SITE INVESTIGATION REPORT

LAND OFF BERRY HILL ROAD, ADDERBURY, BANBURY. OX17 3HF

Prepared for: Hayfield Homes Construction Ltd and Hollins Strategic Land

Report Reference: BC592 RE001 31st January 2022

CONTENTS

		Page
1 IN	TRODUCTION	1
2 SI	TE DESCRIPTION	1
3 PR		2
4 FII	ELDWORK	2
4.1	Dynamic Sampler Boreholes	2
4.2	Dynamic Probes	3
4.3	Hand-excavated Pits	3
4.4	Soakaway Tests	3
5 LA	BORATORY TESTING	3
5.1	Geotechnical	
5.2	Environmental	4
	ROUND AND GROUNDWATER CONDITIONS	4
6.1		
6.2 6.3	•	
6.4		
6.5		
6.6	Contamination	5
7 HL	JMAN HEALTH OUANTITATIVE RISK ASSESSMENT	6
7.1	Current UK Screening Values	6
7.2	C4SL	6
7.3	S4UL	6
8 SC	DIL CHEMISTRY	6
8.1	Results	6
8.2	Interpretation – Metals and PAH	
8.3	•	
8.4 8.5	hamic Probes hd-excavated Pits kaway Tests TORY TESTING btechnical irronmental D AND GROUNDWATER CONDITIONS hat Encountered isoil de Ground rlstone Rock Formation hundwater rlstone Rock Formation hund Floor Slabs avations mical Considerations for Buried Concrete ad Pavement Design VAY DRAINAGE DTECTION REQUIREMENTS	
9.1 9.2		
9.2 9.3	•	
9.4	Ground Floor Slabs	
9.5	Excavations	10
9.6	Chemical Considerations for Buried Concrete	10
9.7	Road Pavement Design	10
10 SC	DAKAWAY DRAINAGE	10
11 G/	AS PROTECTION REQUIREMENTS	11
11.1	DDUCTION1DESCRIPTION1IOUS WORK2WORK2Dynamic Sampler Boreholes2Dynamic Sampler Boreholes2Dynamic Probes3Iand-excavated Pits3isoakaway Tests3BRATORY TESTING3Beotechnical3Seotechnical3Seotechnical4IND AND GROUNDWATER CONDITIONS4Varistone Rock Formation5Sroundwater5Sroundwater5Sroundwater5Sondwater6Contamination5AN HEALTH QUANTITATIVE RISK ASSESSMENT6Vaseults6CHEMISTRY6Results6Nester Classification and Soil Re-Use9Proposed Redevelopment9Stound Floor Slabs10Scavardions9Sround Floor Slabs10Scavardions9Stoud Floor Slabs10Scavardions9Stoud Floor Slabs10Scavardions9Stoud Reconsent11Arepretation results11Strandions9Stoud Results11Strandions11Strandions11Strandions11Strandions11Strandions11Strandions11Strandions11Strandions11Strandions11Strandions11	
11.2	Interpretation of Results	
11.3	Interpretation	12
	DNCLUSIONS AND RECOMMENDATIONS	
12.1	Contamination and Remediation	13

13 RE	FERENCES	14
12.5	Geotechnical	13
12.4	Soakaways	13
12.3	Buried Services	13
12.2	Gas Protection Measures	13

APPENDICES

Appendix A	Evolorator	Hole Location	Plan and	Site Proposals
Appendix A	Explorator		Pidii dilu	Sile Proposais

- Appendix B Exploratory Hole Records
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Chemical Laboratory Test Results
- Appendix E Soakaway Results
- Appendix F Gas Monitoring Results
- Appendix G Photographs of the Site
- Appendix H CLEA 1.07 Worksheets
- Appendix I Limitations

SITE INVESTIGATION REPORT

LAND OFF BERRY HILL ROAD, ADDERBURY, BANBURY. OX17 3HF

1 INTRODUCTION

The Brownfield Consultancy was instructed by Hayfield Homes Construction Ltd and Hollins Strategic Land to carry out a site investigation at the above site.

It is proposed to construct a number of residential houses at the site with associated infrastructure, including an attenuation basin in the north of the site. Access is to be provided off Berry Hill Road. A proposed layout is included in Appendix A.

Previously, a Desk Study Report was undertaken by Betts Geo Consulting Engineers in July 2017 (Ref:- 17HSL004/DS) and Infiltration Testing was undertaken by Brownfield Solutions (Report Ref: SM/C4304/8800) dated September 2019. We understand that these reports are assigned to Hayfield Homes Construction Ltd. The findings of the Desk Study are discussed in Section 3 and the Infiltration Testing in Section 10.

The purpose of the site investigation is to provide an assessment of the geotechnical engineering properties of the soils and the extent of any soil contamination at the site. The information which is gathered is used to construct a conceptual site model which includes an understanding of potential contaminant sources, pathways and receptors. The Contamination Assessment has been carried out with reference to CLR 11 (Model Procedures for the Management of Land Contamination), as well as Environment Agency Guidance for the Safe Development of Housing on Land Affected by Contamination (R&D Publication 66-2008), BS 10175 (Code of Practice for the Investigation of Potentially Contaminated Sites) and Environment Agency's online Guidance "Land Contamination: Risk Management".

This report is subject to limitations which are set out in Appendix I. This report is provided in the context of the stated development proposals and should not be used in a different context.

2 SITE DESCRIPTION

The site is roughly rectangular in shape, with its long axis north-south and covers an area of approximately 4 hectares. The site is accessed via two metal gates, in the southeast corner, off Berry Hill Road. The majority of the site is undeveloped and consists of a number of agricultural fields separated by electric fencing. The fields are used for horse grazing. A stable area and a riding arena are located along the eastern boundary of site. Areas of localised Made Ground were noted within the stable area.

The topography of the site dips in a northerly direction. Levels along the northern border of site range between 97m AOD - 100m AOD and levels along the southern border of site range between 109m AOD - 100m AOD. There is also a 'v' shaped depression running north-south down the centre of the site, possibly indicative of a dry valley.

Photographs of the site are presented in Appendix G.

3 PREVIOUS WORK

The salient findings of the Betts Geo Desk Study Report are presented below:-

- Geologically, the main development area is underlain by the Marlstone Rock Bed which in turn is underlain by the Dyrham Formation. The Dyrham Formation is shown to outcrop in the far north of the site.
- The Marlstone Rock Bed is classed as a Secondary A Aquifer. Thus groundwater stored in this formation is considered vulnerable to pollution.
- The Marlstone Rock Bed is a metalliferous deposit and is known to contain highly elevated concentrations of metals, for example arsenic.
- The site is within a high probability radon area as greater than 30% of properties are above the action level. Full radon protective measures may be necessary in the construction of new dwellings or extensions.
- The nearest controlled surface water is an unnamed drain located 66m North. This drain leads into the Sor Brook.
- The site has remained undeveloped until circa 2006, when a path/road and horse stables are shown on the eastern boundary of the site. The surrounding area has a history of allotments immediately east and west and 30m south between circa 1900/1922 1977, a gas works 20m south west between circa 1922 1977 and a sewage works 20m north between circa 1922 1999. Residential development began to the southwest circa 1977.
- Potential sources of 'on-site' soil contamination include Made Ground associated with the Stable Block and potentially elevated concentrations of metalliferous contaminants associated with the local geology. Potential sources of 'off-site' soil contamination include the Gas Works 20m SW and the Sewage Works 20m N.
- There are no waste management facilities or landfill sites within 250m of the site. BettsGeo concluded that possible sources of ground gas include the Gas Works 20m SW and the Sewage Works 20m N. There are also two potentially infilled land entries located 96m S and 116m SE.

4 FIELDWORK

The fieldwork was carried out on 20th and 21st December 2021 and comprised five dynamic sampler boreholes, ten dynamic probes, five hand-excavated pits and two soil infiltration tests in pits.

The site work was undertaken under the supervision of The Brownfield Consultancy, with the ground investigation procedures and sample descriptions based on BS 5930 (2020) 'Code of Practice for Site Investigations' and BS 10175:2011+A2:2017 "Investigation of potentially contaminated sites - code of practice". The locations of the exploratory holes are shown on the Drawing included in Appendix A. The full details of the fieldwork undertaken are summarised in the following sections.

4.1 Dynamic Sampler Boreholes

The boreholes, designated WS1 to WS5, were advanced to depths of 3.80m to 4.45m below existing ground level. The windowless sampling technique utilises a lightweight tracked rig to advance the borehole in 1m stages using 1m long steel sampler tubes containing plastic liners, into which the substrata deposits are driven, at diameters of 100mm reducing to 70mm. The soils are then recovered from each sampler tube as continuous core samples, which are then

logged and sub-sampled on site. Standard Penetration Tests (SPTs) were undertaken in accordance with BS EN ISO 22476-3:2005+A1:2011 at approximately 1.0m intervals.

Standpipes were installed in boreholes WS1, WS2 and WS3 to facilitate ongoing monitoring of the groundwater and ground-borne gases. The standpipe response zones were from 1m to the base of the borehole.

4.2 Dynamic Probes

The dynamic probes, DP1 to DP10 were advanced to depths of 2.20m to 7.00m, many being terminated upon refusal. The purpose of the probing was to provide additional numerical data on ground strength and highlight any excessively compressible/low density zones.

The super-heavy dynamic probe test (DPSH) used, comprises a 63.5kg weight falling through a constant drop of 760mm, driving a solid 51mm diameter steel cone of 90° angle into the deposits under test. The relative density of the deposit is determined by recording the number of blows per 100mm of penetration. The probe provides a continuous profile of the relative density of the soils and the energy and dynamics of the test are similar to that of the Standard Penetration Test (SPT) undertaken in the boreholes. Refusal is defined as a blow-count of greater than thirty for a single 100mm increment of penetration.

4.3 Hand-excavated Pits

6No. hand dug pits were excavated using hand tools around the main Stable Block buildings (HP1, HP2 and HP3), the Riding Arena (HP4), a small bund located immediately south of the Riding Arena (HP5) and within the road construction (HP6). The pits were excavated to depths of 0.60m to 1.00m proving virgin Marlstone Rock Bed at each location with the exception of HP5. The bund was investigated on the second day of fieldwork using the excavator.

Photographs of the pit locations are presented in Appendix G

4.4 Soakaway Tests

Two pits, designated SA1 and SA2, were excavated for the purposes of conducting soil infiltration tests to obtain parameters for soakaway design. The pit dimensions were accurately measured, then rapidly filled with water from a mobile bowser and the time taken for the water to drain recorded in increments in accordance with the methods of BRE 365 "Soakaway Design". The results of the tests are presented in Appendix E.

5 LABORATORY TESTING

5.1 Geotechnical

A programme of laboratory testing was scheduled to determine the geotechnical and geochemical properties of selected soil samples obtained from the investigation. The details of the geotechnical testing are summarised below:-

 Table 1
 Summary of Geotechnical Laboratory Testing Suites

Determinant	No
BRE SD1 Suite B (sulphate, pH etc.)	6
Atterberg limits including moisture content	6
Particle Size Distribution (sieve only)	2

The tests were carried out in accordance with BS1377 (1990) "Methods of test for Soils for Civil Engineering purposes" and Building Research Establishment Special Digest 1 "Concrete in Aggressive Ground". The results of the testing are presented in Appendix C.

5.2 Environmental

A programme of chemical laboratory testing was scheduled on 19No. soil samples taken from near surface soils recovered from the exploratory holes. The samples were placed into suitable containers for the required chemical analysis.

All samples were transported to I2 in Watford which is accredited under UKAS and MCerts. The following table summarises the contaminants scheduled:-

Summary	y of Soil Chemical Laboratory Testing Suites
••••••	

Determinant	No
Extended Metals Suite	13
Speciated polycyclic aromatic hydrocarbons (PAH)	6
Asbestos	8
TPH Texas Banded	3
Physiologically Based Extractive Testing (PBET)	2
Waste Acceptance Criteria (WAC)	1

The results of the laboratory chemical testing are presented in full in Appendix D.

6 GROUND AND GROUNDWATER CONDITIONS

6.1 Strata Encountered

According to BGS online mapping, the site is underlain by the Marlstone Rock Formation, described as ferruginous limestone and ironstone. Although the exploratory holes confirmed the presence of Marlstone Rock beds, their composition was highly variable.

A summary of the strata encountered is set out in the following sections, but for full details and descriptions, reference should be made to the exploratory hole records presented in Appendix B.

6.2 Topsoil

With the exception of the hand dug pits (HP), topsoil was encountered in all the exploratory holes and mainly consisted of slightly clayey, slightly gravelly sand. Thicknesses of 0.10m to 0.50m were encountered.

6.3 Made Ground

Made Ground was encountered in the hand excavated pits only.

In HP1-HP3 (Stable Block), a thin layer (0.10-0.20m) of black sandy gravel, dominated by tarmac was encountered. Larger boulder sized tarmac and paving slab were also encountered.

HP4 in the riding arena proved 0.10 of sand over a geotextile over 0.16m of medium and coarse gravel of limestone. HP5 was located in the small bund south of the Riding Arena and 0.80m of reworked Marlstone Rock Bed was recorded. A return visit to the bund with the

excavator proved this deposit to the top of the Marlstone Rock Bed. The origin of the bund is the 0.26m scrape of virgin soil from the Riding Arena.

HP6 in the entrance road encountered a 0.14m layer of black sandy gravel again dominated by tarmac overlying a 0.08m layer of red brick and limestone gravel.

6.4 Marlstone Rock Formation

The Marlstone Rock was found as a seemingly random succession of deposits of variable composition, although the upper layer was generally a firm, variably sandy and variably gravelly clay, but this was not the case at all locations.

Many beds consisted of variably clayey and variably sandy limestone gravel. However, in some cases, the gravel was a result of the drilling process breaking up partially intact limestone beds.

Further layers of firm or soft, sandy gravelly clays were encountered, as were deposits of gravelly fine sand. At depths of 2.40m to 3.60m in four of the boreholes, firm or stiff silt/fine sand was encountered. It is not certain that the latter are actually of the Marlstone Rock formation.

At most locations, SPTs and dynamic probes indicated the upper 2.00m to 3.00m of the deposits to be loose/low strength, and occasionally at greater depth.

The Atterberg Limits of six samples of the fine-grained/cohesive beds of the Marlstone Rock Formation were determined which indicated it to be a clays or silts of medium or high plasticity (BS1377). After modification of the Plasticity Indices to account for the proportion of the samples retained on the 425 μ m sieve, the NHBC Chapter 4.2 volume-change potential (VCP) classifications were *low* or *medium*.

6.5 Groundwater

Groundwater was not observed in the exploratory holes during drilling, other than a seepage at 2.00m in WS2. Monitoring of the standpipes installed to 4m depth in WS1, WS2 and WS3 also indicated dry conditions.

6.6 Contamination

Visual and/or olfactory evidence of contamination was not recorded in any of the exploratory hole locations.

7 HUMAN HEALTH QUANTITATIVE RISK ASSESSMENT

Qualitative assessment of risks may be sufficient in many cases to eliminate the possibility of significant pollutant linkages. However, quantitative risk assessment is formally required to determine whether there is a 'significant possibility of significant harm being caused'. Part IIA of the Environmental Protection Act 1990 recommends that 'authoritative and scientifically based guideline values for concentrations of the potential pollutants in or under the land' be used to quantify the risk posed by contamination.

Under the Planning Regime a quantitative risk assessment can be used to decide whether the site is suitable for the proposed use. In addition, the National Planning Policy Framework (March 2012) also indicates that after remediation as a minimum land should not be capable of being determined as contaminated land under Part IIA.

7.1 Current UK Screening Values

The UK technical guidance for assessing risks to human health is issued from various UK bodies including the Environment Agency (EA), DEFRA, Contaminated Land: Applications in Real Environment (CL:AIRE), Chartered Institute of Environmental Health (CIEH) and Land Quality Management (LQM) Ltd (part of the University of Nottingham).

New and updated screening values in the form of provisional Category four Screening Levels (C4SL) (published in 2014) and Suitable for Use Levels (S4UL) (published 2015) have been produced by defra and CIEH / LQM respectively using modified versions of the EA's Contaminated Land Exposure Assessment (CLEA) software.

7.2 C4SL

Provisional C4SL have been derived by CL:AIRE following guidance and as a tool to assist in applying the Part IIA Category 1-4 classifications to a site. The purpose of the C4SL is to provide a simple test for deciding that land is suitable for use and 'definitely not' contaminated land under Part IIA. They describe a level of risk that is above minimal but is still low.

Six contaminants have been assigned provisional C4SL: arsenic; benzene; benzo[a]pyrene; cadmium; chromium VI and lead for the standard land uses (residential with and without plant uptake, allotments, commercial and public open space (parks and residential).

The C4SL are also considered suitable to be used under the planning regime.

7.3 S4UL

The LQM / CIEH S4UL represent generic assessment criteria based on minimal or tolerable risk that are intended to be protective of human health. They represent values above which further assessment of the risks or remedial actions may be needed.

S4UL have been derived for a comprehensive list of organic and inorganic determinants.

8 SOIL CHEMISTRY

8.1 Results

The results of chemical testing of 19No. samples of near surface soils are compared with the S4UL and C4SL for a residential with plant uptake end use. These comparisons are summarised in the following table. Exceedances of the relevant guideline value are highlighted in bold:-

Determinant	MaximumLQM/CIEH S4ULMeasuredResidential withConcentrationPlant Uptake(mg/kg)(mg/kg)		No. of tests carried out	No. of exceedences	
Arsenic	280	37	13	11	
Cadmium	<dl< td=""><td>11</td><td>13</td><td>0</td></dl<>	11	13	0	
Chromium (total)	630	910	13	0	
Mercury	<dl< td=""><td>1.2</td><td>13</td><td>0</td></dl<>	1.2	13	0	
Lead	75	200	13	0	
Nickel	170	180	13	0	
Selenium	<dl< td=""><td>250</td><td>13</td><td>0</td></dl<>	250	13	0	
Copper	29	2400	13	0	
Zinc	240	3700	13	0	
Naphthalene	<dl< td=""><td>2.3</td><td>6</td><td>0</td></dl<>	2.3	6	0	
Acenaphthylene	<dl< td=""><td>170</td><td>6</td><td>0</td></dl<>	170	6	0	
Acenaphthene	<dl< td=""><td>210</td><td>6</td><td>0</td></dl<>	210	6	0	
Fluorene	<dl< td=""><td>170</td><td>6</td><td>0</td></dl<>	170	6	0	
Phenanthrene	<dl< td=""><td>95</td><td>6</td><td>0</td></dl<>	95	6	0	
Anthracene	<dl< td=""><td>2400</td><td>6</td><td>0</td></dl<>	2400	6	0	
Fluoranthene	<dl< td=""><td>280</td><td>6</td><td>0</td></dl<>	280	6	0	
Pyrene	<dl< td=""><td>620</td><td>6</td><td>0</td></dl<>	620	6	0	
Benzo(a)anthracene	<dl< td=""><td>7.2</td><td>6</td><td>0</td></dl<>	7.2	6	0	
Chrysene	<dl< td=""><td>15</td><td>6</td><td>0</td></dl<>	15	6	0	
Benzo(b)fluoranthene	<dl< td=""><td>2.6</td><td>6</td><td>0</td></dl<>	2.6	6	0	
Benzo(k)fluoranthene	<dl< td=""><td>77</td><td>6</td><td>0</td></dl<>	77	6	0	
Benzo(a)pyrene	<dl< td=""><td>2.2</td><td>6</td><td>0</td></dl<>	2.2	6	0	
Indeno(1,2,3-c,d)pyrene	<dl< td=""><td>27</td><td>6</td><td>0</td></dl<>	27	6	0	
Dibenzo(a,h)anthracene	<dl< td=""><td>0.24</td><td>6</td><td>0</td></dl<>	0.24	6	0	
Benzo(ghi)perylene	<dl< td=""><td>320</td><td>6</td><td>0</td></dl<>	320	6	0	

8.2 Interpretation – Metals and PAH

With the exception of arsenic, the results did not record exceedances of the guideline values for metal or for polycyclic aromatic hydrocarbons determinants. Concentration exceedances for arsenic were reported in 11 out of the 13 samples analysed. Those locations that recorded arsenic below the guideline value were from HP4 at 0.05m (imported sand in the Riding Arena) and HP6 at 0.05m (road construction). A wide spectrum of concentrations ranging from 81mg/kg to 280mg/kg with an arithmetic mean of 155mg/kg were recorded.

As discussed in Section 3, the source of the arsenic is the metalliferous Marlstone Rock Formation.

The most widely used and well-established laboratory test to assess the bio-accessibility of arsenic contaminants is PBET analysis (physiologically based extraction technique). The test mimics the conditions in the human intestine and stomach and gives results for the relative bio-accessibility of, in this instance, arsenic, as a percentage. The percentage can then be used with a risk assessment tool such as CLEA (v1.07) to calculate a site-specific assessment criteria (SSAC).

Two tests were undertaken on WS1 (0.15m) and WS4 (0.50m) which recorded arsenic concentrations of 100mg/kg and 210mg/kg respectively. The results reported bio-accessible fractions of 16.1% and 7.1%.

The CLEA worksheet showing the calculation is included within Appendix C, which uses the site-specific bio-accessibility of 11.6% rather than the default value of 100% which gives the current SGV of 37mg/kg. In terms of the worksheet, only the relative bioavailability via soil ingestion was altered, as the contribution from the inhalation pathways for residential end use only accounts for 0.3% of the exposure pathway.

Using this site-specific data for bio-accessibility, a SSAC of 159mg/kg is calculated, which exceeds the arithmetic mean for the site (155mg/kg) but is below the concentrations recorded in only the following four locations:-

WS2 (1.00m)	120mg/kg
WS2 (1.50m)	280mg/kg
WS4 (0.50m)	220mg/kg
WS5 (0.10m)	180mg/kg

It must be borne in mind that the concentrations in WS2 are not considered applicable to the exercise due to their depth below ground level.

On this basis, the arsenic concentrations reported in the soils analysed, which are considered of natural source rather than of anthropogenic, are not considered a risk to human health.

8.3 Hydrocarbons

Visual and olfactory evidence of hydrocarbon contamination was not recorded during the field investigation.

There is little merit in scheduling Made Ground containing tarmac for extensive hydrocarbon testing because tarmac is known to contain elevated concentrations of semi-volatile and heavy end aliphatic / aromatic hydrocarbons.

Betts Geo identified a former Gas Works immediately adjacent to the south west boundary. Thus hydrocarbon analysis was conducted on soils from WS2 at 1.00m which was located within 3m of the southwest boundary to determine whether coal tars (or similar) had migrated onto the subject site. The sample was scheduled for 16 PAH and TPH Texas Banded and concentrations were not recorded above the laboratory limit of detection.

Hydrocarbon analysis was also scheduled on soils to determine water pipework selection. This is discussed in Section 12.3.

8.4 Asbestos

The Made Ground encountered in and around the Stable Block and the materials that make up the existing road construction are all considered to be suitable for re-use providing that they are free from asbestos. 8No. samples of granular materials, collected from HP1-HP6, were submitted to an asbestos screen and asbestos was not recorded.

8.5 Waste Classification and Soil Re-Use

Made Ground at the site is considered suitable for re-use under hard surfacings.

Foundation arisings will consist entirely of weathered Marlstone Rock Bed. With regard to the European Waste Catalogue Code 17 05 04 'Stone and soils from uncontaminated sites' should be classified as inert. No evidence of anthropogenic contamination has been identified in the natural soils, therefore in our opinion the Marlstone deposits from this site may be classified as such.

Waste Acceptance Criteria analysis was undertaken on a sample of Marlstone Rock Bed from WS2 at 1.00m bgl. The results of this test indicate that virgin soils of the Marlstone Rock Bed will be classified as Inert Waste. An elevated Loss on Ignition value of 10.2% was recorded. However this can be discounted as the TOC value is <6%.

It must be noted that the soils record elevated concentrations of arsenic. Specific landfill sites may have limiting values of these metals within their environmental permit. Thus we would recommend that this report is submitted to landfill operators for their consultation on waste acceptability prior to costs being assigned to off-site disposal.

9 GEOTECHNICAL ENGINEERING ASSESSMENT

9.1 Proposed Redevelopment

The proposed development is an estate of low-rise housing. The proposed layout is included in Appendix A.

9.2 Summary of Ground Conditions

The exploratory holes revealed the site to be underlain by multi-layered deposits of the Marlstone Rock Formation. These consisted of a generally random succession of firm or soft sandy gravelly clays, clayey sandy gravels and gravelly sands. Firm or stiff silt/fine sand was found at depth at many locations, possibly of different geological origin. The deposits were generally loose/low strength to depths of 2m to 3m, and occasionally at greater depths.

Groundwater was not observed in the exploratory holes during drilling, other than a seepage at 2.00m in WS2. Monitoring of the standpipes installed to 4m depth in WS1, WS2 and WS3 also indicated dry conditions.

9.3 Foundations

Spread foundations bearing in the Marlstone Rock Formation are not recommended unless ground improvement is undertaken. The soils down to 2m to 3m depth are generally loose/low strength and are also of variable composition and are, therefore, susceptible to excessive total and differential settlement under building foundation loads. It is recognised that there may be locations where this is not the case, but it would be necessary to carry out detailed investigation of individual plots, often at close spacings along each building line, to ensure that ground of adequate strength is present beneath the entire building as the soils are variable over short lateral distances.

It is recommended that vibro-replacement (vibrated stone or concrete columns) is considered for ground improvement, which would enable foundations to be placed at 'conventional' depths and be designed assuming a relatively high allowable bearing capacity. Obviously, piling is also an option but is unlikely to be economically advantageous over vibro and would require additional and deeper ground investigation. For either option, it is recommended that specialist contractors are consulted as to the suitability and efficiency of their particular systems in these ground conditions. Attention is drawn to the occasional zones of 'hard drilling' that may be a hindrance to some techniques.

The currently proposed site layout would appear to place the buildings sufficiently distant from any trees. The presence of soils of VCP should not be an issue, therefore.

9.4 Ground Floor Slabs

Given the low strength of the near-surface deposits, it is recommended that ground floors are fully suspended on the foundations. As there are no issues relating to the presence of trees and VCP soil, there are no specific requirements regarding the dimension of the under-slab void.

9.5 Excavations

Shallow excavations should remain stable in the short term and groundwater does not appear to be present at shallow depth. However, caution should be exercised when operating machinery in close proximity to open excavations as the vibrations may further loosen the granular beds. As with all sites, where personnel are required to enter excavations of 1.2m depth or greater, or excavations of any depth that are exhibiting instability, shoring or battering back of the sides should be undertaken.

9.6 Chemical Considerations for Buried Concrete

Chemical testing on six soil samples in accordance with BRE SD1 (2005) "Concrete in aggressive ground", indicated water-soluble sulphate concentrations (SO4 in 2:1 soil aqueous extract) of 10g/l to 43mg/l, and pH values of 6.5 to 7.6. These values, along with a static groundwater regime, place the site in design sulphate class **DS-1** and Aggressive Chemical Environment for Concrete (ACEC) class **AC 1s**. Calculation of the oxidisable sulphides (OS) from the total sulphate and total sulphur results using the method of the digest does not indicate a significant presence of pyrite in the samples. No adjustment to the classifications is required, therefore.

No special precautions are required to protect buried concrete from ground-borne chemical attack.

9.7 Road Pavement Design

A CBR value of 1.5% is considered appropriate for the design of pavements formed in the nearsurface deposits of the Marlstone Rock Formation. It is also recommended that the formation is proof-rolled to highlight any excessively compressible zones that may require additional treatment. This may be a conservative figure for areas where the shallow deposits are formed from predominantly granular soils, but their presence at shallow depth appears to be very localised and impractical to delineate.

10 SOAKAWAY DRAINAGE

Infiltration Testing was undertaken by Brownfield Solutions (Report Ref: SM/C4304/8800) dated September 2019. Three trial pit soakaway tests were performed denoted SA101, SA102 and SA103. The following conclusions were made:-

The tests in SA101 and SA103 were able to be repeated three times with infiltration rates ranging between 1.30x10-4 m/s to 1.68x10-4 m/s, indicating good drainage conditions and compliance with BRE 365. In contrast, poor infiltration was recorded in SA102.

It is noted that both SA101 and SA103 were completed in the southern half of the site at a higher elevation to SA102, which was completed in a depression in the north of the site. It was also noted that there was an increase in gravel content with depth in SA103 and SA101, compared to SA102 which contained rare gravel fragments. The difference in infiltration rates may be at least partially accounted for by difference in gravel content and location on the site.

The Brownfield Consultancy conducted BRE 365 compliant trial pit soakaway tests at locations SA1 and SA2. SA1 was located in the southeast where good infiltration was expected, and SA2 located in the 'depression' (Brownfield Solutions SA102).

In accordance with the digest, three repeat tests were successfully undertaken in SA1. The following soil infiltration rates were obtained:

SA1 2.8 x 10^{-4} m/s, 1.8 x 10^{-4} m/s, 1.4 x 10^{-4} m/s.

Similar results were recorded by Brownfield Solutions.

The test in SA2 was not successful.

The results are presented in Appendix E.

11 GAS PROTECTION REQUIREMENTS

11.1 Ground Gas Monitoring

The Conceptual Site Model identified no waste management facilities or landfill sites within 250m of the site. Betts Geo concluded that possible sources of ground gas include the Gas Works 20m SW and the Sewage Works 20m N. There are also two potentially infilled land entries located 96m S and 116m SE. The risks from these sources are considered to be 'low' however. It was decided therefore that 3No. gas monitoring visits would be undertaken initially, with a view to undertaking further visits if elevated or fluctuating gas concentrations were recorded.

Gas monitoring was undertaken from WS1, WS2 and WS3 on 2nd January, 10th January and 23rd January at atmospheric pressures ranging from 997mb to 1022mb.

11.2 Interpretation of Results

The current guidance on protecting buildings from ground gas hazards is contained in the document CIRIA C665 with updated risk assessment guidance contained within BS8485 (2015).

The level of gas protection is determined by comparing the following parameters to cut-off values prescribed within BS8485 (2015):-

- "Typical Maximum Concentrations" for initial screening purposes.
- Risk based "Gas Screening Values" (GSV) for consideration where the typical maximum concentrations are exceeded.

The GSV is calculated using the following equation and the resulting GSV are compared to the Site Characteristic GSV given in Table 2 of BS8485 (2015).

Maximum gas concentration (%) x worst case borehole flow rate (I/h)

Methane was not recorded during the three visits. The maximum CO_2 concentrations, the maximum flow rate and the screening values for each borehole are summarised in the following table:-

Calculated GSV

Location	Maximum CO ₂ Concentration (% v/v)	Maximum Flow Rate (l/hr)	Gas Screening Value (I/hr)
WS1	2.1	0.1	0.0021
WS2	2.0	0.1	0.0020
WS3	0.7	0.1	0.0007

The ground investigation has identified a maximum carbon dioxide concentration of 2.1% vol. and a worst case flow rate of <0.1 l/hr, giving a maximum GSV of 0.0021 l/h. These values are then compared to Table 2 within BS8485 (2015).

11.3 Interpretation

Referring to Table 2 of BS8485 (2015), the site can be categorised as a Characteristic Situation 1 (CS1). Gas protection measures are not required. The results indicate that further gas monitoring visits are not necessary.

The gas monitoring records are presented in Appendix F.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 Contamination and Remediation

Laboratory analysis of soil has determined that remediation is not required. Arsenic concentrations are elevated in the soils analysed. However these are considered of natural source rather than of anthropogenic, are not considered a risk to human health. The reader is referred to Section 8.2.

A thin layer of granular Made Ground is present along the access road and in proximity to the Stable Block. This material is acceptable for re-use below future hard surfacings. Oversized objects will need to be removed.

It is possible that additional hotspots of contamination may be encountered during groundworks. The principal contractor should contact The Brownfield Consultancy who will attend site and advise on the best course of action in consultation with the local planning authority.

12.2 Gas Protection Measures

3No. gas monitoring visits have been undertaken at the site and gas protection measures are not required. The Desk Study by Betts Geo identified that the site is within a high probability radon area as greater than 30% of properties are above the action level. Full radon protective measures may be necessary in the construction of new dwellings or extensions.

12.3 Buried Services

Laboratory trials have determined that high concentrations of organic contaminants such as hydrocarbons and volatile organic compounds can degrade plastic water supply pipework. The Desk Study confirms that the site has not had a previous contaminative land use. Samples of soil from WS1 (0.90m), WS2 (1.00m), WS3 (0.90m) and WS4 (0.560m) were submitted to hydrocarbon analysis (TPH Texas Banded and 16 USEPA PAH) and concentrations were not recorded above the laboratory limit of detection.

Hence standard pipework is considered suitable for this development.

12.4 Soakaways

Infiltration is considered feasible in the south of the site. The reader is referred to Section 10.

12.5 Geotechnical

The reader is referred to Section 9 where the geotechnical conclusions are presented in full.

Prepared and approved by

waddo

JIM TWADDLE BSc (Hons) CGeol FGS Director

BC592 RE001 31.01.2022

13 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011+A2:2017 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution BS 5930:2020 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination*. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012 CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings London, CIRIA British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings Milton Keynes: BSI

British Standards Institution (2013) BS 8576:2013 *Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's),* Milton Keynes: BSI BRE : 2005 : Special Digest 1 : Concrete in Aggressive Ground. Building Research Establishment.

BS 1377 : 1990 : Methods of Test for soils for civil engineering purposes. British Standards Institution, London.

BS 5930 : 2020 : Code of practice for site investigations. British Standards Institution, London.

BS 8485 : 2007 : Code of practice for the characterization and remediation from ground gas in affected developments. British Standards Institution, London.

BS 10175 : 2015 : Investigation of potentially contaminated sites - code of practice. British Standards Institution, London.

Burland J B and M C Burbidge : 1985 : Settlement of foundations on sand and gravel. Proc. ICE, Part 1, Vol 78.

Clayton C R I : 1995 : The Standard Penetration Test (SPT) : Methods and use. CIRIA Report 143. Construction Industry Research Information Association, London.

Croney D and J C Jacobs : 1967 : The frost susceptibility of soils and road materials. RRL Report LR90. Transport Research Laboratory (formerly Road Research Laboratory), Crowthorne

Drinking Water Inspectorate : 2010 : What are the Drinking Water Standards?

Driscoll R : (1983) The influence of vegetation on swelling and shrinking of clay soils in Britain. Geotechnique 23 (2): 93-105

Gibbs H J and W G Holtz : 1957 : Research on determining the density of sands by spoon penetration testing. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, London.

IAN 73/06 : 2009 : design Guidance for Road Pavement Foundations (Draft HD25).

Land Quality Management & Chartered Institute of Environmental Health (2015) The LQM/CIEH S4UL for Human Health Risk Assessment - LQM CIEH. Land Quality Press, Nottingham.

Nixon I K : 1982 : Standard penetration test. State of the art report. Proceedings of the Second European Symposium on Penetration Testing, Amsterdam.

Peck R B, W E Hanson and T H Thornburn : 1953 : Foundation Engineering, 1st Edition. Wiley, New York.

Peck R B, W E Hanson and T H Thornburn : 1974 : Foundation Engineering, 2nd Edition. Wiley, New York.

Rodin S, B O Corbett, D E Sherwood and S Thorburn : 1974 : Penetration testing in the UK, State of the art report. Proceedings of Symposium on Engineering Behaviour of Glacial Materials, Birmingham.

Skempton A W : 1986 : Standard Penetration Test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique 36, No 3.

Sowers G F: 1979: Introductory Soil Mechanics and Foundations. Macmillan.

Stroud M A : 1974 : The standard penetration test in insensitive clays and soft rocks. Proceedings of European Symposium on Penetration Testing, Stockholm.

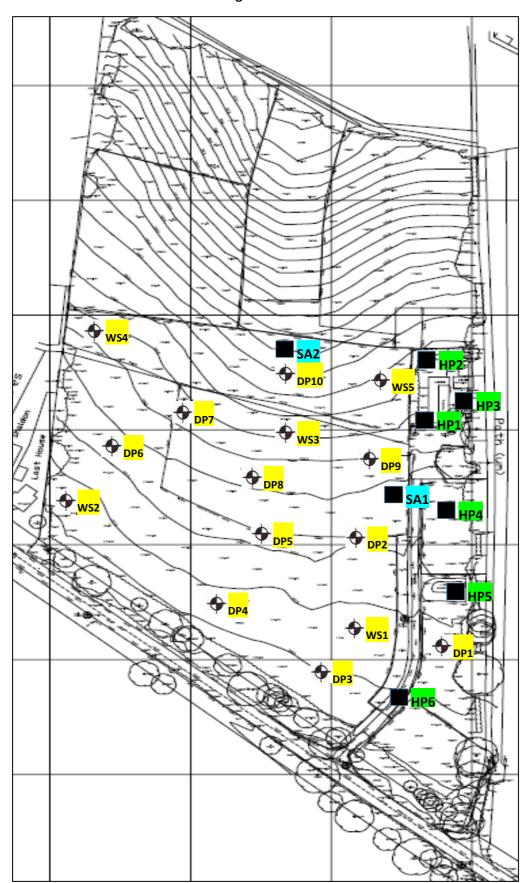
Stroud M A and F G Butler : 1975 : The standard penetration test and the engineering properties of glacial materials. Proceedings of Symposium on Engineering Behaviour of Glacial Materials, Birmingham.

Stroud M A : 1988 : The standard penetration test - its application and interpretation on Penetration Testing in the UK, Birmingham. Thomas Telford, London.

Terzaghi K and R B Peck : 1948 : Soil Mechanics in Engineering Practice, 1st Edition. John Wiley, London.

Terzaghi K and R B Peck : 1967 : Soil Mechanics in Engineering Practice, 2nd Edition. John Wiley, London.

Tokimatsu K : 1988 : Penetration testing for dynamic problems. Proceedings of First International Symposium on Penetration Testing.


TPH Criteria Working Group : 1997: . Total Petroleum Hydrocarbon Group Series. Volume 3. Selection of Representative TPH Fractions Based on Fate and Transport Considerations.

APPENDIX A

Exploratory Hole Location Plan

Site Proposals

BERRY HILL ROAD, ADDERBURY. OX17 3HF

Investigation Locations

BERRY HILL ROAD, ADDERBURY. OX17 3HF

APPENDIX B

Exploratory Hole Logs

BOREHOLE LOG	J
---------------------	---

Project	Project BOREHOI								OLE	No					
Ber	rry Hil	l Road	, Ado	dert	oury.								- w	21	
Job No			Date				Ground Lo	evel (m)	Co-Oi	rdinates ()			V,	51	
BC	C592			20)-12-2	1				E 46,964	.0 N 34,	777.0			
Contractor	•												Sheet		
The	e Brow	vnfield	Con	sult	ancy I	Ltd							1 c	of 1	
SAMPLES & TESTS										1	ent/				
Depth	Type No	Test Resu	t lt	Water	Reduce Level	d Legend	Depth (Thick- ness)			DESCH	RIPTION			Geology	Instrument/ Backfill
0.15	ES						0.20	subangular	Brown slightly clayey slightly gravelly SAND. Gravel is angular and subangular fine and medium occasionally coarse limestone. (TOPSOIL) Firm brown slightly sandy slightly gravelly CLAY. Gravel is angular						
	EC						(0.80)	Firm brown and subang	n slightly sa gular fine to	o coarse lim	y gravelly (estone. (MA	LAY. Grave	ROCK BED)		
0.90 1.00 1.00 1.00	ES B D	N10 2,3, 2,2,3	/	-			- (0.60)			ery clayey (ne. (MARL		f angular and OCK BED)	subangular		
-				Ī			1.80				VEL and C	COBBLE of I	limestone.		
-						0-0		Medium de	ense brown	sandy very	clayey GR	AVEL of ang	gular and		
2.00	D					0-A 0 /	€	subangular	fine to coa	irse limesto	ne. (MARL	STONE RO	CK BED)		
2.00	2.00 N14		N14 $\left[\begin{array}{c} \rho & \rho \end{array} \right] (0.70)$												
-		3,3,5	,3												
-							2.50	Brown fine	SAND wi	th shell frag	ments and	rare medium	angular		
							(0.50)	gravel of li BED)	mestone. L	ocally weal	cly cemente	ed. (MARLS	IONE ROCK		
3.00	D			ŀ			3.00	Soft brown	sandy grav	velly CLAY	. Gravel is	angular and	subangular		
3.00		N6 2,1/						fine to coar	rse limestor	ne. (MARL	STONE RO	OCK BED)			
-		$\begin{bmatrix} 2,1/\\ 1,1,2,2 \end{bmatrix}$ $\begin{bmatrix}\\ \end{bmatrix}$ (0.60)													
-							3.60								目
-							×	Very stiff t (MARLST	orown and g	greenish gre K BED ?)	ey well cem	ented SILT /	fine SAND.		
-						× × ×	×	× ·		,					
4.00	D					×××	(0.85)								<u>·⊢</u>
4.00		N49 6,9/					≻								
		10,11,1	2,16			×××	4.45								
2 2 2								Groundwat	ter not enco	ountered.					
							-								
							-								
	ing Dr.	Oureee	and	 W^	nter Ob	oservatio			Chisellin	σ	Water	Added	CENT	Δ ΑΤ	
Date	Time	Dep				ng Dia. mm	Water	From	To	Hours	From	To	GENE REMA		
					epin	Dia. mm	Dpt	1							
ור	All dimensions in metres Scale 1:31.25 Client Hayfield Homes Ltd					Meth Plant		namic Sa	mpling R	ig	Logged By JT				

BOREHOLE LOG	Ĭ
---------------------	---

Project	020010	.00										BOREH	OLE	No
	rry Hil	l Road,		bury.									S2	
Job No	~	I	Date			Ground Le	evel (m)		dinates ()				0L	
	C592		2	0-12-2	1				E 46,859	.0 N 34,	836.0			
Contractor		C 110			. 1							Sheet	6 1	
		nfield C		Itancy I	_td							10	of 1	
SAMPI	LES &	TESTS	er					STRA	TA				50	nent. 11
Depth	Type No	Test Result	Water	Reduce Level	Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
0.20	HV	50kPa	L			0.10	subangular	fine and m	edium occa	asionally co	arse limesto	/		
0.45	HV	90kPa	L			(0.90)	Firm brown fine to coar ROCK BE	se limestor	velly CLA' ne. Locally	Y. Gravel is gravel pred	angular and ominant. (M	l subangular ARLSTONE		
0.70	D							- /						
-						1.00								
1.00	ES	N9 2,1/ 1,2,3,3	3				clayey GRA	AVEL of a	ngular and	subangular	y clayey loc fine to coars ONE ROCK	e limestone.		
1.50	ES	1,2,0,0				?- ≮								
-			Ţ											
2.00	ES	N15 2,2/ 2,4,5,4	-				2.00 Seepa	ge.						
-		2,4,3,4	r			2.50	Firm brown	and green	ish grey we	ell cemented	l SILT / fine	SAND.		
-						(0.50)	(MARLST	ONE ŘOC	K BĚD)					
3.00		N18 5,5/				3.00	GRAVEL	of angular a	and subang	ular fine to	ocally very o	tone.		
-		6,6,3,3	3			(0.70)	Occasional	cobble of	limestone. (MARLSTO	ONE ROCK Om. CPT dri	BED)		
-					000	3.70								
		NUTLINE				3.80				E. (MARLS	TONE ROO	CK BED)		1日
3.80		N67/135r 22,45				-	Borehole d	ry on comp	oletion.					
						- - -								
						-								
						-	11			1				
Bor	Ū.	ogress a						Chiselling	Ĩ	Water		GENE REMA		
Date	Time	Dept	<u>n</u> [Depth	ng Dia. mm	Dpt	From	То	Hours	From	То	KEIVIA		
Bor Date All dimer Sca														
					0							· ·-		
All dimen	nsions in le 1:31.2	metres 25	Client	Hay	tield Ho	omes Ltd	Meth Plant		namic Sa	mpling R	ig	Logged By JT	- -	

BOREHOLE LOG	Ĭ
---------------------	---

Project	520010	00										BOREH	OLE	No
Be	rry Hill	Road,	Adde	rbury.									~~	
Job No		:	Date			Ground Lo	evel (m)	Co-Oi	dinates ()			- VV	S3	
BO	C592			20-12-2	21				E 46,921	.0 N 34,	864.0			
Contractor	•											Sheet		
Th	e Brow	nfield	Consi	ltancy	Ltd							1 0	of 1	
SAMPI	ES &	TESTS	S					STRA	ТА			4		nt/
	Туре	Test	ter –	Reduc	be	Depth							Geology	Instrument/ Backfill
Depth	No	Resul	lt	Leve	Legend	(Thick- ness)			DESCH	RIPTION			Geol	Instrume Backfill
0.30	ES D					(1.50)	subangular (TOPSOIL) Initially fire	fine and m) m becomin ngular and	g soft at 0.8 subangular	sionally co	D. Gravel is a arse limeston sandy gravell rse limestone.	le/		
	ES D	N7 2,1/ 2,2,1,				1.60	Firm brown	n slightly g	ravelly sand	ły CLAY. (Gravel is angu	ular and		
2.00 2.00	D	N11 1,1/ 2,3,3,				-(0.80)	shell fragm Firm brown	ents. (MAI	RLSTONE	ROCK BE	arse limeston D)			
3.00	ES	N16 3,4/ 3,4,4,				(0.60) 3.00	Stiff fissure staining alc (MARLST) 3.00 - 4.00	ed brown at ong fissure ONE ROC	nd greenish surfaces. Lo K BED ?)	grey SILT ocally very	/ fine SAND. weakly ceme	Ochre onted.		
4.00		N24 6,5/ 5,6,6,	.7		× ×	* * (1.45) * * * * * * * * * * * * *								
						- - -	Groundwat	er not enco	ountered.					-
Bor	ing Pro	ogress			bservati			Chiselling	g	Water	Added	GENE		
Date	Time	Dep	oth	Cas Depth	ing Dia. mm	Water Dpt	From	То	Hours	From	То	REMA		
All dimer Scal														
All dimer			Clier	t Hay	field Ho	omes Ltd	Meth]	Logged By		
Scal	le 1:31.2	5					Plant	Used Dy	namic Sa	impling R	lig	J	-	

BOREHOLE LOG	J
---------------------	---

Project											BOREH	OLE	No
	rry Hill	Road	, Add	erbury.							w	S4	
Job No			Date			Ground L	evel (m)	Co-Ordinate	es ()		VV.	54	
	C592			20-12-2	1			E 46	,866.0 N 34	4,904.0			
Contractor		~	~								Sheet		
				ultancy	Ltd						1 0	of 1	
SAMPI	LES &	TEST	S	5				STRATA				2	nent/
Depth	Type No	Test Resu		Reduce	Legend	Depth 1 (Thick- ness)			ESCRIPTION			Geology	Instrument/ Backfill
0.10	ES				$\frac{\sqrt{I_{\chi}}}{I_{\chi}} \frac{\sqrt{I_{\chi}}}{\sqrt{I_{\chi}}}$	· + (0.00)	medium occa	D with rare graves of the second seco	limestone. (To	OPSOIL)			
-							Firm brown s subangular fi	slightly gravelly ne to coarse lin	very sandy Cl nestone. (MAR	LAY. Gravel	is angular and CK BED)		
0.50	0.5					2 - 4- 7 - (0.80)	Medium dens coarse GRAV		y sandy angula ne. Medium co	r and subangu	ilar medium to		
1.00		N12 3,3/ 4,4,2	/			<u>≮</u> 2 1.30							
-						4	subangular m	se brown sandy aedium to coars RLSTONE RC	e GRAVEL of	very clayey a limestone. N	angular and Iedium cobble		
1.80	ES				0 7 0	1							
2.00	D	N2(4,4,	/			4	Medium dens coarse GRAV	se brown claye VEL of limesto NE ROCK BEI	ne. Medium co	r and subangu bble content.	ılar medium to		
-		5,5,5	,5			(0.90)							
-						- √ 2.90		se brown sandy	alayay logally	vom alavau	manlar and		-
3.00		N25 5,5/ 6,9,5	/			(0.50)	subangular m content. (MA	edium to coars RLSTONE RC	e GRAVEL of				
-						3.40	Stiff brown a	nd greenish gre IARLSTONE I		SAND. Local	ly well		
4.00		N2(3,3, 5,5,5	/			(1.05)							
- -					× ×	4.45	Groundwater	not encountere	od				-
- - -						- - -	Groundwater	not encountere	su.				
Bo	ring Pro	ogress	and \	Vater O			Cł	niselling	Wate	r Added	GENE	RAL	
Date	Time	Dep	oth	Cas Depth	ing Dia. mm	Water Dpt	From	То Но	urs From	То	REMA	RKS	
All dimen				-									
All dimer	isions in	metres	Clie	nt Hav	field Ha	omes Ltd	Method	1/			Logged By		
Sca	le 1:31.2			1149		<i>L</i> iu		sed Dynami	c Sampling	Rig	Л		

BOREHOLE LOG

Project													BOREH	OLE	No
Be	rry Hil	l Road	l, Ad	derbı	ury.								- w	26	
Job No			Date				Ground Le	evel (m)	Co-Or	dinates ()			V.	50	
	C592			20-	12-21					E 46,971	.0 N 34,	876.0			
Contractor													Sheet		
Th	e Brow	nfield	l Con	sulta	ncy L	.td							1 0	f 1	
SAMPI	LES &	TEST	S	r –					STRA	TA				y	ent/
Depth	Type No	Tes Resu		Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
0.10	ES					$\frac{\sqrt{1_2}}{\sqrt{1_2}} \frac{\sqrt{1_2}}{\sqrt{1_2}}$	- (0.40)		fine and m			ets. Gravel is arse limestor			
0.40	ES					0,00	0.40	Brown slig coarse GRA (MARLST	AVEL of li	mestone. M	ndy angular Iedium cob	and subanguble content.	lar medium to		-
0.80	D			-			0.80	Firm brown	sandy ver	y gravelly (CLAY. Gra	vel is angula	r and		-
1.00	В	N1 4,2 2,3,2	2/				L	Loose brow medium to	subangular fine to coarse limestone. (MARLSTONE ROCK BED) Loose brown slightly clayey slightly sandy angular and subangular medium to coarse GRAVEL of limestone. Medium cobble content. (MARLSTONE ROCK BED)						
2.00		N8 1,1					2.00	Soft brown fine to coar	sandy grav	velly CLAY	. Gravel is STONE RC	angular and s OCK BED)	subangular		-
2.40	D	1,3,1					(0.40) 2.40						y SILT / fine		-
2.90		N4 5,9 9,11,1)/			× × × × × ×	- (1.55)	SAND. Ocl	hre staining ecoming ir O ?)	g along fissu creasingly	ure surfaces	. Locally ver	y weakly AARLSTONE		
3.50		N5 4,8 9,11,1	3/			× × × × × × × × × × × × × × × × × × ×	- 3.95								
Boi Date All dimer							- - - - - - - - - - -	Groundwat	er not enco	untered.					
Bor	ing Pr	ogress	and			servati		(Chiselling	5	Water	Added	GENE	RAL	<u> </u>
Date	Time	De	pth	Dep	Casii	ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
				-											
All dimensions in metres Scale 1:31.25 Client Hayfield Homes Ltd Method/ Plant Used I							Logged By JT								

Phone: 078	5288	1086			INIA		9			
Project									TI	RIAL PIT No
Ber	ry F	Iill Road	, Adderb	oury.						HP1
Job No			Date		Ground Level (n	n) Co-O	rdinates ()			
BC	2592	2	20	-12-21						
Contractor									Shee	t
The	e Bro	ownfield	Consult	ancy Ltd						1 of 1
					STRATA			SA	MPL F	ES & TESTS
								Depth	_	Remarks/Tests
Depth	No				DESC	RIPTION				
0.00-0.20		Bla	ck sandy (GRAVEL of ar	gular to subrounded	d fine to coarse t	armac and some unknown			
			-		armac. (MADE GR			0.10	ES	
0.20-0.90		$-\circ$ Firr	n brown s oarse lime	lightly sandy sl estone. (MARL	lightly gravelly CLA STONE ROCK BE	AY. Gravel is an 2D)	gular and subangular fine			
0.90		· · · · · ·	terminated	l at target depth	1.			-		
Shoring/S Stability:	Supp	ort:							C D	ENERAL EMARKS
Stability:										
						N			shallow environn	hand dug pit for nental sampling.
•			►			1				
		А		Ŧ						
D			В			M				
		С		¥						
						1				
All dimen	sions	in metres	Client	Hayfield H	Iomes Ltd	Method/ Plant Used	Hand tools.]	Logged	By JT
50	ale 1:	23				i min Oscu	11anu 10018.			JI

hone: 07852881086							
Project					T	RIAL PIT No	
Berry Hill Roa	id, Adderbury.						
Job No	Date	Ground Level (m	n) Co-Ordin	nates ()		HP2	
BC592	20-12-21						
Contractor			•		Shee	t	
The Brownfiel	d Consultancy Ltd					1 of 1	
		STRATA		SA	MPLF	S & TESTS	
		51101111		Depth	-	Remarks/Test	
0.10-1.00	elack sandy GRAVEL of ome unknown lithologies irm brown slightly sandy o coarse limestone. Becon ED)	angular to subrounded s. One cobble of paving slightly gravelly CLA	g slab. (MADE GRO Y. Gravel is angula	DUND) ar and subangular fine	ES		
1.00 P	it terminated at target de	pth.					
Shoring/Support: Stability:					R	ENERAL EMARKS	
A D C	B ∎		и 		Shallow environn	hand dug pit for nental sampling.	
All dimensions in metre Scale 1:25	es Client Hayfield	Homes Ltd	Method/ Plant Used	Hand tools.	Logged	By JT	

hone: 078	528810	086		INIA		9			
Project								TF	RIAL PIT No
Ber	rry Hil	ll Road, A	Adderbury.						
Job No		Da	ate	Ground Level	(m) Co-O	rdinates ()		1	HP3
BC	2592		20-12-21						
Contractor		I						Sheet	t
The	e Brov	vnfield C	onsultancy Ltd						1 of 1
				STRATA			SA	MPLE	ES & TESTS
							Depth	No	Remarks/Test
Depth	No				CRIPTION				
0.00-0.16		Black	sandy GRAVEL of	angular to subround s. (MADE GROUNI	ed fine to coarse ta	armac, red brick and	0.05	ES	
0.16-0.70		• Firm t	prown slightly sandy	y slightly gravelly CI	LAY. Gravel is ang	gular and subangular fine	1		
		$_$ and m	edium limestone. (N	MARLSTONE ROC	K BED)				
		and m 							
0.70		•	minated at target de	epth.			-		
			C	•					
horing/S	Suppo	rt:						G	ENERAL
tability:									EMARKS
					N			hallow nyironn	hand dug pit for nental sampling
									oumpning
	1	A	₮		Ţ				
D			В		A				
		С	🛓						
All dimen	sions ir ale 1:25		Client Hayfield	l Homes Ltd	Method/ Plant Used	Hand tools.	L	logged l	By JT
50	ale 1:23	,			1 min Useu	11anu 10018.			J I

Project TRIAL PIT Not Berry Hill Road, Adderbury. HP4 Adderbury. Co-Ordinates () BC592 20-12-21	hone: 07852	2881086			INAL					
Op No Date Ground Level (m) Co-OreGuates () BCS92 20.12-21 Steet The Brownfield Consultancy Ltd I of 1 Steet I Trip Brownfield Consultancy Ltd Depth No Remark/remark/removes SAND. Genetic at have of deposit. (MADE GROUND) 0.00-10 Mcdium and coarse submagular GRAVEL of white limestone. (MADE GROUND) 0.05 FS 0.060 Prit terminated at target depth. Office Reads is angular and submagular fine 0.05 FS 0.60 Prit terminated at target depth. I terminated at target depth. I terminated at target depth. I terminated at target depth. Shoring/Support: State I and the state I terminated at target depth. I terminated at target depth. I terminated at target depth. Image:	Project								TF	RIAL PIT No
BC:592 Q:012-21 Contractor Sect The Brownfield Consultancy Ltd 1 of 1 STRATA SAMPLES & TESTS Depth No Remarks/Test Depth No DESCRIPTION 0.05 0.00-10 Image: sampling dispatch (MADE GROUND) 0.05 FS 0.00-00 Image: sampling dispatch (MADE GROUND) 0.05 FS 0.00-00 Image: sampling dispatch (MADE GROUND) 0.05 FS 0.00 Image: sampling dispatch (MADE GROUND) 0.15 ES 0.00 Image: sampling dispatch (MADE GROUND) Image: sampling dispatch (MADE GROUND)		y Hill Ro	oad, Adderbur							нри
Contractor I of 1 The Brownfield Consultancy Ltd STRATA SAMPLES & TESTS Depth No Remarks/Te Depth No Remarks/Te DisCRIPTION DisCRIPTION Mode man and coarse sahangular GRAVEL of white limestone. (MADE GROUND) 0.05 Site of coarse family gravely CLAY. Gravel is angular and subangular fine 0.60 Prit terminated at target depth. No Remarks/Te Shoring/Support: Shoring/Support: Shoring/Support: No Center Haryfield Homes Lad Method	Job No		Date	Gi	round Level (m)) Co-Ordi	nates ()			NF4
The Brownfield Consultancy Ld 1 of 1 STRATA SAMPLES & TESTS Depth No Light gray fire to caures SAND. Concernit a tasse of deposit. (MADE (ROUND)) 0.05 ES D26-04.0 I light gray fire to caures SAND. Concernit a tasse of deposit. (MADE (ROUND)) 0.05 ES 0.26-04.0 I rem incom slightly sandy slightly gravely CLAY. Gravel is angular and subangular fire I I 0.00 I rem incom slightly sandy slightly gravely CLAY. Gravel is angular and subangular fire I I 0.00 I'' terminated at target depote. I'' I'' I'' 0.00 I'' terminated at target depote. I'' I'' I'' 0.00 I'' terminated at target depote. I'' I'' I'' 0.00 I'' I'' terminated at target depote. I'' I'' I'' 0.00 I'' I'' I'' I'' I'' I'' 0.00 I'' I'' I'' I'' I'' I'' I'' 0.00 I'' I'' I'' I'	BCS	592	20-12	2-21						
STRATA SAMPLES & TESTS Depth No Remains/Te Depth No Light grow fine to coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.104.10 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.126-0.00 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.26-0.00 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.26-0.00 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.26-0.00 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.60 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) 0.05 ES 0.60 Image: Standing of the coarse SAND. Geotextile at hase of deposit. (MADE GROUND) Image: Standing of the coarse standing of the co	Contractor					·			Sheet	t
Depth No Depth No Remarks/Te: Depth No Light grey fine to ccarse SAND. Geotextile at base of deposit. (MADF. GROUND) 0.05 0.05 0.020-0.00 Firm brown slightly sandy slightly gravely (CLAY, Gravel is angular and subangular fine to ccarse instance. (MAR IS TONE I: GOCK HED) 0.05 0.05 0.00 Firm brown slightly sandy slightly gravely (CLAY, Gravel is angular and subangular fine to ccarse instance. (MAR IS TONE I: GOCK HED) 0.05 ES 0.60 Fit terminated at target depth.	The	Brownfi	eld Consultant	cy Ltd						1 of 1
Depth No Light grey fire to course SAND. Genetic at base of deposit. (MADE GROUND) 0.05 ES 1010-126 Statute and course submiguit GRAVEL of white intensione. (MADE GROUND) 0.15 ES 128-0.00 Statute and course submiguit GRAVEL of white intensione. (MADE GROUND) 0.15 ES 0.00 Pit terminated at target depth. 0.15 ES 0.00 Pit terminated at target depth. 0.15 ES				STR	ATA					
1000-10 Imaging grey fine to coarse subangular (GRAVEL of white linestone: (MADE GROUND) 0.05 0.05 ES 0.00-0.26 Imaging grey fine to coarse subangular (GRAVEL of white linestone: (MADE GROUND) 0.05 0.15 ES 1 Imaging grey fine to coarse subangular (GRAVEL of white linestone: (MADE GROUND) 0.05 0.15 ES 0.060 Imaging grey fine to coarse subangular (GRAVEL of white linestone: (MADE GROUND) 0.05 0.15 ES 0.060 Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) 0.060 Pit terminated at target depth. Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Shoring/Support: Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Imaging grey fine to coarse linestone: (MARLSTONE ROCK BED) Shoring/Support: Imaging grey fine to coarse linestone: (Imaging grey fine to coarse linestone: Imaging grey fine to coarse linestone: (Imaging grey fine to coarse linestone:								Depth	No	Remarks/Test
0.60 Pît terminated at target depth. Pît terminated at target depth. Pît terminated at target depth. Shoring/Support: Stability:	0.00-0.10		Medium and coa	arse subangular G	DE GROUND)					
Stability: A C A C A C C C C C	0.60		Pit terminated at	target depth.						
All dimensions in metres Client Havfield Homes Ltd Method/ Logged By	Stability:	A				N 4 1 8		Sier	R	EMARKS
	All dimensi	ions in met	tres Client J	Hayfield Home	es Ltd	Method/ Plant Used	Hand tools		ogged I	By IT

hone: 078 Project						AL III LOO			TR	RIAL PIT No
Ber Job No	ry Hi		, Adderb Date	oury.	Ground Leve		dinates ()		_	HP5
	2592			-12-21	Ground Leve		dinates ()			
Contractor	.592		20	-12-21					Sheet	
	Bro	wnfield	Consult	ancy Ltd					Sheet	1 of 1
					STRATA			SA	MPLE	S & TESTS
								Depth		Remarks/Tes
Depth 0.00-0.80	No	Bro	wn gravel estone. Lo	ly very sand cally gravel		SCRIPTION angular and subang DE GROUND)	ular fine to coarse			
0.80		Dif	ficult digg	ing. Pit term	inated at target dep	oth.		0.70	ES	
Shoring/S Stability:		ort: A	B	Ŧ		N 4 1			R Shallow	ENERAL EMARKS hand dug pit for tental sampling
All dimon		C n metres	Client	¥ Houfield	Homes Ltd	Method/			Logged I	3v

The **Brownfield** Consultancy

<u> Phone: 078</u>	5266	1086				AL PII	100				-
Project										TF	RIAL PIT No
	ry H	lill R	oad, Adderb	oury.	Course 11 and	()	C. O.I.			_	HP6
Job No	2592		Date 20	-12-21	Ground Level	l (m)	Co-Ordin	hates ()			
Contractor	.392		20-	-12-21						Sheet	
	Bro	wnf	ield Consulta	ancy Ltd							1 of 1
					STRATA				SA	MPLE	S & TESTS
						SCRIPTION			Dept	n No	Remarks/Tests
Depth 0.00-0.14	No	***	Black and darl	n lithologies	0.05	ES					
0.14-0.22 0.22-0.65		<u>~~</u>	(MADE GRO	UND)	ly GRAVEL of me				0.15	ES	
			Firm brown sli to coarse limes	lightly sandy stone. (MAF	slightly gravelly C RLSTONE ROCK	CLAY. Grave BED)	el is angula	ar and subangular fine			
0.65			Pit terminated	l at target der	oth				_		
Shoring/S Stability:	Gupp	ort:					N			R	ENERAL EMARKS hand dug pit for iental sampling.
D		A C	B								
All dimen	sions ale 1:2	in me 25	etres Client	Hayfield	Homes Ltd	Method/ Plant Us		Hand tools.		Logged I	^{3y} JT

BROWNFIELD TP ADDERBURY LOGS.GPJ GINT STD AGS 3 1.GDT 31/1/22

Project	TRIAL PIT No									
Be	SA1									
Job No										
	BC592 21-12-21 E 46,978.0 N 34,828.0									
						Sheet 1 of 1				
Th	The Brownfield Consultancy Ltd									
			STRATA			APLES & TESTS				
Depth 0.00-0.50 0.50-1.50		medium occasionally coars	e limestone. (TOPSOIL	l is angular and subangular fine and	Depth	No Remarks/Tests				
1.50		Trial pit terminated at targe	et depth.		_					
Shoring/S Stability:	Support: Sides stal	ole.		N		GENERAL REMARKS				
	2.3A	B 0.47		ŧ.						
All dimen	All dimensions in metres Scale 1:25 Client Hayfield Homes Ltd Method/ Plant UsedJCB 3CX and water tanker									

Project								TF	RIAL PIT No
Berry Hill Road, Adderbury.									SA2
Job No	~~~	I	Date	Ground Level (r	m)	Co-Ordinates ()			UAL
Contractor	2592		21-12-21			E 46,932.0 N 34,82	8.0	Shoot	•
		field	Consultancy Ltd					Sheet	1 of 1
	e blowi								
				STRATA				_	ES & TESTS
Depth 0.00-0.50	No $\frac{\sqrt{L_2}}{L_2 + \frac{1}{2}}$	medi	vn slightly gravelly ve um occasionally coars	ry clayey SAND. Gr	CRIPTION avel is ang OIL)	gular and subangular fine and	Depth	No	Remarks/Tests
0.50-0.90		subar ROC	n sandy very clayey (ngular fine to coarse li K BED)	GRAVEL with a high mestone. Cobbles ar	h cobble co e subangu	ontent. Gravel is angular and lar limestone. (MARLSTONE	_		
0.90-1.30		Firm	light brown SILT / Cl	LAY. (MARLSTON	E ROCK	BED)	_		
1.30-1.50		Brow	n sandy very clayey (ngular fine to coarse li K BED)	GRAVEL with a high mestone. Cobbles ar	h cobble co e subangu	ontent. Gravel is angular and lar limestone. (MARLSTONE			
Shoring/S Stability: D All dimen									
Shoring/Stability:	Support Sides : 1.8 A	stable.	→			N H T		G R	ENERAL EMARKS
	С		B 0.45			I			
All dimen	sions in r ale 1:25	netres	Client Hayfield	Homes Ltd	Method/ Plant Us	edJCB 3CX and water tanke	er L	ogged I	By JT

DYNAMIC PROBE LOG

Project	Project										
Be	DP1										
Job No											
	C592	21-12-21			E 4	6,991.0	N 34,76	7.0	Sheet		
Contractor											
Th	The Brownfield Consultancy Ltd										
Depth (m)	Reading (blows/100	gs Jmm) 5				Torqu Torqu 5 20 25 30 (Nm)					
-	0 0						 	-			
- - - -	$\begin{bmatrix} & 0 & & \\ & & 0 \\ 2 & & & \\ & 2 & & \\ & & 2 & & \\ & & 2 & & \\ & & 2 & & \\ & & & 2 & & \\ & & & 2 & & \\ & & & &$	2									
- 1	$\begin{bmatrix} & - & 2 \\ 4 & & \\ & 3 & & \\ & & 3 & 2 \end{bmatrix}$	3									
- 2	5 8 9 5	2									
 _ _ _ _	$\begin{vmatrix} 14 & & & \\ & 6 & & \\ & & 6 & & \\ 10 & & & & 3 \end{vmatrix}$										
- 3	9 8 4 8	5 5						-			
- - - -	$\begin{vmatrix} 5 \\ 4 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	2									
- 4											
- 5	9 9 10 10 9	0 10									
	1 11	1 9									
6	5	5									
Hammer Hammer Hammer Hammer Hammer Hammer Hammer Hammer All dimer Sca											
Hammer	Hammer Wt (kg) 63.5								GENERAL REMARKS		
Hamme	Hammer Drop (mm) 760										
Cone Di	Cone Dia (mm) 50.5										
Cone Ty		Fixed									
All dimer	sions in metres	od/			L	ogged By					
All dimensions in metres Scale 1:43.75 Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig								JT			

DYNAMIC PROBE LOG

Derry Hill Roud, Adderbury. Ground Level (m) Co-Ordinates () DP2 10b No Difference State 1 of 1 Contraster The Brownfield Consultancy Ltd State 1 of 1 Depth Readings (m) Diagram (N100 Values) (blows/100mm) Torque Remarks 2 2 2 2 2 2 2 3 1 2 2 3 5 4 8 1	Project	002001000										PROBE No
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B	erry Hill Road	d, Add	erbury.								002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Job No		Date			Ground L	evel (m)	Co-Ordinat	tes ()			UP2
$\begin{array}{ c c c c c c c } \hline The Brownfield Consultancy Ltd & 1 of 1 \\ \hline \hline Depth (m) & Readings (blows/100mm) & 5 & Diagram (N100 Values) & 7 & Torque (Nm) & Remarks \\ \hline 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	B	BC592		21-12-21				E 46	,970.0	N 347,96	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Contracto	or						ł				Sheet
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	he Brownfield	l Cons	ultancy Ltd								1 of 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Depth (m)	Readin (blows/10	igs 0mm)	5					25	30	Torque (Nm)	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0								<u> </u>		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	2	1							Ì		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E	2	2							ļ		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ē	2								I I		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1		2 2								-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3								į		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F		4 8									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E											-
	-		20 21									-
3	- 2	20 33	21								-	-
4	F	55								ps		-
4	E									į]
4	E											-
4	- 3										-	-
5	-									ļ		-
5	F											-
5	E									1]
5	E									ļ		-
	- 4									I I	-	-
	F									1		-
	F									ļ		-
	E											-
	- 5										_	-
6 6 6 Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Method/ Plant Used Dynamic Sampling Rig										ļ		-
6 6 6 Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Image: Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By IT	F											-
6 6 6 Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Image: Client Hayfield Homes Ltd All dimensions in metres Client Hayfield Homes Ltd										İ		-
6 6	31/1/2											-
Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Image: Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By IT	<u> </u>										-	-
Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Eilent All dimensions in metres Scale 1:43.75 Client Client Hayfield Homes Ltd Method/ Plant Used Logged By Dynamic Sampling Rig Image: Client Hayfield Homes Ltd	9 1.0									ļ		-
Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Logged By All dimensions in metres Client Scale 1:43.75 Client	AGS											-
Hammer Wt (kg) 63.5 GENERAL REMARKS Hammer Drop (mm) 760 60 Cone Dia (mm) 50.5 60 Cone Type Fixed 60 Damper Client Hayfield Homes Ltd Method/ Plant Used Logged By It dimensions in metres Scale 1:43.75 Client Hayfield Homes Ltd Method/ Plant Used Logged By	STD]
Hammer Wt (kg) 63.5 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Fixed All dimensions in metres Scale 1:43.75 Client Client Hayfield Homes Ltd												<u> </u>
Hammer Drop (mm) 760 Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Image: Client Hayfield Homes Ltd All dimensions in metres Scale 1:43.75 Client Hayfield Homes Ltd	G Hamm	er Wt (ka)		63 5								GENERAL
Hammer Drop (mm) 760 Cone Dia (mm) 50.5 Cone Type Fixed Damper Fixed All dimensions in metres Scale 1:43.75 Client Hammer Drop (mm) 760 Logged By Image: Client Plant Used Dynamic Sampling Rig Image: Drop (mm) Image: Drop (mm) Image: Drop (mm) 75 Cone Type Fixed Image: Drop (mm) Logged By Image: Drop (mm) Image: Drop (mm) Image: Drop (mm) Image: Drop (mm) Image: Drop (mm) To (mm)		LI WI (NG)		05.5								REMARKS
Cone Dia (mm) 50.5 Cone Type Fixed Damper All dimensions in metres Scale 1:43.75 Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By	Hamme	er Drop (mm))	760								
Cone Dia (min) 50.5 Cone Type Fixed Damper Image: Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By IT	Care	Dia (mana)		50.5								
Cone Type Fixed Damper Image: Client Hayfield Homes Ltd All dimensions in metres Client Hayfield Homes Ltd Scale 1:43.75 Client Hayfield Homes Ltd		na (inm)		50.5								
Damper Damper All dimensions in metres Client Scale 1:43.75 Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig IT	ල් Cone T	уре		Fixed								
Damper Logged By All dimensions in metres Client Hayfield Homes Ltd Scale 1:43.75 Plant Used Dynamic Sampling Rig												
All dimensions in metres Client Hayfield Homes Ltd Method/ Plant Used Dynamic Sampling Rig IT		r										
	All dime	ensions in metres ale 1:43.75	, Clie	ent Hayfiel	d Hor	nes Ltd	Mether	od/ Used Dvnam	nic Samn	ling Rig	Ι	Logged By JT

DYNAMIC PROBE LOG

Project	02001000										PROBE No
Ber	ry Hill Road	l, Add	erbury.								200
Job No		Date		G	round Leve	el (m)	Co-Ordina	ates ()			DP3
BC	2592		21-12-21				E 4	6,949.0	N 34,74	7.0	
Contractor											Sheet
The	Brownfield	Cons	ultancy Ltd								1 of 1
Depth (m)	Readin (blows/100	gs)mm)	5	Ι	Diagram 10	n (N100 15	Values) 20	25	30	Torque (Nm)	Remarks
- 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 4 - 5 - 6 - 1 - 6 - 1 - 1 - 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 3 3 3 4 3 3 5									
Hammer	Wt (kg)		63.5								GENERAL
^{öo} ⊱ Hammer	Drop (mm)		760								REMARKS
Cone Dia			50.5								
Cone Ty	pe		Fixed								
Damper											
All dimens	sions in metres e 1:43.75	Clie	nt Hayfield	d Hom	es Ltd	Metho Plant	od/ Used Dynar	nic Sampl	ing Rig	L	ogged By JT

DYNAMIC PROBE LOG

Project									PROBE No
Berry	Hill Road,	, Adderbury.							
Job No		Date	Ground Level	(m)	Co-Ordinate				DP4
BC59	92	21-12-21			E 46,	,906.0 1	N 34,78	2.0	
Contractor									Sheet
The B	rownfield	Consultancy Ltd							1 of 1
Depth (m) (b)	Reading lows/100	gs mm) 5	Diagram (10	N100 V 15	alues) 20	25	30	Torque (Nm)	Remarks
2 1 4 2 1 4 4 4 2 3 3 4 3 4 4 10 5 14 5 14 8 6 Cone Dia (n Cone Type Damper All dimension Scale 1:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3 \\ 3 \\ 2 \\ 4 \\ 1 \\ 6 \\ 1 \\ 1 \\ 2 \\ 12 \\ 12 \\ 12 \\ 12$							
Hammer W	/t (kg)	63.5			I		<u> </u>		GENERAL REMARKS
Hammer D	rop (mm)	760	-						
Cone Dia (1		50.5							
Cone Type		Fixed							
All dimensior	ns in metres	Client Hayfield Ho	mes Ltd	Method/					logged By
Scale 1:	:43.75			Plant Us	ed Dynami	ic Sampli	ing Rig		JT

DYNAMIC PROBE LOG

Project							PROBE No
Berry Hill Road,	Adderbury.						DD5
	Date	Ground Level (n		rdinates ()			DP5
BC592	21-12-21			E 46,902.0	N 34,813	3.0	
Contractor							Sheet
The Brownfield C	Consultancy Ltd						1 of 1
Depth Readings (m) (blows/100n	s nm) 5		N100 Values 15 20	25	30	Torque (Nm)	Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12						
Hammer Wt (kg)	63.5			I	i		GENERAL REMARKS
Hammer Drop (mm)	760	-					
Cone Dia (mm)	50.5	 -					
Cone Type	Fixed						
Damper							
All dimensions in metres Scale 1:43.75	Client Hayfield Ho	omes Ltd	Method/ Plant Used Dy	ynamic Samp	ling Rig	L	ogged By JT

DYNAMIC PROBE LOG

Project						PROBE No
Berry Hill Road, A	-					DP6
	Date	Ground Level (m)				
BC592 Contractor	21-12-21		E 40	6,872.0 N 34,84	9.0	Sheet
The Brownfield C	Consultancy I td					1 of 1
						1 01 1
Depth Readings (m) (blows/100m	s nm) 5	Diagram (N 10 1	100 Values) 5 20	25 30	Torque (Nm)	Remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 5 2 1 3 1 10 1 7 1 6 1 10 1 7 1 6 1 10 1 10 1 11 1 12 1		5 20		(Nm)	GENERAL
Hammer Wt (kg)	63.5					REMARKS
Hammer Drop (mm)	760	-				
Cone Dia (mm) Cone Type	50.5 Fixed					
Damper						
All dimensions in metres Scale 1:43.75	Client Hayfield Ho	mes Ltd	Method/ Plant Used Dynam	nic Sampling Rig	L	ogged By JT

DYNAMIC PROBE LOG

Project							PROBE No
	Berry Hill Road, Adderbury.						
Job No Date		Ground Level (n	n) Co-C	Ordinates ()			DP7
BC592	21-12-21			E 46,886.0	N 34,867	7.0	
Contractor	14						Sheet
The Brownfield Cons							1 of 1
Depth Readings (m) (blows/100mm)	5	Diagram (N 10	100 Value 15 20		30	Torque (Nm)	Remarks
							GENERAL REMARKS
Cone Dia (mm)	50.5 Fixed						
Damper		-					
All dimensions in metres Clie Scale 1:43.75	ent Hayfield Ho	omes Ltd	Method/ Plant Used D	ynamic Sam	pling Rig		ogged By JT

DYNAMIC PROBE LOG

Project											PROBE No
Berry	Berry Hill Road, Adderbury.									000	
Job No		Date		Grou	nd Level (r	n)	Co-Ordina				DP8
BC5	592		21-12-21				E 4	6,917.0	N 34,85	0.0	
Contractor											Sheet
The I	Brownfield	Cons	ultancy Ltd							1	1 of 1
Depth (m) (t	Reading blows/100	gs)mm)	5	Dia 10	gram (N)	1100 V 15	alues) 20	25	30	Torque (Nm)	Remarks
(m) (t) =	blows/100 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5				20	25	30		GENERAL REMARKS
Damper											
All dimension	ons in metres 1:43.75	Clie	nt Hayfield He	omes I	Ltd	Method/ Plant Use	ed Dynan	nic Sampl	ing Rig		ogged By JT

DYNAMIC PROBE LOG

Project								PROBE No	
Berry Hill Road, Ad	Berry Hill Road, Adderbury.								
Job No Date	;	Ground Level (n	n)	Co-Ordinates	0			DP9	
BC592	21-12-21			E 46,9	961.0 N	34,841	1.0		
Contractor								Sheet	
The Brownfield Con	sultancy Ltd							1 of 1	
Depth Readings (m) (blows/100mm		Diagram (N				•	Torque (Nm)	Remarks	
	1) 5	10	15	20	25	30			
0 0 2 1 2 2 2 2 3 3 4 1 2 1 1 3 4 2 3 3 2 1 1 3 3 2 1 1 4 4 5 4 3 3 2 3 3 2 1 1 4 4 5 5 3 3 4 4 5 5 5 3 3 4 4 6 6 5 5 3 3 5 3 3 3 4 4 4 4 6 5 5 5 3 3 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hammer Wt (kg)	63.5							GENERAL	
Hammer Drop (mm)	760	-						REMARKS	
Cone Dia (mm)	50.5	-							
Cone Type	Fixed								
Damper									
All dimensions in metres Scale 1:43.75	ient Hayfield Ho	omes Ltd	Method/ Plant Use	d Dynamic	Sampli	ng Rig	I	Logged By JT	

DYNAMIC PROBE LOG

Project				PROBE No
Berry Hill Road, Adderbu				DP10
Job No Date	Ground Level (m) Co-Ordinates ()		DFIU
	12-21	E 46,97	8.0 N 34,885.0	
Contractor				Sheet
The Brownfield Consulta	ncy Ltd		T	1 of 1
Depth Readings (m) (blows/100mm)	Diagram (5 10	N100 Values) 15 20 2:	5 30 Torq	ue N Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Hammer Wt (kg) 63.5	5			GENERAL REMARKS
Hammer Drop (mm) 760)			
Cone Dia (mm) 50.5				
Opener Fixe Damper	ea			
All dimensions in metres Scale 1:43.75	Hayfield Homes Ltd	Method/ Plant Used Dynamic S	ampling Rig	Logged By JT

APPENDIX C

Geotechnical Laboratory Results

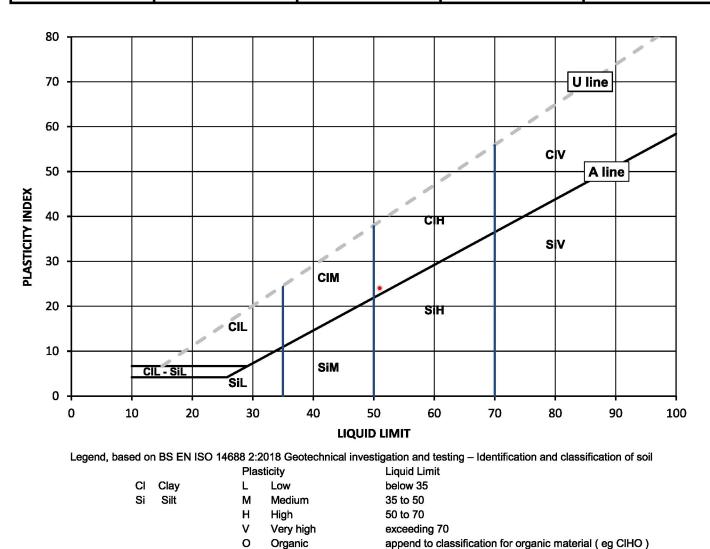
Sample Description:

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



The Brownfield Consultancy Client Reference: BCS92 Client: **Client Address:** Job Number: 21-30761 Woodstock, Memorial Road, Fenny Compton, Warwickshire, Date Sampled: 20/12/2021 CV47 2XU Date Received: 22/12/2021 Contact: Jim Twaddle Date Tested: 12/01/2022 Site Address: Berry Hill Road Adderbury Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2126101 Depth Top [m]: 2.00 WS4 Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: D

Sample Preparation: Tested in natural condition

Yellowish brown slightly sandy CLAY

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
24	51	27	24	100

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Date Reported: 14/01/2022

Sample Reference:

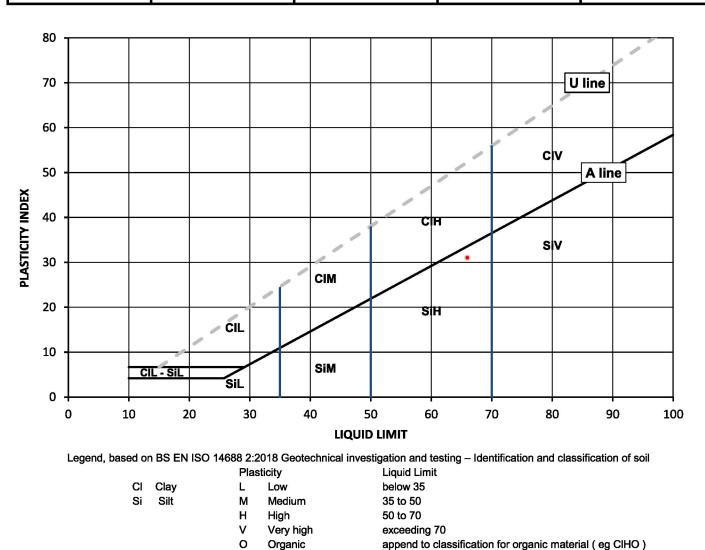
Sample Description:

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB



The Brownfield Consultancy Client Reference: BCS92 Client: **Client Address:** Job Number: 21-30761 Woodstock, Memorial Road, Fenny Compton, Warwickshire, Date Sampled: 20/12/2021 CV47 2XU Date Received: 22/12/2021 Contact: Jim Twaddle Date Tested: 12/01/2022 Site Address: Berry Hill Road Adderbury Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2126102 Depth Top [m]: 0.80 WS5 Depth Base [m]: Not Given Hole No .: Not Given Sample Type: D

Sample Preparation: Tested after >425um removed by hand

Yellowish brown slightly gravelly CLAY

As Received Water Liquid Limit **Plastic Limit Plasticity Index** % Passing 425µm Content [W] % **BS Test Sieve** [WL]% [Wp]% [lp]% 39 66 35 31 82

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

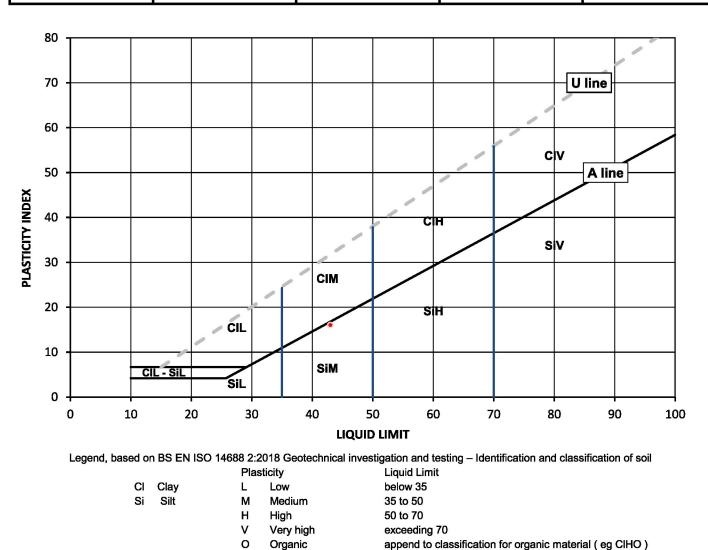
Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Date Reported: 14/01/2022

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB


Client: Client Address:	The Brownfield Consultancy Woodstock, Memorial Road,	Client Reference: BCS92 Job Number: 21-30761
	Fenny Compton, Warwickshire, CV47 2XU	Date Sampled: 20/12/2021 Date Received: 22/12/2021
Contact:	Jim Twaddle	Date Tested: 12/01/2022
Site Address:	Berry Hill Road Adderbury	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2126103	Depth Top [m]: 2.40
Hole No.:	WS5	Depth Base [m]: Not Given
Sample Reference:	Not Given	Sample Type: D

 Sample Reference:
 Not Given

 Sample Description:
 Yellowish brown sandy silty CLAY

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
22	43	27	16	100

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

Sample Type: D

79

The Brownfield Consultancy Client Reference: BCS92 Client: **Client Address:** Job Number: 21-30761 Woodstock, Memorial Road, Fenny Compton, Warwickshire, Date Sampled: 20/12/2021 CV47 2XU Date Received: 22/12/2021 Contact: Jim Twaddle Date Tested: 12/01/2022 Site Address: Berry Hill Road Adderbury Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2127799 Depth Top [m]: 2.00 WS1 Depth Base [m]: Not Given Hole No .:

4041

Sample Reference:

Sample Description:

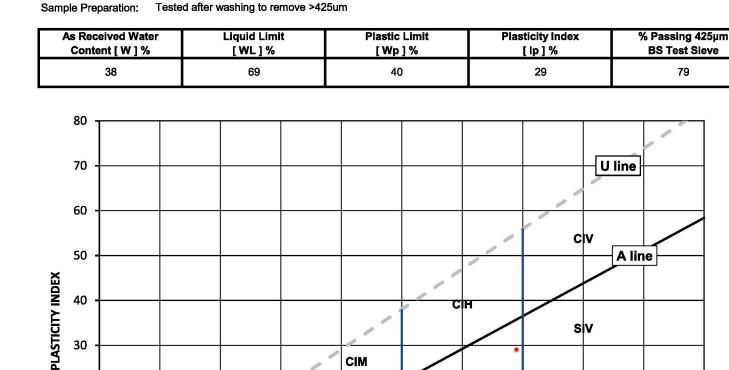
Not Given

Orangish brown slightly gravelly silty CLAY

CIL

SiL

30


Plasticity

L

М н Low

High

Medium

SiM

50

LIQUID LIMIT Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

40

۷ Very high 0 Organic

CI

Si

10

CIL - SiL

Clay

Silt

20

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

20

10

0 0

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SiH

60

Liquid Limit

below 35

35 to 50

50 to 70

exceeding 70

70

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

80

90

Page 1 of 1

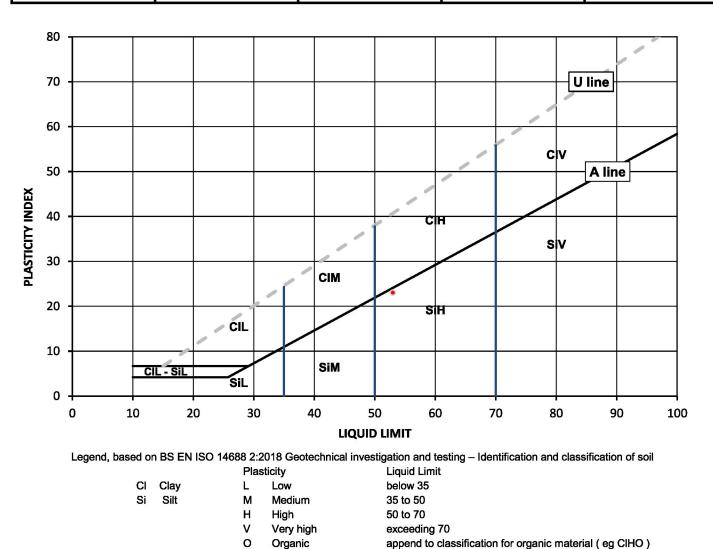
append to classification for organic material (eg CIHO)

100

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB


The Brownfield Consultancy Client Reference: BCS92 Client: **Client Address:** Job Number: 21-30761 Woodstock, Memorial Road, Fenny Compton, Warwickshire, Date Sampled: 20/12/2021 CV47 2XU Date Received: 22/12/2021 Contact: Jim Twaddle Date Tested: 12/01/2022 Site Address: Berry Hill Road Adderbury Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2127800 Depth Top [m]: 0.70 WS2 Hole No .:

Sample Reference: Not Given Orangish brown slightly sandy gravelly silty CLAY Sample Description:

Depth Base [m]: Not Given Sample Type: D

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
37	53	30	23	52

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Date Reported: 14/01/2022

Sample Reference:

Sample Description:

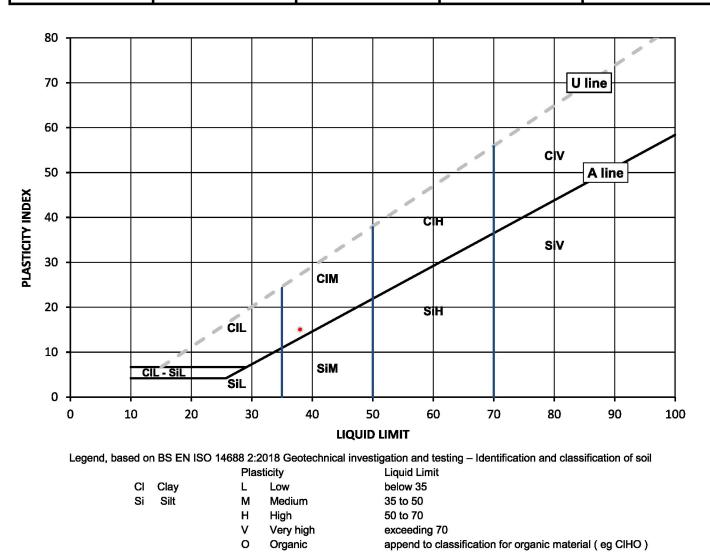
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Sample Type: D


The Brownfield Consultancy Client Reference: BCS92 Client: **Client Address:** Job Number: 21-30761 Woodstock, Memorial Road, Fenny Compton, Warwickshire, Date Sampled: 20/12/2021 CV47 2XU Date Received: 22/12/2021 Contact: Jim Twaddle Date Tested: 12/01/2022 Site Address: Berry Hill Road Adderbury Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2127801 Depth Top [m]: 0.80 WS3 Depth Base [m]: Not Given Hole No .:

Brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Not Given

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
24	38	23	15	72

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

SUMMARY REPORT

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

The Brownfield Consultancy Water Content Woodstock, Memorial Road, Fenny Compton, Warwickshire, CV47 2XU

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: BCS92 Job Number: 21-30761 Date Sampled: 20/12 - 20/12/2021 Date Received: 22/12/2021 Date Tested: 12/01/2022 Sampled By: Not Given

Site Address: Berry Hill Road Adderbury

Jim Twaddle

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041

Client Address:

Client:

Contact:

			Sample	2				Content 7-2 [W]	tent 892-1		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Type	Description	Remarks	Water Coni BS 1377-2 [Water Content BS EN ISO 17892 [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2127799	WS1	Not Given	2.00	Not Given	D	Orangish brown slightly gravelly silty CLAY	Atterberg 1 Point	38		79	69	40	29					
2127800	WS2	Not Given	0.70	Not Given	D	Orangish brown slightly sandy gravelly silty CLAY	Atterberg 1 Point	37		52	53	30	23					
2127801	WS3	Not Given	0.80	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 1 Point	24		72	38	23	15					
2126101	WS4	Not Given	2.00	Not Given	D	Yellowish brown slightly sandy CLAY	Atterberg 1 Point	24		100	51	27	24					
2126102	WS5	Not Given	0.80	Not Given	D	Yellowish brown slightly gravelly CLAY	Atterberg 1 Point	39		82	66	35	31					
2126103	WS5	Not Given	2.40	Not Given	D	Yellowish brown sandy silty CLAY	Atterberg 1 Point	22		100	43	27	16					

Note: # Non accredited; NP - Non plastic

Comments:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

Client Reference: BCS92 Job Number: 21-30761 Date Sampled: 20/12 - 20/12/2021 Date Received: 22/12/2021 Date Tested: 12/01/2022 Sampled By: Not Given

4041 Client: The Brownfield Consultancy **Client Address:** Woodstock, Memorial Road, Fenny Compton, Warwickshire, CV47 2XU Jim Twaddle Contact:

Site Address: Berry Hill Road Adderbury

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2127799	WS1	Not Given	2.00	Not Given	D	Orangish brown slightly gravelly silty CLAY		38	Sample was quartered, oven dried at 109 °C		
2127800	WS2	Not Given	0.70	Not Given	D	Orangish brown slightly sandy gravelly silty CLAY		37	Sample was quartered, oven dried at 109 °C		
2127801	WS3	Not Given	0.80	Not Given	D	Brown slightly gravelly sandy CLAY		24	Sample was quartered, oven dried at 109 °C		
2126101	WS4	Not Given	2.00	Not Given	D	Yellowish brown slightly sandy CLAY		24	Sample was quartered, oven dried at 109 °C		
2126102	WS5	Not Given	0.80	Not Given	D	Yellowish brown slightly gravelly CLAY		39	Sample was quartered, oven dried at 109 °C		
2126103	WS5	Not Given	2.40	Not Given	D	Yellowish brown sandy silty CLAY		22	Sample was quartered, oven dried at 109 °C		

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Signed:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Cor Site	nt Ac itact: Add			Woods Fenny CV47 2 Jim Tw Berry H		emoria n, Wai Adde	al Roa rwick rbury	ad, shire		11-7	744 0	Dudi	2 5/	ska	0	aland			C	Date Date Da	ob Ni e Sa e Rec ate T	umb mple ceive reste	ce: B er: 2' ed: 20 ed: 22 ed: 0 3y: N	1-307 0/12/2 2/12/2 5/01/2	761 2021 2021 2022	1		
Tes	st Re	sults:				cu, ui.	. 1 101	nero	W 03,	41-1		luue	1 0/2	10NQ,	<u>, (</u>	Jana												
		ry Refer		21261	00															-			n]: 1.					
	e No.			WS1																Depth					ven			
		Referen		Not Gi				· · · · · · · · · · · · · · · · · · ·												Sa	mple	Ту	be: B					
		Descript			sandy cl							~																
San	nple	Preparat	ion:			artere	€d, 0\	/en c					nd b	roken	d	own by har												т
		CLAY	Fine		<u>SILT</u> /ledium	Coa	rse	-	Fine		SAN Mediu		6	Coarse	r	Fine		RAVEL edium	-	Coarse	•	COB	BLES) B	BOUL	DER	S	
	100	, 								1	i							1 1	1			TIT			1			n i
	90																			1							Ш	L
																				1								
	80											T					m		Τ						П		m	ſ
%	70						++				+										-				+	+		h
	60																	$\boldsymbol{\lambda}$	_		_		44	_	\perp	4		H
^{>} ercentage Passing	50																\boldsymbol{X}											
Pas																												
ge	40														-										+			Г
enta	30									/	-							+			+		H		+	H		H
erce	20	<u> </u>																	_				44			4		H
Δ.	10																											
	0 0.				0.01			<u></u> ().1		-			1 Size				10	-			1	 00	_	_	+	1/	년 000
		257 12			57 N				2			Part	icle	Size	r	nm		1922					12 10					ac mechan
			Siev	/ing				Se	edime	entat	ion]			-	Prop	orti	ons				% d	-	າສຣຣ	3	
	Pa	rticle Siz	ze mm	% F	Passing	Pa	rticle	Size	e mm	9	6 Pa	issin	g			Very coars Gravel	е					-			0 60			
	-	500			100									-		Sand						+			17			
		300			100									1		Gana						+						
		150			100									1		Fines <0.0	63mı	m							23			
		405			400					· · · · ·				-1														

Grading Analy	/sis		
D100	mm	63	
D60	mm	10.1	
D30	mm	0.236	
D10	mm		
Uniformity Coefficient		> 160	
Curvature Coefficient			

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

125

90 75

63

50

37.5

28 20

> 14 10

6.3

5

3.35 2

1.18

0.6

0.425

0.3

0.212

0.15 0.063

Remarks:

100 100

100

100

99

95 89

82 70

60

52

48 44

40

37

34

33

32

29 26

0.063 23 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Olio				The Proventiald	Conquiton						Oliont De	forman BC	202
Clie		d		The Brownfield								ference: BC Number: 21-	
Cile	nt Ad	dress:		Woodstock, Me Fenny Compton CV47 2XU							Date S	ampled: 20/ eceived: 22/	/12/2021
Con	tact:			Jim Twaddle							Date	Tested: 05/	/01/2022
Site	Addr	ess:		Berry Hill Road	Adderbury						Sam	pled By: No	t Given
Tes	ting c	arried o	ut at i2	2 Analytical Limite	ed, ul. Pion	ierow 39,	41-711 Ruda	a Slaska, i	Poland				
Tes	t Re	sults:											
Labo	orato	ry Refer	ence:	2126104							Depth	Top [m]: 1.0	ю
	No.:			WS5								ase [m]: No	
Sam	iple F	Referen	ce:	Not Given								le Type: B	
Sam	nple D	Descript	ion:	Yellowish brown	n sandy ver	y clayey (GRAVEL						
Sam	nple F	reparat	tion:	Sample was qua	artered, ov	en dried a	it 106.5 °C a	nd broken	down by ha	and.			
		CLAY		SILT	-		SAND	-		GRAVEL		COBBLES	BOULDERS
	100 -		Fine	e Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
	90 -												
	80 -												
	70 -												
б %	60 -									/			
ssin	50 -												
Ра	40 -												
age						$\boldsymbol{\mathcal{A}}$							
Percentage Passing	30 -												
Per	20 -												
	10 -												
	0 -												
	0.0	001		0.01		0.1	Part	icle Size	mm	10		100	1000
			Sie	ving		Sedime	ntation		S	ample Propo	rtions		% dry mass
	Da	ticle Si			Dortiolo	Size mm	% Passir		Very coa				0
	Fa			12 - 62	Particle	Size mini	70 Passii	ig	Gravel				48
		500		100	_				Sand				22
		300		100					Einen 10	000			
		150 125		100 100	-∥				Fines <0.	.063mm			30
	-	90		100	-∥								
	-	75		100						Grading Ana	lvsis		
		10		100						e wanny mia	.,		

Grading Analysi	S	
D100	mm	50
D60	mm	4.1
D30	mm	
D10	mm	
Uniformity Coefficient		> 65
Curvature Coefficient		

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

63

50

37.5

28 20

> 14 10

6.3

5

3.35

2

1.18

0.6

0.425

0.3

0.212

0.15 0.063 100

100

98 97

96 86

77

67

62

58

52

49

46

44

43

42 40

30 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

APPENDIX D

Chemical Laboratory Analysis

Jim Twaddle The Brownfield Consultancy Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: jim.twaddle@brownfieldconsultancy.co.uk

Analytical Report Number : 21-30802

Project / Site name:	Berry Hill Road, Adderbury	Samples received on:	22/12/2021
Your job number:	BC592	Samples instructed on/ Analysis started on:	22/12/2021
Your order number:		Analysis completed by:	07/01/2022
Report Issue Number:	1	Report issued on:	07/01/2022
Samples Analysed:	23 soil samples		

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126355	2126356	2126357	2126358	2126359
Sample Reference				WS1	WS1	WS1	WS1	WS1
Sample Number				None Supplied				
Depth (m)				0.15	0.90	1.00	3.00	4.00
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	20	20	22	18
Total mass of sample received	kg	0.001	NONE	0.60	0.50	0.60	0.60	0.60
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	7.5	7.2	6.5
Total Sulphate as SO4	%	0.005	MCERTS	-	-	0.005	0.011	0.011
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	-	0.010	0.033	0.032
Equivalent)	mg/l	1.25	MCERTS	-	-	10.4	33.1	31.6
Total Sulphur	%	0.005	MCERTS	-	-	0.008	0.012	0.012
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	-	-	-
	5. 5		1		1 0.00			

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126355	2126356	2126357	2126358	2126359
Sample Reference				WS1	WS1	WS1	WS1	WS1
Sample Number				None Supplied				
Depth (m)				0.15	0.90	1.00	3.00	4.00
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids			-					<u>-</u>
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	100	-	-	-	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	92	-	-	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	4.1	-	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	-	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	210	-	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	29	-	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	60	-	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	78	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	270	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	180	-	-	-	-

Petroleum Hydrocarbons

TPH5 (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
TPH5 (C10 - C20) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH5 (C20 - C30) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	-	-
TPH5 (C30 - C40) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	-	-
TPH5 (C6 - C40) _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	< 10	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126360	2126361	2126362	2126363	2126364
Sample Reference				WS2	WS2	WS2	WS2	WS3
Sample Number				None Supplied				
Depth (m)				0.10	1.00	2.00	1.50	0.90
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter	Units	Limit of detection	Accreditation Status					
(Soil Analysis)		-						
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	22	24	26	15
Total mass of sample received	kg	0.001	NONE	0.60	1.5	0.60	0.50	0.50
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	7.6	-	-
Total Sulphate as SO4 Water Soluble SO4 16hr extraction (2:1 Leachate	%	0.005	MCERTS	-	-	0.012	-	-
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	-	0.043	-	-
Equivalent)	mg/l	1.25	MCERTS	-	-	43.1	-	-
Total Sulphur	%	0.005	MCERTS	-	-	0.010	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Total PAH					•			
I Utal PAR								

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126360	2126361	2126362	2126363	2126364
Sample Reference				WS2	WS2	WS2	WS2	WS3
Sample Number				None Supplied				
Depth (m)				0.10	1.00	2.00	1.50	0.90
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	110	220	-	280	81
Barium (aqua regia extractable)	mg/kg	1	MCERTS	88	95	-	91	74
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	4.5	12	-	10	2.8
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	1.2	-	0.3	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	220	630	-	530	140
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	8.5	-	17	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	61	23	-	28	17
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	77	170	-	170	49
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	300	770	-	770	190
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	180	150	-	240	100

Petroleum Hydrocarbons

TPH5 (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	-
TPH5 (C10 - C20) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	< 10	-	< 10	-
TPH5 (C20 - C30) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	< 10	-
TPH5 (C30 - C40) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	< 10	-
TPH5 (C6 - C40) _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	< 10	-	< 10	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126365	2126366	2126367	2126368	2126369
Sample Reference				WS4	WS4	WS4	WS5	WS5
Sample Number				None Supplied				
Depth (m)				0.10	1.80	0.50	0.40	0.10
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
		Limit	Ac			FF		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	17	21	22	15
Total mass of sample received	kg	0.001	NONE	0.50	0.50	0.50	0.50	0.60
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A					
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	7.5	-	6.8	-
Total Sulphate as SO4	%	0.005	MCERTS	-	0.008	-	0.065	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.018	-	0.010	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	17.5	-	10.2	-
Total Sulphur	%	0.005	MCERTS	-	0.005	-	0.048	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	-
Total PAH		-	-	-	•	-	-	-
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	< 0.80	< 0.80	-
	5. 5	1				< 0.00	< 0.00	

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126365	2126366	2126367	2126368	2126369
Sample Reference				WS4	WS4	WS4	WS5	WS5
Sample Number				None Supplied				
Depth (m)				0.10	1.80	0.50	0.40	0.10
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	150	94	220	140	180
Barium (aqua regia extractable)	mg/kg	1	MCERTS	100	32	50	76	78
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	6.1	7.5	11	5.1	6.8
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	0.3	1.6	0.9	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	310	550	580	270	350
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25	15	6.7	25	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	75	38	21	60	63
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	100	160	130	88	110
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	400	910	760	350	450
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	200	340	93	190	190

Petroleum Hydrocarbons

TPH5 (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH5 (C10 - C20) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C20 - C30) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C30 - C40) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C6 - C40) _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126370	2126371	2126372	2126373	2126374
Sample Reference				HP1	HP2	HP3	HP4	HP4
Sample Number				None Supplied				
Depth (m)				0.10	0.05	0.05	0.05	0.15
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	-	-	-	< 0.1	-
Moisture Content	%	0.01	NONE	-	-	-	14	-
Total mass of sample received	kg	0.001	NONE	-	-	-	0.50	-
				-				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	MWI	MWI	MWI	MWI	MWI
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	-	-	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-	-	-
			1		8		8	

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126370	2126371	2126372	2126373	2126374
Sample Reference				HP1	HP2	HP3	HP4	HP4
Sample Number				None Supplied				
Depth (m)				0.10	0.05	0.05	0.05	0.15
Date Sampled				20/12/2021	20/12/2021	20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	8.6	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	3.2	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	-	-	0.11	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	4.1	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	6.0	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	1.8	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	2.1	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	10	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	5.2	-

Petroleum Hydrocarbons

TPH5 (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH5 (C10 - C20) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C20 - C30) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C30 - C40) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C6 - C40) _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2126375	2126376	2126377
Sample Reference				HP5	HP6	HP6
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.05	0.15
Date Sampled				20/12/2021	20/12/2021	20/12/2021
Time Taken		None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-
Moisture Content	%	0.01	NONE	14	6.4	-
Total mass of sample received	kg	0.001	NONE	0.60	0.60	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	MWI	MWI	MWI

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	-	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate						
Equivalent)	g/l	0.00125	MCERTS	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate						
Equivalent)	mg/l	1.25	MCERTS	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	_	_	-
00000000 1000 2111 2011110	5, 5					

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number	2126375	2126376	2126377			
Sample Reference	HP5	HP6	HP6			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.70	0.05	0.15
Date Sampled				20/12/2021	20/12/2021	20/12/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	140	20	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	100	220	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	5.4	1.3	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.5	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	290	110	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	25	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	40	22	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	100	24	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	360	120	-
Zinc (aqua regia extractable) mg/kg		1	MCERTS	210	89	-

Petroleum Hydrocarbons

TPH5 (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	-	-	-
TPH5 (C10 - C20) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	-	-
TPH5 (C20 - C30) EH_CU_1D_TOTAL	mg/kg	10	NONE	-	-	-
TPH5 (C30 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	NONE	-	-	-
TPH5 (C6 - C40) _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Berry Hill Road, Adderbury

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2126355	WS1	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2126356	WS1	None Supplied	0.9	Brown clay and sand with gravel.
2126357	WS1	None Supplied	1	Brown clay and sand with gravel.
2126358	WS1	None Supplied	3	Brown clay and sand with gravel and vegetation.
2126359	WS1	None Supplied	4	Brown clay and sand with gravel.
2126360	WS2	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2126361	WS2	None Supplied	1	Brown loam and clay with gravel and vegetation.
2126362	WS2	None Supplied	2	Brown clay and loam with gravel.
2126363	WS2	None Supplied	1.5	Brown clay and sand with gravel.
2126364	WS3	None Supplied	0.9	Brown clay and sand with gravel.
2126365	WS4	None Supplied	0.1	Brown loam and clay with gravel.
2126366	WS4	None Supplied	1.8	Light brown clay and loam.
2126367	WS4	None Supplied	0.5	Brown clay and sand with gravel.
2126368	WS5	None Supplied	0.4	Brown loam and clay with gravel and vegetation.
2126369	WS5	None Supplied	0.1	Brown loam and clay with vegetation.
2126373	HP4	None Supplied	0.05	Light brown sand.
2126375	HP5	None Supplied	0.7	Brown loam and clay with vegetation.
2126376	HP6	None Supplied	0.05	Brown loam and clay with gravel.

Project / Site name: Berry Hill Road, Adderbury

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPH5 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Project / Site name: Berry Hill Road, Adderbury

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Jim Twaddle The Brownfield Consultancy Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: jim.twaddle@brownfieldconsultancy.co.uk

Analytical Report Number : 22-31584

Project / Site name:	Berry Hill Road, Adderbury	Samples received on:	22/12/2021
Your job number:	BC592	Samples instructed on/ Analysis started on:	07/01/2022
Your order number:		Analysis completed by:	21/01/2022
Report Issue Number:	1	Report issued on:	21/01/2022
Samples Analysed:	2 soil samples		

Signed:

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-31584

Project / Site name: Berry Hill Road, Adderbury

Lab Sample Number				2130402	2130403
Sample Reference	WS1	WS4			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.15	0.50			
Date Sampled	20/12/2021	20/12/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	35	26
Moisture Content	%	0.01	NONE	17	22
Total mass of sample received	kg	0.001	NONE	0.60	0.50
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	100	210
PBET Results (Bioaccessibile Fraction)					
Arsenic (Stomach)	%	0.5	NONE	13.1	4.6
Arsenic (Intestine 1)	%	0.5	NONE	15.9	6.3
Arsenic (Intestine 2)	%	0.5	NONE	16.1	7.1
Bioaccessible Fraction %	Ν	1aximum %	BAF	16.1 % (I2)	7.1 % (I2)

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-31584 Project / Site name: Berry Hill Road, Adderbury

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2130402	WS1	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2130403	WS4	None Supplied	0.5	Brown clay and sand with gravel.

Analytical Report Number : 22-31584

Project / Site name: Berry Hill Road, Adderbury

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
РВЕТ	In House Method	In house method based on Ruby et.al.		D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Jim Twaddle The Brownfield Consultancy Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: jim.twaddle@brownfieldconsultancy.co.uk

Analytical Report Number : 21-30960

Project / Site name:	Berry Hill Road, Adderbury	Samples received on:	22/12/2021
Your job number:		Samples instructed on/ Analysis started on:	22/12/2021
Your order number:	BC592	Analysis completed by:	05/01/2022
Report Issue Number:	1	Report issued on:	05/01/2022
Samples Analysed:	10:1 WAC sample		

Izabela Wójcik Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4	weeks from reporting
leachates	-	2	weeks from reporting
waters	-	2	weeks from reporting
asbestos	-	6	months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-3	0960				
					Client:	BROWNFIEL	D
Location		Berry Hill Roa	ad, Adderbury				
Lab Reference (Sample Number)					Landfill	Waste Acceptane	ce Criteria
			/ 2127186			Limits	
Sampling Date			/2021		-	Stable Non- reactive	
Sample ID Depth (m)			S2 00		Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste Landfil
		1.		1		hazardous Landfill	
Solid Waste Analysis	0.2				20/	50/	60/
TOC (%)** Loss on Ignition (%) **	0.2				3%	5%	6% 10%
3TEX (μg/kg) **	< 10				6000		10%
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) EH_ID_CU_AL	< 10			1	500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	7.0			1		>6	
Acid Neutralisation Capacity (mmol / kg)	0.00		1			To be evaluated	
Eluate Analysis				10.1	Limit value	es for compliance le	
BS EN 12457 - 2 preparation utilising end over end leaching	10:1			10:1		12457-2 at L/S 10	
procedure)	mg/l			mg/kg			
Arsenic *	0.0065			0.0485	0.5	2	25
Barium *	0.0016			0.0121	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0022			0.017	0.5	10	70
Copper *	0.0029			0.022	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0039			0.029	0.4	10	40
Lead *	0.0022			0.017	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.012			0.092	4	50	200
Chloride *	0.23			1.7	800	15000	25000
Fluoride Sulphate *	0.35 2.7			2.6 20	10 1000	150 20000	500 50000
rDS*	37			20	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	4.08			30.6	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	78						
loisture (%)	22						
		F 11			* 10/4-7		
Results are expressed on a dry weight basis, after correction for moi			i-l-ti			ed (liquid eluate ana	alysis only)
Stated limits are for guidance only and i2 cannot be held responsible	tor any discrepancies	s with current leg	isiation		** = MCERTS acc	redited	
Landfill WAC analysis (specifically leaching test results) must		ardous waste cla ided) and EA Gu		es as defined by th	ne Waste (England	l and Wales) Regul	ations 2011 (as

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 21-30960 Project / Site name: Berry Hill Road, Adderbury

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
I	2127185	WS2	None Supplied	1	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 21-30960

Project / Site name: Berry Hill Road, Adderbury

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status NONE	
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w		
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	w	NONE	
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS	
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE	
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS	
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	w	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS	
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	w	MCERTS	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025	
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025	

Analytical Report Number : 21-30960

Project / Site name: Berry Hill Road, Adderbury

Water matrix abbreviations:

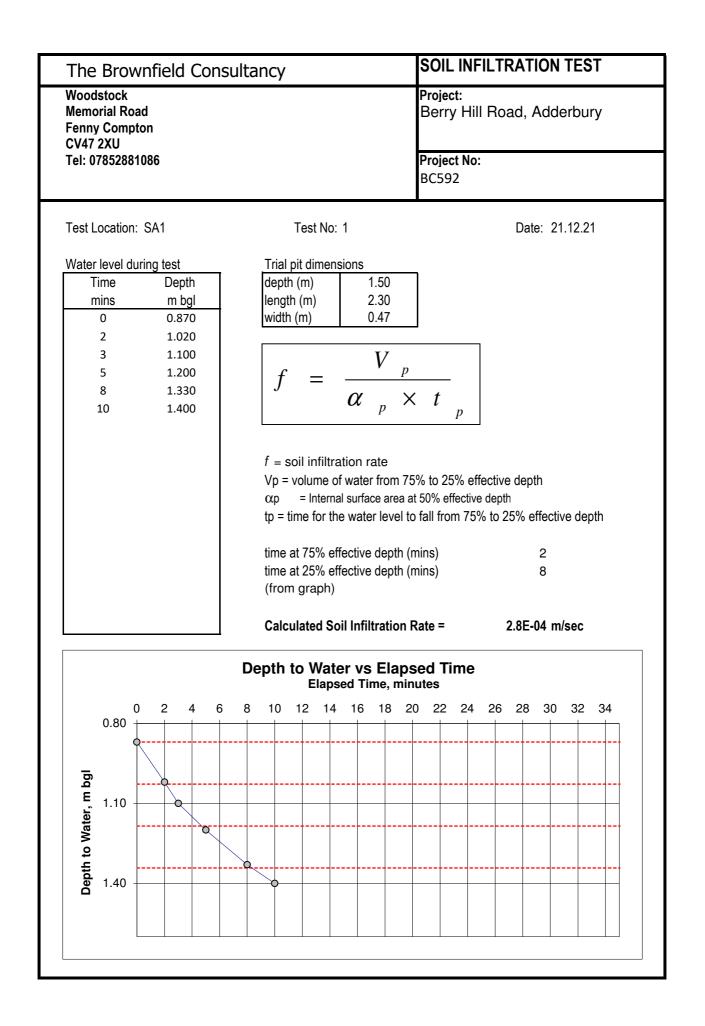
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

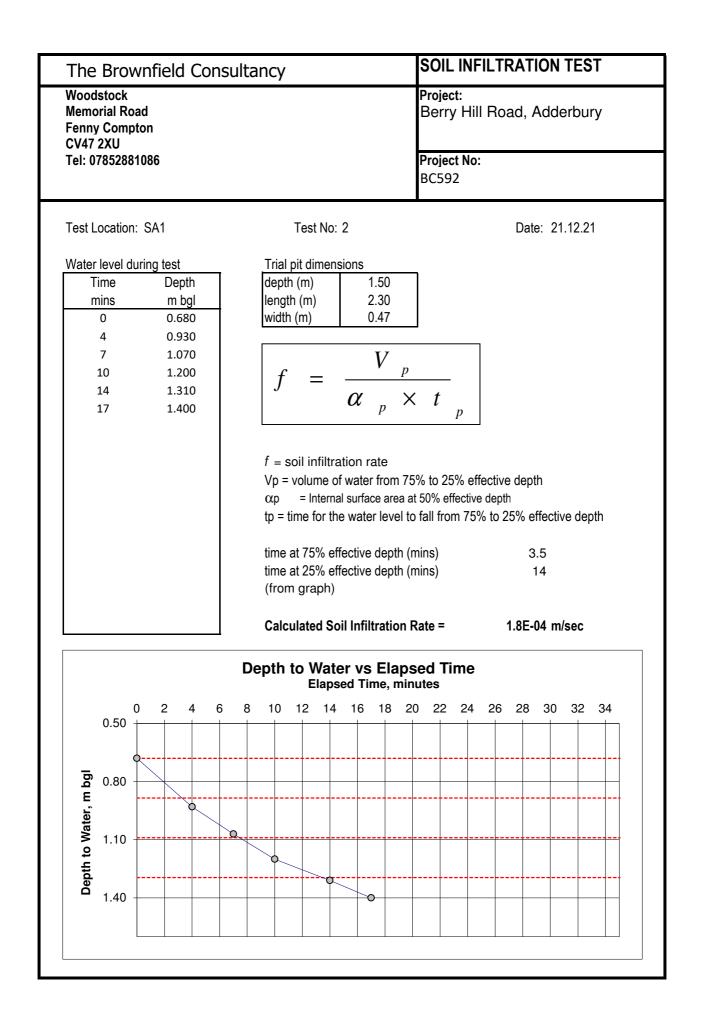
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

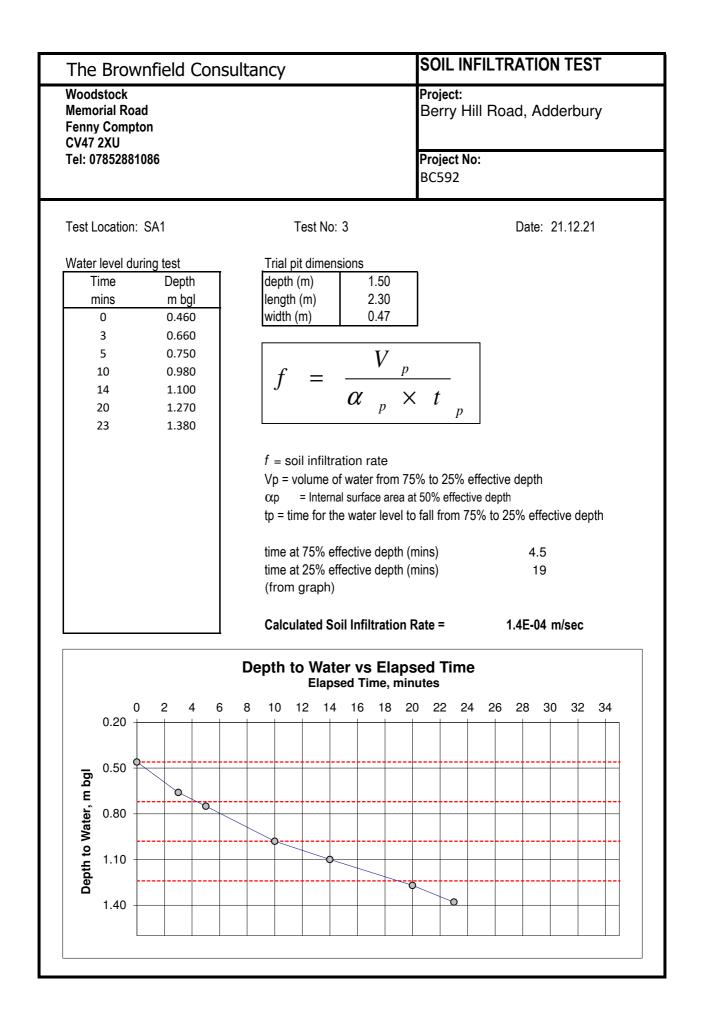
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

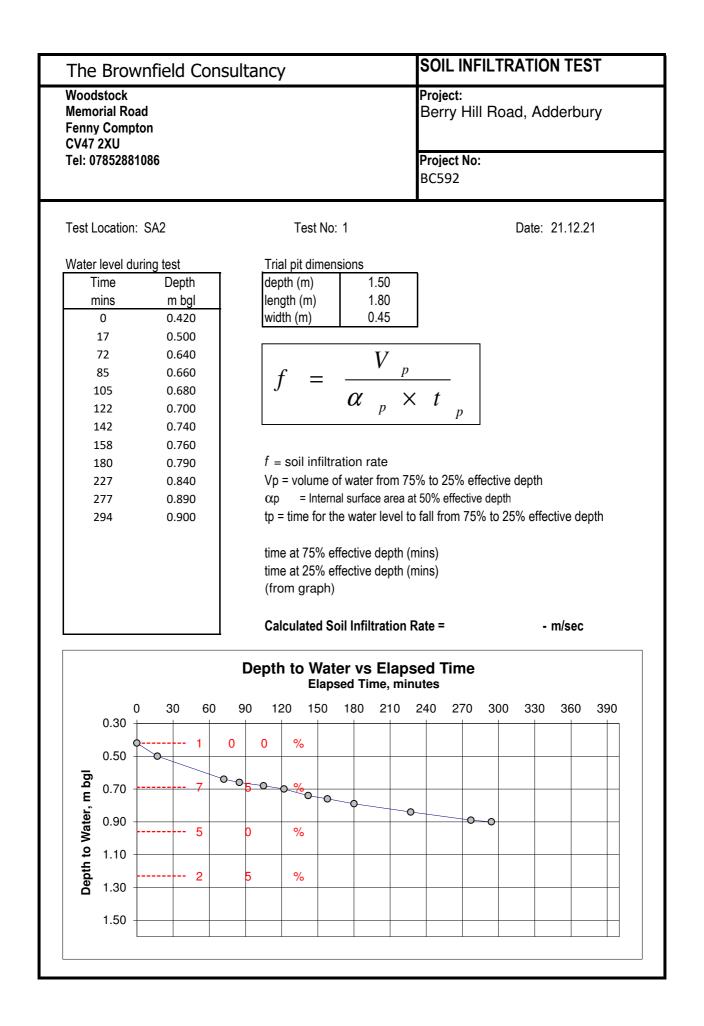
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.


Information in Support of Analytical Results


List of HWOL Acronyms and Operators


Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total


APPENDIX E

Soakaway Results

APPENDIX F

Gas Monitoring Results

GAS MONITORING DATA

The Brownfield Consultancy

Site:	Berry Hil	I Road, A	dderbury	/]	Operator	:	J Twaddle
Project: BC592			Date: 02.01.2022]	Weather:		Warm, overcast	
Monitoring Location	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH ₄	CO ₂	O ₂	Notes
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	4.01	Dry	997	<0.1		30	<0.1	2.1	19.0	
							60	<0.1	2.1	18.6	
							120	<0.1	2.1	18.6	
							180	<0.1	2.1	18.6	
							240	<0.1	2.1	18.6	
							300	<0.1	2.1	18.6	
WS2	50	3.96	Dry	997	<0.1		30	<0.1	1.9	18.9	
							60	<0.1	2.0	18.5	
							120	<0.1	2.0	18.4	
							180	<0.1	2.0	18.4	
							240	<0.1	2.0	18.4	
							300	<0.1	2.0	18.4	
WS3	50	4.04	Dry	997	<0.1		30	<0.1	0.7	19.4	
							60	<0.1	0.7	19.4	
							120	<0.1	0.7	19.4	
							180	<0.1	0.7	19.4	
							240	<0.1	0.7	19.4	
							300	<0.1	0.7	19.4	

GAS MONITORING DATA

The Brownfield Consultancy

Site:	Berry Hil	I Road, A	dderbury	/]	Operator	:	J Twaddle
Project: BC592		Date: 10.1.22]	Weather:		Cold, overcast			
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH ₄	CO ₂	O ₂	Notes
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	4.01	Dry	1006	<0.1		30	<0.1	0.1	20.6	
							60	<0.1	0.1	20.6	
							120	<0.1	0.1	20.6	
							180	<0.1	0.1	20.6	
							240	<0.1	0.1	20.6	
							300	<0.1	0.1	20.6	
WS2	50	3.96	Dry	1006	<0.1		30	<0.1	0.1	20.7	
							60	<0.1	0.1	20.7	
							120	<0.1	0.1	20.7	
							180	<0.1	0.1	20.7	
							240	<0.1	0.1	20.7	
							300	<0.1	0.1	20.7	
WS3	50	4.04	Dry	1006	<0.1		30	<0.1	0.4	19.6	
							60	<0.1	0.4	19.6	
							120	<0.1	0.4	19.6	
							180	<0.1	0.4	19.6	
							240	<0.1	0.4	19.6	
							300	<0.1	0.4	19.6	
				ļ					-		

GAS MONITORING DATA

The Brownfield Consultancy

Site:	Berry Hil	I Road, A	dderbury	1]	Operator	1	J Twaddle
Project:	BC592]	Date:	23.1.22]	Weather:		Cold, overcast
Monitoring Location	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH4	CO ₂	O ₂	Notes
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(S)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	4.01	Dry	1022	<0.1		30	<0.1	1.8	18.9	
							60	<0.1	1.8	18.8	
							120	<0.1	1.8	18.7	
							180	<0.1	1.8	18.7	
							240	<0.1	1.8	18.7	
							300	<0.1	1.8	18.7	
WS2	50	3.96	Dry	1022	<0.1		30	<0.1	1.4	19.6	
							60	<0.1	1.4	19.5	
							120	<0.1	1.4	19.5	
							180	<0.1	1.4	19.5	
							240	<0.1	1.4	19.5	
							300	<0.1	1.4	19.5	
WS3	50	4.04	Dry	1022	<0.1		30	<0.1	0.6	19.5	
							60	<0.1	0.6	19.2	
							120	<0.1	0.6	19.2	
							180	<0.1	0.6	19.2	
							240	<0.1	0.6	19.2	
							300	<0.1	0.6	19.2	

APPENDIX G

Photographs

Photographs

Looking westerly from the Riding Arena on the eastern boundary.

Looking northerly towards the Stables.

Bund immediately south of the arena.

Machine excavation into the bund.

Photographs of the Site

Looking northwesterly from on top of the Bund.

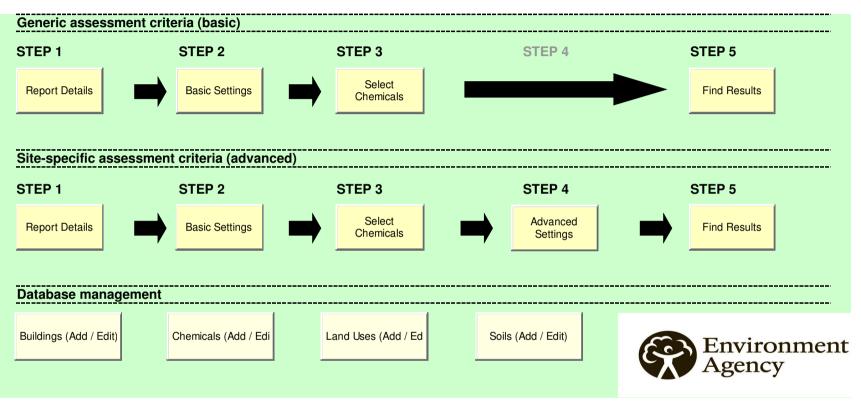
Stable Block looking Northerly. Backfilled HP3 in the foreground.

Looking southwesterly from the Stable Block.

HP1 Location immediately west of the main Stable building.

HP2 location, North of the Stable Block.

HP3 location, looking southerly.


APPENDIX H

CLEA 1.07 Worksheets

Interactive CLEA software guide

CLEA Software Version 1.071 © Environment Agency 2015

Contains public sector information licensed under the Open Government Licence v3.0

*This workbook is supplied without any password protection and may have been modified from the original download by third parties.

STEP 1: REPORT DETAILS

User	J Twaddle
Company	The Brownfield Consultancy
Contact number	
Report title	Adderbury
Job Number	BC592
Notes	

Clear All Details

Back to Guide

STEP 2: BASIC SETTIN	IGS App	bly Settings to Model	Back to Guide				
SELECT LAND USE Resident	al with produce	T			RATIO MODE		
LAND USE OPTION	S						
RECEPTOR Female	(res)						
BUILDING Medium	I/large terraced hou	use	- STAF	RT AC 1	EN	D AC 6	
SOIL TYPE Sandy I	oam			pH 7	SO	M (%) 6	
EXPOSURE PATHW	/AYS						
OR. direct soil and d consumption of hom soil attached to hom	egrown produce	र ह	DERMAL RO indoor outdoor		indo	ATION ROU" or dust loor dust or vapour loor vapour	TES SE SE SE SE SE

|--|

1 A 2	Chemical Arsenic	oral HCV (dimensionless)	inhal HCV	Combined	oral HCV	inh al LIOV	
1 A 2		(dimensionless)				inhal HCV	Combined
2	Arsenic	((dimensionless)	(dimensionless)	mg kg⁻¹	mg kg⁻¹	mg kg⁻¹
		1.00	0.00	NR	1.59E+02	NR	NR
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17 18							
19 20							
20							
		·					
22 23							
23							
25							
26							

27			
28			
29			
30			

SAC Flag	Soil Saturation Limit					Pathway C	ontributions (%)	
Current SAC used for determining pathway contributions		direct soil ingestion	sum of consumption of homegrown produce and attached soil	dermal contact (indoor)	dermal contact (outdoor)	inhalation of dust (indoor)	inhalation of dust (outdoor)	inhalation of vapour (indoor)
(unitless)	mg kg⁻¹	%	%	%	%	%	%	%
Oral	NR	6.69	32.68	2.21	58.43	0.00	0.00	0.00
			<u> </u>					
			<u>.</u>		!	┨ 		
					 			
					i 	i 		
			<u>.</u>		 !			
			<u>.</u>				r	
			4 		L ! ! !	/ ! ! !		
					i 	i 		
			; {		¦ ┢	¦ {	 	
					, , , ,			
			<u> </u>		 			
			/		<u></u>	<u> </u>	·	
			;		; !	i !		
			· 		 	 		
	L	L	j		Ĺ	j	L	

inhalation of vapour (outdoor)	oral background	inhalation background	Total
%	%	%	%
0.00	0.00	0.00	100.00

APPENDIX I

Limitations

NOTES ON LIMITATIONS

This report has been prepared by the Brownfield Consultancy with all reasonable skill, care and diligence. This report is confidential and has been prepared solely for the benefit of the client as stated at the front of the report in relation to a specific development or scheme; and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed.

Should any third party wish to use or rely upon the contents of the report, written approval must be sought from The Brownfield Consultancy; a charge may be levied against such approval. We accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned, and: this document to any third party with whom an agreement has not been executed.

Any comments given are based on the understanding that the proposed development will be as detailed. The Brownfield Consultancy warrants the accuracy of this report up to and including the published date. Additional information, improved practice or changes in legislation may necessitate this report having to be reviewed in whole or in part after that date.

This report is only valid when used it its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report. Whilst this report and the opinion made herein are correct to the best of our belief we cannot guarantee the accuracy or completeness of any information provided by third parties.

The opinions and recommendations expressed in this report are based on statute, guidance, and appropriate practice current at the date of its preparation. The Brownfield Consultancy does not accept any liability whatsoever for the consequences of any future legislative changes or the release of subsequent guidance documentation, etc. Such changes may render some of the opinions and advice in this report inappropriate or incorrect and we will be pleased to advise if any report requires revision due to changing circumstances. Following delivery of a report we have no obligation to advise the Client or any other party of such changes or their repercussions.

Phase 1 Reports

The work undertaken to provide the basis of a Phase I report comprised a study of available documented information from a variety of sources, together with (where appropriate) a brief walk over inspection of the site. The opinions given in this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. The information reviewed should not be considered exhaustive and has been accepted in good faith as providing true and representative data pertaining to site conditions. It should be noted that any risks identified in this report are perceived risks based on the information reviewed; actual risks can only be assessed following a physical investigation of the site.

Historical maps and aerial photographs provide a "snap shot" in time about conditions or activities at the site and cannot be relied upon as indicators of any events or activities that may have taken place at other times. Any borehole data from the British Geological Survey sources are included on the following basis: "The British Geological Survey accept no responsibility for omissions or misinterpretation of the data from their Data Bank as this may be old or obtained from non-BGS sources and may not represent current interpretation".

Phase II Intrusive Investigations

The investigation of the site has been carried out to provide sufficient information concerning the type and degree of contamination, and ground and groundwater conditions to allow a reasonable risk assessment to be made. The conclusions and recommendations made in this site appraisal report and the opinions expressed are based on the information reviewed and/or the ground conditions encountered in exploratory holes and the results of any field or laboratory testing undertaken. There may be ground conditions at the site that have not been disclosed by the information reviewed or by the investigative work undertaken. Such undisclosed conditions cannot be taken into account in any analysis and reporting.

Some of the conclusions in this site appraisal report may be based on third party data. No guarantee can be given for the accuracy or completeness of any of the third party data used.

The evaluation and conclusions do not preclude the existence of contamination, which could not reasonably have been revealed by the current work. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. The number of sampling points and the methods of sampling and testing do not preclude the existence of localised "hotspots" of contamination or different ground conditions where concentrations may be significantly higher than those actually encountered. Hence this report should be used for information purposes only and should not be construed as a comprehensive characterisation of all site conditions.

It should be noted that groundwater levels, groundwater chemistry, surface water levels, surface water chemistry, soil gas concentrations and soil gas flow rates can vary due to seasonal, climatic, tidal and man-made effects.

Exploratory hole locations provided in the report are generally established by tape measurement from existing features or boundaries. Hole locations are not accurately surveyed and ground levels at these locations are not obtained unless specifically requested.

The interpretation carried out in this report is based on scientific and engineering appraisal carried out by suitably experienced and qualified technical consultants based on the scope of our engagement. We have not taken into account the perceptions of, for example, banks, insurers, other funders, lay people, etc., unless the report has been prepared specifically for that purpose. Advice from other specialists may be required such as the legal, planning and architecture professions, whether specifically recommended in our report or not.

The objectives of the investigation have been linked to establishing the risks associated with potential human targets, building materials, the environment (including adjacent land), and to surface and ground water. The amount of exploratory work and chemical testing undertaken has necessarily been restricted by the short timescale available, and the locations of exploratory holes have been restricted to areas unoccupied by the building(s) on the site and by buried services.

New information, improved practices and legislation may necessitate an alteration to the report in whole, or in part, after its submission. Therefore with any change in circumstances or after the expiry of one year from the date of the report, the report should be referred to the Brownfield Consultancy Limited for re-assessment and, if necessary, re-appraisal.