All dimensions are in metres.

Logged in accordance with BS5930:2015

GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2) **Trial Pit TP839** Project Engineer WATERMAN INFRASTRUCTURE & ENVIRONMENT LIMITED Project No PC207899 GRAVEN HILL VILLAGE DEVELOPMENT National Grid Client Ground Level 66.96 m OD Coordinates COMPANY LIMITED 219886.1 1:50 Samples and Tests Strata Scale Level Stratum Depth Type Results Description Depth Legend m ODΝo G.L. 66.96 1 0.17 66.79 0.10 ES MADE GROUND: Asphalt. 0.10 0.20 0.20 0.40 PID=<0.1 2 MADE GROUND: Light yellowish brown gravelly slightly silty sand. Gravel is angular to subangular fine to coarse limestone and brick. 0.40 ES 66.56 PID=<0.1 В 3 0.40 в Between 0.20-0.25m, a layer of black sandy silt. 0.90 66.06 0.90 ΗV Av=50kPa 1.00 1.00 1.00 1.00 1.00 1.50 PROBABLE MADE GROUND: Grey slightly sandy gravel with a high cobble and boulder content of angular to subangular medium strong limestone. в в mc=42% D 4 ES PID=<0.1 Firm light grey and brown slightly sandy CLAY. D ES Below 1.30m, becoming light grey mottled orangish HV Av=61kPa 1.95 65.01 1.50 1.80 PID=<0.1 ΗV Av=52kPa Stiff dark brown slightly sandy CLAY 1.90 2.10 2.10 2.10 D 5 B B D D Below 2.30m, becoming very stiff. mc=34% 2.60 3.00 63.96 End of Excavation Groundwater Excavation Depth Depth Plant Width (B) JCB 3CX 14/04/2020 0.60 Details of Pit Length (Ć) Observed Shoring 216 deg 14/07/2020 Orientation 0.45 0.45 Fast seepage. Date Backfilled Stability Stable during excavation. Remarks

Es sample = 2 x vial, 1 x plastic jar and 2 amber jar

Radioactive screening at discrete sample depths, using a Thermo Scientific Mini 900E. No

Symbols and abbreviations are activity detected.

Backfill details from base of hole: arisings up to ground level. Logged by MJ Figure 1 of 1 06/11/2020 explained on the accompanying geolechnics kev sheet.

Sampl	e Types	Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	▼		
С	Core sample	Depth Water Rose To	<u> </u>		00000
D	Small disturbed sample (tub/jar)	Instrumentation		Siltstone	x x x x x x x x x x x x x x x x x x x
E	Environmental test sample		77	Metamorphic Rock	××××
ES	Environmental soil sample	Seal		Fine Grained	·······
EW	Environmental water sample		22	Medium Grained	**********
G	Gas sample		111	riedium Gramed	\approx
L	Liner sample	Filter		Coarse Grained	~~~
LB	Large bulk disturbed sample	Titedi	111	Coarse Grained	$\sim\sim$
Р	Piston sample (PF - failed P sample)		-	Igneous Rock	VVVV
TW	Thin walled push in sample		35	Fine Grained	, , , , , ,
U	Open Tube - 102mm diameter with blows to take sample. (UF - failed U sample)	Seal		Medium Grained	++++
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	****
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	F2
V	Vial sample	Mada Craund			
W	Water sample	Made Ground Cohesive		Arisings	
#	Sample Not Recovered				8
	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe	California David			2
CHP	Constant Head Permeability Test	Cobbles and Boulders	63	Concrete	4
COND			<u>~ ~ (</u>	Concrete	
TC	Thermal Conductivity	Gravel			
TR	Thermal Resistivity		* * * * * * * * * * * * * * * * * * * *	Fine Gravel Filter	
HV ICBR	Strength from Hand Vane CBR Test	Sand			
IDEN	Density Test	Sand		0 15:11	
IRES	Resistivity Test			General Fill	
MEX	CBR using Mexecone	Silt	* * * *		Ī. . -
DID	Probe Test		× × ;	Gravel Filter	
PID	Photo Ionisation Detection (ppm)		×	Graverrineer	<u>:</u>
PKR	Packer Permeability Test	Clay			
PLT	Plate Load Test		_	Grout	
PP	Strength from Pocket Penetrometer		2/1/2		
Temp	Temperature	Peat	N/2	C LET	000
VHP	Variable Head Permeability Test		13/62 13/62	Sand Filter	ρο . Θ
VN	Strength from Insitu Vane	Nata Comment			
w%	Water content	Note: Composite soil types by combined symbols	snown	Tarmacadam	
(All ot undrair	her strengths from ned triaxial testing)	•			
S	Standard Penetration Test	Chalk		Rotary Core	
_	(SPT)			RQD Rock Quality D	
C N	SPT with cone SPT Result	Limestone		(% of intact cor FRACTURE INDEX	e >100mm)
-/-	Blows/penetration (mm) after seating drive			Fractures/metro	е
*/ (mm)	Total blows/penetration	Sandstone		SPACING (m) Minimum NI Non-intact	
()	Extrapolated value			NR No core re AZCL Assumed z loss	ecovery one of core
		Coal		(where core recovery is unknot assumed to be at the base of th	

C. In-Situ Test Results

In-situ CBR Test Results (TRL DCP)
Soakaway Test Results

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC804 Project No. PC207899

Test No.

Test Date

24/07/2020

Client Graven Hill Village Development Company Limited

Coordinates 459530.0 E, 220018.2 N

Ground Level 66.76 m OD

Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)
0	0	1	115	0	1	21	1	833	718	1	42	2	727	1405
1	1	1	180	65	1	22	2	100	778	1	43	2	743	1421
1	2	1	212	97	1	23	2	166	844	1	44	2	755	1433
1	3	1	234	119	1	24	2	230	908	1	45	2	766	1444
1	4	1	255	140	1	25	2	293	971	1	46	2	780	1458
1	5	1	283	168	1	26	2	357	1035	1	47	2	791	1469
1	6	1	310	195	1	27	2	410	1088	1	48	2	803	1481
1	7	1	337	222	1	28	2	447	1125	1	49	2	814	1492
1	8	1	366	251	1	29	2	481	1159	1	50	2	827	1505
1	9	1	395	280	1	30	2	511	1189	1	51	2	832	1510
1	10	1	423	308	1	31	2	537	1215	1	52	3	50	1520
1	11	1	447	332	1	32	2	561	1239	1	53	3	65	1535
1	12	1	474	359	1	33	2	582	1260	1	54	3	70	1540
1	13	1	503	388	1	34	2	601	1279	1	55	3	80	1550
1	14	1	531	416	1	35	2	619	1297	1	56	3	91	1561
1	15	1	559	444	1	36	2 .	635	1313	1	57	3	101	1571
1	16	1	587	472	1	37	2	654	1332	1	58	3	110	1580
1	17	1	616	501	1	38	2	669	1347	1	59	3	118	1588
1	18	1	652	537	1	39	2	685	1363	1	60	3	130	1600
1	19	1	697	582	1	40	2	699	1377	1	61	3	138	1608
1	20	1	753	638	1	41	2	713	1391	1	62	3	148	1618

Test Started at	0.00	m
Operator	EPS	
Checked by	TNH	

Rod No.	Zero Reading (mm)
1	115
2	40
3	40

Depth bgl (mm) Blows No. DCP CRR (/									
Top	gi (mm) Base	Top	s no. Base	DCP mm/blow	CBR %				
0	65	0	1	65	3.7				
65	280	1	9	27	9.3				
65	280	9	18	24	10.5				
537	778	18	22	60	4.0				
778	1125	22	28	58	4.1				
1125	1239	28	32	29	8.8				
1239	1405	32	42	17	15.5				
1405	1540	42	54	11	23.4				
1540	1800	54	84	9	30.8				
1800	2039	84	117	7	37.2				

CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

Printed: 28/09/2020

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC804 **Project No.** PC207899

Test No. 1

Test Date 24/0

24/07/2020

Client Graven Hill Village Development Company Limited

Coordinates 459530.0 E, 220018.2 N									
Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)						
63	3	154	1624						
66	3	183	1653						
69	3	210	1680						
72	3	234	1704						
75	3	259	1729						
78	3	284	1754						
81	3	305	1775						
84	3	330	1800						
87	3	352	1822						
90	3	378	1848						
93	3	396	1866						
96	3	416	1886						
99	3	437	1907						
102	3	458	1928						
105	3	479	1949						
108	3	502	1972						
111	3	524	1994						
114	3	547	2017						
117	3	569	2039						
	Blows Total 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111	Blows Total Rod No. 63 3 66 3 69 3 72 3 75 3 81 3 84 3 90 3 93 3 96 3 99 3 102 3 105 3 111 3 114 3	Blows Total Rod No. Reading (mm) 63 3 154 66 3 183 69 3 210 72 3 234 75 3 259 78 3 284 81 3 305 84 3 330 87 3 352 90 3 378 93 3 396 96 3 416 99 3 437 102 3 458 105 3 479 108 3 502 111 3 524 114 3 547						

Test Started at	0.00	m	
Operator	EPS		
Checked by	TNH		

Rod No.	Zero Reading (mm)
1	115
2	40
3	40

	Depth bgl (mm)		s No.	DCP	CBR %					
Тор	Base	Тор	Base	mm/blow	021170					
0	65	0	1	65	3.7					
65	280	1	9	27	9.3					
65	280	9	18	24	10.5					
537	778	18	22	60	4.0					
778	1125	22	28	58	4.1					
1125	1239	28	32	29	8.8					
1239	1405	32	42	17	15.5					
1405	1540	42	54	11	23.4					
1540	1800	54	84	9	30.8					
1800	2039	84	117	7	37.2					

Remarks

GEOTECHNICS

Printed: 28/09/2020

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC807 Project No. PC207899

31/07/2020

2014

Client Graven Hill Village Development Company Limited

Test Date

Test No.

95 3

Coordinates 459203.9 E, 219929.9 N

Ground Level 69.27 m OD

Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)
3	80	3	826	1900
3	83	3	851	1925
3	86	3	875	1949
3	89	3	896	1970
3	92	3	910	1984

940

Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)		Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)
0	0	1	115	0	Ī	1	21	1	825	710
1	1	1	185	70	Ī	1	22	1	856	741
1	2	1	226	111		1	23	2	97	772
1	3	1	260	145		3	26	2	212	887
1	4	1	293	178		3	29	2	313	988
1	5	1	321	206		3	32	2	401	1076
1	6	1	350	235		3	35	2	498	1173
1	7	1	376	261		3	38	2	606	1281
1	8	1	403	288		3	41	2	711	1386
1	9	1	428	313		3	44	2	788	1463
1	10	1	458	343		3	47	2	845	1520
1	11	1	488	373		3	50	3	497	1571
1	12	1	527	412	Ī	3	53	3	544	1618
1	13	1	553	438	Ī	3	56	3	587	1661
1	14	1	583	468		3	59	3	625	1699
1	15	1	616	501		3	62	3 ,	659	1733
1	16	1	647	532		3	65	3	694	1768
1	17	1	679	564		3	68	3	723	1797
1	18	1	716	601		3	71	3	750	1824
1	19	1	755	640		3	74	3	778	1852
1	20	1	794	679		3	77	3	803	1877

Test Started at	0.00	m ,
Operator	EPS	
Checked by	TNH	

Rod No.	Zero Reading (mm)
1	115
2	66
3	446

Denth h	Depth bgl (mm) Blows No. DCP CRR 9/											
Top	Base	Top	Base	mm/blow	CBR %							
0	111	0	2	111	2.1							
111	373	2	11	29	8.6							
373	772	11	23	33	7.4							
772	988	23	29	36	6.8							
988	1173	29	35	31	8.1							
1173	1386	35	41	36	6.9							
1386	1520	41	47	22	11.3							
1520	1661	47	56	16	16.5							
1661	1797	56	68	11	23.2							
1797	2014	68	95	8	33.4							

CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

GEOTECHNICS

Printed: 28/09/2020

Remarks

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC808 Project No. PC207899 Test No.

Client Graven Hill Village Development Company Limited

Coordinates 459229.2 E, 219850.0 N

Ground Level 66.57 m OD **Test Date** 31/07/2020

Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	Blov	- 1	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	ows lo.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)
0	0	1	110	0		1	21	1	636	526	3	72	3	468	1566
1	1	1	140	30		1	22	1	681	571	3	75	3	517	1615
1	2	1	166	56		1	23	1	722	612	3	78	3	541	1639
1	3	1	187	77		1	24	1	761	651	5	83	3	580	1678
1	4	1	209	99		1	25	1	797	687	5	88	3	618	1716
1	5	1	225	115		1	26	1	826	716	5	93	3	654	1752
1	6	1	244	134		1	27	1	860	750	5	98	3	690	1788
1	7	1	258	148		3	30	2	146	845	5	103	3	724	1822
1	8	1	271	161		3	33	2	238	937	5	108	3	759	1857
1	9	1	286	176		3	36	2	333	1032	5	113	3	792	1890
1	10	1	308	198		3	39	2	428	1127	5	118	3	826	1924
1	11	1	330	220		3	42	2	497	1196	5	123	3	858	1956
1	12	1	355	245		3	45	2	558	1257	5	128	3	894	1992
1	13	1	392	282		3	48	2	610	1309	5	133	3	920	2018
1	14	1	425	315		3	51	2	658	1357					
1	15	1	452	342		3	54	2 .	694	1393					
1	16	1	484	374		3	57	2	730	1429					
1	17	1	507	397		3	60	2	760	1459					
1	18	1	535	425		3	63	2	788	1487					
1	19	1	566	456		3	66	2	818	1517					
1	20	1	598	488		3	69	2	842	1541					

Test Started at	0.00	m
Operator	EPS	
Checked by	TNH	

Rod No.	Zero Reading (mm)
1	110
2	51
3	443

Depth b	DCP				
Тор	Base	Тор	s No. Base	mm/blow	CBR %
0	115	0	5	23	11.0
115	198	5	10	17	15.5
198	425	10	18	28	8.8
425	750	18	27	36	6.8
750	1195	27	42	30	8.4
1195	1356	42	51	18	14.3
1356	1428	51	57	12	21.8
1428	1565	57	72	9	29.1
1565	1614	72	75	16	15.8
1614	2017	75	133	7	38.9

Remarks CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC809 Project No. PC207899

Test No.

Test Date

Client Graven Hill Village Development Company Limited

Coordinates 459280.9 E, 219766.1 N

Ground Level 66.22 m OD

07/08/2020

Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)	Blows No.	Blows Total	Rod No.	Reading (mm)	Corrected Depth (mm)
0	0	1	140	0	1	21	1	654	514	3	76	2	388	1084
1	1	1	172	32	1	22	1	667	527	3	79	2	412	1108
1	2	1	201	61	1	23	1	681	541	3	82	2	434	1130
1	3	1	229	89	1	24	1	692	552	3	85	2	479	1175
1	4	1	263	123	1	25	1	704	564	5	90	2	528	1224
1	5	1	292	152	3	28	1	739	599	5	95	2	580	1276
1	6	1	301	161	3	31	1	772	632	5	100	2	629	1325
1	7	1	321	181	3	34	1	802	662	5	105	2	723	1419
1	8	1	353	213	3	37	1	830	690	5	110	2	771	1467
1	9	1	378	238	3	40	1	859	719	5	115	2	816	1512
1	10	1	404	264	3	43	1	883	743	5	120	2	862	1558
1	11	1	432	292	3	46	1	910	770	5	125	2	905	1601
1	12	1	459	319	3	49	2	109	805	5	130	2	941	1637
1	13	1	485	345	3	52	2	146	842	5	135	3	514	1679
1	14	1	509	369	3	55	2	183	879	5	140	3	554	1719
1	15	1	534	394	3	58	2 .	217	913	5	145	3	595	1760
1	16	1	557	417	3	61	2	246	942	5	150	3	634	1799
1	17	1	580	440	3	64	2	279	975	5	155	3	674	1839
1	18	1	602	462	3	67	2	307	1003	5	160	3	711	1876
1	19	1	623	483	3	70	2	336	1032	5	165	3	746	1911
1	20	1	642	502	3	73	2	361	1057	5	170	3	784	1949

Test Started at	0.00	m	<
Operator	EPS		7
Checked by	TNH		

Rod No.	Zero Reading (mm)
1	140
2	74
3	472

Depth b	Depth bgl (mm)		s No.	DCP	CBR %						
Тор	Base	Тор	Base	mm/blow	OBIX 70						
0	502	0	20	25	10.0						
502	632	20	31	12	22.2						
632	743	31	43	9	28.8						
743	1003	43	67	11	24.3						
1003	1325	67	100	10	27.2						
1325	1419	100	105	19	13.6						
1419	1601	105	125	9	29.3						
1601	2060	125	185	8	35.2						

Remarks CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

GEOTECHNICS

Project GRAVEN HILL, BICESTER, LAND TRANSFER AREA 2 (LTA2)

Location No. RC809
Project No. PC207899

Test No. 1

Test Date 07/08/2020

Client Graven Hill Village Development Company Limited

Coordinates 459280.9 E, 219766.1 N **Ground Level** 66.22 m OD

Blows No.	Blows Total	Rod No.	-	Corrected Depth (mm)
5	175	3	824	1989
5	180	3	861	2026
5	185	3	895	2060

Test Started at	0.00	m	
Operator	EPS		
Checked by	TNH		

Rod No.	Zero Reading (mm)
1	140
2	74
3	472

Depth b	Depth bgl (mm)		Blows No.		0/
Тор	Base	Тор	Base	DCP mm/b l ow	CBR %
0	502	0	20	25	10.0
502	632	20	31	12	22.2
632	743	31	43	9	28.8
743	1003	43	67	11	24.3
1003	1325	67	100	10	27.2
1325	1419	100	105	19	13.6
1419	1601	105	125	9	29.3
1601	2060	125	185	8	35.2

Remarks
CBR estimated using correlation in Highways Agency Interim Advice Note 73/06 Rev 1 (2009).

GEOTECHNICS

Printed: 28/09/2020

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP801 (LTA2) Test No I Project No PC207899
Client Graven Hill Village Development Company Limited Date 13/07/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.25	1.45	100.00
1.00	1.25	1.45	100.00
2.00	1.25	1.45	100.00
3.00	1.25	1.45	100.00
4.00	1.25	1.45	100.00
5.00	1.25	1.45	100.00
10.00	1.25	1.45	100.00
15.00	1.25	1.45	100.00
20.00	1.25	1.45	100.00
30.00	1.25	1.45	100.00
45.00	1.25	1.45	100.00
60.00	1.25	1.45	100.00
90.00	1.25	1.45	100.00
120.00	1.25	1.45	100.00
180.00	1.25	1.45	100.00
240.00	1.25	1.45	100.00

Initial depth from GL	=	1.250m	
% of effective depth	Head (m)	Depth from GL (m)	Time (mins)
75%	1.088	1.613	
25%	0.363	2.338	
V _P 75-25	=	m3	
ар50	=	m2	
tp75-25	=	min	
Soil Infiltration, f	=	* m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP801
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	13/07/2020

tp75	=	
tp25	=	

Graven Hill Village Development Company Limited

Client

14/07/2020

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP813 (LTA2) Test No I Project No PC207899

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.60	0.90	100.00
1.00	1.61	0.89	98.89
2.00	1.62	0.88	97.78
3.00	1.62	0.88	97.78
4.00	1.62	0.88	97.78
5.00	1.62	0.88	97.78
10.00	1.62	0.88	97.78
15.00	1.62	0.88	97.78
20.00	1.62	0.88	97.78
30.00	1.62	0.88	97.78
45.00	1.62	0.88	97.78
60.00	1.62	0.88	97.78
90.00	1.62	0.88	97.78
120.00	1.62	0.88	97.78
180.00	1.62	0.88	97.78
240.00	1.62	0.88	97.78

Date

Initial depth from GL	=	1.600m		
% of effective depth	Head (m)	Depth fro (m)	m GL	Time (mins)
75%	0.675	1.825	i	0.00
25%	0.225	2.275	,	0.00
V _P 75-25	=	0.675	m3	
ар50	=	4.290	m2	
tp75-25	=	0.000	min	
Soil Infiltration, f	=	*	m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP813
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	14/07/2020

tp75	=	
tp25	=	

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP814
(LTA2) Test No I
Project No PC207899

Client Graven Hill Village Development Company Limited Date 14/07/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.52	0.98	100.00
1.00	1.52	0.98	100.00
2.00	1.52	0.98	100.00
3.00	1.52	0.98	100.00
4.00	1.52	0.98	100.00
5.00	1.52	0.98	100.00
10.00	1.52	0.98	100.00
15.00	1.52	0.98	100.00
20.00	1.52	0.98	100.00
30.00	1.52	0.98	100.00
45.00	1.52	0.98	100.00
60.00	1.52	0.98	100.00
90.00	1.52	0.98	100.00
120.00	1.52	0.98	100.00
180.00	1.52	0.98	100.00
240.00	1.52	0.98	100.00

Initial depth from GL	=	1.520m		
% of effective depth	Head (m)	Depth from	n GL	Time (mins)
75%	0.735	1.765		0.00
25%	0.245	2.255		0.00
V _P 75-25	=	0.735	m3	
ар50	=	4.538	m2	
tp75-25	=	0.000	min	
Soil Infiltration, f	=	*	m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP814
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	14/07/2020

tp75	=	
tp25	=	

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP815 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Date 15/07/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.75	0.95	100.00
1.00	1.75	0.95	100.00
2.00	1.75	0.95	100.00
3.00	1.75	0.95	100.00
4.00	1.75	0.95	100.00
5.00	1.75	0.95	100.00
10.00	1.75	0.95	100.00
15.00	1.75	0.95	100.00
20.00	1.75	0.95	100.00
30.00	1.75	0.95	100.00
45.00	1.75	0.95	100.00
60.00	1.75	0.95	100.00
90.00	1.75	0.95	100.00
120.00	1.75	0.95	100.00
180.00	1.75	0.95	100.00
240.00	1.75	0.95	100.00

Trial pit length	=	2.700	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.700	m
Effective depth (Head of Water)	=	0.950	m

Initial depth from GL	=	1.750m		
% of effective depth	Head (m)	Depth from	n GL	Time (mins)
75%	0.713	1.988		0.00
25%	0.238	2.463		0.00
V _P 75-25	=	0.770	m3	
ар50	=	4.755	m2	
tp75-25	=	0.000	min	
Soil Infiltration, f	=	*	m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP815
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	15/07/2020

tp75	=	
tp25	=	

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP817
(LTA2) Test No I
Project No PC207899
Client Graven Hill Village Development Company Limited Date 17/07/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.81	0.89	100.00
1.00	1.81	0.89	100.00
2.00	1.81	0.89	100.00
3.00	1.81	0.89	100.00
4.00	1.81	0.89	100.00
5.00	1.81	0.89	100.00
10.00	1.81	0.89	100.00
15.00	1.81	0.89	100.00
20.00	1.81	0.89	100.00
30.00	1.81	0.89	100.00
45.00	1.81	0.89	100.00
60.00	1.81	0.89	100.00
90.00	1.81	0.89	100.00
120.00	1.81	0.89	100.00
180.00	1.81	0.89	100.00
240.00	1.81	0.89	100.00

0.890 m

Effective depth (Head of Water)

Initial depth from GL	=	1.810m	
% of effective depth	Head (m)	Depth from G (m)	GL Time (mins)
75%	0.668	2.033	
25%	0.223	2.478	
V _P 75-25	=	m3	3
ар50	=	m2	2
tp75-25	=	mi	n
Soil Infiltration, f	=	* m/	/sec

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP817
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	17/07/2020

tp75	=	
tp25	=	

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP818 (LTA2) Test No I

Project No PC207899
Date 16/07/2020

Client Graven Hill Village Development Company Limited Date

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.50	1.00	100.00
1.00	1.50	1.00	100.00
2.00	1.50	1.00	100.00
3.00	1.50	1.00	100.00
4.00	1.50	1.00	100.00
5.00	1.51	0.99	99.00
10.00	1.51	0.99	99.00
15.00	1.51	0.99	99.00
20.00	1.51	0.99	99.00
30.00	1.51	0.99	99.00
45.00	1.51	0.99	99.00
60.00	1.51	0.99	99.00
90.00	1.52	0.98	98.00
120.00	1.52	0.98	98.00
180.00	1.52	0.98	98.00
240.00	1.52	0.98	98.00

Trial pit length	=	2.400	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.500	m
Effective depth (Head of Water)	=	1.000	m

Initial depth from GL	=	1.500m	
% of effective depth	Head (m)	Depth from GL (m)	Time (mins)
75%	0.750	1.750	
25%	0.250	2.250	
V _P 75-25	=	m3	
ар50	=	m2	
tp75-25	=	min	
Soil Infiltration, f	=	* m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP818
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	16/07/2020

tp75	=
tp25	=

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP825 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Date I 5/07/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.65	0.85	100.00
1.00	1.65	0.85	100.00
2.00	1.65	0.85	100.00
3.00	1.65	0.85	100.00
4.00	1.65	0.85	100.00
5.00	1.65	0.85	100.00
10.00	1.65	0.85	100.00
15.00	1.65	0.85	100.00
20.00	1.65	0.85	100.00
30.00	1.65	0.85	100.00
45.00	1.65	0.85	100.00
60.00	1.65	0.85	100.00
90.00	1.65	0.85	100.00
120.00	1.65	0.85	100.00
180.00	1.65	0.85	100.00
240.00	1.65	0.85	100.00

Initial depth from GL	=	1.650m		
% of effective depth	Head (m)	Depth from	n GL	Time (mins)
75%	0.638	1.863		0.00
25%	0.213	2.288		0.00
V _P 75-25	=	0.689	m3	
ар50	=	4.425	m2	
tp75-25	=	0.000	min	
Soil Infiltration, f	=	*	m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP825
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	15/07/2020

tp75	=	
tp25	=	

Project Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2 Trial Pit TP835 (LTA2) Test No I Project No PC207899

Client Graven Hill Village Development Company Limited Project No PC207899

Cloud Date 16/07/2020

ELAPSED TIME (mins) DEPTH of water below ground level (m) HEAD (m) HEAD (m) HEAD (m) 0.00 1.63 0.87 100.00 1.00 1.63 0.87 100.00 2.00 1.63 0.87 100.00 3.00 1.63 0.87 100.00 4.00 1.63 0.87 100.00 5.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00 240.00 1.63 0.87 100.00 240.00 1.63 0.87 100.00				
1.00 1.63 0.87 100.00 2.00 1.63 0.87 100.00 3.00 1.63 0.87 100.00 4.00 1.63 0.87 100.00 5.00 1.63 0.87 100.00 10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	TIME	water below ground level		
2.00 1.63 0.87 100.00 3.00 1.63 0.87 100.00 4.00 1.63 0.87 100.00 5.00 1.63 0.87 100.00 10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	0.00	1.63	0.87	100.00
3.00 1.63 0.87 100.00 4.00 1.63 0.87 100.00 5.00 1.63 0.87 100.00 10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	1.00	1.63	0.87	100.00
4.00 1.63 0.87 100.00 5.00 1.63 0.87 100.00 10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	2.00	1.63	0.87	100.00
5.00 1.63 0.87 100.00 10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	3.00	1.63	0.87	100.00
10.00 1.63 0.87 100.00 15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	4.00	1.63	0.87	100.00
15.00 1.63 0.87 100.00 20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	5.00	1.63	0.87	100.00
20.00 1.63 0.87 100.00 30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	10.00	1.63	0.87	100.00
30.00 1.63 0.87 100.00 45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	15.00	1.63	0.87	100.00
45.00 1.63 0.87 100.00 60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	20.00	1.63	0.87	100.00
60.00 1.63 0.87 100.00 90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	30.00	1.63	0.87	100.00
90.00 1.63 0.87 100.00 120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	45.00	1.63	0.87	100.00
120.00 1.63 0.87 100.00 180.00 1.63 0.87 100.00	60.00	1.63	0.87	100.00
180.00 1.63 0.87 100.00	90.00	1.63	0.87	100.00
	120.00	1.63	0.87	100.00
240.00 1.63 0.87 100.00	180.00	1.63	0.87	100.00
	240.00	1.63	0.87	100.00

TRIAL PIT SOAKAWAY

Initial depth from GL	=	1.630m	
% of effective depth	Head (m)	Depth from GL (m)	Time (mins)
75%	0.653	1.848	
25%	0.218	2.283	
V _P 75-25	=	m3	
ар50	=	m2	
tp75-25	=	min	
Soil Infiltration, f	=	* m/sec	

Project	Ground Investigation for Graven Hill, Bicester, Land Transfer Area 2	Trial Pit	TP835
	(LTA2)	Test No	1
		Project No	PC207899
Client	Graven Hill Village Development Company Limited	Date	16/07/2020

tp75	=
tp25	=