg 4 Point	16		64	32	16	16					
2304804	JBH8	Not Given	1.50	Not Given	D	Light brown gravelly very sandy CLAY	Atterberg 4 Point	4.8		44	34	19	15					
2304805	JBH9	Not Given	1.00	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	20		79	34	20	14					
2304795	JWS1	Not Given	1.00	Not Given	D	Light brown slightly gravelly very sandy CLAY	Atterberg 4 Point	23		98	28	15	13					
2317245	JWS2	Not Given	0.50	Not Given	В	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	14		82	45	22	23					
2304796	JWS3	Not Given	2.50	Not Given	D	Light brown slightly sandy CLAY	Atterberg 4 Point	21		100	51	22	29					
2304797	JWS4	Not Given	1.50	Not Given	D	Light brown gravelly sandy CLAY	Atterberg 4 Point	19		61	36	18	18					
2304798	JWS5	Not Given	0.50	Not Given	D	Brown sandy CLAY	Atterberg 4 Point	16		100	41	20	21					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client:

Client Address:

Jomas Associates Ltd

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022

Date Received: 30/05/2022 Date Tested: 16/06/2022

Sampled By: Not Given

Shaw Carter Contact:

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Stockley Park, UB11 1BD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Lakeside House, 1 Furzeground Way,

Test results

Toot Toodito																		
			Sample	e				w]	tent 892-2		Atte	rberg			Density		**	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks are		Water Content BS EN ISO 17892-2 [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2309417	WS3	Not Given	0.50	1.50	D	Light brown very gravelly sandy CLAY	Atterberg 4 Point	2.6		46	31	17	14					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05 - 25/05/2022

Date Received: 30/05/2022

Date Tested: 14/06 - 22/06/2022

Sampled By: Not Given

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2304799	JBH1	Not Given	0.75	Not Given	D	Brown slightly gravelly sandy CLAY		19	Sample was quartered, oven dried at 109 °C		
2304800	JBH2	Not Given	1.50	Not Given	D	Light grey slightly gravelly sandy CLAY		29	Sample was quartered, oven dried at 109 °C		
2304801	ЈВН3	Not Given	1.50	Not Given	D	Light grey gravelly very sandy CLAY		16	Sample was quartered, oven dried at 109 °C		
2304804	JBH8	Not Given	1.50	Not Given	D	Light brown gravelly very sandy CLAY		4.8	Sample was whole tested, oven dried at 109 °C		
2304805	ЈВН9	Not Given	1.00	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY		20	Sample was quartered, oven dried at 109 °C		
2304795	JWS1	Not Given	1.00	Not Given	D	Light brown slightly gravelly very sandy CLAY		23	Sample was quartered, oven dried at 109 °C		
2317245	JWS2	Not Given	0.50	Not Given	В	Brown slightly gravelly slightly sandy CLAY		14	Sample was quartered, oven dried at °C		
2304796	JWS3	Not Given	2.50	Not Given	D	Light brown slightly sandy CLAY		21	Sample was quartered, oven dried at 109 °C		
2304797	JWS4	Not Given	1.50	Not Given	D	Light brown gravelly sandy CLAY		19	Sample was whole tested, oven dried at 109 °C		
2304798	JWS5	Not Given	0.50	Not Given	D	Brown sandy CLAY		16	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Date Reported: 23/06/2022

GF 099.16

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: JJ2513

Sampled By: Not Given

Job Number: 22-63317 Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 16/06/2022

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Shaw Carter Contact:

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2309417	WS3	Not Given	0.50	1.50	D	Light brown very gravelly sandy CLAY		2.6	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 23/06/2022

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

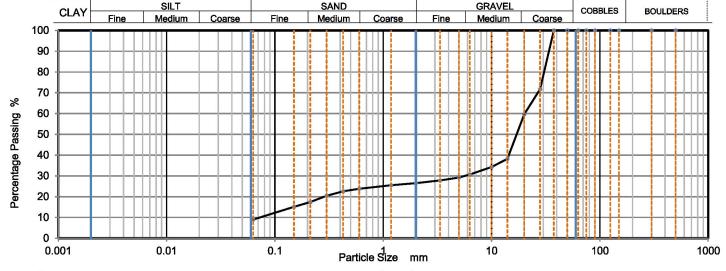
Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Test Results:

Sample Description:

Laboratory Reference: 2304802 JBH5 Hole No.: Sample Reference: Not Given


Brown sandy clayey GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sampled By: Not Given Depth Top [m]: 0.75

Depth Base [m]: Not Given

Sample Type: D

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	72		
20	60		
14	38		
10	34		
6.3	31		
5	29		
3.35	28		
2	27	1	
1.18	26		
0.6	24	1	
0.425	23	1	
0.3	20	1	
0.212	17	Ĭ	
0.15	15	7	
		-1	

% dry mass
0
74
17
10

Grading Analysis	5	
D100	mm	37.5
D60	mm	20.2
D30	mm	5.66
D10	mm	0.0639
Uniformity Coefficient		320
Curvature Coefficient		25

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

10 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

0.063

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 23/06/2022

Page 1 of 1

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

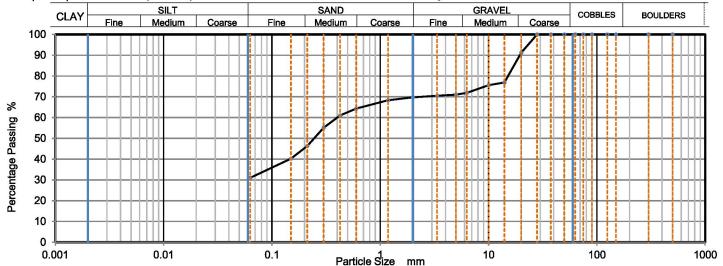
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63317

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference:2304803Depth Top [m]: 1.00Hole No.:JBH6Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brown very gravelly very clayey SAND

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	91		
14	77		
10	76		
6.3	72		
5	71		
3.35	71	1	
2	70	1	
1.18	68		
0.6	64	1	
0.425	61	1	
0.3	55	1	
0.212	46	Ĭ	
0.15	40	7	
0.063	32	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	30
Sand	38
Fines <0.063mm	31

Grading Analysis		
D100	mm	28
D60	mm	0.401
D30	mm	
D10	mm	
Uniformity Coefficient		> 6.4
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 23/06/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

Plastic Limit

[Wp]%

17

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

41

Client Reference: JJ2513 Job Number: 22-63391

Depth Top [m]: 1.75

Sample Type: D

[lp]%

24

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022 Sampled By: Not Given

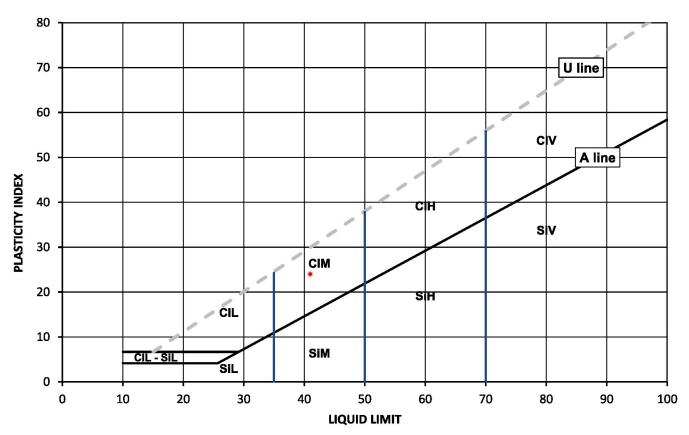
Test Results:

Laboratory Reference: 2305195 Hole No.: JTP7

As Received Water

Content [W] %

23


Sample Reference: Not Given
Sample Description: Yellowish brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Plasticity Index	% Passing 425µm

BS Test Sieve

70

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior
Reporting Spec
for and on beh

Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391 Date Sampled: 25/05/2022

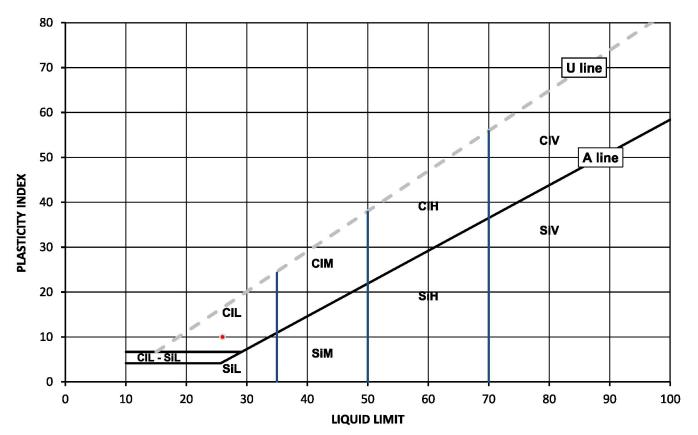
Depth Top [m]: 2.50

Sample Type: D

Depth Base [m]: Not Given

Date Received: 30/05/2022 Date Tested: 14/06/2022 Sampled By: Not Given

Test Results:


Laboratory Reference: 2305196 Hole No.: JTP7

Sample Reference: Not Given

Sample Description: Light brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
17	26	16	10	71

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

of 1 Date Reported: 20/06/2022

ed: 20/06/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

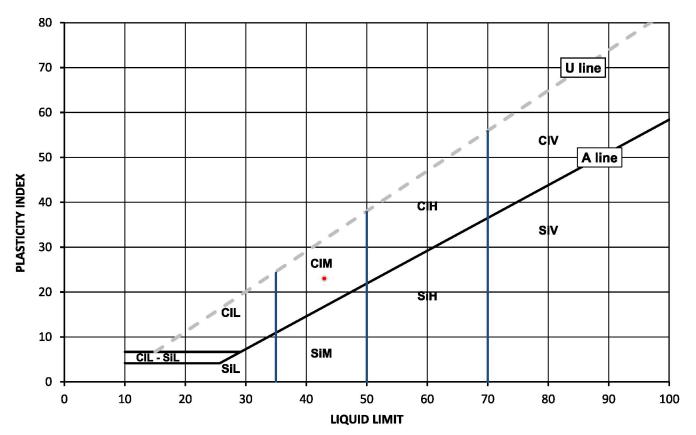
Depth Top [m]: 1.00

Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022 Sampled By: Not Given


Test Results:

Laboratory Reference: 2305197 JTP10 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
17	43	20	23	88

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

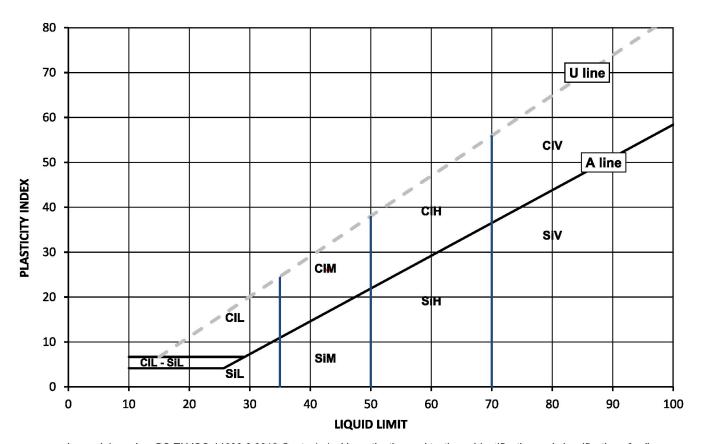
Sampled By: Not Given

Depth Top [m]: 2.50

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2305199 JTP10 Hole No.:

Sample Reference: Not Given

Sample Description: Yellowish brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
16	43	17	26	96

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Depth Top [m]: 1.75

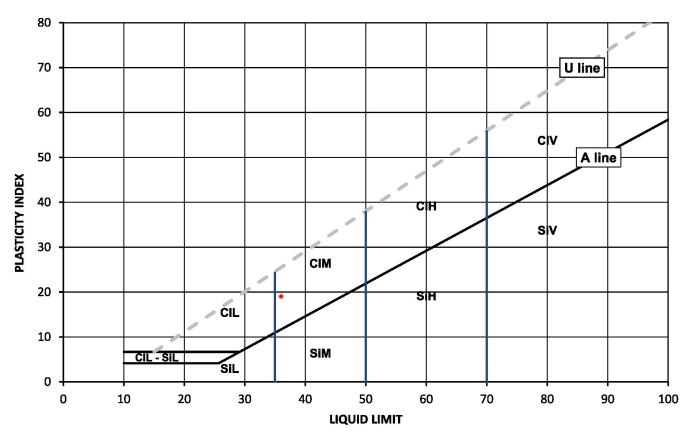
Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

Sampled By: Not Given


Test Results:

Laboratory Reference: 2305203 JTP14 Hole No.: Sample Reference: Not Given

Sample Description: Yellowish brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
17	36	17	19	62

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 20/06/2022**

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Depth Top [m]: 3.00

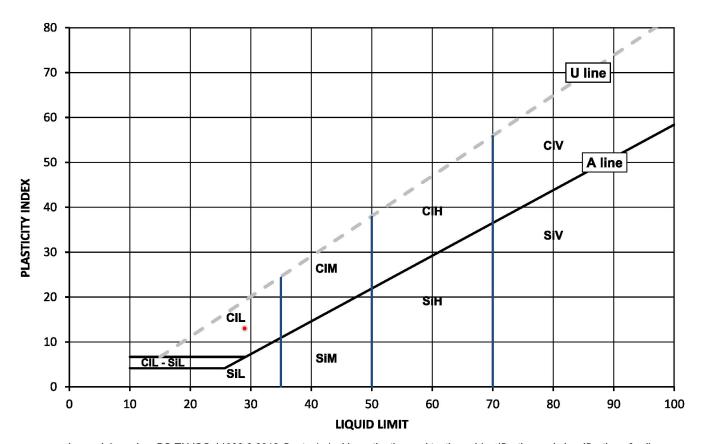
Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Test Results:


Laboratory Reference: 2305204 JTP14 Hole No.:

Sample Reference: Not Given

Sample Description: Light brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
19	29	16	13	88

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Reporting Specialist

Monika Siewior

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513

Job Number: 22-63391 Date Sampled: 25/05/2022 Date Received: 30/05/2022

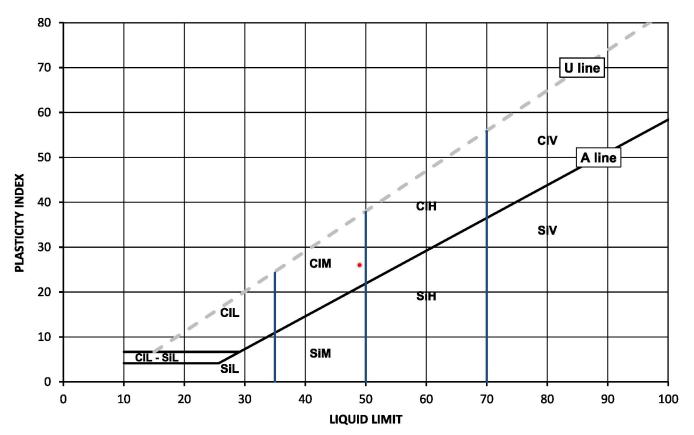
Date Tested: 14/06/2022 Sampled By: Not Given

Depth Top [m]: 2.50

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2305207 JTP16 Hole No.:

Sample Reference: Not Given

Sample Description: Light brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
24	49	23	26	98

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

Plastic Limit

[Wp]%

15

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: **Shaw Carter**

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

26

Client Reference: JJ2513 Job Number: 22-63391

Depth Top [m]: 1.75

Sample Type: D

Plasti

11

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022

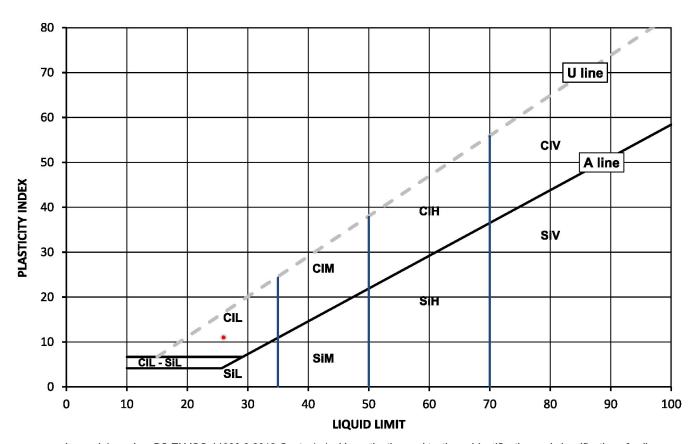
Sampled By: Not Given

Test Results:

Laboratory Reference: 2305208 JSTP1 Hole No.: Sample Reference: Not Given

As Received Water

Content [W] %


22

Sample Description: Light brown very sandy CLAY

Sample Preparation: Tested in natural condition

icity Index	% Passing 425µm
lp 1 %	BS Test Sieve

100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513

Job Number: 22-63391 Date Sampled: 25/05/2022 Date Received: 30/05/2022

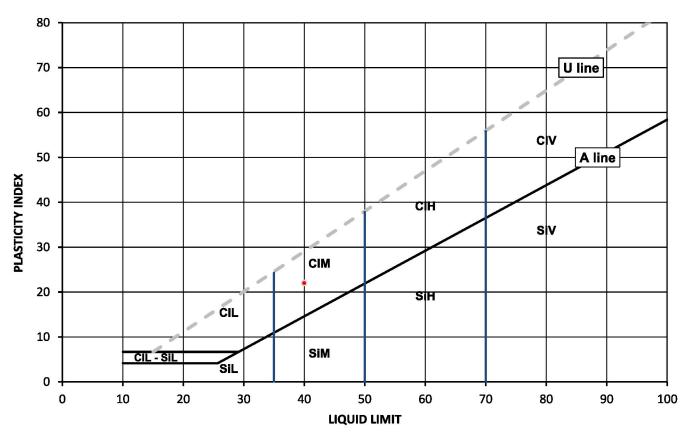
Date Tested: 14/06/2022 Sampled By: Not Given

- 1 - 14

Test Results:

Laboratory Reference: 2305209

Hole No.: JSTP2


Sample Reference: Not Given

Sample Type: D

Sample Description: Yellowish brown slightly gravelly sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
23	40	18	22	82

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Low below 35 Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client:

Client Address:

Jomas Associates Ltd

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391 Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Test results

			Sample	•				Content 7-2 [W]	ontent 17892-2 1		Atte	rberg			Density		*	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Conf BS 1377-2 [O O ₹	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2305208	JSTP1	Not Given	1.75	Not Given	D	Light brown very sandy CLAY	Atterberg 4 Point	22		100	26	15	11					
2305209	JSTP2	Not Given	2.00	Not Given	D	Yellowish brown slightly gravelly sandy CLAY	Atterberg 4 Point	23		82	40	18	22					
2305197	JTP10	Not Given	1.00	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	17		88	43	20	23					
2305199	JTP10	Not Given	2.50	Not Given	D	Yellowish brown slightly gravelly sandy CLAY	Atterberg 4 Point	16		96	43	17	26					
2305203	JTP14	Not Given	1.75	Not Given	D	Yellowish brown gravelly sandy CLAY	Atterberg 4 Point	17		62	36	17	19					
2305204	JTP14	Not Given	3.00	Not Given	D	Light brown slightly gravelly very sandy CLAY	Atterberg 4 Point	19		88	29	16	13					
2305207	JTP16	Not Given	2.50	Not Given	D	Light brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	24		98	49	23	26					
2305195	JTP7	Not Given	1.75	Not Given	D	Yellowish brown slightly gravelly sandy CLAY	Atterberg 4 Point	23		70	41	17	24					
2305196	JTP7	Not Given	2.50	Not Given	D	Light brown slightly gravelly very sandy CLAY	Atterberg 4 Point	17		71	26	16	10					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

e 1 of 1 Date Reported: 20/06/2022

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: JJ2513

Date Received: 30/05/2022

Date Tested: 14/06/2022 Sampled By: Not Given

Job Number: 22-63391 Date Sampled: 25/05/2022

Shaw Carter Contact:

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Stockley Park, UB11 1BD

Jomas Associates Ltd

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Lakeside House, 1 Furzeground Way,

Test results

4041 Client:

Client Address:

	Sample										
Laboratory Reference	Hole No.	Reference Top Base		wc %	Sample preparation / Oven temperature at the time of testing						
2305208	JSTP1	Not Given	1.75	M Not Given	D	Light brown very sandy CLAY		22	Sample was quartered, oven dried at 109 °C		
2305209	JSTP2	Not Given	2.00	Not Given	D	Yellowish brown slightly gravelly sandy CLAY		23	Sample was quartered, oven dried at 109 °C		
2305197	JTP10	Not Given	1.00	Not Given	D	Brown slightly gravelly sandy CLAY		17	Sample was quartered, oven dried at 109 °C		
2305199	JTP10	Not Given	2.50	Not Given	D	Yellowish brown slightly gravelly sandy CLAY		16	Sample was quartered, oven dried at 109 °C		
2305203	JTP14	Not Given	1.75	Not Given	D	Yellowish brown gravelly sandy CLAY		17	Sample was quartered, oven dried at 109 °C		
2305204	JTP14	Not Given	3.00	Not Given	D	Light brown slightly gravelly very sandy CLAY		19	Sample was quartered, oven dried at 109 °C		
2305207	JTP16	Not Given	2.50	Not Given	D	Light brown slightly gravelly slightly sandy CLAY		24	Sample was quartered, oven dried at 109 °C		
2305195	JTP7	Not Given	1.75	Not Given	D	Yellowish brown slightly gravelly sandy CLAY		23	Sample was quartered, oven dried at 109 °C		
2305196	JTP7	Not Given	2.50	Not Given	D	Light brown slightly gravelly very sandy CLAY		17	Sample was quartered, oven dried at 109 °C		

Comments:

Signed: Page 1 of 1

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

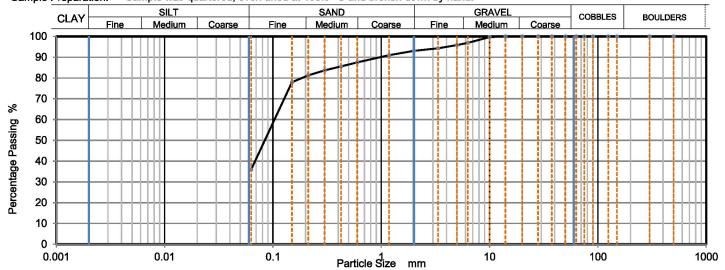
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022


Date Tested: 14/06/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2305191 Depth Top [m]: 1.50 JTP2 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown slightly gravelly very clayey SAND

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	97		
5	96		
3.35	94		
2	93	1	
1.18	91		
0.6	88	1	
0.425	86	1	
0.3	84	1	
0.212	81		
0.15	78	7	
0.063	37	7	

Sample Proportions	% dry mass			
Very coarse	0			
Gravel	7			
Sand	56			
Fines <0.063mm	37			

Grading Analysis		
D100	mm	14
D60	mm	0.103
D30	mm	
D10	mm	
Uniformity Coefficient		> 1.6
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Signed: Page 1 of 1

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

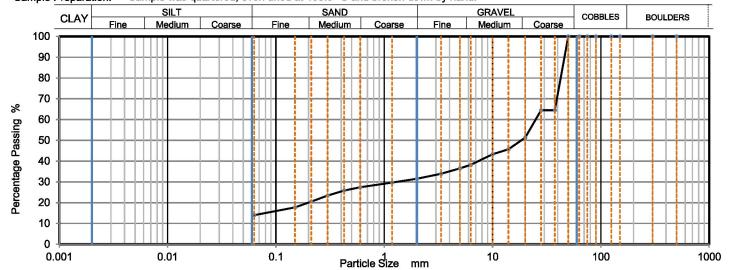
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference: 2305192 Depth Top [m]: 1.50 JTP3 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Ciny	·lna	II Cadima	ntetlen
Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	65		
28	65		
20	51		
14	46		
10	43		
6.3	38		
5	37		
3.35	34		
2	32	1	
1.18	30		
0.6	27	1	
0.425	26	7	
0.3	23	7	
0.212	21	Ĩ	
0.15	18		
0.063	14		

Sample Proportions	% dry mass
Very coarse	0
Gravel	68
Sand	17
Fines <0.063mm	14

Grading Analysis		
D100	mm	50
D60	mm	24.9
D30	mm	1.27
D10	mm	
Uniformity Coefficient		> 400
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

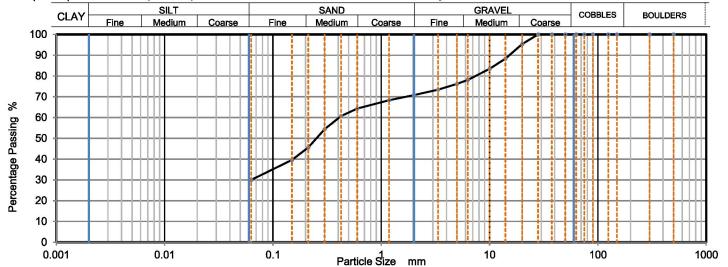
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference:2305193Depth Top [m]: 0.50Hole No.:JTP4Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Brown very gravelly very clayey SAND

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedime	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
500	100			
300	100			
150	100			
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	95			
14	88			
10	83			
6.3	78			
5	76			
3.35	73			
2	71	1		
1.18	68			
0.6	64	1		
0.425	61	1		
0.3	54			
0.212	46			
0.15	40			
0.063	30			

Sample Proportions	% dry mass
Very coarse	0
Gravel	29
Sand	41
Fines <0.063mm	30

Grading Analysis		
D100	mm	28
D60	mm	0.408
D30	mm	
D10	mm	
Uniformity Coefficient		> 6.5
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Re

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

1 of 1 Date Reported: 20/06/2022 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

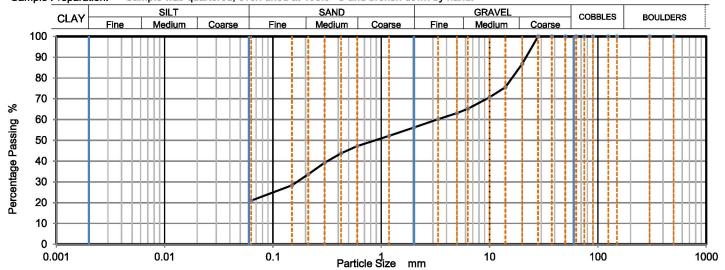
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513

Job Number: 22-63391 Date Sampled: 25/05/2022 Date Received: 30/05/2022


Date Tested: 14/06/2022 Sampled By: Not Given

Test Results:

Laboratory Reference:2305194Depth Top [m]: 0.75Hole No.:JTP6Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown clayey very sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedime	ntation
Particle Size mm	_		
rai licie Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	87		
14	76		
10	71		
6.3	65		
5	63		
3.35	60	1	
2	56	1	
1.18	52		
0.6	47	1	
0.425	44	7	
0.3	39	7	
0.212	34	Ĩ	
0.15	28		
0.063	22		

Sample Proportions	% dry mass
Very coarse	0
Gravel	44
Sand	35
Fines <0.063mm	22

Grading Analysi	S	
D100	mm	28
D60	mm	3.27
D30	mm	0.167
D10	mm	
Uniformity Coefficient		> 52
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Page 1 of

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

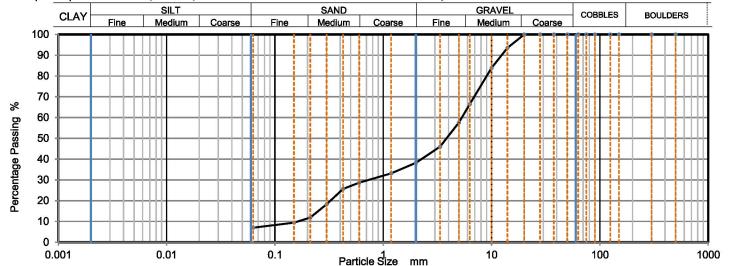
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022


Date Tested: 14/06/2022 Sampled By: Not Given

Test Results:

Laboratory Reference: 2305198 Depth Top [m]: 1.80 JTP10 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Yellowish brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	94		
10	84		
6.3	67		
5	58		
3.35	46		
2	38	1	
1.18	33		
0.6	29	1	
0.425	26	1	
0.3	18		
0.212	12		
0.15	9	7	
0.063	8		

Sample Proportions	% dry mass
Very coarse	0
Gravel	62
Sand	31
Fines <0.063mm	8

Grading Analysis	8	
D100	mm	20
D60	mm	5.32
D30	mm	0.73
D10	mm	0.162
Uniformity Coefficient		33
Curvature Coefficient		0.62

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

GF 100.21

Page 1 of 1 **Date Reported: 20/06/2022**

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Depth Top [m]: 0.50

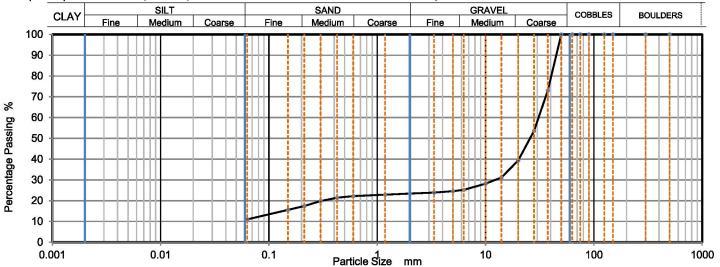
Sample Type: D

Depth Base [m]: Not Given

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Test Results:


Laboratory Reference: 2305200

Hole No.: JTP11

Sample Reference: Not Given

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
		1	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	73		
28	54		
20	39		
14	31		
10	28		
6.3	25		
5	25		
3.35	24		
2	23	1	
1.18	23		
0.6	22	1	
0.425	21	1	
0.3	20	1	
0.212	17		
0.15	16	7	
0.063	12	7	

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	77	
Sand	12	
Fines <0.063mm	12	

Grading Analysis		
D100	mm	50
D60	mm	30.8
D30	mm	12.3
D10	mm	
Uniformity Coefficient		> 490
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

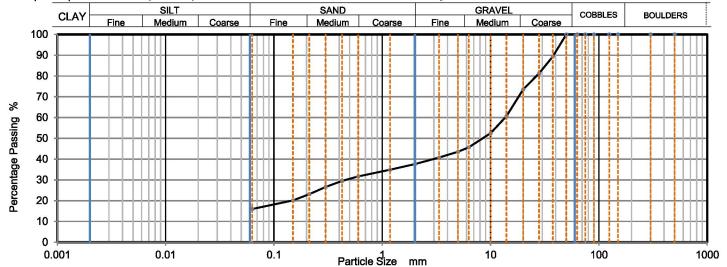
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference: 2305201 Depth Top [m]: 1.40 JTP12 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Light brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	89		
28	81		
20	74		
14	61		
10	53		
6.3	46		
5	44		
3.35	41		
2	38	1	
1.18	35		
0.6	32	1	
0.425	30	1	
0.3	27		
0.212	23		
0.15	20	7	
0.063	16		

Sample Proportions	% dry mass
Very coarse	0
Gravel	62
Sand	21
Fines <0.063mm	16

Grading Analysis	S	
D100	mm	50
D60	mm	13.7
D30	mm	0.458
D10	mm	
Uniformity Coefficient		> 220
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 20/06/2022

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

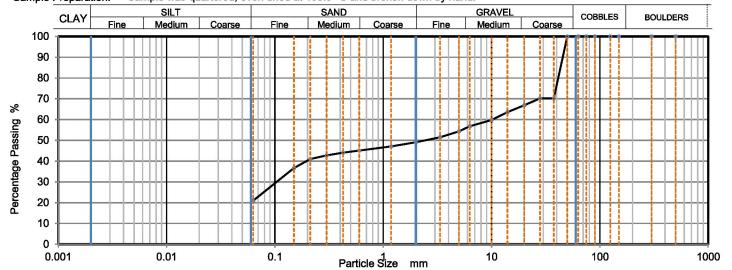
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference:2305202Depth Top [m]: 0.75Hole No.:JTP13Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Yellowish brown clayey very sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	70		
28	70		
20	67		
14	64		
10	60		
6.3	57		
5	54		
3.35	52		
2	49	1	
1.18	47		
0.6	45	1	
0.425	44	1	
0.3	43		
0.212	41		
0.15	37		
0.063	21	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	51
Sand	28
Fines <0.063mm	21

Grading Analysis	3	
D100	mm	50
D60	mm	10.2
D30	mm	0.102
D10	mm	
Uniformity Coefficient		> 160
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022 GF 100.21

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

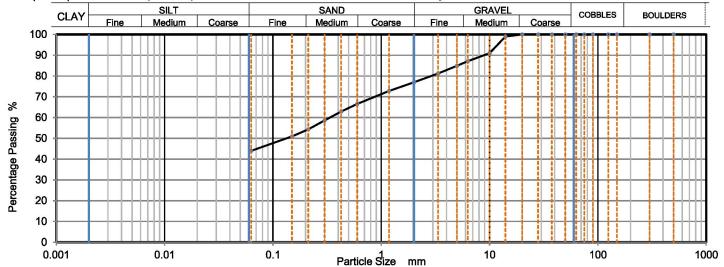
Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022

Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference: 2305205 Depth Top [m]: 1.60 JTP15 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Light brown gravelly very sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	91		
6.3	87		
5	85		
3.35	81		
2	77	1	
1.18	73		
0.6	67	1	
0.425	63	1	
0.3	59	1	
0.212	54		
0.15	51	7	
0.063	44		

Sample Proportions	% dry mass
Very coarse	0
Gravel	23
Sand	33
Fines <0.063mm	44

Grading Analysis		
D100	mm	20
D60	mm	0.336
D30	mm	
D10	mm	
Uniformity Coefficient		> 5.3
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022

Page 1 of 1

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

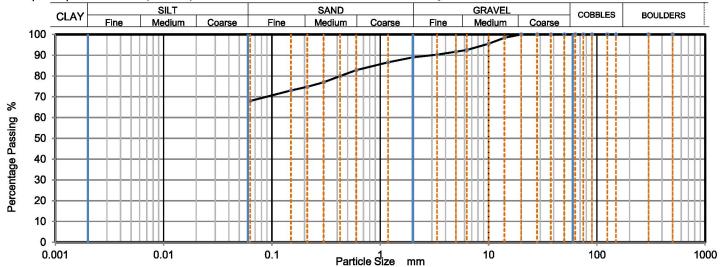
Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022


Sampled By: Not Given

Test Results:

Laboratory Reference:2305206Depth Top [m]: 1.75Hole No.:JTP16Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Sample Description: Light brown gravelly sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	96		
6.3	93		
5	92		
3.35	90		
2	89	1	
1.18	87		
0.6	83	1	
0.425	80	1	
0.3	77		
0.212	75		
0.15	73	7	
0.063	69	7	

Sample Proportions	% dry mass
Very coarse	0
Gravel	11
Sand	20
Fines <0.063mm	69

Grading Analysis		
D100	mm	20
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		N/A
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

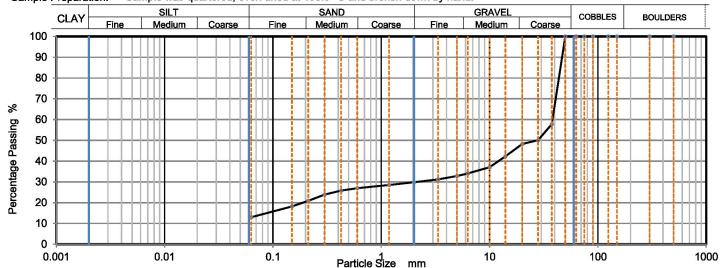
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391

Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Depth Base [m]: Not Given


Sample Type: D

Test Results: Depth Top [m]: 0.75

Laboratory Reference: 2305210 JSTP3 Hole No.: Sample Reference: Not Given

Sample Description: Yellowish brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Siev	ing	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
500	100						
300	100						
150	100						
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	58						
28	50						
20	48						
14	42						
10	37						
6.3	34						
5	33						
3.35	31	1					
2	30	1					
1.18	29						
0.6	27	7					
0.425	26	7					
0.3	24	7					
0.212	21	Ï					
0.15	18						
0.063	14						

Sample Proportions	% dry mass
Very coarse	0
Gravel	70
Sand	16
Fines <0.063mm	14

Grading Analysis	1	
D100	mm	50
D60	mm	38.1
D30	mm	2.17
D10	mm	
Uniformity Coefficient		> 600
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks:

Signed: Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022 GF 100.21

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Shaw Carter

Site Address: Phase 10, Heyford Park, Camp Road, OX25 5HD

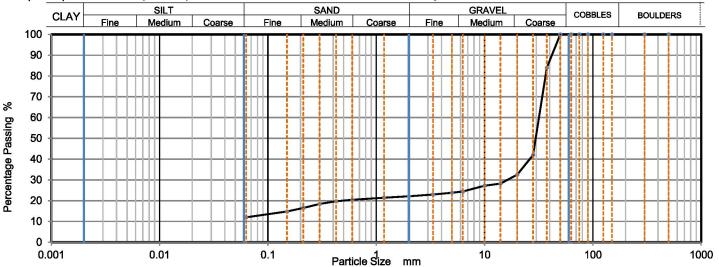
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2513 Job Number: 22-63391 Date Sampled: 25/05/2022 Date Received: 30/05/2022 Date Tested: 14/06/2022

Sampled By: Not Given

Depth Top [m]: 0.75

Sample Type: D


Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 2305211 JSTP4 Hole No.: Sample Reference: Not Given

Sample Description: Brown clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 108.9 °C and broken down by hand.

Siev	ina	Sedimentation					
I	_						
Particle Size mm	% Passing	Particle Size mm	% Passing				
500	100						
300	100						
150	100						
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	84						
28	42						
20	33						
14	28						
10	27						
6.3	24						
5	24						
3.35	23	1					
2	22	1					
1.18	21						
0.6	20	7					
0.425	20	7					
0.3	18	1					
0.212	17	Ĩ					
0.15	15						
0.063	12						

Sample Proportions	% dry mass
Very coarse	0
Gravel	78
Sand	10
Fines <0.063mm	12

Grading Analysis		
D100	mm	50
D60	mm	31.7
D30	mm	16.2
D10	mm	
Uniformity Coefficient		> 500
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 20/06/2022

Page 1 of 1

APPENDIX 5 – SOIL GAS MONITORING RECORDS

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Phase 10, Heyford Park	Operative(s): JAR	Time: 9:30		Round: 1	Page: 1					
MONITORING EQUIPMENT										
Instrument Type	Instrument Make	Serial No.		Date Last Calibrated						
Analox	GA5000	GA5000			01/10/2021					
PID	Phocheck tiger	Phocheck tiger			01/03/2021					
Dip Meter	GeoTech									
MONITORING CONDITIONS										
Weather Conditions: Sunny W/	Ground Conditions: Dry	Temperature: 17°C		ature: 17°C						
Barometric Pressure (mbar): 98	Barometric Pressure Trend (24hr)	hr): Falling Ambient Concentration: 0.2% CH ₄ , 0.2% CC			4, 0.2% CO ₂ , 23.4% O ₂					

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric		CII 0/			voc	(ppm)		60	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	ressure CH ₄ % CH ₄ % CO ₂ %	O ₂ %	Peak	Steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)		
JWS1	0.1	0.1	991	0.2	-	1.3	19.7	2.5	2.0	0	0	-	-	1.36
JWS2	0.1	0.0	991	0.2	-	0.4	21.6	7.1	4.4	0	0	-	1.12	1.81
JWS3	0.1	0.1	990	0.2	-	2.5	20.2	0.7	0.5	0	0	-	1.36	3.28
JWS5	0.1	0.1	991	0.2	-	1.2	20.0	3.2	1.1	0	0	-	-	1.57
JBH1	0.0	0.0	990	0.2	-	1.1	18.7	8.0	6.1	0	0	-	3.61	7.27
JBH2	0.1	0.0	991	0.2	-	0.0	16.0	10.9	8	0	21	-	1.63	7.97
JBH3	0.1	0.1	990	0.2	-	4.2	15.6	8.8	3.3	0	0	-	1.83	7.27

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Phase 10, Heyford Park	Operative(s): JAR	Date: 08/06/2022	Time: 9:30		Round: 1	Page: 2				
MONITORING EQUIPMENT										
Instrument Type	Instrument Make	Serial No.		Date Last Calibrated						
Analox	GA5000	GA5000			01/10/2021					
PID	Phocheck tiger	Phocheck tiger			01/03/2021					
Dip Meter	GeoTech									
MONITORING CONDITIONS										
Weather Conditions: Sunny W/	Cloud	Ground Conditions: Dry		Temper	ature: 17°C					
Barometric Pressure (mbar): 98	Barometric Pressure Trend (24hr)): Falling	Ambien	Ambient Concentration: 0.2 % CH ₄ , 0.2% CO ₂ , 23.4% O ₂						

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric		CH 9/			voc	(ppm)	H ₂ S	со	Depth to	Depth to	Depth to
Point Location	nt Press	Pressure (mbar)	CH ₄ %	% CH ₄ % LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)	
JBH4	0.0	0.0	991	1.2	-	1.6	15.5	451.4	335	0	0	-	1.52	7.63
JBH5	0.1	0.1	991	0.2	-	0.1	20.0	3.3	1.9	0	0	-	3.34	8.06
JBH6	0.1	0.1	991	0.7	-	1.0	19.2	264	250	0	0	-	3.7	8.1
JBH7	- 0.0	- 0.1	989	0.2	-	6.8	15.5	0.7	0.7	0	0	-	2.71	8.04
JBH8	0.2	0.2	991	0.2	-	1.2	19.0	24.1	21.1	0	1	-	2.92	7.3
JBH9	0.1	0.1	991	0.2	-	1.9	17.9	2.7	2.6	0	0	-	4.45	7.43
BH05	- 0.0	- 0.0	990	0.2	-	3.1	19.3	1.5	1.5	0	0	-	2.03	7.26

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Phase 10, Heyford Park	Operative(s): JAR	Date: 08/06/2022	Time: 9:30		Round: 1	Page: 3						
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Phocheck tiger		T-106448		01/03/2021							
Dip Meter	GeoTech											
	<u> </u>	MONITORING CON	DITIONS									
Weather Conditions: Sunny W/	Cloud	Ground Conditions: Dry	Temp		Temperature: 17°C							
Barometric Pressure (mbar): 98	39	Barometric Pressure Trend (24hr)	Ambient Concentration: 0.2% CH ₄ , 0.2% CO ₂ , 23.4% O ₂									

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		011.0/			VOC (ppm)		0	00	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH₄ % LEL	CO ₂ %	O ₂ %	Peak	(ppm) (p	(ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)	
BH10	0.1	0.1	991	0.2	-	2.3	19.9	73.2	12.2	0	0	-	2.78	7.81
BH11	0.1	0.1	991	0.2	-	0.6	19.5	27.9	5.9	0	0	-	2.79	7.63
BH12	0.2	0.2	991	0.2	-	2.2	18.6	32.5	23.5	0	0	-	4.4	7.55
BH13	0.3	0.3	991	0.2	-	0.5	20.7	112.2	34.2	0	0	-	3.58	7.69
BH14	0.2	0.2	991	0.1	-	0.9	18.9	3.6	1.1	0	0	-	3.18	7.80

	GAS AND	GROUNDWATER MONITORING	BOREHOLE RE	CORD S	HEET								
Site: Phase 10, Heyford Park	Operative(s): RAY	Operative(s): RAY Date: 14/06/2022 Time: 09:30 Round: 2 Page: 1											
	MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated													
Analox	GA5000		G505801		01/10/2021								
PID	Phocheck tiger		T-106448		01/03/2021								
Dip Meter	GeoTech												
		MONITORING CON	DITIONS										
Weather Conditions: Sunny		Ground Conditions: Dry	nditions: Dry Tem										
Barometric Pressure (mbar): 10	07	Barometric Pressure Trend (24hr): Falling			Ambient Concentration: 0.3 %CH ₄ , 0.2 %CO ₂ , 23.8%O ₂								

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		CH₄ %			voc	(ppm)		60	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)		Peak	Steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)			
JWS1	+0.3	+0.3	1007	0.2	-	0.8	20.5	7.7	5.5	0	0	-	DRY	1.27
JWS2	+0.2	+0.2	1007	0.2	-	0.3	20.8	10.4	7.2	0	0	-	1.22	1.70
JWS3	+0.3	+0.3	1008	0.2	-	3.2	20.8	2.1	1.6	0	0	-	1.38	3.30
JSW5	+0.2	+0.2	1005	0.2	-	1.0	19.2	74.5	27.2	1	0	-	DRY	1.48
JBH1	+0.2	+0.2	1007	0.2	-	0.5	20.3	9.3	7.6	0	0	-	3.66	7.14
JBH2	+0.2	+0.2	1007	0.2	-	0.0	15.7	18.0	12.7	1	19	-	1.70	7.90
JBH3	+0.2	+0.2	1007	0.3	-	4.1	15.9	15.2	10.4	0	0	-	1.89	7.19

	GAS AND	GROUNDWATER MONITORING	BOREHOLE RE	CORD S	HEET							
Site: Phase 10, Heyford Park	Operative(s): RAY	Operative(s): RAY Date: 14/06/2022 Time: 09:30 Round: 2 Page										
	MONITORING EQUIPMENT											
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Phocheck tiger		T-106448		01/03/2021							
Dip Meter	GeoTech											
		MONITORING CON	DITIONS									
Weather Conditions: Sunny		Ground Conditions: Dry	onditions: Dry Tempe									
Barometric Pressure (mbar): 100	7	Barometric Pressure Trend (24hr): Falling			Ambient Concentration: 0.3 %CH ₄ , 0.2 %CO ₂ , 23.8%O ₂							

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		CH₄ %			voc	(ppm)	H ₂ S	СО	Depth to	Depth to	Depth to base
Point Location	Peak	Steady	Pressure (mbar)	CH ₄ %	LEL	CO ₂ %	O ₂ %	Peak	Steady	(ppm)	(ppm)	product (mbgl)	water (mbgl)	of well (mbgl)
JBH4	-0.2	-0.2	1008	1.3	-	5.4	12.7	343.7	326.0	1	0	-	1.58	7.51
JBH5	+0.3	+0.3	1007	0.2	-	0.1	20.0	6.2	4.8	0	0	1	3.59	7.99
JBH6	+0.2	+0.2	1006	0.8	-	1.1	19.4	188.7	168.4	0	0	1	3.91	7.92
JBH7	+0.3	+0.3	1007	0.3	-	7.1	15.5	4.1	2.9	0	0	-	2.78	7.93
JBH8	+0.3	+0.3	1008	0.3	-	1.4	20.5	23.4	20.6	0	1	-	3.19	7.44
JBH9	+0.3	+0.3	1006	0.2	-	1.6	18.4	32.4	21.7	1	0	-	4.86	7.39
BH05	+0.3	+0.3	1008	0.2	-	4.6	18.6	3.6	3.4	0	0	-	2.11	7.23

	GAS AND	GROUNDWATER MONITORING	BOREHOLE RE	CORD S	HEET						
Site: Phase 10, Heyford Park	Operative(s): RAY	Operative(s): RAY Date: 14/06/2022 Time: 09:30 Round: 2 Page									
MONITORING EQUIPMENT											
Instrument Type Instrument Make Serial No. Date Last Calibrated											
Analox	GA5000		G505801		01/10/2021						
PID	Phocheck tiger		T-106448		01/03/2021						
Dip Meter	GeoTech										
	•	MONITORING CON	DITIONS								
Weather Conditions: Sunny		Ground Conditions: Dry	Conditions: Dry Ter								
Barometric Pressure (mbar): 100	07	Barometric Pressure Trend (24hr): Falling			Ambient Concentration: 0.3 %CH ₄ , 0.2 %CO ₂ , 23.8%O ₂						

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		OU 9/			VOC (ppm)		0	00	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	ssure CH ₄ % CH ₄ % CO ₂ % O ₂ %	H₂S (ppm)	(ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)					
BH10	+0.2	+0.2	1008	0.3	-	1.90	21.4	67.3	24.8	1	0	-	2.97	7.80
BH11	+0.3	+0.3	1008	0.2	-	0.7	21.4	23.1	10.7	0	0	-	3.04	7.90
BH12	+0.2	+0.2	1006	0.2	-	0.2	21.4	7.0	3.6	0	0	-	4.12	7.92
BH13	+0.2	+0.2	1006	0.2	-	0.9	20.3	6.7	3.8	0	0	-	3.84	7.93
BH14	+0.2	+0.2	1007	0.2	-	0.8	18.7	7.4	4.9	0	0	-	3.46	7.84

	GAS AND	GROUNDWATER MONITORING	BOREHOLE RE	CORD S	HEET						
Site: Phase 10, Heyford Park	Operative(s): RAY	Operative(s): RAY Date: 26/07/2022 Time: 09:30 Round: 3 Page: 1									
MONITORING EQUIPMENT											
Instrument Type Instrument Make Serial No. Date Last Calibrated											
Analox	GA5000		G505801		01/10/2021						
PID	Phocheck tiger		T-106448		01/03/2021						
Dip Meter	GeoTech										
	-	MONITORING CON	DITIONS								
Weather Conditions: Overcast		Ground Conditions: Damp	d Conditions: Damp								
Barometric Pressure (mbar): 100	06	Barometric Pressure Trend (24hr)	Ambient Concentration: 0.0 %CH ₄ , 0.1 %CO ₂ , 21.2%O ₂								

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		OU 9/			voc	(ppm)	H ₂ S	00	Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH₄ % LEL	CO ₂ % O ₂ % Peak Ste	Steady	(ppm)	CO (ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)		
JWS1	+0.3	+0.3	1007	0.0	-	1.0	20.5	11.1	6.5	0	1	-	DRY	1.37
JWS2	+0.2	+0.2	1007	0.0	-	2.0	18.7	25.3	9.5	0	1	-	1.49	1.80
JWS3	+0.2	+0.2	1006	0.0	-	2.9	18.1	1.9	1.8	0	0	-	1.74	3.34
JSW5	+0.2	+0.2	1007	0.0	-	0.9	20.7	8.2	5.1	0	1	-	DRY	1.54
JBH1	+0.2	+0.2	1006	0.0	-	0.5	20.8	10.2	5.5	0	2	-	3.72	7.18
JBH2	+0.2	+0.2	1007	0.0	-	0.0	17.4	64.9	15.7	0	7	-	1.96	7.96
JBH3	+0.3	+0.3	1006	0.0	-	5.7	14.0	166.4	24.5	0	0	-	2.18	7.22

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Phase 10, Heyford Park	Operative(s): RAY	Date: 26/07/2022	Time: 09:30		Round: 3 Page: 2							
	MONITORING EQUIPMENT											
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Phocheck tiger		T-106448		01/03/2021							
Dip Meter	GeoTech											
	<u>-</u>	MONITORING CON	DITIONS									
Weather Conditions: Overcast		Ground Conditions: Damp	nd Conditions: Damp									
Barometric Pressure (mbar): 10	006	Barometric Pressure Trend (24hr): Rising			Ambient Concentration: 0.0 %CH ₄ , 0.1 %CO ₂ , 21.2%O ₂							

	MONITORING RESULTS													
Monitoring	Flow		Atmospheric		CII %			voc	(ppm)		60	Depth to	Depth to	Depth to base
Point Location	Peak	Steady	Pressure (mbar)	CH ₄ %	CH₄ % LEL	CO ₂ %	O ₂ %	Peak	Steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	of well (mbgl)
JBH4	+0.3	+0.3	1006	1.5	-	9.3	7.8	564.9	517.2	0	0	-	1.83	7.01
JBH5	+0.2	+0.2	1007	0.0	-	0.3	20.4	19.5	12.7	0	1	-	4.03	8.09
JBH6	+0.2	+0.2	1006	0.1	-	1.2	20.1	84.3	64.2	0	1	-	5.02	7.99
JBH7	+0.2	+0.2	1006	0.0	-	7.9	15.1	2.4	1.8	0	0	-	3.07	8.02
JBH8	+0.2	+0.2	1007	0.0	-	1.4	20.1	22.1	7.6	0	1	-	3.50	7.34
JBH9	+0.2	+0.2	1007	0.0	-	1.6	20.3	12.6	7.1	0	1	-	5.77	7.38
BH05	+0.3	+0.3	1006	0.0	-	7.3	14.7	1.8	1.6	0	0	-	2.47	7.20

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Phase 10, Heyford Park	Operative(s): RAY	Date: 26/07/2022	Time: 09:30		Round: 3 Page: 3								
	MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated													
Analox	GA5000		G505801		01/10/2021								
PID	Phocheck tiger		T-106448		01/03/2021								
Dip Meter	GeoTech												
	-	MONITORING CON	DITIONS										
Weather Conditions: Overcast		Ground Conditions: Damp	und Conditions: Damp Ten										
Barometric Pressure (mbar): 100	06	Barometric Pressure Trend (24hr): Rising			Ambient Concentration: 0.0 %CH ₄ , 0.1 %CO ₂ , 21.2%O ₂								

	MONITORING RESULTS														
Monitoring	Flow	low	Atmospheric		011.0/			voc	(ppm)		co	Depth to	Depth to	Depth to base of well (mbgl)	
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH₄ % LEL	CO ₂ %	O ₂ %	Peak	Steady	H ₂ S (ppm)	(ppm)	product (mbgl)	water (mbgl)		
BH10	+0.1	+0.1	1007	0.0	-	3.8	14.7	30.7	14.4	0	1	-	3.26	7.86	
BH11	+0.2	+0.2	1006	0.0	-	0.8	20.2	23.6	6.3	0	0	-	3.94	7.70	
BH12	+0.3	+0.3	1007	0.0	-	1.8	20.1	22.4	7.2	0	0	-	4.87	7.96	
BH13	+0.3	+0.3	1007	0.0	-	0.8	20.5	17.1	6.2	0	1	-	5.02	7.99	
BH14	+0.2	+0.2	1007	0.0	-	1.4	18.7	28.3	16.2	0	1	-	3.80	7.91	

APPENDIX 6 – GROUNDWATER SAMPLING RECORDS

LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET													
Site: Heyford Park	Operative(s): RAY	Date: 15/06/2022	Time: 09:30	Round: 1	Page: 1 of 3								
	MONITORING EQUIPMENT												
Instrument Type	Instrument Make Serial No. Date Last Calibrated												
SmarTROLL MP	In-Situ		674243	18/02/2022	18/02/2022								
Dip Meter	In-Situ												
MONITORING CONDITIONS													
Weather Conditions: Sunny		Ground Conditions: Dry		Temperature: 19°C									

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
BH05	13.42	566.83	7.66	158.6	1.82	-	2.16	2.36	7.23	2.56	Stable at 28 mins Turbid
BH10	14.22	651.31	7.68	125.3	1.55	-	3.05	3.20	7.80	3.55	Stable at 30 mins Slightly turbid
BH11	15.92	604.83	7.38	138.6	4.71	-	3.15	3.18	7.90	3.65	Stable at 10 mins Slightly turbid
BH12	14.25	773.34	7.36	121.5	2.38	-	4.09	4.22	7.92	4.59	Stable at 22 mins Slightly turbid
BH13	13.65	575.00	7.41	138.4	6.20	-	3.98	4.02	7.93	4.48	Stable at 12 mins Slightly turbid
BH14	13.41	622.99	7.32	132.2	1.66	-	3.48	3.67	7.84	3.98	Stable at 26 mins Slightly turbid
JBH1	13.50	689.32	7.68	160.0	1.69	-	3.65	3.82	7.14	4.15	Stable at 24 mins Turbid
JBH2	12.81	665.50	7.91	155.1	1.69	-	1.82	1.96	7.90	2.32	Stable at 24 mins Turbid

	LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Heyford Park	Operative(s): RAY	Date: 15/06/2022	Time: 09:30	Round: 1	Page: 2 of 3							
		MONITORING EQ	UIPMENT									
Instrument Type	rument Type Instrument Make Serial No. Date Last Calibrated											
SmarTROLL MP	In-Situ		674243	18/02/2022								
Dip Meter	In-Situ											
MONITORING CONDITIONS												
Weather Conditions: Sunny		Ground Conditions: Dry		Temperature: 19°C								

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
JBH3	13.40	1564.6	7.54	157.8	1.95	-	2.08	2.10	7.19	2.58	Stable at 20 mins Turbid
JBH4	14.29	850.79	7.18	109.1	2.16	-	1.78	1.83	7.51	2.28	Stable at 38 mins Slightly turbid
JBH5	13.13	627.34	7.32	133.9	2.66	-	3.76	7.84	7.99	4.26	Stable at 22 mins Turbid
JBH6	13.95	649.42	7.33	117.5	1.62	-	3.99	4.05	7.92	4.49	Stable at 26 mins Slightly turbid and slight hydrocarbon smell.
JBH7	13.23	657.28	7.65	141.0	2.05	-	2.83	2.96	7.93	3.33	Stable at 28 mins Slightly turbid
JBH8	14.30	596.74	7.40	133.6	2.01	-	3.24	2.40	7.44	3.74	Stable at 8 mins Slightly turbid
JBH9	17.72	753.95	7.78	164.0	3.73	-	5.06	5.36	7.39	5.86	RDO not stable at 26 mins Turbid

	LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Heyford Park	Operative(s): RAY	Date: 15/06/2022	Time: 09:30	Round: 1	Page: 3 of 3								
	MONITORING EQUIPMENT												
Instrument Type	Instrument Make Serial No. Date Last Calibrated												
SmarTROLL MP	In-Situ		674243	18/02/2022									
Dip Meter	In-Situ												
	MONITORING CONDITIONS												
Weather Conditions: Sunny		Ground Conditions: Dry		Temperature: 19°C									

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
JWS1	-	-	-	-	-	-	-	-		-	DRY
JWS2	15.99	1096.7	7.62	160.6	4.51	-	1.26	1.36	1.70	1.50	Specific conductivity and pH not stable at 30 mins Turbid
JSW3	13.86	987.48	7.57	148.8	1.55	-	1.43	1.46	3.32	1.93	Stable at 26 mins Slightly turbid
JSW5	-	-	-	-	-	-	-	-	-	-	DRY

LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET													
Site: Heyford Park	Operative(s): RAY	Date: 27/07/2022	Time: 09:00	Round: 2	Page: 1 of 3								
	MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated													
SmarTROLL MP	In-Situ		674243	18/02/2022	18/02/2022								
Dip Meter	In-Situ												
MONITORING CONDITIONS													
Weather Conditions: Sur	nny with clouds	Ground Conditions: Dry		Temperature: 19°C									

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
BH05	14.04	564.48	7.92	3.4	1.06	-	2.52	2.56	7.20	3.02	Slightly turbid Stable at 30mins.
BH10	7.88	624.91	7.88	-13	1.43	-	3.28	3.34	7.86	3.68	Clear Stable at 36 mins
BH11	17.60	632.82	7.90	15.7	6.11	-	4.02	4.08	7.70	4.52	Clear Stable at 12 mins
BH12	12.5	785.07	7.83	-4.7	5.26	-	4.86	4.91	7.96	5.36	Slightly turbid Stable at 24 mins
BH13	20.49	634.65	7.77	9.4	2.75	-	5.33	5.51	7.98	5.83	Clear Stable at 36 mins
BH14	16.18	624.66	7.77	6.8	1.26	-	3.92	4.05	7.91	4.42	Slightly turbid Stable at 33 mins
JBH1	14.94	691.55	7.68	2.3	1.13	-	3.73	3.74	7.18	4.23	Clear Stable at 36 mins
JBH2	15.05	562.91	7.74	8.3	2.56	-	1.97	2.24	7.96	2.47	Slightly turbid Stable at 27 mins

LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Heyford Park	Operative(s): RAY	Date: 27/07/2022	Time: 09:00	Round: 2	Page: 2 of 3							
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
SmarTROLL MP	In-Situ		674243	18/02/2022	18/02/2022							
Dip Meter	In-Situ											
	MONITORING CONDITIONS											
Weather Conditions: Sunny with clouds Ground Conditions: Dry Temperature: 19°C												

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
JBH3	14.04	1544.8	7.63	6.1	1.02	-	2.18	2.19	7.22	2.58	Slightly turbid Stable at 24 mins
JBH4	16.33	842.67	7.68	-25.6	0.76	-	1.87	1.87	2.37	7.01	Clear Stable at 27 mins
JBH5	16.20	658.49	7.80	4.9	1.11	-	4.03	4.04	8.09	4.53	Slightly turbid Stable at 27 mins
JBH6	21.70	622.61	7.87	-15.5	1.26	-	5.15	5.28	7.94	5.65	Clear Stable at 39 mins. Strong hydrocarbon smell.
JBH7	13.22	637.88	7.92	2.3	1.26	-	3.08	3.10	8.02	3.58	Clear Stable at 39 mins
JBH8	13.96	631.42	7.85	5.2	1.92	-	3.58	2.58	7.34	4.08	Clear Stable at 24 mins
JBH9	26.80	748.93	7.83	15.6	3.95	-	5.78	5.78	7.38	6.28	Clear Stable at 18 mins

	LOW FLOW GROUNDWATER MONITORING BOREHOLE RECORD SHEET												
Site: Heyford Park	Operative(s): RAY	Date: 27/07/2022	Time: 09:00	Round: 2	Page: 3 of 3								
	MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated													
SmarTROLL MP	In-Situ		674243	18/02/2022									
Dip Meter	In-Situ												
	MONITORING CONDITIONS												
Weather Conditions: Sun	ny with clouds	Ground Conditions: Dry		Temperature: 19°C									

Hole ID	Temperature (°C)	Specific Conductivity (µS/cm)	рН	(ORP) Oxidation- Reduction Potential (mV)	(RDO) Rugged Dissolved Oxygen Concentration (mg/L)	Depth to product – NB do not sample if present	Water Level (Start of testing)	Water Level (End of testing)	Depth to base of well (m)	Sample depth (tube intake depth) – (m)	Comments
JWS1	-	-	-	-	-	-	-	-	-	-	-
JWS2	-	-	-	-	-	-	-	-	-	-	-
JSW3	-	-	-	-	-	-	-	-	-	-	-
JSW5	-	-	-	-	-	-	-	-	-	-	-

Specific Conductivity (µS/cm)

This is a measure of the capability of a solution such as water in a stream to pass an electric current. This is an indicator of the concentration of dissolved electrolyte ions in the water. It doesn't identify the specific ions in the water. However, significant increases in conductivity may be an indicator that polluting discharges have entered the water.

Every creek will have a baseline conductivity depending on the local geology and soils. Higher conductivity will result from the presence of various ions including nitrate, phosphate, and sodium.

The basic unit of measurement for conductivity is micromhos per centimetre (μ mhos/cm) or micro Siemens per centimetre (μ S/cm). Either can be used, they are the same. It is a measure of the inverse of the amount of resistance an electric charge meets in traveling through the water. Distilled water has a conductivity ranging from 0.5 to 3 μ S/cm, while most streams range between 50 to 1500 μ S/cm. Freshwater streams ideally should have a conductivity between 150 to 500 μ S/cm to support diverse aquatic life.

pН

A measure of a solution's acidity. In water, small numbers of water molecules (H2O) will break apart or disassociate into hydrogen ions (H+) and hydroxide ions (OH-). Other compounds entering the water may react with these, leaving an imbalance in the numbers of hydrogen and hydroxide ions. When more hydrogen ions react, more hydroxide ions are left in solution and the water is basic; when more hydroxide ions react, more hydrogen ions are left and the water is acidic. pH is a measure of the number of hydrogen ions and thus a measure of acidity.

pH is measured on a logarithmic scale between 1 and 14 with 1 being extremely acid, 7 neutral, and 14 extremely basic. Because it is a logarithmic scale there is a tenfold increase in acidity for a change of one unit of pH, e.g. 5 is 100 times more acid than 7 on the pH scale. The largest variety of freshwater aquatic organisms prefer a pH range between 6.5 to 8.0.

(RDO) Rugged Dissolved Oxygen Concentration (mg/L)

Dissolved oxygen is oxygen gas molecules (O2) present in the water. Plants and animals cannot directly use the oxygen that is part of the water molecule (H2O), instead depending on dissolved oxygen for respiration. Oxygen enters streams from the surrounding air and as a product of photosynthesis from aquatic plants. Consistently high levels of dissolved oxygen are best for a healthy ecosystem.

Levels of dissolved oxygen vary depending on factors including water temperature, time of day, season, depth, altitude, and rate of flow. Water at higher temperatures and altitudes will have less dissolved oxygen. Dissolved oxygen reaches its peak during the day. At night, it decreases as photosynthesis has stopped while oxygen consuming processes such as respiration, oxidation, and respiration continue, until shortly before dawn.

Human factors that affect dissolved oxygen in streams include addition of oxygen consuming organic wastes such as sewage, addition of nutrients, changing the flow of water, raising the water temperature, and the addition of chemicals.

Dissolved oxygen is measured in mg/L.

0-2 mg/L: not enough oxygen to support life.

2-4 mg/L: only a few fish and aquatic insects can survive.

4-7 mg/L: good for many aquatic animals, low for cold water fish

7-11 mg/L: very good for most stream fish

(ORP) Oxidation- Reduction Potential (mV)

ORP is a measure of the cleanliness of the water & its ability to break down contaminants". It has a range of -2,000 to + 2,000 and units are in "mV" (millivolts).

APPENDIX 7 – SOIL INFILTRATION TEST RECORDS

Geotechnical Engineering & Environmental Services across the UK

BRE 365 INFILTRATION TESTS

JOMAS JOB NAME: Phase 10, Heyford Park, Camp Road, OX25 5HD CALCULATING ENGINEER: JRO DATE: 06 June 2022

APPROVED BY: SC DATE: 07 June 2022

JOMAS JOB NO.:	P4280J2513			l	l	l
TEST LOCATION:	JSTP1			JSTP1 - Test 1	JSTP1 - Test 2	JSTP1 - Test 3
DATE OF TEST:	25 May 2022		Dg 75% (m)	0.50	0.78	
Pit Details			Tp 75%			
Length	2.4 m		Dg 25%	0.17	0.26	
Breadth	0.6 m		Tp 25%			
Depth (Test 1)	2.7 m		Vp75% <u>- Vp25% (m³)</u>	0.48	0.75	
Depth (Test 2)	3.3 m					
Groundwater? (Test 1)	Υ	2.36 m bgl	ap50% (m²)	3.42	4.56	
Groundwater? (Test 2)	Υ	3.04 m bgl				
Filled With Gravel?	N		Tp75-Tp25 (min)			
		Soil	infiltration rate (m/sec)	Insuff. Drain	Insuff. Drain	
		P	ermeability Description			

Drainage Condtions

Notes:

Dw = depth to water
Dg = head of water in the pit

Test 1 undertaken on the 25/05/2022. Pit collapse in Test 1 at 5 minutes. Dw recorded as 1.73 mbgl after 24 hours. Test 2 undertaken on the 26/05/2022. Dw recorded as 1.87 mbgl after 19 hours.

JST	P1 - Te	st 1	JST	P1 - Te:	st 2	JST	P1 - Tes	st 3
Min	Dw	Dg	Min	Dw	Dg	Min	Dw	Dg
0	1.70	0.66	0	2.26	1.04			
1	1.70	0.66	1	2.26	1.04			
2	1.71	0.65	2	2.26	1.04			
3	1.71	0.65	3	2.26	1.04			
5	1.67	0.69	5	2.26	1.04			
10	1.67	0.69	10	2.25	1.05			
20	1.70	0.66	20	2.23	1.07			
30	1.72	0.64	30	2.22	1.08			
60	1.72	0.64						
120	1.73	0.63						
180	1.73	0.63						
		Do			Da			D=
	Min	Dg		Min	Dg		Min	Dg
750/	insut	f. Drain	750/	insut	f. Drain	750/		
75%	les: f	0.495				75%		
25%	Insuff. Drain Insuff. Drain				0.26	25%		
25%		0.165	25%		0.26	25%		

1.20											
1.00											
0.80											
0.60		•									
0.40											
0.20											
0.00	0	20	40	60	80	100 Minutes	120	140	160	180	200

BRE 365 INFILTRATION TESTS

JOMAS JOB NAME:	Phase 10, Hey	ford Park, Camp	Road, OX25		LATING ENGINEER: VED BY:	JRO SC		06 June 2022 07 June 2022	
JOMAS JOB NO.: TEST LOCATION:	P4280J2513 JSTP2			1	JSTP2 - Test 1	JSTP2 - Te	set 2	JSTP2 - Test 3	ı
DATE OF TEST:	25 May 2022		Dg	75% (m)	0.53	0.78		J31P2 - 1est 3	1
Pit Details Length	2.3 m			Tp 75% Dg 25%	0.18	0.26			
Breadth Depth (Test 1)	0.6 m 2.3 m		Vp75% - Vp2	Tp 25%	0.48	0.72			
Depth (Test 2)	2.9 m								
Groundwater? (Test 1) Groundwater? (Test 2)	Y Y	2 m bgl 2.65 m bgl	ap5	60% (m ²)	3.41	4.40			
Filled With Gravel?	N	- 		25 (min)	besett Duste	In self De			_
			nfiltration rate rmeability Des		Insuff. Drain	Insuff. Dr	rain		
			Drainage Co	ndtions					l

Notes:

Dw = depth to water
Dg = head of water in the pit

Test 1 undertaken on the 25/05/2022. Dw recorded as 1.45 mbgl after 20 hours. Test 2 undertaken on the 26/05/2022.

JST	P2 - Te	st 1	JST	P2 - Te:	st 2	JST	P2 - Tes	st 3
Min	Dw	Dg	Min	Dw	Dg	Min	Dw	Dg
0	1.30	0.70	0	1.86	1.04			
1	1.30	0.70	1	1.86	1.04			
2	1.30	0.70	2	1.86	1.04			
3	1.30	0.70	3	1.86	1.04			
5	1.30	0.70	5	1.86	1.04			
10	1.31	0.69	10	1.84	1.06			
20	1.32	0.68	20	1.83	1.07			
30	1.36	0.64	30	1.82	1.08			
60	1.37	0.63	60	1.79	1.11			
120	1.39	0.61	120	1.75	1.15			
180	1.41	0.59	180	1.72	1.18			
	Min	Dø		Min	Dg		Min	Dg
	Min	Dg f. Drain		Min	f. Drain		Min	25
75%	IIISUI	0.525	75%	IIISUI		75%		
13/0	Insuf	f. Drain				13/0		1
25%	moul	0.175	25%	moul	0.26	25%		
23/0		0.175	23/0		0.20	23/0		

1.4	.0											
1.2	20											
1.0	00	•										
0.8	30	_										
0.6	50											
0.4	0											
0.2	20											
0.0	0	2	20	40	60	0 0	30 ¹	00 1 nutes	20 14	40 1	60 1	80 20

BRE 365 INFILTRATION TESTS

JOMAS JOB NAME:Phase 10, Heyford Park, Camp Road, OX25CALCULATING ENGINEER:JRODATE:06 June 2022APPROVED BY:SCDATE:07 June 2022

P4280J2513 JOMAS JOB NO.: JSTP3 JSTP3 - Test 1 JSTP3 - Test 2 JSTP3 - Test 3 TEST LOCATION: 0.41 DATE OF TEST: 24 May 2022 0.35 0.40 Dg 75% (m) 3.75 2.75 Pit Details Tp 75% 4.50 0.12 0.14 Length 0.13 2.0 m Dg 25% 133.00 255.00 Breadth 253.93 Tp 25% 0.6 m Depth Vp75% - Vp25% (m3) 0.28 0.32 0.13 1.3 m 2.42 2.60 2.58 Groundwater? Ν ap50% (m²) Filled With Gravel? Ν Tp75-Tp25 (min) 129.25 252.25 249.43 1.50E-05 8.22E-06 3.30E-06 Soil infiltration rate (m/sec) Medium Low Low **Permeability Description**

Notes:

Dw = depth to water
Dg = head of water in the pit

Test 1 undertaken on the 24/05/2022. Test 2 undertaken on the 25/05/2022. Test 3 undertaken on the 26/05/2022.

		Drainage Cond	ltions	Good	Poor	Po	or			
0.60										
.50										
.30										
ſ										
	ir e									
.40										
.40	T C									
.30										
.50										
				-						
.20										
				A						
.10										
					\checkmark					
.00										
C)	50 1	.00		150 inutes	20	00	2	50	3
				IVI	inutes					

					1			
	P3 - Te			P3 - Te			P3 - Te	st 3
Min	Dw	Dg	Min	Dw	Dg	Min	Dw	Dg
0	0.83	0.47	0	0.76	0.54	0	0.77	0.53
1	0.90	0.40	1	0.85	0.45	1	0.83	0.47
2	0.93	0.37	2	0.88	0.42	2	0.86	0.44
3	0.94	0.36	3	0.90	0.40	3	0.88	0.42
5	0.96	0.34	5	0.93	0.37	5	0.91	0.39
10	0.97	0.33	10	0.96	0.34	10	0.93	0.37
20	0.99	0.31	20	0.99	0.31	20	0.97	0.33
30	1.01	0.29	30	1.00	0.30	30	0.98	0.32
60	1.05	0.25	60	1.05	0.25	60	1.02	0.28
120	1.15	0.15	120	1.11	0.19	120	1.07	0.23
180	1.30	0.00	180	1.13	0.17	180	1.10	0.20
			240	1.16	0.14	240	1.16	0.14
	Min	Dg		Min	Dg	Min		Dg
	Inter	polated		Inter	polated		Inter	oolated
75%	3.75	0.353	75%	2.75	0.405	75%	4.5	0.398
	Interpolated			Extrapolated			Extra	oolated
25%	133	0.118	25%	255	0.135	25%	253.9	0.133

BRE 365 INFILTRATION TESTS

JOMAS JOB NAME: Phase 10, Heyford Park, Camp Road, OX25 CALCULATING ENGINEER: JRO DATE: 06 June 2022

APPROVED BY: SC DATE: 07 June 2022

P4280J2513 JOMAS JOB NO.: JSTP4 TEST LOCATION: DATE OF TEST: 24 May 2022 Pit Details Length 2.3 m Breadth 0.8 m Depth 1.3 m Groundwater? Ν Filled With Gravel? Ν

	JSTP4 - Test 1	JSTP4 - Test 2	JSTP4 - Test 3	
Dg 75% (m)	0.33	0.54	0.42	
Tp 75%	7.50	3.67	2.67	
Dg 25%	0.11	0.18	0.14	
Tp 25%	60.00	63.29	88.89	
Vp75% - Vp25% (m ³)	0.40	0.66	0.21	
ap50% (m ²)	3.20	4.07	3.58	
Tp75-Tp25 (min)	52.50	59.62	86.22	
oil infiltration rate (m/sec)	4.01E-05	4.55E-05	1.11E-05	
Permeability Description	Medium	Medium	Medium Good	
Drainage Condtions	Good	Good		

Notes:

Dw = depth to water Dg = head of water in the pit

Test 1 undertaken on the 24/05/2022. Test 2 undertaken on the 25/05/2022. Test 3 undertaken on the 26/05/2022

			rainage Condtions	Good	Good	Good	I	
0.80								
0.70								
0.60								
0.50								
0.40	the of							
0.30								
0.20								
0.10								
0.00	0	20	40	60	Minutes 80	10	0 1	20 140

JSTP4 - Test 1			JSTP4 - Test 2			JSTP4 - Test 3		
Min	Dw	Dg	Min	Dw	Dg	Min	Dw	Dg
0	0.86	0.44	0	0.58	0.72	0	0.74	0.56
1	0.88	0.42	1	0.72	0.58	1	0.82	0.48
2	0.90	0.40	2	0.74	0.56	2	0.86	0.44
3	0.92	0.38	3	0.75	0.55	3	0.89	0.41
5	0.95	0.35	5	0.78	0.52	5	0.91	0.39
10	0.99	0.31	10	0.87	0.43	10	0.92	0.38
20	1.03	0.27	20	0.97	0.33	20	0.95	0.35
30	1.08	0.22	30	1.00	0.30	30	0.98	0.32
60	1.19	0.11	60	1.09	0.21	60	1.03	0.27
			83	1.30	0.00	120	1.30	0.00
	Min	Dg		Min	Dg		Min	Dg
		polated		Interpolated		Interpola		-
75%	7.5	0.33	75%	3.667	0.54	75%	2.667	0.42
		polated			oolated			
25%	60	0.11	25%	63	0.18	25%	88.89	0.14

WE LISTEN. WE PLAN. WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex

Salisbury Road

Uxbridge

UB8 2RZ

CONTACT US

Website: www.jomasassociates.com

Tel: 0333 305 9054

Email: info@jomasassociates.com