

SCHEME

DRAINAGE

SURFACE WATER

Land North Of Milton Road, Adderbury-Phase 2

Reference: 0202 - DD- 001

Nov-21 www.rida-reports.co.uk

	Section	Page
Introduction	1	2
Site Characteristics	2.0	3
Peak Runoff and Attenuation Volumes	3.0	5
Proposed Sustainable Drainage System	4.0	6
Proposed Foul Water Drainage System	5.0	7
Maintenance and Management Plan	6.0	8
Appendices		
Distribution Existing and Proposed Areas	А	
Site Investigation results	В	
Drainage Calculations	С	
Drainage System General Arrangement	D	

Purpose of this report

1.1 The purpose of this statement is to accompany the technical drawings and details showing the proposed Sustainable Drainage System and to address each point relating to drainage as required by planning condition 9 and 10, and parts of conditions 4, 6, and 17 of planning permission Ref: 19/02796/F and subsequent amendments-21/00104/F.

Existing and Proposed Site

- 2.1 The estimated lifetime of this development is: 100 years
- 2.2 The distribution of catchment areas for existing and proposed site is as per table 1 below. See appendix A for details.

Table 1 : Existing and Proposed catchment areas in hectares

		Proposed
Description	Existing Site	Site
Permeable Surface	0.960	0.905
Impermeable Surface	0.000	0.055
Total Development Area	0.960	0.960

2.3 The distribution of surfaces within the positively drained areas can be seen in appendix D.

Site Characteristics

2.4 The site background is clearly identified through answers to the questions below

ΤΟΡΙϹ	QUESTION	ANSWER
Protected species or habitat Is	the site near to designated sites and priority habitats?	No
Flood Plain	Is the site located in the flood plain?	No
Soils and Geology	Soil permeability? - See appendix B for results	Yes
Space constraints	Space for SuDS components?	Yes
	Sited on a flat site?	Yes
Topography	Sited on a steep slope (5-15%)	No
	Sited on a very steep slope (>15%)	No
Groundwater	Is ground Water less that 3m bgl?	N/A
Runoff characteristics	Is the development in a high risk flooding area?	No

Evaluation of Discharge Point

2.5 The SuDS design takes into account Building Regulations Section H3. Rainwater from roofs and paved areas is carried away from the surface to discharge to one of the following in order of priority:

Discharge to:	Site Assessment
Adequate infiltration system —	The site has potential for infiltration at shallow depths. See site investigation. The infiltration rate for the site is 0.57050 m.hr
a watercourse —	There is a ditch running parallel to phase 1. It is not proposed to connect pahse 2 into this ditch.
a surface water sewer —	There are not public drains in the proximity to the site
a combined sewer system —	There are not public drains in the proximity to the site

Peak Run-off Rate

84-4b - d 11-- d

The peak runoff rate for the existing site was calculated as per table 3. 3.1 Calculation results are in table 5 and appendix C.

Table 3: Peak run-off rate calculation method for existing site Coloulation Mathed

ivietnoa Usea	Calculation Wethod
\checkmark	This is a greenfield site, as the proposed development area is less than 50ha, the Institute of Hydrology(IoH). Report124 Flood Estimation for Small Catchments method has been used to estimate the site peak flow rates
	This is a brownfield site, runoff rates are calculated in accordance with best practice simulation modelling
	This is a brownfield site where the pre-development drainage isn't known therefore the runoff rates are calculated using the Greenfield run-off model (above) but using soil type 5

3.2 The runoff flow produced by the development will be controlled as per table

Table 4: Runoff discharge rate control

Control Used	Description of runoff discharge					
\checkmark	Water will be discharged into the ground via a SuDS as described in table 6 below					
	The peak discharge rate has been reduced to pre- development Qbar flow					
	The limiting discharge rate requires a flow rate less than 5l/s at discharge point, therefore a rate of 5l/s is used					
-	The peak discharge rate has been agreed with the local water company to be 1:30 storm event flow rate					

Run-off Volumes

3.3 Micro Drainage was used to calculate the size of the attenuation based on the available infiltration rate, the size of the soakaways are calculated for all events up to the 1 in 100 including an allowance for climate change of 40%. See table 5 for value and appendix C for calculations.

Table 5: Peak discharge rates and anticipated attenuation volumes for SuDS

	Peak D	Discharge Rate	
Return Period	l	(I/s)	Infiltration
Event	Existing	Proposed	Rate (m/hr)
Qbar(1 in 2	2) 1.60	n/a	0.5705
1 in 3	0 3.70	n/a	0.5705
1 in 100	5.20	n/a	0.5705
1 in 100 + C	С	n/a	0.5705

Drainage Hierarchy Evaluation

4.1 The drainage hierarchy evaluation is set up within the NPPF and the local SuDS documents of the Lead Local Flood Authority. The following drainage strategy is proposed by this development.

Table 6: Drainage Hierarchy Evaluation

Hierarchy	Feasible	Proposed
1 Store rainwater for later use	\checkmark	x
2 Use infiltration techniques, such as porous surfaces	\checkmark	\checkmark
3 Attenuate rainwater in ponds or open water features for gradual release	×	×
4 Attenuate rainwater by storing in tanks or sealed water features for gradual release	×	×
5 Discharge rainwater direct to a watercourse	x	x
6 Discharge rainwater to a surface water sewer/drain	X	x
7 Discharge rainwater to the combined sewer.	X	x

- 4.2 The location and details of the SuDS can be seen drainage layouts in appendix D. Calculations are in appendix C.
- 4.3 The drainage calculations demonstrate:

- The post development runoff volumes have been reduced to the predevelopment runoff values by infiltrating all the run-off produced by the development.

The access road drainage desing has been agreed with Oxfordshire County Council as part of Condition 10 of 18/00220/F. See appendix D for details.
No flooding occurs for the 1 in 30 storm events.

- Any flooding for the 1 in 100 year +40% climate change event can be safely contained on site.

4.4 The proposed drainage strategy demonstrate that the development can be sustainably drained, to comply with the requirements of the NPPF and planning conditions.

Management of Exceedance Flows

4.5 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP + CC(1 in 100 years). However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded. Surface water will flow to the lowest points within the site located to the fields. The flood risk to the buildings would therefore remain very low. See appendix D.

Maintenance and Management plan responsibility

5.1 The SuDS will be maintained by The Owner the property

Maintenance and Management plan for proposed SuDS

5.2 The maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined above. The maintenance for SuDS structures are as follow:

	Operation and maintenance requirements for infiltration basins					
13.2	Maintenance schedule	Required action	Typical frequency			
		Remove litter, debris and trash	Monthly			
		Cut grass – for landscaped areas and access routes	Monthly (during growing season) or as required			
	Regular maintenance	Cut grass - meadow grass in and around basin	Half yearly: spring (before nesting season) and autumn			
		Manage other vegetation and remove nuisance plants	Monthly at start, then as required			
		Reseed areas of poor vegetation growth	Annually, or as required			
	Occasional maintenance	Prune and trim trees and remove outtings	As required			
		Remove sediment from pre-treatment system when 50% full	As required			
	Remedial actions	Repair erosion or other damage by reseeding or re- turfing	As required			
- 1		Realign the rip-rap	As required			
		Repair or rehabilitate inlets, outlets and overflows	As required			
		Rehabilitate infiltration surface using scarifying and spiking techniques if performance deteriorates	As required			
		Relevel uneven surfaces and reinstate design levels	As required			
		Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly			
		Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly			
	Monitoring	Inspect inlets and pre-treatment systems for silt accumulation; establish appropriate silt removal frequencies	Half yearly			
		Inspect inflitration surfaces for compaction and ponding	Monthly			

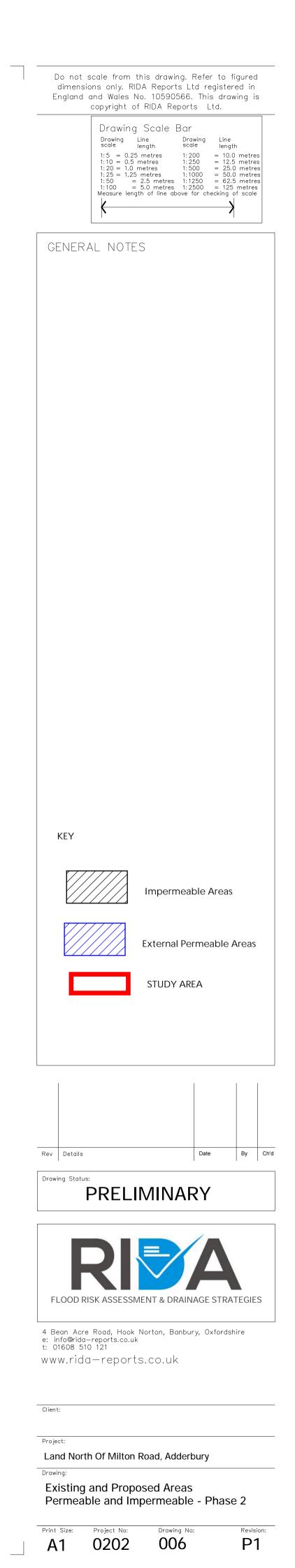
Maintenance and Management Plan

6

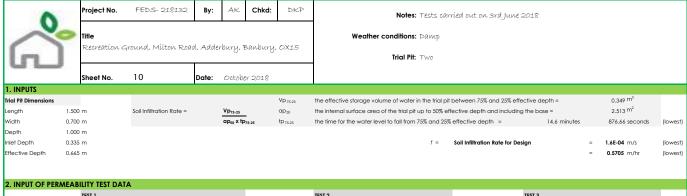
Operation and maintenance requirements for pervious pavements					
Maintenance schedule	Required action	Typical frequency			
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment			
	Stabilise and mow contributing and adjacent areas	As required			
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements			
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required			
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required			
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)			
	Initial inspection	Monthly for three months after installation			
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months			
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually			
	Monitor inspection chambers	Annually			

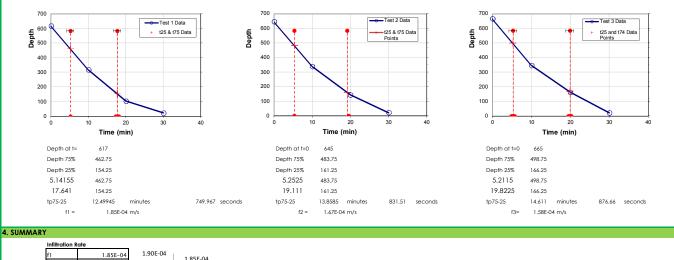
Operation and maintenance requirements for pervious pavemer

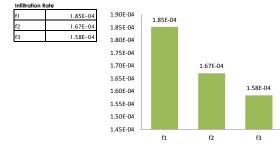
Appendix A



EXISTING SITE NTS


PROPOSED SITE 1:1000


Appendix B



TEST 1			IEST 2			TEST 3		
Time	Water level	Water Depth	Time	Water level	Water Depth	Time	Water level	Water Depth
0	383	617	0	355	645	0	335	665
10	683	317	10	662	338	10	654	346
20	896	104	20	856	144	20	837	163
30	978	22	30	978	22	30	978	22

Appendix C

RIDA Reports		Page 1
- - -		Micco
Date 08/09/2021 23:11	Designed by Argemiro	Micro Drainage
File QBAR PHASE 2.SRCX	Checked by	Diamaye
Innovyze	Source Control 2018.1.1	
ICP SUD	<u>S Mean Annual Flood</u>	
	Input	
	rs) 2 Soil 0.300 ha) 0.960 Urban 0.000 mm) 654 Region Number Region 6	
	Results 1/s	
	QBAR Rural 1.6 QBAR Urban 1.6	
	Q2 years 1.4	
	Q1 year 1.4 Q30 years 3.7 Q100 years 5.2	
©198	32-2018 Innovyze	

RIDA Reports		Page 1
		Micro
Date 08/09/2021 23:05	Designed by Argemiro	Drainage
File PROPOSED DRAINAGE SYSTE	Checked by	Brainlage
Innovyze	Network 2018.1.1	
STORM SEWER DESIGN	by the Modified Rational Met	hod
Design	<u>Criteria for Storm</u>	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
Return Period (years)	50 Maximum Backdrop 30 Min Design Depth for Optim 0.000 Min Vel for Auto Design	<pre>Height (m) 0.200 Height (m) 1.500 nisation (m) 0.500 n only (m/s) 1.00</pre>
Design	ed with Level Inverts	
Time Are	a Diagram for Storm	
Time (mins)	Area Time Area (ha) (mins) (ha)	
0-4	0.034 4-8 0.021	
Total Area	Contributing (ha) = 0.055	
	pe Volume (m³) = 0.157	
Network D	esign Table for Storm	
PN Length Fall Slope I.Area T.		ction Type Auto Design
		pe/Conduit 💣 pe/Conduit 💣
1.001 10.000 0.1/1 30.3 0.000 0		pe/Conduit 💣
Netwo	ork Results Table	
PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha		l Cap Flow s) (l/s) (l/s)
1 000 50 00 6 17 00 500 0	0.0 0.0 0.0 1.	01 7.9 7.4
		01 7.9 7.4
1.001 50.00 6.33 99.329 0.	055 0.0 0.0 0.0 1.	
1.001 50.00 6.33 99.329 0.		
1.001 50.00 6.33 99.329 0. <u>Free Flowing</u>	055 0.0 0.0 0.0 1. Outfall Details for Storm . Level I. Level Min D,L V	
1.001 50.00 6.33 99.329 0. <u>Free Flowing</u> Outfall Outfall C	055 0.0 0.0 0.0 1. Outfall Details for Storm . Level I. Level Min D,L T (m) (m) I. Level (mm) (m	01 7.9 7.4 N
1.001 50.00 6.33 99.329 0. <u>Free Flowing</u> Outfall Outfall C Pipe Number Name 1.001	055 0.0 0.0 0.0 1. Outfall Details for Storm . Level I. Level Min D,L K (m) (m) I. Level (mm) (m (m)	01 7.9 7.4 W mm)

RIDA Reports		Page 2
-		
-		The second
-		Micro
Date 08/09/2021 23:05	Designed by Argemiro	Drainage
File PROPOSED DRAINAGE SYSTE	Checked by Network 2018.1.1	
Innovyze	Network 2018.1.1	
Simulatio	on Criteria for Storm	
Valumatuia Dunaff Cooff ().750 Additional Flow - % of Total Fl	
Areal Reduction Factor 1 Hot Start (mins)	L.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coeffiecie	ge 2.000 nt 0.800
Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (l/s) (s) 60
Number of Online Cont	aphs 0 Number of Storage Structures 2 rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
Synthet	ic Rainfall Details	
Rainfall Model	FSR Profile Type Sum	mer
Return Period (years)	2 Cv (Summer) 0.	
	nd and Wales Cv (Winter) 0.	
M5-60 (mm) Ratio R	20.000 Storm Duration (mins) 0.409	30
	0.105	

©1982-2018 Innovyze

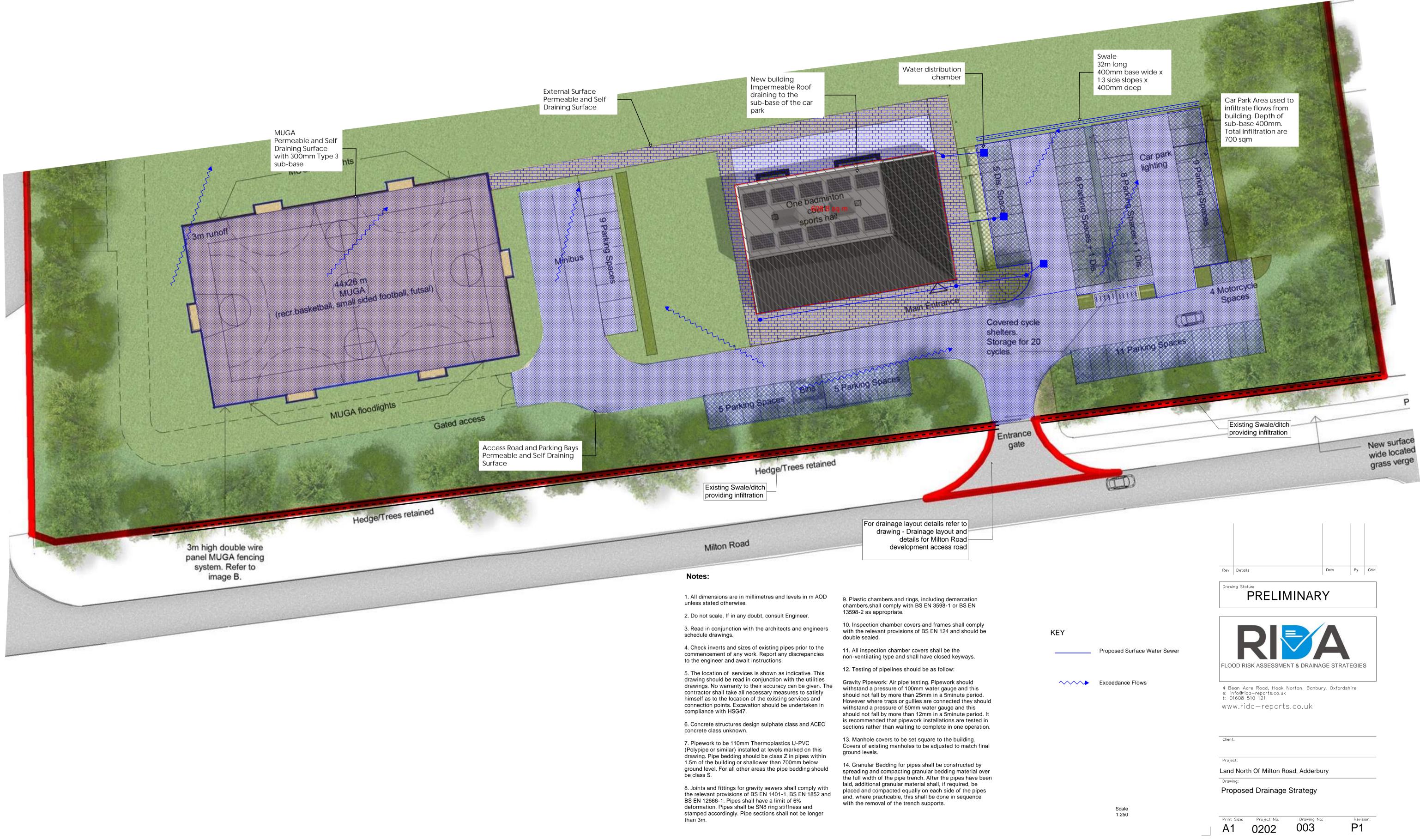
RIDA Reports		Page 3
-		
-		The second
-	Designed has been determined	Micro
Date 08/09/2021 23:05 File PROPOSED DRAINAGE SYSTE	Designed by Argemiro Checked by	Micro Drainage
Innovyze	Network 2018.1.1	
	Network 2010.1.1	
Online	Controls for Storm	
Dump Manhala, Daint (2, DS/PN: 1.001, Volume (m³): 0.2	
<u>rump Mannore. rorne z</u>	2, D3/FN. 1.001, VOlume (m). 0.2	
Inve	rt Level (m) 99.329	
Dep	oth (m) Flow (l/s)	
	2.000 0.0000	
©198	82-2018 Innovyze	
	4	

DA Reports		Page 4
		Micco
te 08/09/2021 23:05	Designed by Argemiro	Desiran
le proposed drainage syste	Checked by	Diamay
novyze	Network 2018.1.1	
Storage	Structures for Storm	
	ple: Point 1, DS/PN: 1.000	ing used for
	included unless the upstream pipe is be ge and/or as a carrier	ing used for
Infiltration Coefficient Base		
Infiltration Coefficient Side	(m/hr) 0.57050 Side Slope (1:: Factor 2.0 Slope (1::	
-	rosity 1.00 Cap Volume Depth (I	
	el (m) 99.500 Cap Infiltration Depth (r	
Base Wid	th (m) 0.4 Include Swale Volum	me Yes
<u>Porous Car Park</u>	Manhole: Point 2, DS/PN: 1.001	
Infiltration Coefficient Base	e (m/hr) 0.57050 Width (m)	70.0
Membrane Percolation		
	on (l/s) 194.4 Slope (1:X)	
Safety	y Factor 2.0 Depression Storage (mm)	
	Porosity 0.30 Evaporation (mm/day) evel (m) 99.500 Cap Volume Depth (m)	
THATC THE		0.400

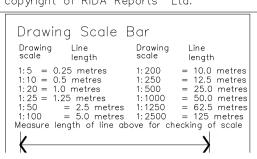
ate 08/09/2021 23:05 Designed by Argemiro	
ate 08/09/2021 23:05 Designed by Argemiro	
ate 08/09/2021 23:05 Designed by Argemiro	The second
ate 08/09/2021 23:05 Designed by Argemiro	Micro
	Desinar
ile PROPOSED DRAINAGE SYSTE Checked by	Digitid
nnovyze Network 2018.1.1	1
l year Return Period Summary of Critical Results by Maximum Leve	el (Rank 1
<u>for Storm</u>	
Simulation Criteria	
Areal Reduction Factor 1.000 Additional Flow - % of Total Flo	ow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storag	ge 2.000
Hot Start Level (mm) 0 Inlet Coefficien	
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day Foul Sewage per hectare (l/s) 0.000	y) 0.000
roui sewage per nectare (1/S) 0.000	
Number of Input Hydrographs 0 Number of Storage Structures 2	
Number of Online Controls 1 Number of Time/Area Diagrams 0	
Number of Offline Controls 0 Number of Real Time Controls 0	
Synthetic Rainfall Details	
Rainfall Model FSR Ratio R 0.409	
Region England and Wales Cv (Summer) 0.750	
M5-60 (mm) 20.000 Cv (Winter) 0.840	
Margin for Flood Risk Warning (mm) 10.0 DVD Status OFF	
Analysis Timestep Fine Inertia Status OFF	
DTS Status ON	
Profile(s) Summer and Winte	
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 144	+0
$Potymp Poriod(a) (yacara) \qquad 1 20 10$	
Return Period(s) (years) 1, 30, 10 Climate Change (%) 0, 0, 4	00
Return Period(s) (years) 1, 30, 10 Climate Change (%) 0, 0, 4	00
-	00 40
Climate Change (%) 0, 0, 4	00 10 Wate
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove	00 10 Wate
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A	00 Wate erflow Leve Act. (m)
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer	00 10 Wate erflow Leve Act. (m) 99.55
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer	00 Wate erflow Leve Act. (m)
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer	00 10 Wate erflow Leve Act. (m) 99.55
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Surcharged Flooded Pipe	00 10 erflow Leve Act. (m) 99.55 99.50
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Ove PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Surcharged Flooded Pipe US/MH Depth Volume Flow / Overflow Flow L	00 Wate erflow Leve Act. (m) 99.55 99.50
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Surcharged Flooded Pipe US/MH Depth Volume Flow Flow L PN Name (m) (m³) Cap. (1/s) Status Exc	00 10 erflow Leve Act. (m) 99.55 99.50
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer LOOI Point 2 15 Winter 1 +0% 1/15 Summer LOOI Point 2 15 Winter 1 +0% 1/15 Summer LOOI Point 2 Depth Volume Flow / Overflow Flow L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Surcharged Flooded Pipe US/MH Depth Volume Flow Flow L PN Name (m) (m³) Cap. (1/s) Status Exc	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Loos Surcharged Flooded Pipe Pipe US/MH Depth Volume Flow // L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Loos Surcharged Flooded Pipe Pipe US/MH Depth Volume Flow // L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Surcharged Flooded Pipe US/MH Depth Volume Flow / Overflow Flow L PN Name (m) (m³) Cap. (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Loos Surcharged Flooded Pipe Pipe US/MH Depth Volume Flow // L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Loos Surcharged Flooded Pipe Pipe US/MH Depth Volume Flow // L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer Loos Surcharged Flooded Pipe Pipe US/MH Depth Volume Flow // L PN Name (m) (m³) Cap. (1/s) (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56
Climate Change (%) 0, 0, 4 US/MH Return Climate First (X) First (Y) First (Z) Over PN Name Storm Period Change Surcharge Flood Overflow A 1.000 Point 1 15 Winter 1 +0% 30/15 Summer 1.001 Point 2 15 Winter 1 +0% 1/15 Summer US/MH Depth Volume Flow / Overflow Flow L PN Name (m) (m³) Cap. (1/s) Status Exc 1.000 Point 1 -0.047 0.000 0.54 4.0 OK	00 10 wate erflow Leve Act. (m) 99.55 99.56

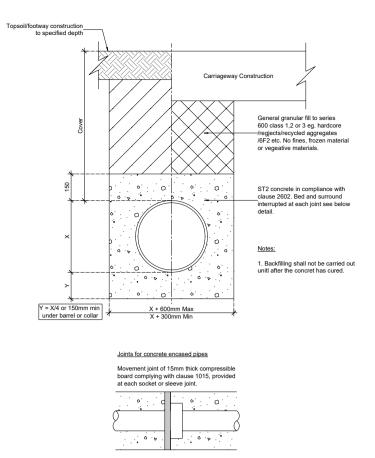
©1982-2018 Innovyze

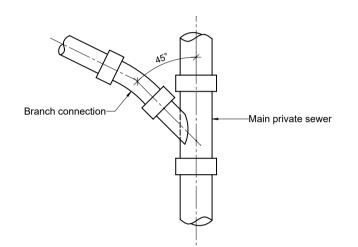
	eports	, 						Page	6
								Mic	m
ate 08	3/09/2	2021 23:05	5	De	esigned by	/ Argemir	C	Dcai	
ile PR	ROPOSE	ED DRAINAG	GE SYSTE	E [C]	hecked by			Drai	
nnovyz	ze			Ne	etwork 201	18.1.1			
0 year	<u>r Ret</u>	urn Perio	d Summa	-	Critical R For Storm	esults by	Maximum	Level (Ra	ank 1
					ation Crite				
							- % of Total * 10m³/ha St		
			t Level		0 MA		nlet Coeffie		
		Headloss Co ewage per h			-	Person pe	r Day (l/per	c/day) 0.0	00
		Number of	of Online	e Control	Ls 1 Number	of Time/Ar	Structures ea Diagrams me Controls	0	
				Synthet:	o Dainfall :	Detaile			
		Rain	<u>:</u> fall Mode		<u>c Rainfall </u> FSI	<u>Details</u> R Ratio	R 0.409		
		1.01211			nd and Wale:				
		1	45-60 (mn	n)	20.000) Cv (Winte	er) 0.840		
		Margin fo	or Flood	Analysis	-	Fine Inerti	D Status OF a Status OF		
	Re	eturn Perio		ins) 15, ars)	30, 60, 12		ummer and W , 480, 960, 1, 30 0,	1440	Wate
PN	Re US/MH Name	eturn Perio	on(s) (m: d(s) (yea e Change	ins) 15, ars) (%) Climate	30, 60, 12 First (X) Surcharge	0, 240, 360 First (Y	, 480, 960, 1, 30	1440 , 100 0, 40	_
PN	US/MH Name	eturn Perio Climat	on(s) (m: d(s) (yea e Change Return Period 30	ins) 15, ars) (%) Climate Change +0%	First (X)	0, 240, 360 First (Y Flood	<pre>, 480, 960, 1, 30 0,) First (Z)</pre>	1440 , 100 0, 40 Overflow	Leve (m) 99.63
PN	US/MH Name	Storm 1 15 Winter 2 15 Winter	on(s) (m: d(s) (yea e Change Return Period 30	ins) 15, ars) (%) Climate Change +0% +0%	First (X) Surcharge 30/15 Summe	0, 240, 360 First (Y Flood	 480, 960, 1, 30 0, First (Z) Overflow 	1440 , 100 0, 40 Overflow	Leve (m) 99.63
PN	US/MH Name	Storm Climat Storm 1 15 Winter 2 15 Winter Sux US/MH	on(s) (m: d(s) (yea e Change Return Period 30 30 ccharged Depth	ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove	0, 240, 360 First (Y Flood er Pipe rflow Flow	 480, 960, 1, 30 0, First (Z) Overflow 	1440 , 100 0, 40 Overflow Act. Level	Leve (m) 99.63
PN	US/MH Name	eturn Perio Climat Storm 1 15 Winter 2 15 Winter Sum	on(s) (m: d(s) (yea e Change Return Period 30 30 ccharged	ins) 15, ars) (%) Climate Change +0% +0% Flooded	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove	0, 240, 360 First (Y Flood er Pipe	 480, 960, 1, 30 0, First (Z) Overflow 	1440 , 100 0, 40 Overflow Act.	Leve (m) 99.63
PN 000 P 001 P	US/MH Name Point 1 Point 2 PN	Storm Climat Storm 1 15 Winter 2 15 Winter Sux US/MH	on(s) (m: d(s) (yea e Change Return Period 30 30 ccharged Depth	ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (1	O, 240, 360 First (Y Flood er Pipe rflow Flow ./s) (1/s)	 480, 960, 1, 30 0, First (Z) Overflow 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter Sun US/MH Name	n (s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m)	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³)</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (1	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 480, 960, 1, 30 0, First (Z) Overflow Status 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Wate: Leve (m) 99.63 99.50
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status SURCHARGED 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status SURCHARGED 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status SURCHARGED 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status SURCHARGED 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 1.000 P 1.001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status Surchargen 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63
PN 000 P 001 P	US/MH Name Point 2 Point 2 PN 1.000	Storm Climat Storm 1 15 Winter 2 15 Winter US/MH Name Point 1	nn(s) (mi d(s) (yea e Change Return Period 30 30 ccharged Depth (m) 0.033	<pre>ins) 15, ars) (%) Climate Change +0% +0% Flooded Volume (m³) 0.000</pre>	First (X) Surcharge 30/15 Summe 1/15 Summe Flow / Ove Cap. (J 0.86	O, 240, 360 First (Y Flood er er Pipe rflow Flow ./s) (1/s) 6.4	 , 480, 960, 1, 30 0,) First (Z) Overflow Status Surchargen 	1440 , 100 0, 40 Overflow Act. Level Exceeded	Leve (m) 99.63


©1982-2018 Innovyze

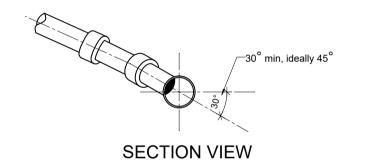
	eport	5						Page 7	
-									-
								Micro	1
ate 08	8/09/3	2021 23:	05	D	esigned by	Argemiro		and the second se	-
			AGE SYST		hecked by	2		Draina	10
innovyz					etwork 201	8 1 1			
<u>100 y</u>	<u>ear R</u>	eturn Pe	riod Sum	-	<u>f Critical</u> for Storm		oy Maximur	m Level (Ra	<u>in</u>]
				actor 1.0	<u>lation Criter</u>)00 Additic		% of Total	Flow 0.000	
		Ho	t Start (m	uins)	0 MAI	DD Factor *	10m³/ha St	corage 2.000	
		Headloss (art Level Coeff (Glo hectare (bal) 0.5	500 Flow per			ecient 0.800 c/day) 0.000	
					hs 0 Number ls 1 Number	2			
					ls 0 Number		2		
		Rai	nfall Mod	_	<u>c Rainfall D</u> FSR	<u>etails</u> Ratio	R 0.409		
		INGI			nd and Wales				
			M5-60 (mi	-		Cv (Winter			
		Margin	101 11000	Analysi	rning (mm) 1 s Timestep F DTS Status				
	R	eturn Peri	od(s) (ye	ins) 15, ars)	30, 60, 120		1, 30	1440 , 100	
	R	eturn Peri	ion(s) (m	ins) 15, ars)	30, 60, 120		480, 960, 1, 30	1440 , 100 0, 40	
	US/MH	eturn Peri Clima	ion(s) (m .od(s) (ye ate Change Return	ins) 15, ars) (%) Climate	First (X)	, 240, 360, First (Y)	480, 960, 1, 30 0, First (Z)	1440 , 100 0, 40 Wa Overflow Le	eve
PN		eturn Peri Clima	ion(s) (m .od(s) (ye ate Change Return	ins) 15, ars) (%)		, 240, 360,	480, 960, 1, 30 0,	1440 , 100 0, 40 Wa Overflow Le	
1.000 1	US/MH Name Point	eturn Peri Clima	cion(s) (m .od(s) (ye ate Change Return Period er 100	<pre>ins) 15, ars) (%) Climate Change</pre>	First (X)	, 240, 360, First (Y) Flood	480, 960, 1, 30 0, First (Z)	1440 , 100 0, 40 Wa Overflow Le	eve m) .72
1.000 1	US/MH Name Point	eturn Peri Clima Storm 1 15 Winte 2 30 Winte	cion(s) (m .od(s) (ye ate Change Return Period er 100	ins) 15, ars) (%) Climate Change +40% +40%	First (X) Surcharge 30/15 Summer 1/15 Summer	, 240, 360, First (Y) Flood	480, 960, 1, 30 0, First (Z)	1440 , 100 0, 40 Wa Overflow Le Act. (1 99.	eve m) .72
1.000 1	US/MH Name Point	eturn Peri Clima Storm 1 15 Winte 2 30 Winte	cion(s) (m .od(s) (ye ate Change Return Period er 100 er 100	ins) 15, ars) (%) Climate Change +40% +40% Flooded	First (X) Surcharge 30/15 Summer 1/15 Summer	, 240, 360, First (Y) Flood	480, 960, 1, 30 0, First (Z)	1440 , 100 0, 40 Wa Overflow Le Act. (1 99.	eve m) .72
1.000 1	US/MH Name Point	eturn Peri Clima Storm 1 15 Winte 2 30 Winte	cion(s) (m .od(s) (ye ate Change Return Period er 100 er 100 er 100	ins) 15, ars) (%) Climate Change +40% +40% Flooded	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over	, 240, 360, First (Y) Flood	480, 960, 1, 30 0, First (Z)	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99.	eve m) .72
1.000 J	US/MH Name Point Point Point	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name	Return Period er 100 er 100 furcharged Depth (m)	<pre>ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m³)</pre>	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/	, 240, 360, First (Y) Flood Pipe flow Flow 's) (1/s)	480, 960, 1, 30 0, 0 First (Z) Overflow Status	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
L.000 J	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 1 1.001 1	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name	Return Period er 100 er 100 furcharged Depth (m)	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 1 1.001 1	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 H 1.001 H	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 I 1.001 I	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow (s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72
1.000 1 1.001 1	US/MH Name Point Point PN 1.000	eturn Peri Clima Storm 1 15 Winte 2 30 Winte S US/MH Name Point 1	Return Period er 100 er 100 furcharged Depth (m) 0.128	ins) 15, ars) (%) Climate Change +40% +40% Flooded Volume (m ³) 0.000 0.000	First (X) Surcharge 30/15 Summer 1/15 Summer Flow / Over Cap. (1/ 1.14	<pre>, 240, 360, First (Y) Flood Pipe flow Flow ('s) (1/s)</pre>	480, 960, 1, 30 0, 0 First (Z) Overflow Status SURCHARGED	1440 , 100 0, 40 Wa Overflow Le Act. (1 99. 99. 99.	eve m) .72



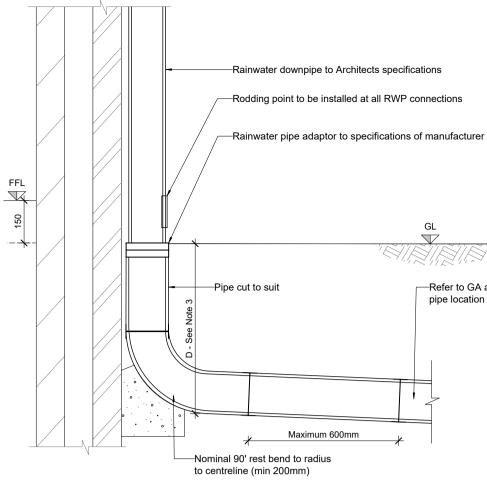

Appendix D



Do not scale from this drawing. Refer to figured dimensions only. RIDA Reports Ltd registered in England and Wales No. 10590566. This drawing is copyright of RIDA Reports Ltd.



Pipe Bedding Detail Type Z


PLAN VIEW

NOTES:

1. The vertical angle between the connecting pipe and the horizontal should be greater than 0° and not more than 60°. Where the connection is being made to a sewer with a nominal internal diameter of 300 mm or less, connections should be made using 45° angle, or 90° angle, curved square junctions. Connections made with junction fittings should be made by cutting the existing pipe, inserting the junction fitting and jointing with flexible repair couplings or slip couplers.

Lateral Connection to private sewer

8251 - External Rainwater Pipe Connection Detail

Plastic chambers and rings shall com BS EN 13598-2 and BS EN 13598-2 equivalent independent approval.			Manhole cover to Class D400 - For
Mortar bedding and haunching to cover and frame to clause E6.7 Precast concrete slab or insitu			Class B engineeri concrete blocks o cover frame seatil
concrete slab to support cover —— and frame			Access opening re Ø or 300x300mm
Flexible seal Temporary cap manhole during			Min. internal dime
Joints between base and shaft and between shaft components to be –			or 450mm x 450m ——100mm GEN3 coi
fitted with watertight seals.			Base unit to have ——with soffit levels s that of the main pi
Joint to be as close as possible to face of chamber to permitt			Base 450n silt trap.
^{movement.} Typical Se	ction in areas s	subject to vehic	Granular bedding
Mortar bedding and haunching——- to cover and frame to clause E6.7			Cover complying Class B125 - For and Landscapi
150mm deep concrete collar——— Temporary cap shaft during construction			Access opening re
Min. internal dimensions 450mm Ø_ or 450mm x 450mm.			refer to manhole s —Type 1 sub base (Flexible Seal.
Sited	in domestic dri	iveways or foo	tways
			—Cover and frame
Mortar bedding and haunching to cover and frame to clause E6.7			Class A15 - For G

Sited in private garden - No loading

Notes: 1. Refer to drawing 8193 for base layouts.

Silt Trap Plastic

SI, [] | [] | [] | .

Refer to GA all levels, pipe location & material

cover to suit BS EN124 loading.)0 - For Highways

engineering brickwork, blocks or precast concrete

e seating rings.

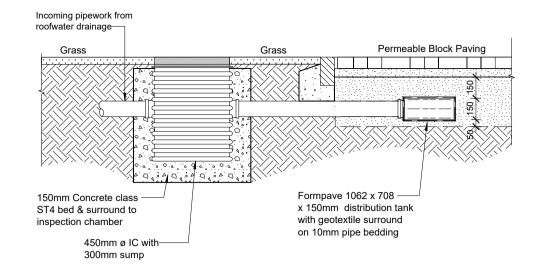
opening restricted to 350mm x300mm.

nal dimensions 450mm Ø x 450mm.

GEN3 concrete surround to have all connections

levels set no lower than e main pipe.

ase 450mm below IL of pipe for t trap.

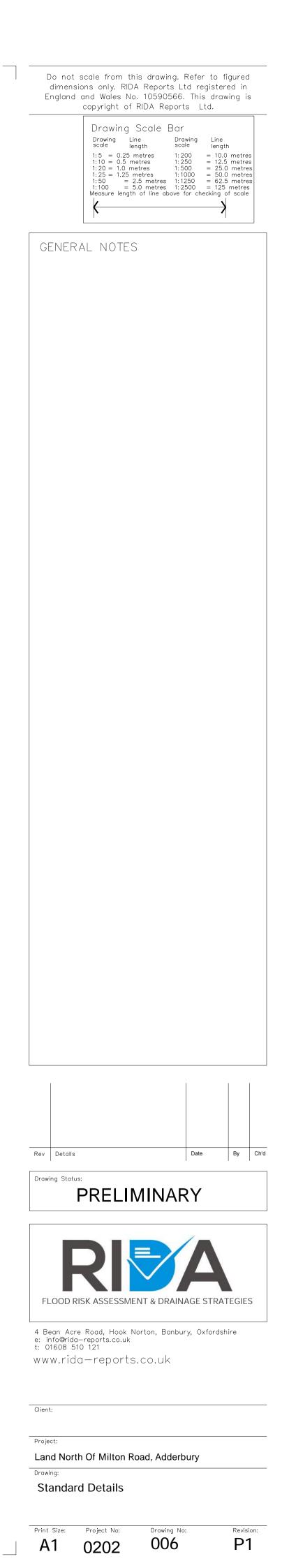

bedding material.

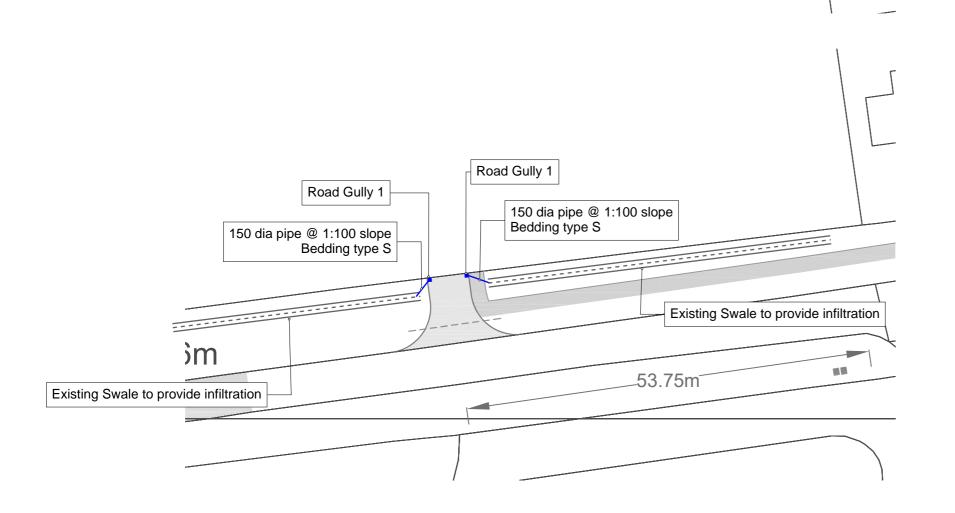
mplying with BS EN124 25 - For Driveways, Footways andscaping Areas

opening restricted manhole schedule b base (thickness varies).

d frame to BS EN124 5 - For Gardens

opening restricted. manhole schedule ıb base (thickness varies).

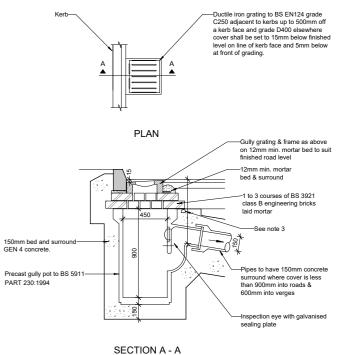



SD064 - Sump and Dispersion Unit

Permeable Surface ¶*॑<u></u>╡╡┙╗┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙* 60Ø LINFLEX Type 8 Narrow Filter Drain

Permeable Sub-base

Perforated Pipe within sub-base



DRAINAGE LAYOUT ACCESS ROAD 1 IN 500 @ A3

NOTE:

All work as per Oxordshire County Council highways department specification

8010 - Gully Detail - Concrete

8064 - Pipe Bedding Detail Type S

DRAINAGE LAYOUT AND DETAILS FOR MILTON ROAD DEVELOPMENT ACCESS ROAD 1 IN 500 @ A3

RIDA Reports Limited Bean Acre Road, Hook Norton Banbury OX15 5UA Telephone: 01608 510 121 www.rida-reports.co.uk