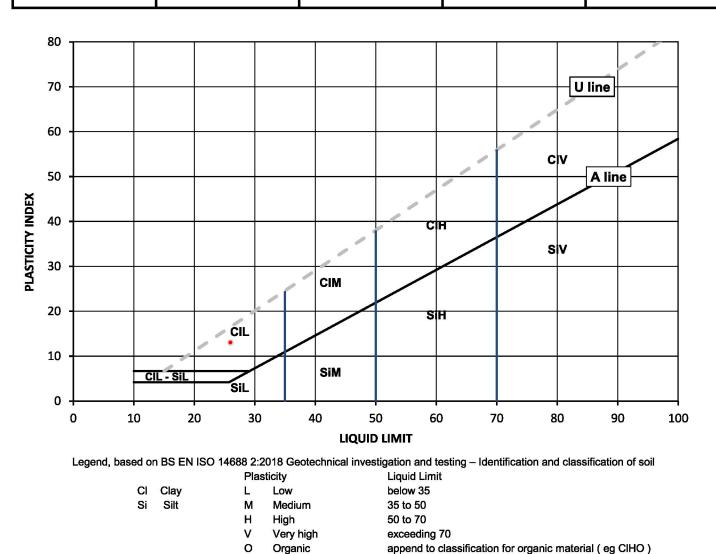


DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Card Geotechnics Ltd	Client Reference: CG39017
Client Address:	4 Godalming Business Centre, Woolsack Way, Godalming, Surrey,	Job Number: 21-22172
	GU7 1XW	Date Sampled: 27/10/2021 Date Received: 29/10/2021
Contact:	Amir Abbasi	Date Tested: 22/11/2021
Site Address:	Bicester Golf Course Bicester	Sampled By: Not Given
	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	Sumplea By. Her ener
Test Results:		
Laboratory Reference:	2078886	Depth Top [m]: 1.00
Hole No.:	BH04	Depth Base [m]: Not Given
Sample Reference:	1	Sample Type: C

Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture
Content [W] %Liquid Limit
[WL] %Plastic Limit
[Wp] %Plasticity Index
[Ip] %% Passing 425µm
BS Test Sieve1026131397

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

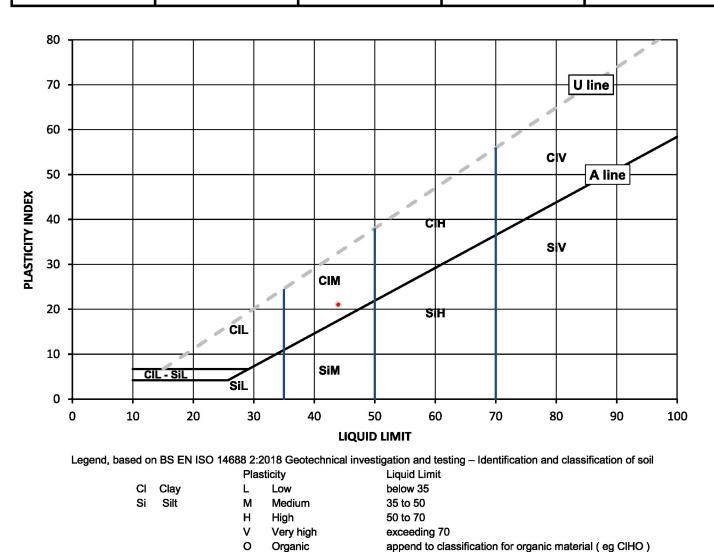
Auer.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



	Orad Orada abains 1 td	01 1 5 (
Client:	Card Geotechnics Ltd	Client Reference: CG39017
Client Address:	4 Godalming Business Centre, Woolsack Way,	Job Number: 21-22172
	Godalming, Surrey,	Date Sampled: 26/10/2021
	GU7 1XW	Date Received: 29/10/2021
Contact:	Amir Abbasi	Date Tested: 19/11/2021
Site Address:	Bicester Golf Course Bicester	Sampled By: Not Given
Testing carried out at i	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2078910	Depth Top [m]: 0.55
Hole No.:	BH05	Depth Base [m]: 0.65
Sample Reference:	2	Sample Type: B

Sample Description: Brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture
Content [W] %Liquid Limit
[WL] %Plastic Limit
[Wp] %Plasticity Index
[Ip] %% Passing 425µm
BS Test Sieve1444232169

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 25/10 - 27/10/2021 Date Received: 29/10/2021 Date Tested: 19/11 - 22/11/2021 Sampled By: Not Given

 4041

 Client:
 Card Geotechnics Ltd

 A Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW
 Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

 Contact:
 Amir Abbasi

Site Address: Bicester Golf Course Bicester

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample	2				ntent	tent		Atte	rberg			Density		#		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Type	Description	Remarks	Moisture Content [W]	Water Con [W]	% Passing 425um	WL	Wp	lp	buik	dry	PD	Total Porosity#		
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	\square	
2078879	BH03	2	0.50	0.70	В	Brown sandy very clayey GRAVEL with cobbles	Atterberg 1 Point	12		50	48	26	22						
2078885	BH04	2	0.50	0.60	в	Brown sandy clayey GRAVEL with cobbles	Atterberg 1 Point	12		29	47	25	22						
2078886	BH04	1	1.00	Not Given	с	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 1 Point	10		97	26	13	13						
2078910	BH05	2	0.55	0.65	в	Brown slightly gravelly sandy CLAY	Atterberg 1 Point	14		69	44	23	21						

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404 ⁴				les	ed in Accordance w	ntn: BS	1377-2: 1990			Environmental	Sc
Clie			Card Geotechnic	cs Ltd			(Client Refer	ence: CG39	0017	
		dress:	4 Godalming Bu	siness Centre V	loolsack Wav				nber: 21-22		
			Godalming, Surr		consuct truy,				pled: 25/10		
			GU7 1XW	-),					eived: 29/10		
Cor	ntact:		Amir Abbasi					Date Te	sted: 19/11	/2021	
Site	Add	ress:	Bicester Golf Co	urse Bicester				Sample	d By: Not G	Siven	
Tes	stina c	carried out at it	2 Analvtical Limite	d. ul. Pionierow	39, 41-711 Ruda Sla	aska. Po	oland				
		esults:		.,	,						-
		ry Reference:	2078870					Dopth To	o [m]: 0.50		
	e No.		BH03					Depth Base			
			2					-			
		Reference:	Z Brown sandy ver		I with apphlan			Sample	туре: Б		
	-	Description:			ed at 107.0 °C and b	rokon d	lown by band				
Sar	inhie i	Preparation:	Sample was qua		SAND	IUKEITU	GRAVEL				
		CLAY Fin		Coarse Fir		Coarse	Fine Medium	Coarse	OBBLES	BOULDERS	
	100	1 1								* * * * * * * * * * * * * * * * * * *	
	90										
	80										
	70	╏──┼──									
%	60										
sing											
ass	50					╞╪┥╼╼╼╸					
Percentage Passing	40										
tag	30										
B	30										
Perc	20										
	10					H					
	0 0.	001	0.01	0.1		1	10		100	1000	С
					Particle	Size i	mm				-
		Sie	ving	Sed	mentation		Sample Proporti	ons	%	dry mass	
	Pa	rticle Size mm	% Passing	Particle Size n	m % Passing		Very coarse			10	_
		University and a second straighter				4	Gravel			40	
		500	100			4	Sand			18	
	\vdash	300	100			-	Einoo <0.062mm			22	
	\vdash	150 125	100 100			-	Fines <0.063mm			33	
	\vdash	90	100			-					
	\vdash	75	93				Grading Analys	sis			
		63	90			1	D100	mm		90	-
		50	86				D60	mm		12.8	-
		37.5	79				D30	mm			-
		28	72				D10	mm			
		20	66			1	Uniformity Coefficient			> 200	
		14	61				Curvature Coefficient				
		10	57				Uniformity Coefficient an				_
		6.3	54				accordance with BS EN	ISO 14688-	2: 2004 + A	1: 2013	
		5	53			4					
		3.35	52	-11							
		2	50			4					
		1.18	49	-11							
	\vdash	0.6 0.425	48 47	-11							
	\vdash	0.425	47	-							
		0.3	44	4		_					

33 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

39 36

Remarks:

0.212

0.15 0.063

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404	1									10	53160			nua		5 991	U1. L	50	13/1	-2.	13	50													Envi	iron	men	ital Sc
Cli	ent:			Car	d G	eotechn	nics L	td																		c	lie	nt F	Ref	ere	nce	e: C	G3	901	7			
Cli	ent Ad	dress:		4 G	loda	Iming B	usine	ss (Cen	tre	Woo	olsa	ck V	Vav																				217				
						ning, Su				,				,,													D	ate	Sa	amp	olec	1: 2	7/10	0/20	21			
					7 1)																													0/20				
Co	ntact:			Am	ir At	obasi																						Da	te	Tes	stec	d: 19	9/1 [.]	1/20	21			
	e Add			Bic	este	r Golf C	ourse	e Bio	cest	ter																								Give				
		carried o	ut at i	2 Ana	alvtio	cal Limit	ted. u	I. Pi	ionie	ero	w 39.	41	-711	Ru	ıda	Sla	ska	P	oland	d																		
		esults:											-																									
		ory Refer	ence:	207	7888	5																					п	ent	hТ	on	ſm]: 0	50					
	le No.	•	01100.	BH		•																						-			-]: 0						
		 Referenc	:e'	2																												э: В						
		Descripti			wn s	sandy c	lavev	GR		ELN	with	cobl	oles															Jui	pi	•	, ,							
	-	Preparat				was qu								°C	and	d br	oke	n d	own	bv	har	nd.																
•••						SILT		,						ND						-,			GR/	AVE	EL					~								Т
		CLAY	Fin	e		edium	Co	arse		F	Fine			lium	ĩ	С	oars	e		Fine	í		Me				Coa	arse)	UL.	вв	LES		BC	ULD	EKS		
	100													ł		111	1		1			i.			l	I.		i		1	Î	11		ľ		1		
	90			\square			\vdash	_				-	-	-	4		-		⊢		+	₽		_	-			+		4	-	11	_	\rightarrow	_	H		-
	80																												X									
										Π						Ш							П					1			Ι					Π	П	
%	70														H				⊢		+	t	Ħ	-	ŀ	t	t	1			t	Ħ	-	-	+	Ħ		-
	60			\square			\vdash	_	H				-	-		+++			⊢	.	+	╬		_	-	+	1	4	+		-	-	-	_	_	+		-
sin	50																										4											
Pas										Ш						Ш										X										П	Т	
ge	40												+	-	H						+			/	-	t	1	t	t		t	Ħ		-	-	Ħ		-
Percentage Passing	30						\vdash	_		+			-	-	H	+++		_	_		-	1	14	_	-	+	+	+		-	-	11	_	-	_	H		-
lice	20												-	-	tt																							
ፈ																																						
	10													Ť	Ħ	m			\square		+	Ť	Th.			t		Ť	Ť		T					Ħ		
	0	Ļ				ļ			Ļ		-		_	į		Ш	1		_	ļ		į.	Щ	_	<u> </u>	1	1	į		Ш	Ļ	11		_			11	Ļ
	0.	001			0	.01				0).1			Pa	artic	le S	1 Size	r	mm				1	0							10	0					1	000
	—		01-							0-			41				٦	1			N			<u> </u>		-41				-			0/	-				
			216	ving						56	dime	enta I	ITIO	1			ł		Von			_	ie i	-10	ро	πι	ons	5		+			%	dry	^и та 0	ISS		
	Pa	article Siz	ze mm	(% P	assing	P	artic	le S	Size	mm		% F	ass	sing	ļ			Ver		ais	e								+				6				
		500		1		100											1		San											╈					3			
		300				100											1		oun											+								
		150		1		100											1		Fine) s <	0.0	63	mm	1						╈				1	6			
		125				100											1		-																			
		90				100]																					
		75				100															G	rad	ling	g A	na	lys	is											
		63				90											1		D10									r	nm						5			
		50				84											4		D60										nm					44533355).6			
		37.5		<u> </u>		70											4		D30										nm	_				2.	81			
	\vdash	28 20		-		56 46	$-\parallel$					-					-		D10 Unif		ity	<u></u>	off	loid	n+			r	nm	+				~	90			
	\vdash	 14		-		40	_⊩					-					┨		Cur											+				1	50			
	\vdash	14		-		37	$-\parallel$					\vdash					ł		Unif							an	d C	Cet	fici	ent	of	Cur	vat	ure	calc	ula	ited	lin
		6.3		1		33											1		acce																			
		5		\mathbf{t}		32											1																					
		3.35		1		31											1																					
		2				29											1																					
		1.18				27											1																					
		0.6		1		25	11										1																					

16 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

25

24

22

19

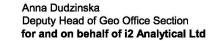
17

Remarks:

0.6

0.425

0.3


0.212

0.15

0.063

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404		-								est	ea m	ACC	JUIU	anc	e w	/ILI	1. 03	137	/- <u>Z</u> .	195	10											Envi	ronm	nenta	Sci
Cli	ent:			Card	Geo	technic	cs Ltd																	С	lier	nt R	efer	enc	ce: (CG3	901	7			
		Address:		4 Go	dalm almin	iing Bu ig, Surr	isines		entro	e, W	ools/	ack	Wa	y,										-	Da	Job ate :	Nu San	mb nple	er: 2 ed: 2 ed: 2	21-2 26/1	217) 0/20	2)21			
Co	ntac	t.		Amir																									ed: 2						
		ldress:				Golf Co	ourse	Bice	este	ř																			3y: N						
		carried	out at i2								39.4	1-71	11 R	uda	s SI	asi	ka. P	olan	d							-u.	npie								
		Results					,				, .						, ,																		
		tory Refe		2078	911																				De	anth	To	n ír	n]: (0 80					
	le N		si chico.	BH05																						-			n]: (
		e Referei	nce:	3	-																							_	be: E						
		Descrip			n sa	ndy ve	rv cla	vev	GR	AVE	L																	• • •							
	-	e Prepara				as who	-					at 1	09.0	o °C	an	dl	broke	n do	wn I	by h	nano	d.													
		-			SIL								SANE										VEL					200	BLES		PC		De		
		CLAY	Fine	Ð	Med	lium	Coar	se		Fine	B	М	ediu	m	1	Coa	arse		Fine	í -	М	ledi	um		Coa	rse			ULLO		DC		-10		-
	100	,															1								1	\mathbf{V}		11	T						
	90	> 								+	+	-				łł	-	-		+		╉	+	-	1	4-	H	÷+		\vdash	\rightarrow				
	80	, 								4	-				Щ	4						4			4	1							Щ		
		**														Ш								/											
%	70	, 1								1						T							1	Т	1	1									
	60	י ⊦ −−					-			+	+	-			-++	łt	+			-	-	1	+		+	1				\rightarrow	-				
ISSI	50) 			_						_	-			╺┿┥	╊		-		+		4	+	_	-	1					_	_			
Ба	40																																		
age										4		1																							
ĕnt	30	° †──														Ť				+		t	Ť	t	1	1		i							
Percentage Passing	20	s ──								+	+	-				╟	-	⊢		+		╟	+	+	+	+					-	_			
	10	, I						4		4	-					4				-		4	4		4	1				4				_	
	(
		0.001			0.0	1				0.1			_	.	icle	1						10						1(00					10	00
	-													an	icie	וכ ר	ze	mm																	
	⊢		Sie	ving					S	Sedi	men	tatic	on			4					-) Pi	ropo	ortic	ons					%		/ ma	SS		
	F	Particle S	ize mm	%	Pas	sing	Par	ticle	Siz	e m	m	%	Pas	ssin	g				y co	ars	e											0 7			
	⊢	50	0		10	n					+					+		Gra San														21			
	F	30			10						+					┥		Jai	u												-				
	F	15			10						╈					1		Fine	es <	0.0	63m	nm									3	32			
		12			10																														
		90			10]											-								
	F	75			10															Gr	adi	ng	Ana	lys	is										
	-	63		-	10		_				+					4		D10									m					50 07			
	⊢	50 37.		-	10 94		╢—				+					┥		D60 D30									m m				ΰ.	97			
	⊢	28			85						+					┥		D10									m								
	F	20			76						+					1		Unit		nity (Coe	effic	ient								> '	110			
	F	14			69						+					1		Cur																	
		10)		64	ŀ												Uni	form	ity (Coe	effic	ient	and	d Co	oeff	iciei	nt o	of Cu	irvat	ture	calc	ulat	ed i	n
		6.3			59													acc	orda	ance	e wit	th E	BS E	NI	so	146	886-	2:2	2004	+ + /	A1: 2	2013			
	L	5			57											4																			
	F	3.3			55		4																												
	┝	2 1.1		<u> </u>	53 51		-∥									┥																			
	⊢	0.6		<u> </u>	49		-																												
	┢	0.42		1	47		╢																												
	F	0.3			43																														
		0.2			38		Ï									-																			
		0.1			35																														
		0.00	00		00	· _																													

32 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

0.063

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404									rest	ea in	ACC	ora	ance	e wi	iin:	82	13	([-/	Z: 1	199	U													E	Invir	onr	nen	tal	Sci
Cli	ent:			Card C	Geotechr	nics Lt	d																		С	lier	nt F	Ref	ere	nc	e:	CG	390)17					
		Address:			alming B			ontr	<u>م</u> ۱۸	oole	ack	Way	,												Ŭ						er: :								
0.					ming, Su		33 00	51 ICI	0, 11	0013	aur	vvaj	,																		ed:								
				GU7 1		, - , ,																									ed:								
Co	ntac	t:		Amir A	bbasi																										ed:								
		dress:			er Golf C	Course	Bice	ste	ř																						By:								
		carried o	nut at i2							20 4	1-71	1 R	uda	Sla	iska	P	Pola	nd									Uu		100		· y .								
		Results:		Anaryt		100, 0	. 1 101	nor	011 (, т		110	uuu	0/0	IOAL	4, 1	oiui	iu.																					
				20790	10																					D .		ь т		r		• •	^						
		tory Refe	rence:	20789 BH07	12																						-			_	n]:								
	le No			ыни <i>1</i> 3																											n]:		U						
		Referen			ich arou	aliabti			000	du C		7=1														2	an	npi	eı	ΥP	e:	D							
		Descript			ish grey e was w	-	-						•~	0.04	d br	oko	an d	0.00	n h			a																	
Sa	mple	Prepara		Sampi	SILT		sicu	, 00	ent	meu		ANE		an		UNE		UW	пD	y I			VE	T														Т	
		CLAY	Fine) N	Vedium	Coa	arse		Fine	э		ediur		С	oan	se	+	Fi	ne				lium		(Coa	rse		cc	OBI	BLES	3	J	BOL	LDE	RS			
	100)									i						-									i	:			T î 1	_	1		1		-			
	90													Ш													1	Ľ									Ш		
																											1												
	80) 			1									H						t		Ħ				İ.	1	t		H		t	1	t	\vdash		Ħ	-	
	70) {					++-			-	-						╋		+	+			_	_	ŀ	1	-		H	H		ŀ	-		+			-	
%	60													Ш												4													
sing														111											\mathbf{V}							Ŀ					Ш		
ase	50)			1					-				111			╈		+	t		1		1	┢	1	t	t		t	Ħ	t	1	t	Н		Ħ	-	
e E	40)								_	-	_					+			+			/	<u> </u>	-	1	1		-	4			-	+	\vdash	-		-	
Percentage Passing	30																					1					Í.												
Cer																			-	1																			
Per	20)															1		+	t		Ħ			t	t	t	t	T	H		t	-	t	H		H	-	
	10)								-			1				╇			+			_		-	1	+	+		4	-	-	-	+				-	
	C										-															1													
		, 0.001		i	0.01				0.1						1							10	D							1(00						1(000	0
												Р	artio		Size	Э	mm	1																					
			Sie	ving				S	Sedi	men	tatic	n]				S	am	ıple	e P	го	роі	rtic	ons						9	% с	lry	mas	SS			
	P	Particle Si	ize mm	%	Passing	Pa	rticle	Siz	ze m	_	%	Pas	sing	1			Ve	ery o	coa	arse	Э													0					
	_			70 1	10.100			012		<u> </u>	70	1 45	omę	2	1		_	ave																79					
		500			100										4		Sa	Ind																17					
		300			100					_					4				- 0		10		_						_					-					
	\vdash	150 125	66		100 100	_ _				+					4		FIL	nes	<0	.06	JSIT	IM												4					_
	\vdash	90			100	_ _				+					┥																								
	⊢	90 75			100					+					1				ŝ	Gr	adi	ng		nal	Ve	s			Т										
	┢	63			100					+					1		D1	00					,		,0		n	nm						63	,				_
	F	50			94					+					1		De											nm	_					24.					-
		37.5	5		82										1		D3											nm	_					6.3	6				
		28			65										1		D1	0										nm	_				().46					
		20			51										1		Un	nifor	rmi	ty (Coe	effi	cie	nt										53					
		14			42													irva																3.5					
	Ĺ	10			36																										f Cu					ıla	ted	in	
	L	6.3			30										4		ac	con	dar	nce	e wi	th	BS	E	NI	so	14	68	8-2	2	2004	4 +	A1	: 20)13				
	F	5			28	_ _									4																								
	⊢	3.3			26 21	$-\parallel$																																	
	⊢	2 1.18			17										-																								
	\vdash	0.6			13	$-\parallel$																																	
	\vdash	0.0			9	$-\parallel$																																	
	F	0.3			7																																		
		0.21			5	<u> </u>									4																								
	_		_																																				

0.063 4 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

5

Remarks:

0.15

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 25/10 - 27/10/2021 Date Received: 29/10/2021 Date Tested: 20/11/2021 Sampled By: Not Given

4041 Client: Card Geotechnics Ltd Client Address: 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, **GU7 1XW** Amir Abbasi Contact: Site Address: **Bicester Golf Course Bicester**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				ence		Type ISRM			Dime	nsions			는 D		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	W	Dps mm	Dps' mm	Force P kN	B Equivalent B diameter, D	ls MPa	ls(50) MPa
2078880	BH03	4	2.00	Not Given	С	Brown to yellowish brown sandy CLAY	WC = 21.6%	1	D	U	YES	51.3	89.5	89.0	73.0	0.5	80.8	0.08	0.09
2078880	BH03	4	2.00	Not Given	С	Brown to yellowish brown sandy CLAY	WC = 21.6%	2	A	U	YES	-	88.1	72.0	47.0	0.9	72.6	0.16	0.19
2078881	BH03	4	3.00	Not Given	С	Greyish brown silty CLAY	WC = 24.8%	1	D	U	YES	66.4	86.7	86.0	50.0	0.9	65.8	0.20	0.22
2078881	BH03	4	3.00	Not Given	С	Greyish brown silty CLAY	WC = 24.8%	2	A	U	YES	I	86.2	57.0	18.0	0.8	44.4	0.40	0.38
2078883	BH03	6	3.70	Not Given	С	Light grey LIMESTONE	WC = 1.9%	1	D	L	YES	61.4	90.1	90.0	79.0	21.4	84.4	3.00	3.80
2078883	BH03	6	3.70	Not Given	С	Light grey LIMESTONE	WC = 1.9%	2	A	Р	YES	н	89.6	51.0	47.0	19.4	73.2	3.61	4.28
2078884	BH03	7	4.00	Not Given	С	Light grey LIMESTONE	WC = 1.4%	1	D	U	YES	62.9	90.1	90.0	74.0	25.1	81.7	3.76	4.69
2078884	BH03	7	4.00	Not Given	С	Light grey LIMESTONE	WC = 1.4%	2	A	U	YES	-	89.9	51.0	46.0	20.1	72.6	3.82	4.51
2078889	BH04	3	2.40	Not Given	С	Light brown sandy CLAY	WC = 7.7%, Shape not suitable for Diametral - tested as Irregular.	1	Ι	U	YES	45.3	56.3	66.0	62.0	0.2	66.7	0.05	0.05
2078889	BH04	3	2.40	Not Given	С	Light brown sandy CLAY	WC = 7.7%	2	Α	U	YES	-	89.2	49.0	45.0	0.3	71.5	0.05	0.06

Dimensions: Dpe - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free and W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/50)0.45 for all tests

Comments:

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 27/10/2021 Date Received: 29/10/2021 Date Tested: 20/11/2021 Sampled By: Not Given

 Client:
 Card Geotechnics Ltd

 Client Address:
 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW

 Contact:
 Amir Abbasi

 Site Address:
 Bicester Golf Course Bicester

 Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

			Sample	•				ence	Test see l				Dime	nsions			De It		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	W	Dps mm	Dps' mm	Force P kN	Benivalent B diameter, De	ls MPa	ls(50) MPa
2078890	BH04	6	6.50	Not Given	С	Grey LIMESTONE	WC = 6.2%	1	D	U	YES	67.8	89.4	89.0	65.0	7.9	76.2	1.36	1.64
2078890	BH04	6	6.50	Not Given	с	Grey LIMESTONE	WC = 6.2%	2	Α	U	YES	-	89.4	66.0	56.0	6.6	79.8	1.04	1.28
2078892	BH04	8	8.50	Not Given	с	Greyish brown silty CLAY	WC = 23.0%, Shape not suitable for Diametral - tested as Irregular.	1	I	U	YES	37.6	53.0	42.0	21.0	0.2	37.6	0.14	0.12
2078892	BH04	8	8.50	Not Given	С	Greyish brown silty CLAY	WC = 23.0%	2	Α	U	YES	i e	98.2	68.0	36.0	0.4	67.1	0.08	0.09
2078893	BH04	8	9.20	Not Given	С	Grey LIMESTONE	WC = 3.4%	1	D	L	YES	72.1	88.9	88.0	81.0	11.0	84.9	1.53	1.94
2078893	BH04	8	9.20	Not Given	С	Grey LIMESTONE	WC = 3.4%	2	А	Ρ	YES	-	89.4	63.0	56.0	5.2	79.8	0.82	1.01
2078894	BH04	8	9.50	Not Given	С	Grey LIMESTONE	WC = 2.2%	1	D	U	YES	65.4	89.2	89.0	75.0	18.2	81.8	2.71	3.39
2078894	BH04	8	9.50	Not Given	с	Grey LIMESTONE	WC = 2.2%	2	Α	U	YES	-	89.5	64.0	58.0	18.9	81.3	2.86	3.56
2078895	BH04	9	10.80	Not Given	с	Light grey LIMESTONE	WC = 2.8%	1	D	U	YES	58.8	89.6	89.0	75.0	9.6	82.0	1.43	1.78
2078895	BH04	9	10.80	Not Given	С		WC = 2.8%	2	А	U	YES	-	89.4	55.0	48.0	6.9	73.9	1.25	1.49

Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Imegular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpandicular to planes of weakness, U - unknown or random;

Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free and W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/SO)0.45 for all tests

Comments:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 26/10 - 27/10/2021 Date Received: 29/10/2021 Date Tested: 20/11/2021 Sampled By: Not Given

4041 Client: Card Geotechnics Ltd Client Address: 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, **GU7 1XW** Amir Abbasi Contact: Site Address: **Bicester Golf Course Bicester**

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9				ence		Type SRM			Dime	nsions			nt De		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Refer	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	W	Dps mm	Dps' mm	Force P kN	3 Equivalent 3 diameter, De	ls MPa	ls(50) MPa
2078896	BH04	10	12.00	Not Given	С	Grey LIMESTONE	WC = 3.6%	1	D	U	YES	73.1	89.8	89.0	81.0	8.7	85.3	1.19	1.51
2078896	BH04	10	12.00	Not Given	с	Grey LIMESTONE	WC = 3.6%	2	А	U	YES	-	89.6	63.0	57.0	4.5	80.6	0.68	0.85
2078897	BH05	4	1.50	Not Given	С	Cream colour to light grey LIMESTONE	WC = 0.7%, Shape not suitable for Diametral - tested as Irregular.	1	I	U	YES	44.3	62.2	44.0	40.0	7.6	56.3	2.38	2.51
2078897	BH05	4	1.50	Not Given	С	Cream colour to light grey LIMESTONE	WC = 0.7%	2	A	υ	YES	I	89.1	57.0	54.0	1.0	78.3	0.16	0.20
2078899	BH05	4	2.00	Not Given	С	Grey silty CLAY	WC = 9.7%	1	D	U	YES	50.2	89.7	89.0	85.0	0.2	87.3	0.03	0.03
2078899	BH05	4	2.00	Not Given	с	Grey silty CLAY	WC = 9.7%	2	A	U	YES	Л	89.3	56.0	48.0	0.4	73.9	0.06	0.08
2078900	BH05	4	3.00	Not Given	С	Greyish brown silty CLAY	WC = 16.5%, Shape not suitable for Diametral - tested as Irregular.	1	I	U	YES	48.3	87.1	37.0	28.0	1.1	55.7	0.34	0.36
2078900	BH05	4	3.00	Not Given	с	Greyish brown silty CLAY	WC = 16.5%	2	Α	U	YES	-	88.8	65.0	44.0	1.5	70.5	0.29	0.34
2078903	BH05	6	4.30	Not Given	С	Grey LIMESTONE	WC = 2.5%	1	Α	U	YES	-	89.8	58.0	47.0	18.6	73.3	3.45	4.10
2078905	BH05	8	5.50	Not Given	с	Brownish grey silty CLAY	WC = 12.9%	1	A	U	YES	-	88.4	51.0	44.0	0.9	70.4	0.17	0.20

Dimensions: Dpe - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free and W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/50)0.45 for all tests

Comments:

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 26/10/2021 Date Received: 29/10/2021 Date Tested: 20/11/2021 Sampled By: Not Given

Client: Card Geotechnics Ltd Client Address: 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, **GU7 1XW** Amir Abbasi Contact: Site Address: **Bicester Golf Course Bicester** Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

			Sample	9				ence	Test see l	Type SRM			Dime	nsions			De		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Refer	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	W	Dps	Dps' mm	Force P kN	3 Equivalent 3 díameter, De	ls MPa	ls(50) MPa
2078906	BH05	10	6.00	Not Given	с	Grey LIMESTONE	WC = 5.1%	1	Α	U	YES	-	89.6	60.0	43.0	3.2	70.0	0.65	0.76
2078907	BH05	12	7.50	Not Given	с	Grey LIMESTONE	WC = 1.5%	1	Α	U	YES	-	89.6	63.0	55.0	16.0	79.2	2.55	3.14
2078909	BH05	15	12.00	Not Given	с	Grey LIMESTONE	WC = 5.4%	1	Α	U	YES	-	89.7	57.0	49.0	7.4	74.8	1.32	1.59
						ndicular to planes of weakness, U - unknown or random;													

ted; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpe lote: # non a Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free and W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/SO)0.45 for all tests

Comments:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Uniaxial Compression Test on Rock Test Results

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: CG39017 Job Number: 21-22172 Date Sampled: 26/10/2021 Date Received: 29/10/2021 Date Tested: 20/11/2021 Sampled By: Not Given

4041

Client:

Card Geotechnics Ltd

Client Address:	4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW
Contact:	Amir Abbasi
Site Address:	Bicester Golf Course Bicester
Testing carried out a	t i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	•					Specime	en Dimens	sions (2)	Bulk		Uniaxia	il Compre	ssion (3)	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description			Length	H/D	Orientation of sample	density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS
			m	m				mm	mm			Mg/m3	%		Mpa/s		Mpa
2078908	BH05	12	8.00	Not Given	с	Light grey LIMESTONE	Sample is below recommended length to diameter ratio.	89.5	194.6	2.2	Vertical	2.57	1.7	as received	0.0794	MS + AC	43.8

Note: 1 - ISRM p87 test 1, water content at 105 ± 3 oC, specimen as tested for UCS, 2 - ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density, 3 - ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials, above notes apply unless annotated otherwise in the remarks. Compaction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legend: S - Single shear, MS - multiple shear, AC - Axial cleavage, F - Fragmented

Comments:

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Unconfined Compressive Strength of soil

Tested in Accordance with: BS 1377-7: 1990: Clause 7.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Card Geotechnics Ltd			Client Refe	rence: CG39017
Client Address:	4 Godalming Business Cer Godalming, Surrey, GU7 1XW	ntre, Woolsack Way,		Date Sar	umber: 21-22172 mpled: 27/10/2021 seived: 29/10/2021
Contact:	Amir Abbasi				ested: 20/11/2021
Site Address:	Bicester Golf Course Bices	ter		Sampl	ed By: Not Given
Testing carried out at	i2 Analytical Limited, ul. Pion	ierow 39, 41-711 Ruda S	laska, Poland		
Test Results:	-				
Laboratory Reference	: 2078891			Depth To	op [m]: 7.50
Hole No.:	BH04				se [m]: Not Given
Sample Reference:	7			Sample	Туре: С
Sample Description:	Brownish grey sandy CLA	(
Test Number	1	Rate of Strain			1.0 %/min
Length	180.3 mm	At failure	Axial Strain		6.3 %
Diameter	89.7 mm		Unconfined Compressi	ve Strength	175 kPa
Bulk Density Moisture Content	2.02 Mg/m3 20.0 %		Mode of Failure		Brittle
Dry Density	1.69 Mg/m3				
Sty Senery					
	Axial Co	mpressive Stress v	Axial Strain		
200					
180					
180		29			
		200 ⁴ 000 ⁶ 000 ₀ 000			
160					
кРа	proposition of the second seco				Position within sample
ន្លូ 140 •					
ss 140 • stressive					
^{1,2} / ₁₂₀					
bie d					
to 🖌					
_ 100 1					
ž 1					-
80					
Corrected Axia					
60					- Contract
40					
20					
	2 3 4 5	6 7 8 0	10 11 12	13 14 14	_

Note: Axial compressive stress corrected for area change, and membrane effects (if used)

5

6

7

8

Axial Strain %

Remarks:

0

2

3

1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

4

10

11

9

12

13

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

14

15

16

Unconfined Compressive Strength of soil

HL DO 4077 7. 4000. O . - -

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

	Teste	d in Accordance with: B	S 1377-7: 1990: Clau	se 7.2	Environmenta
Client: Client Address:	Card Geotechnics Ltd 4 Godalming Business Centr Godalming, Surrey, GU7 1XW	re, Woolsack Way,		Job Date S	eference: CG39017 Number: 21-22172 Sampled: 26/10/2021
Contact: Site Address: Testing carried out at i	Amir Abbasi Bicester Golf Course Biceste 2 Analytical Limited, ul. Pionie.		laska. Poland	Date	eceived: 29/10/2021 Tested: 20/11/2021 Ipled By: Not Given
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description:				Depth B	Top [m]: 5.00 Base [m]: Not Given ble Type: C
Test Number Length Diameter Bulk Density Moisture Content Dry Density	1 182.8 mm 89.2 mm 2.18 Mg/m3 15.0 % 1.89 Mg/m3	Rate of Strain At failure	Axial Strain Unconfined Compr Mode of Failure	essive Strength	1.0 %/min 2.8 % 1895 kPa Brittle
	Axial Com	pressive Stress v	Axial Strain		
2 000		%			
1 600 - ស្មូ ភ្លូ 400 -					Position with sample
Corrected Axial Compressions 000 Compressions 000 000 000 000 000 000 000 000 000 00					
ected AxiaLCc					
600 - F					- U

vithin

Note: Axial compressive stress corrected for area change, and membrane effects (if used)

3

4

Axial Strain %

Remarks:

400

200

0

0

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

2

1

5

6

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Date Reported: 23/11/2021

7

8

GEOTECHNICAL ENGINEERING LIMITED

For the attention of		TREPORT	V Da	1 1 of 8 10/12/2021							
	- //	ST REPORT		20							
PROJECT/SITE	BICESTER GOLF COURSE, BICESTER			es received							
	36740			le received	16/11/2021						
Your ref/PO:			Testing c	ommenced							
Test report refers to	Schedule 1			Final							
	SUMMARY OF	ED									
TEST METHOD & DESCRIPTION QUANTITY											
BS1377: Part 7: 1990:88	&9, Undrained Triaxial Compression		1	TEST YES							
	ods: 2007: Uniaxial Compressive Stre	ength of Rock		2	YES						
ISRM: 2007: Point Load	Strength Test	_		7	YES						
BRE SD1 Suite (Subcont	racted)			2	YES/NO						
Remarks		Approved Signatories:									
This report may not be pa	rtially reproduced without written	W Jones (Laboratory Manager)	T Best (Deputy	Lab Manager)							
permission from this labor	ratory.	J Hanson (Director) N Parry (D	irector)								
The results reported relate	e to samples received in the laboratory										
L Doc TR01 Rev No. 23	Revision date 10/02/21 DC:JH	I									

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF www.geoeng.co.uk geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Registered number: 00700739 **VAT Number:** 682 5857 89 Payments: Geotechnical Engineering Limited Sort code: 16-22-11 Bank account: 11125135

Geotechnical Engineering Limited UNDRAINED TRIAXIAL COMPRESSION

BS.1377 : PART 7 : 1990 : 8

CLIENT CARD GEOTECHNICS LIMITED

SITE BICESTER GOLF COURSE, BICESTER

borehole	sam	nple	specimen	code	moisture	content	dimer	nsions	den	sity	cell	rate of	deviator	failure				
/trial pit	no./type	depth	depth		initial	final	length	diameter	bulk	dry					mode	strength*	description an	d remarks
no.		(m)	(m)		(%)	(%)		(mm)	(Mg/m3)	(Mg/m3)	(kPa)	(%/min)	(kPa)	(%)		(kPa)		
					(70)	(70)	(mm)	(1111)	(ivig/iii3)	(Mg/III3)								
BH04	13C	16.00	16.80	UU70	9.7	9.8	160	90	2.32	2.12	336	2.0	1174	6.9	Ι	587	Light grey silty CLA	Y
											ļ							
general remarks: * shear strength tak		ator atroas at f	ailura for acab		code: UU - unconsol	idated undraine		failure mode: B - barrel (plas			membrane ty latex membran			soified)			CONTRACT	CHECKED
membrane correction sample taken vertica strain rate 2%/min (1	on applied ally (unless oth	erwise specifie			M - multi stage S - set of three R - remoulded)		S - shear (britt I - intermediate O - other (see	le failure) e		38 - 0.2mm 70 - 0.4mm 100 - 0.4mm	ie useu (unies	s outerwise spe	oneu)			36740	ТВ

Geotechnical Engineering Limited UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

I.S.R.M. Suggested Methods: 2007 Edition

CLIENT CARD GEOTECHNICS LIMITED

SITE BICESTER GOLF COURSE, BICESTER

borehole	san	nple	specimen	diameter	height	H/D	moisture	bulk	loading	time to	UCS	
/trial pit	no./type		depth	D	Н	Π/D	content	density	rate	failure		description, codes and remarks
no.		(m)	(m)	(mm)	(mm)		(%)	(Mg/m3)	(kN/min)	(min:sec)	(MPa)	
BH04	4C	3.50	3.70	91.4	212.0	2.32	20.1	2.03	5	02:37	0.81	Grey MUDSTONE, P, Ax. H/D ratio falls outside ISRM specification
BH04	13C	16.00	16.45	89.2	204.6	2.29	4.7	2.49	15	04:32	10.20	Grey MUDSTONE , P, Ax. H/D ratio
												falls outside ISRM specification
donoral ra-	marka											
general rer sample ob		om vertic	ally drilled o	ore (unles	ss snecifi	ed) tes	t machine	- V.IT600	00			
coding:	moisture				sample s				failure mo	ode		
Ŭ			ure content		U - not w					cleavage		
	F - fully	saturated	ł				ling film/fo		Ca - cata			CONTRACT CHECKED
	S - soak				W - waxe				Sh - shea			
	P - air/pa	artially di	ried		G - conta	ained in	sealed G		Ex - explo			36740 TB
									Ot - other	r		

Geotechnical Engineering Limited

POINT LOAD STRENGTH TEST

I.S.R.M. Suggested Methods : 2007 Edition

CLIENT CARD GEOTECHNICS LIMITED

SITE BICESTER GOLF COURSE, BICESTER

borehole /trial pit	sample depth	test type	test orien-	moisture condition	width	length	platen sep.	failure load	equiv. diam.	ls	size factor	ls(50)		
no.	(m)		tation		W (mm)	L (mm)	D (mm)	P (kN)	De (mm)	(MPa)		(MPa)	description an	d remarks
					(1111)	(11111)	(1111)	(KIN)	(1111)					
BH04	18.00	А	х	Ρ	80		40	0.42	63.83	0.10	1.12	0.12	Grey MUDSTONE	
BH04	18.00	D	Y	Ρ		80	90	0.30	90.00	0.04	1.30	0.05	Grey MUDSTONE	
BH04	19.50	D	Y	Ρ		120	90	13.33	90.00	1.65	1.30	2.14	Grey LIMESTONE	
BH04	19.50	A	х	Ρ	120		80	14.75	110.56	1.21	1.43	1.72	Grey LIMESTONE	
BH04	4.20	D	Y	Ρ		70	90	0.72	90.00	0.09	1.30	0.12	Grey MUDSTONE	
BH04	4.20	A	х	Ρ	70		40	0.43	59.71	0.12	1.08	0.13	Grey MUDSTONE	
BH04	5.00	D	Y	Ρ		50	90	0.26	90.00	0.03	1.30	0.04	Grey MUDSTONE	
BH04	5.00	A	х	Ρ	50		40	0.14	50.46	0.05	1.00	0.06	Grey MUDSTONE	
BH07	3.00	A	х	Ρ	70		40	0.98	59.71	0.27	1.08	0.30	Grey MUDSTONE	
BH07	3.00	D	Y	Ρ		70	90	0.41	90.00	0.05	1.30	0.07	Grey MUDSTONE	
BH07	4.00	A	х	Ρ	50		40	0.35	50.46	0.14	1.00	0.14	Grey MUDSTONE	
BH07	4.00	D	Y	Ρ		50	90	0.61	90.00	0.08	1.30	0.10	Grey MUDSTONE	
BH07	4.80	A	х	Ρ	80		50	0.23	71.36	0.05	1.17	0.05	Grey MUDSTONE	
BH07	4.80	D	Y	Ρ		80	90	0.42	90.00	0.05	1.30	0.07	Grey MUDSTONE	
general ren tests carrie test machir	d out in a		ince with	I.S.R.M.(2	2007): Si	uggested	I Method	s for Dete	ermining F	oint Loa	d Streng	th		
test type				entation rel	ative to o				moisture				CONTRACT	CHECKED
A - axial D - diametr I - irregular			X - perp Y - para Z - oblic			U - unkr	nown		N - natura P - partia S - soake	lly air dri		nt	36740	ТВ

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-42709-1		
Initial Date of Issue:	09-Dec-2021		
Client	Geotechnical Engineering Ltd		
Client Address:	Centurion House Olympus Park Quedgeley Gloucester Gloucestershire GL2 4NF		
Contact(s):	GEL Tom Best		
Project	36740 Bicester Golf Course, Bicester		
Quotation No.:		Date Received:	03-Dec-2021
Order No.:	5492	Date Instructed:	03-Dec-2021
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	09-Dec-2021
Date Approved:	09-Dec-2021		
Approved By:	-		
Details:	Glynn Harvey, Technical Manager		

Project: 36740 Bicester Golf Course, Bicester

Client: Geotechnical Engineering Ltd		Che	mtest Jo	ob No.:	21-42709	21-42709	
Quotation No.:	(Chemte	est Sam	ple ID.:	1333030	1333031	
Order No.: 5492		Clie	nt Samp	le Ref.:	15	4	
		Sa	ample Lo	BH04	BH07		
			Sampl	SOIL	SOIL		
			Top De	4.00	1.60		
		Bot	tom De	oth (m):	5.50	2.60	
			Date Sa	01-Dec-2021	01-Dec-2021		
Determinand	Accred.	SOP					
Moisture	N	2030	%	0.020	38	23	
pH (2.5:1)	N	2010		4.0	8.2	8.2	
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.31	0.017	
Total Sulphur	U	2175	%	0.010	0.68	0.052	
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	
Sulphate (Acid Soluble)	U	2430	%	0.099	0.029		

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

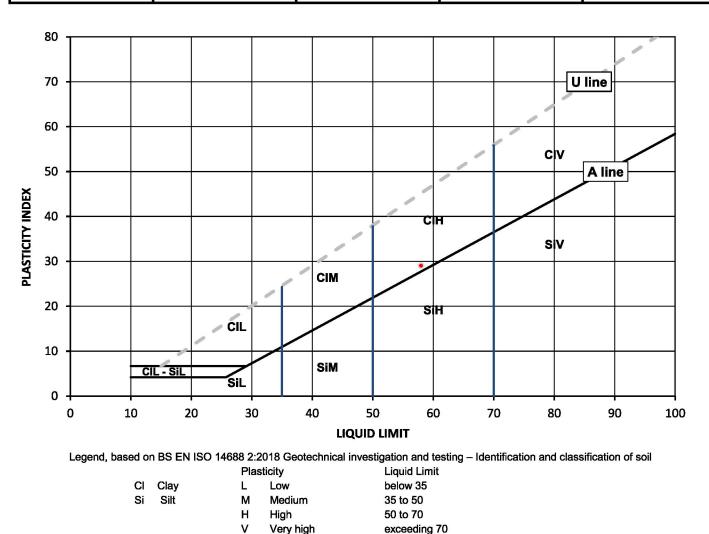
If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

Sample Type: C


Card Geotechnics Ltd Client Reference: CG39017 Client: **Client Address:** Job Number: 21-26639 Palatine House, Unit 2, Sigford Road, Exeter, Date Sampled: Not Given EX2 8NL Date Received: 02/11/2021 Contact: Amir Abbasi Date Tested: 06/12/2021 Site Address: **Bicester Golf Course, Bicester** Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2103485 Depth Top [m]: 8.50 Depth Base [m]: Not Given

BH04 Hole No .: Sample Reference: Not Given

Grey slightly gravelly slightly sandy CLAY Sample Description:

Sample Preparation: Tested after washing to remove >425um

As Received Moisture Liquid Limit **Plastic Limit Plasticity Index** % Passing 425µm **BS Test Sieve** Content [W]% [WL]% [Wp]% [lp]% 30 58 29 29 84

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

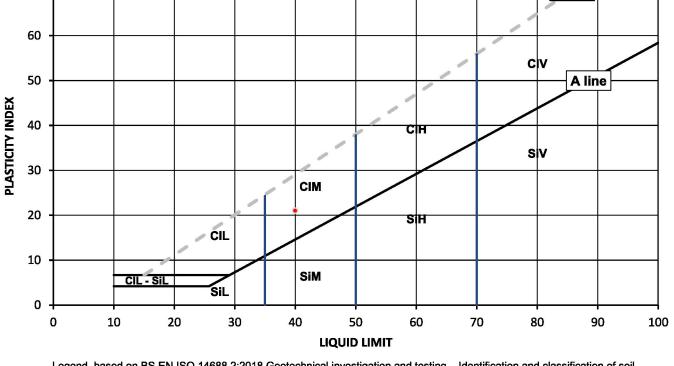
Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

append to classification for organic material (eg CIHO)



DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

Card Geotechnics Ltd Client Reference: CG39017 Client: **Client Address:** Job Number: 21-26639 Palatine House, Unit 2, Sigford Road, Exeter, Date Sampled: Not Given EX2 8NL Date Received: 02/11/2021 Contact: Amir Abbasi Date Tested: 10/12/2021 Site Address: **Bicester Golf Course, Bicester** Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2103486 Depth Top [m]: 5.50 BH05 Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: D Grey sandy CLAY Sample Description: Sample Preparation: Tested in natural condition As Received Moisture Liquid Limit **Plastic Limit Plasticity Index** % Passing 425µm **BS Test Sieve** Content [W]% [WL]% [Wp]% [lp]% 15 40 19 21 100 80 70 **U** line 60 civ 50 A line

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil Plasticity Liquid Limit CI Low below 35 Clay L Si Silt Medium 35 to 50 М

н High ۷ Very high 0 Organic

50 to 70 exceeding 70

append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: CG39017 Job Number: 21-26639 Date Sampled: Not Given Date Received: 02/11/2021 Date Tested: 06/12 - 10/12/2021 Sampled By: Not Given

 4041

 Client:
 Card Geotechnics Ltd
 Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN

 Client Address:
 Palatine House, Unit 2, Sigford Road, Exeter, EX2 8NL
 Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

 Contact:
 Amir Abbasi
 Sicester Golf Course, Bicester

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample	9				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Base	Type	Description	Remarks		Water Content [W]		WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m Not				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2103485	BH04	Not Given	8.50	Given	С	Grey slightly gravelly slightly sandy CLAY	Atterberg 1 Point	30		84	58	29	29					
2103486	BH05	Not Given	5.50	Not Given	D	Grey sandy CLAY	Atterberg 1 Point	15		100	40	19	21					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Anna Dudzinska Deputy Head of Geo Office Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

APPENDIX J

CGL Contamination Assessment Tables

ASSESSMENT CRITERIA

Table J1 below sets out CGL's rationale for generic assessment criteria (GAC) adoption in order to evaluate risks posed to potential receptors at the site from identified chemical contamination. Potential receptors have been identified with reference to the Part IIA regime and associated DEFRA guidance. As with the Part IIA regime, under the planning regime all receptors (humans, controlled waters, ecology and buildings) have been considered if there is the potential for them to be adversely affected by exposure to contamination. The results of the assessment for the site are then presented in Tables J2 to J6 of this appendix.

Table J1. Rationale for Assessment Criteria Adoption

Source / Media	CGL's Approach & Rationale
Risks to Human	Health (long-term chronic risks)
Soil contaminants	 Laboratory test results have been compared against Generic Assessment Criteria (GACs) derived inhouse by CGL using the Contaminated Land Exposure Assessment (CLEA) model and version 1.071 of the CLEA software. Where Soil Guideline Values (SGVs) have been published previously by the Environment Agency, the CGL GACs have updated these based on current exposure parameters (e.g. updated inhalation rates). The GACs have been generated assuming a sandy loam soil type and a Soil Organic Material 1% In the event impacts are identified on a site above the GAC level for arsenic, cadmium, chromium VI, benzene or benzo(a)pyrene, the results have been compared to the applicable Category 4 Screening Level (C4SL) published by DEFRA to further assess risks. The exception to the above relates to lead. The SGV for lead has been withdrawn and the C4SL for lead is used by CGL directly as a first tier of assessment. The CGL GACs represent conservative screening criteria (set at acceptable or minimal risk) and have generally been calculated using the default parameters for the standard land use scenarios set out in the CLEA technical report and toxicological inputs in line with the requirements of Science Report SC050021/SR2 and, in the case of petroleum hydrocarbons, Science Report P5-080/TR3. Where a CGL GAC has not been derived alternative assessment criteria will be sourced from current commercially-available sources (including international standards where no suitable UK assessment criteria exists). Concentrations of cyanide above the laboratory reporting limit are assessed against a Soil Screening Value (SSV) developed by Atkins. Atkins have based this assessment criteria on acute exposure to a 0 to 6 year old child. Where the dataset is of appropriate size, assessment against the applicable GAC or C4SL is carried out at the 95th percentile of the sample mean (designated US₂₅), which is considered to represent a reasonable worst-case scenario. An asses
Dissolved	Concentrations of organic constituents detected above the laboratory reporting limit in shallow groundwater or perched water have been assessed against groundwater vapour generic assessment
contaminants	criteria (GACgwvap) developed by the Society of Brownfield Remediation Risk Assessment (SoBRA). These assess chronic risks to human health via the indoor and outdoor air inhalation pathway only. The values assume a sand soil type, a soil organic matter of 1% and a depth below ground level of 650mm.
Ground gas	• Concentrations and flow rates of carbon dioxide and methane in ground gas are converted to Gas Screening Values (GSVs) in accordance with CIRIA (2007). Potential risks associated with gas chemistry are evaluated in accordance with guidance presented in CIRIA (2007), NHBC (2007), BSI (2007).

BICESTER GOLF CLUB Assessment Criteria Justification Table

Source / Media	CGL's Approach & Rationale						
Radon	• Risks from the radon content of soil gas are evaluated in accordance with BRE (2011).						
Risks to Controlled Waters							
Soil contaminants	• Results from any eluted liquids have been directly compared to Environmental Quality Standards (EQS)) as an initial screen of water quality. These are considered to be conservative screening criteria.						
Risks to Building	Risks to Buildings & Structures						
Water supply pipes	• The evaluation of water supply pipe requirements at the site has been undertaken in general accordance with guidance and criteria produced by the UK Water Industry (2011).						
Sulfate & pH conditions	• The evaluation of risks to buried concrete has followed the guidance and criteria produced by BRE (2005).						
Risks to Vegetation & Plants							
Soil contaminants	• Risks to plant growth (i.e. phytotoxicity) have been assessed for specific contaminants where the limits for phytotoxic effect proposed (e.g. by BS 3882) are significantly lower than the health GAC.						

Table J2. Data assessment	summary - po	tential soil risks	to human h	ealth				
Land Use Category:		Commercial			SOM:	1.00%		
Stratum:		[TOPSOIL]					No. Samples	4
Determinand	GAC	SSL	Min	Max	No. Samples	No. Samples	US ₉₅ (mg/kg)	US ₉₅ > GAC
	mg/kg	mg/kg	recorded	recorded	exceeding GAC	exceeding		
		(See Note A)	(mg/kg)	(mg/kg)		SSL		
Arsenic	323	-	16	26	0	0	NA	ОК
Beryllium	11.6	-	0.82	1.1	0	0	NA	OK
Boron	236000	-	0.2	2.4	0	0	NA	ОК
Cadmium	188	-	< 0.2	< 0.2	0	0	NA	ОК
Chromium (III)	8350	-	21	28	0	0	NA	ОК
Chromium (VI)	32.2	-	< 1.2	< 1.2	0	0	NA	ОК
Copper	68300	-	11	21	0	0	NA	ОК
Lead (note E)	2300	-	19	25	0	0	NA	ОК
Mercury	1190	-	< 0.3	< 0.3	0	0	NA	ОК
Nickel	983	-	18	24	0	0	NA	ОК
Selenium	13000	-	< 1	< 1	0	0	NA	ОК
Vanadium	6360	-	40	54	0	0	NA	ОК
Zinc	728000	-	54	90	0	0	NA	ОК
Benzene	36.7	-	< 0.001	< 0.001	0	0	NA	ОК
Toluene	73700	869	< 0.001	< 0.001	0	0	NA	ОК
Ethyl benzene	21000	518	< 0.001	< 0.001	0	0	NA	ОК
m-Xylene	8220	625	< 0.001	< 0.001	0	0	NA	ОК
o-Xylene	8820	478	< 0.001	< 0.001	0	0	NA	ОК
p-Xylene	7920	576	< 0.001	< 0.001	0	0	NA	ОК
Total Phenols (note C)	33800	-	< 1	< 1	0	0	NA	ОК
Total Cyanide (note D)	34	-	< 1	< 1	0	0	NA	ОК
Aliphatic EC5-6	3560	372	< 0.001	< 0.001	0	0	NA	ОК
Aliphatic EC6-8	7620	171	< 0.001	< 0.001	0	0	NA	ОК
Aliphatic EC8-10	1670	84.7	< 0.001	< 0.001	0	0	NA	ОК
Aliphatic EC10-12	8170	50.2	< 1	< 1	0	0	NA	ОК
Aliphatic EC12-16	49300	22.2	< 2	< 2	0	0	NA	ОК
Aliphatic EC16-35	1910000	-	< 16	< 16	0	0	NA	ОК
Aromatic EC5-7	36.5	-	0	0	0	0	NA	ОК
Aromatic EC7-8	73700	869	< 0.001	< 0.001	0	0	NA	ОК
Aromatic EC8-10	2650	620	< 0.001	< 0.001	0	0	NA	ОК
Aromatic EC10-12	12700	372	< 1	< 1	0	0	NA	OK
Aromatic EC12-16	31900	170	< 2	< 2	0	0	NA	OK
Aromatic EC16-21	28600	_	< 10	< 10	0	0	NA	OK
Aromatic EC21-35	28600	-	< 10	< 10	0	0	NA	OK
Naphthalene	247	76.4	< 0.05	< 0.05	0	0	NA	ОК
Acenaphthylene	75800	86.1	< 0.05	< 0.05	0	0	NA	ОК
Acenaphthene	76000	57	< 0.05	< 0.05	0	0	NA	ОК
Fluorene	59700	-	< 0.05	< 0.05	0	0	NA	ОК
Phenanthrene	22200	-	< 0.05	< 0.05	0	0	NA	ОК
Anthracene	514000	-	< 0.05	< 0.05	0	0	NA	OK
Fluoranthene	22400	-	< 0.05	< 0.05	0	0	NA	OK
Pyrene	53800	-	< 0.05	< 0.05	0	0	NA	OK
Benzo(a)Anthracene	171	_	< 0.05	< 0.05	0	0	NA	OK
Chrysene	347	-	< 0.05	< 0.05	0	0	NA	OK
Benzo(b)fluoranthene	44.3	-	< 0.03	< 0.05	0	0	NA	OK
Benzo(k)fluoranthene	1170	-	< 0.05	< 0.05	0	0	NA	OK
Benzo(a)Pyrene	35.2	-	< 0.05	< 0.05	0	0	NA	OK
Indeno(1,2,3,cd)pyrene	502	-	< 0.05	< 0.05	0	0	NA	OK OK
	3.84	-	< 0.05	< 0.05	0	0	NA	OK OK
Dibenzo(a,h)anthracene	3.84	-	< 0.05	< 0.05	0	0		OK OK
Benzo(g,h,i)perylene		f complex in whi					NA	
Asbestos in Soils	(Number o	f samples in whi	un ASDestos	uelected)	0	0	NA	ОК

Land Use Category:		Commercial					SOM:	1.00%
•••								1.00/0
Stratum:					No. Samples	4		
Determinand	GAC	SSL	Min	Max	No. Samples	No. Samples	US ₉₅ (mg/kg)	US ₉₅ > GAC
	mg/kg	mg/kg	recorded	recorded	exceeding GAC	exceeding		
		(See Note A)	(mg/kg)	(mg/kg)		SSL		
B. Concentrations for total xylenes should be compared against m-xylene for fresh spills and o-xylene for all other cases.								
B. Concentrations for total	xylenes should	d be compared ag	gainst m-xyle	ene for fresh	spills and o-xyle	ne for all othe	r cases.	
B. Concentrations for total	xylenes should	d be compared a	gainst m-xyle	ene for fresh	spills and o-xyle	ne for all othe	r cases.	
B. Concentrations for total C. GAC relates to phenol (C		d be compared ag	gainst m-xyle	ene for fresh	spills and o-xyle	ne for all othe	r cases.	
C. GAC relates to phenol (C	:6H5OH) only.				spills and o-xyle	ne for all othe	r cases.	
C. GAC relates to phenol (C D. Cyanide GAC based on a	:6H5OH) only.				spills and o-xyle	ne for all othe	r cases.	
	:6H5OH) only.				spills and o-xyle	ne for all othe	r cases.	

CadmiumChromium (III)Chromium (VI)CopperLead (note E)MercuryNickelSeleniumVanadiumZincZincTolueneEthyl benzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	GAC mg/kg 323 11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360 728000	Commercial [WEATHERED C SSL mg/kg (See Note A) - - - - - - - - - - - - -	ORNBRASH Min recorded (mg/kg) 6.7 0.48 < 0.2 < 0.2 11 < 1.2 3.3	FORMATION Max recorded (mg/kg) 28 1 2.1 < 0.2 31	No. Samples exceeding GAC 0 0 0	No. Samples exceeding SSL 0 0 0	SOM: No. Samples US ₉₅ (mg/kg) 20.81 1.06	1.00% 11 US ₉₅ > GAC OK
DeterminandArsenicBerylliumBoron2CadmiumChromium (III)Chromium (VI)CopperLead (note E)MercuryNickelSeleniumZincTolueneTolueneEthyl benzeneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC8-10Aliphatic EC10-12	mg/kg 323 11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360	SSL mg/kg (See Note A) - - - - - - - - - - - - - - - -	Min recorded (mg/kg) 6.7 0.48 < 0.2 < 0.2 11 < 1.2	Max recorded (mg/kg) 28 1 2.1 < 0.2	No. Samples exceeding GAC 0 0 0	No. Samples exceeding SSL 0 0	US ₉₅ (mg/kg) 20.81	US ₉₅ > GAC
ArsenicBerylliumBoron2Cadmium2Cadmium2Chromium (III)2Chromium (VI)2Copper1Lead (note E)1Mercury1Nickel5Selenium1Vanadium1Zinc7Benzene1Toluene1Ethyl benzene1m-Xylene2o-Xylene2Total Phenols (note C)1Total Cyanide (note D)1Aliphatic EC5-61Aliphatic EC6-81Aliphatic EC10-121	mg/kg 323 11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360	mg/kg (See Note A) - - - - - - - - - - - - - - - - -	recorded (mg/kg) 6.7 0.48 < 0.2 < 0.2 11 < 1.2	recorded (mg/kg) 28 1 2.1 < 0.2	exceeding GAC	exceeding SSL 0 0	20.81	
BerylliumBoron2Cadmium2Cadmium2Chromium (III)2Chromium (VI)2Copper4Lead (note E)4Mercury1Nickel5Selenium2Vanadium2Zinc7Benzene7Toluene2Ethyl benzene2m-Xylene2o-Xylene2Total Phenols (note C)3Total Cyanide (note D)4Aliphatic EC5-64Aliphatic EC8-104Aliphatic EC10-123	323 11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360	(See Note A)	(mg/kg) 6.7 0.48 < 0.2 < 0.2 11 < 1.2	(mg/kg) 28 1 2.1 < 0.2	0 0 0	SSL 0 0		ОК
BerylliumBoron2Cadmium2Cadmium2Chromium (III)2Chromium (VI)2Copper4Lead (note E)4Mercury1Nickel5Selenium2Vanadium2Zinc7Benzene7Toluene2Ethyl benzene2m-Xylene2o-Xylene2Total Phenols (note C)3Total Cyanide (note D)4Aliphatic EC5-64Aliphatic EC8-104Aliphatic EC10-123	11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360		6.7 0.48 < 0.2 < 0.2 11 < 1.2	28 1 2.1 < 0.2	0	0		ОК
BerylliumBoron2Cadmium2Cadmium2Chromium (III)2Chromium (VI)2Copper4Lead (note E)4Mercury1Nickel5Selenium2Vanadium2Zinc7Benzene7Toluene2Ethyl benzene2m-Xylene2o-Xylene2Total Phenols (note C)3Total Cyanide (note D)4Aliphatic EC5-64Aliphatic EC8-104Aliphatic EC10-123	11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360	- - - - - - -	0.48 < 0.2 < 0.2 11 < 1.2	1 2.1 < 0.2	0	0		ОК
BerylliumBoron2Cadmium2Cadmium2Chromium (III)2Chromium (VI)2Copper4Lead (note E)4Mercury1Nickel5Selenium2Vanadium2Zinc7Benzene7Toluene2Ethyl benzene2m-Xylene2o-Xylene2Total Phenols (note C)3Total Cyanide (note D)4Aliphatic EC5-64Aliphatic EC8-104Aliphatic EC10-123	11.6 236000 188 8350 32.2 68300 2300 1190 983 13000 6360	- - - - - - -	0.48 < 0.2 < 0.2 11 < 1.2	1 2.1 < 0.2	0	0		
Boron2CadmiumChromium (III)Chromium (VI)CopperLead (note E)MercuryNickelSeleniumSeleniumSeleniumVanadiumZincZinc7BenzeneSenzeneTolueneSenzeneEthyl benzeneSenzylenep-XyleneSotal Phenols (note C)Total Phenols (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12Senzene	236000 188 8350 32.2 68300 2300 1190 983 13000 6360	- - - - -	< 0.2 < 0.2 11 < 1.2	2.1 < 0.2	0	-	1.00	OK
CadmiumChromium (III)Chromium (VI)CopperLead (note E)MercuryNickelSeleniumVanadiumZincZincTolueneEthyl benzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	188 8350 32.2 68300 2300 1190 983 13000 6360	- - - - -	< 0.2 11 < 1.2	< 0.2			1.46	ОК
Chromium (III) Chromium (VI) Copper Lead (note E) Mercury Nickel Selenium Vanadium Zinc Toluene Ethyl benzene m-Xylene o-Xylene p-Xylene Total Phenols (note C) Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC8-10 Aliphatic EC10-12	8350 32.2 68300 2300 1190 983 13000 6360	-	11 < 1.2		0	0	0.10	<u>ОК</u>
Chromium (VI)CopperLead (note E)MercuryNickelSeleniumVanadiumZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC8-10Aliphatic EC10-12	32.2 68300 2300 1190 983 13000 6360	-	< 1.2	51	0	0	30.40	ОК
CopperLead (note E)MercuryNickelSeleniumVanadiumZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	68300 2300 1190 983 13000 6360	-		< 1.2	0	0	0.60	ОК
Lead (note E)MercuryNickelSeleniumVanadiumZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	2300 1190 983 13000 6360		5.5	40	0	0	25.37	ОК
MercuryNickelSeleniumVanadiumZincZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	1190 983 13000 6360	-	6.9	67	0	0	40.93	OK
NickelSeleniumVanadiumZincZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	983 13000 6360		< 0.3	< 0.3	0	0	0.15	OK
SeleniumVanadiumZincZinc7BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	13000 6360	_	< 0.5 8.6	26	0	0	21.78	OK
VanadiumZinc7Benzene7Benzene7Toluene7Ethyl benzene7m-Xylene7o-Xylene7p-Xylene7Total Phenols (note C)7Total Cyanide (note D)8Aliphatic EC5-68Aliphatic EC6-88Aliphatic EC8-108Aliphatic EC10-129	6360		<1	< 1	0	0	0.50	OK
Zinc7Benzene7Benzene7Toluene7Ethyl benzene7m-Xylene7o-Xylene7Total Phenols (note C)7Total Cyanide (note D)7Aliphatic EC5-67Aliphatic EC6-87Aliphatic EC8-107Aliphatic EC10-127		-	20	130	0	0	70.99	OK
BenzeneTolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	778000		30	100	0	0	62.80	OK
TolueneEthyl benzenem-Xyleneo-Xylenep-XyleneTotal Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	36.7	-	< 0.001	< 0.001	0	0	0.00	ОК
Ethyl benzene m-Xylene o-Xylene p-Xylene Total Phenols (note C) Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	73700	869	< 0.001	< 0.001	0	0	0.00	OK
m-Xylene o-Xylene p-Xylene Total Phenols (note C) Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	21000	518	< 0.001	< 0.001	0	0	0.00	OK
o-Xylene p-Xylene Total Phenols (note C) Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	8220	625	< 0.001	< 0.001	0	0	0.00	OK
p-Xylene Total Phenols (note C) Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	8820	478	< 0.001	< 0.001	0	0	0.00	OK
Total Phenols (note C)Total Cyanide (note D)Aliphatic EC5-6Aliphatic EC6-8Aliphatic EC8-10Aliphatic EC10-12	7920	576	< 0.001	< 0.001	0	0	0.00	OK
Total Cyanide (note D) Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	33800	-	< 0.001	< 1	0	0	0.50	OK
Aliphatic EC5-6 Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	33800		<1	<1	0	0	0.50	OK
Aliphatic EC6-8 Aliphatic EC8-10 Aliphatic EC10-12	3560	372	< 0.001	< 0.001	0	0	0.00	OK
Aliphatic EC8-10 Aliphatic EC10-12	7620	171	< 0.001	< 0.001	0	0	0.00	OK
Aliphatic EC10-12	1670	84.7	< 0.001	< 0.001	0	0	0.00	OK
	8170	50.2	< 0.001	< 0.001	0	0	0.50	OK
	49300	22.2	<2	< 2	0	0	1.00	OK
Aliphatic EC16-35	49300 1910000	-	< 16	< 16	0	0	8.00	OK OK
Aromatic EC5-7	36.5		0	0	0	0	0.00	OK
	73700	869	< 0.001	< 0.001	0	0	0.00	OK
	2650	620	< 0.001	< 0.001	0	0	0.00	OK
	12700	372	< 1	< 1	0	0	0.50	OK
	31900	170	< 2	< 2	0	0	1.00	<u>ОК</u>
	28600	-	< 10	< 10	0	0	5.00	<u>ОК</u>
	28600	_	< 10	< 10	0	0	5.00	ОК
Naphthalene	28000	76.4	< 0.05	< 0.05	0	0	0.03	<u>ОК</u>
	75800	86.1	< 0.05	< 0.05	0	0	0.03	OK
	76000	57	< 0.05	< 0.05	0	0	0.03	OK
· · · ·	59700	-	< 0.05	< 0.05	0	0	0.03	OK
	22200	-	< 0.05	< 0.05	0	0	0.03	OK
	514000		< 0.05	< 0.05	0	0	0.03	ОК
	22400	-	< 0.05	< 0.05	0	0	0.03	OK
	53800	-	< 0.05	< 0.05	0	0		
		-			0	0	0.03	OK
Benzo(a)Anthracene	171 347	-	< 0.05 < 0.05	< 0.05 < 0.05	0	0	0.03	<u>ОК</u> ОК
Chrysene Benzo(b)fluoranthene	44.3	-	< 0.05	< 0.05	0	0	0.03	OK OK
	1170	-	< 0.05	< 0.05	0	0	0.03	OK
Benzo(a)Pyrene		-	< 0.05	< 0.05	0	0	0.03	OK
Indeno(1,2,3,cd)pyrene	35.2	-	< 0.05	< 0.05	0	0	0.03	OK
Dibenzo(a,h)anthracene	502	-	< 0.05 < 0.05	< 0.05 < 0.05	0	0	0.03	<u>ОК</u> ОК
Benzo(g,h,i)perylene Asbestos in Soils (I		1				0	0.03	

Table J3. Data assessment summary - potential soil risks to human health								
Land Use Category:	Commercial					SOM:	1.00%	
Stratum:		[WEATHERED CORNBRASH FORMATION]					No. Samples	11
Determinand	GAC mg/kg	SSL mg/kg (See Note A)	SSL Min Max No. Samples vceeding GAC exceeding				US ₉₅ (mg/kg)	US ₉₅ > GAC
B. Concentrations for total xylenes should be compared against m-xylene for fresh spills and o-xylene for all other cases.								
C. GAC relates to phenol (C6	6H5OH) only.							
D. Cyanide GAC based on acute exposure of 0-6 year old child (Atkins value).								
E. Published C4SL.								
E. Published C4SL.								
E. Published C4SL.								

Water Body		Freshwater							
Determinand	Freshwater EQS ¹ (µg/I)	EC Drinking Water Value (µg/l)	Min recorded (µg/l)	Max recorded (µg/l)	Bioavailable concentration (µg/l)	No. Samples Exceeding EQS	No. Samples Exceeding DWV		
Arsenic	50	10	<1.0	11	-	0 of 5	0 of 5		
Cadmium	0.08	5	<0.08	<0.08	-	0 of 5	0 of 5		
Chromium (VI)	3.4	50	<5.0	<5.0	-	0 of 5	0 of 5		
Chromium (III)	4.7	50	<1.0	1.6	-	0 of 5	0 of 5		
Lead	7.2	10	<1.0	3.6	-	0 of 5	0 of 5		
Mercury	0.07	1	<0.5	<0.5	-	0 of 5	0 of 5		
Selenium	*	10	<4.0	<4.0	-	0 of 5	0 of 5		
Boron	*	1000	11	160	-	0 of 5	0 of 5		
Copper	1	2000	2.5	11	0.1 to 0.29	0 of 5	0 of 5		
Nickel	4	20	3.8	5	0.73 to 2.14	0 of 5	0 of 5		
Zinc	10.9	5000	9.1	13	1.44 to 4.62	0 of 5	0 of 5		
Barium	*	1000	5.6	10	-	0 of 5	0 of 5		
Beryllium	15	*	0.3	1.1	-	0 of 5	0 of 5		
Total Phenols (monohydric)	7.7	0.5	<1.0	<1.0	-	0 of 5	0 of 5		
Total Cyanide	1	50	<1.0	<1.0	-	0 of 5	0 of 5		
Total Sulphate as SO4 (mg/l)	*	250	0.67	3.38	-	0 of 5	0 of 5		
ТРН	*	10	<10	<10	-	0 of 5	0 of 5		
РАН	*	0.1	<0.2	<0.2	-	0 of 5	0 of 5		
Anthracene	0.1	*	<0.01	<0.01	-	0 of 5	0 of 5		
Benzo(a)pyrene	0.02	0.01	<0.01	<0.01	-	0 of 5	0 of 5		
Fluoranthene	0.1	*	<0.01	<0.01	-	0 of 5	0 of 5		
Naphthalene	2	*	<0.01	<0.01	-	0 of 5	0 of 5		
Benzene	10	1	<0.01	<0.01	-	0 of 5	0 of 5		
Toluene	74	*	<0.01	<0.01	-	0 of 5	0 of 5		
pН	6.0 - 9.0	6.5 to 10	7.5	8	-	0 of 5	0 of 5		
Notes:									
1 Annual Averages prescribed within	The River Basin Districts Typology	, Standards and Groundwa	ter threshold	values. (Wate	er Framework Directiv	ve) (England and Wa	les)		
2 This value relates to total chromiu	n.								
3 * = No values defined or given.									
4.2.76 ug/l dissolved where DOC < 1		W	20 > 1 m a /l						

4 3.76 μg/l dissolved where DOC < 1mg. 3.76 + (2.677 x ((DOC/2) – 0.5)) μg/l dissolved, where DOC > 1mg/l.

5 6.8 μg/l dissolved zinc plus ambient background concentration (μg/l) of 1.1 μg/l recommended for saltwater.

6 Concentration formerly prescribed within the Water Supply (Water Quality) Regulations 1989.

7 Dutch Indication Level of Serious Contamination

8 Drinking water standard based on total cyanide.

9 Sum concentration of 4 PAH comprising benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene.

10 The previous published value for benzo(a)pyrene and fluoranthene is given in the table, and the current published value is given in square brackets. The square brackets value

Table J5a Data assessment summary – potential soil risk to vegetation and plants – Topsoil

Determinant	Assessment Criteria (mg/kg)	Measured range (mg/kg)	Measured range > Assessment Criteria? (Y/N)
Copper ¹	135	11 to 21	Ν
Zinc ¹	200	54 to 90	Ν
Nickel ¹	75	18 to 24	N
Boron (water soluble) ²	5	0.2 to 2.4	N

Table J5b. Data assessment summary – potential soil risk to vegetation and plants – Natural strata

	Assessment	Measured range	Measured range > Assessment Criteria? (Y/N)	
Determinant	Criteria (mg/kg)	(mg/kg)		
Copper ³	135	3.3 to 40	Ν	
Zinc ¹	200	30 to 100	Ν	
Nickel ¹	75	8.6 to 26	N	
Boron (water soluble) ⁴	5	<0.2 to 2.1	Ν	

¹ BSI, (2015). Specification for topsoil and requirements for use. BS 3882:2015. Values taken for pH 6-7

² Limit for phytotoxic effect. Nable, Banuelos and Paul, (1997). Boron Toxicity. Plant and Soil, Volume 193, pp 181-198

³ BSI, (2015). Specification for topsoil and requirements for use. BS 3882:2015. Values taken for pH 6-7

⁴ Limit for phytotoxic effect. Nable, Banuelos and Paul, (1997). Boron Toxicity. Plant and Soil, Volume 193, pp 181-198

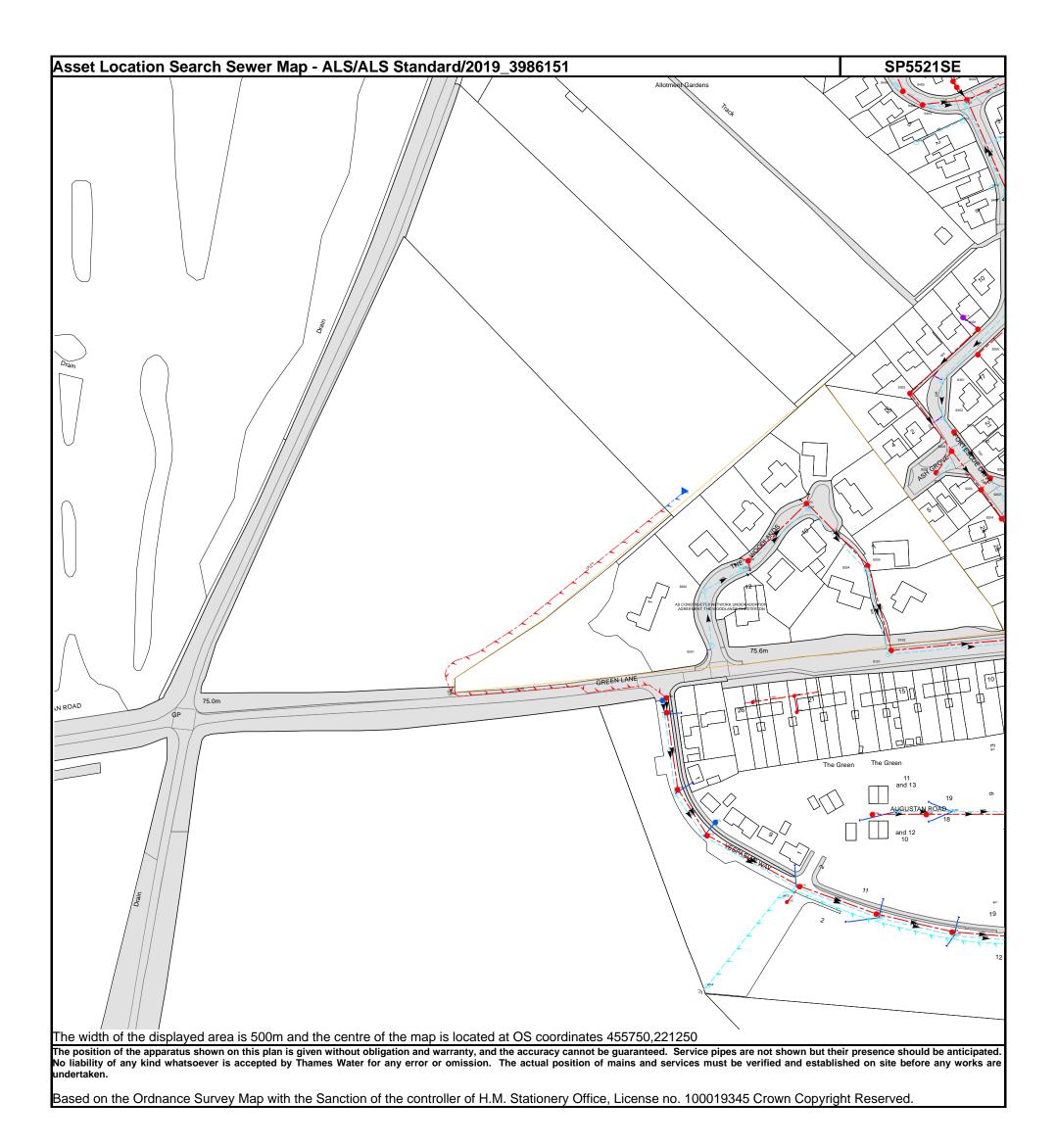
Great Wolf Lodge, Bicester 2180501 Planning Condition Discharge Report

C Thames Water Records

elliottwood

engineering a better **society**

Elliott Wood Partnership Ltd

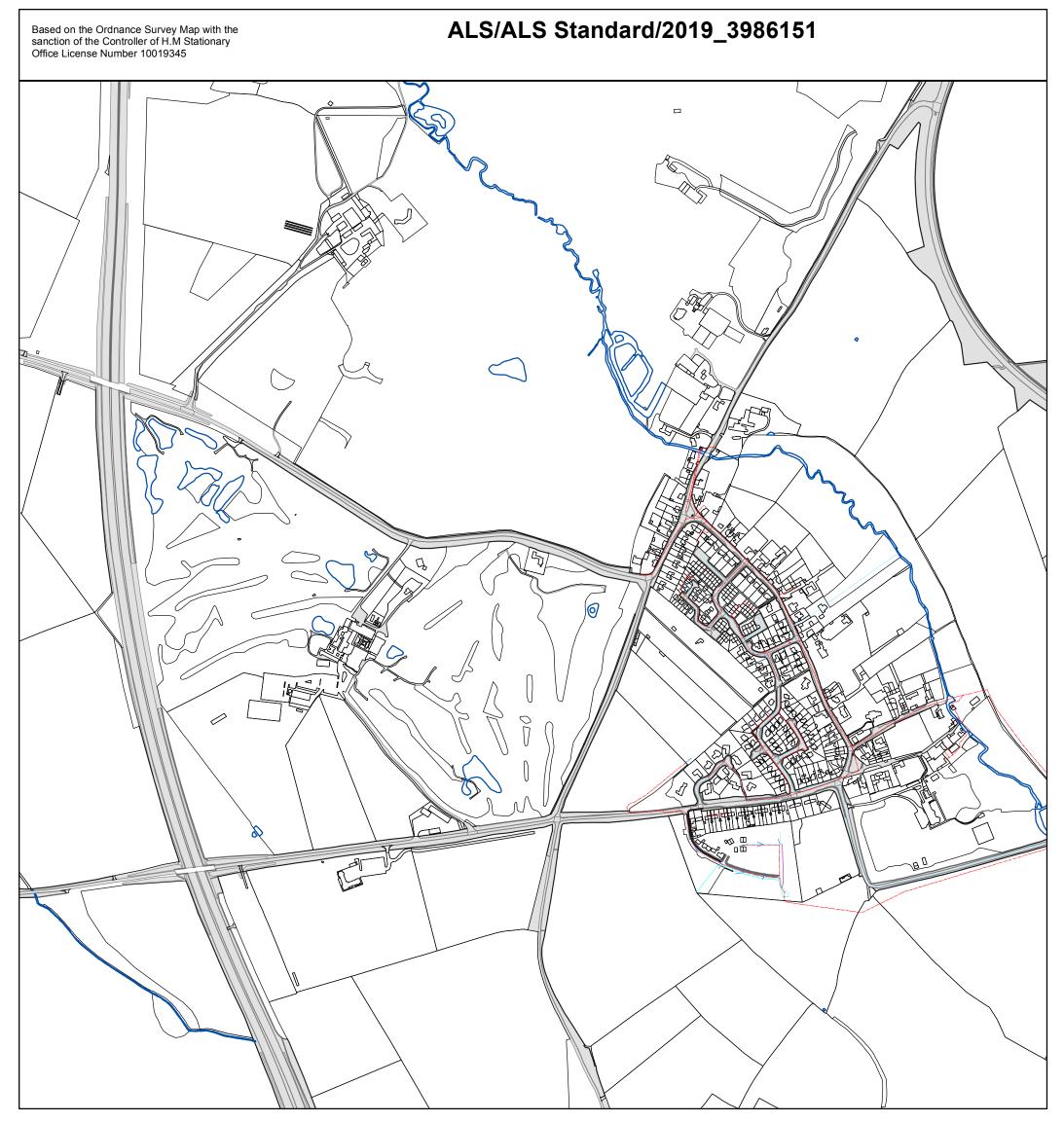


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
652	77.34	75.7
8651	77.99	76.64
861M	n/a	n/a
861L	n/a	n/a
0651	77.25	75.8
61N	n/a	n/a
601	78.74	77.54
661K	n/a	n/a
602	78.11	75.86
8654	77.49	76.06
0601	76.41	74.46
)602)653	76.44 77.58	74.56 76.29
/603	77.63	76.29
871A	n/a	n/a
871A 871B	n/a	n/a
371D	n/a	n/a
371C	n/a	n/a
371C	n/a	n/a
371E 3701	76.71	75.26
3702	76.46	73.20
3702	76.56	75.09
371F	n/a	n/a
871G	n/a	n/a
801	76.69	75.32
881B	n/a	n/a
881A	n/a	n/a
552	76.3	75.23
9551	76.43	75.44
951A	n/a	n/a
9603	75.96	74.14
0553	76.54	75.13
503	76.52	74.79
8555	77.65	75.69
503	77.64	75.79
8556	77.63	75.64
502	76.9	74.96
8554	77.86	75.92
8502	77.88	75.95
554	76.93	75.26
9501	77.08	75.18
951E	n/a	n/a
8557	77.27	75.35
3504	77.24	75.44
8553	77.75	76.1
552	77.97	76.35
501	77.74	76.14
51C	n/a	n/a
51D	n/a	n/a
51B	n/a	n/a
505	77.53	75.18
558	77.49	75.57
8551	77.96	76.14
8603	77.93	76.49
602	78.04	76.61
8601	78.06	76.65
652	77.94	76.45
8604	77.29	74.92
he nosition of the annaratus shown on th	his plan is given without obligation and warranty an	d the accuracy cannot be guaranteed. Service pipes are i



<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

NB. Levels guoted in metres Ordnance	e Newlyn Datum. The value	-9999.00 indicates that no surv	ev information is available
			- ,

Manhole Reference	Manhole Cover Level	Manhole Invert Level
9302	74.68	72.96
941E	n/a	n/a
9404	76.12	74.35
9453	76.1	74.54
9201	74.52	72.94
9251	74.49	73.18
9351	74.54	73.2
9352	74.52	73.09
9303	74.43	72.76
9304	74.5	73.05
941A	n/a	n/a
931A	n/a	n/a
9353	74.41	72.93
9305	74.69	73.52
9301	74.78	73.47
9202	74.28	72.7
941G	n/a	n/a
941F	n/a	n/a
9451	75.35	74.2
0451	75.15	73.59
9452	75.85	73.67
9403	75.85	74.08
9405	76.27	74.55
9402	76.05	74.78
9454	76.33	75
9401	76.13	75.33
9101	n/a	n/a
9102	n/a	n/a
8201	n/a	n/a
8202	75.24	73.81
9254	74.78	73
8203	75.07	73.7
9255	74.78	73.11
8205	75.09	74.1
9204	74.35	72.47
8204	74.78	73.2
8206	74.79	73.63
9252	74.27	72.77
9203	74.28	72.54
811C	n/a	n/a
811B	n/a	n/a
811A	n/a	n/a
shown but their presence should be anticipated. N	n is given without obligation and warranty, and the ac o liability of any kind whatsoever is accepted by Thame	
of mains and services must be verified and establi	sned on site before any works are undertaken.	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:7158	Comments:
Width:	2000m	
Printed By:	SAsirvat	
Print Date:	15/04/2019	
Map Centre:	455522,221600	
Grid Reference:	SP5521NE	

Great Wolf Lodge, Bicester 2180501 Planning Condition Discharge Report

D Drawing 2180501-EWP-ZZ-XX-DR-C-0010

elliottwood

engineering a better **society**

Elliott Wood Partnership Ltd