Project

Engineer

WATERMAN INFRASTRUCTURE &

**TP823** 

**Trial Pit** 

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client Ground Level 69.88 COMPANY LIMITED Coordinates 220009.2 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Description Depth Legend m ODΝo 69.88 G.L. 0.10 0.10 ES MADE GROUND: Asphalt. 69.78 0.10 0.20 0.30 0.37 0.57 69.68 69.58 0.10 PID=<0.1 MADE GROUND: Weak grey concrete, 50% aggregate of 5 0.50 0.50 69.51 69.31 subangular limestone. B D 0.50  ${\tt MADE}$  GROUND: Reddish brown silty sand and gravel. Gravel is angular to subangular fine to coarse ES PID=<0.1 0.50 0.70 0.70 0.70 0.70 1.00 1.50 ΗV Av=70kPa 6 в D MADE GROUND: Dark yellowish brown gravelly silty ES sand. Gravel is angular to subrounded fine to coarse 1.45 PID=<0.1 68.43 HV Av=79kPa MADE GROUND: Dark reddish grey and brown silty sand and gravel. Gravel is angular to subangular fine to D ΗV Av=62kPa В <u>.</u> 1.60 1.60 D MADE GROUND: Firm greenish grey mottled grey slightly sandy clay with relict rootlets. ES 1.60 2.00 2.10 2.50 2.60 2.60 PID=<0.1 HV Av=61kPa 2.50 67.38 D Firm brownish orange mottled light grey slightly HV Av=64kPa sandy CLAY. 8 B D Below 1.80m, becoming light brownish orange. 3.00 66.88 2.60 ES PID=<0.1 Stiff dark brownish grey slightly sandy CLAY with slight organic odour End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 16/07/2020 0.50 Length (Ć) Observed of Pit Shoring 006 deg 16/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are
avalained on the

Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet. All dimensions are in metres. Logged in accordance with BS5930:2015

Logged in accordance with B\$5930:2015

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP824** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client COMPANY LIMITED Ground Level 69.48 Coordinates 219952.9 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Description Depth Legend m ODΝo 69.48 G.L. MADE GROUND: Dark brown gravelly slightly silty sand with many roots and rootlets (up to 10mm in diameter). Gravel is angular to subangular fine to medium brick fragments and flint.  $\Box$ 0.20 0.20 0.20 0.20 R 0.30 69.18 D 2 ES PID=<0.1 0.20 0.40 0.40 0.75 0.80 mc=25% mc=24% PROBABLE MADE GROUND: Firm orangish brown mottled grey slightly sandy clay with occasional rootlets. B D 0.70 68.78 3 ΗV Av=57kPa 1.00 68.48 4 POSSIBLE MADE GROUND: Firm light grey and light brown в 1.15 68.33 0.80 0.80 1.10 1.10 1.10 1.20 D slightly sandy CLAY. в Soft dark grey sandy CLAY with pockets (up to 100mm in size) of decomposed organic material.  $\,$ D ES PID=<0.1 Av=74kPa Stiff light grey mottled light brown slightly sandy CLAY with occasional shell fragments (up to  $5 \, \mathrm{mm}$  in ΗV 1.30 В 5 1.30 1.80 D D mc=26% size). 2.00 2.30 2.50 2.70 Av=60kPa Below 1.90m, becoming firm. HV D HV Av=53kPa Below 2.50m, becoming light grey occasionally mottled light brown. B D 2.70 3.00 66.48 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 15/07/2020 0.60 of Pit Length (Ć) Observed Shoring 064 deg 15/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks ES sample = 2 x vial, 1 x plastic jar and 2 amber jar
Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No Logged by ΜJ Symbols and abbreviations are activity detected. Figure 1 of 1 06/11/2020 explained on the accompanying وعناشنعوا kev sheet. All dimensions are in metres.

All dimensions are in metres.

Logged in accordance with BS5930:2015

**Trial Pit TP825** GRAVEN HILL, BICESTER, LAND TRANSFER Engineer WATERMAN INFRASTRUCTURE & AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 National Grid GRAVEN HILL VILLAGE DEVELOPMENT Client Ground Level 70.45 COMPANY LIMITED Coordinates 219954.6 m OD Scale 1:50 Samples and Tests Strata Stratum Depth Type Results Depth Leaend Description m OD Νo 70.45 G.L. MADE GROUND: Firm dark grey slightly sandy slightly gravelly clay with many rootlets and occasional roots (up to 6mm in size). Gravel is angular to subrounded 1 0.00- 0.20 в 0.10 0.20 70.25 2 ES 0.10 0.20-PID=<0.1 fine to coarse sandstone, limestone and brick 0.50 69.95 0.50 в fragments. 3 0.20 D MADE GROUND: Firm brown mottled grey slightly sandy D 0.80 69.65 slightly gravelly clay with many pockets (up to 120m in size) of black sandy ash, a low cobble content of limestone, and occasional rootlets and roots (up to 6mm in diameter). Gravel is angular to subangular 4 0.40 ES PID=<0.1 1.10 69.35 0.50- 0.80 0.55 в ΗV Av=120kPa 0.70 fine to coarse limestone. 5 0.80- 1.10 mc=30% в MADE GROUND: Stiff brown mottled grey slightly sandy slightly gravelly clay. Gravel is angular fine to medium brick fragments, limestone and occasional shell fragments (up to 10mm in size). 1.00 1.00 HV Av=103kPa1.50 2.00 68.45 1.20 1.20 ES PID=<0.1 6 1.30 1.50 1.80 1.80 Stiff fissured grey mottled brown slightly sandy CLAY with occasional shells (up to 15mm in size). Fissures are very closely to closely spaced, randomly orientated, smooth and polished. D Av=85kPa ΗV 2.50 67.95 ES PID=<0.1 1.90 Firm to stiff brown mottled grey slightly sandy slightly gravelly calcareous CLAY with occasional shell fragments (up to 15mm in size). Gravel is angular to subangular fine to medium limestone. 2.00- 2.50 в 2.20 HV Av=87kPa D Firm to stiff grey mottled light grey and brown slightly sandy slightly gravelly calcareous CLAY with occasional shells (up to 20mm in size), occasional pockets (up to 200mm in size) of firm orangish brown sandy clay, and rare pockets (up to 20mm in size) of decomposed organic material. End of Excavation Excavation Groundwater Plant Depth Depth Width (B) JCB 3CX 15/07/2020 0.60 Length (Ć) Observed of Pit 090 deg 15/07/2020 Shoring Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

ES sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MM Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet.

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP826** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 68.90 m ODCOMPANY LIMITED Coordinates 219897.6 Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Depth Legend Description m ODΝo 68.90 G.L 1 68.75 0.06 ES MADE GROUND: Asphalt. 0.15 0.06 PID=<0.1 2 MADE GROUND: Black very gravelly silty sand with high cobble content of angular to subangular limestone. Gravel is angular to subangular fine to coarse flint, 0.40 0.40 0.50 68.40 0.40 ES brick, ash, clinker, slag and limestone PID=<0.1 0.40 0.60 0.70 1.00 1.50 1.50 ΗV Av=75kPa Between 0.40-0.45m, thin band of yellowish brown в limestone. 3 D mc=30% Firm light grey slightly sandy calcareous CLAY with occasional shell fragments (up to 8mm in size) and occasional decomposed organic matter (up to 20mm in HV Av = 73kPaD ES Av=76kPa PID=<0.1 ΗV 67.00 1.90 Firm dark grey mottled light brown slightly sandy calcareous CLAY with many pockets (up to 10mm in size) of decomposed organic material. 2.00 В 2.00 mc=36% D HV Av=62kPa . 4 2.50 D HV Av=58kPa Below 2.50m, with many shell fragments (up to 50mm in size). 2.80 2.80 66.10 65.90 D 5 B Stiff dark brownish grey slightly sandy CLAY with 2.90 slight organic odour. Between  $3.00-3.15\mathrm{m}$ , a pocket (150mm in size) of orangish brown silty sand. End of Excavation Groundwater Excavation Plant Depth Depth Width (B) JCB 3CX 16/07/2020 0.60 Details Length (Ć) Observed of Pit Shoring 006 deg 16/07/2020 Orientation 3.00 3.00 Seepage. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the

accompanying kev sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

geolechnics

TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP827** Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid \_m OD Client Ground Level 66.84 COMPANY LIMITED Coordinates 219810.4 Samples and Tests Strata Scale 1:50 Stratum Depth Type Results Description Depth Legend m ODΝo 66.84 G.L. 1 0.15 ES MADE GROUND: Asphalt. 66.69 0.08 0.30 0.30 0.30 PID=<0.1 MADE GROUND: Black very gravelly silty sand with a slight hydrocarbon odour and a high cobble and boulder content of angular to subangular brick, slag and limestone. Gravel is angular to subangular fine to coarse slag, chalk, brick, limestone and tarmac. 2 ES PID=<0.1 0.50 в 0.70 66.14 HV Av=49kPa 0.80 0.80 0.80 0.80 Below 0.35m, becoming slightly gravelly. ES POSSIBLE MADE GROUND: Light grey mottled greenish brown slightly sandy calcareous CLAY with occasional shell fragments (up to 6mm in size) and occasional relict rootlets. 3 PID=<0.1 1.00 1.40 1.50 1.70 ΗV Av=56kPa D ΗV Av=48kPa 65.04 1.80 1.70 1.70 1.70 Below 1.60m, with many pockets (up to 20mm in size) of decomposed organic material. ES PID=<0.1 Firm dark grey occasionally mottled light brown slightly sandy calcareous CLAY with many pockets (up to 40mm in size) of decomposed organic material. 1.90 2.00 2.50 D 4 HV Av=52kPa D 3.00 D 3.00 63.84 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 16/07/2020 0.60 2.40 162 deg 16/07/2020 Length (Ć) Observed of Pit Shoring Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by ΜJ Figure 1 of 1 06/11/2020 explained on the

accompanying kev sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015



key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP828** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid 458846.5 Client Ground Level 67.15 m OD COMPANY LIMITED Coordinates 219818.7 Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Description Depth Leaend m ODΝo 67.15 G.L. MADE GROUND: Dark brown gravelly slightly silty sand with many rootlets and roots (up to 10mm diameter). Gravel is angular to subangular fine to coarse brick 1 в 0.10 0.10 0.10 0.30 ח 0.20 66.95 ES 2 PID=<0.1 fragments, clinker, slag, flint and limestone. в MADE GROUND: Stiff light brown mottled light grey slightly sandy slightly gravelly clay with occasional rootlets. Gravel is angular to subangular fine to medium brick fragments, clinker and ash. 0.30 0.70 66.45 ES 0.30 HV Av=130kPa 3 PID=<0.1 0.80 в Firm light brown mottled light grey slightly sandy mc=26% 1.40 65.75 D 0.80 ES CLAY with occasional rootlets. PID=<0.1 1.00 1.40 1.40 ΗV Av=64kPa Below 0.90m, rootlets absent. В Below 1.30m, predominantly light grey occasionally light brown mottled and with many shell fragments (up to 6mm in size). 4 D 1.40 1.40 ES PID=<0.1 1.50 2.00 2.00 2.70 2.70 HV Av=61kPa Firm dark grey mottled light brown slightly sandy CLAY with many pockets (up to 20mm in size) of decomposed organic material. D 2.50 64.65 HV Av=62kPa 5 D D mc=43% Stiff dark brownish grey slightly sandy CLAY with a 3.00 64.15 slight organic odour. End of Excavation Groundwater Excavation Plant Depth Depth Width (B) JCB 3CX 16/07/2020 0.50 Length (Ć) Observed of Pit Shoring 098 deg 16/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics

Logged in accordance with BS5930:2015

Project

Engineer

WATERMAN INFRASTRUCTURE &

**TP829** 

**Trial Pit** 

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 67.79 m OD COMPANY LIMITED Coordinates 219889.9 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Description Depth Leaend m ODΝo 67.79 G.L. MADE GROUND: Dark brown slightly sandy slightly 0.20 0.20 gravelly silt with many rootlets and occasional roots (up to 6mm in diameter). Gravel is angular to R 0.25 67.54 2 0.35 67.44 D 0.20 ES subrounded fine to coarse quartzite and flint 3 PID=<0.1 0.50 PROBABLE MADE GROUND: Firm light grey and light brown slightly sandy slightly gravelly clay. Gravel is angular to subrounded fine to coarse quartzite. B D mc=22% 0.80 66.99 0.50 ES HV Av=61kPa 0.50 1.00 1.00 1.00 Firm light grey mottled light brown slightly sandy CLAY with many shell fragments (up to  $10\,\mathrm{mm}$  in size). PID=<0.1 4 в Firm dark grey slightly sandy CLAY with occasional pockets (up to 4mm in size) of grey silt, occasional pockets (up to 20mm in size) decomposed organic material, occasional shell fragments (up to 25mm in ES Av=72kPa PID=<0.1 ΗV 1.00 65.89 1.90 2.00 в 2.00 size) and many relict rootlets D HV Av=84kPa Stiff dark grey mottled brown sandy CLAY with many shell fragments (up to 20mm in size) and occasional pockets (up to 20mm in size) of decomposed organic 5 2.50 D material. 2.80 64.99 64.79 6 Stiff grey slightly sandy CLAY with many shell fragments (up to  $80\,\mathrm{mm}$  in size) 3.00 B D 3.00 End of Excavation Groundwater Excavation Plant Depth Depth Width (B) JCB 3CX 07/08/2020 0.60 Length (Ć) Observed of Pit Shoring 086 deg 07/08/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet. All dimensions are in metres.

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) Project Engineer **Trial Pit TP830** WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 National Grid Coordinates GRAVEN HILL VILLAGE DEVELOPMENT Client Ground Level 66.67 m OD COMPANY LIMITED 219877.4 Scale 1:50 Samples and Tests Strata Stratum Depth Type Results Description Depth Legend m ODΝo G.L. 66.67 0.10 66.57 0.05 ES MADE GROUND: Asphalt. 2 0.05 PID=<0.1 0.30 0.50 MADE GROUND: Concrete. 66.37 3 0.46 EW 66.17 MADE GROUND: Grey sandy silty gravel. Gravel is subangular to subrounded fine to coarse quartzite End of Excavation Excavation Groundwater Depth Depth Plant Width (B) 0.60 2.10 184 deg 07/08/2020 JCB 3CX 07/08/2020 Details of Pit Length (Ć) Observed Shoring Orientation Date Backfilled 0.50 0.50 Fast inflow. Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to 0.10m, asphalt up to ground level. Logged by ΜJ Figure 1 of 1 06/11/2020 explained on the accompanying key sheet. esimbetoep

All dimensions are in metres.

Logged in accordance with B\$5930:2015

All dimensions are in metres.

Logged in accordance with BS5930:2015

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP831** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 65.74 m OD COMPANY LIMITED Coordinates 219776.3 Scale 1:50 Samples and Tests Strata Stratum Depth Type Results Description Depth Legend m ODΝo 65.74 G.L 1 ES MADE GROUND: Asphalt. 0.10 65.64 0.10 0.30 0.30 0.30 2 PID=<0.1 MADE GROUND: Black gravelly silty sand with a hydrocarbon odour. Gravel is angular to subangular fine to coarse brick, concrete, slag, ash and 0.35 65.39 3 ES 0.50 65.24 PID=<0.1 0.50 HV Av=48kPa clinker. в MADE GROUND: Yellowish brown and grey slightly sandy gravel with a high cobble content of angular to subangular medium strong limestone. 0.60 D 4 ES 0.60 1.00 1.20 1.50 1.70 PID=<0.1 ΗV Av = 63kPaSoft light grey mottled light brown slightly sandy calcareous CLAY with many shell fragments (up to 5mm in size) and many pockets (up to 20mm in size) of decomposed organic material. D HV Av=50kPa 64.14 1.60 в D 1.70 1.70 2.00 5 ES Firm dark grey mottled light brown slightly sandy CLAY with many pockets (up to 25mm in size) of decomposed organic material and relict rootlets and roots (up to 10mm in diameter). PID=<0.1 ΗV Av=52kPa 2.20 2.40 2.40 D 2.30 63.44 B D 6 Stiff dark brownish grey slightly sandy CLAY with a slight organic odour and rare shell fragments (up to  $10\,\mathrm{mm}$  in size). 3.00 D 3.00 62.74 End of Excavation Groundwater Excavation Plant Depth Depth Width (B) JCB 3CX 16/07/2020 Length (Ć) Observed of Pit 2.00 Shoring 001 deg 16/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet.

وعناشنعوا

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP832** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client Coordinates Ground Level 64.50 COMPANY LIMITED 219672.8 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Description Depth Legend m ODΝo 64.50 G.L 0.05 0.25 0.30 64.45 64.25 64.20 MADE GROUND: Asphalt. 0.25 0.25 0.25 0.60 ES MADE GROUND: Reinforced concrete. 3 PID=<0.1 0.50 64.00 в MADE GROUND: Black sandy silty gravel. Gravel is angular to subrounded fine to medium ash, clinker, quartzite and slag. 0.60 D ES 0.60 PID=<0.1 D Firm grey mottled orangish brown slightly sandy CLAY. 4 Firm grey mottled orangish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subangular fine to coarse limestone. 1.50 ח ES 1.50 1.50 PID=<0.1 Below 1.50m, with many pockets (up to 3mm in size) of grey silt, occasional rootlets and occasional roots (up to 5mm in diameter). 62.60 1.90 2.00 В 2.00 D Firm grey slightly sandy CLAY. 5 2.50 D Below 2.50m, becoming grey mottled light brown. 3.00 D 3.00 61.50 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 of Pit Length (Ć) Observed Shoring 253 deg 29/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by ΜJ Figure 1 of 1 06/11/2020

explained on the accompanying kev sheet.

All dimensions are in metres.

Logged in accordance with BS5930:2015

TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) Engineer **Trial Pit** TP832A Project WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 64.61 m ODCoordinates COMPANY LIMITED 219669.8 Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Description Depth Legend m ODΝo 64.61 G.L. MADE GROUND: Soft to firm dark brownish grey very sandy silty gravel with a high cobble content of angular to subangular brick and concrete. Gravel is angular to subrounded fine to coarse glass, metal, plastic, brick, concrete, asphalt, clinker, slag, limestone and quartzite. [Stockpile] 1.00 1.00 1.00 1.00 B B mc=27% 1.00 63.61 End of Excavation B D D ES 1.00 PID=<0.1 Excavation Groundwater Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 of Pit Length (Ć) Observed Shoring 253 deg 29/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1

explained on the

accompanying key sheet.

All dimensions are in metres.

Logged in accordance with B\$5930:2015

06/11/2020



Logged in accordance with BS5930:2015

Project

Engineer

WATERMAN INFRASTRUCTURE &

**TP833** 

**Trial Pit** 

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client m ODGround Level 64.41 COMPANY LIMITED Coordinates 219638.0 Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Description Depth Legend m ODΝo 64.41 G.L. 1 0.15 MADE GROUND: Concrete. 64.26 MADE GROUND: Black gravelly very silty sand. Gravel is angular to subrounded fine to medium quartzite, ash, slag and clinker. 2 0.50 0.50 B ES 0.60 63.81 3 0.50 PID=<0.1 Stiff grey mottled orangish brown slightly sandy 0.80 63.61 0.90 0.90 0.90 0.90 1.40 1.50 1.55 2.00 2.00 2.00 2.50 2.50 3.00 в Stiff grey mottled orangish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subangular fine to coarse mudstone. ES 4 ΗV Av=82kPa PID=<0.1 mc=22% D D Below 1.00m, with rare pockets (up to 2mm in size) of Av=79kPa HV 62.51 grey silt. 1.90 В в Between 1.30-1.45m, a layer of soft orangish brown sandy clay. ES At 1.70m, with a pocket (200mm in size) of sandy very silty gravel of subangular to subrounded fine to coarse quartzite. 5 ΗV Av=83kPa PID=<0.1 D HV Av=77kPa Stiff dark grey, occasionally mottled orangish brown, slightly sandy CLAY. D 3.00 61.41 3.00 HV Av=124kPa End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 2.60 145 deg 29/07/2020 Details Length (Ć) Observed of Pit Shoring Orientation 0.60 0.70 Slow inflow. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet. All dimensions are in metres.

TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) Engineer **Trial Pit TP833A** Project WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client m ODCoordinates Ground Level 64.31 COMPANY LIMITED 219640.1 Scale 1:50 Samples and Tests Strata Stratum Depth Type Results Description Depth Legend m ODΝo 64.31 G.L. MADE GROUND: Soft to firm dark brownish grey slightly sandy gravelly clay with a low cobble content of subangular brick and concrete. Gravel is angular to subrounded fine to coarse glass, metal, plastic, brick, concrete, asphalt, clinker, slag, limestone and quartzite. [Stockpile] 1.00 1.00 1.00 1.00 B B 1.00 63.31 mc=28% End of Excavation B D D ES 1.00 PID=<0.1 Excavation Groundwater Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 1.00 145 deg 29/07/2020 of Pit Length (Ć) Observed Shoring Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Logged by MJ

Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level.

explained on the accompanying key sheet.

All dimensions are in metres. Logged in accordance with B\$5930:2015

Figure 1 of 1 06/11/2020



GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP834** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client Coordinates COMPANY LIMITED 219658.8 Ground Level 64.57 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Description Depth Legend m ODΝo G.L. 0.15 64.57 64.42 64.37 64.22 MADE GROUND: Concrete. 0.20 3  $\mbox{\tt MADE}$  GROUND: Orangish brown gravelly sand. Gravel is angular to subangular fine to coarse sandstone. 0.70 0.75 0.75 0.75 1.00 1.20 1.50 MADE GROUND: Black slightly sandy very silty gravel. Gravel is angular to subrounded fine to coarse slag, HV Av=63kPa в D quartzite, clinker and ash. ES 4 POSSIBLE MADE GROUND: Firm grey mottled orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse mudstone. PID=<0.1 в D HV Av=78kPa At 0.90m, a pocket (170mm in size) of orangish brown sandy very silty gravel of angular to subangular fine to coarse quartzite. ES 62.67 1.90 PID=<0.1 2.00 В D Below 1.40m, becoming dark grey mottled orangish 2.00 Av=71kPa HV brown. 5 D Firm grey slightly sandy CLAY with occasional rootlets and roots (up to  $4\,\mathrm{mm}$  in diameter). 3.00 D Below 2.40m, becoming grey mottled light brown. 3.00 61.57 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 Length (Ć) Observed of Pit Shoring 260 deg 29/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are explained on the

Backfill details from base of hole: arisings up to ground level. Logged by ΜJ Figure 1 of 1 06/11/2020

explained on the accompanying kev sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015



TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) Engineer **Trial Pit TP834A** Project WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client m ODCoordinates Ground Level 64.57 COMPANY LIMITED 219661.1 Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Description Depth Legend m ODΝo 64.57 G.L. MADE GROUND: Soft to firm dark brownish grey slightly sandy slightly gravelly silt. Gravel is angular to subrounded fine to coarse glass, metal, plastic, brick, concrete, asphalt, clinker, slag, limestone and quartzite. [Stockpile] 1.00 1.00 1.00 1.00 B B 1.00 63.57 End of Excavation B D mc=35% D ES 1.00 PID=<0.1 Excavation Groundwater Depth Depth Plant Width (B) 0.60 1.00 260 deg 29/07/2020 JCB 3CX 29/07/2020 of Pit Length (Ć) Observed Shoring Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. MJ

Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level.

explained on the accompanying key sheet.

All dimensions are in metres.

Logged in accordance with B\$5930:2015

Logged by

Figure

1 of 1 06/11/2020



key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

geolechnics

**Trial Pit TP835** Project GRAVEN HILL, BICESTER, LAND TRANSFER Engineer WATERMAN INFRASTRUCTURE & AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 National Grid GRAVEN HILL VILLAGE DEVELOPMENT Client Ground Level 64.21 COMPANY LIMITED Coordinates 219640.9 m OD Scale 1:50 Samples and Tests Strata Level Stratum Depth Type Results Depth Leaend Description m OD Νo G.L. 64.21 1 0.00- 0.20 MADE GROUND: Firm dark grey slightly sandy slightly gravelly clay with many rootlets and occasional roots (up to 12mm in diameter). Gravel is angular to subrounded fine to coarse brick, limestone, flint and 0.10 ES 0.20 64.01 PID=<0.1 2 D B 0.20-0.50 0.60 63.61 concrete. 0.30 3 MADE GROUND: Stiff grey mottled brown slightly sandy slightly gravelly clay with a low cobble content of subangular limestone and brick and many rootlets and occasional roots (up to 12mm in diameter). Gravel is angular to rounded fine to coarse limestone, brick, ES 0.85 63.36 4 0.40 PID=<0.1 Av=120kPa HV 1.10 63.11 0.60- 0.80 0.70 R 5 mc=28% 1.40 62.81 D concrete, slag and rare metal fragments. 0.70 0.80- 1.10 6 Stiff orangish brown mottled grey slightly sandy CLAY with occasional gypsum crystals (up to 3mm in size) and rare pockets (up to 25mm in size) of orangish 0.80 ES 0.80 PID=<0.11.80 62.41 D 1.00 1.10- 1.40 HV Av=85kPabrown sandy clay. 7 Stiff grey mottled reddish brown CLAY with rare gypsum crystals (up to 2mm in size) and rare shell fragments (up to 3mm in size). 1.20 1.40- 1.70 D mc=28% 2.50 61.71 1.50 1.60 1.60 ΗV Av=60kPa Firm grey mottled orangish brown and dark brown slightly sandy CLAY with occasional gypsum crystals (up to 2mm in size), occasional pockets of orangish brown and lightly grey sandy clay and occasional pockets (up to 3mm in size) of decomposed organic material ES PID=<0.1 1.90 2.00- 2.50 D В 2.00 HV Av=90kPa 2.40 D material. Firm brown mottled orangish brown and light grey sandy CLAY with occasional gypsum crystals (up to 3mm in size), many pockets (up to 5mm in size) of decomposed organic material and occasional pockets (up to 25mm in size) of light grey and brown sandy clay. Stiff dark grey slightly sandy CLAY with low organic odour and occasional gypsum crystals (up to 2mm in Below 2.10m, with occasional pockets of light brown sandy clay. End of Excavation Excavation Groundwater Plant Depth Depth Width (B) JCB 3CX 16/07/2020 Length (Ć) Observed of Pit 2.50 001 deg 16/07/2020 Shoring Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

ES sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MM Figure 1 of 1 06/11/2020 explained on the accompanying

TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP836** Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client COMPANY LIMITED Coordinates 219561.5 Ground Level 62.67 Samples and Tests Strata Scale 1:50 Stratum Depth Type Results Description Depth Legend m ODΝo 62.67 G.L. 0.15 62.52 MADE GROUND: Concrete. 0.20 0.20 0.20 0.50 0.25 62.42 MADE GROUND: Black sandy very silty gravel. Gravel is angular to subangular fine to medium ash, clinker, slag and quartzite. ES PID=<0.1 3 ΗV Av=36kPa 0.55 0.55 0.55 0.55 R D Soft greenish grey mottled orangish brown slightly 0.85 61.82 ES PID=<0.1 1.00 1.00 1.00 в Soft light grey mottled light orangish brown slightly 4 sandy CLAY. D ES HV Av=35kPa 1.00 PID=<0.1 Below 1.70m, becoming firm. 60.87 1.80 Stiff dark greyish brown mottled light brown slightly sandy CLAY with many gypsum crystals (up to 3mm in size), occasional pockets (up to 3mm in size) of grey silt and occasional pockets (up to 10mm in size) of 2.00 в 2.00 ES 5 2.00 2.00 2.50 Av=86kPa PID=<0.1 HV grey silty sand. D 2.80 59.87 59.67 6 Stiff grey slightly sandy CLAY with occasional gypsum crystals (up to  $8\,\mathrm{mm}$  in size). 3.00 B D 3.00 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 29/07/2020 0.60 Length (Ć) Observed of Pit Shoring 100 deg 29/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
abbreviations are
avalained on the

Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No
activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020

explained on the accompanying

kev sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015



TRIAL PIT RECORD Trial Pit Draft **Trial Pit TP837** Project GRAVEN HILL, BICESTER, LAND TRANSFER Engineer WATERMAN INFRASTRUCTURE & AREA 2 (LTA2) ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid m OD Client Ground Level 64.93 COMPANY LIMITED Coordinates 219715.9 Samples and Tests Strata Scale 1:50 Level Stratum Depth Type Results Depth Legend Description m ODΝo 64.93 G.L. 1 2 3 0.16 64.77 MADE GROUND: Asphalt. 0.15 0.15 0.17 0.17 0.20 64.73 64.58 ES MADE GROUND: Light yellowish brown gravelly slightly silty sand. Gravel is angular to subrounded fine to medium limestone. PID=<0.1 4 ES PID=<0.1 0.60 64.33 0.17 0.30 0.70 0.70 0.70 0.70 0.70 ES MADE GROUND: Dark grey and black gravelly silty sand with a low cobble content of angular to subangular brick. Gravel is angular to subangular fine to coarse PID=<0.1 5 B B D concrete, brick and limestone. 1.20 63.73 ES MADE GROUND: Grey slightly sandy gravel with a high cobble content of angular to subangular medium strong 6 ΗV Av=51kPa PID=<0.1 Av=64kPa 1.00 1.70 ΗV 63.23 7 В Firm dark greenish grey mottled black slightly sandy CLAY with occasional pockets (up to 40mm in size) of decomposed organic material. 1.30 В 2.00 62.93 1.30 1.50 1.70 1.80 1.80 2.00 2.10 D HV Av=68kPa D В Below 0.80m, becomes light greenish grey mottled 8 в light grey. D Firm light grey occasionally mottled orangish brown slightly sandy  ${\tt CLAY}.$ HV Av=39kPaв 3.00 61.93 2.10 2.10 2.50 2.80 3.00 3.00 в D Soft orangish brown mottled grey slightly sandy CLAY. D Av=59kPa Stiff dark brown slightly sandy CLAY. ΗV В D Below 2.60m, becomes mottled yellowish End of Excavation Groundwater Excavation Plant Depth Depth Width (B) JCB 3CX 14/07/2020 0.60 Length (Ć) Observed of Pit Shoring 210 deg 14/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

ES sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by ΜJ Figure 1 of 1 06/11/2020 explained on the

accompanying kev sheet.

geolechnics

All dimensions are in metres. Logged in accordance with BS5930:2015

TRIAL PIT RECORD Trial Pit Draft GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP838** Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 66.09 m OD COMPANY LIMITED Coordinates 219819.7 1:50 Samples and Tests Strata Scale Level Stratum Depth Type Results Description Depth Legend m ODΝo 66.09 G.L. 1 0.15 ES MADE GROUND: Asphalt. 65.94 0.10 0.30 0.30 0.30 0.30 0.60 2 PID=<0.1 MADE GROUND: Yellowish brown and grey very gravelly 0.30 65.79 3 slightly silty sand. ĒS 0.55 65.54 PROBABLE MADE GROUND: Grey slightly sandy gravel with a high cobble content of angular to subangular medium PID=<0.1 в 0.60 0.60 0.60 0.70 1.20 В strong limestone. mc=33% Firm brown mottled light grey and brown slightly sandy CLAY. 4 ES PID=<0.1 ΗV Av=50kPa D Below 0.90m, becomes brown mottled orangish brown. ΗV Av=51kPa 64.19 В 1.90 D Soft to firm brown mottled dark brownish orange slightly sandy CLAY with many gypsum crystals (up to 3mm in size). 1.90 1.90 B B 1.90 2.40 D D 5 Below 2.30m, gypsum crystals absent. Below 2.40m, becomes predominantly dark brown occasionally mottled orangish brown. 2.90 B D 3.00 63.09 2.90 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 14/07/2020 0.60 Length (Ć) Observed of Pit Shoring 126 deg 14/07/2020 Orientation None encountered during excavation. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020

explained on the accompanying kev sheet.

All dimensions are in metres. Logged in accordance with BS5930:2015



All dimensions are in metres.

Logged in accordance with BS5930:2015

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP839** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 66.96 m OD Coordinates COMPANY LIMITED 219886.1 1:50 Samples and Tests Strata Scale Level Stratum Depth Type Results Description Depth Legend m ODΝo G.L. 66.96 1 0.17 66.79 0.10 ES MADE GROUND: Asphalt. 0.10 0.20 0.20 0.40 PID=<0.1 2 MADE GROUND: Light yellowish brown gravelly slightly silty sand. Gravel is angular to subangular fine to coarse limestone and brick. 0.40 ES 66.56 PID=<0.1 в 3 0.40 в Between 0.20-0.25m, a layer of black sandy silt. 0.90 66.06 0.90 ΗV Av=50kPa 1.00 1.00 1.00 1.00 1.00 1.50 PROBABLE MADE GROUND: Grey slightly sandy gravel with a high cobble and boulder content of angular to subangular medium strong limestone. в в mc=42% D 4 ES PID=<0.1 Firm light grey and brown slightly sandy CLAY. D ES Below 1.30m, becoming light grey mottled orangish HV Av=61kPa 1.95 65.01 1.50 1.80 PID=<0.1 ΗV Av=52kPa Stiff dark brown slightly sandy CLAY 1.90 2.10 2.10 2.10 D 5 B B D D Below 2.30m, becoming very stiff. mc=34% 2.60 3.00 63.96 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 14/04/2020 0.60 Details of Pit Length (Ć) Observed Shoring 216 deg 14/07/2020 Orientation 0.45 0.45 Fast seepage. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet.



| Sample              | e Types                                                                               | Groundwater                                      |                                                                                                               | Strata, Continued                                                        |                                                           |
|---------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|
| В                   | Bulk disturbed sample                                                                 | Water Strike                                     | $\overline{\Sigma}$                                                                                           | Mudstone                                                                 |                                                           |
| BLK                 | Block sample                                                                          | Depth Water Rose To                              | ▼                                                                                                             |                                                                          |                                                           |
| С                   | Core sample                                                                           | ——————————————————————————————————————           |                                                                                                               |                                                                          | 00000                                                     |
| D                   | Small disturbed sample (tub/jar)                                                      | Instrumentation                                  |                                                                                                               | Siltstone                                                                | x x x x x<br>x x x x x<br>x x x x x<br>x x x x x          |
| Е                   | Environmental test sample                                                             |                                                  | 22                                                                                                            | <b>Metamorphic Rock</b>                                                  | ××××                                                      |
| ES                  | Environmental soil sample                                                             | Seal                                             | 35                                                                                                            | Fine Grained                                                             | ·········                                                 |
| EW                  | Environmental water sample                                                            |                                                  |                                                                                                               | Medium Grained                                                           | **********                                                |
| G                   | Gas sample                                                                            |                                                  | 117                                                                                                           | riedidiii Grained                                                        | $\approx$                                                 |
| L                   | Liner sample                                                                          | Filter                                           |                                                                                                               | Coarse Grained                                                           | $\sim\sim$                                                |
| LB                  | Large bulk disturbed sample                                                           |                                                  | 1111                                                                                                          | Coarse Granied                                                           | $\sim\sim$                                                |
| Р                   | Piston sample (PF - failed P sample)                                                  |                                                  | -                                                                                                             | Igneous Rock                                                             | VVVV                                                      |
| TW                  | Thin walled push in sample                                                            |                                                  | 35                                                                                                            | Fine Grained                                                             | , , , , , , ,                                             |
| U                   | Open Tube - 102mm<br>diameter with blows to<br>take sample. (UF - failed U<br>sample) | Seal                                             |                                                                                                               | Medium Grained                                                           | V V V V<br>+ + + + +<br>+ + + + +<br>+ + + + +<br>+ + + + |
| UT                  | Thin wall open drive tube sampler - 102mm diameter                                    | Strata                                           | Legend                                                                                                        | Coarse Grained                                                           | *****                                                     |
|                     | with blows to take sample.<br>(UTF - failed UT sample)                                | Made Ground<br>Granular                          |                                                                                                               | Backfill Materials                                                       |                                                           |
| ٧                   | Vial sample                                                                           | M 1 6                                            |                                                                                                               |                                                                          |                                                           |
| W                   | Water sample                                                                          | Made Ground<br>Cohesive                          |                                                                                                               | Arisings                                                                 |                                                           |
| #                   | Sample Not Recovered                                                                  | 33                                               |                                                                                                               |                                                                          | X                                                         |
| Insitu <sup>-</sup> | Testing / Properties                                                                  | Topsoil                                          |                                                                                                               | Bentonite Seal                                                           |                                                           |
| CBRP                | CBR using TRL probe                                                                   | 2 111                                            | <u> </u>                                                                                                      |                                                                          | ÷                                                         |
| CHP                 | Constant Head<br>Permeability Test                                                    | Cobbles and Boulders                             | 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 - 1881 | Concrete                                                                 | •                                                         |
| COND                |                                                                                       |                                                  | 200                                                                                                           | Concrete                                                                 | 7                                                         |
| TC                  | Thermal Conductivity                                                                  | Gravel                                           | , , ,                                                                                                         |                                                                          | i                                                         |
| TR                  | Thermal Resistivity                                                                   |                                                  | * 5 0                                                                                                         | Fine Gravel Filter                                                       |                                                           |
| HV                  | Strength from Hand Vane                                                               | Sand                                             | * * * * * *                                                                                                   |                                                                          | į                                                         |
| ICBR<br>IDEN        | CBR Test Density Test                                                                 | Sand                                             |                                                                                                               |                                                                          |                                                           |
| IRES                | Resistivity Test                                                                      |                                                  |                                                                                                               | General Fill                                                             | - 1                                                       |
| MEX                 | CBR using Mexecone                                                                    | Silt                                             | * * * * * *                                                                                                   |                                                                          | 1.7                                                       |
| DID                 | Probe Test                                                                            |                                                  | × * × 3                                                                                                       | Gravel Filter                                                            |                                                           |
| PID                 | Photo Ionisation Detection (ppm)                                                      |                                                  | × _ × ]                                                                                                       | Graverriter                                                              |                                                           |
| PKR                 | Packer Permeability Test                                                              | Clay                                             |                                                                                                               |                                                                          | 2                                                         |
| PLT                 | Plate Load Test                                                                       |                                                  |                                                                                                               | Grout                                                                    | Z                                                         |
| PP                  | Strength from Pocket Penetrometer                                                     |                                                  | sWz                                                                                                           |                                                                          |                                                           |
| Temp                | Temperature                                                                           | Peat                                             | N/2 .                                                                                                         |                                                                          | 99                                                        |
| VHP                 | Variable Head Permeability<br>Test                                                    |                                                  | 81/2<br>81/2                                                                                                  | Sand Filter                                                              | Da o                                                      |
| VN                  | Strength from Insitu Vane                                                             | N . 6                                            | <u> </u>                                                                                                      |                                                                          |                                                           |
| w%                  | Water content                                                                         | Note: Composite soil type<br>by combined symbols | es shown                                                                                                      | Tarmacadam                                                               |                                                           |
| (All oth            | ner strengths from<br>ed triaxial testing)                                            | •                                                |                                                                                                               |                                                                          |                                                           |
| S                   | Standard Penetration Test                                                             | Chalk                                            |                                                                                                               | Rotary Core                                                              |                                                           |
| _                   | (SPT)                                                                                 |                                                  |                                                                                                               | RQD Rock Quality D                                                       |                                                           |
| C<br>N              | SPT with cone<br>SPT Result                                                           | Limestone                                        |                                                                                                               | (% of intact cor<br>FRACTURE INDEX                                       | e >100mm)                                                 |
| -/-                 | Blows/penetration (mm)                                                                |                                                  |                                                                                                               | Fractures/metro                                                          | е                                                         |
|                     | after seating drive                                                                   |                                                  |                                                                                                               | FRACTURE Maximum SPACING (m) Minimum                                     |                                                           |
| _*/_<br>(mm)        | Total blows/penetration                                                               | Sandstone                                        |                                                                                                               | NI Non-intact                                                            |                                                           |
| (mm)<br>( )         | Extrapolated value                                                                    |                                                  |                                                                                                               |                                                                          | ecovery<br>one of core                                    |
|                     |                                                                                       | Coal                                             |                                                                                                               | loss<br>(where core recovery is unkno<br>assumed to be at the base of tl |                                                           |





#### C. In-Situ Test Results

In-situ CBR Test Results (TRL DCP)
Soakaway Test Results

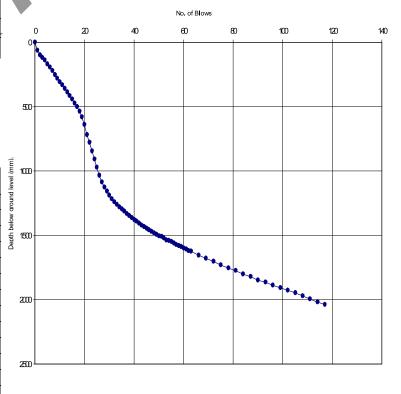
**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC804 Project No. PC207899

Test No. 1

Client Graven Hill Village Development Company Limited

**Coordinates** 459530.0 E, 220018.2 N


**Ground Level** 66.76 m OD **Test Date** 24/07/2020

| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
|--------------|----------------|------------|-----------------|----------------------------|--------------|----------------|------------|-----------------|----------------------------|--------------|----------------|------------|-----------------|----------------------------|
| 0            | 0              | 1          | 115             | 0                          | 1            | 21             | 1          | 833             | 718                        | 1            | 42             | 2          | 727             | 1405                       |
| 1            | 1              | 1          | 180             | 65                         | 1            | 22             | 2          | 100             | 778                        | 1            | 43             | 2          | 743             | 1421                       |
| 1            | 2              | 1          | 212             | 97                         | 1            | 23             | 2          | 166             | 844                        | 1            | 44             | 2          | 755             | 1433                       |
| 1            | 3              | 1          | 234             | 119                        | 1            | 24             | 2          | 230             | 908                        | 1            | 45             | 2          | 766             | 1444                       |
| 1            | 4              | 1          | 255             | 140                        | 1            | 25             | 2          | 293             | 971                        | 1            | 46             | 2          | 780             | 1458                       |
| 1            | 5              | 1          | 283             | 168                        | 1            | 26             | 2          | 357             | 1035                       | 1            | 47             | 2          | 791             | 1469                       |
| 1            | 6              | 1          | 310             | 195                        | 1            | 27             | 2          | 410             | 1088                       | 1            | 48             | 2          | 803             | 1481                       |
| 1            | 7              | 1          | 337             | 222                        | 1            | 28             | 2          | 447             | 1125                       | 1            | 49             | 2          | 814             | 1492                       |
| 1            | 8              | 1          | 366             | 251                        | 1            | 29             | 2          | 481             | 1159                       | 1            | 50             | 2          | 827             | 1505                       |
| 1            | 9              | 1          | 395             | 280                        | 1            | 30             | 2          | 511             | 1189                       | 1            | 51             | 2          | 832             | 1510                       |
| 1            | 10             | 1          | 423             | 308                        | 1            | 31             | 2          | 537             | 1215                       | 1            | 52             | 3          | 50              | 1520                       |
| 1            | 11             | 1          | 447             | 332                        | 1            | 32             | 2          | 561             | 1239                       | 1            | 53             | 3          | 65              | 1535                       |
| 1            | 12             | 1          | 474             | 359                        | 1            | 33             | 2          | 582             | 1260                       | 1            | 54             | 3          | 70              | 1540                       |
| 1            | 13             | 1          | 503             | 388                        | 1            | 34             | 2          | 601             | 1279                       | 1            | 55             | 3          | 80              | 1550                       |
| 1            | 14             | 1          | 531             | 416                        | 1            | 35             | 2          | 619             | 1297                       | 1            | 56             | 3          | 91              | 1561                       |
| 1            | 15             | 1          | 559             | 444                        | 1            | 36             | 2 .        | 635             | 1313                       | 1            | 57             | 3          | 101             | 1571                       |
| 1            | 16             | 1          | 587             | 472                        | 1            | 37             | 2          | 654             | 1332                       | 1            | 58             | 3          | 110             | 1580                       |
| 1            | 17             | 1          | 616             | 501                        | 1            | 38             | 2          | 669             | 1347                       | 1            | 59             | 3          | 118             | 1588                       |
| 1            | 18             | 1          | 652             | 537                        | 1            | 39             | 2          | 685             | 1363                       | 1            | 60             | 3          | 130             | 1600                       |
| 1            | 19             | 1          | 697             | 582                        | 1            | 40             | 2          | 699             | 1377                       | 1            | 61             | 3          | 138             | 1608                       |
| 1            | 20             | 1          | 753             | 638                        | 1            | 41             | 2          | 713             | 1391                       | 1            | 62             | 3          | 148             | 1618                       |

| Test Started at | 0.00 | m |
|-----------------|------|---|
| Operator        | EPS  |   |
| Checked by      | TNH  |   |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 115                  |
| 2       | 40                   |
| 3       | 40                   |
|         |                      |

| Depth b | al (mm) | Blow | s No. | DCP     |       |
|---------|---------|------|-------|---------|-------|
| Top     | Base    | Top  | Base  | mm/blow | CBR % |
| 0       | 65      | 0    | 1     | 65      | 3.7   |
| 65      | 280     | 1    | 9     | 27      | 9.3   |
| 65      | 280     | 9    | 18    | 24      | 10.5  |
| 537     | 778     | 18   | 22    | 60      | 4.0   |
| 778     | 1125    | 22   | 28    | 58      | 4.1   |
| 1125    | 1239    | 28   | 32    | 29      | 8.8   |
| 1239    | 1405    | 32   | 42    | 17      | 15.5  |
| 1405    | 1540    | 42   | 54    | 11      | 23.4  |
| 1540    | 1800    | 54   | 84    | 9       | 30.8  |
| 1800    | 2039    | 84   | 117   | 7       | 37.2  |
|         |         |      |       |         |       |
|         |         |      |       |         |       |
|         |         |      |       |         |       |
|         |         |      |       |         |       |



Remarks CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).





**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC804
Project No. PC207899

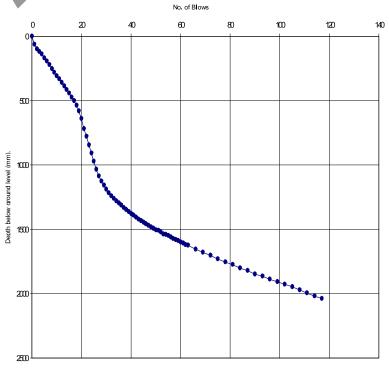
Test No. 1

Test Date

24/07/2020

Client Graven Hill Village Development Company Limited

Coordinates 459530.0 E, 220018.2 N Ground Level 66.76 m OD


| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
|--------------|----------------|------------|-----------------|----------------------------|
| 1            | 63             | 3          | 154             | 1624                       |
| 3            | 66             | 3          | 183             | 1653                       |
| 3            | 69             | 3          | 210             | 1680                       |
| 3            | 72             | 3          | 234             | 1704                       |
| 3            | 75             | 3          | 259             | 1729                       |
| 3            | 78             | 3          | 284             | 1754                       |
| 3            | 81             | 3          | 305             | 1775                       |
| 3            | 84             | 3          | 330             | 1800                       |
| 3            | 87             | 3          | 352             | 1822                       |
| 3            | 90             | 3          | 378             | 1848                       |
| 3            | 93             | 3          | 396             | 1866                       |
| 3            | 96             | 3          | 416             | 1886                       |
| 3            | 99             | 3          | 437             | 1907                       |
| 3            | 102            | 3          | 458             | 1928                       |
| 3            | 105            | 3          | 479             | 1949                       |
| 3            | 108            | 3          | 502             | 1972                       |
| 3            | 111            | 3          | 524             | 1994                       |
| 3            | 114            | 3          | 547             | 2017                       |
| 3            | 117            | 3          | 569             | 2039                       |



| Test Started at | 0.00 | m |  |
|-----------------|------|---|--|
| Operator        | EPS  |   |  |
| Checked by      | TNH  |   |  |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 115                  |
| 2       | 40                   |
| 3       | 40                   |
|         |                      |

|      | Depth bgl (mm) |     | s No. | DCP     | CBR %  |  |  |  |
|------|----------------|-----|-------|---------|--------|--|--|--|
| Тор  | Base           | Тор | Base  | mm/blow | 021170 |  |  |  |
| 0    | 65             | 0   | 1     | 65      | 3.7    |  |  |  |
| 65   | 280            | 1   | 9     | 27      | 9.3    |  |  |  |
| 65   | 280            | 9   | 18    | 24      | 10.5   |  |  |  |
| 537  | 778            | 18  | 22    | 60      | 4.0    |  |  |  |
| 778  | 1125           | 22  | 28    | 58      | 4.1    |  |  |  |
| 1125 | 1239           | 28  | 32    | 29      | 8.8    |  |  |  |
| 1239 | 1405           | 32  | 42    | 17      | 15.5   |  |  |  |
| 1405 | 1540           | 42  | 54    | 11      | 23.4   |  |  |  |
| 1540 | 1800           | 54  | 84    | 9       | 30.8   |  |  |  |
| 1800 | 2039           | 84  | 117   | 7       | 37.2   |  |  |  |
|      |                |     |       |         |        |  |  |  |
|      |                |     |       |         |        |  |  |  |
|      |                |     |       |         |        |  |  |  |
|      |                |     |       |         |        |  |  |  |



Remarks Printed: 28/09/2020

CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).





**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC807
Project No. PC207899
Test No. 1

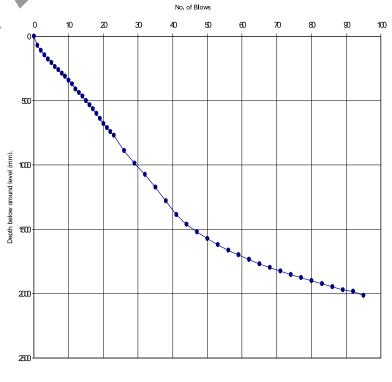
Client Graven Hill Village Development Company Limited

**Test Date** 31/07/2020

Coordinates 459203.9 E. 219929.9 N

Ground Level 69.27 m OD

| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
|--------------|----------------|------------|-----------------|----------------------------|
| 0            | 0              | 1          | 115             | 0                          |
| 1            | 1              | 1          | 185             | 70                         |
| 1            | 2              | 1          | 226             | 111                        |
| 1            | 3              | 1          | 260             | 145                        |
| 1            | 4              | 1          | 293             | 178                        |
| 1            | 5              | 1          | 321             | 206                        |
| 1            | 6              | 1          | 350             | 235                        |
| 1            | 7              | 1          | 376             | 261                        |
| 1            | 8              | 1          | 403             | 288                        |
| 1            | 9              | 1          | 428             | 313                        |
| 1            | 10             | 1          | 458             | 343                        |
| 1            | 11             | 1          | 488             | 373                        |
| 1            | 12             | 1          | 527             | 412                        |
| 1            | 13             | 1          | 553             | 438                        |
| 1            | 14             | 1          | 583             | 468                        |
| 1            | 15             | 1          | 616             | 501                        |
| 1            | 16             | 1          | 647             | 532                        |
| 1            | 17             | 1          | 679             | 564                        |
| 1            | 18             | 1          | 716             | 601                        |
| 1            | 19             | 1          | 755             | 640                        |
| 1            | 20             | 1          | 794             | 679                        |


| Grou         | nd Lev         | /el        | 69.27 m O       | D                          |
|--------------|----------------|------------|-----------------|----------------------------|
| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
| 1            | 21             | 1          | 825             | 710                        |
| 1            | 22             | 1          | 856             | 741                        |
| 1            | 23             | 2          | 97              | 772                        |
| 3            | 26             | 2          | 212             | 887                        |
| 3            | 29             | 2          | 313             | 988                        |
| 3            | 32             | 2          | 401             | 1076                       |
| 3            | 35             | 2          | 498             | 1173                       |
| 3            | 38             | 2          | 606             | 1281                       |
| 3            | 41             | 2          | 711             | 1386                       |
| 3            | 44             | 2          | 788             | 1463                       |
| 3            | 47             | 2          | 845             | 1520                       |
| 3            | 50             | 3          | 497             | 1571                       |
| 3            | 53             | 3          | 544             | 1618                       |
| 3            | 56             | 3          | 587             | 1661                       |
| 3            | 59             | 3          | 625             | 1699                       |
| 3            | 62             | 3 .        | 659             | 1733                       |
| 3            | 65             | 3          | 694             | 1768                       |
| 3            | 68             | 3          | 723             | 1797                       |
| 3            | 71             | 3          | 750             | 1824                       |
| 3            | 74             | 3          | 778             | 1852                       |
| 3            | 77             | 3          | 803             | 1877                       |
|              |                |            | _               |                            |

| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
|--------------|----------------|------------|-----------------|----------------------------|
| 3            | 80             | 3          | 826             | 1900                       |
| 3            | 83             | 3          | 851             | 1925                       |
| 3            | 86             | 3          | 875             | 1949                       |
| 3            | 89             | 3          | 896             | 1970                       |
| 3            | 92             | 3          | 910             | 1984                       |
| 3            | 95             | 3          | 940             | 2014                       |

| Test Started at | 0.00 | m , |
|-----------------|------|-----|
| Operator        | EPS  |     |
| Checked by      | TNH  |     |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 115                  |
| 2       | 66                   |
| 3       | 446                  |
|         |                      |

| Danath la      | Depth bgl (mm) Blows No. DCP CRR %/ |     |                |       |      |  |  |  |  |
|----------------|-------------------------------------|-----|----------------|-------|------|--|--|--|--|
| рертп в<br>Тор | gi (mm)<br>Base                     | Top | DCP<br>mm/blow | CBR % |      |  |  |  |  |
| 0              | 111                                 | 0   | Base 2         | 111   | 2.1  |  |  |  |  |
| 111            | 373                                 | 2   | 11             | 29    | 8.6  |  |  |  |  |
| 373            | 772                                 | 11  | 23             | 33    | 7.4  |  |  |  |  |
| 772            | 988                                 | 23  | 29             | 36    | 6.8  |  |  |  |  |
| 988            | 1173                                | 29  | 35             | 31    | 8.1  |  |  |  |  |
| 1173           | 1386                                | 35  | 41             | 36    | 6.9  |  |  |  |  |
| 1386           | 1520                                | 41  | 47             | 22    | 11.3 |  |  |  |  |
| 1520           | 1661                                | 47  | 56             | 16    | 16.5 |  |  |  |  |
| 1661           | 1797                                | 56  | 68             | 11    | 23.2 |  |  |  |  |
| 1797           | 2014                                | 68  | 95             | 8     | 33.4 |  |  |  |  |
|                |                                     |     |                |       |      |  |  |  |  |
|                |                                     |     |                |       |      |  |  |  |  |
|                |                                     |     |                |       |      |  |  |  |  |
|                |                                     |     |                |       |      |  |  |  |  |



CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

GEOTECHNICS

Printed: 28/09/2020



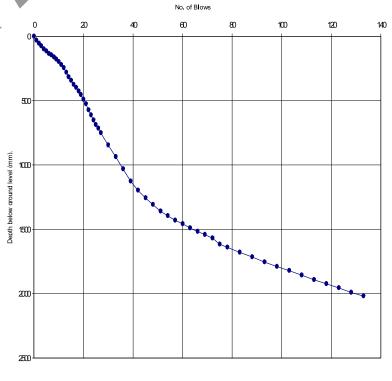
**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC808 Project No. PC207899 Test No.

Client Graven Hill Village Development Company Limited

Coordinates 459229.2 E, 219850.0 N

**Ground Level** 66.57 m OD **Test Date** 31/07/2020


1

|              | Glorida Level Gold III GB |            |                 |                            |   |              |                | 1001       |                 | 0 170                      | 7172020      |                |            |                 |                            |
|--------------|---------------------------|------------|-----------------|----------------------------|---|--------------|----------------|------------|-----------------|----------------------------|--------------|----------------|------------|-----------------|----------------------------|
| Blows<br>No. | Blows<br>Total            | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |   | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
| 0            | 0                         | 1          | 110             | 0                          | ſ | 1            | 21             | 1          | 636             | 526                        | 3            | 72             | 3          | 468             | 1566                       |
| 1            | 1                         | 1          | 140             | 30                         |   | 1            | 22             | 1          | 681             | 571                        | 3            | 75             | 3          | 517             | 1615                       |
| 1            | 2                         | 1          | 166             | 56                         | ſ | 1            | 23             | 1          | 722             | 612                        | 3            | 78             | 3          | 541             | 1639                       |
| 1            | 3                         | 1          | 187             | 77                         | ſ | 1            | 24             | 1          | 761             | 651                        | 5            | 83             | 3          | 580             | 1678                       |
| 1            | 4                         | 1          | 209             | 99                         | ſ | 1            | 25             | 1          | 797             | 687                        | 5            | 88             | 3          | 618             | 1716                       |
| 1            | 5                         | 1          | 225             | 115                        |   | 1            | 26             | 1          | 826             | 716                        | 5            | 93             | 3          | 654             | 1752                       |
| 1            | 6                         | 1          | 244             | 134                        | ſ | 1            | 27             | 1          | 860             | 750                        | 5            | 98             | 3          | 690             | 1788                       |
| 1            | 7                         | 1          | 258             | 148                        | ſ | 3            | 30             | 2          | 146             | 845                        | 5            | 103            | 3          | 724             | 1822                       |
| 1            | 8                         | 1          | 271             | 161                        | ſ | 3            | 33             | 2          | 238             | 937                        | 5            | 108            | 3          | 759             | 1857                       |
| 1            | 9                         | 1          | 286             | 176                        | Γ | 3            | 36             | 2          | 333             | 1032                       | 5            | 113            | 3          | 792             | 1890                       |
| 1            | 10                        | 1          | 308             | 198                        | Γ | 3            | 39             | 2          | 428             | 1127                       | 5            | 118            | 3          | 826             | 1924                       |
| 1            | 11                        | 1          | 330             | 220                        | Γ | 3            | 42             | 2          | 497             | 1196                       | 5            | 123            | 3          | 858             | 1956                       |
| 1            | 12                        | 1          | 355             | 245                        | Γ | 3            | 45             | 2          | 558             | 1257                       | 5            | 128            | 3          | 894             | 1992                       |
| 1            | 13                        | 1          | 392             | 282                        |   | 3            | 48             | 2          | 610             | 1309                       | 5            | 133            | 3          | 920             | 2018                       |
| 1            | 14                        | 1          | 425             | 315                        |   | 3            | 51             | 2          | 658             | 1357                       | <b>&gt;</b>  |                |            |                 |                            |
| 1            | 15                        | 1          | 452             | 342                        | ſ | 3            | 54             | 2 .        | 694             | 1393                       |              |                |            |                 |                            |
| 1            | 16                        | 1          | 484             | 374                        | ſ | 3            | 57             | 2          | 730             | 1429                       |              |                |            |                 |                            |
| 1            | 17                        | 1          | 507             | 397                        | ſ | 3            | 60             | 2          | 760             | 1459                       |              |                |            |                 |                            |
| 1            | 18                        | 1          | 535             | 425                        |   | 3            | 63             | 2          | 788             | 1487                       |              |                |            |                 |                            |
| 1            | 19                        | 1          | 566             | 456                        |   | 3            | 66             | 2          | 818             | 1517                       |              |                |            |                 |                            |
| 1            | 20                        | 1          | 598             | 488                        | Ī | 3            | 69             | 2          | 842             | 1541                       |              |                |            |                 |                            |

| Test Started at | 0.00 | m |
|-----------------|------|---|
| Operator        | EPS  |   |
| Checked by      | TNH  |   |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 110                  |
| 2       | 51                   |
| 3       | 443                  |
|         |                      |

| Depth bgl (mm) Blows No. DCP CRR (/ |                   |     |                 |                |       |  |  |  |
|-------------------------------------|-------------------|-----|-----------------|----------------|-------|--|--|--|
| Тор                                 | gi (mm)<br>  Base | Тор | S NO.<br>  Base | DCP<br>mm/blow | CBR % |  |  |  |
| 0                                   | 115               | 0   | 5               | 23             | 11.0  |  |  |  |
| 115                                 | 198               | 5   | 10              | 17             | 15.5  |  |  |  |
| 198                                 | 425               | 10  | 18              | 28             | 8.8   |  |  |  |
| 425                                 | 750               | 18  | 27              | 36             | 6.8   |  |  |  |
| 750                                 | 1195              | 27  | 42              | 30             | 8.4   |  |  |  |
| 1195                                | 1356              | 42  | 51              | 18             | 14.3  |  |  |  |
| 1356                                | 1428              | 51  | 57              | 12             | 21.8  |  |  |  |
| 1428                                | 1565              | 57  | 72              | 9              | 29.1  |  |  |  |
| 1565                                | 1614              | 72  | 75              | 16             | 15.8  |  |  |  |
| 1614                                | 2017              | 75  | 133             | 7              | 38.9  |  |  |  |
|                                     |                   |     |                 |                |       |  |  |  |
|                                     |                   |     |                 |                |       |  |  |  |
|                                     |                   |     |                 |                |       |  |  |  |
|                                     |                   |     |                 |                |       |  |  |  |





Printed: 28/09/2020



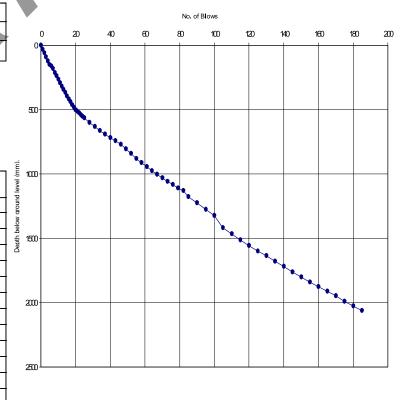
**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC809 Project No. PC207899

Test No. 1

Client Graven Hill Village Development Company Limited

**Coordinates** 459280.9 E, 219766.1 N


**Ground Level** 66.22 m OD **Test Date** 07/08/2020

|              | ,              |            |                 |                            |              |                |            |                 |                            |              |                |            |                 |                            |
|--------------|----------------|------------|-----------------|----------------------------|--------------|----------------|------------|-----------------|----------------------------|--------------|----------------|------------|-----------------|----------------------------|
| Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) | Blows<br>No. | Blows<br>Total | Rod<br>No. | Reading<br>(mm) | Corrected<br>Depth<br>(mm) |
| 0            | 0              | 1          | 140             | 0                          | 1            | 21             | 1          | 654             | 514                        | 3            | 76             | 2          | 388             | 1084                       |
| 1            | 1              | 1          | 172             | 32                         | 1            | 22             | 1          | 667             | 527                        | 3            | 79             | 2          | 412             | 1108                       |
| 1            | 2              | 1          | 201             | 61                         | 1            | 23             | 1          | 681             | 541                        | 3            | 82             | 2          | 434             | 1130                       |
| 1            | 3              | 1          | 229             | 89                         | 1            | 24             | 1          | 692             | 552                        | 3            | 85             | 2          | 479             | 1175                       |
| 1            | 4              | 1          | 263             | 123                        | 1            | 25             | 1          | 704             | 564                        | 5            | 90             | 2          | 528             | 1224                       |
| 1            | 5              | 1          | 292             | 152                        | 3            | 28             | 1          | 739             | 599                        | 5            | 95             | 2          | 580             | 1276                       |
| 1            | 6              | 1          | 301             | 161                        | 3            | 31             | 1          | 772             | 632                        | 5            | 100            | 2          | 629             | 1325                       |
| 1            | 7              | 1          | 321             | 181                        | 3            | 34             | 1          | 802             | 662                        | 5            | 105            | 2          | 723             | 1419                       |
| 1            | 8              | 1          | 353             | 213                        | 3            | 37             | 1          | 830             | 690                        | 5            | 110            | 2          | 771             | 1467                       |
| 1            | 9              | 1          | 378             | 238                        | 3            | 40             | 1          | 859             | 719                        | 5            | 115            | 2          | 816             | 1512                       |
| 1            | 10             | 1          | 404             | 264                        | 3            | 43             | 1          | 883             | 743                        | 5            | 120            | 2          | 862             | 1558                       |
| 1            | 11             | 1          | 432             | 292                        | 3            | 46             | 1          | 910             | 770                        | 5            | 125            | 2          | 905             | 1601                       |
| 1            | 12             | 1          | 459             | 319                        | 3            | 49             | 2          | 109             | 805                        | 5            | 130            | 2          | 941             | 1637                       |
| 1            | 13             | 1          | 485             | 345                        | 3            | 52             | 2          | 146             | 842                        | 5            | 135            | 3          | 514             | 1679                       |
| 1            | 14             | 1          | 509             | 369                        | 3            | 55             | 2          | 183             | 879                        | 5            | 140            | 3          | 554             | 1719                       |
| 1            | 15             | 1          | 534             | 394                        | 3            | 58             | 2 .        | 217             | 913                        | 5            | 145            | 3          | 595             | 1760                       |
| 1            | 16             | 1          | 557             | 417                        | 3            | 61             | 2          | 246             | 942                        | 5            | 150            | 3          | 634             | 1799                       |
| 1            | 17             | 1          | 580             | 440                        | 3            | 64             | 2          | 279             | 975                        | 5            | 155            | 3          | 674             | 1839                       |
| 1            | 18             | 1          | 602             | 462                        | 3            | 67             | 2          | 307             | 1003                       | 5            | 160            | 3          | 711             | 1876                       |
| 1            | 19             | 1          | 623             | 483                        | 3            | 70             | 2          | 336             | 1032                       | 5            | 165            | 3          | 746             | 1911                       |
| 1            | 20             | 1          | 642             | 502                        | 3            | 73             | 2          | 361             | 1057                       | 5            | 170            | 3          | 784             | 1949                       |

| Test Started at | 0.00 | m , |
|-----------------|------|-----|
| Operator        | EPS  |     |
| Checked by      | TNH  |     |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 140                  |
| 2       | 74                   |
| 3       | 472                  |
|         |                      |

| Depth b | gl (mm) | DCP | CBR % |         |         |  |  |  |
|---------|---------|-----|-------|---------|---------|--|--|--|
| Тор     | Base    | Тор | Base  | mm/blow | OBIT 70 |  |  |  |
| 0       | 502     | 0   | 20    | 25      | 10.0    |  |  |  |
| 502     | 632     | 20  | 31    | 12      | 22.2    |  |  |  |
| 632     | 743     | 31  | 43    | 9       | 28.8    |  |  |  |
| 743     | 1003    | 43  | 67    | 11      | 24.3    |  |  |  |
| 1003    | 1325    | 67  | 100   | 10      | 27.2    |  |  |  |
| 1325    | 1419    | 100 | 105   | 19      | 13.6    |  |  |  |
| 1419    | 1601    | 105 | 125   | 9       | 29.3    |  |  |  |
| 1601    | 2060    | 125 | 185   | 8       | 35.2    |  |  |  |
|         |         |     |       |         |         |  |  |  |
|         |         |     |       |         |         |  |  |  |
|         |         |     |       |         |         |  |  |  |
|         |         |     |       |         |         |  |  |  |
| ·       |         |     |       |         |         |  |  |  |
|         |         |     |       |         |         |  |  |  |
|         |         |     |       |         |         |  |  |  |





Printed: 28/09/2020



Remarks

CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

**Project** GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

2060

Location No. RC809 Project No. PC207899

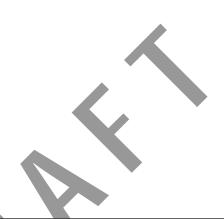
Test No.

**Test Date** 

07/08/2020

Client Graven Hill Village Development Company Limited Coordinates 459280.9 E, 219766.1 N

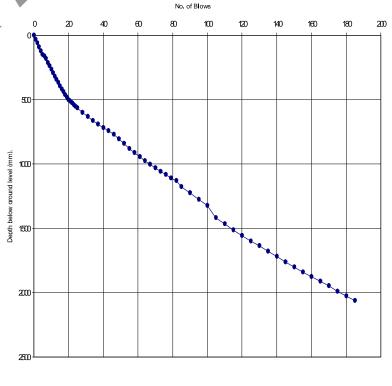
**Ground Level** 66.22 m OD


Corrected **Blows Blows** Rod Reading Depth No. No. Total (mm) (mm) 1989 5 175 3 824 5 180 3 861 2026

895

3

185


5



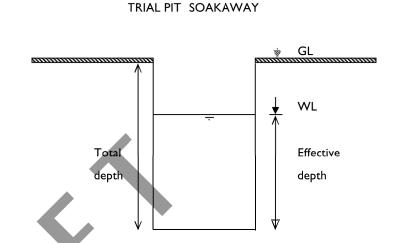
| Test Started at | 0.00 | m | 47 |
|-----------------|------|---|----|
| Operator        | EPS  |   |    |
| Checked by      | TNH  |   |    |

| Rod No. | Zero Reading<br>(mm) |
|---------|----------------------|
| 1       | 140                  |
| 2       | 74                   |
| 3       | 472                  |
|         |                      |

| Depth bgl (mm) Blows No. DCP CRR 9/ |      |     |      |         |       |
|-------------------------------------|------|-----|------|---------|-------|
| Top                                 | Base | Top | Base | mm/blow | CBR % |
| 0                                   | 502  | 0   | 20   | 25      | 10.0  |
| 502                                 | 632  | 20  | 31   | 12      | 22.2  |
| 632                                 | 743  | 31  | 43   | 9       | 28.8  |
| 743                                 | 1003 | 43  | 67   | 11      | 24.3  |
| 1003                                | 1325 | 67  | 100  | 10      | 27.2  |
| 1325                                | 1419 | 100 | 105  | 19      | 13.6  |
| 1419                                | 1601 | 105 | 125  | 9       | 29.3  |
| 1601                                | 2060 | 125 | 185  | 8       | 35.2  |
|                                     |      |     |      |         |       |
|                                     |      |     |      |         |       |
|                                     |      |     |      |         |       |
|                                     |      |     |      |         |       |
|                                     |      |     |      |         |       |
|                                     |      |     |      |         |       |



Remarks CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).


**GEOTECHNICS** 

Printed: 28/09/2020



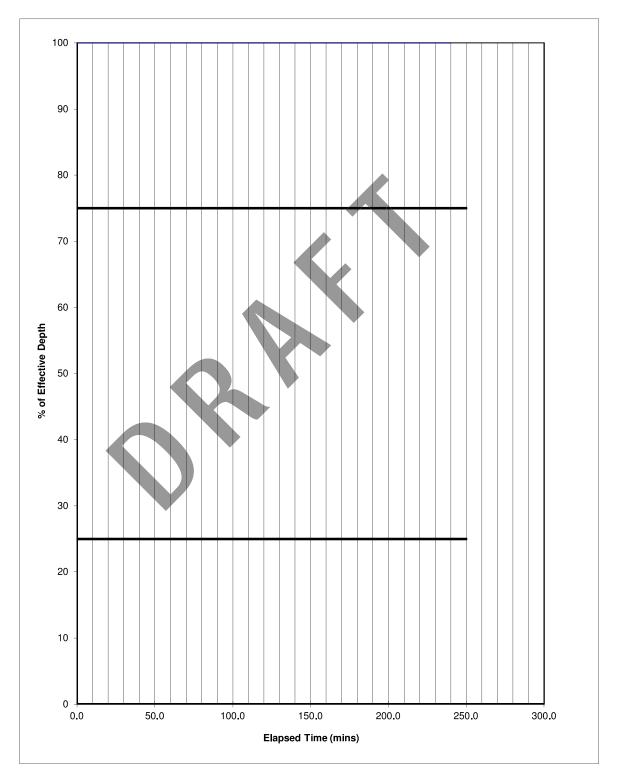
Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP801 (LTA2) Test No I Project No PC207899 Client Graven Hill Village Development Company Limited Date 13/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.25                                           | 1.45        | 100.00      |
| 1.00                      | 1.25                                           | 1.45        | 100.00      |
| 2.00                      | 1.25                                           | 1.45        | 100.00      |
| 3.00                      | 1.25                                           | 1.45        | 100.00      |
| 4.00                      | 1.25                                           | 1.45        | 100.00      |
| 5.00                      | 1.25                                           | 1.45        | 100.00      |
| 10.00                     | 1.25                                           | 1.45        | 100.00      |
| 15.00                     | 1.25                                           | 1.45        | 100.00      |
| 20.00                     | 1.25                                           | 1.45        | 100.00      |
| 30.00                     | 1.25                                           | 1.45        | 100.00      |
| 45.00                     | 1.25                                           | 1.45        | 100.00      |
| 60.00                     | 1.25                                           | 1.45        | 100.00      |
| 90.00                     | 1.25                                           | 1.45        | 100.00      |
| 120.00                    | 1.25                                           | 1.45        | 100.00      |
| 180.00                    | 1.25                                           | 1.45        | 100.00      |
| 240.00                    | 1.25                                           | 1.45        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |



Trial pit length = 3.700 m

Trial pit width = 0.600 m


Trial pit depth = 2.700 m

Effective depth (Head of Water) = 1.450 m

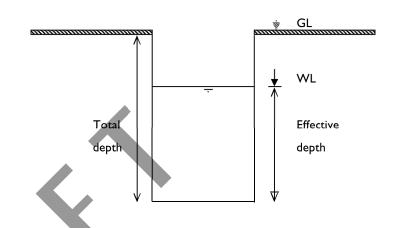
| Initial depth from<br>GL | =           | 1.250m               |                |
|--------------------------|-------------|----------------------|----------------|
| % of effective depth     | Head<br>(m) | Depth from GL<br>(m) | Time<br>(mins) |
| 75%                      | 1.088       | 1.613                |                |
| 25%                      | 0.363       | 2.338                |                |
| V <sub>P</sub> 75-25     | =           | m3                   |                |
| ар50                     | =           | m2                   |                |
| tp75-25                  | =           | min                  |                |
| Soil Infiltration, f     | =           | * m/sec              |                |

Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP801      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 13/07/2020 |



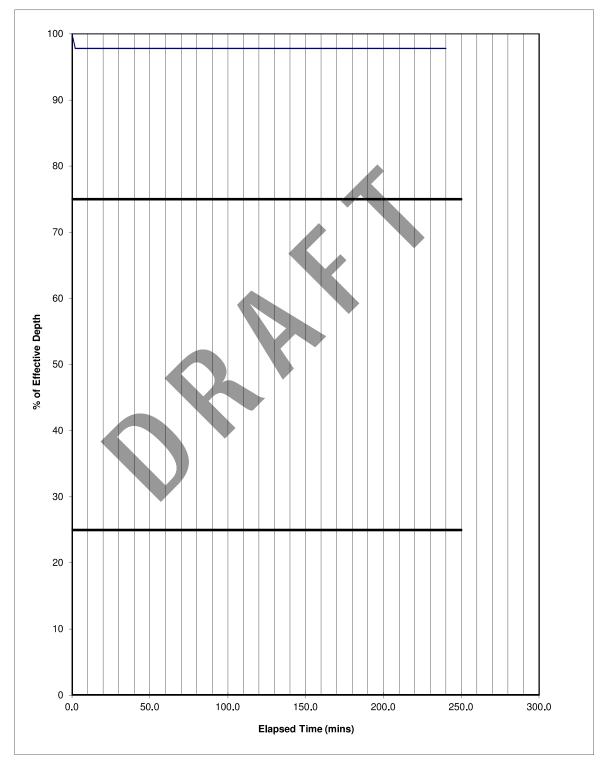
| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP813 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Date 14/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.60                                           | 0.90        | 100.00      |
| 1.00                      | 1.61                                           | 0.89        | 98.89       |
| 2.00                      | 1.62                                           | 0.88        | 97.78       |
| 3.00                      | 1.62                                           | 0.88        | 97.78       |
| 4.00                      | 1.62                                           | 0.88        | 97.78       |
| 5.00                      | 1.62                                           | 0.88        | 97.78       |
| 10.00                     | 1.62                                           | 0.88        | 97.78       |
| 15.00                     | 1.62                                           | 0.88        | 97.78       |
| 20.00                     | 1.62                                           | 0.88        | 97.78       |
| 30.00                     | 1.62                                           | 0.88        | 97.78       |
| 45.00                     | 1.62                                           | 0.88        | 97.78       |
| 60.00                     | 1.62                                           | 0.88        | 97.78       |
| 90.00                     | 1.62                                           | 0.88        | 97.78       |
| 120.00                    | 1.62                                           | 0.88        | 97.78       |
| 180.00                    | 1.62                                           | 0.88        | 97.78       |
| 240.00                    | 1.62                                           | 0.88        | 97.78       |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |


#### TRIAL PIT SOAKAWAY

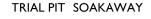


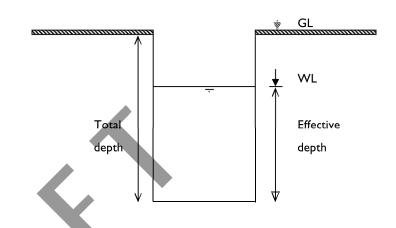
| Initial depth from<br>GL | =           | 1.600m            |       |                |
|--------------------------|-------------|-------------------|-------|----------------|
| % of effective depth     | Head<br>(m) | Depth fror<br>(m) | n GL  | Time<br>(mins) |
| 75%                      | 0.675       | 1.825             |       | 0.00           |
| 25%                      | 0.225       | 2.275             |       | 0.00           |
| V <sub>P</sub> 75-25     | =           | 0.675             | m3    |                |
| ар50                     | =           | 4.290             | m2    |                |
| tp75-25                  | =           | 0.000             | min   |                |
| Soil Infiltration, f     | =           | *                 | m/sec |                |

Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP813      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 14/07/2020 |



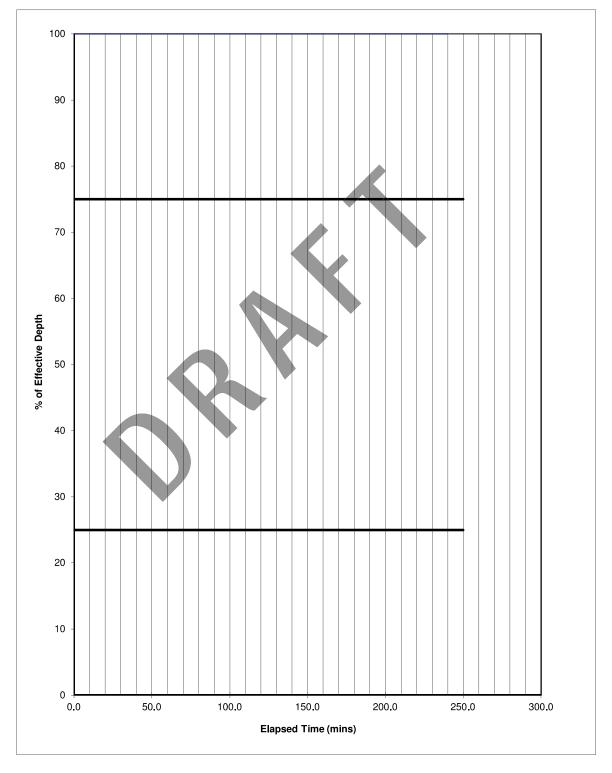

| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP814
(LTA2) Test No I
Project No PC207899

Client Graven Hill Village Development Company Limited Date 14/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.52                                           | 0.98        | 100.00      |
| 1.00                      | 1.52                                           | 0.98        | 100.00      |
| 2.00                      | 1.52                                           | 0.98        | 100.00      |
| 3.00                      | 1.52                                           | 0.98        | 100.00      |
| 4.00                      | 1.52                                           | 0.98        | 100.00      |
| 5.00                      | 1.52                                           | 0.98        | 100.00      |
| 10.00                     | 1.52                                           | 0.98        | 100.00      |
| 15.00                     | 1.52                                           | 0.98        | 100.00      |
| 20.00                     | 1.52                                           | 0.98        | 100.00      |
| 30.00                     | 1.52                                           | 0.98        | 100.00      |
| 45.00                     | 1.52                                           | 0.98        | 100.00      |
| 60.00                     | 1.52                                           | 0.98        | 100.00      |
| 90.00                     | 1.52                                           | 0.98        | 100.00      |
| 120.00                    | 1.52                                           | 0.98        | 100.00      |
| 180.00                    | 1.52                                           | 0.98        | 100.00      |
| 240.00                    | 1.52                                           | 0.98        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |



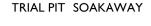


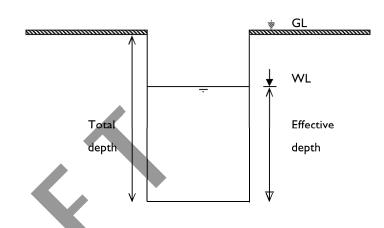

| Trial pit length                | = | 2.500 | m |
|---------------------------------|---|-------|---|
| Trial pit width                 | = | 0.600 | m |
| Trial pit depth                 | = | 2.500 | m |
| Effective depth (Head of Water) | = | 0.980 | m |

| Initial depth from<br>GL | =           | 1.520m     |       |                |
|--------------------------|-------------|------------|-------|----------------|
| % of effective depth     | Head<br>(m) | Depth from | m GL  | Time<br>(mins) |
| 75%                      | 0.735       | 1.765      | 1.765 |                |
| 25%                      | 0.245       | 2.255      |       | 0.00           |
| V <sub>P</sub> 75-25     | =           | 0.735      | m3    |                |
| ар50                     | =           | 4.538      | m2    |                |
| tp75-25                  | =           | 0.000      | min   |                |
| Soil Infiltration, f     | =           | *          | m/sec |                |

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP814      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 14/07/2020 |




| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP815 (LTA2) Test No I Project No PC207899

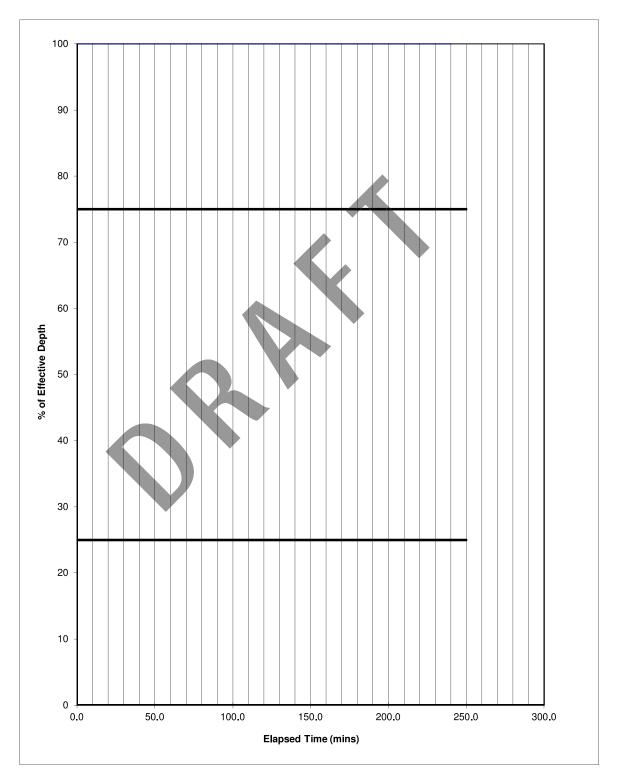
Client Graven Hill Village Development Company Limited Date 15/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.75                                           | 0.95        | 100.00      |
| 1.00                      | 1.75                                           | 0.95        | 100.00      |
| 2.00                      | 1.75                                           | 0.95        | 100.00      |
| 3.00                      | 1.75                                           | 0.95        | 100.00      |
| 4.00                      | 1.75                                           | 0.95        | 100.00      |
| 5.00                      | 1.75                                           | 0.95        | 100.00      |
| 10.00                     | 1.75                                           | 0.95        | 100.00      |
| 15.00                     | 1.75                                           | 0.95        | 100.00      |
| 20.00                     | 1.75                                           | 0.95        | 100.00      |
| 30.00                     | 1.75                                           | 0.95        | 100.00      |
| 45.00                     | 1.75                                           | 0.95        | 100.00      |
| 60.00                     | 1.75                                           | 0.95        | 100.00      |
| 90.00                     | 1.75                                           | 0.95        | 100.00      |
| 120.00                    | 1.75                                           | 0.95        | 100.00      |
| 180.00                    | 1.75                                           | 0.95        | 100.00      |
| 240.00                    | 1.75                                           | 0.95        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |





Trial pit length = 2.700 m


Trial pit width = 0.600 m

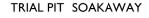
Trial pit depth = 2.700 m

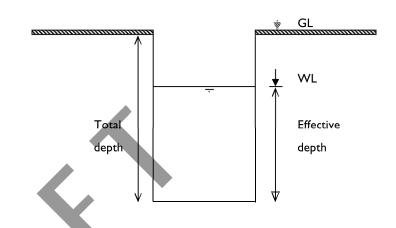
Effective depth (Head of Water) = 0.950 m

| Initial depth from<br>GL | =           | 1.750m     |       |                |
|--------------------------|-------------|------------|-------|----------------|
| % of effective depth     | Head<br>(m) | Depth from | n GL  | Time<br>(mins) |
| 75%                      | 0.713       | 1.988      | 1.988 |                |
| 25%                      | 0.238       | 2.463      | 2.463 |                |
| V <sub>P</sub> 75-25     | =           | 0.770      | m3    |                |
| ар50                     | =           | 4.755      | m2    |                |
| tp75-25                  | =           | 0.000      | min   |                |
| Soil Infiltration, f     | =           | *          | m/sec |                |

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP815      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 15/07/2020 |




| tp75 | = |  |
|------|---|--|
| tp25 | = |  |

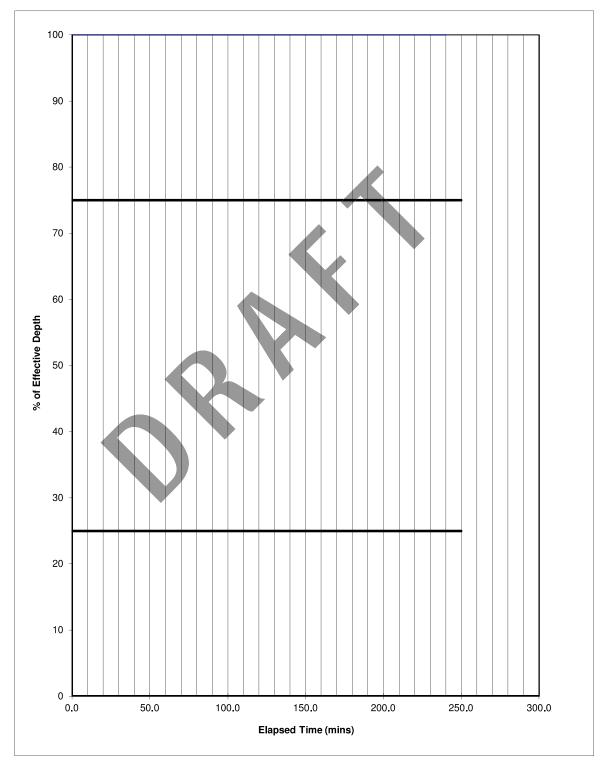

Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP817 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Date 17/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.81                                           | 0.89        | 100.00      |
| 1.00                      | 1.81                                           | 0.89        | 100.00      |
| 2.00                      | 1.81                                           | 0.89        | 100.00      |
| 3.00                      | 1.81                                           | 0.89        | 100.00      |
| 4.00                      | 1.81                                           | 0.89        | 100.00      |
| 5.00                      | 1.81                                           | 0.89        | 100.00      |
| 10.00                     | 1.81                                           | 0.89        | 100.00      |
| 15.00                     | 1.81                                           | 0.89        | 100.00      |
| 20.00                     | 1.81                                           | 0.89        | 100.00      |
| 30.00                     | 1.81                                           | 0.89        | 100.00      |
| 45.00                     | 1.81                                           | 0.89        | 100.00      |
| 60.00                     | 1.81                                           | 0.89        | 100.00      |
| 90.00                     | 1.81                                           | 0.89        | 100.00      |
| 120.00                    | 1.81                                           | 0.89        | 100.00      |
| 180.00                    | 1.81                                           | 0.89        | 100.00      |
| 240.00                    | 1.81                                           | 0.89        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |





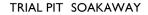

| Trial pit length                | = | 2.400 | m |
|---------------------------------|---|-------|---|
| Trial pit width                 | = | 0.600 | m |
| Trial pit depth                 | = | 2.700 | m |
| Effective depth (Head of Water) | = | 0.890 | m |

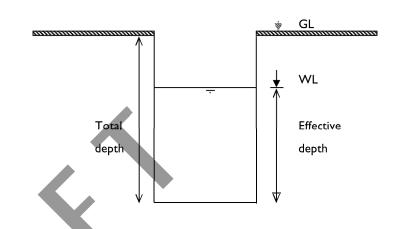
| Initial depth from<br>GL | =           | 1.810m               |                |
|--------------------------|-------------|----------------------|----------------|
| % of effective depth     | Head<br>(m) | Depth from GL<br>(m) | Time<br>(mins) |
| 75%                      | 0.668       | 2.033                |                |
| 25%                      | 0.223       | 2.478                |                |
| V <sub>P</sub> 75-25     | =           | m3                   |                |
| ар50                     | =           | m2                   |                |
| tp75-25                  | =           | min                  |                |
| Soil Infiltration, f     | =           | * m/sec              |                |

Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP817      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 17/07/2020 |



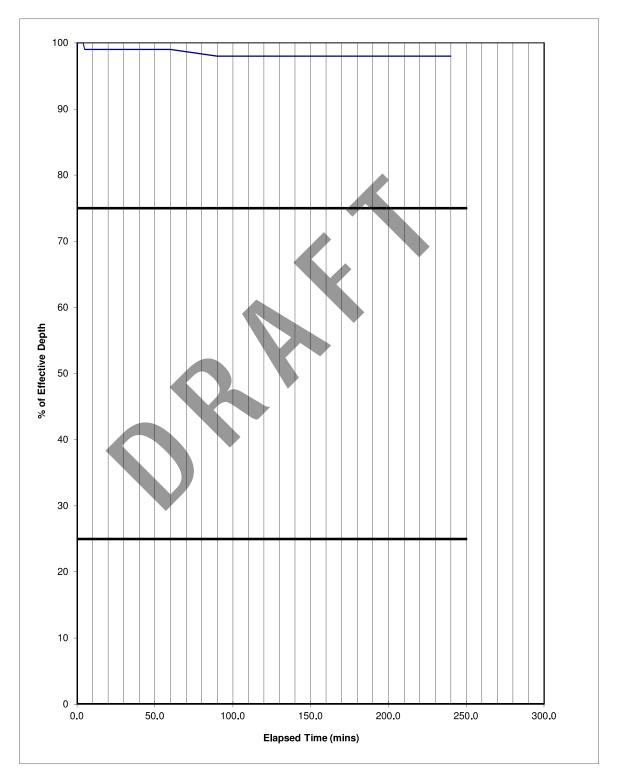

| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP818
(LTA2) Test No I
Project No PC207899

Client Graven Hill Village Development Company Limited Date 16/07/2020

| DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m)                  | HEAD<br>(%)                        |
|------------------------------------------------|------------------------------|------------------------------------|
| 1.50                                           | 1.00                         | 100.00                             |
| 1.50                                           | 1.00                         | 100.00                             |
| 1.50                                           | 1.00                         | 100.00                             |
| 1.50                                           | 1.00                         | 100.00                             |
| 1.50                                           | 1.00                         | 100.00                             |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.51                                           | 0.99                         | 99.00                              |
| 1.52                                           | 0.98                         | 98.00                              |
| 1.52                                           | 0.98                         | 98.00                              |
| 1.52                                           | 0.98                         | 98.00                              |
| 1.52                                           | 0.98                         | 98.00                              |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                |                              |                                    |
|                                                | water below ground level (m) | water below ground level (m)  1.50 |



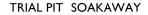


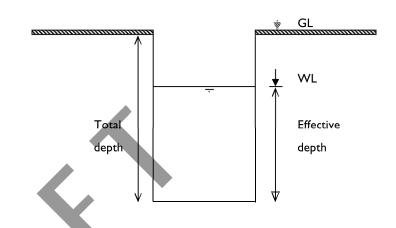

| Initial depth from<br>GL | =           | 1.500m              |                   |
|--------------------------|-------------|---------------------|-------------------|
| % of effective depth     | Head<br>(m) | Depth from G<br>(m) | GL Time<br>(mins) |
| 75%                      | 0.750       | 1.750               |                   |
| 25%                      | 0.250       | 2.250               |                   |
| V <sub>P</sub> 75-25     | =           | m3                  | 3                 |
| ар50                     | =           | m2                  | 2                 |
| tp75-25                  | =           | miı                 | n                 |
| Soil Infiltration, f     | =           | * m/:               | sec               |

Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP818      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 16/07/2020 |



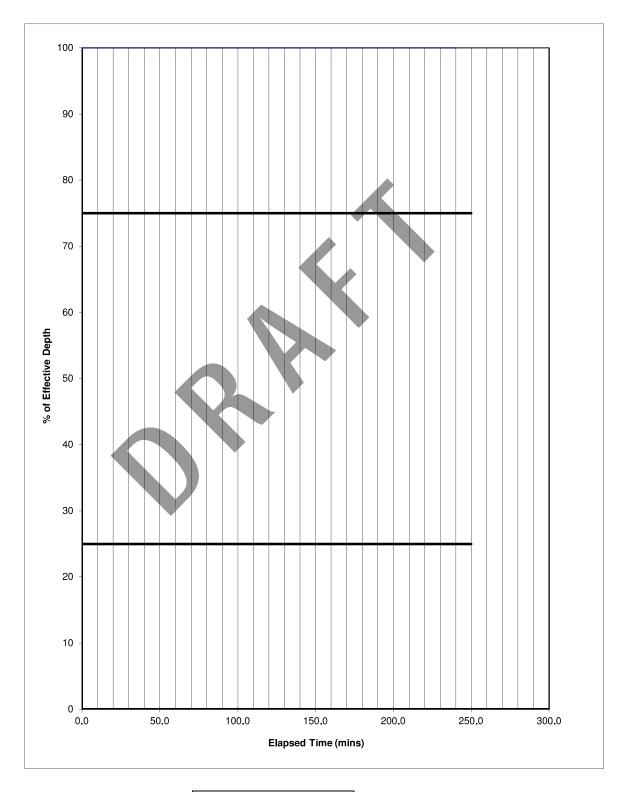

| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP825 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Date 15/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.65                                           | 0.85        | 100.00      |
| 1.00                      | 1.65                                           | 0.85        | 100.00      |
| 2.00                      | 1.65                                           | 0.85        | 100.00      |
| 3.00                      | 1.65                                           | 0.85        | 100.00      |
| 4.00                      | 1.65                                           | 0.85        | 100.00      |
| 5.00                      | 1.65                                           | 0.85        | 100.00      |
| 10.00                     | 1.65                                           | 0.85        | 100.00      |
| 15.00                     | 1.65                                           | 0.85        | 100.00      |
| 20.00                     | 1.65                                           | 0.85        | 100.00      |
| 30.00                     | 1.65                                           | 0.85        | 100.00      |
| 45.00                     | 1.65                                           | 0.85        | 100.00      |
| 60.00                     | 1.65                                           | 0.85        | 100.00      |
| 90.00                     | 1.65                                           | 0.85        | 100.00      |
| 120.00                    | 1.65                                           | 0.85        | 100.00      |
| 180.00                    | 1.65                                           | 0.85        | 100.00      |
| 240.00                    | 1.65                                           | 0.85        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           | _                                              |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |





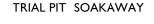

| Initial depth from   | =           | 1.650m     |       |                |
|----------------------|-------------|------------|-------|----------------|
| % of effective depth | Head<br>(m) | Depth from | n GL  | Time<br>(mins) |
| 75%                  | 0.638       | 1.863      |       | 0.00           |
| 25%                  | 0.213       | 2.288      | }     | 0.00           |
| V <sub>P</sub> 75-25 | =           | 0.689      | m3    |                |
| ар50                 | =           | 4.425      | m2    |                |
| tp75-25              | =           | 0.000      | min   |                |
| Soil Infiltration, f | =           | *          | m/sec |                |

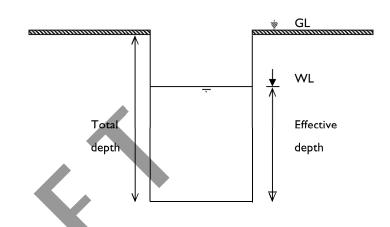
Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP825      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 15/07/2020 |



| tp75 | = |  |
|------|---|--|
| tp25 | = |  |


Sheet 2

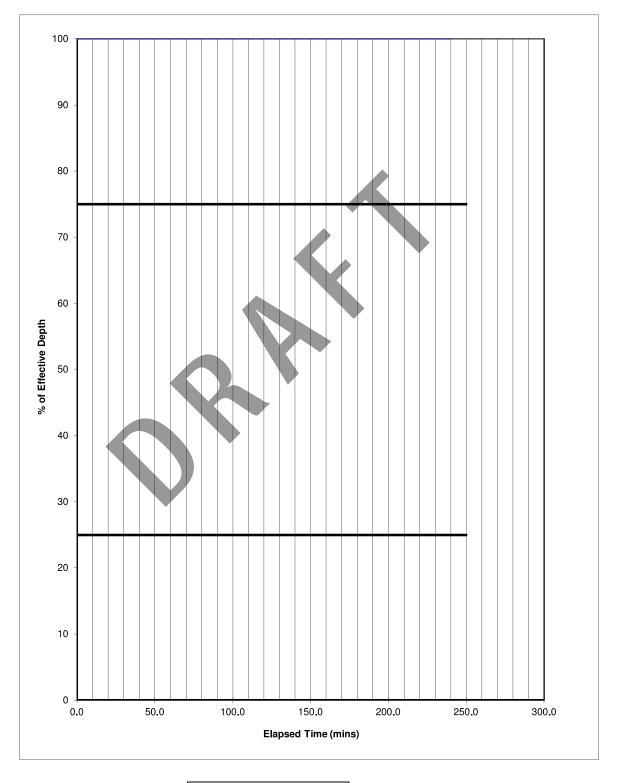

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP835 (LTA2) Test No I

Client Graven Hill Village Development Company Limited Project No PC207899

Cloud Date 16/07/2020

| ELAPSED<br>TIME<br>(mins) | DEPTH of<br>water below<br>ground level<br>(m) | HEAD<br>(m) | HEAD<br>(%) |
|---------------------------|------------------------------------------------|-------------|-------------|
| 0.00                      | 1.63                                           | 0.87        | 100.00      |
| 1.00                      | 1.63                                           | 0.87        | 100.00      |
| 2.00                      | 1.63                                           | 0.87        | 100.00      |
| 3.00                      | 1.63                                           | 0.87        | 100.00      |
| 4.00                      | 1.63                                           | 0.87        | 100.00      |
| 5.00                      | 1.63                                           | 0.87        | 100.00      |
| 10.00                     | 1.63                                           | 0.87        | 100.00      |
| 15.00                     | 1.63                                           | 0.87        | 100.00      |
| 20.00                     | 1.63                                           | 0.87        | 100.00      |
| 30.00                     | 1.63                                           | 0.87        | 100.00      |
| 45.00                     | 1.63                                           | 0.87        | 100.00      |
| 60.00                     | 1.63                                           | 0.87        | 100.00      |
| 90.00                     | 1.63                                           | 0.87        | 100.00      |
| 120.00                    | 1.63                                           | 0.87        | 100.00      |
| 180.00                    | 1.63                                           | 0.87        | 100.00      |
| 240.00                    | 1.63                                           | 0.87        | 100.00      |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |
|                           |                                                |             |             |



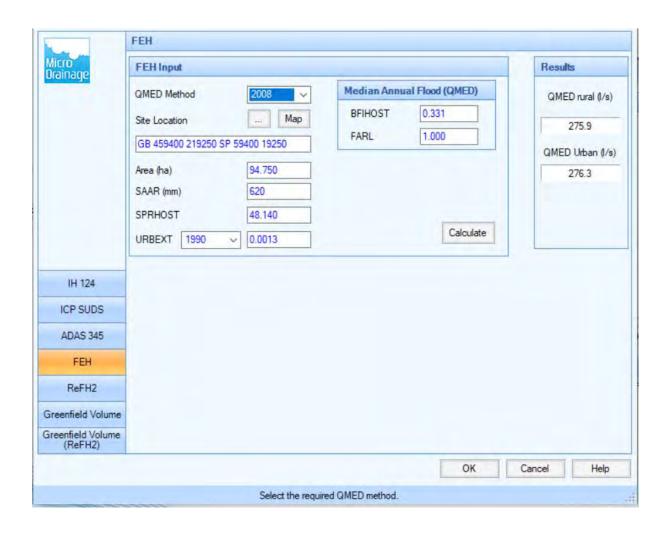



| Trial pit length                | = | 2.500 | m |
|---------------------------------|---|-------|---|
| Trial pit width                 | = | 0.600 | m |
| Trial pit depth                 | = | 2.500 | m |
| Effective depth (Head of Water) | = | 0.870 | m |

| Initial depth from<br>GL | =           | 1.630m               |                |
|--------------------------|-------------|----------------------|----------------|
| % of effective depth     | Head<br>(m) | Depth from GL<br>(m) | Time<br>(mins) |
| 75%                      | 0.653       | 1.848                |                |
| 25%                      | 0.218       | 2.283                |                |
| V <sub>P</sub> 75-25     | =           | m3                   |                |
| ар50                     | =           | m2                   |                |
| tp75-25                  | =           | min                  |                |
| Soil Infiltration, f     | =           | * m/se               | ec             |

Sheet I

| Project | Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 | Trial Pit  | TP835      |
|---------|----------------------------------------------------------------------|------------|------------|
|         | (LTA2)                                                               | Test No    | 1          |
|         |                                                                      | Project No | PC207899   |
| Client  | Graven Hill Village Development Company Limited                      | Date       | 16/07/2020 |




| tp75 | = |  |
|------|---|--|
| tp25 | = |  |

Sheet 2

# Appendix C Drainage Modelling Outputs

#### **QMed from MicroDainage**





# Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

| Calculated by:                                | David E                                         | Bowles                              |                                                                  |                  | Site Details                                                                                         |                                                                                           |  |  |  |
|-----------------------------------------------|-------------------------------------------------|-------------------------------------|------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Site name:                                    | Outron LPH                                      |                                     |                                                                  | Latitude: 51     |                                                                                                      |                                                                                           |  |  |  |
| Site Harrie.                                  | Site name: Graven Hill                          |                                     |                                                                  |                  | Longitud                                                                                             | de: 1.14111° W                                                                            |  |  |  |
| Site location:                                | Biceste                                         | r                                   |                                                                  |                  | Longitud                                                                                             | 1.14111 VV                                                                                |  |  |  |
| in line with Environme<br>SC030219 (2013), th | ent Agency ene SuDS Ma<br>formation or          | guidance<br>anual C79<br>n greenfie | e "Rainfall runoff r<br>53 (Ciria, 2015) a<br>eld runoff rates m | nanagement for a | mal best practice criteria developments", tory standards for SuDS or setting consents for            | Apr 04 2022 10:59                                                                         |  |  |  |
| Runoff estimati                               | on appro                                        | oach                                | FEH Statistica                                                   | al               |                                                                                                      |                                                                                           |  |  |  |
| Site characteris                              | stics                                           |                                     |                                                                  |                  | Notes                                                                                                |                                                                                           |  |  |  |
| Total site area (ha)                          | <b>):</b> 94.75                                 |                                     | Catche<br>from Fl                                                |                  | (1) Is Q <sub>BAR</sub> < 2.0 l/s/ha                                                                 | ?                                                                                         |  |  |  |
| Methodology                                   | Methodology                                     |                                     |                                                                  |                  | , , =                                                                                                |                                                                                           |  |  |  |
| Q <sub>MED</sub> estimation r                 | Q <sub>MED</sub> estimation method: Specify QMe |                                     | ify QMed man                                                     | ually            | When Q <sub>BAR</sub> is < 2.0 l/s                                                                   | When $Q_{BAR}$ is < 2.0 l/s/ha then limiting discharge rates are set                      |  |  |  |
| Q <sub>MED</sub> (I/s):                       | Q <sub>MED</sub> (I/s): 275.9 From              |                                     |                                                                  | based on FEI     | ased on FEH at 2.0 l/s/ha.                                                                           |                                                                                           |  |  |  |
| Q <sub>BAR</sub> / Q <sub>MED</sub> facto     | or:                                             | 1.14                                |                                                                  |                  |                                                                                                      |                                                                                           |  |  |  |
| Hydrological ch                               | naracteri                                       | stics                               | Default                                                          | Edited           | (2) Are flow rates < 5.0                                                                             | ) l/s?                                                                                    |  |  |  |
| SAAR (mm):                                    |                                                 |                                     | 616                                                              | 616              | Where flow rates are le                                                                              | as then F.O.I/a consent for discharge is                                                  |  |  |  |
| Hydrological regio                            | n:                                              |                                     | 6                                                                | 6                |                                                                                                      | ss than 5.0 l/s consent for discharge is blockage from vegetation and other               |  |  |  |
| Growth curve fact                             | tor 1 year:                                     | :                                   | 0.85                                                             | 0.85             | materials is possible. Lower consent flow rates ma where the blockage risk is addressed by using app |                                                                                           |  |  |  |
| Growth curve fact                             | tor 30 yea                                      | ırs:                                | 2.3                                                              | 2.3              | drainage elements.                                                                                   |                                                                                           |  |  |  |
| Growth curve fact                             | tor 100 ye                                      | ars:                                | 3.19                                                             | 3.19             | (3) Is SPR/SPRHOST :                                                                                 | < 0.32                                                                                    |  |  |  |
| Growth curve fact                             | tor 200 ye                                      | ars:                                | 3.74                                                             | 3.74             | (3) 15 3FN/3FN/1031 3                                                                                | <u> </u>                                                                                  |  |  |  |
|                                               |                                                 |                                     |                                                                  |                  |                                                                                                      | rels are low enough the use of scharge offsite would normally be of surface water runoff. |  |  |  |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

QBar (per Ha) = 313.42/94.75= <u>3.3</u> <u>I/s/Ha</u>

Q1 (per Ha) = 266.41 / 94.75 = 2.81 I/s/Ha

Q30 (per Ha) = 720.87 / 94.75 = 7.60 l/s/Ha

Q100 (per Ha) = 999.82 / 94.75 = 10.55 l/s/Ha

We use cookies on this site to enhance your user experience

Ok, I agree

More

Default

204.34

173.69

469.99

651.85

764.24

Greenfield runoff rates

Q<sub>BAR</sub> (I/s):

1 in 1 year (l/s):

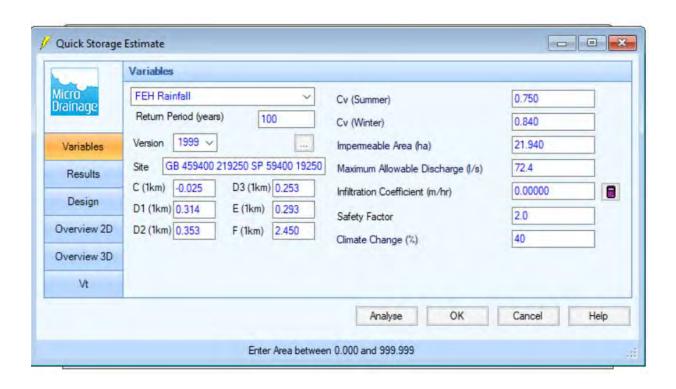
1 in 30 years (l/s):

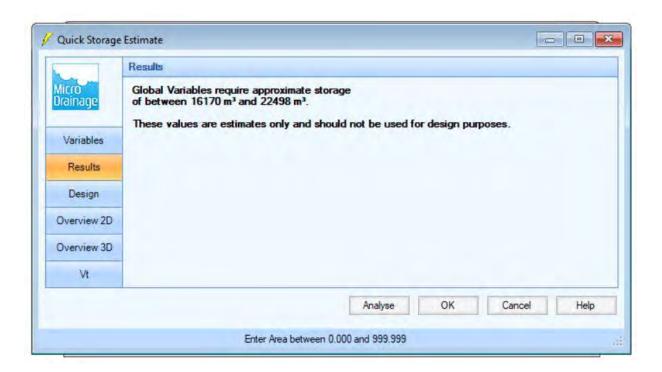
1 in 100 year (l/s):

1 in 200 years (l/s):

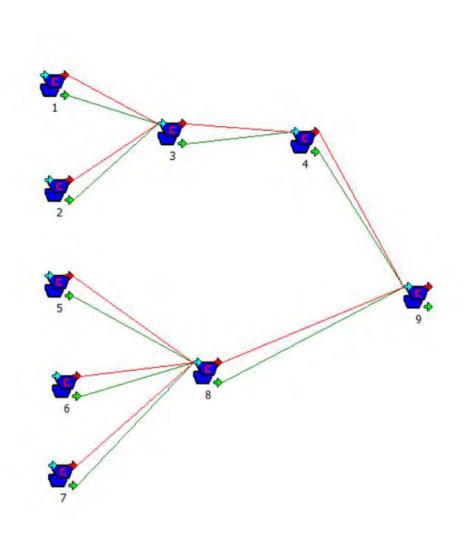
Edited

313.42


266.41


720.87

999.82


1172.2

#### **Outline Overall Attenuation Estimate**





## PROPOSED CASCADE MODEL





| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:17      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | prairiacle. |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 1.SRCX

## Upstream Outflow To Overflow To Structures

(None) 3.SRCX 3.SRCX

#### Half Drain Time : 1602 minutes.

|      | Storm<br>Event |       | Max<br>Level | Max<br>Depth | Max<br>Infiltration | Max<br>Control | Max<br>Overflow | Max<br>E Outflow | Max<br>Volume | Status     |
|------|----------------|-------|--------------|--------------|---------------------|----------------|-----------------|------------------|---------------|------------|
|      |                |       | (m)          | (m)          | (1/s)               | (1/s)          | (1/s)           | (1/s)            | (m³)          |            |
| 15   | min Su         | ımmer | 66.067       | 1.067        | 0.0                 | 4.2            | 0.0             | 4.2              | 446.4         | ОК         |
| 30   | min Su         | mmer  | 66.154       | 1.154        | 0.0                 | 4.2            | 0.0             | 4.2              | 510.2         | O K        |
| 60   | min Su         | ımmer | 66.243       | 1.243        | 0.0                 | 4.2            | 0.0             | 4.2              | 580.3         | Flood Risk |
| 120  | min Su         | ımmer | 66.331       | 1.331        | 0.0                 | 4.2            | 0.0             | 4.2              | 654.8         | Flood Risk |
| 180  | min Su         | ımmer | 66.377       | 1.377        | 0.0                 | 4.2            | 3.7             | 8.0              | 695.2         | Flood Risk |
| 240  | min Su         | ımmer | 66.395       | 1.395        | 0.0                 | 4.3            | 8.2             | 12.5             | 712.3         | Flood Risk |
| 360  | min Su         | ımmer | 66.400       | 1.400        | 0.0                 | 4.3            | 9.6             | 13.9             | 717.0         | Flood Risk |
| 480  | min Su         | ımmer | 66.400       | 1.400        | 0.0                 | 4.3            | 9.6             | 13.9             | 716.8         | Flood Risk |
| 600  | min Su         | mmer  | 66.400       | 1.400        | 0.0                 | 4.3            | 9.6             | 13.9             | 716.7         | Flood Risk |
| 720  | min Su         | ımmer | 66.400       | 1.400        | 0.0                 | 4.3            | 9.5             | 13.7             | 716.4         | Flood Risk |
| 960  | min Su         | ımmer | 66.402       | 1.402        | 0.0                 | 4.3            | 10.0            | 14.3             | 718.1         | Flood Risk |
| 1440 | min Su         | mmer  | 66.400       | 1.400        | 0.0                 | 4.3            | 9.5             | 13.7             | 716.4         | Flood Risk |
| 2160 | min Su         | mmer  | 66.393       | 1.393        | 0.0                 | 4.3            | 7.5             | 11.8             | 709.8         | Flood Risk |
| 2880 | min Su         | mmer  | 66.385       | 1.385        | 0.0                 | 4.2            | 5.6             | 9.9              | 702.9         | Flood Risk |
| 4320 | min Su         | ımmer | 66.357       | 1.357        | 0.0                 | 4.2            | 0.5             | 4.7              | 677.9         | Flood Risk |
| 5760 | min Su         | ımmer | 66.281       | 1.281        | 0.0                 | 4.2            | 0.0             | 4.2              | 611.6         | Flood Risk |
| 7200 | min Su         | mmer  | 66.205       | 1.205        | 0.0                 | 4.2            | 0.0             | 4.2              | 549.4         | Flood Risk |

|      | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|------|----------------|--------|-----------------|---------------------------|-----------------------------|-----------------------------------------|---------------------|
| 15   | min            | Summer | 189.567         | 0.0                       | 318.7                       | 0.0                                     | 27                  |
| 30   | min            | Summer | 108.802         | 0.0                       | 314.2                       | 0.0                                     | 42                  |
| 60   | min            | Summer | 62.447          | 0.0                       | 591.6                       | 0.0                                     | 72                  |
| 120  | min            | Summer | 35.841          | 0.0                       | 660.6                       | 0.0                                     | 130                 |
| 180  | min            | Summer | 25.902          | 0.0                       | 673.5                       | 9.0                                     | 188                 |
| 240  | min            | Summer | 20.571          | 0.0                       | 695.7                       | 31.8                                    | 244                 |
| 360  | min            | Summer | 14.866          | 0.0                       | 730.8                       | 68.9                                    | 342                 |
| 480  | min            | Summer | 11.807          | 0.0                       | 753.1                       | 93.3                                    | 396                 |
| 600  | min            | Summer | 9.874           | 0.0                       | 767.0                       | 109.0                                   | 456                 |
| 720  | min            | Summer | 8.533           | 0.0                       | 775.3                       | 118.7                                   | 522                 |
| 960  | min            | Summer | 6.853           | 0.0                       | 793.2                       | 137.0                                   | 652                 |
| 1440 | min            | Summer | 5.031           | 0.0                       | 805.8                       | 142.1                                   | 930                 |
| 2160 | min            | Summer | 3.694           | 0.0                       | 1265.3                      | 118.2                                   | 1364                |
| 2880 | min            | Summer | 2.967           | 0.0                       | 1351.3                      | 92.5                                    | 1796                |
| 4320 | min            | Summer | 2.092           | 0.0                       | 1209.8                      | 6.5                                     | 2860                |
| 5760 | min            | Summer | 1.632           | 0.0                       | 1492.4                      | 0.0                                     | 3752                |
| 7200 | min            | Summer | 1.347           | 0.0                       | 1539.0                      | 0.0                                     | 4552                |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:17      | Designed by dbowles   | Desinado    |
| File cascade 13-05-22.CASX | Checked by            | Diali laris |
| Causeway                   | Source Control 2019.1 | <u>'</u>    |

#### Cascade Summary of Results for 1.SRCX

|       | Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status     |
|-------|----------------|--------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|------------|
|       |                |        | (111)               | (111)               | (1/5)                        | (1/5)                   | (1/5)                    | (1/5)                     | (111 )                |            |
| 8640  | min S          | Summer | 66.131              | 1.131               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 492.8                 | ОК         |
| 10080 | min S          | Summer | 66.058              | 1.058               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 440.5                 | OK         |
| 15    | min V          | Winter | 66.141              | 1.141               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 500.5                 | OK         |
| 30    | min V          | Winter | 66.234              | 1.234               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 572.3                 | Flood Risk |
| 60    | min V          | Winter | 66.328              | 1.328               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 651.7                 | Flood Risk |
| 120   | min V          | Winter | 66.409              | 1.409               | 0.0                          | 4.3                     | 12.1                     | 16.4                      | 725.0                 | Flood Risk |
| 180   | min V          | Winter | 66.431              | 1.431               | 0.0                          | 4.3                     | 19.7                     | 24.0                      | 746.0                 | Flood Risk |
| 240   | min V          | Winter | 66.435              | 1.435               | 0.0                          | 4.3                     | 21.0                     | 25.3                      | 749.1                 | Flood Risk |
| 360   | min V          | Winter | 66.439              | 1.439               | 0.0                          | 4.3                     | 22.7                     | 27.0                      | 753.7                 | Flood Risk |
| 480   | min V          | Winter | 66.442              | 1.442               | 0.0                          | 4.3                     | 23.7                     | 28.0                      | 755.9                 | Flood Risk |
| 600   | min V          | Winter | 66.441              | 1.441               | 0.0                          | 4.3                     | 23.3                     | 27.6                      | 755.1                 | Flood Risk |
| 720   | min V          | Winter | 66.439              | 1.439               | 0.0                          | 4.3                     | 22.5                     | 26.8                      | 753.0                 | Flood Risk |
| 960   | min V          | Winter | 66.435              | 1.435               | 0.0                          | 4.3                     | 21.2                     | 25.5                      | 749.9                 | Flood Risk |
| 1440  | min V          | Winter | 66.426              | 1.426               | 0.0                          | 4.3                     | 17.9                     | 22.2                      | 741.1                 | Flood Risk |
| 2160  | min V          | Winter | 66.413              | 1.413               | 0.0                          | 4.3                     | 13.6                     | 17.8                      | 729.1                 | Flood Risk |
| 2880  | min V          | Winter | 66.403              | 1.403               | 0.0                          | 4.3                     | 10.5                     | 14.7                      | 719.5                 | Flood Risk |
| 4320  | min V          | Winter | 66.382              | 1.382               | 0.0                          | 4.2                     | 4.8                      | 9.1                       | 699.9                 | Flood Risk |
| 5760  | min V          | Winter | 66.359              | 1.359               | 0.0                          | 4.2                     | 0.8                      | 5.0                       | 679.6                 | Flood Risk |
| 7200  | min V          | Winter | 66.264              | 1.264               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 597.1                 | Flood Risk |
| 8640  | min V          | Winter | 66.160              | 1.160               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 514.5                 | OK         |
| 10080 | min V          | Winter | 66.054              | 1.054               | 0.0                          | 4.2                     | 0.0                      | 4.2                       | 437.5                 | O K        |

| Storm |       | Rain   | Flooded | Discharge | Overflow | Time-Peak |        |
|-------|-------|--------|---------|-----------|----------|-----------|--------|
|       | Event | t      | (mm/hr) | Volume    | Volume   | Volume    | (mins) |
|       |       |        |         | (m³)      | (m³)     | (m³)      |        |
|       |       |        |         |           |          |           |        |
| 8640  | min   | Summer | 1.151   | 0.0       | 1578.1   | 0.0       | 5368   |
| 10080 | min   | Summer | 1.008   | 0.0       | 1611.8   | 0.0       | 6160   |
| 15    | min   | Winter | 189.567 | 0.0       | 315.1    | 0.0       | 27     |
| 30    | min   | Winter | 108.802 | 0.0       | 317.0    | 0.0       | 41     |
| 60    | min   | Winter | 62.447  | 0.0       | 654.0    | 0.0       | 70     |
| 120   | min   | Winter | 35.841  | 0.0       | 702.8    | 36.9      | 124    |
| 180   | min   | Winter | 25.902  | 0.0       | 749.0    | 83.9      | 178    |
| 240   | min   | Winter | 20.571  | 0.0       | 783.2    | 119.3     | 226    |
| 360   | min   | Winter | 14.866  | 0.0       | 830.0    | 168.5     | 278    |
| 480   | min   | Winter | 11.807  | 0.0       | 859.7    | 200.6     | 350    |
| 600   | min   | Winter | 9.874   | 0.0       | 879.3    | 222.2     | 424    |
| 720   | min   | Winter | 8.533   | 0.0       | 892.2    | 236.8     | 496    |
| 960   | min   | Winter | 6.853   | 0.0       | 919.1    | 264.6     | 638    |
| 1440  | min   | Winter | 5.031   | 0.0       | 945.5    | 283.2     | 918    |
| 2160  | min   | Winter | 3.694   | 0.0       | 1417.3   | 266.4     | 1344   |
| 2880  | min   | Winter | 2.967   | 0.0       | 1512.5   | 230.1     | 1784   |
| 4320  | min   | Winter | 2.092   | 0.0       | 1351.6   | 112.2     | 2768   |
| 5760  | min   | Winter | 1.632   | 0.0       | 1671.5   | 11.7      | 3968   |
| 7200  | min   | Winter | 1.347   | 0.0       | 1723.7   | 0.0       | 4968   |
| 8640  | min   | Winter | 1.151   | 0.0       | 1767.5   | 0.0       | 5800   |
| 10080 | min   | Winter | 1.008   | 0.0       | 1805.3   | 0.0       | 6656   |
|       |       |        |         |           |          |           |        |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:17      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | niairiade   |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Rainfall Details for 1.SRCX

| Rainfall Model        |           |           | FEH         |
|-----------------------|-----------|-----------|-------------|
| Return Period (years) |           |           | 100         |
| FEH Rainfall Version  |           |           | 1999        |
| Site Location         | GB 459400 | 219250 SP | 59400 19250 |
| C (1km)               |           |           | -0.025      |
| D1 (1km)              |           |           | 0.314       |
| D2 (1km)              |           |           | 0.353       |
| D3 (1km)              |           |           | 0.253       |
| E (1km)               |           |           | 0.293       |
| F (1km)               |           |           | 2.450       |
| Summer Storms         |           |           | Yes         |
| Winter Storms         |           |           | Yes         |
| Cv (Summer)           |           |           | 0.750       |
| Cv (Winter)           |           |           | 0.840       |
| Shortest Storm (mins) |           |           | 15          |
| Longest Storm (mins)  |           |           | 10080       |
| Climate Change %      |           |           | +40         |

#### Time Area Diagram

Total Area (ha) 1.270

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |
|       |        |       |       |        |       |       |        |       |
| 0     | 4      | 0.424 | 4     | 8      | 0.423 | 8     | 12     | 0.423 |

| Alan | Baxter Limited              |                       | Page 4      |
|------|-----------------------------|-----------------------|-------------|
| 75 C | Cowcross Street             |                       |             |
| Lond | lon                         |                       |             |
| EC1M | I 6EL                       |                       | Micco       |
| Date | e 16/05/2022 12 <b>:</b> 17 | Designed by dbowles   | Designation |
| File | e cascade 13-05-22.CASX     | Checked by            | Drainage    |
| Caus | eway                        | Source Control 2019.1 |             |

#### Cascade Model Details for 1.SRCX

Storage is Online Cover Level (m) 66.500

#### Complex Structure

#### Tank or Pond

Invert Level (m) 65.000

| Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m²) | Depth | (m)  | Area | (m² | ) |
|-------|------|------|-------|-------|------|------|------|-------|------|------|-----|---|
| 0.    | .000 | 1    | 190.0 | 1.    | .500 | 10   | 00.0 | 1.    | .501 |      | 0.  | 0 |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference                    | MD-SHE-0092-4200-1350-4200 |
|-----------------------------------|----------------------------|
| Design Head (m)                   | 1.350                      |
| Design Flow (1/s)                 | 4.2                        |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 92                         |
| Invert Level (m)                  | 65.000                     |
| Minimum Outlet Pipe Diameter (mm) | 150                        |
| Suggested Manhole Diameter (mm)   | 1200                       |

| Control Points            | Head (m) Flo | w (1/s) |
|---------------------------|--------------|---------|
| Design Point (Calculated) | 1.350        | 4.2     |
| Flush-Flo™                | 0.401        | 4.2     |
| Kick-Flo®                 | 0.820        | 3.3     |
| Mean Flow over Head Range | _            | 3.7     |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) Flow | (1/s) | Depth (m) Flow | (1/s) | Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) |
|----------------|-------|----------------|-------|----------------|-------|-----------|------------|
|                |       |                |       |                |       |           |            |
| 0.100          | 2.9   | 1.200          | 4.0   | 3.000          | 6.1   | 7.000     | 9.1        |
| 0.200          | 3.8   | 1.400          | 4.3   | 3.500          | 6.5   | 7.500     | 9.4        |
| 0.300          | 4.1   | 1.600          | 4.5   | 4.000          | 7.0   | 8.000     | 9.7        |
| 0.400          | 4.2   | 1.800          | 4.8   | 4.500          | 7.4   | 8.500     | 10.0       |
| 0.500          | 4.1   | 2.000          | 5.0   | 5.000          | 7.7   | 9.000     | 10.2       |
| 0.600          | 4.0   | 2.200          | 5.3   | 5.500          | 8.1   | 9.500     | 10.5       |
| 0.800          | 3.4   | 2.400          | 5.5   | 6.000          | 8.4   |           |            |
| 1.000          | 3.7   | 2.600          | 5.7   | 6.500          | 8.8   |           |            |

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:17      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 | •           |
|                            |                       |             |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 66.350

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:18      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | prairiacje. |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Summary of Results for 2.SRCX

## Upstream Outflow To Overflow To Structures

(None) 3.SRCX 3.SRCX

#### Half Drain Time : 2236 minutes.

|      | Storm<br>Event |       | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status |
|------|----------------|-------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|--------|
| 15   | min Su         | ummer | 68.960              | 0.160               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 200.9                 | O K    |
| 30   | min Su         | ummer | 68.983              | 0.183               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 229.9                 | O K    |
| 60   | min Su         | ummer | 69.009              | 0.209               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 262.2                 | O K    |
| 120  | min Su         | ummer | 69.037              | 0.237               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 297.7                 | O K    |
| 180  | min Su         | ummer | 69.055              | 0.255               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 319.2                 | O K    |
| 240  | min Su         | ummer | 69.067              | 0.267               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 334.5                 | O K    |
| 360  | min Su         | ummer | 69.083              | 0.283               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 355.5                 | O K    |
| 480  | min Su         | ummer | 69.095              | 0.295               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 369.3                 | O K    |
| 600  | min Su         | ummer | 69.102              | 0.302               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 379.0                 | O K    |
| 720  | min Su         | ummer | 69.108              | 0.308               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 386.0                 | O K    |
| 960  | min Su         | ummer | 69.119              | 0.319               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 399.7                 | O K    |
| 1440 | min Su         | ummer | 69.129              | 0.329               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 412.9                 | O K    |
| 2160 | min Su         | ummer | 69.130              | 0.330               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 414.2                 | O K    |
| 2880 | min Su         | ummer | 69.127              | 0.327               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 410.0                 | O K    |
| 4320 | min Su         | ummer | 69.098              | 0.298               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 374.3                 | O K    |
| 5760 | min Su         | ummer | 69.073              | 0.273               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 342.5                 | O K    |
| 7200 | min Su         | ummer | 69.050              | 0.250               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 313.2                 | O K    |

|      | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|------|----------------|--------|-----------------|---------------------------|-----------------------------|-----------------------------------------|---------------------|
| 15   | min            | Summer | 189.567         | 0.0                       | 137.1                       | 0.0                                     | 27                  |
| 30   | min            | Summer | 108.802         | 0.0                       | 147.6                       | 0.0                                     | 41                  |
| 60   | min            | Summer | 62.447          | 0.0                       | 230.7                       | 0.0                                     | 72                  |
| 120  | min            | Summer | 35.841          | 0.0                       | 259.7                       | 0.0                                     | 130                 |
| 180  | min            | Summer | 25.902          | 0.0                       | 275.0                       | 0.0                                     | 190                 |
| 240  | min            | Summer | 20.571          | 0.0                       | 283.5                       | 0.0                                     | 250                 |
| 360  | min            | Summer | 14.866          | 0.0                       | 289.1                       | 0.0                                     | 368                 |
| 480  | min            | Summer | 11.807          | 0.0                       | 286.9                       | 0.0                                     | 488                 |
| 600  | min            | Summer | 9.874           | 0.0                       | 282.4                       | 0.0                                     | 606                 |
| 720  | min            | Summer | 8.533           | 0.0                       | 277.7                       | 0.0                                     | 726                 |
| 960  | min            | Summer | 6.853           | 0.0                       | 267.7                       | 0.0                                     | 964                 |
| 1440 | min            | Summer | 5.031           | 0.0                       | 249.3                       | 0.0                                     | 1442                |
| 2160 | min            | Summer | 3.694           | 0.0                       | 509.6                       | 0.0                                     | 2012                |
| 2880 | min            | Summer | 2.967           | 0.0                       | 508.5                       | 0.0                                     | 2332                |
| 4320 | min            | Summer | 2.092           | 0.0                       | 470.5                       | 0.0                                     | 3028                |
| 5760 | min            | Summer | 1.632           | 0.0                       | 657.6                       | 0.0                                     | 3808                |
| 7200 | 0 min Summer   |        | 1.347           | 0.0                       | 676.5                       | 0.0                                     | 4608                |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:18      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | pramage     |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Summary of Results for 2.SRCX

| _     | Storm<br>Event |       | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status |
|-------|----------------|-------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|--------|
| 8640  | min Su         | ummer | 69.028              | 0.228               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 286.1                 | O K    |
| 10080 | min Su         | ummer | 69.008              | 0.208               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 261.2                 | O K    |
| 15    | min Wi         | inter | 68.980              | 0.180               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 225.1                 | O K    |
| 30    | min Wi         | inter | 69.006              | 0.206               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 257.7                 | O K    |
| 60    | min Wi         | inter | 69.035              | 0.235               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 294.2                 | O K    |
| 120   | min Wi         | inter | 69.067              | 0.267               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 334.2                 | O K    |
| 180   | min Wi         | inter | 69.086              | 0.286               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 358.7                 | O K    |
| 240   | min Wi         | inter | 69.100              | 0.300               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 376.4                 | O K    |
| 360   | min Wi         | inter | 69.120              | 0.320               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 400.9                 | O K    |
| 480   | min Wi         | inter | 69.133              | 0.333               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 417.5                 | O K    |
| 600   | min Wi         | inter | 69.143              | 0.343               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 429.6                 | O K    |
| 720   | min Wi         | inter | 69.150              | 0.350               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 438.5                 | O K    |
| 960   | min Wi         | inter | 69.164              | 0.364               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 455.8                 | O K    |
| 1440  | min Wi         | inter | 69.178              | 0.378               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 473.7                 | O K    |
| 2160  | min Wi         | inter | 69.182              | 0.382               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 479.5                 | O K    |
| 2880  | min Wi         | inter | 69.178              | 0.378               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 473.4                 | O K    |
| 4320  | min Wi         | inter | 69.141              | 0.341               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 427.8                 | O K    |
| 5760  | min Wi         | inter | 69.104              | 0.304               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 380.9                 | O K    |
| 7200  | min Wi         | inter | 69.069              | 0.269               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 337.4                 | O K    |
| 8640  | min Wi         | inter | 69.037              | 0.237               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 297.2                 | O K    |
| 10080 | min Wi         | inter | 69.008              | 0.208               | 0.0                          | 1.8                     | 0.0                      | 1.8                       | 260.3                 | O K    |

| Storm |     | Rain    | Flooded | Discharge | Overflow | Time-Peak |      |
|-------|-----|---------|---------|-----------|----------|-----------|------|
| Event |     | (mm/hr) | Volume  | Volume    | Volume   | (mins)    |      |
|       |     |         |         | (m³)      | (m³)     | (m³)      |      |
|       |     |         |         |           |          |           |      |
| 8640  | min | Summer  | 1.151   | 0.0       | 691.1    | 0.0       | 5368 |
| 10080 | min | Summer  | 1.008   | 0.0       | 700.0    | 0.0       | 6152 |
| 15    | min | Winter  | 189.567 | 0.0       | 146.5    | 0.0       | 27   |
| 30    | min | Winter  | 108.802 | 0.0       | 152.1    | 0.0       | 41   |
| 60    | min | Winter  | 62.447  | 0.0       | 255.2    | 0.0       | 70   |
| 120   | min | Winter  | 35.841  | 0.0       | 281.9    | 0.0       | 128  |
| 180   | min | Winter  | 25.902  | 0.0       | 291.9    | 0.0       | 188  |
| 240   | min | Winter  | 20.571  | 0.0       | 294.2    | 0.0       | 246  |
| 360   | min | Winter  | 14.866  | 0.0       | 289.5    | 0.0       | 362  |
| 480   | min | Winter  | 11.807  | 0.0       | 283.3    | 0.0       | 480  |
| 600   | min | Winter  | 9.874   | 0.0       | 276.9    | 0.0       | 598  |
| 720   | min | Winter  | 8.533   | 0.0       | 271.2    | 0.0       | 714  |
| 960   | min | Winter  | 6.853   | 0.0       | 260.7    | 0.0       | 946  |
| 1440  | min | Winter  | 5.031   | 0.0       | 245.1    | 0.0       | 1404 |
| 2160  | min | Winter  | 3.694   | 0.0       | 528.9    | 0.0       | 2064 |
| 2880  | min | Winter  | 2.967   | 0.0       | 508.1    | 0.0       | 2684 |
| 4320  | min | Winter  | 2.092   | 0.0       | 468.0    | 0.0       | 3336 |
| 5760  | min | Winter  | 1.632   | 0.0       | 736.1    | 0.0       | 4160 |
| 7200  | min | Winter  | 1.347   | 0.0       | 757.1    | 0.0       | 4984 |
| 8640  | min | Winter  | 1.151   | 0.0       | 773.3    | 0.0       | 5800 |
| 10080 | min | Winter  | 1.008   | 0.0       | 784.4    | 0.0       | 6560 |
|       |     |         |         |           |          |           |      |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:18      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | pramage     |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Rainfall Details for 2.SRCX

| Rainfall Model        | FEH                             |
|-----------------------|---------------------------------|
| Return Period (years) | 100                             |
| FEH Rainfall Version  | 1999                            |
| Site Location G       | GB 459400 219250 SP 59400 19250 |
| C (1km)               | -0.025                          |
| D1 (1km)              | 0.314                           |
| D2 (1km)              | 0.353                           |
| D3 (1km)              | 0.253                           |
| E (1km)               | 0.293                           |
| F (1km)               | 2.450                           |
| Summer Storms         | Yes                             |
| Winter Storms         | Yes                             |
| Cv (Summer)           | 0.750                           |
| Cv (Winter)           | 0.840                           |
| Shortest Storm (mins) | 15                              |
| Longest Storm (mins)  | 10080                           |
| Climate Change %      | +40                             |

#### Time Area Diagram

Total Area (ha) 0.570

|       |     |       |       |     |       |       | (mins) |       |
|-------|-----|-------|-------|-----|-------|-------|--------|-------|
| From: | To: | (ha)  | From: | To: | (ha)  | From: | To:    | (ha)  |
| 0     | 4   | 0 190 | 4     | 8   | 0 190 | 8     | 12     | 0.190 |

| Alan Baxter Limited        |                       | Page 4      |  |
|----------------------------|-----------------------|-------------|--|
| 75 Cowcross Street         |                       |             |  |
| London                     |                       |             |  |
| EC1M 6EL                   |                       | Micco       |  |
| Date 16/05/2022 12:18      | Designed by dbowles   | Designation |  |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |  |
| Causeway                   | Source Control 2019.1 |             |  |

#### Cascade Model Details for 2.SRCX

Storage is Online Cover Level (m) 69.500

#### Complex Structure

#### Cellular Storage

Invert Level (m) 68.800 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.33 Infiltration Coefficient Side (m/hr) 0.00000

# Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) 0.000 3800.0 0.0 0.401 0.0 0.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0071-1800-0500-1800 Design Head (m) 0.500 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 71 Invert Level (m) 68.800 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.500 1.8 Flush-Flo™ 0.148 1.8 Kick-Flo® 0.341 1.5 Mean Flow over Head Range 1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) | Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) |
|----------------|-------|-----------|------------|----------------|-------|-----------|------------|
| 0.100          | 1.8   | 1.200     | 2.7        | 3.000          | 4.1   | 7.000     | 6.1        |
| 0.200          | 1.8   | 1.400     | 2.9        | 3.500          | 4.4   | 7.500     | 6.4        |
| 0.300          | 1.7   | 1.600     | 3.1        | 4.000          | 4.7   | 8.000     | 6.6        |
| 0.400          | 1.6   | 1.800     | 3.2        | 4.500          | 4.9   | 8.500     | 6.8        |
| 0.500          | 1.8   | 2.000     | 3.4        | 5.000          | 5.2   | 9.000     | 7.0        |
| 0.600          | 2.0   | 2.200     | 3.5        | 5.500          | 5.4   | 9.500     | 7.2        |
| 0.800          | 2.2   | 2.400     | 3.7        | 6.000          | 5.7   |           |            |
| 1.000          | 2.5   | 2.600     | 3.8        | 6.500          | 5.9   |           |            |
|                |       |           |            |                |       |           |            |

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:18      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | mainade     |
| Causeway                   | Source Control 2019.1 | •           |
|                            |                       |             |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 69.300

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 3.SRCX

## Upstream Outflow To Overflow To Structures

1.SRCX 4.SRCX 4.SRCX

2.SRCX

Half Drain Time : 1102 minutes.

|      | Storm  |       | Max          | Max   | Max                | Max   | Max   | Max   | Max               | Status     |
|------|--------|-------|--------------|-------|--------------------|-------|-------|-------|-------------------|------------|
|      | Event  |       | Level<br>(m) | (m)   | Infiltration (1/s) | (1/s) | (1/s) | (1/s) | (m <sup>3</sup> ) |            |
| 15   | min Su | ımmer | 65.398       | 0.898 | 0.0                | 19.3  | 0.0   | 19.3  | 1407.9            | ОК         |
| 30   | min Su | mmer  | 65.506       | 1.006 | 0.0                | 19.3  | 0.0   | 19.3  | 1611.2            | O K        |
| 60   | min Su | mmer  | 65.620       | 1.120 | 0.0                | 19.3  | 0.0   | 19.3  | 1835.6            | O K        |
| 120  | min Su | mmer  | 65.738       | 1.238 | 0.0                | 19.3  | 0.0   | 19.3  | 2076.1            | Flood Risk |
| 180  | min Su | ımmer | 65.807       | 1.307 | 0.0                | 19.3  | 0.0   | 19.3  | 2221.8            | Flood Risk |
| 240  | min Su | ımmer | 65.858       | 1.358 | 0.0                | 19.4  | 5.1   | 24.5  | 2331.7            | Flood Risk |
| 360  | min Su | ımmer | 65.881       | 1.381 | 0.0                | 19.5  | 37.7  | 57.2  | 2381.9            | Flood Risk |
| 480  | min Su | ımmer | 65.881       | 1.381 | 0.0                | 19.5  | 36.8  | 56.3  | 2380.8            | Flood Risk |
| 600  | min Su | mmer  | 65.880       | 1.380 | 0.0                | 19.5  | 35.9  | 55.4  | 2380.4            | Flood Risk |
| 720  | min Su | ımmer | 65.880       | 1.380 | 0.0                | 19.5  | 35.9  | 55.4  | 2379.9            | Flood Risk |
| 960  | min Su | ımmer | 65.882       | 1.382 | 0.0                | 19.5  | 39.5  | 59.0  | 2384.5            | Flood Risk |
| 1440 | min Su | ımmer | 65.882       | 1.382 | 0.0                | 19.5  | 39.5  | 59.0  | 2384.5            | Flood Risk |
| 2160 | min Su | ımmer | 65.878       | 1.378 | 0.0                | 19.5  | 31.5  | 51.0  | 2375.0            | Flood Risk |
| 2880 | min Su | ımmer | 65.873       | 1.373 | 0.0                | 19.5  | 23.4  | 42.8  | 2364.0            | Flood Risk |
| 4320 | min Su | ımmer | 65.832       | 1.332 | 0.0                | 19.3  | 0.0   | 19.3  | 2276.4            | Flood Risk |
| 5760 | min Su | ımmer | 65.728       | 1.228 | 0.0                | 19.3  | 0.0   | 19.3  | 2055.6            | Flood Risk |
| 7200 | min Su | ımmer | 65.633       | 1.133 | 0.0                | 19.3  | 0.0   | 19.3  | 1860.7            | O K        |

|      | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|------|----------------|--------|-----------------|---------------------------|-----------------------------|-----------------------------------------|---------------------|
| 15   | min            | Summer | 189.567         | 0.0                       | 1586.5                      | 0.0                                     | 27                  |
| 30   | min            | Summer | 108.802         | 0.0                       | 1533.1                      | 0.0                                     | 42                  |
| 60   | min            | Summer | 62.447          | 0.0                       | 2623.5                      | 0.0                                     | 72                  |
| 120  | min            | Summer | 35.841          | 0.0                       | 2935.7                      | 0.0                                     | 130                 |
| 180  | min            | Summer | 25.902          | 0.0                       | 3065.0                      | 0.0                                     | 190                 |
| 240  | min            | Summer | 20.571          | 0.0                       | 3086.0                      | 5.6                                     | 250                 |
| 360  | min            | Summer | 14.866          | 0.0                       | 3215.0                      | 152.8                                   | 354                 |
| 480  | min            | Summer | 11.807          | 0.0                       | 3300.1                      | 258.7                                   | 410                 |
| 600  | min            | Summer | 9.874           | 0.0                       | 3347.8                      | 327.6                                   | 474                 |
| 720  | min            | Summer | 8.533           | 0.0                       | 3370.3                      | 370.7                                   | 534                 |
| 960  | min            | Summer | 6.853           | 0.0                       | 3414.4                      | 451.5                                   | 658                 |
| 1440 | min            | Summer | 5.031           | 0.0                       | 3386.5                      | 478.9                                   | 928                 |
| 2160 | min            | Summer | 3.694           | 0.0                       | 5703.4                      | 396.7                                   | 1360                |
| 2880 | min            | Summer | 2.967           | 0.0                       | 6007.6                      | 302.8                                   | 1796                |
| 4320 | min            | Summer | 2.092           | 0.0                       | 5373.1                      | 0.0                                     | 2944                |
| 5760 | min            | Summer | 1.632           | 0.0                       | 6836.9                      | 0.0                                     | 3752                |
| 7200 | min            | Summer | 1.347           | 0.0                       | 7046.9                      | 0.0                                     | 4608                |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drainage    |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Summary of Results for 3.SRCX

|       | Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status     |
|-------|----------------|--------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|------------|
| 8640  | min :          | Summer | 65.539              | 1.039               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1675.8                | ок         |
| 10080 | min :          | Summer | 65.440              | 0.940               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1485.9                | ок         |
| 15    | min N          | Winter | 65.489              | 0.989               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1578.5                | ОК         |
| 30    | min V          | Winter | 65.606              | 1.106               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1806.5                | ОК         |
| 60    | min V          | Winter | 65.730              | 1.230               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 2059.1                | Flood Risk |
| 120   | min N          | Winter | 65.863              | 1.363               | 0.0                          | 19.4                    | 9.8                      | 29.2                      | 2341.9                | Flood Risk |
| 180   | min N          | Winter | 65.902              | 1.402               | 0.0                          | 19.7                    | 81.4                     | 101.1                     | 2428.7                | Flood Risk |
| 240   | min N          | Winter | 65.905              | 1.405               | 0.0                          | 19.7                    | 88.5                     | 108.2                     | 2434.8                | Flood Risk |
| 360   | min N          | Winter | 65.909              | 1.409               | 0.0                          | 19.7                    | 98.3                     | 118.0                     | 2443.4                | Flood Risk |
| 480   | min V          | Winter | 65.912              | 1.412               | 0.0                          | 19.7                    | 104.6                    | 124.3                     | 2449.4                | Flood Risk |
| 600   | min V          | Winter | 65.912              | 1.412               | 0.0                          | 19.7                    | 104.6                    | 124.3                     | 2449.0                | Flood Risk |
| 720   | min V          | Winter | 65.910              | 1.410               | 0.0                          | 19.7                    | 100.8                    | 120.5                     | 2445.7                | Flood Risk |
| 960   | min N          | Winter | 65.908              | 1.408               | 0.0                          | 19.7                    | 94.6                     | 114.3                     | 2440.8                | Flood Risk |
| 1440  | min V          | Winter | 65.901              | 1.401               | 0.0                          | 19.6                    | 79.1                     | 98.7                      | 2426.1                | Flood Risk |
| 2160  | min N          | Winter | 65.892              | 1.392               | 0.0                          | 19.6                    | 59.2                     | 78.8                      | 2406.5                | Flood Risk |
| 2880  | min N          | Winter | 65.885              | 1.385               | 0.0                          | 19.5                    | 45.1                     | 64.6                      | 2391.5                | Flood Risk |
| 4320  | min N          | Winter | 65.871              | 1.371               | 0.0                          | 19.4                    | 20.4                     | 39.8                      | 2359.0                | Flood Risk |
| 5760  | min N          | Winter | 65.837              | 1.337               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 2286.0                | Flood Risk |
| 7200  | min N          | Winter | 65.700              | 1.200               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1997.5                | O K        |
| 8640  | min N          | Winter | 65.566              | 1.066               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1728.3                | O K        |
| 10080 | min N          | Winter | 65.407              | 0.907               | 0.0                          | 19.3                    | 0.0                      | 19.3                      | 1423.6                | O K        |

|       | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m <sup>3</sup> ) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|-------|----------------|--------|-----------------|----------------------------------------|-----------------------------|-----------------------------------------|---------------------|
| 8640  | min            | Summer | 1.151           | 0.0                                    | 7220.6                      | 0.0                                     | 5448                |
| 10080 | min            | Summer | 1.008           | 0.0                                    | 7361.1                      | 0.0                                     | 6256                |
| 15    | min            | Winter | 189.567         | 0.0                                    | 1547.2                      | 0.0                                     | 27                  |
| 30    | min            | Winter | 108.802         | 0.0                                    | 1499.4                      | 0.0                                     | 41                  |
| 60    | min            | Winter | 62.447          | 0.0                                    | 2888.3                      | 0.0                                     | 70                  |
| 120   | min            | Winter | 35.841          | 0.0                                    | 3116.2                      | 14.0                                    | 128                 |
| 180   | min            | Winter | 25.902          | 0.0                                    | 3301.2                      | 203.6                                   | 178                 |
| 240   | min            | Winter | 20.571          | 0.0                                    | 3442.7                      | 353.6                                   | 226                 |
| 360   | min            | Winter | 14.866          | 0.0                                    | 3631.9                      | 562.3                                   | 274                 |
| 480   | min            | Winter | 11.807          | 0.0                                    | 3747.4                      | 697.9                                   | 346                 |
| 600   | min            | Winter | 9.874           | 0.0                                    | 3818.8                      | 789.6                                   | 416                 |
| 720   | min            | Winter | 8.533           | 0.0                                    | 3861.2                      | 851.8                                   | 488                 |
| 960   | min            | Winter | 6.853           | 0.0                                    | 3944.1                      | 969.6                                   | 626                 |
| 1440  | min            | Winter | 5.031           | 0.0                                    | 3975.5                      | 1051.7                                  | 902                 |
| 2160  | min            | Winter | 3.694           | 0.0                                    | 6342.9                      | 989.8                                   | 1324                |
| 2880  | min            | Winter | 2.967           | 0.0                                    | 6667.5                      | 853.8                                   | 1760                |
| 4320  | min            | Winter | 2.092           | 0.0                                    | 5930.5                      | 377.9                                   | 2736                |
| 5760  | min            | Winter | 1.632           | 0.0                                    | 7656.5                      | 0.0                                     | 4096                |
| 7200  | min            | Winter | 1.347           | 0.0                                    | 7891.4                      | 0.0                                     | 4976                |
| 8640  | min            | Winter | 1.151           | 0.0                                    | 8085.3                      | 0.0                                     | 5880                |
| 10080 | min            | Winter | 1.008           | 0.0                                    | 8246.4                      | 0.0                                     | 6768                |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diamade     |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Rainfall Details for 3.SRCX

| Rainfall Model        | FEH                            |
|-----------------------|--------------------------------|
| Return Period (years) | 100                            |
| FEH Rainfall Version  | 1999                           |
| Site Location G       | B 459400 219250 SP 59400 19250 |
| C (1km)               | -0.025                         |
| D1 (1km)              | 0.314                          |
| D2 (1km)              | 0.353                          |
| D3 (1km)              | 0.253                          |
| E (1km)               | 0.293                          |
| F (1km)               | 2.450                          |
| Summer Storms         | Yes                            |
| Winter Storms         | Yes                            |
| Cv (Summer)           | 0.750                          |
| Cv (Winter)           | 0.840                          |
| Shortest Storm (mins) | 15                             |
| Longest Storm (mins)  | 10080                          |
| Climate Change %      | +40                            |

#### Time Area Diagram

Total Area (ha) 4.000

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |
|       |        |       |       |        |       | _     |        |       |
| 0     | 4      | 1.333 | 4     | 8      | 1.333 | 8     | 12     | 1.334 |

| Alan Baxter Limited        |                       | Page 4     |
|----------------------------|-----------------------|------------|
| 75 Cowcross Street         |                       |            |
| London                     |                       |            |
| EC1M 6EL                   |                       | Micro      |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designado  |
| File cascade 13-05-22.CASX | Checked by            | Drail lads |
| Causeway                   | Source Control 2019.1 | •          |

#### Cascade Model Details for 3.SRCX

Storage is Online Cover Level (m) 66.000

#### Complex Structure

#### Tank or Pond

Invert Level (m) 64.500

| Depth | (m)  | Area | (m²)  | Depth | (m) | Area | (m²)  | Depth | (m) | Area | (m²) |
|-------|------|------|-------|-------|-----|------|-------|-------|-----|------|------|
| 0.    | .000 | 13   | 300.0 | 1.    | 500 | 22   | 275.0 | 1.    | 501 |      | 0.0  |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference                    | MD-SHE-0191-1930-1350-1930 |
|-----------------------------------|----------------------------|
| Design Head (m)                   | 1.350                      |
| Design Flow (1/s)                 | 19.3                       |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 191                        |
| Invert Level (m)                  | 64.500                     |
| Minimum Outlet Pipe Diameter (mm) | 225                        |
| Suggested Manhole Diameter (mm)   | 1500                       |

| Control       | Points       | Head (m) | Flow (1/s) |
|---------------|--------------|----------|------------|
| Design Point  | (Calculated) | 1.350    | 19.3       |
|               | Flush-Flo™   | 0.414    | 19.3       |
|               | Kick-Flo®    | 0.907    | 16.0       |
| Mean Flow ove | r Head Range | _        | 16.6       |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s) | Depth (m) Flor | w (1/s) | Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) |
|-----------|------------|----------------|---------|----------------|-------|-----------|------------|
| 0.100     | 6.6        | 1.200          | 18.2    | 3.000          | 28.3  | 7.000     | 42.5       |
| 0.200     | 17.6       | 1.400          | 19.6    | 3.500          | 30.4  | 7.500     | 44.0       |
| 0.300     | 19.0       | 1.600          | 20.9    | 4.000          | 32.5  | 8.000     | 45.4       |
| 0.400     | 19.3       | 1.800          | 22.1    | 4.500          | 34.4  | 8.500     | 46.7       |
| 0.500     | 19.2       | 2.000          | 23.3    | 5.000          | 36.1  | 9.000     | 48.0       |
| 0.600     | 18.9       | 2.200          | 24.4    | 5.500          | 37.9  | 9.500     | 49.3       |
| 0.800     | 17.7       | 2.400          | 25.4    | 6.000          | 39.5  |           |            |
| 1.000     | 16.7       | 2.600          | 26.4    | 6.500          | 41.0  |           |            |

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 | •           |
|                            |                       |             |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 4.000 Invert Level (m) 65.850

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 |             |

#### $\underline{\text{Cascade Summary of Results for 4.SRCX}}$

#### Upstream Outflow To Overflow To Structures

3.SRCX 9.SRCX 9.SRCX 1.SRCX

2.SRCX

Half Drain Time : 117 minutes.

|      | Storm  |       | Max        | Max          | Max                | Max   | Max    | Max             | Max        | Status     |
|------|--------|-------|------------|--------------|--------------------|-------|--------|-----------------|------------|------------|
|      | Event  |       | Level (m)  | Deptn<br>(m) | Infiltration (1/s) | (1/s) | (1/s)  | 2 Outflow (1/s) | (m³)       |            |
|      |        |       | \ <i>,</i> | (,           | (2/5)              | (1/5) | (2,5)  | (2/5/           | \ <i>/</i> |            |
| 15   | min Su | mmer  | 63.966     | 0.666        | 0.0                | 36.1  | 2340.8 | 2377.0          | 280.8      | Flood Risk |
| 30   | min Su | ımmer | 63.929     | 0.629        | 0.0                | 35.2  | 1870.2 | 1905.4          | 280.8      | Flood Risk |
| 60   | min Su | ımmer | 63.885     | 0.585        | 0.0                | 33.9  | 1353.0 | 1387.0          | 280.8      | Flood Risk |
| 120  | min Su | ımmer | 63.842     | 0.542        | 0.0                | 32.7  | 914.1  | 946.9           | 280.8      | Flood Risk |
| 180  | min Su | mmer  | 63.818     | 0.518        | 0.0                | 32.0  | 692.8  | 724.9           | 280.8      | Flood Risk |
| 240  | min Su | mmer  | 63.804     | 0.504        | 0.0                | 31.6  | 573.5  | 605.1           | 280.8      | Flood Risk |
| 360  | min Su | mmer  | 63.785     | 0.485        | 0.0                | 31.5  | 420.4  | 451.4           | 272.0      | Flood Risk |
| 480  | min Su | mmer  | 63.773     | 0.473        | 0.0                | 31.5  | 337.8  | 368.5           | 265.5      | Flood Risk |
| 600  | min Su | mmer  | 63.765     | 0.465        | 0.0                | 31.5  | 284.0  | 314.4           | 261.1      | Flood Risk |
| 720  | min Su | mmer  | 63.759     | 0.459        | 0.0                | 31.5  | 245.7  | 276.0           | 257.6      | Flood Risk |
| 960  | min Su | mmer  | 63.751     | 0.451        | 0.0                | 31.5  | 194.8  | 224.9           | 252.8      | Flood Risk |
| 1440 | min Su | ımmer | 63.741     | 0.441        | 0.0                | 31.5  | 140.2  | 170.5           | 247.2      | Flood Risk |
| 2160 | min Su | mmer  | 63.732     | 0.432        | 0.0                | 31.5  | 98.7   | 129.2           | 242.4      | Flood Risk |
| 2880 | min Su | mmer  | 63.727     | 0.427        | 0.0                | 31.5  | 76.6   | 107.2           | 239.7      | Flood Risk |
| 4320 | min Su | mmer  | 63.721     | 0.421        | 0.0                | 31.5  | 50.9   | 81.6            | 236.1      | Flood Risk |
| 5760 | min Su | ımmer | 63.717     | 0.417        | 0.0                | 31.5  | 38.6   | 69.4            | 234.1      | Flood Risk |

|      | Storm |        | Rain    | Flooded | Discharge | Overflow | Time-Peak |        |        |
|------|-------|--------|---------|---------|-----------|----------|-----------|--------|--------|
|      | Event |        | Event   |         | (mm/hr)   | Volume   | Volume    | Volume | (mins) |
|      |       |        |         | (m³)    | (m³)      | (m³)     |           |        |        |
| 15   | min   | Summer | 189.567 | 0.0     | 2818.4    | 1071.8   | 19        |        |        |
|      |       | Summer | 108.802 | 0.0     | 2957.7    | 1257.1   | 21        |        |        |
| 60   | min   | Summer | 62.447  | 0.0     | 4332.8    |          | 36        |        |        |
| 120  | min   | Summer | 35.841  | 0.0     | 4879.8    | 1676.3   | 72        |        |        |
| 180  | min   | Summer | 25.902  | 0.0     | 5151.2    | 1803.2   | 96        |        |        |
| 240  | min   | Summer | 20.571  | 0.0     | 5289.8    | 1892.4   | 124       |        |        |
| 360  | min   | Summer | 14.866  | 0.0     | 5610.5    | 2136.4   | 188       |        |        |
| 480  | min   | Summer | 11.807  | 0.0     | 5842.2    | 2312.4   | 248       |        |        |
| 600  | min   | Summer | 9.874   | 0.0     | 6009.9    | 2424.8   | 308       |        |        |
| 720  | min   | Summer | 8.533   | 0.0     | 6134.5    | 2493.4   | 368       |        |        |
| 960  | min   | Summer | 6.853   | 0.0     | 6382.3    | 2623.1   | 484       |        |        |
| 1440 | min   | Summer | 5.031   | 0.0     | 6669.6    | 2655.7   | 736       |        |        |
| 2160 | min   | Summer | 3.694   | 0.0     | 9387.1    | 2496.3   | 1088      |        |        |
| 2880 | min   | Summer | 2.967   | 0.0     | 9926.9    | 2323.8   | 1468      |        |        |
| 4320 | min   | Summer | 2.092   | 0.0     | 9483.0    | 1728.9   | 2160      |        |        |
| 5760 | min   | Summer | 1.632   | 0.0     | 11202.6   | 1471.6   | 2864      |        |        |

| Alan Baxter Limited        |                       | Page 2    |
|----------------------------|-----------------------|-----------|
| 75 Cowcross Street         |                       |           |
| London                     |                       |           |
| EC1M 6EL                   |                       | Micro     |
| Date 16/05/2022 12:19      | Designed by dbowles   | Desinado  |
| File cascade 13-05-22.CASX | Checked by            | nian lade |
| Causeway                   | Source Control 2019.1 |           |

#### Cascade Summary of Results for 4.SRCX

|                                                                                                         | Storm<br>Event                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max<br>Level<br>(m)                                                                                                                                | Max<br>Depth<br>(m)                                                                                                        | Max<br>Infiltration<br>(1/s)                                       | Max<br>Control<br>(1/s)                                                                                      | Max<br>Overflow<br>(1/s)                                                                                                                             | Max<br>Σ Outflow<br>(1/s)                                                                                                                             | Max<br>Volume<br>(m³)                                                                                                               | Status                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8640<br>10080<br>15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160 | min S min W | dummer dummer dinter di | 63.714<br>63.713<br>63.711<br>63.950<br>63.948<br>63.876<br>63.824<br>63.801<br>63.786<br>63.759<br>63.752<br>63.748<br>63.744<br>63.741<br>63.734 | 0.414<br>0.413<br>0.411<br>0.650<br>0.648<br>0.576<br>0.524<br>0.501<br>0.486<br>0.469<br>0.459<br>0.452<br>0.448<br>0.444 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 31.5<br>31.5<br>31.5<br>35.7<br>35.7<br>32.2<br>31.5<br>31.5<br>31.5<br>31.5<br>31.5<br>31.5<br>31.5<br>31.5 | 29.0<br>24.5<br>19.0<br>2133.0<br>2107.5<br>1260.7<br>746.2<br>544.9<br>431.6<br>310.5<br>245.7<br>203.5<br>180.6<br>169.5<br>140.2<br>105.6<br>80.9 | 59.8<br>55.4<br>49.8<br>2168.7<br>2143.2<br>1294.5<br>778.5<br>576.4<br>462.7<br>341.1<br>276.0<br>233.6<br>210.7<br>199.7<br>170.5<br>136.1<br>111.5 | 232.7<br>231.6<br>230.6<br>280.8<br>280.8<br>280.8<br>280.7<br>272.7<br>263.4<br>257.6<br>253.7<br>251.4<br>250.2<br>247.3<br>243.5 | Flood Risk |
| 5760<br>7200                                                                                            | min W<br>min W                                                                                                                | inter<br>inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.717<br>63.712<br>63.710<br>63.709                                                                                                               | 0.412<br>0.410                                                                                                             | 0.0<br>0.0<br>0.0                                                  | 31.5<br>31.5<br>31.5<br>31.5                                                                                 | 36.9<br>23.1<br>17.7<br>13.9                                                                                                                         | 67.7<br>53.9<br>48.5<br>44.8                                                                                                                          | 231.6<br>230.1                                                                                                                      | Flood Risk<br>Flood Risk<br>Flood Risk<br>Flood Risk                                                                                                                                                                                                                               |

|       | Stor | m      | Rain    | Flooded | Discharge | Overflow | Time-Peak |
|-------|------|--------|---------|---------|-----------|----------|-----------|
|       | Even | t      | (mm/hr) | Volume  | Volume    | Volume   | (mins)    |
|       |      |        |         | (m³)    | (m³)      | (m³)     |           |
|       |      |        |         |         |           |          |           |
| 7200  | min  | Summer | 1.347   | 0.0     | 11548.3   | 1243.0   | 3552      |
| 8640  | min  | Summer | 1.151   | 0.0     | 11835.2   | 1044.7   | 4320      |
| 10080 | min  | Summer | 1.008   | 0.0     | 12071.2   | 892.4    | 5024      |
| 15    | min  | Winter | 189.567 | 0.0     | 2935.0    | 1229.6   | 19        |
| 30    | min  | Winter | 108.802 | 0.0     | 3107.0    | 1439.5   | 23        |
| 60    | min  | Winter | 62.447  | 0.0     | 4789.3    | 1671.4   | 44        |
| 120   | min  | Winter | 35.841  | 0.0     | 5266.3    | 1926.1   | 64        |
| 180   | min  | Winter | 25.902  | 0.0     | 5637.7    | 2244.6   | 96        |
| 240   | min  | Winter | 20.571  | 0.0     | 5921.5    | 2499.7   | 126       |
| 360   | min  | Winter | 14.866  | 0.0     | 6326.1    | 2851.9   | 186       |
| 480   | min  | Winter | 11.807  | 0.0     | 6605.7    | 3078.9   | 248       |
| 600   | min  | Winter | 9.874   | 0.0     | 6811.4    | 3229.6   | 308       |
| 720   | min  | Winter | 8.533   | 0.0     | 6968.2    | 3329.5   | 476       |
| 960   | min  | Winter | 6.853   | 0.0     | 7279.0    | 3520.5   | 612       |
| 1440  | min  | Winter | 5.031   | 0.0     | 7662.4    | 3644.8   | 894       |
| 2160  | min  | Winter | 3.694   | 0.0     | 10468.9   | 3525.5   | 1320      |
| 2880  | min  | Winter | 2.967   | 0.0     | 11058.5   | 3275.4   | 1756      |
| 4320  | min  | Winter | 2.092   | 0.0     | 10545.5   | 2425.7   | 2728      |
| 5760  | min  | Winter | 1.632   | 0.0     | 12546.0   | 1685.5   | 2848      |
| 7200  | min  | Winter | 1.347   | 0.0     | 12932.7   | 1335.9   | 3608      |
| 8640  | min  | Winter | 1.151   | 0.0     | 13253.3   | 1036.2   | 4400      |
|       |      |        |         |         |           |          |           |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | nian lade   |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 4.SRCX

| Storm            | Max    | Max   | Max                  | Max     | Max      | Max                         | Max    | Status     |
|------------------|--------|-------|----------------------|---------|----------|-----------------------------|--------|------------|
| Event            | Level  | Depth | ${\tt Infiltration}$ | Control | Overflow | $\Sigma \   \text{Outflow}$ | Volume |            |
|                  | (m)    | (m)   | (1/s)                | (1/s)   | (1/s)    | (1/s)                       | (m³)   |            |
| 10080 min Winter | 63.707 | 0.407 | 0.0                  | 31.5    | 10.5     | 41.4                        | 228.6  | Flood Risk |

| Storm            | Rain    | Flooded | Discharge | Overflow | Time-Peak |  |
|------------------|---------|---------|-----------|----------|-----------|--|
| Event            | (mm/hr) | Volume  | Volume    | Volume   | (mins)    |  |
|                  |         | (m³)    | (m³)      | (m³)     |           |  |
| 10080 min Winter | 1.008   | 0.0     | 13522.3   | 839.9    | 5072      |  |

| Alan Baxter Limited        |                       | Page 4      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 4.SRCX

| Rainfall Model        |           |           | FEH         |
|-----------------------|-----------|-----------|-------------|
| Return Period (years) |           |           | 100         |
| FEH Rainfall Version  |           |           | 1999        |
| Site Location         | GB 459400 | 219250 SP | 59400 19250 |
| C (1km)               |           |           | -0.025      |
| D1 (1km)              |           |           | 0.314       |
| D2 (1km)              |           |           | 0.353       |
| D3 (1km)              |           |           | 0.253       |
| E (1km)               |           |           | 0.293       |
| F (1km)               |           |           | 2.450       |
| Summer Storms         |           |           | Yes         |
| Winter Storms         |           |           | Yes         |
| Cv (Summer)           |           |           | 0.750       |
| Cv (Winter)           |           |           | 0.840       |
| Shortest Storm (mins) |           |           | 15          |
| Longest Storm (mins)  |           |           | 10080       |
| Climate Change %      |           |           | +40         |

#### Time Area Diagram

Total Area (ha) 3.720

|       | (mins) |       |       |     |       |       |     |       |  |
|-------|--------|-------|-------|-----|-------|-------|-----|-------|--|
| From: | To:    | (ha)  | From: | To: | (ha)  | From: | To: | (ha)  |  |
|       |        |       |       |     |       |       |     |       |  |
| 0     | 4      | 1.240 | 4     | 8   | 1.240 | 8     | 12  | 1.240 |  |

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:19      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Dialitade   |
| Causeway                   | Source Control 2019.1 | ·           |

#### Cascade Model Details for 4.SRCX

Storage is Online Cover Level (m) 64.000

#### Complex Structure

#### Cellular Storage

Invert Level (m) 63.300 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.33 Infiltration Coefficient Side (m/hr) 0.00000

# Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) 0.000 1700.0 0.0 0.0 0.501 0.0 0.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0248-3150-0500-3150 Design Head (m) 0.500 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 248 Invert Level (m) 63.300 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1500

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.500 31.5 Flush-Flo™ 0.328 31.5 Kick-Flo® 0.453 30.1 Mean Flow over Head Range 22.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s) | Depth (m) Fl | ow (1/s) | Depth (m) | Flow (1/s) | Depth (m) | Flow (1/s) |
|-----------|------------|--------------|----------|-----------|------------|-----------|------------|
| 0.100     | 8.1        | 1.200        | 48.0     | 3.000     | 74.8       | 7.000     | 112.5      |
| 0.200     | 25.4       | 1.400        | 51.7     | 3.500     | 80.6       | 7.500     | 116.6      |
| 0.300     | 31.4       | 1.600        | 55.1     | 4.000     | 86.0       | 8.000     | 120.5      |
| 0.400     | 31.0       | 1.800        | 58.4     | 4.500     | 91.1       | 8.500     | 124.2      |
| 0.500     | 31.5       | 2.000        | 61.4     | 5.000     | 95.9       | 9.000     | 127.9      |
| 0.600     | 34.4       | 2.200        | 64.3     | 5.500     | 99.5       | 9.500     | 131.4      |
| 0.800     | 39.5       | 2.400        | 67.1     | 6.000     | 104.0      |           |            |
| 1.000     | 43.9       | 2.600        | 69.8     | 6.500     | 108.4      |           |            |
|           |            |              | ·        |           | ·          |           |            |

| Alan Baxter Limited        |                       | Page 6     |
|----------------------------|-----------------------|------------|
| 75 Cowcross Street         |                       |            |
| London                     |                       |            |
| EC1M 6EL                   |                       | Micro      |
| Date 16/05/2022 12:19      | Designed by dbowles   | Desinado   |
| File cascade 13-05-22.CASX | Checked by            | Drait lade |
| Causeway                   | Source Control 2019.1 |            |
|                            |                       |            |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 10.000 Invert Level (m) 63.700

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:20      | Designed by dbowles   | Desinado    |
| File cascade 13-05-22.CASX | Checked by            | prairiarje. |
| Causeway                   | Source Control 2019.1 | ,           |

#### Cascade Summary of Results for 5.SRCX

## Upstream Outflow To Overflow To Structures

(None) 8.SRCX 8.SRCX

Half Drain Time : 630 minutes.

|      | Storm<br>Event |     | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow X<br>(1/s) | Max<br>Coutflow<br>(1/s) | Max<br>Volume<br>(m³) | Status     |
|------|----------------|-----|---------------------|---------------------|------------------------------|-------------------------|----------------------------|--------------------------|-----------------------|------------|
| 15   | min Summ       | mer | 64.931              | 1.431               | 0.0                          | 21.5                    | 1888.6                     | 1910.2                   | 1362.8                | Flood Risk |
| 30   | min Summ       | mer | 64.929              | 1.429               | 0.0                          | 21.5                    | 1864.1                     | 1885.7                   | 1360.0                | Flood Risk |
| 60   | min Summ       | mer | 64.912              | 1.412               | 0.0                          | 21.4                    | 1666.1                     | 1687.5                   | 1337.4                | Flood Risk |
| 120  | min Summ       | mer | 64.877              | 1.377               | 0.0                          | 21.2                    | 1266.1                     | 1287.3                   | 1290.5                | Flood Risk |
| 180  | min Summ       | mer | 64.851              | 1.351               | 0.0                          | 21.0                    | 1002.3                     | 1023.2                   | 1257.2                | Flood Risk |
| 240  | min Summ       | mer | 64.834              | 1.334               | 0.0                          | 20.8                    | 833.4                      | 854.3                    | 1234.1                | Flood Risk |
| 360  | min Summ       | mer | 64.810              | 1.310               | 0.0                          | 20.7                    | 619.5                      | 640.2                    | 1203.8                | Flood Risk |
| 480  | min Summ       | mer | 64.795              | 1.295               | 0.0                          | 20.5                    | 496.9                      | 517.5                    | 1184.6                | Flood Risk |
| 600  | min Summ       | mer | 64.785              | 1.285               | 0.0                          | 20.5                    | 420.4                      | 440.8                    | 1171.4                | Flood Risk |
| 720  | min Summ       | mer | 64.777              | 1.277               | 0.0                          | 20.4                    | 362.3                      | 382.7                    | 1161.2                | Flood Risk |
| 960  | min Summ       | mer | 64.766              | 1.266               | 0.0                          | 20.3                    | 290.5                      | 310.9                    | 1148.0                | Flood Risk |
| 1440 | min Summ       | mer | 64.753              | 1.253               | 0.0                          | 20.2                    | 209.4                      | 229.6                    | 1131.8                | Flood Risk |
| 2160 | min Summ       | mer | 64.742              | 1.242               | 0.0                          | 20.1                    | 148.0                      | 168.1                    | 1118.3                | Flood Risk |
| 2880 | min Summ       | mer | 64.736              | 1.236               | 0.0                          | 20.1                    | 115.2                      | 135.3                    | 1110.2                | Flood Risk |
| 4320 | min Summ       | mer | 64.727              | 1.227               | 0.0                          | 20.0                    | 74.5                       | 94.6                     | 1099.3                | Flood Risk |
| 5760 | min Summ       | mer | 64.722              | 1.222               | 0.0                          | 20.0                    | 54.7                       | 74.6                     | 1093.1                | Flood Risk |
| 7200 | min Summ       | mer | 64.718              | 1.218               | 0.0                          | 20.0                    | 42.0                       | 62.0                     | 1088.7                | Flood Risk |

|      | Storm |        | Rain    | Flooded | Discharge | Overflow | Time-Peak |
|------|-------|--------|---------|---------|-----------|----------|-----------|
|      | Event |        | (mm/hr) | Volume  | Volume    | Volume   | (mins)    |
|      |       |        |         | (m³)    | (m³)      | (m³)     |           |
| 1.5  |       |        | 100 567 | 0 0     | 1054.0    | 055.0    | 1.0       |
|      |       |        | 189.567 | 0.0     | 1954.0    | 855.9    | 18        |
| 30   | min   | Summer | 108.802 | 0.0     | 2244.9    | 1135.0   | 26        |
| 60   | min   | Summer | 62.447  | 0.0     | 2590.7    | 1440.7   | 40        |
| 120  | min   | Summer | 35.841  | 0.0     | 2974.3    | 1763.4   | 70        |
| 180  | min   | Summer | 25.902  | 0.0     | 3224.5    | 1951.2   | 98        |
| 240  | min   | Summer | 20.571  | 0.0     | 3414.5    | 2078.3   | 128       |
| 360  | min   | Summer | 14.866  | 0.0     | 3701.5    | 2238.7   | 188       |
| 480  | min   | Summer | 11.807  | 0.0     | 3919.5    | 2329.8   | 248       |
| 600  | min   | Summer | 9.874   | 0.0     | 4097.2    | 2380.5   | 308       |
| 720  | min   | Summer | 8.533   | 0.0     | 4248.3    | 2404.6   | 370       |
| 960  | min   | Summer | 6.853   | 0.0     | 4548.4    | 2450.6   | 490       |
| 1440 | min   | Summer | 5.031   | 0.0     | 5003.4    | 2408.8   | 732       |
| 2160 | min   | Summer | 3.694   | 0.0     | 5523.0    | 2276.2   | 1092      |
| 2880 | min   | Summer | 2.967   | 0.0     | 5913.8    | 2154.3   | 1460      |
| 4320 | min   | Summer | 2.092   | 0.0     | 6250.9    | 1752.4   | 2200      |
| 5760 | min   | Summer | 1.632   | 0.0     | 6510.0    | 1413.6   | 2888      |
| 7200 | min   | Summer | 1.347   | 0.0     | 6713.2    | 1109.9   | 3672      |
|      |       |        |         |         |           |          |           |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:20      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 | •           |

#### Cascade Summary of Results for 5.SRCX

|       | Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max Infiltration (1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status                   |
|-------|----------------|--------|---------------------|---------------------|------------------------|-------------------------|--------------------------|---------------------------|-----------------------|--------------------------|
|       |                |        | 64.715              |                     | 0.0                    | 19.9                    | 32.1                     |                           |                       | Flood Risk               |
|       |                |        | 64.713<br>64.960    |                     | 0.0                    | 19.9<br>21.7            | 24.5<br>2255.6           |                           |                       | Flood Risk<br>Flood Risk |
| 30    | min            | Winter | 64.948              | 1.448               | 0.0                    | 21.7                    | 2107.5                   | 2129.2                    | 1386.4                | Flood Risk               |
| 60    | min 1          | Winter | 64.912              | 1.412               | 0.0                    | 21.4                    | 1660.2                   | 1681.6                    | 1337.2                | Flood Risk               |
| 120   | min            | Winter | 64.860              | 1.360               | 0.0                    | 21.0                    | 1087.9                   | 1108.9                    | 1267.8                | Flood Risk               |
| 180   | min            | Winter | 64.831              | 1.331               | 0.0                    | 20.8                    | 805.6                    | 826.4                     | 1230.2                | Flood Risk               |
| 240   | min            | Winter | 64.812              | 1.312               | 0.0                    | 20.7                    | 640.8                    | 661.5                     | 1206.9                | Flood Risk               |
| 360   | min            | Winter | 64.790              | 1.290               | 0.0                    | 20.5                    | 462.0                    | 482.5                     | 1178.5                | Flood Risk               |
| 480   | min 1          | Winter | 64.777              | 1.277               | 0.0                    | 20.4                    | 365.8                    | 386.2                     | 1161.8                | Flood Risk               |
| 600   | min            | Winter | 64.768              | 1.268               | 0.0                    | 20.3                    | 300.5                    | 320.8                     | 1150.5                | Flood Risk               |
| 720   | min            | Winter | 64.761              | 1.261               | 0.0                    | 20.3                    | 258.3                    | 278.6                     | 1142.0                | Flood Risk               |
| 960   | min            | Winter | 64.752              | 1.252               | 0.0                    | 20.2                    | 203.5                    | 223.7                     | 1130.6                | Flood Risk               |
| 1440  | min            | Winter | 64.742              | 1.242               | 0.0                    | 20.1                    | 145.4                    | 165.5                     | 1117.6                | Flood Risk               |
| 2160  | min            | Winter | 64.733              | 1.233               | 0.0                    | 20.1                    | 101.0                    | 121.0                     | 1106.7                | Flood Risk               |
| 2880  | min            | Winter | 64.728              | 1.228               | 0.0                    | 20.0                    | 78.8                     | 98.8                      | 1100.3                | Flood Risk               |
| 4320  | min            | Winter | 64.720              | 1.220               | 0.0                    | 20.0                    | 49.1                     | 69.1                      | 1091.1                | Flood Risk               |
| 5760  | min            | Winter | 64.716              | 1.216               | 0.0                    | 19.9                    | 33.7                     | 53.6                      | 1085.9                | Flood Risk               |
| 7200  | min            | Winter | 64.713              | 1.213               | 0.0                    | 19.9                    | 24.5                     | 44.4                      | 1082.1                | Flood Risk               |
| 8640  | min            | Winter | 64.710              | 1.210               | 0.0                    | 19.9                    | 17.7                     | 37.6                      | 1079.0                | Flood Risk               |
| 10080 | min            | Winter | 64.708              | 1.208               | 0.0                    | 19.9                    | 12.8                     | 32.6                      | 1076.4                | Flood Risk               |

|       | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|-------|----------------|--------|-----------------|---------------------------|-----------------------------|-----------------------------------------|---------------------|
| 8640  | min            | Summer | 1.151           | 0.0                       | 6883.5                      | 834.9                                   | 4400                |
| 10080 | min            | Summer | 1.008           | 0.0                       | 7029.2                      | 585.3                                   | 5144                |
| 15    | min            | Winter | 189.567         | 0.0                       | 2190.3                      | 1091.2                                  | 18                  |
| 30    | min            | Winter | 108.802         | 0.0                       | 2516.1                      | 1405.5                                  | 25                  |
| 60    | min            | Winter | 62.447          | 0.0                       | 2902.1                      | 1752.1                                  | 40                  |
| 120   | min            | Winter | 35.841          | 0.0                       | 3331.7                      | 2122.2                                  | 68                  |
| 180   | min            | Winter | 25.902          | 0.0                       | 3611.9                      | 2341.5                                  | 98                  |
| 240   | min            | Winter | 20.571          | 0.0                       | 3824.8                      | 2492.7                                  | 128                 |
| 360   | min            | Winter | 14.866          | 0.0                       | 4146.3                      | 2690.2                                  | 188                 |
| 480   | min            | Winter | 11.807          | 0.0                       | 4390.5                      | 2809.9                                  | 248                 |
| 600   | min            | Winter | 9.874           | 0.0                       | 4589.6                      | 2884.6                                  | 312                 |
| 720   | min            | Winter | 8.533           | 0.0                       | 4758.9                      | 2929.3                                  | 368                 |
| 960   | min            | Winter | 6.853           | 0.0                       | 5095.2                      | 3016.7                                  | 490                 |
| 1440  | min            | Winter | 5.031           | 0.0                       | 5606.1                      | 3038.4                                  | 732                 |
| 2160  | min            | Winter | 3.694           | 0.0                       | 6186.1                      | 2889.4                                  | 1096                |
| 2880  | min            | Winter | 2.967           | 0.0                       | 6623.8                      | 2713.4                                  | 1448                |
| 4320  | min            | Winter | 2.092           | 0.0                       | 7001.0                      | 2169.8                                  | 2132                |
| 5760  | min            | Winter | 1.632           | 0.0                       | 7291.3                      | 1678.7                                  | 2936                |
| 7200  | min            | Winter | 1.347           | 0.0                       | 7519.0                      | 1230.9                                  | 3600                |
| 8640  | min            | Winter | 1.151           | 0.0                       | 7709.9                      | 828.2                                   | 4408                |
| 10080 | min            | Winter | 1.008           | 0.0                       | 7873.7                      | 472.7                                   | 5264                |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:20      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drainage    |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 5.SRCX

| Rainfall Model        | FEH                             |
|-----------------------|---------------------------------|
| Return Period (years) | 100                             |
| FEH Rainfall Version  | 1999                            |
| Site Location G       | GB 459400 219250 SP 59400 19250 |
| C (1km)               | -0.025                          |
| D1 (1km)              | 0.314                           |
| D2 (1km)              | 0.353                           |
| D3 (1km)              | 0.253                           |
| E (1km)               | 0.293                           |
| F (1km)               | 2.450                           |
| Summer Storms         | Yes                             |
| Winter Storms         | Yes                             |
| Cv (Summer)           | 0.750                           |
| Cv (Winter)           | 0.840                           |
| Shortest Storm (mins) | 15                              |
| Longest Storm (mins)  | 10080                           |
| Climate Change %      | +40                             |

#### Time Area Diagram

Total Area (ha) 5.540

|       | (mins) |       |       |     |       |       |     |       |  |
|-------|--------|-------|-------|-----|-------|-------|-----|-------|--|
| From: | To:    | (ha)  | From: | To: | (ha)  | From: | To: | (ha)  |  |
|       |        |       |       |     |       |       |     |       |  |
| 0     | 4      | 1.850 | 4     | 8   | 1.850 | 8     | 12  | 1.840 |  |

| Alan Baxter Limited        |                       | Page 4      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:20      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | niali lade  |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Model Details for 5.SRCX

Storage is Online Cover Level (m) 65.000

#### Complex Structure

#### Tank or Pond

Invert Level (m) 63.500

| Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m² | ) |
|-------|------|------|-------|-------|------|------|-------|-------|------|------|-----|---|
| 0.    | .000 | 6    | 500.0 | 1.    | .500 | 14   | 100.0 | 1.    | .501 |      | 0.  | 0 |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference                    | MD-SHE-0191-1820-1000-1820 |
|-----------------------------------|----------------------------|
| Design Head (m)                   | 1.000                      |
| Design Flow (1/s)                 | 18.2                       |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 191                        |
| Invert Level (m)                  | 63.500                     |
| Minimum Outlet Pipe Diameter (mm) | 225                        |
| Suggested Manhole Diameter (mm)   | 1500                       |

| Control Points            | Head (m) | Flow (1/s) |
|---------------------------|----------|------------|
| Design Point (Calculated) | 1.000    | 18.2       |
| Flush-Flo™                | 0.335    | 18.2       |
| Kick-Flo®                 | 0.716    | 15.5       |
| Mean Flow over Head Range | _        | 15.3       |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) H | Flow (1/s) | Depth (m) Flow | (1/s) | Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) |
|-------------|------------|----------------|-------|----------------|-------|-----------|------------|
| 0.100       | 6.6        | 1.200          | 19.8  | 3.000          | 30.7  | 7.000     | 46.2       |
| 0.200       | 17.4       | 1.400          | 21.3  | 3.500          | 33.1  | 7.500     | 47.8       |
| 0.300       | 18.1       | 1.600          | 22.7  | 4.000          | 35.3  | 8.000     | 49.3       |
| 0.400       | 18.1       | 1.800          | 24.0  | 4.500          | 37.3  | 8.500     | 50.8       |
| 0.500       | 17.7       | 2.000          | 25.3  | 5.000          | 39.3  | 9.000     | 52.2       |
| 0.600       | 17.2       | 2.200          | 26.5  | 5.500          | 41.1  | 9.500     | 53.6       |
| 0.800       | 16.3       | 2.400          | 27.6  | 6.000          | 42.9  |           |            |
| 1.000       | 18.2       | 2.600          | 28.7  | 6.500          | 44.6  |           |            |

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:20      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Dialilade   |
| Causeway                   | Source Control 2019.1 |             |
|                            |                       |             |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 10.000 Invert Level (m) 64.700

| Alan Baxter Limited        |                       | Page 1   |
|----------------------------|-----------------------|----------|
| 75 Cowcross Street         |                       |          |
| London                     |                       |          |
| EC1M 6EL                   |                       | Micco    |
| Date 16/05/2022 12:21      | Designed by dbowles   | Desinado |
| File cascade 13-05-22.CASX | Checked by            | Drainage |
| Causeway                   | Source Control 2019.1 |          |

#### Cascade Summary of Results for 6.SRCX

### Upstream Outflow To Overflow To Structures

(None) 8.SRCX 8.SRCX

Half Drain Time : 327 minutes.

|      | Storm   |     | Max    | Max   | Max          | Max     | Max      | Max       | Max    | Status     |
|------|---------|-----|--------|-------|--------------|---------|----------|-----------|--------|------------|
|      | Event   |     | Level  | Depth | Infiltration | Control | Overflow | Σ Outflow | Volume |            |
|      |         |     | (m)    | (m)   | (l/s)        | (1/s)   | (1/s)    | (1/s)     | (m³)   |            |
| 15   | min Sum | mer | 64.465 | 0.665 | 0.0          | 12.1    | 2321.1   | 2333.2    | 412.9  | Flood Risk |
| 30   | min Sum | mer | 64.413 | 0.613 | 0.0          | 11.7    | 1677.9   | 1689.6    | 412.8  | Flood Risk |
| 60   | min Sum | mer | 64.372 | 0.572 | 0.0          | 11.3    | 1218.1   | 1229.4    | 412.9  | Flood Risk |
| 120  | min Sum | mer | 64.335 | 0.535 | 0.0          | 10.9    | 847.5    | 858.4     | 412.9  | Flood Risk |
| 180  | min Sum | mer | 64.308 | 0.508 | 0.0          | 10.7    | 602.6    | 613.3     | 412.9  | Flood Risk |
| 240  | min Sum | mer | 64.293 | 0.493 | 0.0          | 10.6    | 485.2    | 495.7     | 407.1  | Flood Risk |
| 360  | min Sum | mer | 64.277 | 0.477 | 0.0          | 10.6    | 362.3    | 372.7     | 393.5  | Flood Risk |
| 480  | min Sum | mer | 64.266 | 0.466 | 0.0          | 10.6    | 290.5    | 300.8     | 384.8  | Flood Risk |
| 600  | min Sum | mer | 64.259 | 0.459 | 0.0          | 10.6    | 245.7    | 255.9     | 378.7  | Flood Risk |
| 720  | min Sum | mer | 64.254 | 0.454 | 0.0          | 10.6    | 212.3    | 222.5     | 374.1  | Flood Risk |
| 960  | min Sum | mer | 64.246 | 0.446 | 0.0          | 10.6    | 169.5    | 179.5     | 368.1  | Flood Risk |
| 1440 | min Sum | mer | 64.237 | 0.437 | 0.0          | 10.6    | 122.5    | 132.4     | 360.6  | Flood Risk |
| 2160 | min Sum | mer | 64.230 | 0.430 | 0.0          | 10.6    | 87.4     | 97.3      | 354.5  | Flood Risk |
| 2880 | min Sum | mer | 64.225 | 0.425 | 0.0          | 10.6    | 68.4     | 78.2      | 350.8  | Flood Risk |
| 4320 | min Sum | mer | 64.219 | 0.419 | 0.0          | 10.6    | 45.5     | 55.3      | 345.8  | Flood Risk |
| 5760 | min Sum | mer | 64.216 | 0.416 | 0.0          | 10.6    | 33.7     | 43.4      | 343.0  | Flood Risk |
| 7200 | min Sum | mer | 64.213 | 0.413 | 0.0          | 10.6    | 26.0     | 35.7      | 340.8  | Flood Risk |

|      | Storm |        | Rain    | Flooded | Discharge | Overflow | Time-Peak |
|------|-------|--------|---------|---------|-----------|----------|-----------|
|      | Ever  | nt     | (mm/hr) | Volume  | Volume    | Volume   | (mins)    |
|      |       |        |         | (m³)    | (m³)      | (m³)     |           |
| 1 -  |       | Q      | 100 567 | 0 0     | 1100 0    | 705.0    | 1.5       |
|      |       |        | 189.567 | 0.0     | 1123.2    | 785.9    | 15        |
| 30   | min   | Summer | 108.802 | 0.0     | 1291.2    | 947.8    | 24        |
| 60   | min   | Summer | 62.447  | 0.0     | 1492.4    | 1126.4   | 32        |
| 120  | min   | Summer | 35.841  | 0.0     | 1713.9    | 1317.1   | 72        |
| 180  | min   | Summer | 25.902  | 0.0     | 1858.4    | 1430.4   | 100       |
| 240  | min   | Summer | 20.571  | 0.0     | 1968.1    | 1508.6   | 128       |
| 360  | min   | Summer | 14.866  | 0.0     | 2133.6    | 1611.1   | 188       |
| 480  | min   | Summer | 11.807  | 0.0     | 2259.4    | 1673.7   | 248       |
| 600  | min   | Summer | 9.874   | 0.0     | 2361.8    | 1713.0   | 308       |
| 720  | min   | Summer | 8.533   | 0.0     | 2448.9    | 1736.8   | 366       |
| 960  | min   | Summer | 6.853   | 0.0     | 2621.8    | 1783.2   | 488       |
| 1440 | min   | Summer | 5.031   | 0.0     | 2884.3    | 1796.6   | 728       |
| 2160 | min   | Summer | 3.694   | 0.0     | 3187.0    | 1736.0   | 1104      |
| 2880 | min   | Summer | 2.967   | 0.0     | 3412.2    | 1672.8   | 1452      |
| 4320 | min   | Summer | 2.092   | 0.0     | 3604.6    | 1448.0   | 2144      |
| 5760 | min   | Summer | 1.632   | 0.0     | 3758.4    | 1260.3   | 2896      |
| 7200 | min   | Summer | 1.347   | 0.0     | 3875.2    | 1091.3   | 3656      |
|      |       |        |         |         |           |          |           |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diamage     |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 6.SRCX

|                                                                                                         | Storm<br>Event                                                                                                          | =                                                                                                                                                                                            | Max<br>Level<br>(m)                                                                                                                                | Max<br>Depth<br>(m)                                                                                                        | Max<br>Infiltration<br>(1/s)                                       | Max<br>Control<br>(1/s)                                                                      | Max<br>Overflow<br>(1/s)                                                                                                                   | Max<br>Σ Outflow<br>(1/s)                                                                                                                  | Max<br>Volume<br>(m³)                                                                                                               | Status                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10080<br>15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160<br>2880 | min S min V | Summer Winter | 64.212<br>64.210<br>64.430<br>64.395<br>64.370<br>64.313<br>64.291<br>64.278<br>64.263<br>64.254<br>64.248<br>64.243<br>64.237<br>64.229<br>64.223 | 0.412<br>0.410<br>0.630<br>0.595<br>0.570<br>0.513<br>0.491<br>0.478<br>0.463<br>0.454<br>0.443<br>0.437<br>0.429<br>0.423 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 10.6<br>10.6<br>11.8<br>11.5<br>11.3<br>10.7<br>10.6<br>10.6<br>10.6<br>10.6<br>10.6<br>10.6 | 21.7<br>17.7<br>1882.5<br>1470.0<br>1191.6<br>645.1<br>469.7<br>373.0<br>267.8<br>212.3<br>177.8<br>150.6<br>120.0<br>85.2<br>60.4<br>47.3 | 31.4<br>27.3<br>1894.3<br>1481.5<br>1202.9<br>655.8<br>480.2<br>383.3<br>278.0<br>222.5<br>187.8<br>160.6<br>130.0<br>95.1<br>70.2<br>57.1 | 339.6<br>338.4<br>412.9<br>412.8<br>412.9<br>405.0<br>394.3<br>381.9<br>374.3<br>369.2<br>365.3<br>360.2<br>354.0<br>349.2<br>346.2 | Flood Risk |
| 5760<br>7200<br>8640                                                                                    | min W<br>min W<br>min W                                                                                                 | Winter<br>Winter<br>Winter                                                                                                                                                                   | 64.215<br>64.212<br>64.210<br>64.208<br>64.207                                                                                                     | 0.412<br>0.410<br>0.408                                                                                                    | 0.0<br>0.0<br>0.0<br>0.0                                           | 10.6<br>10.6<br>10.6<br>10.6                                                                 | 30.5<br>21.7<br>16.4<br>12.8<br>9.4                                                                                                        | 40.2<br>31.4<br>26.1<br>22.4<br>19.1                                                                                                       | 339.6<br>337.9<br>336.7                                                                                                             | Flood Risk<br>Flood Risk<br>Flood Risk<br>Flood Risk<br>Flood Risk                                                                                                                                                                                                                            |

|       | Stor<br>Even |        | Rain<br>(mm/hr) |     | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|-------|--------------|--------|-----------------|-----|-----------------------------|-----------------------------------------|---------------------|
| 8640  | min          | Summer | 1.151           | 0.0 | 3972.4                      | 934.8                                   | 4384                |
| 10080 | min          | Summer | 1.008           | 0.0 | 4053.8                      | 789.8                                   | 4968                |
| 15    | min          | Winter | 189.567         | 0.0 | 1259.7                      | 921.8                                   | 14                  |
| 30    | min          | Winter | 108.802         | 0.0 | 1447.9                      | 1104.0                                  | 26                  |
| 60    | min          | Winter | 62.447          | 0.0 | 1672.3                      | 1305.9                                  | 40                  |
| 120   | min          | Winter | 35.841          | 0.0 | 1920.4                      | 1524.0                                  | 64                  |
| 180   | min          | Winter | 25.902          | 0.0 | 2082.2                      | 1655.1                                  | 98                  |
| 240   | min          | Winter | 20.571          | 0.0 | 2205.1                      | 1747.2                                  | 126                 |
| 360   | min          | Winter | 14.866          | 0.0 | 2390.6                      | 1870.6                                  | 190                 |
| 480   | min          | Winter | 11.807          | 0.0 | 2531.4                      | 1949.4                                  | 246                 |
| 600   | min          | Winter | 9.874           | 0.0 | 2646.3                      | 2002.0                                  | 306                 |
| 720   | min          | Winter | 8.533           | 0.0 | 2743.8                      | 2037.4                                  | 370                 |
| 960   | min          | Winter | 6.853           | 0.0 | 2937.6                      | 2106.9                                  | 488                 |
| 1440  | min          | Winter | 5.031           | 0.0 | 3232.4                      | 2156.1                                  | 716                 |
| 2160  | min          | Winter | 3.694           | 0.0 | 3570.1                      | 2120.1                                  | 1076                |
| 2880  | min          | Winter | 2.967           | 0.0 | 3822.2                      | 2030.5                                  | 1432                |
| 4320  | min          | Winter | 2.092           | 0.0 | 4038.1                      | 1735.4                                  | 2140                |
| 5760  | min          | Winter | 1.632           | 0.0 | 4209.7                      | 1470.1                                  | 2976                |
| 7200  | min          | Winter | 1.347           | 0.0 | 4340.7                      | 1221.3                                  | 3520                |
| 8640  | min          | Winter | 1.151           | 0.0 | 4449.9                      | 988.5                                   | 4424                |
| 10080 | min          | Winter | 1.008           | 0.0 | 4542.1                      | 772.3                                   | 5032                |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | nian lade   |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 6.SRCX

| Rainfall Model        | FEH                            |
|-----------------------|--------------------------------|
| Return Period (years) | 100                            |
| FEH Rainfall Version  | 1999                           |
| Site Location G       | B 459400 219250 SP 59400 19250 |
| C (1km)               | -0.025                         |
| D1 (1km)              | 0.314                          |
| D2 (1km)              | 0.353                          |
| D3 (1km)              | 0.253                          |
| E (1km)               | 0.293                          |
| F (1km)               | 2.450                          |
| Summer Storms         | Yes                            |
| Winter Storms         | Yes                            |
| Cv (Summer)           | 0.750                          |
| Cv (Winter)           | 0.840                          |
| Shortest Storm (mins) | 15                             |
| Longest Storm (mins)  | 10080                          |
| Climate Change %      | +40                            |

#### Time Area Diagram

Total Area (ha) 3.200

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |
|       |        |       |       |        |       |       |        |       |
| 0     | 4      | 1.066 | 4     | 8      | 1.067 | 8     | 12     | 1.067 |

#### Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

| Alan Baxter Limited        |                       | Page 4      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drail laye  |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Model Details for 6.SRCX

Storage is Online Cover Level (m) 64.500

#### Complex Structure

#### Cellular Storage

Invert Level (m) 63.800 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.33 Infiltration Coefficient Side (m/hr) 0.00000

## Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) 0.000 2500.0 0.0 0.501 0.0 0.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0156-1060-0500-1060 Design Head (m) 0.500 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 156 Invert Level (m) 63.800 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.500 10.6 Flush-Flo™ 0.231 10.6 Kick-Flo® 0.399 9.5 Mean Flow over Head Range 8.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) F | low (1/s) | Depth (m) Flo | w (1/s) | Depth (m) | Flow (1/s) | Depth (m) | Flow (1/s) |
|-------------|-----------|---------------|---------|-----------|------------|-----------|------------|
| 0.100       | 5.6       | 1.200         | 16.0    | 3.000     | 24.9       | 7.000     | 37.4       |
| 0.200       | 10.5      | 1.400         | 17.3    | 3.500     | 26.8       | 7.500     | 38.8       |
| 0.300       | 10.4      | 1.600         | 18.4    | 4.000     | 28.6       | 8.000     | 40.0       |
| 0.400       | 9.6       | 1.800         | 19.5    | 4.500     | 30.2       | 8.500     | 41.3       |
| 0.500       | 10.6      | 2.000         | 20.5    | 5.000     | 31.8       | 9.000     | 42.5       |
| 0.600       | 11.5      | 2.200         | 21.4    | 5.500     | 33.1       | 9.500     | 43.7       |
| 0.800       | 13.2      | 2.400         | 22.3    | 6.000     | 34.6       |           |            |
| 1.000       | 14.7      | 2.600         | 23.2    | 6.500     | 36.1       |           |            |
|             |           |               |         |           |            |           |            |

| Alan Baxter Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | Page 5    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 75 Cowcross Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |           |
| London                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |           |
| EC1M 6EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Micro     |
| Date 16/05/2022 12:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Designed by dbowles   | Designado |
| File cascade 13-05-22.CASX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Checked by            | nialilade |
| Causeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source Control 2019.1 | 1         |
| I The state of the |                       |           |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 10.000 Invert Level (m) 64.200

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | niairiads   |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 7.SRCX

### Upstream Outflow To Overflow To Structures

(None) 8.SRCX 8.SRCX

Half Drain Time : 290 minutes.

|      | Storm   |      | Max    | Max   | Max                  | Max     | Max      | Max       | Max    | Status     |
|------|---------|------|--------|-------|----------------------|---------|----------|-----------|--------|------------|
|      | Event   |      | Level  | Depth | ${\tt Infiltration}$ | Control | Overflow | Σ Outflow | Volume |            |
|      |         |      | (m)    | (m)   | (1/s)                | (1/s)   | (1/s)    | (1/s)     | (m³)   |            |
| 15   | min Sum | mmer | 62.942 | 0.642 | 0.0                  | 13.5    | 2227.1   | 2240.6    | 330.4  | Flood Risk |
| 30   | min Sum | mmer | 62.930 | 0.630 | 0.0                  | 13.4    | 1984.7   | 1998.0    | 330.3  | Flood Risk |
| 60   | min Sum | mmer | 62.913 | 0.613 | 0.0                  | 13.2    | 1657.5   | 1670.8    | 330.4  | Flood Risk |
| 120  | min Sum | mmer | 62.869 | 0.569 | 0.0                  | 12.8    | 901.0    | 913.7     | 330.4  | Flood Risk |
| 180  | min Sum | mmer | 62.856 | 0.556 | 0.0                  | 12.6    | 710.5    | 723.1     | 330.4  | Flood Risk |
| 240  | min Sum | mmer | 62.846 | 0.546 | 0.0                  | 12.5    | 574.5    | 587.0     | 330.4  | Flood Risk |
| 360  | min Sum | mmer | 62.834 | 0.534 | 0.0                  | 12.4    | 424.6    | 437.0     | 330.4  | Flood Risk |
| 480  | min Sum | mmer | 62.826 | 0.526 | 0.0                  | 12.3    | 338.9    | 351.2     | 330.4  | Flood Risk |
| 600  | min Sum | mmer | 62.821 | 0.521 | 0.0                  | 12.2    | 285.5    | 297.7     | 330.4  | Flood Risk |
| 720  | min Sum | mmer | 62.817 | 0.517 | 0.0                  | 12.2    | 240.1    | 252.3     | 330.4  | Flood Risk |
| 960  | min Sum | mmer | 62.813 | 0.513 | 0.0                  | 12.1    | 202.0    | 214.1     | 330.3  | Flood Risk |
| 1440 | min Sum | mmer | 62.806 | 0.506 | 0.0                  | 12.1    | 140.8    | 152.9     | 330.3  | Flood Risk |
| 2160 | min Sum | mmer | 62.801 | 0.501 | 0.0                  | 12.0    | 101.9    | 113.9     | 330.3  | Flood Risk |
| 2880 | min Sum | mmer | 62.797 | 0.497 | 0.0                  | 12.0    | 77.2     | 89.2      | 328.3  | Flood Risk |
| 4320 | min Sum | mmer | 62.793 | 0.493 | 0.0                  | 12.0    | 52.0     | 63.9      | 325.5  | Flood Risk |
| 5760 | min Sum | mmer | 62.791 | 0.491 | 0.0                  | 12.0    | 38.0     | 49.9      | 323.9  | Flood Risk |
| 7200 | min Sum | mmer | 62.789 | 0.489 | 0.0                  | 12.0    | 30.3     | 42.2      | 323.0  | Flood Risk |

|      | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|------|----------------|--------|-----------------|---------------------------|-----------------------------|-----------------------------------------|---------------------|
| 15   | min            | Summer | 189.567         | 0.0                       | 1285.1                      | 957.5                                   | 17                  |
| 30   | min            | Summer | 108.802         | 0.0                       | 1476.4                      | 1140.3                                  | 29                  |
| 60   | min            | Summer | 62.447          | 0.0                       | 1700.9                      | 1341.6                                  | 30                  |
| 120  | min            | Summer | 35.841          | 0.0                       | 1953.0                      | 1555.4                                  | 74                  |
| 180  | min            | Summer | 25.902          | 0.0                       | 2117.3                      | 1680.9                                  | 98                  |
| 240  | min            | Summer | 20.571          | 0.0                       | 2242.2                      | 1767.0                                  | 132                 |
| 360  | min            | Summer | 14.866          | 0.0                       | 2430.7                      | 1877.4                                  | 182                 |
| 480  | min            | Summer | 11.807          | 0.0                       | 2574.0                      | 1942.6                                  | 246                 |
| 600  | min            | Summer | 9.874           | 0.0                       | 2690.8                      | 1981.3                                  | 294                 |
| 720  | min            | Summer | 8.533           | 0.0                       | 2790.1                      | 2002.5                                  | 376                 |
| 960  | min            | Summer | 6.853           | 0.0                       | 2987.4                      | 2043.8                                  | 498                 |
| 1440 | min            | Summer | 5.031           | 0.0                       | 3288.2                      | 2036.6                                  | 714                 |
| 2160 | min            | Summer | 3.694           | 0.0                       | 3627.7                      | 1953.9                                  | 1072                |
| 2880 | min            | Summer | 2.967           | 0.0                       | 3884.3                      | 1876.7                                  | 1428                |
| 4320 | min            | Summer | 2.092           | 0.0                       | 4105.3                      | 1616.8                                  | 2176                |
| 5760 | min            | Summer | 1.632           | 0.0                       | 4276.5                      | 1397.5                                  | 2840                |
| 7200 | min            | Summer | 1.347           | 0.0                       | 4409.8                      | 1200.8                                  | 3600                |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 | •           |

#### Cascade Summary of Results for 7.SRCX

|       | Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status     |
|-------|----------------|--------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|------------|
|       |                |        | 62.788              |                     | 0.0                          | 12.0                    | 23.2                     | 35.1                      |                       | Flood Risk |
| 10080 | min S          | Summer | 62.787              | 0.487               | 0.0                          | 12.0                    | 18.9                     | 30.7                      | 321.4                 | Flood Risk |
| 15    | min V          | Winter | 62.987              | 0.687               | 0.0                          | 13.9                    | 3215.2                   | 3229.1                    | 330.3                 | Flood Risk |
| 30    | min V          | Winter | 62.920              | 0.620               | 0.0                          | 13.3                    | 1780.3                   | 1793.6                    | 330.3                 | Flood Risk |
| 60    | min V          | Winter | 62.902              | 0.602               | 0.0                          | 13.1                    | 1447.7                   | 1460.8                    | 330.4                 | Flood Risk |
| 120   | min V          | Winter | 62.870              | 0.570               | 0.0                          | 12.8                    | 923.9                    | 936.7                     | 330.4                 | Flood Risk |
| 180   | min V          | Winter | 62.852              | 0.552               | 0.0                          | 12.6                    | 654.9                    | 667.5                     | 330.4                 | Flood Risk |
| 240   | min V          | Winter | 62.838              | 0.538               | 0.0                          | 12.4                    | 479.1                    | 491.5                     | 330.4                 | Flood Risk |
| 360   | min V          | Winter | 62.824              | 0.524               | 0.0                          | 12.3                    | 311.8                    | 324.1                     | 330.4                 | Flood Risk |
| 480   | min V          | Winter | 62.818              | 0.518               | 0.0                          | 12.2                    | 254.9                    | 267.1                     | 330.4                 | Flood Risk |
| 600   | min V          | Winter | 62.815              | 0.515               | 0.0                          | 12.2                    | 220.7                    | 232.9                     | 330.4                 | Flood Risk |
| 720   | min V          | Winter | 62.811              | 0.511               | 0.0                          | 12.1                    | 183.8                    | 195.9                     | 330.3                 | Flood Risk |
| 960   | min V          | Winter | 62.808              | 0.508               | 0.0                          | 12.1                    | 157.5                    | 169.6                     | 330.3                 | Flood Risk |
| 1440  | min V          | Winter | 62.800              | 0.500               | 0.0                          | 12.0                    | 98.2                     | 110.2                     | 330.1                 | Flood Risk |
| 2160  | min V          | Winter | 62.796              | 0.496               | 0.0                          | 12.0                    | 67.4                     | 79.3                      | 327.4                 | Flood Risk |
| 2880  | min V          | Winter | 62.793              | 0.493               | 0.0                          | 12.0                    | 52.0                     | 63.9                      | 325.8                 | Flood Risk |
| 4320  | min V          | Winter | 62.790              | 0.490               | 0.0                          | 12.0                    | 35.4                     | 47.3                      | 323.5                 | Flood Risk |
| 5760  | min V          | Winter | 62.788              | 0.488               | 0.0                          | 12.0                    | 23.2                     | 35.1                      | 322.3                 | Flood Risk |
| 7200  | min V          | Winter | 62.787              | 0.487               | 0.0                          | 12.0                    | 18.9                     | 30.7                      | 321.3                 | Flood Risk |
| 8640  | min V          | Winter | 62.786              | 0.486               | 0.0                          | 12.0                    | 14.9                     | 26.7                      | 320.6                 | Flood Risk |
| 10080 | min V          | Winter | 62.785              | 0.485               | 0.0                          | 12.0                    | 11.2                     | 23.0                      | 320.0                 | Flood Risk |

| Storm |       | Rain   | Flooded | Discharge | Overflow | Time-Peak |        |
|-------|-------|--------|---------|-----------|----------|-----------|--------|
|       | Event | :      | (mm/hr) | Volume    | Volume   | Volume    | (mins) |
|       |       |        |         | (m³)      | (m³)     | (m³)      |        |
|       |       |        |         |           |          |           |        |
| 8640  | min   | Summer | 1.151   | 0.0       | 4521.2   | 1019.1    | 4312   |
| 10080 | min   | Summer | 1.008   | 0.0       | 4615.7   | 852.7     | 5072   |
| 15    | min ' | Winter | 189.567 | 0.0       | 1440.4   | 1112.6    | 16     |
| 30    | min   | Winter | 108.802 | 0.0       | 1654.6   | 1318.4    | 25     |
| 60    | min   | Winter | 62.447  | 0.0       | 1905.5   | 1546.2    | 36     |
| 120   | min   | Winter | 35.841  | 0.0       | 2187.8   | 1791.1    | 66     |
| 180   | min   | Winter | 25.902  | 0.0       | 2371.9   | 1937.3    | 86     |
| 240   | min   | Winter | 20.571  | 0.0       | 2511.8   | 2038.9    | 154    |
| 360   | min   | Winter | 14.866  | 0.0       | 2723.0   | 2173.5    | 206    |
| 480   | min   | Winter | 11.807  | 0.0       | 2883.4   | 2257.3    | 258    |
| 600   | min   | Winter | 9.874   | 0.0       | 3014.3   | 2311.6    | 332    |
| 720   | min   | Winter | 8.533   | 0.0       | 3125.5   | 2346.1    | 384    |
| 960   | min   | Winter | 6.853   | 0.0       | 3346.6   | 2414.4    | 476    |
| 1440  | min   | Winter | 5.031   | 0.0       | 3683.9   | 2449.5    | 722    |
| 2160  | min   | Winter | 3.694   | 0.0       | 4063.4   | 2378.9    | 1064   |
| 2880  | min ' | Winter | 2.967   | 0.0       | 4350.8   | 2263.4    | 1472   |
| 4320  | min   | Winter | 2.092   | 0.0       | 4598.7   | 1919.7    | 2152   |
| 5760  | min   | Winter | 1.632   | 0.0       | 4789.9   | 1606.0    | 2832   |
| 7200  | min   | Winter | 1.347   | 0.0       | 4939.2   | 1314.3    | 3616   |
| 8640  | min   | Winter | 1.151   | 0.0       | 5064.2   | 1045.3    | 4296   |
| 10080 | min   | Winter | 1.008   | 0.0       | 5170.7   | 799.6     | 5248   |
|       |       |        |         |           |          |           |        |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | nian lade   |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 7.SRCX

| Rainfall Model FEH                            | ĺ |
|-----------------------------------------------|---|
| Return Period (years) 100                     | j |
| FEH Rainfall Version 1999                     | , |
| Site Location GB 459400 219250 SP 59400 19250 | j |
| C $(1km)$ $-0.025$                            | ) |
| D1 (1km) 0.314                                | ł |
| D2 (1km) 0.353                                | 6 |
| D3 (1km) 0.253                                | 6 |
| E (1km) 0.293                                 | 6 |
| F (1km) 2.450                                 | j |
| Summer Storms Yes                             | 5 |
| Winter Storms Yes                             | 5 |
| Cv (Summer) 0.750                             | j |
| Cv (Winter) 0.840                             | į |
| Shortest Storm (mins) 15                      | ) |
| Longest Storm (mins) 10080                    | ) |
| Climate Change % +40                          | j |

#### Time Area Diagram

Total Area (ha) 3.640

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |
| 0     | 4      | 1 010 | _     | 0      | 1 010 |       | 1.0    | 1 014 |
| U     | 4      | 1.213 | 4     | 8      | 1.213 | 8     | 12     | 1.214 |

| Alan Baxter Limited        |                       | Page 4    |
|----------------------------|-----------------------|-----------|
| 75 Cowcross Street         |                       |           |
| London                     |                       |           |
| EC1M 6EL                   |                       | Micco     |
| Date 16/05/2022 12:21      | Designed by dbowles   | Desinado  |
| File cascade 13-05-22.CASX | Checked by            | man radio |
| Causeway                   | Source Control 2019.1 |           |

#### Cascade Model Details for 7.SRCX

Storage is Online Cover Level (m) 63.000

#### Complex Structure

#### Cellular Storage

Invert Level (m) 62.300 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.33 Infiltration Coefficient Side (m/hr) 0.00000

## Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>) Inf. Area (m<sup>2</sup>) 0.000 2000.0 0.0 0.501 0.0 0.0

#### Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0164-1200-0500-1200 Design Head (m) 0.500 Design Flow (1/s) 12.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 164 Invert Level (m) 62.300 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.500 12.0 Flush-Flo™ 0.242 12.0 Kick-Flo® 0.405 10.9 Mean Flow over Head Range 9.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) F | low (1/s) | Depth (m) Flo | ow (1/s) | Depth (m) Fl | low (1/s) | Depth (m) | Flow (1/s) |
|-------------|-----------|---------------|----------|--------------|-----------|-----------|------------|
| 0.100       | 5.9       | 1.200         | 18.2     | 3.000        | 28.2      | 7.000     | 42.4       |
| 0.200       | 11.9      | 1.400         | 19.6     | 3.500        | 30.4      | 7.500     | 44.0       |
| 0.300       | 11.8      | 1.600         | 20.8     | 4.000        | 32.4      | 8.000     | 45.4       |
| 0.400       | 11.0      | 1.800         | 22.1     | 4.500        | 34.3      | 8.500     | 46.8       |
| 0.500       | 12.0      | 2.000         | 23.2     | 5.000        | 36.1      | 9.000     | 48.2       |
| 0.600       | 13.1      | 2.200         | 24.3     | 5.500        | 37.6      | 9.500     | 49.5       |
| 0.800       | 15.0      | 2.400         | 25.3     | 6.000        | 39.3      |           |            |
| 1.000       | 16.7      | 2.600         | 26.3     | 6.500        | 40.9      |           |            |
|             |           |               |          |              |           |           |            |

| Alan Baxter Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | Page 5    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 75 Cowcross Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |           |
| London                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |           |
| EC1M 6EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Micro     |
| Date 16/05/2022 12:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Designed by dbowles   | Designado |
| File cascade 13-05-22.CASX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Checked by            | nialilade |
| Causeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source Control 2019.1 | 1         |
| I The state of the |                       |           |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 20.000 Invert Level (m) 62.780

| Alan Baxter Limited        |                       | Page 1      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drail laye  |
| Causeway                   | Source Control 2019.1 | ,           |

#### Cascade Summary of Results for 8.SRCX

### Upstream Outflow To Overflow To Structures

5.SRCX 9.SRCX 9.SRCX 6.SRCX 7.SRCX

Half Drain Time : 656 minutes.

|      | Stor<br>Ever |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) | Max<br>Control<br>(1/s) | Max<br>Overflow<br>(1/s) | Max<br>Σ Outflow<br>(1/s) | Max<br>Volume<br>(m³) | Status     |
|------|--------------|--------|---------------------|---------------------|------------------------------|-------------------------|--------------------------|---------------------------|-----------------------|------------|
| 15   | min          | Summer | 62.977              | 1.227               | 0.0                          | 43.8                    | 0.0                      | 43.8                      | 2600.3                | Flood Risk |
| 30   | min          | Summer | 63.098              | 1.348               | 0.0                          | 45.2                    | 520.7                    | 565.9                     | 2957.1                | Flood Risk |
| 60   | min          | Summer | 63.135              | 1.385               | 0.0                          | 45.6                    | 847.5                    | 893.1                     | 3071.2                | Flood Risk |
| 120  | min          | Summer | 63.151              | 1.401               | 0.0                          | 45.8                    | 1002.3                   | 1048.1                    | 3122.0                | Flood Risk |
| 180  | min          | Summer | 63.153              | 1.403               | 0.0                          | 45.8                    | 1017.2                   | 1063.0                    | 3126.3                | Flood Risk |
| 240  | min          | Summer | 63.148              | 1.398               | 0.0                          | 45.8                    | 967.7                    | 1013.5                    | 3111.2                | Flood Risk |
| 360  | min          | Summer | 63.135              | 1.385               | 0.0                          | 45.6                    | 847.5                    | 893.1                     | 3072.3                | Flood Risk |
| 480  | min          | Summer | 63.124              | 1.374               | 0.0                          | 45.5                    | 746.2                    | 791.8                     | 3037.9                | Flood Risk |
| 600  | min          | Summer | 63.115              | 1.365               | 0.0                          | 45.4                    | 662.3                    | 707.7                     | 3009.1                | Flood Risk |
| 720  | min          | Summer | 63.107              | 1.357               | 0.0                          | 45.3                    | 594.3                    | 639.6                     | 2984.2                | Flood Risk |
| 960  | min          | Summer | 63.096              | 1.346               | 0.0                          | 45.2                    | 504.8                    | 550.0                     | 2950.6                | Flood Risk |
| 1440 | min          | Summer | 63.079              | 1.329               | 0.0                          | 45.0                    | 380.1                    | 425.1                     | 2901.8                | Flood Risk |
| 2160 | min          | Summer | 63.064              | 1.314               | 0.0                          | 44.8                    | 274.3                    | 319.1                     | 2855.5                | Flood Risk |
| 2880 | min          | Summer | 63.053              | 1.303               | 0.0                          | 44.7                    | 209.4                    | 254.0                     | 2823.9                | Flood Risk |
| 4320 | min          | Summer | 63.037              | 1.287               | 0.0                          | 44.5                    | 122.5                    | 167.0                     | 2775.4                | Flood Risk |
| 5760 | min          | Summer | 63.026              | 1.276               | 0.0                          | 44.4                    | 72.5                     | 116.8                     | 2743.2                | Flood Risk |

|      | Storm<br>Event |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m³) | Time-Peak<br>(mins) |
|------|----------------|--------|-----------------|---------------------------|-----------------------------|----------------------------|---------------------|
| 15   | min            | Summer | 189.567         | 0.0                       | 3508.2                      | 0.0                        | 42                  |
| 30   | min            | Summer | 108.802         | 0.0                       | 4073.9                      | 537.3                      | 38                  |
| 60   | min            | Summer | 62.447          | 0.0                       | 5783.6                      | 1220.8                     | 54                  |
| 120  | min            | Summer | 35.841          | 0.0                       | 6641.1                      | 1944.2                     | 84                  |
| 180  | min            | Summer | 25.902          | 0.0                       | 7198.7                      | 2366.4                     | 116                 |
| 240  | min            | Summer | 20.571          | 0.0                       | 7626.3                      | 2653.6                     | 148                 |
| 360  | min            | Summer | 14.866          | 0.0                       | 8267.0                      | 3018.2                     | 210                 |
| 480  | min            | Summer | 11.807          | 0.0                       | 8753.1                      | 3228.0                     | 272                 |
| 600  | min            | Summer | 9.874           | 0.0                       | 9148.7                      | 3347.7                     | 334                 |
| 720  | min            | Summer | 8.533           | 0.0                       | 9489.1                      | 3408.0                     | 396                 |
| 960  | min            | Summer | 6.853           | 0.0                       | 10155.6                     | 3523.9                     | 518                 |
| 1440 | min            | Summer | 5.031           | 0.0                       | 10349.2                     | 3459.0                     | 764                 |
| 2160 | min            | Summer | 3.694           | 0.0                       | 12341.9                     | 3186.6                     | 1136                |
| 2880 | min            | Summer | 2.967           | 0.0                       | 13210.6                     | 2926.5                     | 1516                |
| 4320 | min            | Summer | 2.092           | 0.0                       | 13960.6                     | 2042.9                     | 2304                |
| 5760 | min            | Summer | 1.632           | 0.0                       | 14548.0                     | 1303.8                     | 3128                |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drainage    |
| Causeway                   | Source Control 2019.1 | •           |

#### Cascade Summary of Results for 8.SRCX

|                                                                                                         | Storm<br>Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max<br>Level<br>(m)                                                                                                                                | Max<br>Depth<br>(m)                                                                                                                          | Max<br>Infiltration<br>(1/s)                                       |                                                                                                                              | Max<br>Overflow<br>(1/s)                                                                                                                               | Max<br>Σ Outflow<br>(1/s)                                                                                                                      | Max<br>Volume<br>(m³)                                                                                                                                        | Status                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8640<br>10080<br>15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160 | min Sumin Wimin Wi | ummer inter | 63.018<br>63.007<br>62.862<br>63.092<br>63.175<br>63.198<br>63.195<br>63.164<br>63.164<br>63.123<br>63.111<br>63.088<br>63.070<br>63.056<br>63.047 | 1.268<br>1.257<br>1.112<br>1.342<br>1.425<br>1.448<br>1.445<br>1.429<br>1.414<br>1.390<br>1.373<br>1.361<br>1.351<br>1.338<br>1.320<br>1.306 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 44.3<br>44.1<br>42.3<br>45.1<br>46.1<br>46.4<br>46.3<br>46.2<br>46.0<br>45.7<br>45.5<br>45.4<br>45.2<br>45.1<br>44.9<br>44.7 | 42.0<br>10.5<br>0.0<br>477.4<br>1244.7<br>1498.3<br>1470.0<br>1287.7<br>1129.0<br>890.1<br>737.2<br>628.0<br>544.9<br>442.9<br>317.3<br>224.3<br>172.2 | 86.3<br>54.6<br>42.3<br>522.5<br>1290.8<br>1544.7<br>1516.3<br>1333.8<br>1175.0<br>935.8<br>782.8<br>673.3<br>590.1<br>488.0<br>362.1<br>269.0 | 2720.3<br>2687.5<br>2279.4<br>2940.7<br>3194.4<br>3267.2<br>3259.1<br>3206.9<br>3159.6<br>3086.6<br>3034.7<br>2996.4<br>2966.7<br>2926.1<br>2874.3<br>2830.1 | Flood Risk Flood Risk O K Flood Risk |
| 4320<br>5760<br>7200                                                                                    | min Wi<br>min Wi<br>min Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inter<br>inter<br>inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.033<br>63.024<br>63.017<br>63.008                                                                                                               | 1.283<br>1.274<br>1.267                                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0                                           | 44.4<br>44.3<br>44.2<br>44.1                                                                                                 | 103.3<br>64.3<br>38.6<br>11.6                                                                                                                          | 147.7<br>108.7<br>82.9                                                                                                                         | 2763.6<br>2738.4<br>2716.9                                                                                                                                   | Flood Risk<br>Flood Risk<br>Flood Risk<br>Flood Risk                                                                                                                                                                                       |

|       | Stor<br>Even |        | Rain<br>(mm/hr) | Flooded<br>Volume<br>(m <sup>3</sup> ) | Discharge<br>Volume<br>(m³) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Time-Peak<br>(mins) |
|-------|--------------|--------|-----------------|----------------------------------------|-----------------------------|-----------------------------------------|---------------------|
| 7200  | min          | Summer | 1.347           | 0.0                                    | 14991.9                     | 650.9                                   | 4040                |
| 8640  | min          | Summer | 1.151           | 0.0                                    | 15372.1                     | 81.7                                    | 5104                |
| 10080 | min          | Summer | 1.008           | 0.0                                    | 15693.2                     | 0.0                                     | 6072                |
| 15    | min          | Winter | 189.567         | 0.0                                    | 3978.5                      | 439.8                                   | 27                  |
| 30    | min          | Winter | 108.802         | 0.0                                    | 4679.8                      | 1140.8                                  | 34                  |
| 60    | min          | Winter | 62.447          | 0.0                                    | 6480.0                      | 1915.6                                  | 52                  |
| 120   | min          | Winter | 35.841          | 0.0                                    | 7438.3                      | 2745.6                                  | 84                  |
| 180   | min          | Winter | 25.902          | 0.0                                    | 8065.6                      | 3238.8                                  | 116                 |
| 240   | min          | Winter | 20.571          | 0.0                                    | 8541.3                      | 3579.6                                  | 148                 |
| 360   | min          | Winter | 14.866          | 0.0                                    | 9258.5                      | 4027.1                                  | 210                 |
| 480   | min          | Winter | 11.807          | 0.0                                    | 9807.1                      | 4300.6                                  | 272                 |
| 600   | min          | Winter | 9.874           | 0.0                                    | 10250.1                     | 4473.6                                  | 330                 |
| 720   | min          | Winter | 8.533           | 0.0                                    | 10625.8                     | 4579.6                                  | 392                 |
| 960   | min          | Winter | 6.853           | 0.0                                    | 11378.4                     | 4787.3                                  | 508                 |
| 1440  | min          | Winter | 5.031           | 0.0                                    | 11744.7                     | 4859.8                                  | 754                 |
| 2160  | min          | Winter | 3.694           | 0.0                                    | 13821.1                     | 4563.3                                  | 1108                |
| 2880  | min          | Winter | 2.967           | 0.0                                    | 14798.8                     | 4195.2                                  | 1484                |
| 4320  | min          | Winter | 2.092           | 0.0                                    | 15633.2                     | 3008.7                                  | 2296                |
| 5760  | min          | Winter | 1.632           | 0.0                                    | 16285.0                     | 1942.3                                  | 3176                |
| 7200  | min          | Winter | 1.347           | 0.0                                    | 16803.4                     | 981.8                                   | 4112                |
| 8640  | min          | Winter | 1.151           | 0.0                                    | 17232.8                     | 146.7                                   | 5352                |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drain laye  |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 8.SRCX

| Storm            | Max    | Max   | Max                  | Max     | Max      | Max              | Max    | Status |
|------------------|--------|-------|----------------------|---------|----------|------------------|--------|--------|
| Event            | Level  | Depth | ${\tt Infiltration}$ | Control | Overflow | $\Sigma$ Outflow | Volume |        |
|                  | (m)    | (m)   | (1/s)                | (l/s)   | (1/s)    | (1/s)            | (m³)   |        |
| 10080 min Winter | 62.815 | 1.065 | 0.0                  | 41.7    | 0.0      | 41.7             | 2153.8 | ОК     |

| Storm            | Rain           | Flooded | Discharge | Overflow | Time-Peak |  |
|------------------|----------------|---------|-----------|----------|-----------|--|
| Event            | (mm/hr) Volume |         | Volume    | Volume   | (mins)    |  |
|                  |                | (m³)    | (m³)      | (m³)     |           |  |
| 10080 min Winter | 1.008          | 0.0     | 17588.7   | 0.0      | 6568      |  |

| Alan Baxter Limited        |                       | Page 4      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | brairiage   |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 8.SRCX

| Rainfall Model        |           | FEH                   |
|-----------------------|-----------|-----------------------|
| Return Period (years) |           | 100                   |
| FEH Rainfall Version  |           | 1999                  |
| Site Location         | GB 459400 | 219250 SP 59400 19250 |
| C (1km)               |           | -0.025                |
| D1 (1km)              |           | 0.314                 |
| D2 (1km)              |           | 0.353                 |
| D3 (1km)              |           | 0.253                 |
| E (1km)               |           | 0.293                 |
| F (1km)               |           | 2.450                 |
| Summer Storms         |           | Yes                   |
| Winter Storms         |           | Yes                   |
| Cv (Summer)           |           | 0.750                 |
| Cv (Winter)           |           | 0.840                 |
| Shortest Storm (mins) |           | 15                    |
| Longest Storm (mins)  |           | 10080                 |
| Climate Change %      |           | +40                   |
|                       |           |                       |

#### Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:21      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drainage    |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Model Details for 8.SRCX

Storage is Online Cover Level (m) 63.250

#### Complex Structure

#### Tank or Pond

Invert Level (m) 61.750

| Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m²)  | Depth | (m) | Area | (m² | )   |
|-------|------|------|-------|-------|------|------|-------|-------|-----|------|-----|-----|
| 0.    | .000 | 14   | 150.0 | 1.    | .500 | 32   | 250.0 | 1.    | 501 |      | 0.  | . 0 |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference                    | MD-SHE-0264-4090-1500-4090 |
|-----------------------------------|----------------------------|
| Design Head (m)                   | 1.500                      |
| Design Flow (1/s)                 | 40.9                       |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 264                        |
| Invert Level (m)                  | 61.250                     |
| Minimum Outlet Pipe Diameter (mm) | 300                        |
| Suggested Manhole Diameter (mm)   | 1800                       |

# Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 40.9 Flush-Flo™ 0.485 40.9 Kick-Flo® 1.048 34.4 Mean Flow over Head Range 34.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (1/s) | Depth (m) Flow | (1/s) | Depth (m) Flow | (1/s) | Depth (m) | Flow (1/s) |
|-----------|------------|----------------|-------|----------------|-------|-----------|------------|
| 0.100     | 8.4        | 1.200          | 36.7  | 3.000          | 57.1  | 7.000     | 86.2       |
| 0.200     | 27.2       | 1.400          | 39.6  | 3.500          | 61.5  | 7.500     | 89.1       |
| 0.300     | 39.3       | 1.600          | 42.2  | 4.000          | 65.7  | 8.000     | 92.0       |
| 0.400     | 40.6       | 1.800          | 44.6  | 4.500          | 69.5  | 8.500     | 94.7       |
| 0.500     | 40.9       | 2.000          | 47.0  | 5.000          | 73.2  | 9.000     | 97.4       |
| 0.600     | 40.6       | 2.200          | 49.2  | 5.500          | 76.6  | 9.500     | 100.0      |
| 0.800     | 39.3       | 2.400          | 51.3  | 6.000          | 80.0  |           |            |
| 1.000     | 36.1       | 2.600          | 53.3  | 6.500          | 83.1  |           |            |

| Alan Baxter Limited        |                       | Page 6     |
|----------------------------|-----------------------|------------|
| 75 Cowcross Street         |                       |            |
| London                     |                       |            |
| EC1M 6EL                   |                       | Micro      |
| Date 16/05/2022 12:21      | Designed by dbowles   | Desinado   |
| File cascade 13-05-22.CASX | Checked by            | Diali lade |
| Causeway                   | Source Control 2019.1 |            |
| ·                          |                       |            |

#### Weir Overflow Control

Discharge Coef 0.544 Width (m) 10.000 Invert Level (m) 63.000

| Alan Baxter Limited        |                       | Page 1   |
|----------------------------|-----------------------|----------|
| 75 Cowcross Street         |                       |          |
| London                     |                       |          |
| EC1M 6EL                   |                       | Micco    |
| Date 16/05/2022 12:22      | Designed by dbowles   | Desinado |
| File cascade 13-05-22.CASX | Checked by            | Drainage |
| Causeway                   | Source Control 2019.1 |          |

#### Cascade Summary of Results for 9.SRCX

### Upstream Outflow To Overflow To Structures

4.SRCX (None) (None)
3.SRCX
1.SRCX
2.SRCX
8.SRCX
5.SRCX
6.SRCX
7.SRCX

Half Drain Time : 1231 minutes.

|      | Stor  | m      | Max    | Max   | Max          | Max     | Max              | Max    | Status     |
|------|-------|--------|--------|-------|--------------|---------|------------------|--------|------------|
|      | Event | t      | Level  | Depth | Infiltration | Control | $\Sigma$ Outflow | Volume |            |
|      |       |        | (m)    | (m)   | (1/s)        | (1/s)   | (1/s)            | (m³)   |            |
| 15   | min : | Summer | 62.015 | 0.265 | 0.0          | 54.1    | 54.1             | 2655.1 | ОК         |
| 30   | min : | Summer | 62.023 | 0.273 | 0.0          | 56.4    | 56.4             | 2735.8 | O K        |
| 60   | min : | Summer | 62.049 | 0.299 | 0.0          | 63.3    | 63.3             | 3007.8 | O K        |
| 120  | min : | Summer | 62.140 | 0.390 | 0.0          | 71.4    | 71.4             | 3951.8 | O K        |
| 180  | min : | Summer | 62.201 | 0.451 | 0.0          | 72.2    | 72.2             | 4594.0 | O K        |
| 240  | min : | Summer | 62.245 | 0.495 | 0.0          | 72.4    | 72.4             | 5070.3 | O K        |
| 360  | min : | Summer | 62.321 | 0.571 | 0.0          | 72.4    | 72.4             | 5881.4 | O K        |
| 480  | min : | Summer | 62.374 | 0.624 | 0.0          | 72.4    | 72.4             | 6461.4 | O K        |
| 600  | min : | Summer | 62.412 | 0.662 | 0.0          | 72.4    | 72.4             | 6879.8 | O K        |
| 720  | min : | Summer | 62.440 | 0.690 | 0.0          | 72.4    | 72.4             | 7185.7 | O K        |
| 960  | min : | Summer | 62.493 | 0.743 | 0.0          | 72.4    | 72.4             | 7766.9 | Flood Risk |
| 1440 | min : | Summer | 62.540 | 0.790 | 0.0          | 72.4    | 72.4             | 8299.0 | Flood Risk |
| 2160 | min : | Summer | 62.552 | 0.802 | 0.0          | 72.4    | 72.4             | 8427.4 | Flood Risk |
| 2880 | min : | Summer | 62.538 | 0.788 | 0.0          | 72.4    | 72.4             | 8276.6 | Flood Risk |

|      | Sto  | cm     | Rain    | Flooded | Discharge | Time-Peak |
|------|------|--------|---------|---------|-----------|-----------|
|      | Ever | nt     | (mm/hr) | Volume  | Volume    | (mins)    |
|      |      |        |         | (m³)    | (m³)      |           |
| 15   | min  | Cummor | 189.567 | 0.0     | 3673.5    | 1343      |
|      |      |        |         |         |           |           |
| 30   | mın  | Summer | 108.802 | 0.0     | 4309.4    | 1243      |
| 60   | min  | Summer | 62.447  | 0.0     | 8733.1    | 288       |
| 120  | min  | Summer | 35.841  | 0.0     | 9887.8    | 276       |
| 180  | min  | Summer | 25.902  | 0.0     | 10513.2   | 336       |
| 240  | min  | Summer | 20.571  | 0.0     | 10906.6   | 402       |
| 360  | min  | Summer | 14.866  | 0.0     | 11366.2   | 548       |
| 480  | min  | Summer | 11.807  | 0.0     | 11344.9   | 666       |
| 600  | min  | Summer | 9.874   | 0.0     | 11098.5   | 784       |
| 720  | min  | Summer | 8.533   | 0.0     | 10836.0   | 904       |
| 960  | min  | Summer | 6.853   | 0.0     | 10291.1   | 1150      |
| 1440 | min  | Summer | 5.031   | 0.0     | 9447.5    | 1638      |
| 2160 | min  | Summer | 3.694   | 0.0     | 19952.7   | 2312      |
| 2880 | min  | Summer | 2.967   | 0.0     | 20042.1   | 2916      |

| Alan Baxter Limited        |                       | Page 2      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:22      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | niamade     |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Summary of Results for 9.SRCX

|       | Storm<br>Event |        | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Infiltration<br>(1/s) |      |      |         | Status     |
|-------|----------------|--------|---------------------|---------------------|------------------------------|------|------|---------|------------|
| 4320  | min            | Summer | 62.402              | 0.652               | 0.0                          | 72.4 | 72.4 | 6761.7  | ОК         |
| 5760  | min :          | Summer | 62.312              | 0.562               | 0.0                          | 72.4 | 72.4 | 5781.7  | O K        |
| 7200  | min :          | Summer | 62.233              | 0.483               | 0.0                          | 72.3 | 72.3 | 4938.6  | O K        |
| 8640  | min :          | Summer | 62.164              | 0.414               | 0.0                          | 71.8 | 71.8 | 4208.9  | O K        |
| 10080 | min            | Summer | 62.135              | 0.385               | 0.0                          | 71.3 | 71.3 | 3907.3  | O K        |
| 15    | min N          | Winter | 62.021              | 0.271               | 0.0                          | 55.8 | 55.8 | 2719.7  | O K        |
| 30    | min N          | Winter | 62.038              | 0.288               | 0.0                          | 60.5 | 60.5 | 2890.7  | O K        |
| 60    | min N          | Winter | 62.125              | 0.375               | 0.0                          | 71.0 | 71.0 | 3794.0  | O K        |
| 120   | min N          | Winter | 62.236              | 0.486               | 0.0                          | 72.4 | 72.4 | 4972.6  | O K        |
| 180   | min N          | Winter | 62.322              | 0.572               | 0.0                          | 72.4 | 72.4 | 5894.1  | O K        |
| 240   | min N          | Winter | 62.387              | 0.637               | 0.0                          | 72.4 | 72.4 | 6599.3  | O K        |
| 360   | min N          | Winter | 62.479              | 0.729               | 0.0                          | 72.4 | 72.4 | 7617.3  | Flood Risk |
| 480   | min N          | Winter | 62.544              | 0.794               | 0.0                          | 72.4 | 72.4 | 8335.6  | Flood Risk |
| 600   | min N          | Winter | 62.589              | 0.839               | 0.0                          | 72.4 | 72.4 | 8851.1  | Flood Risk |
| 720   | min N          | Winter | 62.621              | 0.871               | 0.0                          | 72.4 | 72.4 | 9214.4  | Flood Risk |
| 960   | min N          | Winter | 62.680              | 0.930               | 0.0                          | 72.4 | 72.4 | 9885.8  | Flood Risk |
| 1440  | min N          | Winter | 62.735              | 0.985               | 0.0                          | 72.4 | 72.4 | 10522.0 | Flood Risk |
| 2160  | min N          | Winter | 62.742              | 0.992               | 0.0                          | 72.4 | 72.4 | 10596.5 | Flood Risk |
| 2880  | min N          | Winter | 62.720              | 0.970               | 0.0                          | 72.4 | 72.4 | 10344.5 | Flood Risk |
| 4320  | min N          | Winter | 62.591              | 0.841               | 0.0                          | 72.4 | 72.4 | 8871.1  | Flood Risk |
| 5760  | min N          | Winter | 62.407              | 0.657               | 0.0                          | 72.4 | 72.4 | 6824.8  | O K        |

|       | Stor | m      | Rain    | Flooded | Discharge | Time-Peak |
|-------|------|--------|---------|---------|-----------|-----------|
|       | Even | t      | (mm/hr) | Volume  | Volume    | (mins)    |
|       |      |        |         | (m³)    | (m³)      |           |
|       |      |        |         |         |           |           |
| 4320  | min  | Summer | 2.092   | 0.0     | 18750.6   | 3544      |
| 5760  | min  | Summer | 1.632   | 0.0     | 25389.5   | 4216      |
| 7200  | min  | Summer | 1.347   | 0.0     | 26111.8   | 4952      |
| 8640  | min  | Summer | 1.151   | 0.0     | 26674.1   | 5696      |
| 10080 | min  | Summer | 1.008   | 0.0     | 26999.4   | 6384      |
| 15    | min  | Winter | 189.567 | 0.0     | 4204.2    | 1277      |
| 30    | min  | Winter | 108.802 | 0.0     | 5006.3    | 419       |
| 60    | min  | Winter | 62.447  | 0.0     | 9714.8    | 218       |
| 120   | min  | Winter | 35.841  | 0.0     | 10823.5   | 290       |
| 180   | min  | Winter | 25.902  | 0.0     | 11467.5   | 382       |
| 240   | min  | Winter | 20.571  | 0.0     | 11707.1   | 446       |
| 360   | min  | Winter | 14.866  | 0.0     | 11410.3   | 574       |
| 480   | min  | Winter | 11.807  | 0.0     | 10915.2   | 708       |
| 600   | min  | Winter | 9.874   | 0.0     | 10502.9   | 820       |
| 720   | min  | Winter | 8.533   | 0.0     | 10315.0   | 918       |
| 960   | min  | Winter | 6.853   | 0.0     | 10160.7   | 1128      |
| 1440  | min  | Winter | 5.031   | 0.0     | 9851.9    | 1574      |
| 2160  | min  | Winter | 3.694   | 0.0     | 21227.7   | 2260      |
| 2880  | min  | Winter | 2.967   | 0.0     | 20452.1   | 2924      |
| 4320  | min  | Winter | 2.092   | 0.0     | 18435.9   | 4220      |
| 5760  | min  | Winter | 1.632   | 0.0     | 28424.1   | 4656      |
|       |      |        |         |         |           |           |

| Alan Baxter Limited        |                       | Page 3      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:22      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Diali lade  |
| Causeway                   | Source Control 2019.1 | '           |

#### Cascade Summary of Results for 9.SRCX

| Storm<br>Event  | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max Infiltration (1/s) |              | _ | Max<br>Volume<br>(m³) | Status |
|-----------------|---------------------|---------------------|------------------------|--------------|---|-----------------------|--------|
| 7200 min Winter | ` ,                 |                     |                        | 72.4         |   | 5502.4                | ОК     |
| 8640 min Winter |                     |                     | 0.0                    | 72.0<br>71.3 |   | 4395.3<br>3919 0      | 0 K    |

|       | Storm<br>Event |          | Volume (m <sup>3</sup> ) | Volume<br>(m³) | Time-Peak<br>(mins) |
|-------|----------------|----------|--------------------------|----------------|---------------------|
| 7200  | min Wint       | er 1.347 | 0.0                      | 29251.0        | 5416                |
| 8640  | min Wint       | er 1.151 | 0.0                      | 29880.5        | 6160                |
| 10080 | min Wint       | er 1 008 | 0 0                      | 30292 5        | 6808                |

| Alan Baxter Limited        |                       | Page 4      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micro       |
| Date 16/05/2022 12:22      | Designed by dbowles   | Designation |
| File cascade 13-05-22.CASX | Checked by            | Drainage    |
| Causeway                   | Source Control 2019.1 |             |

#### Cascade Rainfall Details for 9.SRCX

| Rainfall Model        |           | FEH                   |
|-----------------------|-----------|-----------------------|
| Return Period (years) |           | 100                   |
| FEH Rainfall Version  |           | 1999                  |
| Site Location         | GB 459400 | 219250 SP 59400 19250 |
| C (1km)               |           | -0.025                |
| D1 (1km)              |           | 0.314                 |
| D2 (1km)              |           | 0.353                 |
| D3 (1km)              |           | 0.253                 |
| E (1km)               |           | 0.293                 |
| F (1km)               |           | 2.450                 |
| Summer Storms         |           | Yes                   |
| Winter Storms         |           | Yes                   |
| Cv (Summer)           |           | 0.750                 |
| Cv (Winter)           |           | 0.840                 |
| Shortest Storm (mins) |           | 15                    |
| Longest Storm (mins)  |           | 10080                 |
| Climate Change %      |           | +40                   |
|                       |           |                       |

#### Time Area Diagram

Total Area (ha) 0.000

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.000

| Alan Baxter Limited        |                       | Page 5      |
|----------------------------|-----------------------|-------------|
| 75 Cowcross Street         |                       |             |
| London                     |                       |             |
| EC1M 6EL                   |                       | Micco       |
| Date 16/05/2022 12:22      | Designed by dbowles   | Desinado    |
| File cascade 13-05-22.CASX | Checked by            | Drail large |
| Causeway                   | Source Control 2019.1 | •           |

#### Cascade Model Details for 9.SRCX

Storage is Online Cover Level (m) 62.750

#### Complex Structure

#### Tank or Pond

Invert Level (m) 61.750

| Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m²)  | Depth | (m)  | Area | (m²) |
|-------|------|------|-------|-------|------|------|-------|-------|------|------|------|
| 0.    | .000 | 98   | 300.0 | 1.    | .000 | 116  | 512.0 | 1.    | .001 |      | 0.0  |

#### Hydro-Brake® Optimum Outflow Control

| Unit Reference                    | MD-SHE-0344-7240-1000-7240 |
|-----------------------------------|----------------------------|
| Design Head (m)                   | 1.000                      |
| Design Flow (1/s)                 | 72.4                       |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 344                        |
| Invert Level (m)                  | 61.750                     |
| Minimum Outlet Pipe Diameter (mm) | 375                        |
| Suggested Manhole Diameter (mm)   | 2100                       |

| Control       | Points       | Head (m) | Flow (1/s) |
|---------------|--------------|----------|------------|
| Design Point  | (Calculated) | 1.000    | 72.4       |
|               | Flush-Flo™   | 0.498    | 72.4       |
|               | Kick-Flo®    | 0.816    | 65.6       |
| Mean Flow ove | r Head Range | _        | 56.6       |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) Flo | w (1/s) | Depth (m) F | low (1/s) | Depth (m) Flo | w (1/s) | Depth (m) | Flow (1/s) |
|---------------|---------|-------------|-----------|---------------|---------|-----------|------------|
|               |         |             |           |               |         |           |            |
| 0.100         | 10.0    | 1.200       | 79.1      | 3.000         | 123.4   | 7.000     | 186.8      |
| 0.200         | 34.9    | 1.400       | 85.2      | 3.500         | 133.1   | 7.500     | 193.2      |
| 0.300         | 63.7    | 1.600       | 90.9      | 4.000         | 142.0   | 8.000     | 199.4      |
| 0.400         | 71.5    | 1.800       | 96.2      | 4.500         | 150.4   | 8.500     | 205.4      |
| 0.500         | 72.4    | 2.000       | 101.3     | 5.000         | 158.4   | 9.000     | 211.3      |
| 0.600         | 71.7    | 2.200       | 106.1     | 5.500         | 166.0   | 9.500     | 217.0      |
| 0.800         | 66.4    | 2.400       | 110.7     | 6.000         | 173.2   |           |            |
| 1.000         | 72.4    | 2.600       | 115.1     | 6.500         | 180.1   |           |            |

# Appendix D Correspondence

#### File Note

| Job | Graven Hill – SuDS | Circ.   |            |
|-----|--------------------|---------|------------|
|     |                    | Job no. | 1923/01    |
|     |                    | Date    | 14-02-2022 |
|     |                    | From    | RM         |

#### **Drainage Pre-App**

#### **Attendees**

Oxfordshire County Council (OCC) – Nagina Bawar (Senior LLFA Engineer)

Atelier Gooch – Gooch, Justina Resolute Property – Mark ABA – RM, OF

#### **Key Points**

- AG ran through the overall scheme, as Nagina was not up to speed with the proposals (she had not read the pre-app note that we had prepared). Mark clarified that we are submitting a new outline planning application
- Nagina advised that the site should discharge at Q\_Bar unless this is proven unfeasible
  - o RM tested whether the previous rates (which had different discharge rates for different events) were still acceptable firm no
  - o In first instance, OCC want the scheme to reduce rates to greenfield
- OCC are happy for below ground tanks/attenuation to be used if there is not sufficient space for open basins on the site
- RPS are pulling together the Flood Risk Assessment, which OCC would like to see as the LLFA
- Nagina suggested we should contact the EA to advise them of the scheme
- Nagina also advised that we do not need to consider urban creep this will reduce the volume of storage required by 10% (so ~18,000m³ vs ~20,000 m³ of attenuation)

#### **Next Steps**

- RM to email Nagina with update pre-app note confirming the agreed strategy
- RM to review the impact of the revised storage volume on the masterplan



#### **SEWER IMPACT STUDY**

X4503 - 619

#### **SMG 0990**

## PROPOSED CONNECTION AT GRAVEN HILL SITE D & E, BICESTER GARRISON, BICESTER

**FOUL SYSTEM** 

V2.0 April 2015

Prepared by: Girija Mulay
Checked by: Amruta Prabhu
Approved by: Fiona Macdonald



Network & Process Modelling Group Thames Water Utilities Ltd Power House, Island Road Reading, Berkshire RG2 0RP

#### Contents

| 1.0 | Introduction                              | 3 |
|-----|-------------------------------------------|---|
|     | Background                                |   |
| 3.0 | Existing Sewerage System                  |   |
| 4.0 | Thames Water Drainage Requirements        |   |
|     | Sewer Impact Assessment                   |   |
|     | Foul Water Sewers                         |   |
| 5   | 5.1.1 Assessment of Existing Catchment    | Ę |
| 5   | 5.1.2 Assessment of Development Catchment | Ę |
| 5   | 5.1.3 Foul System Improvement Works       | Ę |
| 6.0 | Risks and Issues                          | Ę |
| 7.0 | Conclusions                               | 6 |

#### **Appendices**

- A Site Plan
- B Plan Showing Local Sewers

#### 1.0 Introduction

The following report was commissioned by Thames Water's Developer Services to investigate the capacity within the existing foul network and to ascertain the impact of a proposed new connection on the foul network at Bicester Garrison, Bicester.

The scope of the study is to undertake a preliminary desktop study based upon an existing hydraulic model.

The scope of the study includes:

- Carry out a manhole survey, pumping station survey and a short-term flow survey
- Model enhancement with manhole and pumping station survey data
- Verify the model using flow survey data
- Check the current performance of the existing network during both dry and wet weather events.
- Add development flows to the model and check the impact of additional flow to the sewer network during both dry and wet weather events.
- Suggest possible options to allow flows to be accepted into the existing network with no
  detriment to existing levels of service. It should be noted that these options are indicative
  and are likely to be subject to change based on site conditions, other utilities and
  requirements of third parties. However, the options indicate the feasibility of connecting
  the site to the sewerage system and the ability of the sewerage system to accept the
  development.

#### 2.0 Background

The proposed new development is on a mixed Greenfield/Brownfield site and the Developer has proposed to accommodate 1750 residential units, a school, employment and general industries. The development area is situated in the town of Bicester, Oxfordshire, approximately 23km to the southeast of Banbury.

The development area is bounded by the A41 to the northeast and a railway line to the southwest.

The foul flow from the development area has been calculated, using the latest Thames Water guidelines, as an average gravity flow of 46.06l/s.

The development site is divided into five catchments. The flow for each catchment and connection manhole provided by Developer is as below,

Catchment 1A - Foul flow of 6.93l/s from catchment 1A has been connected to manhole SP58218201, located upstream of Rodney House Sewage Pumping Station.

Catchment 1B - Foul flow of 2.67l/s from catchment 1B has been connected to manhole SP58218201, located upstream of Rodney House Sewage Pumping Station.

Catchment 1C - Foul flow of 4.66l/s from catchment 1C has been connected to manhole SP59206201, located upstream of Graven Hill Sewage Pumping Station.

Catchment 2A - Foul flow of 1.11l/s from catchment 2A has been connected to manhole SP58200203, located upstream of Graven Hill Sewage Pumping Station.

Catchment 2B (B1a) - Foul flow of 4.01l/s from catchment 2B (B1a) has been connected to Graven Hill Sewage Pumping Station.

Catchment 2B (B2) - Foul flow of 26.68l/s from sub catchment 2B (B2) has been connected to Graven Hill Sewage Pumping Station.

A plan showing the location of the development and connection points is provided in Appendix A.

#### 3.0 Existing Sewerage System

The area in the vicinity of the development site is served by a separate foul and surface water sewer network.

From the development site, flows would drain in a north-easterly direction towards Rodney House Sewage Pumping Station, or in a southerly direction towards Graven Hill Sewage Pumping Station. Flows ultimately arrive at Bicester Sewage Treatment Works (STW), which is located to the northwest of the development site.

Flows travel through sewers ranging from 225mm diameter to 900mm diameter from the development area towards Bicester STW.

The local foul sewers are shown in the plan provided in Appendix B.

#### 4.0 Thames Water Drainage Requirements

It is necessary to provide separate foul and surface water drainage systems and to ensure that each system is connected to an appropriate drainage system.

As the Developer proposes to connect only foul flows into the existing network, this report only covers the impact of the foul sewage flows from the proposed development on the existing foul sewer networks adjacent to and downstream of the proposed development. Surface water flows from the proposed development are not considered in this report and should not be connected to the foul sewer network.

Additional development flows should not cause new or additional flood risk to the existing system in either dry or wet weather.

#### 5.0 Sewer Impact Assessment

Assessment of the hydraulic loading of the foul network was carried out by means of an existing hydraulic model.

The model was enhanced with the results of a manhole and pumping station survey carried out in the study area. A flow survey was also completed to enable a verification exercise to be completed, and to confirm the current flows in the sewer network.

The proposed new development area and connection point details were added to the model and the assessment completed to identify the impact of the proposed new development.

The analysis of the catchment indicates that the foul network is responsive to rainfall, with flooding being a risk in the catchment for extreme events.

The impact of the proposed foul connection manholes was assessed based on the design flows detailed in Section 2.0.

#### 5.1 Foul Sewers

#### 5.1.1 Assessment of Existing Catchment

The hydraulic model indicates that the existing foul network does have available capacity downstream of the proposed connection manholes. The hydraulic model has been used to assess wet weather scenarios of various durations. During these wet weather events, the hydraulic model predicts network surcharge and flooding to occur.

#### 5.1.2 Assessment of Development Catchment

An analysis has been completed to assess the impact of connecting the flows from the development into the public sewer. An allowance of 46.06l/s average gravity flow was used to represent the development.

**Table 1: Proposed Development Connection Details** 

| Connection                | Manhole                         | Diameter of Outgoing<br>Sewer |
|---------------------------|---------------------------------|-------------------------------|
| Development Site 1A       | SP58218201                      | 225mm                         |
| Development Site 1B       | SP58218201                      | 225mm                         |
| Development Site 1C       | SP59206201                      | 225mm                         |
| Development Site 2A       | SP58200203                      | 375mm                         |
| Development Site 2B (B1a) | SP58199701<br>(Graven Hill SPS) |                               |
| Development Site 2B (B2)  | SP58199701<br>(Graven Hill SPS) |                               |

#### 5.1.3 Foul System Improvement Works

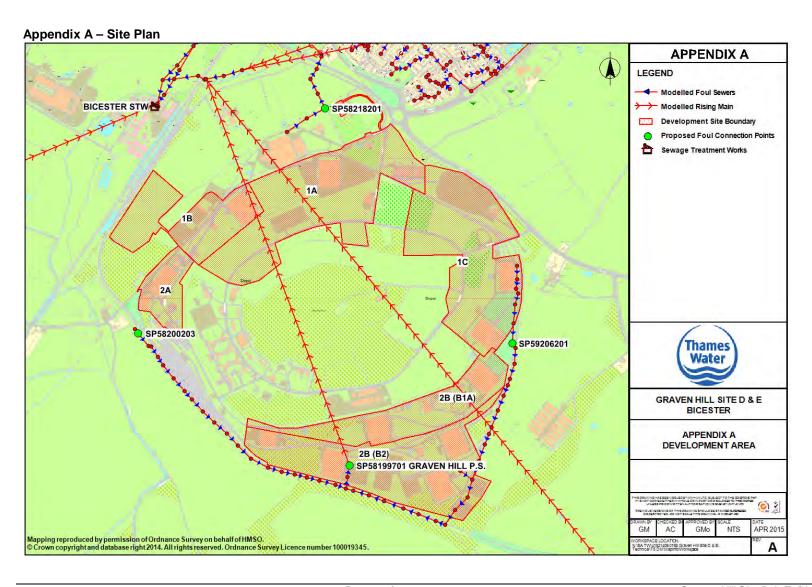
On removal of existing flows and inclusion of proposed development flows, the hydraulic model indicates that the foul network is able to accept the proposed development flows without causing detriment to the current level of service provided. Therefore, improvements to the existing foul sewer network would not be required.

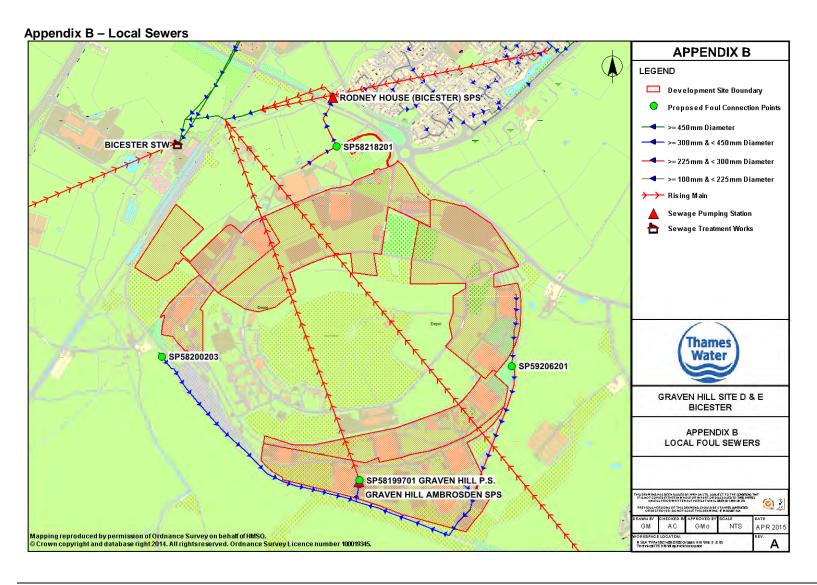
#### 6.0 Risks and Issues

Current understanding of the hydrology of urban environments recognises that the effective pervious area (the pervious proportion of the catchment that produces surface runoff and generates flow in the sewer) is likely to exhibit a dynamic nature in relation to increasing volumes of rainfall, i.e. the more rainfall the greater the resulting effective pervious area is likely to be.

Whilst the hydrological models deployed attempt to simulate this dynamic behaviour, there is a risk that the model, when extrapolated to storm events, will not accurately predict the flows in the system. Therefore, any potential error is multiplied when the system is tested against a large design storm.

The proposed development site is located within the Environment Agency's Risk of Flooding from Surface Water area, and the drainage of the site is therefore at risk of surface water ingress. The Developer should undertake necessary measures to ensure that the foul sewers are adequately protected against surface water ingress.


#### 7.0 Conclusions


The desktop study has successfully investigated and identified the implications of the proposed new development on a mixed Greenfield/Brownfield site at Bicester Garrison, Bicester to the existing foul network.

The hydraulic model indicates that the foul network does have available capacity downstream of the proposed connection manholes to accept the proposed development flows on removal of the existing flows from the site.

Improvements to the existing foul network are not required to enable the proposed connection to the sewer network, without causing any detriment to the level of service provided.

The issues highlighted and discussed throughout this report are recommendations to Thames Water Utilities and may be altered/added to based upon local operational knowledge of the system.



